Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HAZARDOUS MATERIALS MANAGEMENT AND EMERGENCYRESPONSE TRAINING...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Authorization Act authorized the establishment of Hazardous Materials Management and Emergency Response (HAMMER) Training and Education Centers at Department of Energy sites...

2

Permit Fees for Hazardous Waste Material Management (Connecticut...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Material Management (Connecticut) Permit Fees for Hazardous Waste Material Management (Connecticut) Eligibility Agricultural Commercial Construction Fed. Government...

3

Expansion of the Volpentest Hazardous Materials Management and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment Expansion of the Volpentest Hazardous Materials Management and Emergency Response Training and Education Center, Hanford Site, Richland, Washington U.S....

4

Sandia National Laboratories, California Hazardous Materials Management Program annual report.  

SciTech Connect

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2011-02-01T23:59:59.000Z

5

Hazardous Materials Management and Emergency Response training Center needs assessment  

SciTech Connect

For the Hanford Site to provide high-quality training using simulated job-site situations to prepare the 4,000 Site workers and 500 emergency responders for known and unknown hazards a Hazardous Materials Management and Emergency Response Training Center is needed. The center will focus on providing classroom lecture as well as hands-on, realistic training. The establishment of the center will create a partnership among the US Department of Energy; its contractors; labor; local, state, and tribal governments; and Xavier and Tulane Universities of Louisiana. This report presents the background, history, need, benefits, and associated costs of the proposed center.

McGinnis, K.A. [Westinghouse Hanford Co., Richland, WA (United States); Bolton, P.A. [Pacific Northwest Lab., Richland, WA (United States); Robinson, R.K. [RKR, Inc. (United States)

1993-09-01T23:59:59.000Z

6

Hazardous Material Security (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

7

An evaluation of current hazardous material management procedures for the Texas Department of Transportation  

E-Print Network (OSTI)

Dealing with hazardous materials on a day-to-day basis requires a fine--tuned material management system to minimize risk of exposure or injury to workers or to the public. An effective hazardous material management system should also keep up with all current regulatory requirements. This study evaluates the current hazardous material management procedures that the Texas Department of Transportation (TXDOT) is utilizing to ensure that if falls within the legal scope of the law and to provide recommendations for any areas of concern that may need to be improved. To satisfy this objective, a review of all the current and applicable federal regulations is conducted to determine the correct procedures for handling the hazardous materials that TXDOT uses daily. A discussion of the various state regulatory agencies is also included, as well as, a copy of all the applicable forms and documents that TXDOT must complete for these agencies. Since federal compliance is required of all the state transportation agencies, a brief review of several state DOT hazardous material management plans is covered to determine-nine how other agencies are handling their hazardous materials. And finally, TxDOT's current hazardous material handling procedures are discussed, including identification of several problem areas of concern, along with a series of recommendations to help improve TxDOT's current hazardous material management system.

Lovell, Cheryl Alane

1993-01-01T23:59:59.000Z

8

Method and apparatus for the management of hazardous waste material  

DOE Patents (OSTI)

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

Murray, H. Jr.

1995-02-21T23:59:59.000Z

9

Method and apparatus for the management of hazardous waste material  

DOE Patents (OSTI)

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

Murray, Jr., Holt (Hopewell, NJ)

1995-01-01T23:59:59.000Z

10

Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.  

SciTech Connect

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2009-02-01T23:59:59.000Z

11

Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100  

SciTech Connect

The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

Borgeson, M.E.

1994-11-09T23:59:59.000Z

12

Electrolytic decontamination of conductive materials for hazardous waste management  

SciTech Connect

Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodium nitrate concentrations of 200 g L{sup -1} and higher. Stirring was also observed to increase the uniformity of the stripping process.

Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

1996-12-31T23:59:59.000Z

13

Transporting & Shipping Hazardous Materials at LBNL: Waste -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste: Hazardous, Biohazardous, Medical or Radioactive Do not transport or ship hazardous material wastes off-site. Only Waste Management, Radiation Protection or approved...

14

Functional design criteria for the Hazardous Materials Management and Emergency Response (HAMMER) Training Center. Revision 1  

SciTech Connect

Within the United States, there are few hands-on training centers capable of providing integrated technical training within a practical application environment. Currently, there are no training facilities that offer both radioactive and chemical hazardous response training. There are no hands-on training centers that provide training for both hazardous material operations and emergency response that also operate as a partnership between organized labor, state agencies, tribes, and local emergency responders within the US Department of Energy (DOE) complex. Available facilities appear grossly inadequate for training the thousands of people at Hanford, and throughout the Pacific Northwest, who are required to qualify under nationally-mandated requirements. It is estimated that 4,000 workers at the Hanford Site alone need hands-on training. Throughout the Pacific Northwest, the potential target audience would be over 30,000 public sector emergency response personnel, as well as another 10,000 clean-up workers represented by organized labor. The HAMMER Training Center will be an interagency-sponsored training center. It will be designed, built, and operated to ensure that clean-up workers, fire fighters, and public sector management and emergency response personnel are trained to handle accidental spills of hazardous materials. Training will cover wastes at clean-up sites, and in jurisdictions along the transportation corridors, to effectively protect human life, property, and the environment.

Sato, P.K.

1995-03-10T23:59:59.000Z

15

Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division  

Office of Legacy Management (LM)

AUG 0 3 1998 AUG 0 3 1998 Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Dr. S. Denver, Colorado 80222-1530 _,l ' 7. ,;:""" I,!._ -~~ . Dear Mr. Simpson: We have reviewed your letter of July 10, 1998, requesting that the Department of Energy (DOE) reconsider its decision to exclude the Marion Millsite in Boulder County, Colorado, from remediation under the Formerly Utilized Sites Remedial Action Program (FUSRAP). As you may know, FUSRAP is no longer administered and executed by DOE as Congress transferred the program to the U.S. Army Corps of Engineers beginning.in fiscal year 1998. Nonetheless, we weighed the information included in your letter against the

16

Hazardous Waste Management Training  

E-Print Network (OSTI)

Hazardous Waste Management Training Persons (including faculty, staff and students) working be thoroughly familiar with waste handling and emergency procedures ap- plicable to their job responsibilities before handling hazardous waste. Departments are re- quired to keep records of training for as long

Dai, Pengcheng

17

Expansion of the Volpentest Hazardous Materials Management and Emergency Response Training and Education Center, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT EXPANSION OF THE VOLPENTEST HAZARDOUS MATERIALS MANAGEMENT AND EMERGENCY RESPONSE TRAINING AND EDUCATION CENTER HANFORD SITE, RICHLAND, WASHINGTON U.S. DEPARTMENT OF ENERGY November 2002 1 November 2002 U.S. Department of Energy Finding of No Significant Impact This page intentionally left blank. 2 November 2002 U.S. Department of Energy Finding of No Significant Impact AGENCY: U.S. Department of Energy ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1412, for expanding training and equipment testing facilities at the Volpentest Hazardous Materials Management and Emergency Response Training and Education Center (HAMMER) on the

18

Hazardous Waste Management (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

19

Proceedings: Hazardous Waste Material Remediation Technology Workshop  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI workshop on hazardous waste materials remediation. The workshop was the fourth in a series initiated by EPRI to aid utility personnel in assessing technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of hazardous waste management as they relate to nuclear plant decommissioning. The information will help utilities understand hazardous waste issues, select technologies for their individual projects, and reduce decom...

1999-11-23T23:59:59.000Z

20

Enhancing Railroad Hazardous Materials Transportation Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Railroad Hazardous g Railroad Hazardous g Materials Transportation Safety Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Radioactive Materials Program Manager Radioactive Materials Program Manager H d M t i l Di i i H d M t i l Di i i Hazmat Hazardous Materials Division Hazardous Materials Division Federal Railroad Administration Federal Railroad Administration Presentation for the Presentation for the DOE NTSF Meeting DOE NTSF Meeting May 10 May 10- -12, 2011 12, 2011 Our Regulated Community * More than 550 l d railroads * 170,000 miles of track * 220,000 employees * 1.3 million railcars * 20,000 locomotives Hazmat * 3,500 chemical shippers * Roughly 2 Million Roughly 2 Million annual HM shipments HM-232E Introduction * Notice of Proposed Rulemaking d b * Issued December 21, 2006 * Interim Final Rule

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hazardous Waste Management Keith Williams  

E-Print Network (OSTI)

Hazardous Waste Management Keith Williams DES ­ Environmental Affairs Extension 53163 #12,100 Locally · 1998 Univ of Va $33,990 · 1998 Univ. of MD $0 !!!!! #12;Hazardous Waste Disposal Procedures Hazardous (Chemical) Waste Management in University of Maryland Laboratories o All laboratories and work

Appelbaum, Ian

22

Missouri Hazardous Waste Management Law (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

23

Massachusetts Oil and Hazardous Material Release Prevention and Response Act, State Superfund Law (Massachusetts)  

Energy.gov (U.S. Department of Energy (DOE))

This Act contains information on prevention strategies for hazardous material release, permits for facilities managing hazardous waste, and response tactics and liability in the event such release...

24

Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 Identification of Hazardous Chemical Waste  

E-Print Network (OSTI)

Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 · Identification of Hazardous Chemical Waste OBJECTIVES Do you know how to do the following? If you do, skip ahead a material must be considered a hazardous chemical waste by using the Radiological-Chemical

Ford, James

25

Hazardous Waste Management Standards and Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

26

Department of Transportation Pipeline and Hazardous Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation...

27

Hazardous Wastes Management (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

28

Weather and the Transport of Hazardous Materials | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials More Documents & Publications...

29

Oklahoma Hazardous Waste Management Act (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) < Back Eligibility Agricultural Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility engaged in the operation of storing, treating or disposing of hazardous waste or storing recyclable materials. The Department shall not issue a permit for the treatment, disposal or temporary storage of any liquid hazardous waste in a

30

BNL | CFN: Transport of Hazardous Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation of Hazardous Materials and Nanomaterials Transportation of Hazardous Materials and Nanomaterials The following contains guidance for transporting materials to and from BNL and for on-site transfers. All staff and users must adhere to Laboratory guidelines when making plans to move materials either by commercial carrier or in rented or personal vehicles. BNL hazardous material transport guidelines apply for products that meet the definition of hazardous materials according to 49 CFR 171.8 and any nanomaterial that has known hazardous properties (toxic, flammable, reactive). BNL guidelines are also provided for all other nanomaterials even if they have not been identified as hazardous materials. Some materials may be transported in personal vehicles as per "Materials of Trade" (MOT) guidance. The regulations for transporting MOT are much

31

Hazardous Waste Management (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management (Delaware) Hazardous Waste Management (Delaware) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

32

Hazardous Waste Management Implementation Inspection Criteria...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Director of the Office of ES&H Evaluations on (301) 903-5392. Subject: Hazardous Waste Management Inplementation Inspection Criteria, Approach, Evaluations Management Date:...

33

Hazardous Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Environmental Management The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental Management is tasked regulating hazardous waste management facilities and practices. Provisions pertaining to permitting, site approval, construction, reporting, transportation, and remediation practices and fees are discussed in these

34

CRAD, Packaging and Transfer of Hazardous Materials and Materials of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transfer of Hazardous Materials and Materials Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials

35

Transporting & Shipping Hazardous Materials at LBNL: Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Batteries Lithium batteries are considered hazardous materials when shipped by air. Notify Shipping for any shipments that include lithium batteries. Note: If you need to...

36

Enhancing Railroad Hazardous Materials Transportation Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16,...

37

Hazardous Material Transportation Safety (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

38

Date: ____________ MATERIAL FOR HAZARDOUS WASTE DISPOSAL  

E-Print Network (OSTI)

Feb 2003 Date: ____________ MATERIAL FOR HAZARDOUS WASTE DISPOSAL 1) Source: Bldg: ________________________________________ Disinfection? cc YES, Autoclaved (each container tagged with `Treated Biomedical Waste') cc YES, Chemical

Sinnamon, Gordon J.

39

Weather and the Transport of Hazardous Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FHWA FHWA R d W h M P FHWA R d W h M P FHWA Road Weather Management Program FHWA Road Weather Management Program " "Weather and the transport of Hazardous Materials" Ray Murphy Office of Technical Services Ray Murphy, Office of Technical Services U.S. DOT - Federal Highway Administration Breako t Session Using Technolog to Dispatch U.S. DOE National Transportation Stakeholder Forum Breakout Session: Using Technology to Dispatch and Monitor Shipments During Adverse Conditions Presentation Contents Presentation Contents * * Context Context Cl Cl I iti ti I iti ti * * Clarus Clarus Initiative Initiative * * Connected Vehicles & Weather Connected Vehicles & Weather Connected Vehicles & Weather Connected Vehicles & Weather U.S. DOE National Transportation Stakeholder Forum

40

Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)  

SciTech Connect

Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

Estrella, R.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hazardous Waste Management (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Michigan) Hazardous Waste Management (Michigan) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction...

42

Extremely Hazardous Substances Risk Management Act (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

43

Transporting & Shipping Hazardous Materials at LBNL  

NLE Websites -- All DOE Office Websites (Extended Search)

EHSS EHSS Industrial Hygiene Group HazMat Transport/Shipping Home Biological & Infectious Substances Chemicals Compressed Gas Cryogens Dry Ice Engineered Nanomaterials Gasoline Lithium Betteries Radioactive Materials Waste: Hazardous, Biohazardous, Medical or Radioactive Mixed Hazardous Materials Personal/Rental Vehicles HazMat Transport/Shipping Transporting and shipping hazardous materials can be dangerous, but both activities can be done safely - much of it by the researchers themselves. Each of the items below is subject to some transportation or shipping restrictions. Click on the applicable hazardous material icon below to learn how you can safely (and legally) transport that hazardous material and to learn what laboratory resources are available to you for your shipping needs.

44

Hazardous waste management and pollution prevention  

SciTech Connect

The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

Chiu, Shen-yann.

1992-01-01T23:59:59.000Z

45

Hazardous waste management and pollution prevention  

SciTech Connect

The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

Chiu, Shen-yann

1992-03-01T23:59:59.000Z

46

Hazardous Waste Management (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Transportation Utility Program Info State Arkansas Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7-202.) The Hazardous Waste Program is based off of the Federal Resource Conservation and Recovery Act set forth in 40 CFR parts 260-279. Due to the great similarity to the

47

Nuclear and hazardous material perspective  

SciTech Connect

The reemerging nuclear enterprise in the 21. century empowering the power industry and nuclear technology is still viewed with fear and concern by many of the public and many political leaders. Nuclear phobia is also exhibited by many nuclear professionals. The fears and concerns of these groups are complex and varied, but focus primarily on (1) management and disposal of radioactive waste [especially spent nuclear fuel and low level radioactive waste], (2) radiation exposures at any level, and (3) the threat nuclear terrorism. The root cause of all these concerns is the exaggerated risk perceived to human health from radiation exposure. These risks from radiation exposure are compounded by the universal threat of nuclear weapons and the disastrous consequences if these weapons or materials become available to terrorists or rogue nations. This paper addresses the bases and rationality for these fears and considers methods and options for mitigating these fears. Scientific evidence and actual data are provided. Radiation risks are compared to similar risks from common chemicals and familiar human activities that are routinely accepted. (authors)

Sandquist, Gary M. [Applied Science Professionals, PO Box 9052 Salt Lake City, UT 84109 (United States); Kunze, Jay F. [Idaho State University PO Box 8060 Pocatello, ID 83209 (United States); Rogers, Vern C. [University of Utah PO Box 510087 Salt Lake City, UT 84151 (United States)

2007-07-01T23:59:59.000Z

48

Detection device for hazardous material  

DOE Patents (OSTI)

This invention is comprised of a detection device that is activated by the interaction of a hazardous chemical with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

Partin, J.K.; Grey, A.E.

1990-12-31T23:59:59.000Z

49

Massachusetts Oil and Hazardous Material Release Prevention and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Hazardous Material Release Prevention and Response Act, State Superfund Law (Massachusetts) Massachusetts Oil and Hazardous Material Release Prevention and Response Act,...

50

Solid Waste Disposal, Hazardous Waste Management Act, Underground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Eligibility...

51

Hazardous waste management in the Pacific basin  

Science Conference Proceedings (OSTI)

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

52

Apparatus for transporting hazardous materials  

DOE Patents (OSTI)

An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

1992-01-01T23:59:59.000Z

53

Training Program EHS 657 ~ Self-Transporting Hazardous Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment, Health, & Safety Training Program EHS 657 Self-Transporting Hazardous Materials Training Course Syllabus...

