National Library of Energy BETA

Sample records for hazardous materials management

  1. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  2. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  3. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, Jr., Holt

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  4. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  5. Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100

    SciTech Connect (OSTI)

    Borgeson, M.E.

    1994-11-09

    The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

  6. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials Program Manager. PDF icon Enhancing Railroad Hazardous...

  7. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    SciTech Connect (OSTI)

    Kelly, K.E.

    1994-11-09

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel.

  8. Project T100 -- Hazardous Materials Management and Emergency Response Training Center (HAMMER)

    SciTech Connect (OSTI)

    Norton, C.E.

    1994-11-09

    The scope of this Quality Assurance Program Plan (QAPP) is to provide a system of Quality Assurance reviews and verifications on the design and construction of the Hazardous Materials Management and Emergency Response (HAMMER) Training Center, project 95L-EWT-100 at Hanford. The reviews and verifications will be on activities associated with design, procurement, and construction of the HAMMER project which includes, but is not limited to earthwork, placement of concrete, laying of rail, drilling of wells, water and sewer line fabrication and installation, communications systems, fire protection/detection systems, line tie-ins, building and mock-up (prop) construction, electrical, instrumentation, pump and valves and special coatings.

  9. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  10. Hazard index for underground toxic material

    SciTech Connect (OSTI)

    Smith, C.F.; Cohen, J.J.; McKone, T.E.

    1980-06-01

    To adequately define the problem of waste management, quantitative measures of hazard must be used. This study reviews past work in the area of hazard indices and proposes a geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking-water levels; a persistence factor to characterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter-lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.

  11. Transportation of Hazardous Evidentiary Material.

    SciTech Connect (OSTI)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being

  12. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  13. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  14. Hazardous Materials Packaging and Transportation Safety - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60.1D, Hazardous Materials Packaging and Transportation Safety by Ashok Kapoor Functional areas: Hazardous Materials, Packaging and Transportation, Safety and Security, Work...

  15. Vermont Hazardous Waste Management Regulations | Open Energy...

    Open Energy Info (EERE)

    Hazardous Waste Management Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Vermont Hazardous Waste Management...

  16. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect (OSTI)

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  17. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  18. Determining risks for hazardous material operations

    SciTech Connect (OSTI)

    Cournoyer, M. E.; Dare, J. H.

    2002-01-01

    Integrated Safety Management (ISM) is structured to manage and control work at the activity level. Fundamental to ISM is that all work will be performed safely while meeting the applicable institutional-, facility-, and activity-level expectations. High and medium initial risk activities require certain levels of independent peer and/or Environmental, Health & Safety subject matter expert reviews prior to authorization. A key responsibility of line management and chemical workers is to assign initial risk adequately, so that the proper reviews are obtained. Thus, the effectiveness of an ISM system is largely dependent upon the adequacy and accuracy of this initial risk determination. In the following presentation, a Risk Determination Model (RDM) is presented for physical, health and ecological hazards associated with materials. Magnitude of exposure (Le., dose or concentration), frequency, duration, and quantity are the four factors most difficult to capture in a research and development setting. They are factored into the determination, as a function of the quantity of material. Quantity and magnitude of exposure components are simplified by using boundary criteria. This RDM will promote conformity and consistency in the assignment of risk to hazardous material activities. In conclusion, the risk assessors (line manager and chemical worker) should be capable of more accurately assessing the risk of exposure to a specific chemical with regard to the employee, public, and the environment.

  19. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  20. Hazardous Material Shipments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Material Shipments GET (General Employee Training): General Information: Materials and Transportation personnel perform domestic and international shipping activities associated with hazardous materials transported onsite and offsite. All activities are performed by personnel who have been trained for their respective transportation functions, as required by the Code of Federal Regulations (CFR) and International Air Transport Association (IATA). Shipments are made for the research and

  1. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  2. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Bulk Packaging Placarding Requirements - Placarding of Packages vs. Placarding Vehicle * LSASCO Scenarios - 7 - U.S. Department of Transportation Pipeline and Hazardous Materials...

  3. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16,...

  4. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  5. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K.; Grey, Alan E.

    1994-01-01

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  6. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K.; Grey, Alan E.

    1994-04-05

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  7. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  8. Managing risks and hazardous in industrial operations

    SciTech Connect (OSTI)

    Almaula, S.C.

    1996-12-31

    The main objective of this paper is to demonstrate that it makes good business sense to identify risks and hazards of an operation and take appropriate steps to manage them effectively. Developing and implementing an effective risk and hazard management plan also contibutes to other industry requirements and standards. Development of a risk management system, key elements of a risk management plan, and hazards and risk analysis methods are outlined. Comparing potential risk to the cost of prevention is also discussed. It is estimated that the cost of developing and preparing the first risk management plan varies between $50,000 to $200,000. 3 refs., 2 figs., 1 tab.

  9. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A.; Cox, Robert

    1992-01-01

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  10. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  11. 49 CFR Parts 171-177: Hazardous Materials Regulations (DOT)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration regulates the transport of hazardous materials through Title 49 of the Code of Federal Regulations (49 CFR), Subchapter C, "Hazardous Materials Regulations." Parts 171-177 provide general information on hazardous materials and regulation for their packaging and their shipment by rail, air, vessel, and public highway.

  12. Hazardous waste management in the Pacific basin

    SciTech Connect (OSTI)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  13. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  14. Title 40 CFR 260: Hazardous Waste Management System: General...

    Open Energy Info (EERE)

    : Hazardous Waste Management System: General Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR 260: Hazardous...

  15. Federal program for regulating highly hazardous materials finally takes off

    SciTech Connect (OSTI)

    Lessard, P.C. [Block Environmental Services Inc., Pleasant Hill, CA (United States)

    1996-11-01

    The Risk Management Program (RMP) rule, Section 112(r) of the Clean Air Act (CAA), was signed on May 24 and finalized on June 20. RMP is one of the most comprehensive, technically based regulatory programs for preventing, detecting and responding to accidental hazardous materials releases to have been issued in recent times. Although facilities have three years to comply, EPA estimates that the rule will affect an estimated 66,000 facilities that store highly hazardous or acutely toxic materials. The 1990 CAA Amendments are designed to prevent accidental releases of highly hazardous chemicals from stationary sources. Two significant regulatory programs that have emerged from the revised CAA are the Process Safety Management (PSM) standard and RMP. PSM is designed to protect employees and regulated by the Occupational Safety and Health Administration. RMP`s purpose is to protect the public and the environment from highly hazardous chemicals. It authorizes EPA to create a list of substances (distinct from the list generated under PSM) known to cause serious adverse effects and to implement a program for accidental chemical release prevention.

  16. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  17. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect (OSTI)

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  18. ADEQ Managing Hazardous Waste Handbook | Open Energy Information

    Open Energy Info (EERE)

    Managing Hazardous Waste Handbook Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Managing Hazardous Waste HandbookLegal...

  19. ADEQ Hazardous Waste Management website | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Management website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Hazardous Waste Management websiteLegal...

  20. Management of hazardous medical waste in Croatia

    SciTech Connect (OSTI)

    Marinkovic, Natalija Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar; Pavic, Tomo

    2008-07-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  1. Mr. Steve lappe, Project Leader Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lappe, Project Leader Hazardous Materials Bureau Department of Energy Carlsbad Field Office P o. Box 3090 Carlsbad, New Mexico 88221 FEB I 3110 New Mexico Environment Department...

  2. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Admin Chg 1 dated 4-10-2014, supersedes DOE O 410.2.

  3. Procurement and Materials Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement and Materials Management U.S. Department of Energy | Who We Are | Current Requests for Proposal | Requests for Information | Expression of Interest | Subcontractor Information | Small Business Home Washington River Protection Solutions | Hanford.gov | Energy.gov Procurement and Materials Management Small Business Resources Small Business Calendar Terms & Conditions Procedures to Subcontractors Instructions Forms Vendor Registration Solicitations Small Bus. Events Procedures

  4. Hazardous materials (HAZMAT) Spill Center strategic plan

    SciTech Connect (OSTI)

    1996-01-01

    This strategic Plan was developed in keeping with the Department of Energy`s mission for partnership with its customers to contribute to our Nation`s welfare by providing the technical information and the scientific and educational foundation for the technology, policy and institutional leadership necessary to achieve efficiency in energy use, diversity in energy sources, a more productive and competitive economy, improved environmental quality, and a secure national defense. The Plan provides the concepts for realigning the Departments`s Hazardous Materials Spill Center (HSC) in achieving its vision of becoming the global leader in meeting the diverse HAZMAT needs in the areas of testing, training, and technology. Each of these areas encompass many facets and a multitude of functional and operational requirements at the Federal, state, tribal, and local government levels, as well as those of foreign governments and the private sector. The evolution of the limited dimensional Liquefied Gaseous Fuels Spill Test Facility into a multifaceted HAZMAT Spill Center will require us to totally redefine our way of thinking as related to our business approach, both within and outside of the Department. We need to establish and maintain a viable and vibrant outreach program through all aspects of the public (via government agencies) and private sectors, to include foreign partnerships. The HAZMAT Spill Center goals and objectives provide the direction for meeting our vision. This direction takes into consideration the trends and happenings identified in the {open_quotes}Strategic Outlook{close_quotes}, which includes valuable input from our stakeholders and our present and future customers. It is our worldwide customers that provide the essence of the strategic outlook for the HAZMAT Spill Center.

  5. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-12-22

    The Order establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), materials transportation and packaging to ensure the safe, secure, efficient packaging and transportation of materials, both hazardous and nonhazardous. Cancels DOE O 460.2 and DOE O 460.2 Chg 1

  6. OAR 340-105 - DEQ Hazardous Management Facility Permits | Open...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- RegulationRegulation: OAR 340-105 - DEQ Hazardous Management Facility PermitsLegal Abstract Establishes basic permitting requirements for...

  7. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  8. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  9. Advanced Materials Laboratory hazards assessment document

    SciTech Connect (OSTI)

    Barnett, B.; Banda, Z.

    1995-10-01

    The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

  10. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  11. Conversion of hazardous materials using supercritical water oxidation

    DOE Patents [OSTI]

    Rofer, Cheryl K.; Buelow, Steven J.; Dyer, Richard B.; Wander, Joseph D.

    1992-01-01

    A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

  12. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  13. Design for containment of hazardous materials

    SciTech Connect (OSTI)

    Murray, R.C. ); McDonald, J.R. )

    1991-03-01

    Department of Energy, (DOE), facilities across the United States, use wind and tornado design and evaluation criteria based on probabilistic performance goals. In addition, other programs such as Advanced Light Water Reactors, New Production Reactors, and Individual Plant Examinations for External Events for commercial nuclear power plants utilize design and evaluation criteria based on probabilistic performance goals. The use of probabilistic performance goals is a departure from design practice for commercial nuclear power plants which have traditionally been designed utilizing a conservative specification of wind and tornado loading combined with deterministic response evaluation methods and permissible behavior limits. Approaches which utilize probabilistic wind and tornado hazard curves for specification of loading and deterministic response evaluation methods and permissible behavior limits are discussed in this paper. Through the use of such design/evaluation approaches, it may be demonstrated that there is high likelihood that probabilistic performance goals can be achieved. 14 refs., 1 fig., 5 tabs.

  14. Removal of radioactive and other hazardous material from fluid waste

    DOE Patents [OSTI]

    Tranter, Troy J.; Knecht, Dieter A.; Todd, Terry A.; Burchfield, Larry A.; Anshits, Alexander G.; Vereshchagina, Tatiana; Tretyakov, Alexander A.; Aloy, Albert S.; Sapozhnikova, Natalia V.

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  15. 49 CFR Subchapter C, Parts 171-177: Hazardous Materials Regulations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration regulates the transport of hazardous materials through Title 49 of the Code of Federal Regulations (49 CFR), Subchapter C, "Hazardous Materials Regulations." Parts 171-177 provide general information on hazardous materials and regulation for their packaging and their shipment by rail, air, vessel, and public highway.

  16. Smoldering combustion hazards of thermal insulation materials

    SciTech Connect (OSTI)

    Ohlemiller, T.J.; Rogers, F.E.

    1980-07-01

    Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.

  17. CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan

    Broader source: Energy.gov [DOE]

    Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B

  18. Classification of poison inhalation hazard materials into severity groups

    SciTech Connect (OSTI)

    Griego, N.R.; Weiner, R.F.

    1996-02-01

    Approximately 1.5 billion tons of hazardous materials (hazmat) are transported in the US annually, and most reach their destinations safely. However, there are infrequent transportation accidents in which hazmat is released from its packaging. These accidental releases can potentially affect the health of the exposed population and damage the surrounding environment. Although these events are rare, they cause genuine public concern. Therefore, the US Department of Transportation Research & Special Programs Administration (DOT- RSPA) has sponsored a project to evaluate the protection provided by the current bulk (defined as larger than 118 gallons) packagings used to transport materials that have been classified as Poison Inhalation Hazards (PIH) and recommend performance standards for these PIH packagings. This project was limited to evaluating bulk packagings larger than 2000 gallons. This project involved classifying the PIH into severity categories so that only one set of packaging performance criteria would be needed for each severity category rather than a separate set of performance criteria for each individual PIH. By grouping the PIH into Hazard Zones, Packaging Groups and performance standards for these Hazard Zones can be defined. Each Hazard Zone can correspond to a Packaging Group or, as in 49CFR173 for non-bulk packagings, one Packaging Group may cover more than one Hazard Zone. If the packaging groups are chosen to correspond to the classification categories presented in this report, then the maximum allowable leak rates used to define these categories could be used as the maximum allowable leak rates for the performance oriented packaging standards. The results discussed in this report are intended to provide quantitative guidance for the appropriate authorities to use in making these decisions.

  19. Hydrothermal oxidation of Navy shipboard excess hazardous materials

    SciTech Connect (OSTI)

    LaJeunesse, C.A.; Haroldsen, B.L.; Rice, S.F.; Brown, B.G.

    1997-03-01

    This study demonstrated effective destruction, using a novel supercritical water oxidation reactor, of oil, jet fuel, and hydraulic fluid, common excess hazardous materials found on-board Navy vessels. This reactor uses an advanced injector design to mix the hazardous compounds with water, oxidizer, and a supplementary fuel and it uses a transpiring wall to protect the surface of the reactor from corrosion and salt deposition. Our program was divided into four parts. First, basic chemical kinetic data were generated in a simple, tubular-configured reactor for short reaction times (<1 second) and long reaction times (>5 seconds) as a function of temperature. Second, using the data, an engineering model was developed for the more complicated industrial reactor mentioned above. Third, the three hazardous materials were destroyed in a quarter-scale version of the industrial reactor. Finally, the test data were compared with the model. The model and the experimental results for the quarter-scale reactor are described and compared in this report. A companion report discusses the first part of the program to generate basic chemical kinetic data. The injector and reactor worked as expected. The oxidation reaction with the supplementary fuel was initiated between 400 {degrees}C and 450 {degrees}C. The released energy raised the reactor temperature to greater than 600 {degrees}C. At that temperature, the hazardous materials were efficiently destroyed in less than five seconds. The model shows good agreement with the test data and has proven to be a useful tool in designing the system and understanding the test results. 16 refs., 17 figs., 11 tabs.

  20. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    SciTech Connect (OSTI)

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Plan for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.

  1. Notice of Intent to Revise DOE O 460.2A, Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  2. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  3. Ross Hazardous and Toxic Materials Handling Facility: Environmental Assessment.

    SciTech Connect (OSTI)

    URS Consultants, Inc.

    1992-06-01

    The Bonneville Power Administration (BPA) owns a 200-acre facility in Washington State known as the Ross Complex. Activities at the Ross Complex routinely involve handling toxic substances such as oil-filled electrical equipment containing polychlorinated biphenyls (PCBs), organic and inorganic compounds for preserving wood transmission poles, and paints, solvents, waste oils, and pesticides and herbicides. Hazardous waste management is a common activity on-site, and hazardous and toxic substances are often generated from these and off-site activities. The subject of this environmental assessment (EA) concerns the consolidation of hazardous and toxic substances handling at the Complex. This environmental assessment has been developed to identify the potential environmental impacts of the construction and operation of the proposal. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) to determine if the proposed action is likely to have a significant impact on the environment. In addition to the design elements included within the project, mitigation measures have been identified within various sections that are now incorporated within the project. This facility would be designed to improve the current waste handling practices and to assist BPA in meeting Federal and state regulations.

  4. SOFTWARE TOOLS THAT ADDRESS HAZARDOUS MATERIAL ISSUES DURING NUCLEAR FACILITY D and D

    SciTech Connect (OSTI)

    M. COURNOYER; R. GRUNDEMANN

    2001-03-01

    The 49-year-old Chemistry and Metallurgy Research (CMR) Facility is where analytical chemistry and metallurgical studies on samples of plutonium and nuclear materials are conduct in support of the Department of Energy's nuclear weapons program. The CMR Facility is expected to be decontaminated and decommissioned (D and D) over the next ten to twenty years. Over the decades, several hazardous material issues have developed that need to be address. Unstable chemicals must be properly reassigned or disposed of from the workspace during D and D operation. Materials that have critical effects that are primarily chronic in nature, carcinogens, reproductive toxin, and materials that exhibit high chronic toxicity, have unique decontamination requirements, including the decontrolling of areas where these chemicals were used. Certain types of equipment and materials that contain mercury, asbestos, lead, and polychlorinated biphenyls have special provisions that must be addressed. Utilization of commercially available software programs for addressing hazardous material issues during D and D operations such as legacy chemicals and documentation are presented. These user-friendly programs eliminate part of the tediousness associated with the complex requirements of legacy hazardous materials. A key element of this approach is having a program that inventories and tracks all hazardous materials. Without an inventory of chemicals stored in a particular location, many important questions pertinent to D and D operations can be difficult to answer. On the other hand, a well-managed inventory system can address unstable and highly toxic chemicals and hazardous material records concerns before they become an issue. Tapping into the institutional database provides a way to take advantage of the combined expertise of the institution in managing a cost effective D and D program as well as adding a quality assurance element to the program. Using laboratory requirements as a logic flow

  5. Mr. Steve lappe, Project Leader Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lappe, Project Leader Hazardous Materials Bureau Department of Energy Carlsbad Field Office P o. Box 3090 Carlsbad, New Mexico 88221 FEB I 3110 New Mexico Environment Department 2905 E. Rodeo Park Drive, Building 1 Santa Fe, New Mexico 87502-6110 Subject Transmittal of the Audit Report for the Savannah River Site/Central Characterization Project Recertification Audit A~ 1 0*01 Dear Mr. Zappe : This letter transmits Carlsbad Field Office (CBFO) Audit Report A-1 0-01 for the audit of Savannah

  6. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  7. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  8. Nuclear materials management storage study

    SciTech Connect (OSTI)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

  9. 1996 hazardous waste management survey in selected Asian countries

    SciTech Connect (OSTI)

    Nelson, D.; Christie, K.; Tao, Hong-lei

    1996-12-31

    This report documents the results of a 42-question survey submitted to countries in Asia concerning their hazardous waste management programs and other issues. The same survey questions were distributed in 1992. This report compares the 1992 and 1996 responses. The respondents were Australia, New Zealand, Malaysia, Philippines, Hong Kong, People`s Republic of China, Taiwan, Japan, Korea, Singapore, Thailand, and Indonesia. 7 figs.

  10. An overview of safety assessment, regulation, and control of hazardous material use at NREL

    SciTech Connect (OSTI)

    Nelson, B.P.; Crandall, R.S. ); Moskowitz, P.D.; Fthenakis, V.M. )

    1992-12-01

    This paper summarizes the methodology we use to ensure the safe use of hazardous materials at the National Renewable Energy Laboratory (NREL). First, we analyze the processes and the materials used in those processes to identify the hazards presented. Then we study federal, state, and local regulations and apply the relevant requirements to our operations. When necessary, we generate internal safety documents to consolidate this information. We design research operations and support systems to conform to these requirements. Before we construct the systems, we perform a semiquantitative risk analysis on likely accident scenarios. All scenarios presenting an unacceptable risk require system or procedural modifications to reduce the risk. Following these modifications, we repeat the risk analysis to ensure that the respective accident scenarios present an acceptable risk. Once all risks are acceptable, we conduct an operational readiness review (ORR). A management-appointed panel performs the ORR ensuring compliance with all relevant requirements. After successful completion of the ORR, operations can begin.

  11. An overview of safety assessment, regulation, and control of hazardous material use at NREL

    SciTech Connect (OSTI)

    Nelson, B.P.; Crandall, R.S.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    This paper summarizes the methodology we use to ensure the safe use of hazardous materials at the National Renewable Energy Laboratory (NREL). First, we analyze the processes and the materials used in those processes to identify the hazards presented. Then we study federal, state, and local regulations and apply the relevant requirements to our operations. When necessary, we generate internal safety documents to consolidate this information. We design research operations and support systems to conform to these requirements. Before we construct the systems, we perform a semiquantitative risk analysis on likely accident scenarios. All scenarios presenting in unacceptable risk require system or procedural modifications to reduce the risk. Following these modifications, we repeat the risk analysis to ensure that the respective accident scenarios present acceptable risk. Once all risks are acceptable, we conduct an operational readiness review (ORR). A management appointed panel performs the ORR ensuring compliance with all relevant requirements. After successful completion of the ORR, operations can begin.