54

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

55

Integrating waste management with Job Hazard analysis  

Science Conference Proceedings (OSTI)

The web-based Automated Job Hazard Analysis (AJHA) system is a tool designed to help capture and communicate the results of the hazard review and mitigation process for specific work activities. In Fluor Hanford's day-to-day work planning and execution process, AJHA has become the focal point for integrating Integrated Safety Management (ISM) through industrial health and safety principles; environmental safety measures; and involvement by workers, subject-matter experts and management. This paper illustrates how AJHA has become a key element in involving waste-management and environmental-control professionals in planning and executing work. To support implementing requirements for waste management and environmental compliance within the core function and guiding principles of an integrated safety management system (ISMS), Fluor Hanford has developed the a computer-based application called the 'Automated Job Hazard Analysis' (AJHA), into the work management process. This web-based software tool helps integrate the knowledge of site workers, subject-matter experts, and safety principles and requirements established in standards, and regulations. AJHA facilitates a process of work site review, hazard identification, analysis, and the determination of specific work controls. The AJHA application provides a well-organized job hazard analysis report including training and staffing requirements, prerequisite actions, notifications, and specific work controls listed for each sub-task determined for the job. AJHA lists common hazards addressed in the U.S. Occupational, Safety, and Health Administration (OSHA) federal codes; and State regulations such as the Washington Industrial Safety and Health Administration (WISHA). AJHA also lists extraordinary hazards that are unique to a particular industry sector, such as radiological hazards and waste management. The work-planning team evaluates the scope of work and reviews the work site to identify potential hazards. Hazards relevant to the work activity being analyzed are selected from the listing provided in AJHA. The work team can also enter one-time hazards unique to the work activity. Because AJHA is web based, it can be taken into the field during site walk-downs using wireless or cell- phone technologies. Once hazards are selected, AJHA automatically lists mandatory and optional controls, based on the referenced codes and good work practices. The hazards selected may also require that additional specific analysis be performed, focusing on the unique characteristics of the job being analyzed. For example, the physical characteristics, packaging, handling, and disposal requirements for a specific waste type. The work team then evaluates the identified hazards and related controls and adds details as needed for the specific work activity being analyzed. The selection of relevant hazards also triggers required reviews by subject-matter experts (SMEs) and the on-line completion of necessary forms and permits. The details of the hazard analysis are reviewed on line or in a work- team group setting. SME approvals are entered on-line and are published in the job hazard analysis report. (authors)

NONE

2007-07-01T23:59:59.000Z

56

Process safety management for highly hazardous chemicals  

Science Conference Proceedings (OSTI)

Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

NONE

1996-02-01T23:59:59.000Z

57

Hazardous Materials Incident Response Procedure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure The purpose of this procedure is to provide guidance for developing an emergency response plan, as outlined in OSHA's 29 CFR 1910.120(q), for facility response. This model has been adopted and applied to work for response to transportation accidents involving radioactive material or other hazardous materials incidents Hazardous Materials Incident Response Procedure.docx More Documents & Publications Handling and Packaging a Potentially Radiologically Contaminated Patient Decontamination Dressdown at a Transportation Accident Involving Radioactive Material Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

58

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

59

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOT/PHMSA DOT/PHMSA A ti iti Activities Michael Conroy U S Department of Transportation - 1 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety Radioactive Materials U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Overview * Harmonization with International Regulations * Update on Revisions to International Regulations * Recent Letters of Interpretation * Update on Rulemakings * PHMSA Information Resources - 2 - * PHMSA Information Resources 2 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration HM-230 Harmonized with 2000 Version of IAEA's 1996 Edition - 3 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

60

Hazardous Waste Management Act (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive regulatory program of hazardous waste management, and the South Dakota Department of Environment

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Conversion of hazardous materials using supercritical water oxidation  

DOE Patents (OSTI)

A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The hazardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

Rofer, C.K.; Buelow, S.J.; Dyer, R.B.; Wander, J.D.

1991-03-29T23:59:59.000Z

62

Experiment Hazard Class 8.1 - Radioactive Materials/Samples  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Radioactive Materials 1 - Radioactive Materials Applicability This hazard classification applies to all experiments involving radioactive materials as samples. The requirements of this hazard class also apply to sealed radioactive sources that are used as a sample (i.e. a target for x-ray radiation). Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. The current requirements can be found in the APS Policy for Conducting Radioactive Sample Experiments in APS Experiment Enclosures. NOTE: The APS must be notified of shipment of any radioactive materials to the site well in advance of the proposed experiment. All radioactive materials must arrive through Argonne Receiving in Building 46 and the Argonne Materials Control & Accountability group (MC&A). Please contact

63

Georgia Hazardous Waste Management Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management Act Hazardous Waste Management Act Georgia Hazardous Waste Management Act < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Hazardous Waste Management Act (HWMA) describes a

64

Hazardous Waste Management System-General (Ohio) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System-General (Ohio) Hazardous Waste Management System-General (Ohio) Eligibility Agricultural Industrial Investor-Owned Utility Local Government MunicipalPublic Utility Rural...

65

DC Hazardous Waste Management (District of Columbia) | Open Energy...  

Open Energy Info (EERE)

District of Columbia Applies to Municipality District of Columbia Name DC Hazardous Waste Management (District of Columbia) Policy Type Environmental Regulations Affected...

66

Toll Policies for Mitigating Hazardous Materials Transport Risk  

Science Conference Proceedings (OSTI)

In this paper, we investigate toll setting as a policy tool to regulate the use of roads for dangerous goods shipments. We propose a mathematical formulation as well as a solution method for the hazardous materials toll problem. Based on a comparative ... Keywords: bilevel programming, hazardous materials transportation, network design, toll setting

Patrice Marcotte; Anne Mercier; Gilles Savard; Vedat Verter

2009-05-01T23:59:59.000Z

67

Hazardous Waste Management (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Hazardous Waste Management (North Dakota) Hazardous Waste Management (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and treatment as

68

DC Hazardous Waste Management (District of Columbia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces

69

Hazardous materials (HAZMAT) Spill Center strategic plan  

SciTech Connect

This strategic Plan was developed in keeping with the Department of Energy`s mission for partnership with its customers to contribute to our Nation`s welfare by providing the technical information and the scientific and educational foundation for the technology, policy and institutional leadership necessary to achieve efficiency in energy use, diversity in energy sources, a more productive and competitive economy, improved environmental quality, and a secure national defense. The Plan provides the concepts for realigning the Departments`s Hazardous Materials Spill Center (HSC) in achieving its vision of becoming the global leader in meeting the diverse HAZMAT needs in the areas of testing, training, and technology. Each of these areas encompass many facets and a multitude of functional and operational requirements at the Federal, state, tribal, and local government levels, as well as those of foreign governments and the private sector. The evolution of the limited dimensional Liquefied Gaseous Fuels Spill Test Facility into a multifaceted HAZMAT Spill Center will require us to totally redefine our way of thinking as related to our business approach, both within and outside of the Department. We need to establish and maintain a viable and vibrant outreach program through all aspects of the public (via government agencies) and private sectors, to include foreign partnerships. The HAZMAT Spill Center goals and objectives provide the direction for meeting our vision. This direction takes into consideration the trends and happenings identified in the {open_quotes}Strategic Outlook{close_quotes}, which includes valuable input from our stakeholders and our present and future customers. It is our worldwide customers that provide the essence of the strategic outlook for the HAZMAT Spill Center.

1996-01-01T23:59:59.000Z

70

Massachusetts Hazardous Waste Management Act (Massachusetts)  

Energy.gov (U.S. Department of Energy (DOE))

This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

71

CRAD, Hazardous Waste Management - December 4, 2007 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 December 4, 2007 Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30) Line management ensures that the requirements for generating, storing, treating, transporting, and disposing of hazardous waste, universal waste, and used oil, established under 40 CFR Subchapter I, applicable permits, and DOE requirements have been effectively implemented for federal and contractor employees, including subcontractors. Written programs and plans are in place and updated when conditions or requirements change. Employees have been properly trained for the wastes they handle. Documentation of waste characterizations, manifests, land disposal restrictions,

72

Safety Analysis, Hazard and Risk Evaluations [Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Analysis, Hazard Safety Analysis, Hazard and Risk Evaluations Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Safety Analysis, Hazard and Risk Evaluations Bookmark and Share NE Division personnel had a key role in the creation of the FCF Final Safety Analysis Report (FSAR), FCF Technical Safety Requirements (TSR)

73

Experiment Hazard Class 7.5 - Human Tissue/Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

5 - Human Tissue/Materials 5 - Human Tissue/Materials Applicability This hazard classification applies to all experiments involving biohazards requiring the use of human tissue/materials. Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. Human tissue/materials must also be evaluated for their biosafety level and as such will have to go through the process for that particular Biosafety Level. IMPORTANT NOTE: For non-Argonne employees, all experiment protocols involving human tissue are required to be either reviewed or declared exempt from review by their home institution's Institutional Review Board (IRB). Documentation of the review should be filed in the ESAF system and with the APS BioSafety Officer (BSO) (Nena Moonier 2-8504,

74

Transporting & Shipping Hazardous Materials at LBNL: Dry Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Ice Dry ice is regulated as a hazardous material if shipped by air or water. Contact Shipping for any shipments that include dry ice (x5094, x4388, or shipping@lbl.gov)....

75

DC Hazardous Waste Management (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

76

Hazardous Waste Management (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

treatment and storage of such waste. It also mentions the availability of tax credits for waste facilities. Energy recovery from the destruction of a hazardous waste may be...

77

Technology transfer in hazardous waste management  

SciTech Connect

Hazardous waste is a growing problem in all parts of the world. Industrialized countries have had to deal with the treatment and disposal of hazardous wastes for many years. The newly industrializing countries of the world are now faced with immediate problems of waste handling. The developing nations of the world are looking at increasing quantities of hazardous waste generation as they move toward higher levels of industrialization. Available data are included on hazardous waste generation in Asia and the Pacific as a function of Gross Domestic Product (GDP). Although there are many inconsistencies in the data (inconsistent hazardous waste definitions, inconsistent reporting of wastes, etc.) there is definite indication that a growing economy tends to lead toward larger quantities of hazardous waste generation. In developing countries the industrial sector is growing at a faster rate than in the industrialized countries. In 1965 industry accounted for 29% of GDP in the developing countries of the world. In 1987 this had grown to 37% of GDP. In contrast, industry accounted for 40% of GDP in 1965 in industrialized countries and dropped to 35% in 1987. This growth in industrial activity in the developing countries brings an increase in the need to handle hazardous wastes. Although hazardous wastes are ubiquitous, the control of hazardous wastes varies. The number of regulatory options used by various countries in Asia and the Pacific to control wastes are included. It is evident that the industrialized countries, with a longer history of having to deal with hazardous wastes, have found the need to use more mechanisms to control them. 2 refs., 2 figs.

Drucker, H.

1989-01-01T23:59:59.000Z

78

Nuclear Material Management Abstract  

Science Conference Proceedings (OSTI)

Nevada Test Site (NTS) has transitioned from its historical and critical role of weapons testing to another critical role for the nation. This new role focuses on being a integral element in solving the multiple challenges facing the National Nuclear Security Administration (NNSA) with nuclear material management. NTS is positioned to be a solution for other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to consolidate and modernize the production complex . With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through disposition and consolidation. This includes moving material from other sites to NTS. State of the art nuclear material management and control practices at NTS are essential for NTS to ensure that assigned activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS activities and challenges will be addressed.

Jesse C. Schreiber

2007-07-10T23:59:59.000Z

79

Conversion of hazardous materials using supercritical water oxidation  

DOE Patents (OSTI)

A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

Rofer, Cheryl K. (Los Alamos, NM); Buelow, Steven J. (Los Alamos, NM); Dyer, Richard B. (Los Alamos, NM); Wander, Joseph D. (Parker, FL)

1992-01-01T23:59:59.000Z

80

Screening tests for hazard classification of complex waste materials - Selection of methods  

Science Conference Proceedings (OSTI)

In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which can be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of waste materials. Test results are presented in a second paper. As the application of many of the proposed test methods is new in the field of waste management, the principles of the tests are described. The selected tests tackle important hazardous properties but refinement of the test battery is needed to fulfil the a priori conditions.

Weltens, R., E-mail: reinhilde.weltens@vito.be [VITO Flemish Institute for Technological Research, Boeretang 200, B 2400 Mol (Belgium); Vanermen, G.; Tirez, K. [VITO Flemish Institute for Technological Research, Boeretang 200, B 2400 Mol (Belgium); Robbens, J. [University of Antwerp - Laboratory for Ecophysiology, Biochemistry and Toxicology, Groenenborgerlaan 171, B2020 Antwerp (Belgium); Deprez, K.; Michiels, L. [University of Hasselt - Biomedical Research Institute, University Hasselt, Campus Diepenbeek, Agoralaan A, B3590 Diepenbeek (Belgium)

2012-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Proceedings: Fourth International Conference on Managing Hazardous Air Pollutants  

Science Conference Proceedings (OSTI)

The Clean Air Act Amendments of 1990 have focused attention on hazardous air pollutants emissions, including those associated with fossil fuel power plants. In response to these national initiatives, as well as to international, regional, and state initiatives, attendees at the Fourth International Conference on Managing Hazardous Air Pollutants exchanged ideas on the scientific basis for concerns about and solutions to air toxics management needs.

1999-12-10T23:59:59.000Z

82

Transporting & Shipping Hazardous Materials at LBNL: Biological...  

NLE Websites -- All DOE Office Websites (Extended Search)

containment as needed to keep the primary containers upright. Remove gloves and wash hands after preparing biological materials for transport. Lab coat, clean gloves, and...

83

Material instability hazards in mine-processing operations  

SciTech Connect

Many accidents occur in the mining industry as a result of the instability of material during handling and processing operation. Accidents due to dump point instability at stockpiles, and at spoil or waste piles, for example, occur with alarming frequency. Miners must be trained to be better aware of these hazards. Information on safe working procedures at stockpiles and surge piles is provided. Mine operators must review their training and operating procedures regularly to ensure that hazardous conditions are avoided.

Fredland, J.W.; Wu, K.K.; Kirkwood, D.W.

1993-10-01T23:59:59.000Z

84

Original Research Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon  

E-Print Network (OSTI)

Chlorine gas represents a hazardous material threat from industrial accidents and as a terrorist weapon. This review will summarize recent events involving chlorine disasters and its use by terrorists, discuss pre-hospital considerations and suggest strategies for the initial management for acute chlorine exposure events. [West J Emerg Med. 2010; 11(2):151-156.

Robert Jones Md; Brandon Wills Do; Christopher Kang Md

2009-01-01T23:59:59.000Z

85

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

86

Ensuring Safe Shipment of Hazardous Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring Safe Shipment of Hazardous Materials Ensuring Safe Shipment of Hazardous Materials Ensuring Safe Shipment of Hazardous Materials March 28, 2013 - 12:00pm Addthis A truck carries a waste shipment from Brookhaven National Laboratory in New York. EM completed legacy cleanup activities at the site last year. A truck carries a waste shipment from Brookhaven National Laboratory in New York. EM completed legacy cleanup activities at the site last year. Emergency responders participate in a training exercise in the Transportation Emergency Preparedness Program (TEPP), which also recently released its annual report. Administered by EM’s Office of Packaging and Transportation, TEPP ensures federal, state, tribal and local responders have access to the plans, training and technical assistance necessary to safely, efficiently and effectively respond to radiological transportation accidents.

87

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents (OSTI)

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

88

Hazardous Waste Management (North Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(North Carolina) (North Carolina) Hazardous Waste Management (North Carolina) < Back Eligibility Commercial Industrial Construction Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Environmental Regulations Safety and Operational Guidelines Siting and Permitting Provider Department of Environment and Natural Resources These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for surface impoundments and location standards for facilities. An applicant applying for a permit for a hazardous waste facility shall

89

Hazardous Waste Management Implementation Inspection Criteria...  

NLE Websites -- All DOE Office Websites (Extended Search)

and practices used by field orgailizatioils in implementing Integrated Safety Management and to provide clear, concise, and independent evaluations of perfomlance in...

90

Hazardous Waste Management Regulations (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations (Mississippi) Regulations (Mississippi) Hazardous Waste Management Regulations (Mississippi) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the Mississippi Department of Environmental Quality requires that each generator of greater than 220

91

HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN  

Science Conference Proceedings (OSTI)

In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial to understanding how heavy metals move through wetlands environments. These data, coupled with plume characterization data, indicate that Bayou Trepagnier is a model system for understanding how wetlands populations of fish, amphibians, and plants respond to long-term hydrocarbon and metals contamination. The CBR has fifteen years of experience in developing model aquatic ecosystems for evaluating environmental problems relevant to DOE cleanup activities. Using biotechnology screens and biomarkers of exposure, this project supports other CBR research demonstrating that chemicals in the environment can signal/alter the development of species in aquatic ecosystems, and show detrimental impacts on community, population, and the ecosystem, including human health. CBR studies funded through this grant have resulted in private sector investments, international collaborations, development of new technologies, and substantial new knowledge concerning the effects of hazardous materials on human and ecosystem health. Through the CBR, Tulane and Xavier Universities partnered with DOE-EM to lay groundwork for an effective research agenda that has become part of the DOE long term stewardship science and technology program and institutional management of the DOE complex.