  12. PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 The objective of this surveillance is to evaluate the effectiveness of the contractor's programs, policies, and procedures to transport radioactive and hazardous materials off-site or to receive such materials for routine operations, treatment, storage, or disposal. The Facility Representative observes preparation of materials for shipment

  13. 20th Hazmat Challenge tests skills of hazardous materials response teams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazmat Challenge tests skills of hazardous materials response teams 20th Hazmat Challenge tests skills of hazardous materials response teams Ten hazardous materials response teams from New Mexico, Missouri, Oklahoma and Nebraska test their skills in a series of graded, timed exercises. July 21, 2016 The Laboratory began the Hazmat Challenge in 1996 to hone the skills of its own hazmat team members. The Laboratory began the Hazmat Challenge in 1996 to hone the skills of its own hazmat team

  14. Heavy Isotopes Lead Materials Management Organization (LMMO)...

    Office of Scientific and Technical Information (OSTI)

    Heavy Isotopes Lead Materials Management Organization (LMMO) Update Citation Details In-Document Search Title: Heavy Isotopes Lead Materials Management Organization (LMMO) Update ...

  15. Management of hazardous waste containers and container storage areas under the Resource Conservation and Recovery Act

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    DOE`s Office of Environmental Guidance, RCRA/CERCLA Division, has prepared this guidance document to assist waste management personnel in complying with the numerous and complex regulatory requirements associated with RCRA hazardous waste and radioactive mixed waste containers and container management areas. This document is designed using a systematic graphic approach that features detailed, step-by-step guidance and extensive references to additional relevant guidance materials. Diagrams, flowcharts, reference, and overview graphics accompany the narrative descriptions to illustrate and highlight the topics being discussed. Step-by-step narrative is accompanied by flowchart graphics in an easy-to-follow, ``roadmap`` format.

  16. DRAFT - DOE O 460.1D, Hazardous Materials Packaging and Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60.1D, Hazardous Materials Packaging and Transportation Safety by Website Administrator The Order establishes safety requirements for the proper packaging and transportation of...

  17. I.C. 39-44 - Idaho Hazardous Waste Management Act | Open Energy...

    Open Energy Info (EERE)

    44 - Idaho Hazardous Waste Management Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: I.C. 39-44 - Idaho Hazardous Waste...

  18. H.A.R. 11-261 - Hazardous Waste Management | Open Energy Information

    Open Energy Info (EERE)

    1 - Hazardous Waste Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-261 - Hazardous Waste...

  19. AAC R-18-8-260 Hazardous Waste Management System | Open Energy...

    Open Energy Info (EERE)

    AAC R-18-8-260 Hazardous Waste Management System Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: AAC R-18-8-260 Hazardous...

  20. Information system revives materials management

    SciTech Connect (OSTI)

    Hansen, T.

    1995-12-01

    Through a change in philosophy and the development of a new, more efficient information management system, Arizona Public Service Co. (APSW) has, in less than two years, reduced material and service costs by 10 percent. The utility plans to cut these costs form 1993 figures by 25 percent before 2000. The utility is breaking new ground with ongoing implementation of new business processes and the new Materials Logistics Information System (MLIS), which has been co-developed with Texas Instruments Software Division (TISD).

  1. Security robots for nuclear materials management

    SciTech Connect (OSTI)

    Deming, R.

    1986-01-01

    Robots have successfully invaded industry where they have replaced costly personnel performing their tasks cheaper and better in most cases. There may be a place for a unique class of robots, security robots, in nuclear materials management. Robots could be employed in the functions of general response, patrol and neutralizing dangerous situations. The last is perhaps most important. Ion Track Instruments of Burlington, Massachusetts has designed an excellent unit to protect life in hazardous situations. The unit can detect, disrupt or remove explosives. It can enter dangerous areas to reconnoiter the extent of danger. It can communicate with those in a dangerous area. It can fight fires or clean an area using a 2 1/2 inch, two man hose. If necessary, it can engage an adversary in a fire fight using a twelve gauge shot gun.

  2. H.A.R. 11-265 - Hazardous Management: Interim Status Standard...

    Open Energy Info (EERE)

    Status Standard for Owners and OperatorsLegal Abstract The Hawaii State Department of Health regulates hazardous waste management through this chapter of the administrative...

  3. DOE-HDBK-1101-96; Process Safety Management for Highly Hazardous...

    Broader source: Energy.gov (indexed) [DOE]

    01-96 February 1996 TS DOE HANDBOOK PROCESS SAFETY MANAGEMENT FOR HIGHLY HAZARDOUS ... Data Sheet NDT Nondestructive Testing NFPA National Fire Protection Association ORC ...

  4. Preparedness of hazardous materials emergencies in railyards: Guidance for railroads and adjacent communities

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Railroads are a key part of the distribution system for hazardous materials and, thus, much hazardous material passes through railyards en route to intermediate or final consumers. While the vast majority of these materials are shipped without incident, both the number of shipments and the nature of the materials themselves dictate that railyards and surrounding communities be prepared to respond quickly and effectively to emergencies. This report contains information on 11 emergency preparedness functions and 150 guidance recommendations.

  5. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect (OSTI)

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  6. 40 CFR Part 266, Standards for the Management of Specific Hazardous Wastes and Specific Types of Hazardous Waste Management Facilities (DOE)

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) regulates the management of hazardous waste through Title 40 of the Code of Federal Regulations (40 CFR) Part 266, under the authority of the Resource Conservation and Recovery Act (RCRA).

  7. Safety analysis for the use of hazardous production materials in photovoltaic applications

    SciTech Connect (OSTI)

    Moskowitz, P.D.; Fthenakis, V.M.; Crandall, R.S.; Nelson, B.P.

    1993-12-31

    A wide range of hazardous production materials (HPMs) are used in industrial and university facilities engaged in research and development (R&D) related to semiconductor and photovoltaic devices. Because of the nature of R&D facilities where research activities are constantly changing, it is important for facility managers to pro-actively control the storage, distribution, use and disposal of these HPMs. As part of this control process, facility managers must determine the magnitude of the risk presented by their operations and the protection afforded by the administrative, engineering and personnel controls that have been implemented to reduce risks to life and property to acceptable levels. Facility auditing combined with process hazard analysis (PHA), provides a mechanism for identifying these risks and evaluating their magnitude. In this paper, the methods and results of a PHA for a photovoltaic R&D facility handling HPMs are presented. Of the 30 potential accidents identified, none present High or even Moderate Risks; 18 present Low Risks; and, 12 present Routine Risks. Administrative, engineering and personal safety controls associated with each accident are discussed. 15 refs., 2 figs., 6 tabs.

  8. Safety analysis for the use of hazardous production materials in photovoltaic applications

    SciTech Connect (OSTI)

    Moskowitz, P.D.; Fthenakis, V.M.; Crandall, R.S.; Nelson, B.P.

    1993-11-01

    A wide range of hazardous production materials (HPMs) are used in industrial and university facilities engaged in research and development (R and D) related to semiconductor and photovoltaic devices. Because of the nature of R and D facilities where research activities are constantly changing, it is important for facility managers to pro-actively control the storage, distribution, use and disposal of these HPMs. As part of this control process, facility managers must determine the magnitude of the risk presented by their operations and the protection afforded by the administrative, engineering and personnel controls that have been implemented to reduce risks to life and property to acceptable levels. Facility auditing combined with process hazard analysis (PHA), provides a mechanism for identifying these risks and evaluating their magnitude. In this paper, the methods and results of a PHA for a photovoltaic R and D facility handling HPMs are presented. Of the 30 potential accidents identified, none present High or even Moderate Risks; 18 present Low Risks; and, 12 present Routine Risks. Administrative, engineering and personal safety controls associated with each accident are discussed.

  9. WHO collaboration in hazardous waste management in the Western Pacific Region

    SciTech Connect (OSTI)

    Ogawa, Hisashi

    1996-12-31

    Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects of WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.

  10. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  11. National information network and database system of hazardous waste management in China

    SciTech Connect (OSTI)

    Ma Hongchang

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry, and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.

  12. UNCLASSIFIED UNCLASSIFIED Nuclear Materials Management & Safeguards...

    National Nuclear Security Administration (NNSA)

    UNCLASSIFIED Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Name Email: ...

  13. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B.

  14. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  15. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  16. DRAFT - DOE O 460.1D, Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  17. Health-hazard evaluation report HETA 89-364-2202, Armco Advanced Materials Corporation, Butler, Pennsylvania

    SciTech Connect (OSTI)

    Tubbs, R.L.; Moss, C.E.; Fleeger, A.

    1992-04-01

    In response to a management request, an evaluation was made of possible hazardous working conditions at ARMCO Advanced Materials Corporation (SIC-3312), Butler, Pennsylvania. ARMCO produced primarily specialty steel products. An indirect method of electric heating was used at the facility to make steel. Concern was expressed about employee exposures to infrasound, electromagnetic radiation, and various dusts throughout the melt shop. The investigation was then expanded to include radiofrequency exposures at the Ultra-Rapid Annealing (URA) furnace located in the Strip Coating and Silicon Anneal Building (SCSAB). Air samples analyzed indicated that the recommended levels were being exceeded for chromium (7440473), manganese (7439965) and lead (7439921). Radiofrequency radiation measurements at the URA furnace and the visible radiation levels near the electric arc furnaces in the melt shops exceeded the appropriate evaluation criteria. The authors conclude that health hazards existed during the survey from excessive airborne levels of hexavalent chromium, manganese, and lead, high levels of optical radiation near the electric arc furnaces, and radiofrequency radiation at the URA furnace. The authors recommended measures to lower these exposures and suggested the institution of medical and environmental surveillance programs.

  18. Statistical methods for nuclear material management

    SciTech Connect (OSTI)

    Bowen W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  19. Ensuring Safe Shipment of Hazardous Materials | Department of Energy

    Office of Environmental Management (EM)

    UT-Battelle, LLC Enforcement Letter, UT-Battelle, LLC July 13, 2016 Worker Safety and Health Enforcement Letter issued to UT-Battelle, LLC related to worker exposures to ozone On July 13, 2016, the U.S. Department of Energy (DOE) Office of Enterprise Assessments' Office of Enforcement issued an Enforcement Letter (WEL-2016-03) to UT-Battelle, LLC, regarding deficiencies in hazard identification and abatement that resulted in two workers being exposed to elevated levels of ozone at the Oak Ridge

  20. Material Management and Minimization | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Nonproliferation Material Management and Minimization The Office of Material Management and Minimization (M3) presents an integrated approach to addressing the persistent threat posed by nuclear materials through a full cycle of materials management and minimization efforts. Consistent with the President's highly enriched uranium (HEU) and plutonium minimization strategies, the primary objective of M3 is to achieve permanent threat reduction by minimizing and, when

  1. Mr. John Kieling, Acting Chief Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Bureau Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 OCT 26 2011 New Mexico Environment Department 2905 Rodeo Park Drive East,...

  2. F-Area Hazardous Waste Management Facility Semiannual Correction Action Report, Vol. I and II

    SciTech Connect (OSTI)

    Chase, J.

    1999-11-18

    The groundwater in the uppermost aquifer beneath the F-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site is routinely monitored for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

  3. Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C

    SciTech Connect (OSTI)

    Gary Mecham; Don Konoyer

    2009-11-01

    The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of

  4. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect (OSTI)

    Gerald Sehlke; Paul Wichlacz

    2010-12-01

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  5. Ultraviolet reflector materials for solar detoxification of hazardous waste

    SciTech Connect (OSTI)

    Jorgensen, G.; Govindarajan, R.

    1991-07-01

    Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.