John A. McLachlan

2003-12-01T23:59:59.000Z

92

Transporting & Shipping Hazardous Materials at LBNL: Radioactive Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Materials Radioactive Materials Refer to transportation guidelines in the applicable Radioactive Work Authorization (RWA). Contact the Radiation Protection Group (x7652) if transportation assistance is needed or if radioactive materials need to be shipped. Refer to RPG's Zone sheet to identifying the RCT or HP for your building: https://ehswprod.lbl.gov/rpg/who_to_call.shtml Need radioactive material shipped from LBNL? Please complete the request for shipment form online, print, sign, and forward to your building assigned RPG support person: RPG Transportation - Request for Shipment Form: http://www.lbl.gov/ehs/rpg/assets/docs/Transportation4.pdf Receiving radioactive material at LBNL? If receiving radioactive material at LBNL; radioactive material should be sent to the following address:

93

Transporting & Shipping Hazardous Materials at LBNL: Chemicals  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemicals Chemicals Hand-Carry Self-Transport by Vehicle Ship by Common Carrier Conduct Field Work Hand-Carry Employees may hand-carry small quantities of hazardous materials between adjacent buildings and in connecting spaces (i.e., hallways, stairs, etc.) within buildings, provided it can be done safely and without spilling the materials. Staff must use hand carts, drip trays, or another type of secondary container to contain any spills should they occur during self-transport. Hazardous materials hand-carried between non-adjacent buildings should be packaged to a higher level of integrity. As a best practice, package these substances following the General Requirements listed under the Self-Transport by Vehicle. As with any work involving chemicals, staff must also have completed

94

Hazardous waste management in the Texas construction industry  

E-Print Network (OSTI)

This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations: specifically, the Resource Conservation and Recovery Act (RCRA) and the Texas Solid Waste Disposal Act (TSWDA). The study was needed because there is presently no knowledge of how well general contractors in Texas are complying with laws enacted to protect human health and the environment from the mismanagement of hazardous waste. The importance of this study is that it addresses the issue of whether regulatory compliance is a problem for general contractors in Texas and the construction industry in general. The implications for this stem from the potential that both environmental harm and enforcement activity could increase as a consequence . Using a combination of survey and archival design methods, the study derived two counts: (1) actual number of general contractors in Texas who generate regulated amounts of hazardous waste and observe regulatory requirements; and (2) estimated number of contractors in Texas who generate regulated amounts of hazardous waste. The comparison equates to one of "compilers" versus "should be complying." Dividing the count of compilers by the count of should-be compilers, equals the degree of regulatory compliance. Using a 95% confidence interval, the study observed that during 1990 only 1 out of 28 general contractors, generating regulated amounts of hazardous waste complied with regulatory requirements (a strong showing of noncompli-ance). In order to resolve the problem of non-compliance, the study recommends that related efforts be undertaken to: (a) expand this study, both in scope and detail to verify the problem identified; (b) improve industry understanding of waste management regulations; (c) promote observance of proper waste-management procedures; (d) summon government support for outreach programs aimed at improving waste management in the construction industry - in particular hazardous waste; (e) initiate further research to design solutions for hazardous-waste-management problems; and (f) implement hazardous-waste minimization and recovery practices in the construction industry.

Sprinkle, Donald Lee

1991-01-01T23:59:59.000Z

95

MANAGEMENT OF HAZARDOUS MATERIALS TRANSPORTATION: LITERATURE SUMMARY  

E-Print Network (OSTI)

-011 | March 2006 www.epa.gov/radiation/wipp Karst in the Area of the WIPP Some stakeholders believe that the geologic characterization of the subsurface surrounding the WIPP repository does not adequately identify of karst at WIPP and the possible impacts of the long- termcontainmentofwasteforthe2004WIPPRecertification

96

Technologies for environmental cleanup: Toxic and hazardous waste management  

SciTech Connect

This is the second in a series of EUROCOURSES conducted under the title, ``Technologies for Environmental Cleanup.`` To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste.

Ragaini, R.C.

1993-12-01T23:59:59.000Z

97

PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper...

98

Hydrothermal oxidation of Navy shipboard excess hazardous materials  

SciTech Connect

This study demonstrated effective destruction, using a novel supercritical water oxidation reactor, of oil, jet fuel, and hydraulic fluid, common excess hazardous materials found on-board Navy vessels. This reactor uses an advanced injector design to mix the hazardous compounds with water, oxidizer, and a supplementary fuel and it uses a transpiring wall to protect the surface of the reactor from corrosion and salt deposition. Our program was divided into four parts. First, basic chemical kinetic data were generated in a simple, tubular-configured reactor for short reaction times (<1 second) and long reaction times (>5 seconds) as a function of temperature. Second, using the data, an engineering model was developed for the more complicated industrial reactor mentioned above. Third, the three hazardous materials were destroyed in a quarter-scale version of the industrial reactor. Finally, the test data were compared with the model. The model and the experimental results for the quarter-scale reactor are described and compared in this report. A companion report discusses the first part of the program to generate basic chemical kinetic data. The injector and reactor worked as expected. The oxidation reaction with the supplementary fuel was initiated between 400 {degrees}C and 450 {degrees}C. The released energy raised the reactor temperature to greater than 600 {degrees}C. At that temperature, the hazardous materials were efficiently destroyed in less than five seconds. The model shows good agreement with the test data and has proven to be a useful tool in designing the system and understanding the test results. 16 refs., 17 figs., 11 tabs.

LaJeunesse, C.A.; Haroldsen, B.L.; Rice, S.F.; Brown, B.G.

1997-03-01T23:59:59.000Z

99

Hydrothermal oxidation of Navy shipboard excess hazardous materials  

Science Conference Proceedings (OSTI)

This study demonstrated effective destruction, using a novel supercritical water oxidation reactor, of oil, jet fuel, and hydraulic fluid, common excess hazardous materials found on-board Navy vessels. This reactor uses an advanced injector design to mix the hazardous compounds with water, oxidizer, and a supplementary fuel and it uses a transpiring wall to protect the surface of the reactor from corrosion and salt deposition. Our program was divided into four parts. First, basic chemical kinetic data were generated in a simple, tubular-configured reactor for short reaction times (5 seconds) as a function of temperature. Second, using the data, an engineering model was developed for the more complicated industrial reactor mentioned above. Third, the three hazardous materials were destroyed in a quarter-scale version of the industrial reactor. Finally, the test data were compared with the model. The model and the experimental results for the quarter-scale reactor are described and compared in this report. A companion report discusses the first part of the program to generate basic chemical kinetic data. The injector and reactor worked as expected. The oxidation reaction with the supplementary fuel was initiated between 400 {degrees}C and 450 {degrees}C. The released energy raised the reactor temperature to greater than 600 {degrees}C. At that temperature, the hazardous materials were efficiently destroyed in less than five seconds. The model shows good agreement with the test data and has proven to be a useful tool in designing the system and understanding the test results. 16 refs., 17 figs., 11 tabs.

LaJeunesse, C.A.; Haroldsen, B.L.; Rice, S.F.; Brown, B.G.

1997-03-01T23:59:59.000Z

100

Federal Energy Management Program: Campaign Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Campaign Materials to someone by E-mail Share Federal Energy Management Program: Campaign Materials on Facebook Tweet about Federal Energy Management Program: Campaign Materials on...

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An overview of safety assessment, regulation, and control of hazardous material use at NREL  

DOE Green Energy (OSTI)

This paper summarizes the methodology we use to ensure the safe use of hazardous materials at the National Renewable Energy Laboratory (NREL). First, we analyze the processes and the materials used in those processes to identify the hazards presented. Then we study federal, state, and local regulations and apply the relevant requirements to our operations. When necessary, we generate internal safety documents to consolidate this information. We design research operations and support systems to conform to these requirements. Before we construct the systems, we perform a semiquantitative risk analysis on likely accident scenarios. All scenarios presenting in unacceptable risk require system or procedural modifications to reduce the risk. Following these modifications, we repeat the risk analysis to ensure that the respective accident scenarios present acceptable risk. Once all risks are acceptable, we conduct an operational readiness review (ORR). A management appointed panel performs the ORR ensuring compliance with all relevant requirements. After successful completion of the ORR, operations can begin.

Nelson, B.P.; Crandall, R.S. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

1992-01-01T23:59:59.000Z

102

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12T23:59:59.000Z

103

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

104

State of Tennessee Hazardous Waste Management Permit, TNHW-127  

NLE Websites -- All DOE Office Websites (Extended Search)

Class 1 1 Modification, Dated: 10/20/06 TABLE OF CONTENTS U.S. DEPARTMENT OF ENERGY, Y-12 NATIONAL SECURITY COMPLEX OAK RIDGE, TENNESSEE HAZARDOUS WASTE CONTAINER STORAGE AND TREATMENT UNITS BUILDINGS 9206, 9212, 9720-12, 9811-9, AND 9812 AND THE ORGANIC HANDLING UNIT EPA ID NUMBER: TN3 89 009 0001 Page Number I. STANDARD CONDITIONS A. EFFECT OF PERMIT I-1 B. SEVERABILITY I-1 C. DEFINITIONS I-2 D. GENERAL DUTIES AND REQUIREMENTS I-4 E. CONFIDENTIAL INFORMATION I-10 F. DOCUMENTS TO BE MAINTAINED AT THE FACILITY I-10 G. ANNUAL MAINTENANCE FEE I-10 H. REQUIRED NOTICES I-10 I. ORDER OF PRECEDENCE I-11 J. PERMIT STRUCTURE I-11 II. GENERAL FACILITY CONDITIONS A. HAZARDOUS WASTES TO BE MANAGED II-1 B. MAINTENANCE OF THE FACILITY II-1

105

State of Tennessee Hazardous Waste Management Permit, TNHW-122  

NLE Websites -- All DOE Office Websites (Extended Search)

Class 1 1 Modification, Dated: 12/18/06 TABLE OF CONTENTS U.S. DEPARTMENT OF ENERGY, Y-12 NATIONAL SECURITY COMPLEX OAK RIDGE, TENNESSEE HAZARDOUS WASTE CONTAINER STORAGE AND TREATMENT UNITS BUILDINGS 9720-9, 9720-25, AND 9720-31 EPA ID NUMBER: TN3 89 009 0001 Page Number I. STANDARD CONDITIONS A. EFFECT OF PERMIT I-1 B. SEVERABILITY I-1 C. DEFINITIONS I-2 D. GENERAL DUTIES AND REQUIREMENTS I-4 E. CONFIDENTIAL INFORMATION I-10 F. DOCUMENTS TO BE MAINTAINED AT THE FACILITY I-10 G. ANNUAL MAINTENANCE FEE I-10 H. REQUIRED NOTICES I-10 I. ORDER OF PRECEDENCE I-11 J. PERMIT STRUCTURE I-11 II. GENERAL FACILITY CONDITIONS A. HAZARDOUS WASTES TO BE MANAGED II-1 B. MAINTENANCE OF THE FACILITY II-1 C. SAMPLING, ANALYSIS, AND MONITORING II-1

106

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

Management & Safeguards System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials...

107

Nuclear Materials Management & Safeguards System | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Jobs Our Jobs Working at NNSA Blog Nuclear Materials Management & Safeguards System Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management &...

108

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System...

109

Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

110

Rules and Regulations for Hazardous Waste Management (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

111

Feed Materials Production Center Waste Management Plan  

SciTech Connect

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-12-31T23:59:59.000Z

112

GRR/Section 18 - Waste and Hazardous Material Assessment Process | Open  

Open Energy Info (EERE)

- Waste and Hazardous Material Assessment Process - Waste and Hazardous Material Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18 - Waste and Hazardous Material Assessment Process 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Environmental Protection Agency Regulations & Policies RCRA CERCLA 40 CFR 261 Triggers None specified Click "Edit With Form" above to add content 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The use of underground and above ground storage tanks, discovery of waste

113

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

Science Conference Proceedings (OSTI)

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

114

HM-ACCESS Project (Framework for the Use of Electronic Shipping Papers for the Transport of Hazardous Materials)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline and Hazardous Materials Pipeline and Hazardous Materials Safety Administration Pipeline and Hazardous Materials Safety Administration HM-ACCESS Initiative James Simmons Acting Chief, Research and Development Office of Hazardous Materials Safety Engineering and Research Division May 2012 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration 2 H-azardous M-aterials A-utomated C-argo C-ommunication for E-fficient and S-afe S-hipments U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Background Purpose: To identify and eliminate barriers to the use of paperless hazard communication technologies to improve the delivery of critical hazardous materials (HM) safety information throughout the transportation chain.

115

PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 The objective of this surveillance is to evaluate the effectiveness of the contractor's programs, policies, and procedures to transport radioactive and hazardous materials off-site or to receive such materials for routine operations, treatment, storage, or disposal. The Facility Representative observes preparation of materials for shipment and receipt of materials and reviews specific documents to determine compliance with requirements imposed by DOE and by applicable regulations from the U.S. Nuclear Regulatory Commission and the Department of Transportation. PTS13-01.doc More Documents & Publications Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION SAFETY, DOE O

116

Advanced Integrated Data Management for Materials ...  

Science Conference Proceedings (OSTI)

... New materials are essential for future energy independence, environmental sustainability ... Integrated data management is critical for MGI success. ...

2013-07-01T23:59:59.000Z

117

Hazardous Materials Transportation RNL has a staff with  

E-Print Network (OSTI)

Radioactive Waste Management plan the transportation system for the shipment of spent nuclear fuel and high Systems Logistics Management Supply Chain Management Modeling and Simulation Transportation Operations, design, and testing · Detailed simulation of loading, transportation, and maintenance facilities

118

Hazardous Materials Transportation RNL has a staff with  

E-Print Network (OSTI)

Radioactive Waste Management plan the transportation system for the shipment of spent nuclear fuel and high Systems Logistics Management Supply Chain Management Modeling and Simulation Transportation Operations, and testing Detailed simulation of loading, transportation, and maintenance facilities for the transportation

119

Hazardous Waste Program (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

120

Green Materials and Processes for Managing Electronic Waste - TMS  

Science Conference Proceedings (OSTI)

Disassembly selective disassembly, targeting hazardous or valuable components ... materials for the refining process, such as grinding plastics into powders.

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

South Carolina Hazardous Waste Management Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health and Environmental Control is authorized to promulgate rules and regulations to prevent exposure of persons, animals, or the environment to hazardous waste. The construction...

122

An OSHA based approach to safety analysis for nonradiological hazardous materials  

SciTech Connect

The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

Yurconic, M.

1992-08-01T23:59:59.000Z

123

An OSHA based approach to safety analysis for nonradiological hazardous materials  

SciTech Connect

The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

Yurconic, M.

1992-08-01T23:59:59.000Z

124

Regulations Establishing Restricted Zones for the Transportation of Hazardous Materials (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish a Shore Clearance Line which cannot be crossed except in an emergency by any vessel transporting oil or hazardous materials in bulk in Long Island Sound. For the purpose...

125

Atmospheric Release Advisory Capability: Real-Time Modeling of Airborne Hazardous Materials  

Science Conference Proceedings (OSTI)

The Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory is a centralized federal project for assessing atmospheric releases of hazardous materials in real time. Since ARAC began making assessments in 1974, the ...

Thomas J. Sullivan; James S. Ellis; Connee S. Foster; Kevin T. Foster; Ronald L. Baskett; John S. Nasstrom; Walter W. Schalk III

1993-12-01T23:59:59.000Z

126

Surveillance Guides - PTS 13.1 Radioactive And Hazardous Material Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOACTIVE AND HAZARDOUS MATERIALS TRANSPORTATION RADIOACTIVE AND HAZARDOUS MATERIALS TRANSPORTATION 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's programs, policies, and procedures to transport radioactive and hazardous materials off-site or to receive such materials for routine operations, treatment, storage, or disposal. The Facility Representative observes preparation of materials for shipment and receipt of materials and reviews specific documents to determine compliance with requirements imposed by DOE and by applicable regulations from the U.S. Nuclear Regulatory Commission and the Department of Transportation. 2.0 References DOE O 460.1A, Packaging and Transportation Safety DOE O 460.2, Chg1, Departmental Materials Transportation and Packaging

127

Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parts 370-376: Hazardous Waste Parts 370-376: Hazardous Waste Management System (New York) Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Safety and Operational Guidelines Provider NY Department of Environmental Conservation These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators, transporters, as well as treatment, storage and disposal facilities. The regulations also define specific types

128

F-Area Hazardous Waste Management Facility Semiannual Correction Action Report, Vol. I and II  

Science Conference Proceedings (OSTI)

The groundwater in the uppermost aquifer beneath the F-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site is routinely monitored for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

Chase, J.

1999-11-18T23:59:59.000Z

129

Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C  

Science Conference Proceedings (OSTI)

The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

Gary Mecham; Don Konoyer

2009-11-01T23:59:59.000Z

130

Nuclear Materials Management & Safeguards System CONTACT INFORMATION...  

National Nuclear Security Administration (NNSA)

Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Business Name PhoneFax...

131

Flows of selected hazardous materials by rail. Final report for Sep 87-Apr 91  

SciTech Connect

The report is a review of hazardous materials rail traffic in the continental United States. It focuses on the year 1986, a relatively typical recent year in which an estimated total of 1,477 million net tons of freight was moved by rail. Of this, 63 million net tons, or four percent of the total, were hazardous materials. The report is designed to characterize the flow of selected hazardous materials and show their geographical distribution. It focusses on materials that (1) have large tonnages moving by rail, such as Products of Refining, (2) are regarded as especially dangerous, such as Products That May Be Toxic by Inhalation, or (3) have been recently designated as hazardous materials, such as molten or liquid sulphur. Its scope includes national, state and Business Economic Areas (BEAs) rail traffic. The purpose of the report is to help those in government and industry who are interested in the flows of hazardous materials see how these materials are geographically distributed by rail.

Beier, F.; Church, R.; Zebe, P.; Frev, J.

1991-05-01T23:59:59.000Z

132

Nuclear Materials Management Program at the NNSS  

Science Conference Proceedings (OSTI)

The Nevada National Security Site (NNSS), formerly the Nevada Test Site, was established in 1951 mainly for weapons testing; because special nuclear materials (SNM) were expended during the tests, a nuclear material management program was not required. That changed in December 2004 with the receipt of Category I SNM for purposes other than weapons testing. At that time, Material Control and Accountability and Nuclear Material Management were a joint laboratory (Los Alamos and Lawrence Livermore) effort with nuclear material management being performed at the laboratories. That changed in March 2006 when the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office appointed sole responsibility to the Management and Operations (M&O) contractor, National Security Technologies, LLC (NSTec). Since 2006 the basic nuclear material management work was completed by a combination of M&O employees and subcontractors, but a true Nuclear Material Management (NMM) Program was not determined to be necessary until recently. With expanding missions and more nuclear material (NM) coming to the NNSS, it became imperative to have an organization to manage these materials; therefore, an NMM Manager was officially appointed by NSTec in 2012. In June 2011 a Gap Analysis and white paper was completed by a subcontractor; this presentation will include highlights from those documents along with our plans to resolve the gaps and stand up a functional and compliant NMM Program at the NNSS.

,

2012-06-08T23:59:59.000Z

133

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management  

E-Print Network (OSTI)

Products such as paints, solvents, adhesives, oils, cleaners, batteries, pesticides and wood preservatives are commonly used in households and on farms, but they can be hazardous to ground water if handled improperly. This publication explains proper methods of using, storing and disposing of hazardous materials.

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

1997-08-29T23:59:59.000Z

134

Experiment Hazard Class 6.7 - Explosive and Energetic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

.7 - Explosive and Energetic Materials .7 - Explosive and Energetic Materials Applicability All experiments involving the use of small quantities ( < 10 mg total) of explosive material for beamline analysis. Visiting scientists at the APS periodically perform beamline experiments involving small quantities of explosive material (ie, TATB, HMX, RDX, PETN, HNFX). The samples that are analyzed within the x-ray beam are typically encased within a Diamond Anvil Cell (DAC) that is designed to exert pressures of ~ 100 GPa as its routine function. Following a few hours of analysis within the x-ray flux, the samples degrade and must be replenished. For this purpose, up to ten 1 mg samples of the explosive material are shipped with the DAC to allow for a complete data set. Explosive material must be transported to and from ANL through Bldg. 46,

135

Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment  

Science Conference Proceedings (OSTI)

This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: Determination of the design basis flood (DBFL) Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

Gerald Sehlke; Paul Wichlacz

2010-12-01T23:59:59.000Z

136

Organic and Inorganic Hazardous Waste Stabilization Using Coal Combustion By-Product Materials  

Science Conference Proceedings (OSTI)

This report describes a laboratory investigation of four clean-coal by-products to stabilize organic and inorganic constituents of hazardous waste stream materials. The wastes included API separator sludge, metal oxide-hydroxide waste, metal plating sludge, and creosote-contaminated soil. Overall, the investigation showed that the high alkalinity of the by-products may cost-effectively stabilize the acidic components of hazardous waste.

1994-10-08T23:59:59.000Z

137

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

138

Emergency response planning for railroad transportation related spills of oil or other hazardous materials  

E-Print Network (OSTI)

In December 1984 an unintentional release of poison gas from a chemical plant in Bhopal, India killed over 2,500 people. Thousands of others were injured. Although this material was not in transportation at the time, this accident raised public awareness. Americans began to ask, "What if something similar happened here?" Chemicals with hazardous properties have become part of daily life. Industry, government, and the public have become aware of the need to respond to problems involving hazardous materials. Safe transportation of hazardous materials is very important. Union Pacific Railroad transports more hazardous material shipments than any other carrier. Early on they realized the benefits to having a dedicated team of personnel to respond to incidents involving hazardous materials. In order to remain the safest carrier of these commodities, an emergency response plan utilizing in house response personnel was needed. This document describes how that plan was created and includes a copy of the plan for the Union Pacific Railroad's Settegast Yard in Houston, Texas. Other carriers may use this as a template to establish their own in house response teams or emergency response plans.

Reeder, Geoffrey Benton

1995-01-01T23:59:59.000Z

139

Management of Biological Materials in Wastewater from Research & Development Facilities  

SciTech Connect

PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

2011-04-01T23:59:59.000Z

140

Author's personal copy Journal of Hazardous Materials 185 (2011) 983989  

E-Print Network (OSTI)

the fronds [16,17], and (3) disposal costs for harvested biomass at waste management facilities. Typically of 600 L capacity each at an electrical power substation in Florida. Its roof was covered with two layers. In conclusion this study established the basic cultural prac- tices to operate a large-scale cleanup project

Ma, Lena

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

UNCLASSIFIED Nuclear Materials Management & Safeguards System  

National Nuclear Security Administration (NNSA)

Nuclear Materials Management & Safeguards System Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: Project Title: Associated Materials: Programmatic RIS Previous Project Number(s) Status Code Allotment Code (S=Supplier, U=User) I authorize that the information listed above is for the NMMSS Program to use as part of the project number conversion process for this facility.

142

Ultraviolet reflector materials for solar detoxification of hazardous waste  

DOE Green Energy (OSTI)

Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.

Jorgensen, G.; Govindarajan, R.

1991-07-01T23:59:59.000Z

143

SRS - Programs - Nuclear Materials Management  

NLE Websites -- All DOE Office Websites (Extended Search)

built in the mid-1950s, housed various Special Nuclear Materials missions including plutonium storage, shipping and handling; billet production for reactor target fabrication...

144

Material stabilization characterization management plan  

SciTech Connect

This document presents overall direction for characterization needs during stabilization of SNM at the Plutonium Finishing Plant (PFP). Technical issues for needed data and equipment are identified. Information on material categories and links to vulnerabilities are given. Comparison data on the material categories is discussed to assist in assessing the relative risks and desired processing priority.

GIBSON, M.W.

1999-08-31T23:59:59.000Z

145

Technical considerations in materials management policy development  

Science Conference Proceedings (OSTI)

Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE`s DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized.

Avci, H.; Goldberg, M.

1996-05-01T23:59:59.000Z

146

Waste Material Management: Energy and materials for industry  

DOE Green Energy (OSTI)

This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

Not Available

1993-05-01T23:59:59.000Z

147

Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility  

SciTech Connect

This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished.

NONE

1995-01-01T23:59:59.000Z

148

Hazardous material minimization for radar assembly. Final report  

SciTech Connect

The Clean Air Act Amendment, enacted in November 1990, empowered the Environmental Protection Agency (EPA) to completely eliminate the production and usage of chlorofluorocarbons (CFCs) by January 2000. A reduction schedule for methyl chloroform beginning in 1993 with complete elimination by January 2002 was also mandated. In order to meet the mandates, the processes, equipment, and materials used to solder and clean electronic assemblies were investigated. A vapor-containing cleaning system was developed. The system can be used with trichloroethylene or d-Limonene. The solvent can be collected for recycling if desired. Fluxless and no-clean soldering were investigated, and the variables for a laser soldering process were identified.

Biggs, P.M.

1997-03-01T23:59:59.000Z

149

Materials Development and Degradation Management for Nuclear ...  

Science Conference Proceedings (OSTI)

Materials Development and Degradation Management for Nuclear ... of zirconium alloys in reactor can lead to the presence of hydride precipitates, and can ... for the U.S. Department ofEnergy's National Nuclear Security Administration under...

150

The Hazardous Material Technician Apprenticeship Program at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

This document describes an apprenticeship training program for hazardous material technician. This entry-level category is achieved after approximately 216 hours of classroom and on-the-job training. Procedures for evaluating performance include in-class testing, use of on-the-job checks, and the assignment of an apprentice mentor for each trainee. (TEM)

Steiner, S.D.

1987-07-01T23:59:59.000Z

151

SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES TOXIC/HAZARDOUS MATERIAL TRANSFER FACILITY DESIGN  

E-Print Network (OSTI)

facilities transferring toxic/hazardous materials with the following exceptions: A) gasoline station or similar installation solely incident to the retail sale or personal consumption of motor fuels for motor, phone number, signature and seal: C) Suffolk County tax map number (District-Section-Block-Lot); D

Homes, Christopher C.

152

Emergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas  

E-Print Network (OSTI)

-492-6025. For Non-Emergency Fire and Natural Gas Questions call the CU Fire Marshall @ 303-492-4042. AdditionalEmergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas leaks, the following actions should be taken: 1) Life Safety First 2) Evacuate Immediate Area 3

Colorado at Boulder, University of

153

Interim Management of Nuclear Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1995/01_eis0220_for.html[6/27/2011 12:53:53 PM] 1995/01_eis0220_for.html[6/27/2011 12:53:53 PM] FOREWORD The Savannah River Site (SRS) is a major Department of Energy (DOE) installation. The past mission of the SRS was to produce nuclear materials that supported the defense, research, and medical programs of the United States. In 1992 the Secretary of Energy directed the SRS to phase out defense-related chemical separations activities. As a result of shutdowns and reduced demand for nuclear materials, the SRS presently has a large inventory of in-process solutions, reactor fuel assemblies, and reactor targets. These materials, due to their form or to the condition in which they are maintained, could represent a concern for the public, worker health and safety, and the environment. DOE published a Notice of Intent (NOI) to prepare this environmental impact statement (EIS) on March 17, 1994 (59

154

Interim Management of Nuclear Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1995/01_eis0220_for.html[6/27/2011 12:53:53 PM] 1995/01_eis0220_for.html[6/27/2011 12:53:53 PM] FOREWORD The Savannah River Site (SRS) is a major Department of Energy (DOE) installation. The past mission of the SRS was to produce nuclear materials that supported the defense, research, and medical programs of the United States. In 1992 the Secretary of Energy directed the SRS to phase out defense-related chemical separations activities. As a result of shutdowns and reduced demand for nuclear materials, the SRS presently has a large inventory of in-process solutions, reactor fuel assemblies, and reactor targets. These materials, due to their form or to the condition in which they are maintained, could represent a concern for the public, worker health and safety, and the environment. DOE published a Notice of Intent (NOI) to prepare this environmental impact statement (EIS) on March 17, 1994 (59

155

Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PACKAGING AND TRANSFER PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials Regulations

156

SITING HAZARDOUS WASTE MANAGEMENT FACILITIES KARL F. BIRNS  

E-Print Network (OSTI)

management or even other public projects such as nuclear powerplant difficulties can impact siting a new of the siting process. Those wishing such infollIla tion will also find that a number of states have extensive

Columbia University

157

Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials  

DOE Patents (OSTI)

The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

1999-01-01T23:59:59.000Z

158

Public distrust and hazard management success at the Rocky Flats nuclear weapons plant  

SciTech Connect

Based on experience gained while serving a public oversight commission appointed by the governor of Colorado, hazard management at the Department of Energy's Rocky Flats nuclear weapons plant is reviewed. Specific reference is made to the plant's history of controversy, its defense-in-depth strategy of hazard control, occupational health issues, public exposure to plutonium, and the assessment of low-probability, high-consequence risks. This leads to the conclusion that Rocky flats is, by any objective standard, a hazard management success. It follows that public distrust of Rocky Flats arises as much from fear and loathing of nuclear weapons themselves as from the manufacturing process by which they are made.

Hohenemser, C.

1987-06-01T23:59:59.000Z

159

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

1992-07-01T23:59:59.000Z

160

Chemical hazard evaluation of material disposal area (MDA) B closure project  

SciTech Connect

TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

Laul, Jadish C [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Management of Hazardous Waste A Policy and Procedures Manual  

E-Print Network (OSTI)

the Toxicity Characteristic Leaching Procedure Test, or "TCLP") meets or exceeds these regulatory levels. For liquids, the TCLP result is approximately the same as the actual mass concentration. For solid state materials that contain any of the listed contaminants, the TCLP test needs to be conducted to determine

Cooley, Lynn

162

Review of the Lawrence Livermore Nationa Laboratory Identiified Defective Department of Transportation Hazardous Material Packages  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Site Visit Report - Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages This site visit report documents the results of Office of Health, Safety and Security's review of the Lawrence Livermore National Laboratory (LLNL) identification, immediate actions, communications, documentation, evaluation, reporting and follow-up to the discovery of defective Department of Transportation (DOT) UN1A2 55- and 30-gallon open head single bolt closure steel drums intended for storage and transportation of hazardous waste and materials. This review, conducted on January 26-29, 2010, was sponsored by the DOE Livermore Site Office (LSO) to support interface with the lab and this report is intended to support follow-up

163

Integrated Global Nuclear Materials Management - Preliminary Concepts -  

SciTech Connect

Approach to Connect Global Objectives and Local Actions: (1) Articulate global objectives into a hierarchy of subsystem requirements and local attributes and measures; (2) Establish a baseline system and viable alternatives through the interactions and relationships (e.g., networks) of local system elements and their options; (3) Evaluate performance of system alternatives and develop improved nuclear material management strategies and technologies; and (4) The need to address greatest concerns first (prioritized or graded approach) and to make tradeoffs among implementation options and competing objectives entails a risk-based approach. IGNMM could provide a systematic understanding of global nuclear materials management and evolutionarily improve and integrate the management through an active architecture, using for example, situation awareness, system models, methods, technologies, and international cooperation. Different tools would be used within the overall framework to address individual issues on the desired geographic scale that could be easily linked to broader analyses. Life-cycle system analyses would allow for evaluating material path alternatives on an integrated global scale. Disconnects, overlaps, technical options, and alternatives for optimizing nuclear materials processes could be evaluated in an integrated manner.

Dreicer, M; Jones, E; Richardson, J

2006-07-13T23:59:59.000Z

164

F-Area Hazardous Waste Management Facility Correction Action Report, Third and Fourth Quarter 1998, Volumes I and II  

Science Conference Proceedings (OSTI)

The groundwater in the uppermost aquifer beneath the F-Area Hazardous Waste Management Facility (HWMF), also known as the F-Area Seepage Basins, at the Savannah Site (SRS) is monitored periodically for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

Chase, J.

1999-04-23T23:59:59.000Z

165

DOE O 410.2, Management of Nuclear Materials  

Directives, Delegations, and Requirements

To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

2009-08-17T23:59:59.000Z

166

Energy Management in the Materials Industry: Home Page  

Science Conference Proceedings (OSTI)

This course is directed toward energy managers, engineers, supervisors, and managers working in the materials industry who want to reduce their energy usage...

167

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

1992-07-01T23:59:59.000Z

168

Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

1992-07-01T23:59:59.000Z

169

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1999-03-16T23:59:59.000Z

170

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1999-03-16T23:59:59.000Z

171

Hazardous properties and environmental effects of materials used in solar heating and cooling (SHAC) technologies: interim handbook  

DOE Green Energy (OSTI)

General background informaion related to SHAC systems, how a particular material was chosen for this handbook, and codes and standards are given. Materials are categorized according to their functional use in SHAC systems as follows: (1) heat transfer fluids and fluid treatment chemicals, (2) insulation materials, (3) seals and sealant materials, (4) glazing materials, (5) collector materials, and (6) storage media. The informaion is presented under: general properties, chemical composition, thermal degradation products, and thermoxidative products of some commercial materials; toxic properties and other potential health effects; fire hazard properties; and environmental effects of and disposal methods for SHAC materials. (MHR)

Searcy, J.Q.

1978-12-01T23:59:59.000Z

172

Hazards assessment for the Hazardous Waste Storage Facility  

SciTech Connect

This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

Knudsen, J.K.; Calley, M.B.

1994-04-01T23:59:59.000Z

173

EPRI Materials Management Matrix Project: U.S.--Advanced Pressurized Water Reactor Materials Management Tables  

Science Conference Proceedings (OSTI)

The Electric Power Research Institutes (EPRIs) Advanced Nuclear Technology (ANT) Program has initiated a Materials Management Matrix (MMM) initiative to systematically assess new plant designs and identify gaps and opportunities that, if addressed at appropriate times in the life cycle of a plant, could significantly improve performance of the materials used in new plant designs. Products developed by this initiative are intended to be living reports that will be periodically updated through the licensin...

2011-06-17T23:59:59.000Z

174

Emerging Technologies Applicable to the Safe and Secure Transportation of Hazardous Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Transportation Stakeholders Forum National Transportation Stakeholders Forum May 16, 2012 HMCRP Project HM-04: Emerging Technologies Applicable to Hazardous Materials Transportation Safety and Security 2 The HM-04 Team * Battelle - Prime - Bill Tate, Project Director/PI & Co-Author * Dr. Mark Abkowitz, Vanderbilt University - Co-Author * American Transportation Research Institute (ATRI) - Dan Murray, Lead * Visionary Solutions, LLC - Dan Hoglund, Lead * Olin Chemical Chlor-Alkali Division - Don Loftis 3 Project Objectives * Develop a list of near-term (less than 5 years) and longer-term (5-15 years) technologies that are candidates for enhancing safety and security of Hazmat transportation; * Identify emerging technologies that hold the greatest promise (in terms of effectiveness) of being introduced

175

Injection and Reservoir Hazard Management: Mechanical Deformation and Geochemical Alteration at the InSalah CO2 Storage Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Injection and Reservoir Hazard Injection and Reservoir Hazard Management: Mechanical Deformation and Geochemical Alteration at the In Salah CO 2 Storage Project Background Safe and permanent storage of carbon dioxide (CO 2 ) in geologic reservoirs is critical to geologic sequestration. The In Salah Project (joint venture of British Petroleum (BP), Sonatrach, and StatoilHydro) has two fundamental goals: (1) 25-30 years of 9 billion cubic feet per year (bcfy) natural gas production from 8 fields in the Algerian

176

Resource Management Services: Water Regulation, Parts 595-599: Hazardous Substances (New York)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations aim to prevent the release of hazardous substances into surface water and groundwater resources. They contain guidance for facilities which store and process hazardous substances,...