  6. UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: ...

  7. Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing |

    Office of Environmental Management (EM)

    Multiple Users | Department of Energy Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access transportation information on mobile devices. Transportation Tracking and Communication System users can now track shipments of

  8. Mr. John Kieling, Acting Chief Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Bureau Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221 OCT 26 2011 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Recertification Audit Report for Audit A-11-14 of the Idaho National Laboratory Central Characterization Project Dear Mr. Kieling: This letter transmits the Final Audit Report for Audit A-11-14 of the processes performed by the Central Characterization

  9. Hazardous Materials Packaging and Transportation Safety (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-23

    This draft has been scheduled for final review before the Directives Review Board on 11-4-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 11-2-15.

  10. Management of Transuranic Contaminated Material

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-09-30

    To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

  11. Interim Management of Nuclear Materials

    Office of Environmental Management (EM)

    operations resulted in a large inventory of nuclear materials caught in various stages of the historic SRS production (fabrication, irradiation, reprocessing, and recovery) cycle. ...

  12. Management of Biological Materials in Wastewater from Research & Development Facilities

    SciTech Connect (OSTI)

    Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

    2011-04-01

    PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

  13. EIS-0200: Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste

    Broader source: Energy.gov [DOE]

    This Programmatic EIS evaluates the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States.

  14. Technical considerations in materials management policy development

    SciTech Connect (OSTI)

    Avci, H.; Goldberg, M.

    1996-05-01

    Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE`s DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized.

  15. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  16. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  17. Chemical hazard evaluation of material disposal area (MDA) B closure project

    SciTech Connect (OSTI)

    Laul, Jagdish C

    2010-04-19

    TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

  18. Turning a hazardous waste lagoon into reclaimed land for wildlife management: A case study

    SciTech Connect (OSTI)

    Leong, A.K.

    1996-12-31

    Brownfields are turning back to green. This paper presents a case study of a former dump site for hazardous waste that has been remediated and will be developed into an enhanced wildlife management habitat. This successful remediation case combined various investigations, remedial designs, risk assessments, ecological studies, and engineering practices. 3 refs., 1 fig., 1 tab.

  19. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P. ); Moskowitz, P.D.; Fthenakis, V.M. )

    1992-07-01

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  20. Establishment of the Heavy Isotopes Lead Materials Management...

    Office of Scientific and Technical Information (OSTI)

    Materials Management Organization (LMMO) Citation Details In-Document Search Title: Establishment of the Heavy Isotopes Lead Materials Management Organization (LMMO) Authors: ...

  1. UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: Project Title: Associated Materials: Programmatic RIS Previous Project Number(s) Status Code Allotment Code (S=Supplier, U=User) I authorize that the information listed above is for the NMMSS Program to use as part of the project number conversion process for this facility. Signature of Authorized Official Date

  2. Integrated Global Nuclear Materials Management Preliminary Concepts

    SciTech Connect (OSTI)

    Jones, E; Dreicer, M

    2006-06-19

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  3. Tulane/Xavier University hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    1995-08-01

    Brief summaries of individual investigators participating in the Tulane/Xavier University Hazardous Materials in Aquatic Ecosystems are provided.

  4. Applying RFID technology in nuclear materials management.

    SciTech Connect (OSTI)

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J. P.; Bellamy, S.; Shuler, J.; SRL; Savi Technology; DOE

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness.

  5. Nuclear Materials Management and Safeguards System (NMMSS)

    SciTech Connect (OSTI)

    Jacobsen, S.E.; Matthews, W.B. III; McKamy, E.D.; Pedigo, R.B. )

    1991-01-01

    This paper describes the Nuclear Materials Management and Safeguards System (NMMSS) which is sponsored by the Department of Energy and the Nuclear Regulatory Commission. The system serves national security and program management interests, and international interests in the programs for the peaceful application of nuclear energy and non-proliferation of nuclear weapons. Within the scope of the NMMSS are found all nuclear materials applied and controlled under United States law and related international agreements, including U.S. nuclear materials production programs and U.S. private nuclear industrial activities. In addition, its national and international scope enables it to provide services to other organizations such as the Arms Control and Disarmament Agency, the Department of State, and the U.S. Congress.

  6. TRADE instructional materials for SARA/OSHA training. Volume 2, Managers and supervisors training

    SciTech Connect (OSTI)

    Not Available

    1989-03-01

    This document provides instructional materials for an eight-hour training course for managers and supervisors of hazardous waste sites. It is one of three volumes of course materials TRADE is preparing to help DOE contractor training staff comply with 29 CFR 1910.120, the Occupational Health and Safety Administration (OSHA) rule that implements Title I of the Superfund Amendments and Reauthorization Act (SARA) of 1986. OSHA`s final rule for hazardous waste operators was published in the Federal Register of March 6, 1989 (54 FR 9294). Combined with the materials in Volumes I and III and with appropriate site-specific information, these materials will help DOE contractors to meet the requirements of 1910.120 (e) that ``on-site management and supervisors directly responsible for, or who supervise employees engaged in, hazardous waste operations`` receive the same initial training as that of the employees they supervise and at least eight additional hours of specialized training in managing hazardous waste operations.

  7. Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell

    SciTech Connect (OSTI)

    Gan, Yong X.; Gan, Bo J.; Clark, Evan; Su, Lusheng; Zhang, Lihua

    2012-09-15

    Highlights: ? A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ? The fuel cell decomposes environmentally hazardous materials to produce electricity. ? Doping the anode with a transition metal oxide increases the visible light sensitivity. ? Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.

  8. Waste management units - Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  9. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    SciTech Connect (OSTI)

    Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

    2010-10-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision

  10. Material Management/Strategic Reserve | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Material Management/Strategic Reserve Y-12 ensures safe, secure and compliant storage of the nation's strategic reserve of nuclear materials at Y-12. Our Nuclear Materials Management and Storage Program receives, stores, protects, dispositions and manages strategic and special nuclear materials and provides programmatic planning, analysis and forecasting for national security material requirements supporting Stockpile Stewardship and other DOE programs

  11. Metallurgical Laboratory Hazardous Waste Management Facility (HWMF) groundwater monitoring report, second quarter 1992

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-09-01

    During second quarter 1992, 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were visited for sampling. Groundwater samples were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. This report describes the results that exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) and the Savannah River Site flagging criteria during the quarter.

  12. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  13. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  14. Containment system for experiments on radioactive and other hazardous materials in a Paris-Edinburgh press

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jacobsen, M. K.; Velisavljevic, N.

    2015-11-20

    Recent technical developments using the large volume Paris-Edinburgh press platform have enabled x-ray synchrotron studies at high pressure and temperature conditions. However, its application to some materials of interest, such as high hazard materials that require special handling due to safety issues, reactivity, or other challenges, has not been feasible without the introduction of special containment systems to eliminate the hazards. However, introduction of a containment system is challenging due to the requirement to provide full safety containment for operation in the variety of environments available, while not hindering any of the experimental probes that are available for inert samplemore » measurement. In this work, we report on the development and implementation of a full safety enclosure for a Paris-Edinburgh type press. During the initial development and subsequent application stage of work, experiments were performed on both cerium dioxide (CeO2) and uranium (U). As a result, this device allows for full implementation of all currently available experimental probes involving the Paris-Edinburgh press at the High Pressure Collaborative Access Team sector of the Advanced Photon Source.« less

  15. Containment system for experiments on radioactive and other hazardous materials in a Paris-Edinburgh press

    SciTech Connect (OSTI)

    Jacobsen, M. K.; Velisavljevic, N.

    2015-11-20

    Recent technical developments using the large volume Paris-Edinburgh press platform have enabled x-ray synchrotron studies at high pressure and temperature conditions. However, its application to some materials of interest, such as high hazard materials that require special handling due to safety issues, reactivity, or other challenges, has not been feasible without the introduction of special containment systems to eliminate the hazards. However, introduction of a containment system is challenging due to the requirement to provide full safety containment for operation in the variety of environments available, while not hindering any of the experimental probes that are available for inert sample measurement. In this work, we report on the development and implementation of a full safety enclosure for a Paris-Edinburgh type press. During the initial development and subsequent application stage of work, experiments were performed on both cerium dioxide (CeO2) and uranium (U). As a result, this device allows for full implementation of all currently available experimental probes involving the Paris-Edinburgh press at the High Pressure Collaborative Access Team sector of the Advanced Photon Source.

  16. F-Area Hazardous Waste Management Facility Correction Action Report, Third and Fourth Quarter 1998, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    1999-04-23

    The groundwater in the uppermost aquifer beneath the F-Area Hazardous Waste Management Facility (HWMF), also known as the F-Area Seepage Basins, at the Savannah Site (SRS) is monitored periodically for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

  17. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  18. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  19. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  20. Fire Hazards Listing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards Listing Fire Hazards Listing Focusing on fire prevention and protection. Contact Fire Management Officer Manuel J. L'Esperance Emergency Management (505) 667-1692 Email Currently reported fire hazards Below are the currently reported fire hazards. The list is updated each day by the close of business. Current fire hazards Hazard Description Date Submitted Status No hazards currently reported. Legend: R=Resolved, P=Pending, NAR=No Action Required

  1. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    SciTech Connect (OSTI)

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  2. Materials Control and Accountability Program Manager | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Materials Control and Accountability Program Manager Amy Whitworth Amy Whitworth July 2009 Fellow by the Institute of Nuclear Materials Management NNSA Materials Control and Accountability Program Manager Amy Whitworth was awarded the prestigious title of Fellow by the Institute of Nuclear Materials Management during its recent annual meeting in Tucson, Ariz. Fellows must be nominated by their peers, recommended by the INMM Fellows Committee and approved by

  3. Decontamination and Management of Human Remains Following Incidents of Hazardous Chemical Release

    SciTech Connect (OSTI)

    Hauschild, Veronique; Watson, Annetta Paule; Bock, Robert Eldon

    2012-01-01

    Abstract Objective: To provide specific procedural guidance and resources for identification, assessment, control, and mitigation of compounds that may contaminate human remains resulting from chemical attack or release. Design: A detailed technical, policy, and regulatory review is summarized. Setting: Guidance is suitable for civilian or military settings where human remains potentially contaminated with hazardous chemicals may be present. Settings would include sites of transportation accidents, natural disasters, terrorist or military operations, mortuary affairs or medical examiner processing and decontamination points, and similar. Patients, Participants: While recommended procedures have not been validated with actual human remains, guidance has been developed from data characterizing controlled experiments with fabrics, materiel, and laboratory animals. Main Outcome Measure(s): Presentation of logic and specific procedures for remains management, protection and decontamination of mortuary affairs personnel, as well as decision criteria for determining when remains are sufficiently decontaminated so as to pose no chemical health hazard. Results: Established procedures and existing equipment/materiel available for decontamination and verification provide appropriate and reasonable means to mitigate chemical hazards from remains. Extensive characterization of issues related to remains decontamination indicates that supra-lethal concentrations of liquid chemical warfare agent VX may prove difficult to decontaminate and verify in a timely fashion. Specialized personnel can and should be called upon to assist with monitoring necessary to clear decontaminated remains for transport and processing. Conclusions: Once appropriate decontamination and verification have been accomplished, normal procedures for remains processing and transport to the decedent s family and the continental United States can be followed.