177

ORNL IntelligentFreight Initiative:Enhanced End-to-End Supply Chain Visibility of Security Sensitive Hazardous Materials  

SciTech Connect

In the post September 11, 2001 (9/11) world the federal government has increased its focus on the manufacturing, distributing, warehousing, and transporting of hazardous materials. In 2002, Congress mandated that the Transportation Security Agency (TSA) designate a subset of hazardous materials that could pose a threat to the American public when transported in sufficiently large quantities. This subset of hazardous materials, which could be weaponized or subjected to a nefarious terrorist act, was designated as Security Sensitive Hazardous Materials (SSHM). Radioactive materials (RAM) were of special concern because actionable intelligence had revealed that Al Qaeda desired to develop a homemade nuclear device or a dirty bomb to use against the United States (US) or its allies.1 Because of this clear and present danger, it is today a national priority to develop and deploy technologies that will provide for visibility and real-time exception notification of SSHM and Radioactive Materials in Quantities of Concern (RAMQC) in international commerce. Over the past eight years Oak Ridge National Laboratory (ORNL) has been developing, implementing, and deploying sensor-based technologies to enhance supply chain visibility. ORNL s research into creating a model for shipments, known as IntelligentFreight, has investigated sensors and sensor integration methods at numerous testbeds throughout the national supply chain. As a result of our research, ORNL believes that most of the information needed by supply chain partners to provide shipment visibility and exceptions-based reporting already exists but is trapped in numerous proprietary or agency-centric databases.

Walker, Randy M [ORNL; Shankar, Mallikarjun [ORNL; Gorman, Bryan L [ORNL

2009-01-01T23:59:59.000Z

178

Safety Analysis: Evaluation of Accident Risks in the Transporation of Hazardous Materials by Truck and Rail at the Savannah River Plant  

Science Conference Proceedings (OSTI)

This report presents an analysis of the consequences and risks of accidents resulting from hazardous material transportation at the Savannah River Plant.

Blanchard, A.

1999-04-15T23:59:59.000Z

179

Nuclear Materials Management & Safeguards System CHANGE OF PROJECT...  

National Nuclear Security Administration (NNSA)

Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number:...

180

DOE-HDBK-1101-2004; Process Safety Management for Highly Hazardous Chemicals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HDBK-1101-2004 HDBK-1101-2004 August 2004 Superseding DOE-HDBK-1101-96 February 1996 DOE HANDBOOK PROCESS SAFETY MANAGEMENT FOR HIGHLY HAZARDOUS CHEMICALS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1101-2004 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry, CRAD 64-30  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Within the Office of Independent Oversight, the Office of Environment, Safety and Health Within the Office of Independent Oversight, the Office of Environment, Safety and Health (ES&H) Evaluations' mission is to assess the effectiveness of those environment, safety, and health systems and practices used by field orgailizatioils in implementing Integrated Safety Management and to provide clear, concise, and independent evaluations of perfomlance in protecting our workers, the public, and the environment from the hazards associated with Department of Energy (DOE) activities and sites. A key to success is the rigor and comprehensiveness of our process; and as with any process, we continually strive to improve and provide additional value and insight to field operations. Integral to this is our commitment to enhance our program. Therefore, we have revised our Inspection Criteria, Approach, and Lines

182

Integrating scientific modeling and supporting dynamic hazard management with a GeoAgent-based representation of human-environment interactions: A drought example in Central Pennsylvania, USA  

Science Conference Proceedings (OSTI)

Recent natural disasters indicate that modern technologies for environmental monitoring, modeling, and forecasting are not well integrated with cross-level social responses in many hazard-management systems. This research addresses this problem through ... Keywords: Decision support, Drought, GeoAgent, Geographic information systems (GIS), Hazard management, Knowledge representation, Modeling

Chaoqing Yu; Alan M. MacEachren; Donna J. Peuquet; Brent Yarnal

2009-12-01T23:59:59.000Z

183

Chemical stability of salt cake in the presence of organic materials. [Detonation hazard  

DOE Green Energy (OSTI)

High-level waste stored as salt cake is principally NaNO/sub 3/. Some organic material is known to have been added to the waste tanks. It has been suggested that some of this organic material may have become nitrated and transformed to a detonable state. Arguments are presented to discount the presence of nitrated organics in the waste tanks. Nitrated organics generated accidentally usually explode at the time of formation. Detonation tests show that salt cake and ''worst-case'' organic mixtures are not detonable. Organic mixtures with salt cake are compared with black powder, a related exothermic reactant. Black-powder mixtures of widely varying composition can and do burn explosively; ignition temperatures are 300-450/sup 0/C. However, black-powder-type mixes cannot be ignited by radiation and are shock-insensitive. Temperatures generated by radionuclide decay in the salt are below 175/sup 0/C and would be incapable of igniting any of these mixtures. The expected effect of radiation on organics in the waste tanks is a slow dehydrogenation and depolymerization along with a slight increase in sensitivity to oxidation. The greatest explosion hazard, if any exists, is a hydrogen--oxygen explosion from water radiolysis, but the hydrogen must first be generated and then trapped so that the concentration of hydrogen can rise above 4 vol percent. This is impossible in salt cake. Final confirmation of the safety against organic-related explosive reactions in the salt cake will be based upon analytical determinations of organic concentrations. 12 tables, 5 fig. (DLC)

Beitel, G.A.

1976-04-01T23:59:59.000Z

184

A GIS tool for historical instability processes data entry: An approach to hazard management in two Italian Alpine river basins  

Science Conference Proceedings (OSTI)

Analysis of instability processes requires historical data over a range of temporal and spatial scales. While historical data offer a wealth of information about when, where and how a flood or a landslide happened or may recur, managing the data remains ... Keywords: GIS tool, Historical research, Instability processes, Italy, Natural hazard

Chiara Audisio; Guido Nigrelli; Giorgio Lollino

2009-08-01T23:59:59.000Z

185

Materials Issues in Nuclear-Waste Management  

Science Conference Proceedings (OSTI)

253 260. 18. R.D. McCright et al., Candidate Container Materials for Yucca ... K.L. Murty and M.D. Mathew, Condition Monitoring of Structural Materials Using ...

186

Life-cycle analysis of hazardous chemicals in the Department of Materials Science & Engineering  

E-Print Network (OSTI)

MIT policies set forth by the Department of Environment, Health, and Safety (EHS) require that all laboratories maintain a chemical inventory to properly document the use of hazardous chemicals. While EHS has provided a ...

Chia, Valerie Jing-chi

2013-01-01T23:59:59.000Z

187

Qualitative evaluation of the accuracy of maps for release of hazardous materials.  

Science Conference Proceedings (OSTI)

The LinguisticBelief%C2%A9 software tool developed by Sandia National Laboratories was applied to provide a qualitative evaluation of the accuracy of various maps that provide information on releases of hazardous material, especially radionuclides. The methodology, %E2%80%9CUncertainty for Qualitative Assessments,%E2%80%9D includes uncertainty in the evaluation. The software tool uses the mathematics of fuzzy sets, approximate reasoning, and the belief/ plausibility measure of uncertainty. SNL worked cooperatively with the Remote Sensing Laboratory (RSL) and the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL) to develop models for three types of maps for use in this study. SNL and RSL developed the maps for %E2%80%9CAccuracy Plot for Area%E2%80%9D and %E2%80%9CAerial Monitoring System (AMS) Product Confidence%E2%80%9D. SNL and LLNL developed the %E2%80%9CLLNL Model%E2%80%9D. For each of the three maps, experts from RSL and LLNL created a model in the LinguisticBelief software. This report documents the three models and provides evaluations of maps associated with the models, using example data. Future applications will involve applying the models to actual graphs to provide a qualitative evaluation of the accuracy of the maps, including uncertainty, for use by decision makers. A %E2%80%9CQuality Thermometer%E2%80%9D technique was developed to rank-order the quality of a set of maps of a given type. A technique for pooling expert option from different experts was provided using the PoolEvidence%C2%A9 software.

Darby, John L.; Marianno, Craig [National Security Technologies, Las Vegas, NV] National Security Technologies, Las Vegas, NV

2008-08-01T23:59:59.000Z

188

ASSET RECOVERY OF HAZARDOUS MATERIALS BENEFICIAL REUSE OF RADIOLOGICALLY ENCUMBERED LEAD STOCKS  

Science Conference Proceedings (OSTI)

Underutilized and surplus lead stocks and leaded components are a common legacy environmental problem across much of the Department of Energy (DOE) Complex. While seeking to dispose of these items through its Environmental Management Program, DOE operational programs continue to pursue contemporary mission requirements such as managing and/or storing radioactive isotopes that require lead materials for shielding. This paradox was identified in late 1999 when DOE's policies for managing scrap metal were assessed. In January 2000, the Secretary of Energy directed the National Center of Excellence for Materials Recycle (NMR) to develop and implement a comprehensive lead reuse program for all of DOE. Fluor Hanford, contractor for DOE Richland Operations, subsequently contacted NMR to pilot lead reclamation and reuse at the Hanford Site. This relationship resulted in the development of a beneficial reuse pathway for lead reclaimed from spent fuel transport railcars being stored at Hanford. The 1.3 million pounds of lead in the railcars is considered radiologically encumbered due to its prior use. Further, the material was considered a mixed Resource Conservation and Recovery Act (RCRA) low-level radioactive waste that would require expensive storage or macro encapsulation to meet land disposal restrictions prior to burial. Working closely with Flour Hanford and the Office of Air, Water, and Radiation (EH-412), NMR developed a directed reuse pathway for this and other radiologically encumbered lead. When derived supplemental release limits were used, the lead recovered from these railcars became eligible for reuse in shielding products to support DOE and commercial nuclear industry operations. Using this disposition pathway has saved Hanford one third of the cost of disposing of the lead and the cost of acquiring additional lead for nuclear shielding applications. Furthermore, the environmental costs associated with mining and producing new lead for shielding products a nd stewardship of the waste was eliminated. Methods and processes developed in cooperation with Fluor Hanford are applicable to, and have been successfully applied to, lead stocks at DOE sites such as Savannah River, Mound, Los Alamos, and Idaho.

Lloyd, E.R.; Meehan, R.W.

2003-02-27T23:59:59.000Z

189

Materials Science of Nuclear Waste Management II  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Challenges include the multi-phase nature of the materials, galvanic .... to quantify phase volume percentage and pore size distribution data to...

190

Materials Science of Nuclear Waste Management  

Science Conference Proceedings (OSTI)

The intent is to provide a forum for researchers from national laboratories, universities, and nuclear industry to discuss current understanding of materials...

191

Wind tunnel simulation of wind effects and associated displacement hazards on flat surface construction materials such as plywood  

E-Print Network (OSTI)

Accidents and hazards continue to plague the construction industry. One often overlooked hazard to workers is the potential for flying debris and materials during high winds. This research was designed to evaluate the wind velocity required to create such an airborne hazard with flat surface materials such as plywood. This research was developed to show select correlations between the wind velocity, lifting forces and the susceptibility to movement of large surface area flat sheets of construction material, specifically four feet by eight feet sheets of floordeck plywood weighing 107 pounds. It also examined and evaluated the correlation of a shape coefficient to movement of materials and wind velocities, so that calculations can be made to adequately predict the potential movement of these materials. This will allow construction supervisors to reasonably prepare for such anticipated conditions. The Texas A&M University low speed wind tunnel was used to place a ftffl-scale stack of plywood floor decking material with the air stream flowing over the stack until top sheet separated or lifted from the stack. Next, a half-scale model was placed in the test section of the tunnel with pressure ports attached to a high speed sampling transducer to measure the actual pressures at select velocities. This allowed for a correlation between the ftifl-scale data and the sampled data. Tests were performed for several front and side angles of the wind striking the edge surface of the materials. Velocities were used up to 60 miles per hour full-scale equivalent. The full-scale model achieved lift forces exceeding the material weight of 107 pounds at one orientation angle at a velocity just below 30 miles per hour. This was consistent with the half-scale test pressures for a similar orientation. Various orientations yielded different forces as was anticipated. From this information a pressure coefficient was developed which when applied with a safety factor allows for reasonable calculations to be made to determine potential hazards and adequately secure materials on any sites where large flat materials may be handled or stored.

Madeley, Jack T.

1996-01-01T23:59:59.000Z

192

Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).  

Science Conference Proceedings (OSTI)

Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

2004-11-01T23:59:59.000Z

193

Energy Management in the Materials Industry: Registration - TMS  

Science Conference Proceedings (OSTI)

Energy Management in the Materials Industry A Short Course Planned in Conjunction with MS&T'13. Sunday, October 27, 2013 8:00 a.m. to 12:00 p.m.

194

Energy Management in the Materials Industry: Housing - TMS  

Science Conference Proceedings (OSTI)

Energy Management in the Materials Industry A Short Course Planned in Conjunction with MS&T'13. Sunday, October 27, 2013 8:00 a.m. to 12:00 p.m.

195

Hazards assessment for the Waste Experimental Reduction Facility  

Science Conference Proceedings (OSTI)

This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

Calley, M.B.; Jones, J.L. Jr.

1994-09-19T23:59:59.000Z

196

Journal of Hazardous Materials 179 (2010) 895900 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

al. [7] showed that TCLP-Pb (toxicity characteristic leaching procedure) of the surface soil in a Florida shooting range exceeded USEPA hazardous waste criteria of 5 mg Pb L-1. The TCLP-Pb leachability rate (TCLP-Pb:total Pb) was controlled by lead carbonate precipi- tation/dissolution reactions in soils

Ma, Lena

197

Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994  

SciTech Connect

Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

Abdelghani, A.

1994-06-01T23:59:59.000Z

198

Tulane/Xavier Center for Bioenvironmental Research; project: hazardous materials in aquatic environments; subproject: biomarkers and risk assessment in Bayou Trepagnier, LA  

Science Conference Proceedings (OSTI)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established in 1989 as the umbrella organization to coordinate environmental research at both universities. CBR projects funded by the DOE under the Hazardous Materials in Aquatic Environments grant are defining the following: (1) the complex interactions that occur during the transport of contaminants through wetlands environments, (2) the actual and potential impact of contaminants on ecological systems and health, (3) the mechanisms and new technologies through which these impacts might be remediated, and (4) new programs aimed at educating and training environmental workers of the future. The subproject described in this report, `Biomarkers and Risk Assessment in Bayou Trepagnier, LN`, is particularly relevant to the US Department of Energy`s Environmental Restoration and Waste Management program aimed at solving problems related to hazard monitoring and clean-up prioritization at sites with aquatic pollution problems in the DOE complex.

Ide, C.

1996-12-31T23:59:59.000Z

199

Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials & Waste » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a welded 3013 containers that are nested in 9975 shipping containers. 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a welded 3013 containers that are nested in 9975 shipping

200

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I  

SciTech Connect

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

NONE

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Potential applications of nanostructured materials in nuclear waste management.  

Science Conference Proceedings (OSTI)

This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

2003-09-01T23:59:59.000Z

202

Program on Technology Innovation: EPRI Materials Management Matrix (MMM) Project  

Science Conference Proceedings (OSTI)

The Economic Simplified Boiling Water Reactor (ESBWR) Risk Priority Evaluation is the third activity supporting development of the ESBWR Materials Management Matrix (MMM). The first phase involved developing a list of in-scope components and materials of construction. The second phase focused on development of an ESBWR-specific Degradation Matrix (DM), which supplies important input into the Risk Priority Evaluation process documented in this report, and can help in understanding the opinions of material...

2008-03-24T23:59:59.000Z

203

Chemical Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plan HAZMAT Hazardous Materials HEPA High Efficiency Particulate Air HF Hydrogen Fluoride HMIS Hazardous Materials Information System HAZWOPER Hazardous Waste Operations and...

204

[Environmental Hazards Assessment Program annual report, June 1992--June 1993]. Environmental risk management Advisory Committee handbook  

SciTech Connect

This Handbook contains information about the objectives of the Environmental Hazards Assessment Program, the make-up of the Advisory Committee and Advisory Committee procedures. Functions of the Advisory Committee are outlined, along with guidelines for meetings and establishing agendas.

Not Available

1993-12-01T23:59:59.000Z

205

Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, October 1, 1993--December 31, 1993  

Science Conference Proceedings (OSTI)

This quarterly project status report discusses research projects being conducted on hazardous materials in aquatic environments of the Mississippi River basin. We continued to seek improvement in our methods of communication and interactions to support the inter-disciplinary, inter-university collaborators within this program. In addition to the defined collaborative research teams, there is increasing interaction among investigators across projects. Planning for the second year of the project has included the development of our internal request for proposals, and refining the review process for selection of proposals for funding.

Not Available

1993-12-31T23:59:59.000Z

206

EPRI Materials Management Matrix Project: KHNP Advanced Pressurized Water Reactor (APR1400) Materials Management Tables -- Revision 0  

Science Conference Proceedings (OSTI)

Experience gained through years of operating nuclear plants has shown that materials performance issues can be a significant concern related to long-term plant operations. While a number of concerns remain, industry efforts to address materials performance issues at operating plants has led to important advances in both the underlying scientific understanding of materials degradation and the implementation of practical mitigation and management technologies.

2011-11-29T23:59:59.000Z

207

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III  

SciTech Connect

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

Chase, J.

1998-10-30T23:59:59.000Z

208

Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)  

SciTech Connect

The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford`s environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO{sub 3} plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996).

Higginson, M.C.