  4. Hazard Baseline Documentation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-12-04

    This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

  5. Hazardous Materials Transportation Authorization Act of 1993. Introduced in the Senate of the United States. Report of the Senate Committee on Commerce, Science, and Transportation, One Hundred Third Congress, First Session

    SciTech Connect (OSTI)

    1993-12-31

    The report addresses a bill (S. 1640) to amend the Hazardous Materials Transportation Act (HMTA). The bill authorizes appropriations. This legislation would authorized funding of the HMTA by the Department of Transportation (DOT) as program manager. The DOT is required to take a number of significant steps to improve hazmat transportation safety. The legislative text of the Bill is summarized with amendments.

  6. Public perception of hazardousness caused by current trends of municipal solid waste management

    SciTech Connect (OSTI)

    Al-Khatib, Issam A.; Kontogianni, Stamatia; Abu Nabaa, Hendya; Alshami, Ni’meh; Al-Sari’, Majed I.

    2015-02-15

    Highlights: • Contribution to the scientific literature by examining the relationship between concern for the environment and waste disposal in the frame of household waste treatment mechanism specifically in developing countries. • The awareness of the citizens satisfaction level and the local existing capacities in developing countries significantly contribute to decision making on MSW management sustainability in Palestine and other developing countries when applied. • Identification of the differences and similarities among DC resulting to failures or success in WM field. - Abstract: Municipal solid waste (MSW) piling up is becoming a serious problem in all developing countries (DC) as a result of inequitable waste collection and treatment. Citizens’ collaboration is partly based on understanding their views and their active involvement in MSW planning; on the other hand the assessment of the perception of hazardousness related with MSW is considered rather important as well since the identification of the weak points of the applied MWM strategy is eased and the level of required training is determined. Researchers implemented a case study in the West Bank (WB) and Gaza Strip (GS) regions of Palestine, taking into consideration previous researches in other developing countries. They reached to safe and useful conclusions regarding the parameters which mean the greatest in the waste management field as far as DC are concerned. Lack of skilled manpower, irregular collection services, inadequate equipment used for waste collection, inadequate legal provisions, and resource constraints are additional factors that are confirmed to be challenging the waste management scenarios in all DCs today. The research takes those factors under consideration but focuses on the educational gap and the results revealed interesting trends a significant relationship between respondent’s educational attainment and their awareness of hazardous waste (hazard perception); the

  7. Material Management and Minimization | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Management and Minimization | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

  8. Safety Analysis: Evaluation of Accident Risks in the Transporation of Hazardous Materials by Truck and Rail at the Savannah River Plant

    SciTech Connect (OSTI)

    Blanchard, A.

    1999-04-15

    This report presents an analysis of the consequences and risks of accidents resulting from hazardous material transportation at the Savannah River Plant.

  9. Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Uranium-233 | Department of Energy Waste Management » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a

  10. Assessment of natural radioactivity and associated radiation hazards in some building materials used in Kilpenathur, Tiruvannamalai dist, Tamilnadu, India

    SciTech Connect (OSTI)

    Raghu, Y.; Harikrishnan, N.; Ravisankar, R.; Chandrasekaran, A.

    2015-08-28

    The present study aimed to measure the radioactivity concentration of naturally occuring radionuclides in the locally used building materials from Kilpenthaur, Tiruvannmalai Dist, Tamilnadu, India. This study will also evaluate the radiation hazard arising due to the use of these materials in the construction of dwellings. The concentrations of natural radionuclides {sup 226}Ra, {sup 232}Th and {sup 40}K in five types of building materials have been measured by gamma spectrometry using NaI (Tl) 3” x 3”detector. The estimated radium equivalent activities (Ra{sub eq}), indoor absorbed gamma dose rate (D{sub R}), annual effective dose rate (H{sub R}) and the external hazard indexes(H{sub ex}) were lower than the recommended safe limit and are comparable with results from similar studies conducted in other countries. Therefore, the use of these building material samples under investigation in the construction of dwellings is considered to be safe for inhabitants.

  11. Managing Legacy Materials at WETF | Department of Energy

    Office of Environmental Management (EM)

    Legacy Materials at WETF Managing Legacy Materials at WETF Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013. Managing Legacy Materials at WETF (1.06 MB) More Documents & Publications Enterprise Assessments Review, Los Alamos National Laboratory - November 2014 DOE-HDBK-1129-2008 FPD's Perspective Photos - Los Alamos National Labratory - NISA

  12. Stormwater runoff water quality evaluation and management program for hazardous chemical sites: Development issues

    SciTech Connect (OSTI)

    Lee, G.F.; Jones-Lee, A.

    1998-12-31

    The deficiencies in the typical stormwater runoff water quality monitoring from hazardous chemical sites and an alternative approach (Evaluation Monitoring) for monitoring that shifts the monitoring program from periodic sampling and analysis of stormwater runoff for a suite of chemical parameters to examining the receiving waters to determine what, if any, water quality use impairments are occurring due to the runoff-associated constituents is presented in this paper. Rather than measuring potentially toxic constituents such as heavy metals in runoff, the monitoring program determines whether there is aquatic life toxicity in the receiving waters associated with the stormwater runoff. If toxicity is found, its cause is determined and the source of the constituents causing the toxicity is identified through forensic analysis. Based on this information, site-specific, technically valid stormwater runoff management programs can be developed that will control real water quality impacts caused by stormwater runoff-associated constituents.

  13. NNSA recognizes Knight's service to Nuclear Materials Management Team |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex NNSA recognizes ... NNSA recognizes Knight's service to Nuclear Materials Management Team Posted: August 13, 2015 - 3:38pm Teresa Knight was honored by NNSA for her outstanding service to the Nuclear Materials Management The National Nuclear Security Administration presented CNS employee Teresa Knight with a special award in recognition of her outstanding service to the Department of Energy's Nuclear Materials Management Team. Knight began co-chairing the team

  14. NNSA recognizes Knight's service to Nuclear Materials Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA recognizes ... NNSA recognizes Knight's service to Nuclear Materials Management Team Posted: August 13, 2015 - 3:38pm Teresa Knight was honored by NNSA for her outstanding ...

  15. Managing Category I and II Asbestos-Containing Materials During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition August 2009 Presenter: Robert Devol, Bechtel Jacobs Company, LLC Track 3-6 Topics ...

  16. Asset Recovery of Hazardous Materials Beneficial Reuse of Radiologically Encumbered Lead Stocks ''Getting the Lead Out''

    SciTech Connect (OSTI)

    LLOYD, E.R.

    2003-01-23

    Underutilized and surplus lead stocks and leaded components are a common legacy environmental problem across much of the Department of Energy (DOE) Complex. While seeking to dispose of these items through its Environmental Management Program, DOE operational programs continue to pursue contemporary mission requirements such as managing and/or storing radioactive isotopes that require lead materials for shielding. This paradox was identified in late 1999 when DOES policies for managing scrap metal were assessed. In January 2000, the Secretary of Energy directed the National Center of Excellence for Materials Recycle (NMR) to develop and implement a comprehensive lead reuse program for all of DOE. Fluor Hanford, contractor for DOE Richland Operations, subsequently contacted NMR to pilot lead reclamation and reuse at the Hanford Site, This relationship resulted in the development of a beneficial reuse pathway for lead reclaimed from spent fuel transport railcars being stored at Hanford. The 1.3 million pounds of lead in the railcars is considered radiologically encumbered due to its prior use. Further, the material was considered a mixed Resource Conservation and Recovery Act (RCRA) low-level radioactive waste that would require expensive storage or macro encapsulation to meet land disposal restrictions prior to burial. Working closely with Flour Hanford and the Office of Air, Water, and Radiation (EH-412), NMR developed a directed reuse pathway for this and other radiologically encumbered lead When derived supplemental release limits were used, the lead recovered from these railcars became eligible for reuse in shielding products to support DOE and commercial nuclear industry operations. Using this disposition pathway has saved Hanford one third of the cost of disposing of the lead and the cost of acquiring additional lead for nuclear shielding applications. Furthermore, the environmental costs associated with mining and producing new lead for shielding products and

  17. Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT

  18. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    (International). Please request these through the NMMSS mailbox. If you have any questions on the NMMSS operations, please contact Pete Dessaules, Office of Materials Integration ...

  19. Managing Category I and II Asbestos-Containing Materials During

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decontamination and Demolition | Department of Energy Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition August 2009 Presenter: Robert Devol, Bechtel Jacobs Company, LLC Track 3-6 Topics Covered: ETTP Remaining Facilities D&D Project K-1320 K-1035 Regulations EPA Category I and II Materials Practical Application Controls Advantages to Approach

  20. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year`s data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B.

  1. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: First quarter 1992

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility (Metlab HWMF) at Savannah River Plant were visited for sampling. Groundwater samples were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. This report describes the results that exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) and the Savannah River Site flagging criteria during the quarter. Tetrachloroethylene exceeded the PDWS in wells AMB 4A, 5, and 7A; trichloroethylene exceeded the PDWS in wells AMB 4A, 4B, 4D, 5, and 7A; and total alpha-emitting radium (radium-224 and radium-226) exceeded the PDWS in well AMB 5. Total organic halogens exceeded the Flag 2 criterion in wells AMB 4A, 5, 6, 7A, 7B, and IODD; manganese was elevated in wells AMB 4D and TODD; iron was elevated in well AMB TODD; and pH was elevated in well AMB 10A.

  2. Nuclear Materials Management and Safeguards System Reporting and Data Submission

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-02-10

    The manual provides clear and detailed instructions and procedures for documenting and reporting data submissions for nuclear materials transactions, inventories, and material balances to the Nuclear Materials Management and Safeguards System (NMMSS). Cancels DOE 5633.3B. Canceled by DOE M 474.1-2A.

  3. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels DOE 1540.1A, DOE 1540.2, DOE 1540.3A.

  4. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels: DOE 1540.1A, DOE 1540.2, and DOE 1540.3A.

  5. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    SciTech Connect (OSTI)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  6. Hazards assessment for the Waste Experimental Reduction Facility

    SciTech Connect (OSTI)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  7. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    SciTech Connect (OSTI)

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-02-26

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials.

  8. Potential applications of nanostructured materials in nuclear waste management.

    SciTech Connect (OSTI)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi; Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  9. Preliminary report of the past and present uses, storage, and disposal of hazardous materials at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dreicer, M.