1994-10-01T23:59:59.000Z

209

Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Volume 2, Appendices  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

1992-07-01T23:59:59.000Z

210

Quantitative transportation risk analysis based on available data/databases: decision support tools for hazardous materials transportation  

E-Print Network (OSTI)

Historical evidence has shown that incidents due to hazardous materials (HazMat) releases during transportation can lead to severe consequences. The public and some agencies such as the Department of Transportation (DOT) show an increasing concern with the hazard associated with HazMat transportation. Many hazards may be identified and controlled or eliminated through use of risk analysis. Transportation Risk Analysis (TRA) is a powerful tool in HazMat transportation decision support system. It is helpful in choosing among alternate routes by providing information on risks associated with each route, and in selecting appropriate risk reduction alternatives by demonstrating the effectiveness of various alternatives. Some methodologies have been developed to assess the transportation risk; however, most of those proposed methodologies are hard to employ directly by decision or policy makers. One major barrier is the lack of the match between available data/database analysis and the numerical methodologies for TRA. In this work methodologies to assess the transportation risk are developed based on the availability of data or databases. The match between the availability of data/databases and numerical TRA methodologies is pursued. Each risk component, including frequency, release scenario, and consequence, is assessed based on the available data/databases. The risk is measured by numerical algorithms step by step in the transportation network. Based on the TRA results, decisions on HazMat transportation could be made appropriately and reasonably. The combination of recent interest in expanding or building new facilities to receive liquefied natural gas (LNG) carriers, along with increased awareness and concern about potential terrorist action, has raised questions about the potential consequences of incidents involving LNG transportation. One of those consequences, rapid phase transition (RPT), is studied in this dissertation. The incidents and experiments of LNG-water RPT and theoretical analysis about RPT mechanism are reviewed. Some other consequences, like pool spread and vapor cloud dispersion, are analyzed by Federal Energy Regulatory Commission (FERC) model.

Qiao, Yuanhua

2003-05-01T23:59:59.000Z

211

Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-5507-2013 STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT Washington, D.C. 20585 Distribution Statement: A. Approved for public release; distribution is unlimited This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services,

212

Integrating the Clearance in NPP Residual Material Management  

SciTech Connect

Previous Experiences in decommissioning projects are being used to optimize the residual material management in NPP, metallic scrap usually. The approach is based in the availability of a materials Clearance MARSSIM-based methodology developed and licensed in Spain. A typical project includes the integration of segregation, decontamination, clearance, quality control and quality assurance activities. The design is based in the clearance methodology features translating them into standard operational procedures. In terms of ecological taxes and final disposal costs, significant amounts of money could be saved with this type of approaches. The last clearance project managed a total amount of 405 tons scrap metal and a similar amount of other residual materials occupying a volume of 1500 m{sup 3}. After less than a year of field works 251 tons were finally recycled in a non-licensed smelting facility. The balance was disposed as LILW. In the planning phase the estimated cost savings were 4.5 Meuro. However, today a VLLW option is available in European countries so, the estimated cost savings are reduced to 1.2 Meuro. In conclusion: the application of materials clearance in NPP decommissioning lessons learnt to the NPP residual material management is an interesting management option. This practice is currently going on in Spanish NPP and, in a preliminary view, is consistent with the new MARSAME Draft. An interesting parameter is the cost of 1 m3 of recyclable scrap. The above estimates are very project specific because in the segregation process other residual materials were involved. If the effect of this other materials is removed the estimated Unit Cost were in this project around 1700 euro/m{sup 3}, this figure is clearly below the above VLLW disposal cost of 2600 euro. In a future project it appears feasible to descend to 839 euro/m{sup 3} and if it became routine values and is used in big Decommissioning projects, around 600 euro/m{sup 3} or below possibly could be achieved. A rough economical analysis permits to estimate a saving around 2000 US$ to 13000 US$ per cubic meter of steel scrap according the variability of materials and disposal costs. Many learnt lessons of this practice were used as a feed back in the planning of characterization activities for decommissioning a Spanish NPP and today are considered as a significant reference in our Decommissioning engineering approaches.

Garcia-Bermejo, R.; Lamela, B. [Iberdrola Ingenieria y Construccion, Jose Bardasano Baos 28036, Madrid (Spain)

2008-01-15T23:59:59.000Z

213

Radiation Hazards Program (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

214

Development of the RFID System for nuclear materials management.  

Science Conference Proceedings (OSTI)

Radio frequency identification (RFID) is one of today's most rapidly growing technologies in the automatic data collection industry. Although commercial applications are already widespread, the use of this technology for managing nuclear materials is only in its infancy. Employing an RFID system has the potential to offer an immense payback: enhanced safety and security, reduced need for manned surveillance, real-time access to status and event history data, and overall cost-effectiveness. The Packaging Certification Program (PCP) in the U.S. Department of Energy's (DOE's) Office of Environmental Management (EM), Office of Packaging and Transportation (EM-63), is developing an RFID system for nuclear materials management. The system consists of battery-powered RFID tags with onboard sensors and memories, a reader network, application software, a database server and web pages. The tags monitor and record critical parameters, including the status of seals, movement of objects, and environmental conditions of the nuclear material packages in real time. They also provide instant warnings or alarms when preset thresholds for the sensors are exceeded. The information collected by the readers is transmitted to a dedicated central database server that can be accessed by authorized users across the DOE complex via a secured network. The onboard memory of the tags allows the materials manifest and event history data to reside with the packages throughout their life cycles in storage, transportation, and disposal. Data security is currently based on Advanced Encryption Standard-256. The software provides easy-to-use graphical interfaces that allow access to all vital information once the security and privilege requirements are met. An innovative scheme has been developed for managing batteries in service for more than 10 years without needing to be changed. A miniature onboard dosimeter is being developed for applications that require radiation surveillance. A field demonstration of the RFID system was recently conducted to assess its performance. The preliminary results of the demonstration are reported in this paper.

Chen, K.; Tsai, H.; Liu, Y. Y. (Decision and Information Sciences)

2008-01-01T23:59:59.000Z

215

Guidance Tools for Use in Nuclear Material Management Decisions Making  

Science Conference Proceedings (OSTI)

This paper describes the results of Recommendation 14 of the Integrated Nuclear Materials Management Plan (INMMP) which was the product of a management initiative at the highest levels of the Department of Energy responding to a congressional directive to accelerate the work of achieving integration and cutting long-term costs associated with the management of nuclear materials, with the principal focus on excess materials. The INMMP provided direction to ''Develop policy-level decision support tools to support long-term planning and decision making.'' To accomplish this goal a team from the Savannah River Site, Sandia National Laboratories, Idaho National Engineering and Environmental Laboratory (INEEL), and the U.S. Department of Energy experienced in the decision-making process developed a Guidebook to Decision-Making Methods. The goal of the team organized to implement Recommendation 14 was to instill transparency, consistency, rigor, and discipline in the DOE decision process. The guidebook introduces a process and a selection of proven methods for disciplined decision-making so that the results are clearer, more transparent, and easier for reviewers to understand and accept. It was written to set a standard for a consistent decision process.

Johnson, G. V.; Baker, D. J.; Sorenson, K. B.; Boeke, S. G.

2002-02-26T23:59:59.000Z

216

Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)  

Science Conference Proceedings (OSTI)

In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet Americas nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in green technology.

Jesse Schrieber

2008-07-01T23:59:59.000Z

217

Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)  

SciTech Connect

In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet Americas nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in green technology.

Jesse Schreiber

2008-03-01T23:59:59.000Z

218

Factors Affecting Raw Material Inventory Management in the Northeastern United States Pulp and Paper Industry.  

E-Print Network (OSTI)

??Raw material inventory management is an area of concern for many pulp and paper companies in the Northeastern United States, and procurement managers for pulp (more)

Todd, Kevin Michael

2004-01-01T23:59:59.000Z

219

Feed Materials Production Center waste management plan (Revision to NLCO-1100, R. 6)  

Science Conference Proceedings (OSTI)

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the wastes generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-10-15T23:59:59.000Z

220

Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, December 30, 1992--December 29, 1993  

Science Conference Proceedings (OSTI)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy`s programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993.

Not Available

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993  

Science Conference Proceedings (OSTI)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases.

Not Available

1993-12-31T23:59:59.000Z

222

M-area hazardous waste management facility groundwater monitoring and corrective-action report, First quarter 1995, Volume 1  

Science Conference Proceedings (OSTI)

This report, in three volumes, describes the ground water monitoring and c corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during the fourth quarter 1994 and first quarter 1995. Concise description of the program and considerable data documenting the monitoring and remedial activities are included in the document. This is Volume 1 covering the following topics: sampling and results; hydrogeologic assessment; water quality assessment; effectiveness of the corrective-action program; corrective-action system operation and performance; monitoring and corrective-action program assessment; proposed monitoring and corrective-action program modifications. Also included are the following appendicies: A-standards; B-flagging criteria; C-figures; D-monitoring results tables; E-data quality/usability assessment.

NONE

1995-05-01T23:59:59.000Z

223

Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility  

Science Conference Proceedings (OSTI)

The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

1998-03-01T23:59:59.000Z

224

3Q/4Q00 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 2000 - Volumes I, II, and II  

Science Conference Proceedings (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 2000. This program is required by South Carolina Resource Conservation and Recovery Act (RCRA) Hazardous Waste Permit SC1890008989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations.

Cole, C.M. Sr.

2001-04-17T23:59:59.000Z

225

JM to Revise DOE O 460.2A, Departmental Materials Transportation and Packaging Management  

Directives, Delegations, and Requirements

Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials ...

2010-11-18T23:59:59.000Z

226

Nuclear Materials Management and Safeguards System Working Group Charter  

National Nuclear Security Administration (NNSA)

DRAFT 2011 DRAFT 2011 DRAFT 2011 Nuclear Materials Management and Safeguards System Working Group Charter VERSION: 0 REVISION DATE: May 2011 Approver Name Title Signature Date DRAFT 2011 DRAFT 2011 NMMSS Working Group Charter PURPOSE The NMMSS Working Group (NWG) serves as an open forum for discussion of issues and concerns from the NMMSS User community. The Committee will provide an interface between NMMSS users, NMMSS sponsors and the NMMSS project staff. Activities may include: Identifying user needs Identifying deficiencies in reporting capabilities Recommending upgrades to software capabilities Recommending priorities for modifications Recommending enhancements to data Minimizing the reporting burden on the reporting community

227

Integrating hazardous waste management into a multimedia pollution prevention paradigm. A protoype regulatory program for petroleum refinesments  

SciTech Connect

An emerging trend in environmental regulatory management promises enhanced environmental protection and more flexibility for regulated entities. This trend reflects three concepts. First, regulations designed to reduce one type of environmental pollution (e.g., air pollution) should not increase other types of pollution (e.g. hazardous waste). Second, pollution prevention is an important alternative to end-of-pipe control requirements. Third, offering polluting entities the flexibility of meeting certain performance criteria may produce better environmental results than prescribing specific technologies or approaches. A significant body of literature supports the need to develop regulatory programs that incorporate these concepts. However, there is little evidence that these concepts have been integrated into actual multimedia regulatory programs. Argonne National Laboratory and the U.S. Department of Energy are developing a prototype regulatory program for petroleum refineries that embraces these concepts. The development approach in this case study comprises several steps: (1) identifying and evaluating existing regulations governing petroleum refineries (if any); (2) characterizing expected future operating conditions of refineries; (3) setting goals for the regulatory program; (4) identifying and evaluating options for the program; (5) developing a prototype based on selected options; (6) identifying and addressing implementation issues; and (7) testing the prototype on a pilot basis. The approach being used in the U.S. effort is flexible and can be used in environmental management efforts throughout the Pacific Basin--in both developing and developed countries.

Elcock, D.; Gasper, J.

1996-12-31T23:59:59.000Z

228

Scrap metal management issues associated with naturally occurring radioactive material  

Science Conference Proceedings (OSTI)

Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

Smith, K.P.; Blunt, D.L.

1995-08-01T23:59:59.000Z

229

Safeguards and Nuclear Materials Management: A view from the DOE Chicago Operations Office  

SciTech Connect

Nuclear Materials Safeguards (also known as Material Control and Accountability or MC&A) and Nuclear Materials Management as practiced within the US Department of Energy (DOE) are separate, but related disciplines with differing goals and objectives. Safeguards and Nuclear Materials Management are closely related through the common use of transaction and inventory reporting data from the Nuclear Materials Management and Safeguards System (NMMSS). Adherence to Nuclear Materials management principals may enhance Nuclear Materials Safeguards, and has the potential to result in savings for both program and safeguards costs. Both the Safeguards and Nuclear Materials Management Programs for the Chicago Operations Office are administered by the Safeguards and Security Division, Safeguards Branch. This paper discusses Safeguards and Materials Management issues within the Chicago Operations Office, some of which relate to problems faced by the DOE complex as a whole.

Healy, F.E.; Ahlberg, C.G.

1994-07-01T23:59:59.000Z

230

Design of a digital management system for the sintering material ground  

Science Conference Proceedings (OSTI)

There are many kinds and a large number of raw materials in the sintering material ground to be managed, while it is difficult to obtain the precise inventory values, which often leads to high cost. Furthermore, the external factors of material ground ... Keywords: Digital, management system., optimization methods, prediction methods, sintering material ground

Yan Cai; Min Wu; Jin-Ni Zhou; Xin Chen

2012-12-01T23:59:59.000Z

231

User`s guide for the KBERT 1.0 code: For the knowledge-based estimation of hazards of radioactive material releases from DOE nuclear facilities  

Science Conference Proceedings (OSTI)

The possibility of worker exposure to radioactive materials during accidents at nuclear facilities is a principal concern of the DOE. The KBERT software has been developed at Sandia National Laboratories under DOE support to address this issue by assisting in the estimation of risks posed by accidents at chemical and nuclear facilities. KBERT is an acronym for Knowledge-Based system for Estimating hazards of Radioactive material release Transients. The current prototype version of KBERT focuses on calculation of doses and consequences to in-facility workers due to accidental releases of radioactivity. This report gives detailed instructions on how a user who is familiar with the design, layout and potential hazards of a facility can use KBERT to assess the risks to workers in that facility. KBERT is a tool that allows a user to simulate possible accidents and observe the predicted consequences. Potential applications of KBERT include the evaluation of the efficacy of evacuation practices, worker shielding, personal protection equipment and the containment of hazardous materials.

Browitt, D.S.; Washington, K.E.; Powers, D.A. [and others

1995-07-01T23:59:59.000Z

232

Material Management/Strategic Reserve | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

and special nuclear materials and provides programmatic planning, analysis and forecasting for national security material requirements supporting Stockpile Stewardship and...

233

3Q/4Q99 F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II  

Science Conference Proceedings (OSTI)

Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application.

Chase, J.

2000-05-12T23:59:59.000Z

234

Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, 1 April--30 June 1994  

Science Conference Proceedings (OSTI)

This report contains a cluster of twenty separate project reports concerning the fate, environmental transport, and toxicity of hazardous wastes in the Mississippi River Basin. Some of topics investigated involve: biological uptake and metabolism; heavy metal immobilization; biological indicators; toxicity; and mathematical models.

Not Available

1994-08-01T23:59:59.000Z

235

Chemical process hazards analysis  

SciTech Connect

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

236

Hazard-free connection release.  

E-Print Network (OSTI)

??Fault-tolerant communication in a distributed system requires reliable connection management and message delivery. Reliable connection management includes the guarantee of hazard-free release, in which no (more)

Walter, Jennifer E.

2012-01-01T23:59:59.000Z

237

Control of incidental asbestos exposure at hazardous waste sites  

Science Conference Proceedings (OSTI)

This paper discusses asbestos regulations that are not part of Superfund and examines how these regulations can help to identify, evaluate and manage the risk associated with Asbestos Containing Material (ACM) at hazardous waste cleanup sites. Unless one knows where to look for ACM at hazardous waste sites, it may go undetected even after all the traditional sampling is done. Although EPA is currently developing a policy for evaluating risk from asbestos exposure at certain Superfund sites, information from existing regulations can be used to manage hazards associated with asbestos exposure at hazardous waste sites. This paper also identifies where to find governmental agency personnel and consultants who may be retained for site-specific help.

Kaustas, R.N. (Environmental Protection Agency, Edison, NJ (United States))

1991-08-01T23:59:59.000Z

238

Hazardous Waste  

Science Conference Proceedings (OSTI)

Table 6   General refractory disposal options...D landfill (b) Characterized hazardous waste by TCLP

239

Transitioning towards sustainable management of building materials in China.  

E-Print Network (OSTI)

??The purpose of this research is to examine how The Natural Step Framework, combined with Life Cycle Assessment and Ecological Footprint could help to manage (more)

Dai, Dan

2005-01-01T23:59:59.000Z

240

Transitioning towards Sustainable Management of Building Materials in China.  

E-Print Network (OSTI)

??The purpose of this research is to examine how The Natural Step Framework, combined with Life Cycle Assessment and Ecological Footprint could help to manage (more)

Dai, Dan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

December 14, 2004, Board letter providing Board Technical Report DNFSB/TECH-35, Safety Management of Complex, High-Hazard Organizations  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Conwdy, Chalrmm 1 Conwdy, Chalrmm DEFENSE NUCLEAR FACILITIES , I SAFETY BOARD A J bggenberger, V i ~ e Charman John I Mansfield K Brucc lwdtthewa 625 Indiana Avenue, NW, Suite 700, Washington, D.C 20004-290 1 (202) 694-7000 December 14,2004 The Honorable Spencer Abraham Secretary of Energy 1 000 Independence Avenue, S W Washington, DC 20585- 1000 Dear Secretary Abraham: The Defense Nuclear Facilities Safety Board (Board) issued Recommendation 2004- I, Oversight of Complex, High-Hazard Nuclear Operations, on May 2 1, 2004. On July 2 1,2004, the Department of Energy (DOE) accepted Recommendation 2004- 1 . The enclosed technical report, DNFSBITECH-35, Safety Management of Complex, High-Hazard Organizations, provides background information and ideas for implementing the Recommendation.