    1985-12-01

    This report contains the findings of a records search performed to survey the past and present use, storage, and disposal of hazardous materials and wastes at the Lawrence Livermore National Laboratory (LLNL) site. This report provides a point of departure for further planning of environmental protection activities at the site. This report was conducted using the LLNL archives and library, documents from the US Navy, old LLNL Plant Engineering blueprint files, published articles and reports, Environmental Protection Program records, employee interviews, and available aerial photographs. Sections I and II of this report provide an introduction to the LLNL site and its environmental characteristics. Several tenants have occupied the site prior to the establishment of LLNL, currently operated by the University of California for the US Department of Energy. Section III of this report contains information on environmentally related operations of early site users, the US Navy and California Research and Development. Section IV of this report contains information on the handling of hazardous materials and wastes by LLNL programs. The information is presented in 12 sub-sections, one for each currently operating LLNL program. General site areas, i.e., garbage trenches, the traffic circle landfill, the taxi strip, and old ammunition bunkers are discussed in Section V. 12 refs., 23 figs., 27 tabs.

  10. Battery collection in municipal waste management in Japan: Challenges for hazardous substance control and safety

    SciTech Connect (OSTI)

    Terazono, Atsushi; Oguchi, Masahiro; Iino, Shigenori; Mogi, Satoshi

    2015-05-15

    Highlights: • Consumers need to pay attention to the specific collection rules for each type of battery in each municipality in Japan. • 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. • Despite announcements by producers and municipalities, only 2.0% of discarded cylindrical dry batteries were insulated. • Batteries made up an average of 4.6% of the total collected small WEEE under the small WEEE recycling scheme in Japan. • Exchangeable batteries were used in almost all of mobile phones, but the removal rate was as low as 22% for mobile phones. - Abstract: To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using

  11. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Volume 2, Appendices

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  12. F-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    SciTech Connect (OSTI)

    1996-03-01

    Groundwater at the F-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental Control (SCDHEC) Groundwater Protection Standard (GWPS). Historically and currently, gross alpha, nitrates, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceed the GWPS in the groundwater during the second half of 1995, notably cadmium, lead, radium-226, radium-228, strontium-90, and total alpha-emitting radium. The elevated constituents were found primarily in the water table (aquifer zone IIB{sub 2}), however, several other aquifer unit monitoring wells contained elevated levels of constituents. Water-level maps indicate that the groundwater flow rates and directions at the F-Area HWMF have remained relatively constant since the basins ceased to be active in 1988.

  13. Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)

    SciTech Connect (OSTI)

    Higginson, M.C.

    1994-10-01

    The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford`s environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO{sub 3} plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996).

  14. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III

    SciTech Connect (OSTI)

    Chase, J.

    1998-10-30

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

  15. Recovery of Mark-18a (Mk-18A) Target Materials: Program Management...

    Office of Scientific and Technical Information (OSTI)

    Target Materials: Program Management Plan Citation Details In-Document Search Title: Recovery of Mark-18a (Mk-18A) Target Materials: Program Management Plan You are accessing ...

  16. Management of sewage sludge and ash containing radioactive materials.

    SciTech Connect (OSTI)

    Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

    2007-01-01

    Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

  17. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  18. Hazard communication program

    SciTech Connect (OSTI)

    Porter, E.A.

    1994-10-04

    Implements Internal Publication No. WHC-IP-0914. Section 1.1, providing management and employee guidance for working with hazardous chemicals and physical agents.

  19. Chemical agents for conversion of chrysotile asbestos into non-hazardous materials

    DOE Patents [OSTI]

    Sugama, Toshifumi; Petrakis, Leon

    1998-06-09

    A composition and methods for converting a chrysotile asbestos-containing material to a non-regulated environmentally benign solid which comprises a fluoro acid decomposing agent capable of dissociating the chrysotile asbestos to non-regulated components, wherein non-regulated components are non-reactive with the environment, and a binding agent which binds the non-regulated components to form an environmentally benign solid.

  20. Chemical agents for conversion of chrysotile asbestos into non-hazardous materials

    DOE Patents [OSTI]

    Sugama, Toshifumi; Petrakis, L.

    1998-06-09

    A composition and methods are disclosed for converting a chrysotile asbestos-containing material to a non-regulated environmentally benign solid which comprises a fluoro acid decomposing agent capable of dissociating the chrysotile asbestos to non-regulated components, wherein non-regulated components are non-reactive with the environment, and a binding agent which binds the non-regulated components to form an environmentally benign solid. 2 figs.

  1. Hazardous materials: Microbiological decomposition. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning the decomposition of toxic materials by biological means. Bacteria, enzymes, and bioluminescence are among the methods discussed. Bacteria and enzymes that digest toluene, polychlorinated biphenyls (PCBs), selenium wastes, oil shale waste, uranium, oil sludge, pesticides, rubber wastes, and pentachlorophenol are discussed. Flavobacterium and white rot fungus are among the biological agents highlighted. (Contains 250 citations and includes a subject term index and title list.)

  2. Hazardous materials: Microbiological decomposition. (Latest citations from the Biobusiness database). NewSearch

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The bibliography contains citations concerning the decomposition of toxic materials by biological means. Bacteria, enzymes, and bioluminescence are among the methods discussed. Bacteria and enzymes that digest toluene, polychlorinated biphenyls (PCBs), selenium wastes, oil shale waste, uranium, oil sludge, pesticides, rubber wastes, and pentachlorophenol are discussed. Flavobacterium and white rot fungus are among the biological agents highlighted. (Contains 250 citations and includes a subject term index and title list.)

  3. Hazardous Waste Management - University of California style, part II: Lawrence Livermore National Laboratory's joint venture TSDF Audit Program

    SciTech Connect (OSTI)

    Pearson, H E

    1998-07-22

    Lawrence Livermore National Laboratory's (LLNL's) management assigned the responsibility of conducting TSDF audits to the Waste Certification Office in August of 1994. Prior to this date, there was no mandate for LLNL to audit waste facilities, nor was there a structured program in place for conducting the audits Program development took approximately 10 months. This included writing a TSDF Audit Procedure, writing a Quality Assurance (QA) Plan, developing the required audit check lists, and using the documentation on a trial basis. A typical TSDF audit lasted one full day using three hazardous waste specialists The QA Plan is based on the quality assurance and management system requirements of DOE Order 5700.6C (Quality Assurance) and ASME NQA-1 (Quality Assurance Program Requirements for Nuclear Facilities).

  4. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases.

  5. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  6. Emergency department management of patients internally contaminated with radioactive material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2014-11-15

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  7. Integrating the Clearance in NPP Residual Material Management

    SciTech Connect (OSTI)

    Garcia-Bermejo, R.; Lamela, B.

    2008-01-15

    Previous Experiences in decommissioning projects are being used to optimize the residual material management in NPP, metallic scrap usually. The approach is based in the availability of a materials Clearance MARSSIM-based methodology developed and licensed in Spain. A typical project includes the integration of segregation, decontamination, clearance, quality control and quality assurance activities. The design is based in the clearance methodology features translating them into standard operational procedures. In terms of ecological taxes and final disposal costs, significant amounts of money could be saved with this type of approaches. The last clearance project managed a total amount of 405 tons scrap metal and a similar amount of other residual materials occupying a volume of 1500 m{sup 3}. After less than a year of field works 251 tons were finally recycled in a non-licensed smelting facility. The balance was disposed as LILW. In the planning phase the estimated cost savings were 4.5 Meuro. However, today a VLLW option is available in European countries so, the estimated cost savings are reduced to 1.2 Meuro. In conclusion: the application of materials clearance in NPP decommissioning lessons learnt to the NPP residual material management is an interesting management option. This practice is currently going on in Spanish NPP and, in a preliminary view, is consistent with the new MARSAME Draft. An interesting parameter is the cost of 1 m3 of recyclable scrap. The above estimates are very project specific because in the segregation process other residual materials were involved. If the effect of this other materials is removed the estimated Unit Cost were in this project around 1700 euro/m{sup 3}, this figure is clearly below the above VLLW disposal cost of 2600 euro. In a future project it appears feasible to descend to 839 euro/m{sup 3} and if it became routine values and is used in big Decommissioning projects, around 600 euro/m{sup 3} or below possibly could

  8. Development of the RFID System for nuclear materials management.

    SciTech Connect (OSTI)

    Chen, K.; Tsai, H.; Liu, Y. Y.

    2008-01-01

    Radio frequency identification (RFID) is one of today's most rapidly growing technologies in the automatic data collection industry. Although commercial applications are already widespread, the use of this technology for managing nuclear materials is only in its infancy. Employing an RFID system has the potential to offer an immense payback: enhanced safety and security, reduced need for manned surveillance, real-time access to status and event history data, and overall cost-effectiveness. The Packaging Certification Program (PCP) in the U.S. Department of Energy's (DOE's) Office of Environmental Management (EM), Office of Packaging and Transportation (EM-63), is developing an RFID system for nuclear materials management. The system consists of battery-powered RFID tags with onboard sensors and memories, a reader network, application software, a database server and web pages. The tags monitor and record critical parameters, including the status of seals, movement of objects, and environmental conditions of the nuclear material packages in real time. They also provide instant warnings or alarms when preset thresholds for the sensors are exceeded. The information collected by the readers is transmitted to a dedicated central database server that can be accessed by authorized users across the DOE complex via a secured network. The onboard memory of the tags allows the materials manifest and event history data to reside with the packages throughout their life cycles in storage, transportation, and disposal. Data security is currently based on Advanced Encryption Standard-256. The software provides easy-to-use graphical interfaces that allow access to all vital information once the security and privilege requirements are met. An innovative scheme has been developed for managing batteries in service for more than 10 years without needing to be changed. A miniature onboard dosimeter is being developed for applications that require radiation surveillance. A field

  9. Material Management and Minimization Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Material Management and Minimization Program DOE/NNSA Successfully Establishes Uranium Lease and Takeback Program to Support Critical Medical Isotope Production In January 2016, the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) successfully established the Uranium Lease and Take-Back (ULTB) program, as directed in the American Medical Isotopes Production Act of 2012, to support the commercial production of the medical

  10. UNCLASSIFIED UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    UNCLASSIFIED Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Name Email: Phone/Fax Name Email: Phone/Fax Name Email: Phone/Fax Name Email: Phone/Fax Return Via Mail To: U.S Department Of Energy ATTN: NMMSS Staff NA-73, GTN 1000 Independence Avenue, SW Washington, DC 20585-1290 Return Via Fax To: 301-903-1998 Return Via E-Mail To: NMMSS@nnsa.doe.gov

  11. Introduction to Special Edition (of the Journal of Nuclear Materials Management) on Reducing the Threat from Radioactive Materials

    SciTech Connect (OSTI)

    Mladineo, Stephen V.

    2007-03-01

    Introductory article for special edition of the JOURNAL OF NUCLEAR MATERIALS MANAGEMENT outlining the Institute of Nuclear Materials Management Nonproliferation and Arms Control Technical Division. In particular the International Nuclear and Radiological Security Standing Committee and its initial focus covering four topical areas--Radiological Threat Reduction, Nuclear Smuggling and Illicit Trafficking, Countering Nuclear Terrorism, and Radioligical Terrorism Consequence Management.

  12. Operating Experience Level 3, OSHA's Revised Hazard Communication...

    Broader source: Energy.gov (indexed) [DOE]

    Publications Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Operating Experience Level 3, Safe Management of Mercury...

  13. Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)

    SciTech Connect (OSTI)

    Jesse Schreiber

    2008-03-01

    In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet Americas nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in green technology.