242

Hazardous Gas Production by Alpha Particles  

DOE Green Energy (OSTI)

This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

Jay A. LaVerne, Principal Investigator

2001-11-26T23:59:59.000Z

243

Facilities Engineering Materials, Equipment, and Relocatable Building Management This regulation--  

E-Print Network (OSTI)

o Consolidates AR 420-83; AR 420-17, chapters 5 and 6 and appendixes E through M; and implements applicable portions of DOD directives, DOD instructions, and DOD regulations. o Adds a requirement for major Army commands (MACOMS) to biennially inspect subordinate supply and equipment operations and relocatable building programs (para 1-9b). o Designates the installation Director of Engineering and Housing as the assessable unit manager (per AR 11-2) for completion of the Internal Management Control Review Checklist applicable to this regulation (para 1-11b). o Directs open warehouses during inventories (para 2-7a). o Requires a yearly inventory of four types of supplies, no inventory of other types, and no periodic inventories (para 2-7b). o Establishes management thresholds for inventory discrepancies (para 2-8b). o Addresses excess management (para 2-15). o Describes self help supply centers (para 2-21). o Delegates decision to lease equipment to DEH (para 3-5b). o Requires that MACOMs appoint an individual to be responsible for Directorate of Engineering and Housing equipment management (para 3-8b). o Allows a cash flow approach to equipment management (rental and depreciation rates) (para 3-8d).Headquarters Department of the Army

unknown authors

1992-01-01T23:59:59.000Z

244

Review of the management of materials research and development in the Department of Energy. Final report  

DOE Green Energy (OSTI)

The Materials Working Group of DOE findings and recommendations of a management nature to improve the handling of materials R and D within DOE are presented. The special role of materials in the development of new energy technologies is provided. (FS)

Not Available

1979-12-01T23:59:59.000Z

245

Microsoft Word - Final Nuclear Materials Management and Safeguards...  

National Nuclear Security Administration (NNSA)

and Safeguards System (NMMSS) Users Guide-Rev. 2.0 Prepared by: Department of Energy National Nuclear Security Administration Nuclear Materials Integration - NA-73 April...

246

Materials management in an internationally safeguarded fuels reprocessing plant  

Science Conference Proceedings (OSTI)

The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

1980-04-01T23:59:59.000Z

247

Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials in Japan SessionA7HonoNIMS.pdf More Documents & Publications Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research:...

248

Where do the Nuclear Materials Management functions fit in the Materials Control and Accountability (MC and A) plan  

Science Conference Proceedings (OSTI)

Safeguards had its beginning in the early 1940s and has continued to grow through the stormy years in dealing with nuclear materials. MC and A Plans have been developed for each facility which includes requirements for containment, surveillance, internal controls, measurements, statistics, records and report systems, and inventory certification of its nuclear materials, in the context of how precisely the inventory is known at stated risk or confidence levels. The I and E Regulations, the newest document affecting the control system, are used for testing the current MC and A plan in place at each facility. Nuclear Materials Management activities also have reporting requirements that include: (1) Annual Forecast, (2) Materials Management Plan, (3) Quarterly Status Report, (4) Assessment Report, and (5) Scrap and Excess Material Management. Data used to generate reports for both functions come from the same data base and source documents at most facilities. The separation of sponsoring groups at the DOE for NM Accountability and NM Management can and does pose problems for contractors. In this paper, we will try to separate and identify these overlaps at the Facility and DOE level.

DeVer, E.A.

1987-01-01T23:59:59.000Z

249

Rules and Regulations for Dredging and the Management of Dredged Material  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rules and Regulations for Dredging and the Management of Dredged Rules and Regulations for Dredging and the Management of Dredged Material (Rhode Island) Rules and Regulations for Dredging and the Management of Dredged Material (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Wind Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management

250

Hazardous waste identification: A guide to changing regulations  

Science Conference Proceedings (OSTI)

The Resource Conservation and Recovery Act (RCRA) was enacting in 1976 and amended in 1984 by the Hazardous and Solid Waste Amendments (HSWA). Since then, federal regulations have generated a profusion of terms to identify and describe hazardous wastes. Regulations that5 define and govern management of hazardous wastes are codified in Title 40 of the code of Federal Regulations, Protection of the environment''. Title 40 regulations are divided into chapters, subchapters and parts. To be defined as hazardous, a waste must satisfy the definition of solid waste any discharged material not specifically excluded from regulation or granted a regulatory variance by the EPA Administrator. Some wastes and other materials have been identified as non-hazardous and are listed in 40 CFR 261.4(a) and 261.4(b). Certain wastes that satisfy the definition of hazardous waste nevertheless are excluded from regulation as hazardous if they meet specific criteria. Definitions and criteria for their exclusion are found in 40 CFR 261.4(c)-(f) and 40 CFR 261.5.

Stults, R.G. (OHM Remediation Services Corp., Findlay, OH (United States))

1993-03-01T23:59:59.000Z

251

Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials  

Science Conference Proceedings (OSTI)

This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

1995-07-01T23:59:59.000Z

252

Surveillance Guides - Hazards Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazards Control Hazards Control 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's programs and policy for establishing controls to mitigate hazards affecting the public, worker, and environment. 2.0 References 2.1 DOE 4330.4B Maintenance Management Program 2.2 48 CFR 1970.5204-2 Department of Energy Acquisition Regulations 3.0 Requirements Implemented This surveillance is conducted to verify implementation of DOE 450.4-1A Volume 2 Appendix E core expectation #3 (CE II-3). CE II-3: An integrated process has been established and is utilized to develop controls which mitigate the identified hazards present within a facility or activity. The set of controls ensure adequate protection of the public, worker, and the environment and are established as agreed upon by DOE.

253

Purchasing and Materials Management Organization, Sandia National Laboratories annual report, fiscal year 1993  

Science Conference Proceedings (OSTI)

This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1993. Activities for both the New Mexico and California locations are included.

Martin, D.R.

1994-02-01T23:59:59.000Z

254

AEC AND CONTRACTOR SS MATERIALS MANAGEMENT MEETING, MAY 25-28, 1959, GERMANTOWN, MARYLAND  

SciTech Connect

The papers prepared and presented by the Atomic Energy Commission and Contractor Personnel are presented. The meeting covered a broad range of problems encountered in the AEC and SS Materials Management work. (W.L.H.)

1960-10-31T23:59:59.000Z

255

Russia-U.S. joint program on the safe management of nuclear materials  

Science Conference Proceedings (OSTI)

The Russia-US joint program on the safe management of nuclear materials was initiated to address common technical issues confronting the US and Russia in the management of excess weapons grade nuclear materials. The program was initiated after the 1993 Tomsk-7 accident. This paper provides an update on program activities since 1996. The Fourth US Russia Nuclear Materials Safety Management Workshop was conducted in March 1997. In addition, a number of contracts with Russian Institutes have been placed by Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL). These contracts support research related to the safe disposition of excess plutonium (Pu) and highly enriched uranium (HEU). Topics investigated by Russian scientists under contracts with SNL and LLNL include accident consequence studies, the safety of anion exchange processes, underground isolation of nuclear materials, and the development of materials for the immobilization of excess weapons Pu.

Witmer, F.E.; Krumpe, P.F. [Dept. of Energy, Washington, DC (United States); Carlson, D.D. [Sandia National Labs., Albuquerque, NM (United States)] [and others

1998-06-01T23:59:59.000Z

256

FAQ 12-What are the hazards associated with uranium hexafluoride...  

NLE Websites -- All DOE Office Websites (Extended Search)

hazards associated with uranium hexafluoride? What are the hazards associated with uranium hexafluoride? The characteristics of UF6 pose potential health risks, and the material is...

257

Oak Ridge Health Studies Phase 1 report, Volume 2: Part D, Dose Reconstruction Feasibility Study. Tasks 6, Hazard summaries for important materials at the Oak Ridge Reservation  

Science Conference Proceedings (OSTI)

The purpose of Task 6 of Oak Ridge Phase I Health Studies is to provide summaries of current knowledge of toxic and hazardous properties of materials that are important for the Oak Ridge Reservation. The information gathered in the course of Task 6 investigations will support the task of focussing any future health studies efforts on those operations and emissions which have likely been most significant in terms of off-site health risk. The information gathered in Task 6 efforts will likely also be of value to individuals evaluating the feasibility of additional health,study efforts (such as epidemiological investigations) in the Oak Ridge area and as a resource for citizens seeking information on historical emissions.

Bruce, G.M.; Walker, L.B.; Widner, T.E.

1993-09-01T23:59:59.000Z

258

Dynamic View Management System for Query Prediction to View Materialization  

Science Conference Proceedings (OSTI)

On-Line Analytical Processing OLAP systems based on data warehouses are the main systems for managerial decision making and must have a quick response time. Several algorithms have been presented to select the proper set of data and elicit suitable structured ... Keywords: Data Warehousing, Dynamic View Materialization, OLAP, Probabilistic Reasoning Approaches, View Prediction, View Selection

Negin Daneshpour; Ahmad Abdollahzadeh Barfourosh

2011-04-01T23:59:59.000Z

259

CHSP: HAZARD CONTROLS  

NLE Websites -- All DOE Office Websites (Extended Search)

HYGIENE HYGIENE AND SAFETY PLAN CHSP SITE MAP HAZARD CONTROLS CONTROLS FOR HAZARDOUS MATERIALS arrow image WORK PRACTICE CONTROLS arrow image CHEMICAL STORAGE GUIDELINES DECOMISSIONING LAB AND SHOP SPACES SPECIFIC CONTROLS AND PROCEDURES arrow image EMERGENCY PROCEDURES AND EQUIPMENT arrow image APPENDICES arrow image FAQs QUESTIONS Search the CHSP: > Go spacer image EH&S Home PUB 3000 LBNL Home LBNL A-Z Index LBNL Search LBNL Phone Book Privacy & Security Notice spacer spacer image spacer image spacer image HAZARD CONTROLS This section discusses control procedures for limiting employee exposure to chemical hazards. Technical Areas Technical areas include laboratories, shops, workrooms, and similar areas where non-administrative activities are performed. For the purpose of the

260

A Program to Stabilize Nuclear Materials as Managed by the Plutonium Focus Area  

Science Conference Proceedings (OSTI)

This paper describes the program to stabilize nuclear materials, consistent with the Department of Energy Office of Environmental Management (EM) plan, Accelerating Cleanup: Paths to Closure. The program is managed by the Plutonium Stabilization and Disposition Focus Area, which defines and manages technology development programs to stabilize nuclear materials and assure their subsequent safe storage and final disposition. The scope of the Plutonium Stabilization and Disposition Focus Area (PFA) activities includes non-weapons plutonium materials, special isotopes, and other fissile materials. The PFA provides solutions to site-specific and complex wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. Our paper describes an important programmatic function of the Department of Energy nuclear materials stabilization program, including the tie-in of policy to research needs and funding for the nuclear materials disposition area. The PFA uses a rigorous systems engineering determination of technology needs and gaps, under the guidance of a Technical Advisory Panel, consisting of complex-wide experts. The Research and Development planning provides an example for other waste areas and should be of interest to Research and Development managers. The materials disposition maps developed by the PFA and described in this paper provide an evaluation of research needs, data gaps and subsequent guidance for the development of technologies for nuclear materials disposition. This paper also addresses the PFA prioritization methodology and its ability to forecast actual time to implementation.

B. Kenley (Kenley Consulting); B. Scott; B. Seidel (ANL-W); D. Knecht (LMITCO); F. Southworth; K. Osborne (DOE-ID); N. Chipman; T. Creque

1999-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Materials Reliability Program: Pressurized Water Reactor Internals Aging Management Program Development Template (MRP-342)  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) has completed and published guidance for managing the effects of aging degradation in pressurized water reactor (PWR) internals. The initial version of this report, Materials Reliability Program: Pressurized Water Reactor Internals Inspection and Evaluation Guidelines (MRP-227, Revision 0), was submitted to the staff of the U. S. Nuclear Regulatory Commission (NRC) ...

2012-10-23T23:59:59.000Z

262

EPRI Materials Management Matrix Project Gap and Opportunity Assessment: Revision 0  

Science Conference Proceedings (OSTI)

An opportunity exists to leverage operating plant experience by proactively identifying and addressing materials performance issues for advanced light water reactor (ALWR) designs currently under consideration for new construction. The Electric Power Research Institute's (EPRI's) Advanced Nuclear Technology (ANT) program Materials Management Matrix (MMM) project was initiated to identify important materials performance issues. This report provides a distillation of the important gaps and opportunities id...

2011-12-01T23:59:59.000Z

263

Materials Reliability Program: Pressurized Water Reactor Issue Management Table, PWR-IMT Consequence of Failure (MRP-156)  

Science Conference Proceedings (OSTI)

The Industry Initiative on the Management of Materials Issues provides a proactive, safety-focused approach to the management of materials degradation. In support of this initiative, EPRI formed the Materials Degradation Assessment/Issue Management Table Ad-Hoc Committee and developed an Issue Management Table (IMT) for reactor coolant system components. This report provides initial input to the IMT to address the consequences of failure for the identified components in the reactor coolant system for ope...

2005-12-16T23:59:59.000Z

264

Hazardous Substance Release Reporting Under CERCLA, EPCR {section}304 and DOE Emergency Management System (EMS) and DOE Occurrence Reporting Requirements. Environmental Guidance  

SciTech Connect

Releases of various substances from DOE facilities may be subject to reporting requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Emergency Planning and Community Right-to-Know Act (EPCRA), as well as DOE`s internal ``Occurrence Reporting and Processing of Operations Information`` and the ``Emergency Management System`` (EMS). CERCLA and EPCPA are Federal laws that require immediate reporting of a release of a Hazardous Substance (HS) and an Extremely Hazardous Substance (EHS), respectively, in a Reportable Quantity (RQ) or more within a 24-hour period. This guidance uses a flowchart, supplemental information, and tables to provide an overview of the process to be followed, and more detailed explanations of the actions that must be performed, when chemical releases of HSs, EHSs, pollutants, or contaminants occur at DOE facilities. This guidance should be used in conjunction with, rather than in lieu of, applicable laws, regulations, and DOE Orders. Relevant laws, regulations, and DOE Orders are referenced throughout this guidance.

Traceski, T.T.

1994-06-01T23:59:59.000Z

265

Electrical hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

associated with your work or the equipment you are using, stop the work and ask your CAT representative for guidance in developing safe work practices that minimize the hazards...

266

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant LAW Melter and Melter Off-gas Process System Hazards Analysis _Oct 21-31  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-10-21 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities Dates of Activity : 10/21/13 - 10/31/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) reviewed the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter and Off-gas systems, observed a

267

Identification of Aircraft Hazards  

Science Conference Proceedings (OSTI)

Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

K. Ashley

2006-12-08T23:59:59.000Z

268

1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II  

SciTech Connect

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

Chase, J.

2000-10-24T23:59:59.000Z

269

[Environmental Hazards Assessment Program annual report, June 1992--June 1993]. Survey of environmental management training coordinators: Risk assessment/risk management training needs  

SciTech Connect

The Medical University of South Carolina (MUSC) is conducting a survey of Risk Assessment and Risk Management. They are developing information on the existing level of risk associated with training and the perceived need for this training by both federal and private organizations. The purpose of the questionnaire is to determine the available training and the perception of the Risk Management process in the DOE. Of particular interest is the requirement for Risk Assessment/Management training in organizations that will be involved in the Decontamination and Decommissioning of DOE Facilities. The survey questions and instructions are included.

1993-12-01T23:59:59.000Z

270

Quantifying improvements in the Engineering-Procurement-Construction (EPC) process from the implementation of information management strategies within materials management  

E-Print Network (OSTI)

Throughout all industries where material flow or handling is involved, employers have implemented various information management technologies with the following goals: 1) to reduce cost, time, and effort, 2) to improve productivity, 3) to streamline the process, 4) to improve product quality, and 5) to attain a competitive advantage. This study quantifies time and cost impacts on the Engineering Procurement-Construction (EPC) process due to the implementation of information management strategies within materials management related activities. The EPC process was schematically mapped and field data from both owner and contractor companies was collected to serve as the baseline condition. Twenty specific materials management related activities were modeled in detail and also loaded with associated field collected time and cost data. Process changes within these activities were analyzed through Monte Carlo simulation. These process changes were used to modify the baseline values for the EPC process and measure the overall impact. Throughout the previous five years, the activity time involved in an EPC project has decreased slightly (4% probability that a 0.584 unit change has occurred) while the greatest improvements occurred in project cost (8.7% probability that a 3.6135 unit change will occur) and schedule (7.2% probability that a 0.501 unit of change will occur). Information management strategies implemented within bulk commodities or standard engineered equipment had the greatest influence upon elapsed time (schedule), and activity time (total effort). Cost was influenced most heavily by the implementation of information management strategies within specialty engineered equipment and fabricated items. The probability that a 6,474 unit change will occur) while more gradual improvements are forecasted to occur in project cost (5.2"/o probability that 1.8395 unit change will occur) and schedule (16.9% probability that 1.7 units change will occur). Information management strategies implemented within bulk commodities will have the greatest influence upon elapsed time, while strategies implemented within fabricated items will have the greatest influence upon activity time and activity cost. Improvements within fabricated items also improve elapsed time significantly.