  14. Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)

    SciTech Connect (OSTI)

    Jesse Schrieber

    2008-07-01

    In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America’s nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in “green” technology.

  15. Integrating hazardous waste management into a multimedia pollution prevention paradigm. A protoype regulatory program for petroleum refinesments

    SciTech Connect (OSTI)

    Elcock, D.; Gasper, J.

    1996-12-31

    An emerging trend in environmental regulatory management promises enhanced environmental protection and more flexibility for regulated entities. This trend reflects three concepts. First, regulations designed to reduce one type of environmental pollution (e.g., air pollution) should not increase other types of pollution (e.g. hazardous waste). Second, pollution prevention is an important alternative to end-of-pipe control requirements. Third, offering polluting entities the flexibility of meeting certain performance criteria may produce better environmental results than prescribing specific technologies or approaches. A significant body of literature supports the need to develop regulatory programs that incorporate these concepts. However, there is little evidence that these concepts have been integrated into actual multimedia regulatory programs. Argonne National Laboratory and the U.S. Department of Energy are developing a prototype regulatory program for petroleum refineries that embraces these concepts. The development approach in this case study comprises several steps: (1) identifying and evaluating existing regulations governing petroleum refineries (if any); (2) characterizing expected future operating conditions of refineries; (3) setting goals for the regulatory program; (4) identifying and evaluating options for the program; (5) developing a prototype based on selected options; (6) identifying and addressing implementation issues; and (7) testing the prototype on a pilot basis. The approach being used in the U.S. effort is flexible and can be used in environmental management efforts throughout the Pacific Basin--in both developing and developed countries.

  16. 3Q/4Q00 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 2000 - Volumes I, II, and II

    SciTech Connect (OSTI)

    Cole, C.M. Sr.

    2001-04-17

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 2000. This program is required by South Carolina Resource Conservation and Recovery Act (RCRA) Hazardous Waste Permit SC1890008989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations.

  17. Scrap metal management issues associated with naturally occurring radioactive material

    SciTech Connect (OSTI)

    Smith, K.P.; Blunt, D.L.

    1995-08-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

  18. Hazard baseline documentation

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This DOE limited technical standard establishes uniform Office of Environmental Management (EM) guidance on hazards baseline documents that identify and control radiological and nonradiological hazards for all EM facilities. It provides a road map to the safety and health hazard identification and control requirements contained in the Department`s orders and provides EM guidance on the applicability and integration of these requirements. This includes a definition of four classes of facilities (nuclear, non-nuclear, radiological, and other industrial); the thresholds for facility hazard classification; and applicable safety and health hazard identification, controls, and documentation. The standard applies to the classification, development, review, and approval of hazard identification and control documentation for EM facilities.

  19. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, 1 April--30 June 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report contains a cluster of twenty separate project reports concerning the fate, environmental transport, and toxicity of hazardous wastes in the Mississippi River Basin. Some of topics investigated involve: biological uptake and metabolism; heavy metal immobilization; biological indicators; toxicity; and mathematical models.

  20. Study of lay people's perceptions of appropriate management of gasoline/soil mixtures, hazardous waste mixtures, and trash/garbage mixtures

    SciTech Connect (OSTI)

    Simon, L.E.

    1988-01-01

    The method used was a researcher-developed questionnaire that was given to San Diego residents who were either Naval Reservists or worked at the corporate headquarters of a fast food chain. The respondents were chosen to yield a cross section of lay people. The forced-choice questionnaire asked identical questions about each of the wastes. The sequence in which each waste appeared was varied in order not to imply a ranking. One-way ANOVA and Bonferroni's Method was used to identify any significant differences. On all eight elements, there was a significant difference between each of the wastes at the p < .05 level. Lay people perceive a significant difference in what constitutes appropriate management of the three waste mixtures. Lay people who participated in the study saw Gasoline/Soil Mixtures as requiring management that was significantly more lenient that what they saw as needed for Hazardous Waste Mixtures and significantly more strict than what they saw as needed for Trash/Garbage Mixtures. The establishment of an intermediate category of solid waste between the existing categories of Hazardous Waste and Non-Hazardous Waste was clearly identified as a possibility by the respondents. If such a category were established it would: (1) clarify and resolve existing contradictions between various regulations; (2) reduce unnecessary filling of scarce hazardous waste disposal capacity; (3) reduce uncertainty, delay and expense to businesses trying to comply with the regulations.

  1. Hazard classification process at LLNL

    SciTech Connect (OSTI)

    Hildum, J. S., LLNL

    1998-05-01

    An essential part of Integrated Safety Management is the identification of hazards in the workplace and the assessment of possible consequences of accidents involving those hazards. The process of hazard classification suggested by the DOE orders on Safety Analysis is the formalization of this identification and assessment for hazards that might cause harm to the public or workers external to the operation. Possible injury to workers in the facility who are exposed to the hazard is not considered in the designation of the hazard classification for facilities at LLNL, although worker safety is discussed in facility Safety Basis documentation.

  2. 3Q/4Q99 F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    2000-05-12

    Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application.

  3. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  4. Hazardous Gas Production by Alpha Particles

    SciTech Connect (OSTI)

    Jay A. LaVerne, Principal Investigator

    2001-11-26

    This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

  5. Microsoft Word - Final Nuclear Materials Management and Safeguards System Users Guide 2 4-3-13.docx

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management and Safeguards Users Guide National Nuclear Security Administration Office of Nuclear Materials Integration Office of Nuclear Materials Integration Nuclear Materials Management and Safeguards System (NMMSS) Users Guide-Rev. 2.0 Prepared by: Department of Energy National Nuclear Security Administration Nuclear Materials Integration - NA-73 April 2013 Xavier Ascanio Office of Nuclear Materials Integration Nuclear Materials Management and 73 NMMSS User Guide 2.0 April

  6. Materials management in an internationally safeguarded fuels reprocessing plant

    SciTech Connect (OSTI)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  7. Management of nuclear materials and non-HLW | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management of nuclear materials and non-HLW Management of nuclear materials and non-HLW GC-52 provides legal advice to DOE regarding the consolidation and disposition of nuclear materials, including plutonium, uranium, and nuclear waste in accordance with applicable statutes, DOE Orders and international commitments. Advice encompasses issues related to mixed oxide fuel, waste incidental-to-reprocessing, transuranic waste, low-level waste, greater-than-class C waste and sealed sources.

  8. Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials

    SciTech Connect (OSTI)

    Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

    1995-07-01

    This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

  9. Deputy Assistant Secretary for Waste and Materials Management

    Broader source: Energy.gov [DOE]

    This position is located in the Office of Environmental Management (EM), in the U.S. Department of Energy. EM is responsible for the largest nuclear environmental cleanup project in the world....

  10. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.

    2014-01-01

    The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the applicationmore » of TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less

  11. Manual for Nuclear Materials Management and Safeguards System Reporting and Data Submission

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-19

    The manual provides detailed instructions for documenting and reporting data submissions for nuclear materials transactions, inventories, and material balances to the Nuclear Materials Management and Safeguards System (NMMSS). Cancels DOE M 474.1-2. Canceled by DOE M 470.4-6.

  12. Oak Ridge Health Studies Phase 1 report, Volume 2: Part D, Dose Reconstruction Feasibility Study. Tasks 6, Hazard summaries for important materials at the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Bruce, G.M.; Walker, L.B.; Widner, T.E.

    1993-09-01

    The purpose of Task 6 of Oak Ridge Phase I Health Studies is to provide summaries of current knowledge of toxic and hazardous properties of materials that are important for the Oak Ridge Reservation. The information gathered in the course of Task 6 investigations will support the task of focussing any future health studies efforts on those operations and emissions which have likely been most significant in terms of off-site health risk. The information gathered in Task 6 efforts will likely also be of value to individuals evaluating the feasibility of additional health,study efforts (such as epidemiological investigations) in the Oak Ridge area and as a resource for citizens seeking information on historical emissions.

  13. Hazards Survey and Hazards Assessments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

  14. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit The WIPP Hazardous Waste Facility Permit (HWFP) effective April 15, 2011 WIPP Hazardous Waste Facility Permit Authorizes the U.S. Department of Energy to manage, store, and dispose of contact-handled and remote-handled transuranic mixed waste at the Waste Isolation Pilot Plant. Mixed waste contains radioactive and chemically hazardous components. Information Repository Documents related to the Hazardous Waste Facility Permit

  15. Idaho National Engineering Laboratory response to the December 13, 1991, Congressional inquiry on offsite release of hazardous and solid waste containing radioactive materials from Department of Energy facilities

    SciTech Connect (OSTI)

    Shapiro, C.; Garcia, K.M.; McMurtrey, C.D.; Williams, K.L.; Jordan, P.J.

    1992-05-01

    This report is a response to the December 13, 1991, Congressional inquiry that requested information on all hazardous and solid waste containing radioactive materials sent from Department of Energy facilities to offsite facilities for treatment or disposal since January 1, 1981. This response is for the Idaho National Engineering Laboratory. Other Department of Energy laboratories are preparing responses for their respective operations. The request includes ten questions, which the report divides into three parts, each responding to a related group of questions. Part 1 answers Questions 5, 6, and 7, which call for a description of Department of Energy and contractor documentation governing the release of waste containing radioactive materials to offsite facilities. Offsite'' is defined as non-Department of Energy and non-Department of Defense facilities, such as commercial facilities. Also requested is a description of the review process for relevant release criteria and a list of afl Department of Energy and contractor documents concerning release criteria as of January 1, 1981. Part 2 answers Questions 4, 8, and 9, which call for information about actual releases of waste containing radioactive materials to offsite facilities from 1981 to the present, including radiation levels and pertinent documentation. Part 3 answers Question 10, which requests a description of the process for selecting offsite facilities for treatment or disposal of waste from Department of Energy facilities. In accordance with instructions from the Department of Energy, the report does not address Questions 1, 2, and 3.

  16. Hazardous waste identification: A guide to changing regulations

    SciTech Connect (OSTI)

    Stults, R.G. )

    1993-03-01

    The Resource Conservation and Recovery Act (RCRA) was enacting in 1976 and amended in 1984 by the Hazardous and Solid Waste Amendments (HSWA). Since then, federal regulations have generated a profusion of terms to identify and describe hazardous wastes. Regulations that5 define and govern management of hazardous wastes are codified in Title 40 of the code of Federal Regulations, Protection of the environment''. Title 40 regulations are divided into chapters, subchapters and parts. To be defined as hazardous, a waste must satisfy the definition of solid waste any discharged material not specifically excluded from regulation or granted a regulatory variance by the EPA Administrator. Some wastes and other materials have been identified as non-hazardous and are listed in 40 CFR 261.4(a) and 261.4(b). Certain wastes that satisfy the definition of hazardous waste nevertheless are excluded from regulation as hazardous if they meet specific criteria. Definitions and criteria for their exclusion are found in 40 CFR 261.4(c)-(f) and 40 CFR 261.5.

  17. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    SciTech Connect (OSTI)

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  18. Hazardous Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ORO-BJC-K25WASTMAN-1999-0010 DOE FUNCTIONAL CATEGORIES Conduct of Operations, Safety BJC FUNCTIONAL CATEGORIES OP - Conduct of Operations HAZARDS FireNFPA, Other WORK ACTIVITY ...

  19. Purchasing and Materials Management Organization, Sandia National Laboratories annual report, fiscal year 1993

    SciTech Connect (OSTI)

    Martin, D.R.

    1994-02-01

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1993. Activities for both the New Mexico and California locations are included.

  20. Mastering Campus Energy and Water Management: Tools for Success Presentations and Materials

    Broader source: Energy.gov [DOE]

    Presentations and materials covered during the "Mastering Campus Energy and Water Management: Tools for Success" workshop held on August 8, 2016, in Providence, Rhode Island. This interactive workshop featured technical experts who engaged participants in a campus-planning exercise intended to give them technical and management tools to address federal goals at a campus level.

  1. Approved reference and testing materials for use in Nuclear Waste Management Research and Development Programs

    SciTech Connect (OSTI)

    Mellinger, G.B.; Daniel, J.L.

    1984-12-01

    This document, addressed to members of the waste management research and development community summarizes reference and testing materials available from the Nuclear Waste Materials Characterization Center (MCC). These materials are furnished under the MCC's charter to distribute reference materials essential for quantitative evaluation of nuclear waste package materials under development in the US. Reference materials with known behavior in various standard waste management related tests are needed to ensure that individual testing programs are correctly performing those tests. Approved testing materials are provided to assist the projects in assembling materials data base of defensible accuracy and precision. This is the second issue of this publication. Eight new Approved Testing Materials are listed, and Spent Fuel is included as a separate section of Standard Materials because of its increasing importance as a potential repository storage form. A summary of current characterization information is provided for each material listed. Future issues will provide updates of the characterization status of the materials presented in this issue, and information about new standard materials as they are acquired. 7 references, 1 figure, 19 tables.

  2. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    SciTech Connect (OSTI)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  3. Hazardous Substance Release Reporting Under CERCLA, EPCR {section}304 and DOE Emergency Management System (EMS) and DOE Occurrence Reporting Requirements. Environmental Guidance

    SciTech Connect (OSTI)

    Traceski, T.T.

    1994-06-01

    Releases of various substances from DOE facilities may be subject to reporting requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Emergency Planning and Community Right-to-Know Act (EPCRA), as well as DOE`s internal ``Occurrence Reporting and Processing of Operations Information`` and the ``Emergency Management System`` (EMS). CERCLA and EPCPA are Federal laws that require immediate reporting of a release of a Hazardous Substance (HS) and an Extremely Hazardous Substance (EHS), respectively, in a Reportable Quantity (RQ) or more within a 24-hour period. This guidance uses a flowchart, supplemental information, and tables to provide an overview of the process to be followed, and more detailed explanations of the actions that must be performed, when chemical releases of HSs, EHSs, pollutants, or contaminants occur at DOE facilities. This guidance should be used in conjunction with, rather than in lieu of, applicable laws, regulations, and DOE Orders. Relevant laws, regulations, and DOE Orders are referenced throughout this guidance.

  4. Vermont Conditionally Exempt Generator Handbook: A Hazardous...

    Open Energy Info (EERE)

    Conditionally Exempt Generator Handbook: A Hazardous Waste Management Guide for Smaller Vermont Business Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  5. IDENTIFICATION OF AIRCRAFT HAZARDS

    SciTech Connect (OSTI)

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  6. Identification of Aircraft Hazards

    SciTech Connect (OSTI)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  7. Hazardous Materials Incident Response Procedure

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for developing an emergency response plan, as outlined in OSHA’s 29 CFR 1910.120(q), for facility response.  This model has been adopted and...

  8. Systematic Evaluation Program (SEP) at Rocky Flats Plant: An overview of practical management issues for evaluation of natural phenomena hazards

    SciTech Connect (OSTI)

    Badwan, F.M.; Herring, K.S.

    1993-08-01

    Many of the buildings at the Rocky Flats Plant were designed and built before modern standards were developed, including standards for protection against extreme natural phenomenon such as tornadoes, earthquakes, and floods. The purpose of the SEP is to establish an integrated approach to assessing the design adequacy of specific high and moderate hazard Rocky Flats facilities from a safety perspective and to establish a basis for defining any needed facility improvements. The SEP is to be carried out in three Phases. In Phase 1, topics to be evaluated and an evaluation plan for each topic were developed. Any differences between Current Design Requirements (CDR) or acceptance criteria and the design of existing facilities, will be identified during Phase 2 and assessed using an integrated systematic approach during Phase 3. The integrated assessment performed during Phase 3 provides a process for evaluating the differences between existing facility design and CDRs so that decisions on corrective actions can be made on the basis of relative risk reduction and cost effectiveness. These efforts will ensure that a balanced and integrated level of safety is achieved for long-term operation of these buildings. Through appropriate selection of topics and identification of the structures, systems, and components to be evaluated, the SEP will address outstanding design issues related to the prevention and mitigation of design basis accidents, including those arising from natural phenomena. The objective of the SEP is not to bring these buildings into strict compliance with current requirements, but rather to ensure that an adequate level of safety is achieved in an economical fashion.

  9. 1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II

    SciTech Connect (OSTI)

    Chase, J.

    2000-10-24

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

  10. EIS-0220: Interim Management of Nuclear Materials at the Savannah River Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    This environmental impact statement assesses the potential environmental impacts of actions necessary to manage nuclear materials at the Savannah River Site (SRS) in Aiken, South Carolina, until decisions on their ultimate disposition are made and implemented. The Department of Energy has decided to initiate actions which will stabilize certain of the SRS materials that represent environment, safety and health vulnerabilities in their current storage condition or which may represent a vulnerability within the next 10 years.

  11. Commission. The Nuclear Materials Management and Safeguards System (NMMSS) 2014 Annual Users

    National Nuclear Security Administration (NNSA)

    April 2014 NMMSS News is sponsored by the Department of Energy and the Nuclear Regulatory Commission. The Nuclear Materials Management and Safeguards System (NMMSS) 2014 Annual Users Training Meeting will be held May 12-15, 2014, in Denver, Colorado. NMMSS is the U.S. Government's official information system containing current and historical accounting data and other related nuclear material information collected from both government and commercial nuclear facilities. The data serve a critical

  12. Radioactive Material or Multiple Hazardous Materials Decontamination

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for performing decontamination of individuals who have entered a “hot zone” during transportation incidents involving  radioactive.

  13. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  14. Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

  15. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Not Listed

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  16. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  17. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    SciTech Connect (OSTI)

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy

  18. Tank farms hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  19. Guide for Operational Configuration Management Program including the adjunct programs of design reconstitution and material condition and aging management. Part 1

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management.

  20. Waste management units: Savannah River Site

    SciTech Connect (OSTI)

    Molen, G.

    1991-09-01

    This report indexes every waste management unit of the Savannah River Site. They are indexed by building number and name. The waste units are also tabulated by solid waste units receiving hazardous materials with a known release or no known release to the environment. It also contains information on the sites which has received no hazardous waste, and units which have received source, nuclear, or byproduct material only. (MB)

  1. Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"

    SciTech Connect (OSTI)

    2009-02-01

    The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguards System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our

  2. Potential Health Hazards of Radiation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation (198.55 KB) More Documents & Publications Radioactive Materials Emergencies Course Presentation DOE-HDBK-1130-2008 DOE-HDBK-1130-2008

  3. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  4. Establishing sitewide risk perspectives due to cumulative impacts from AB, EP, and NEPA hazard analyses

    SciTech Connect (OSTI)

    Olinger, S.J.; Foppe, T.L.

    1998-06-01

    With the end of the Cold War in 1992, the mission for the Rocky Flats Environmental Technology Site (Site) was changed from production of nuclear weapon components to special nuclear materials (SNM) and waste management, accelerated cleanup, reuse and closure of the Site. This change in mission presents new hazards and risk management challenges. With today`s shrinking DOE budget, a balance needs to be achieved between controlling those hazards related to SNM and waste management and interim storage, and those hazards related to accelerated closure of the Site involving deactivation, decontamination, and decommissioning (DD and D) of surplus nuclear facilities. This paper discusses how risk assessments of normal operations and potential accidents have provided insights on the risks of current operations and planned closure activities.

  5. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect (OSTI)

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  6. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect (OSTI)

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  7. Portable sensor for hazardous waste

    SciTech Connect (OSTI)

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  8. Hanford Site Hazards Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Hazards Guide 2016 Approved for Public Release; Further Dissemination Unlimited Hanford Site Hazards Guide Contents ASBESTOS .............................................................................................................................................. 2 BERYLLIUM ........................................................................................................................................... 4 CHEMICAL SAFETY

  9. Proactive Management of Materials Degradation - A Review of Principles and Programs

    SciTech Connect (OSTI)

    Bond, Leonard J.; Doctor, Steven R.; Taylor, Theodore T.

    2008-08-28

    The U.S. Nuclear Regulatory Commission (NRC) has undertaken a program to lay the technical foundation for defining proactive actions so that future degradation of materials in light water reactors (LWRs) is limited and, thereby, does not diminish either the integrity of important LWR components or the safety of operating plants. This technical letter report was prepared by staff at Pacific Northwest National Laboratory in support of the NRC Proactive Management of Materials Degradation (PMMD) program and relies heavily on work that was completed by Dr. Joseph Muscara and documented in NUREG/CR-6923. This report concisely explains the basic principles of PMMD and its relationship to prognostics, provides a review of programs related to PMMD being conducted worldwide, and provides an assessment of the technical gaps in PMMD and prognostics that need to be addressed. This technical letter report is timely because the majority of the U.S. reactor fleet is applying for license renewal, and many plants are also applying for increases in power rating. Both of these changes could increase the likelihood of materials degradation and underline, therefore, the interest in proactive management in the future.

  10. Legacy material work-off project

    SciTech Connect (OSTI)

    Sloan, T.J.; Baker, D.H. IV

    1999-01-25

    Los Alamos National Laboratory (LANL) and its subcontractors recently completed a nine-month legacy material clean-up effort. Legacy materials were defined as chemicals, hazardous, non-hazardous, and both hazardous and radioactive (mixed), that no longer served a programmatic use and had no identified individual owner within the Laboratory. Once personnel identified the legacy materials, the items were transferred to Solid Waste Operation`s (EM-SWO) control. Upon completing this process, the responsible division-level manager was required to certify that all non-radioactive hazardous and non-hazardous materials and acceptable mixed legacy materials had been identified and transferred to EM-SWO for proper handling or disposal. The major expense in this project was the cost of actual chemical and radiological analysis. This expense was the result of items not having an identified individual owner. The major benefit of this project is that LANL is now in an excellent position to implement its Integrated Safety Management (ISM) Plan, which requires the implementation of safe work practices, including requirements for removing unused items when vacating workspaces. Effective implementation of ISM will go a long way toward ensuring that legacy materials are no longer an issue at the Laboratory.