Toon, Jeffrey Lee

1997-01-01T23:59:59.000Z

271

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

Science Conference Proceedings (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01T23:59:59.000Z

272

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

273

Order Module--self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

self-study program: HAZARDOUS WASTE OPERATIONS AND self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE Order Module--self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE This module will discuss the objectives and requirements associated with this rule from the code of federal regulations. We have provided an example to help familiarize you with the material. The example will also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste operations and emergency response or through the course manager. You may need to refer to these documents to complete the example, practice, and criterion test. DOE Order Self Study Modules - 29 CFR 1910.120 Hazardous Waste Operations

274

Systematic Evaluation Program (SEP) at Rocky Flats Plant: An overview of practical management issues for evaluation of natural phenomena hazards  

Science Conference Proceedings (OSTI)

Many of the buildings at the Rocky Flats Plant were designed and built before modern standards were developed, including standards for protection against extreme natural phenomenon such as tornadoes, earthquakes, and floods. The purpose of the SEP is to establish an integrated approach to assessing the design adequacy of specific high and moderate hazard Rocky Flats facilities from a safety perspective and to establish a basis for defining any needed facility improvements. The SEP is to be carried out in three Phases. In Phase 1, topics to be evaluated and an evaluation plan for each topic were developed. Any differences between Current Design Requirements (CDR) or acceptance criteria and the design of existing facilities, will be identified during Phase 2 and assessed using an integrated systematic approach during Phase 3. The integrated assessment performed during Phase 3 provides a process for evaluating the differences between existing facility design and CDRs so that decisions on corrective actions can be made on the basis of relative risk reduction and cost effectiveness. These efforts will ensure that a balanced and integrated level of safety is achieved for long-term operation of these buildings. Through appropriate selection of topics and identification of the structures, systems, and components to be evaluated, the SEP will address outstanding design issues related to the prevention and mitigation of design basis accidents, including those arising from natural phenomena. The objective of the SEP is not to bring these buildings into strict compliance with current requirements, but rather to ensure that an adequate level of safety is achieved in an economical fashion.

Badwan, F.M. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Herring, K.S. [NUS Corp. (United States)

1993-08-01T23:59:59.000Z

275

Materials Reliability Program: Pressurized Water Reactor Issue Management TablesRevision 2 (MRP-205)  

Science Conference Proceedings (OSTI)

Ongoing issues related to the degradation of pressurized water reactor (PWR) nuclear steam supply system (NSSS) components have resulted in the need for a summary tool to assist in prioritizing and addressing research and development (R&D) issues and associated Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) and Steam Generator Management Program (SGMP) requirements.

2010-10-27T23:59:59.000Z

276

The Belgoprocess Strategy Relating to the Management of Materials from Decommissioning  

SciTech Connect

Belgium started its nuclear program quite early. The first installations were constructed in the fifties, and presently, more than 55 % of the Belgian electricity production is provided by nuclear power plants. After 30 years of nuclear experience, Belgium started decommissioning of nuclear facilities in the eighties with two main projects: the BR3-PWR plant and the Eurochemic reprocessing plant. The BR3-decommissioning project is carried out at the Belgian Nuclear Research Centre, while the decommissioning of the former Eurochemic reprocessing plant is managed and operated by Belgoprocess n.v., which is also operating the centralized waste treatment facilities and the interim storage for Belgian radioactive waste. Some fundamental principles have to be considered for the management of materials resulting from the decommissioning of nuclear installations, equipment and/or components, mainly based on the guidelines of the ''IAEA-Safety Fundamentals. The Principles of Radioactive Waste Management. Safety Series No. 111-F, IAEA, Vienna, 1995'' with respect to radioactive waste management. Two of the fundamental principles indicated in this document are specifically dealing with the strategy for the management of materials from decommissioning, ''Generation of radioactive waste shall be kept to the minimum practicable'' (seventh principle), and ''Radioactive waste shall be managed in such a way that it will not impose undue burdens on future generations'' (fifth principle). Based on these fundamental principles, Belgoprocess has made a straightforward choice for a strategy with minimization of the amount of materials to be managed as radioactive waste. This objective is obtained through the use of advanced decontamination techniques and the unconditional release of decontaminated materials. Unconditionally released materials are recycled, such as i.e., metal materials that are removed to conventional melting facilities, or are removed to conventional industrial disposal sites if they have no remaining value. In order to achieve these objectives, Belgoprocess uses techniques and equipment that enable the high degrees of decontamination to be obtained, while based on commercially available technology. As an example, for concrete surfaces, where the contamination has not penetrated deeply, significant improvement in operation efficiency was achieved when developing dry hand held and automated floor and wall shaving systems as an alternative for scabbling. As it was also shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, an industrial automated dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. Moreover, a specific facility was developed and operations started for taking representative samples and monitoring concrete material in view of the final demolition and unconditional release of remaining structures of buildings after completing all dismantling and decontamination work.

Teunckens, L.; Lewandowski, P.; Walthery, R.; Ooms. B.

2003-02-27T23:59:59.000Z

277

Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1  

SciTech Connect

This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

Not Available

1993-12-31T23:59:59.000Z

278

Microsoft Word - Final Nuclear Materials Management and Safeguards System Users Guide 2 4-3-13.docx  

National Nuclear Security Administration (NNSA)

Nuclear Materials Management and Nuclear Materials Management and Safeguards Users Guide National Nuclear Security Administration Office of Nuclear Materials Integration Office of Nuclear Materials Integration Nuclear Materials Management and Safeguards System (NMMSS) Users Guide-Rev. 2.0 Prepared by: Department of Energy National Nuclear Security Administration Nuclear Materials Integration - NA-73 April 2013 Xavier Ascanio Office of Nuclear Materials Integration Nuclear Materials Management and 73 NMMSS User Guide 2.0 April 1, 2013 Revision History Date Revision Description October 2008 1.0 Initial release April 2013 2.0 New release NMMSS User Guide 2.0 i April 1, 2013 Table of Contents Section 1 Introduction ...................................................................................................................... 1-1

279

Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of hypothetical scenarios, thus proving its adequacy for strategic planning.

Font Vivanco, David, E-mail: font@cml.leidenuniv.nl [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden (Netherlands); Puig Ventosa, Ignasi [ENT Environment and Management, Carrer Sant Joan 39, First Floor, 08800 Vilanova i la Geltru, Barcelona (Spain); Gabarrell Durany, Xavier [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain)

2012-12-15T23:59:59.000Z

280

Apparatus for transporting hazardous materials  

DOE Patents (OSTI)

An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis.

Osterman, R.A.; Cox, R.

1991-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Application of the US decision support tool for materials and waste management  

Science Conference Proceedings (OSTI)

The US Environmental Protection Agency (US EPA) launched the Resource Conservation Challenge (RCC) in 2002 to help reduce waste and move towards more sustainable resource consumption. The objective of the RCC is to help communities, industries, and the public think in terms of materials management rather than waste disposal. Reducing cost, finding more efficient and effective strategies to manage municipal waste, and thinking in terms of materials management requires a holistic approach that considers life-cycle environmental tradeoffs. The US EPA's National Risk Management Research Laboratory has led the development of a municipal solid waste decision support tool (MSW-DST). The computer software can be used to calculate life-cycle environmental tradeoffs and full costs of different waste management or materials recovery programs. The environmental methodology is based on the use of life-cycle assessment and the cost methodology is based on the use of full-cost accounting. Life-cycle inventory (LCI) environmental impacts and costs are calculated from the point of collection, handling, transport, treatment, and disposal. For any materials that are recovered for recycling, offsets are calculated to reflect potential emissions savings from use of virgin materials. The use of the MSW-DST provides a standardized format and consistent basis to compare alternatives. This paper provides an illustration of how the MSW-DST can be used by evaluating ten management strategies for a hypothetical medium-sized community to compare the life-cycle environmental and cost tradeoffs. The LCI results from the MSW-DST are then used as inputs into another US EPA tool, the Tool for the reduction and assessment of chemical and other environmental impacts, to convert the LCI results into impact indicators. The goal of this paper is to demonstrate how the MSW-DST can be used to identify and balance multiple criteria (costs and environmental impacts) when evaluating options for materials and waste management. This type of approach is needed in identifying strategies that lead to reduced waste and more sustainable resource consumption. This helps to meet the goals established in the US EPA's Resource Conservation Challenge.

Thorneloe, Susan A. [US EPA/Office of Research and Development, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division (MD E305-02), Research Triangle Park, NC (United States)], E-mail: thorneloe.susan@epa.gov; Weitz, Keith [RTI International, Research Triangle Park, NC (United States)], E-mail: kaw@rti.org; Jambeck, Jenna [Department of Civil/Environmental Engineering, University of New Hampshire, Durham, NH (United States)], E-mail: jenna.jambeck@unh.edu

2007-07-01T23:59:59.000Z

282

ARG-US RFID System for Management of HIgh-Risk Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear fuel cycle industries Hospitals or other areas needing monitoring Oil, gas and hazardous chemicals industries International applications to enhance...

283

Proceedings of the eighteenth mid-Atlantic industrial waste conference on toxic and hazardous wastes  

SciTech Connect

This book presents the papers given at a conference on the management of hazardous materials. Topics considered at the conference included underground storage tanks, underground industrial waste tank releases, regulations, cost estimation, metal leaching, spent oil shales, siting power plant ash disposal areas, phosphorous removal by a coal media filter, and waste water characterization and treatment for the coal slurry pipeline industry.

Boardman, G.D.

1986-01-01T23:59:59.000Z

284

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in...

285

Radioactive Material or Multiple Hazardous Materials Decontamination  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this procedure is to provide guidance for performing decontamination ofindividuals who have entered a hot zone during transportation incidents involving radioactive.

286

Audit Report - The Department of Energy's Management of Surplus Nuclear Materials, OAS-L-13-04  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Management of Surplus Nuclear Materials OAS-L-13-04 January 2013 MEMORANDUM FOR THE DIRECTOR INTEGRATION ADMINISTRATION FROM: Daniel M. Weeber Assistant Inspector General for Audits and Administration Office of Inspector General SUBJECT: INFORMATION Management of Surplus Nuclear Materials BACKGROUND A primary mission of the Department of Energy design, build and test the Nation' Department's complex was devoted to the production and fabrication of n components. With the end of the C suspended or shutdown. Because Department did not make long term plans for storage or permanent disposition of material, including material that In 2005, the Department chartered

287

Establishing sitewide risk perspectives due to cumulative impacts from AB, EP, and NEPA hazard analyses  

SciTech Connect

With the end of the Cold War in 1992, the mission for the Rocky Flats Environmental Technology Site (Site) was changed from production of nuclear weapon components to special nuclear materials (SNM) and waste management, accelerated cleanup, reuse and closure of the Site. This change in mission presents new hazards and risk management challenges. With today`s shrinking DOE budget, a balance needs to be achieved between controlling those hazards related to SNM and waste management and interim storage, and those hazards related to accelerated closure of the Site involving deactivation, decontamination, and decommissioning (DD and D) of surplus nuclear facilities. This paper discusses how risk assessments of normal operations and potential accidents have provided insights on the risks of current operations and planned closure activities.

Olinger, S.J. [Dept. of Energy, Golden, CO (United States). Rocky Flats Field Office; Foppe, T.L. [M.H. Chew and Associates, Inc., Golden, CO (United States)

1998-06-01T23:59:59.000Z

288

Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment  

Science Conference Proceedings (OSTI)

This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the assessment of the environmental performance of any integrated waste management scheme address the importance of properly defining, beyond the design value assumed for the separate collection as a whole, also the yields of each material recovered; particular significance is finally related to the amount of residues deriving from material recovery activities, resulting on average in the order of 20% of the collected materials.

Giugliano, Michele; Cernuschi, Stefano [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Grosso, Mario, E-mail: mario.grosso@polimi.it [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Rigamonti, Lucia [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy)

2011-09-15T23:59:59.000Z

289

Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"  

Science Conference Proceedings (OSTI)

The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguards System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our findings and conclusions based on our audit objectives. The audit included tests of controls and compliance with laws and regulations related to managing the Department-owned nuclear materials provided to non-Departmental domestic licensees. Because our review was limited it would not necessarily have disclosed all internal control deficiencies that may have existed at the time of our audit. We examined the establishment of performance measures in accordance with Government Performance and Results Act of 1993, as they related to the audit objective. We found that the Department had established performance measures related to removing or disposing of nuclear materials and radiological sources around the world. We utilized computer generated data during our audit and performed procedures to validate the reliability of the information as necessary to satisfy our audit objective. As noted in the report, we questioned the reliability of the NMMSS data.

None

2009-02-01T23:59:59.000Z

290

Materials Reliability Program: San Onofre Nuclear Generating Station Reactor Vessel Internals Management Engineering Program (MRP-303)  

Science Conference Proceedings (OSTI)

All operating pressurized water reactors must have a reactor vessel internals aging management document in place by December 2011 according to the mandatory requirement under Nuclear Energy Institute (NEI) 03-08. This program should be developed to meet the guidance provided by Materials Reliability Program (MRP) -227, Rev. 0, Pressurized Water Reactor Internals Inspection and Evaluation Guidelines. For non-license renewal plants, the requirements are valid within the current license period, and the Elec...

2011-02-28T23:59:59.000Z

291

Materials Reliability Program: Pressurized Water Reactor Issue Management Tables - Revision 3 (MRP-205)  

Science Conference Proceedings (OSTI)

Nuclear utilities continue to face a number of ongoing issues related to degradation of pressurized water reactor (PWR) nuclear steam supply system (NSSS) components. These issues have resulted in the need for a summary tool to assist in prioritizing and addressing research and development (R&D) issues and associated EPRI Materials Reliability Program (MRP) and Steam Generator Management Program (SGMP) requirements.BackgroundA comprehensive, integrated ...

2013-12-03T23:59:59.000Z

292

Materials Reliability Program: Lessons Learned from PWR Thermal Fatigue Management Training (MRP-83)  

Science Conference Proceedings (OSTI)

In January 2001, The EPRI Materials Reliability Program (MRP) issued an Interim Guideline (MRP-24) for the management of thermal fatigue in non-isolable piping attached to reactor coolant piping in pressurized water reactor (PWR) plants (EPRI report 1000701). To assist utility personnel in understanding the potential for thermal fatigue in this piping, the MRP also conducted plant-specific workshops at plant sites. These workshops offered training on fatigue and fatigue cracking in non-isolable piping, a...

2002-12-05T23:59:59.000Z

293

Damage Assessment Technologies for Prognostics and Proactive Management of Materials Degradation  

SciTech Connect

The Nuclear Regulatory Commission has undertaken a program to lay the groundwork for defining proactive actions to manage degradation of materials in light water reactors (LWRs). This paper discusses the U.S. Nuclear Regulatory Commissions Proactive Management of Materials Degradation (PMMD) program and its application to nuclear power plant structures, systems and components. The PMMD program is examining LWR component materials and the degradation phenomena that affect them. Of particular interest is how such phenomena can be monitored to predict degradation and prevent component failure. Some forms of degradation, such as stress corrosion cracking, are characterized by a long initiation time followed by a rapid growth phase. Monitoring such long-term degradation will require new NDE methods and measurement procedures. A critical analysis of all reactor components is required to determine if new inspection strategies are required to effectively manage slow degradation mechanisms that may lead to component failure. As reactor lifetimes are extended, degradation mechanisms previously considered too long-term to be of consequence (such as concrete and wiring insulation degradation) may become more important. This paper includes a review of techniques with potential for sensing and monitoring degradation in its early stages and will concisely explain the basic principles of PMMD and its relationship to in-service inspection, condition based maintenance, and advanced diagnostics and prognostics.

Bond, Leonard J.; Doctor, Steven R.; Griffin, Jeffrey W.; Hull, Amy; Malik, Shah

2011-02-26T23:59:59.000Z

294

Argonne CNM: Shipping MaterialsM  

NLE Websites -- All DOE Office Websites (Extended Search)

CNM General In general, users are not permitted to transport hazardous material on the Argonne site or arrange for shipment directly to the CNM. Hazardous materials must be...

295

Surveillance Guides - Identification of Hazards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identification of Hazards Identification of Hazards 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs. Surveillance activities encompass maintenance and implementation of safety basis documentation (SARs, ISBs, BIOs, JCOs, HASPs etc) as well as activity level hazards identification via JHAs, AJHAs, JSAs etc.) 2.0 References 2.1 DOE 4330.4B Maintenance Management Program 2.2 48 CFR 1970 Department of Energy Acquisition Regulations 2.3 DOE O 5480.21, Unreviewed Safety Questions 2.4 DOE O 5480.23, Nuclear Safety Analysis Reports 3.0 Requirements Implemented This surveillance verifies implementation of guiding principle #5 and core value #2 as specified in 48 CFR 1970.5204-2 (b) (5) and (c) (2) respectively. Additionally, it verifies implementation of

296

Coordinated safeguards for materials management in a nitrate-to-oxide conversion facility  

SciTech Connect

The conceptual design of a materials management system for safeguarding special nuclear materials in a plutonium nitrate-to-oxide conversion facility is developed and evaluated. Dynamic material balances are drawn from information provided by nondestructive-analysis techniques, process-control instrumentation, and conventional chemical analyses augmented by process-monitoring devices. Powerful statistical methods, cast in the framework of decision analysis and applied to unit-process accounting areas, ensure adequate spatial and temporal quantification of possible diversion with minimal process disruption. Modeling and simulation techniques assist in evaluating the sensitivity of the system to various diversion schemes and in comparing safeguards strategies. Features that would improve the safeguardability of the conversion process are discussed.

Dayem, H.A.; Cobb, D.D.; Dietz, R.J.; Hakkila, E.A.; Kern, E.A.; Shipley, J.P.; Smith, D.B.; Bowersox, D.F.

1977-09-01T23:59:59.000Z

297

The Belgoprocess Strategy Relating to the Management of Materials from Decommissioning  

SciTech Connect

Belgium started its nuclear program quite early. The first installations were constructed in the fifties, and presently, more than 55 % of the Belgian electricity production is provided by nuclear power plants. After 30 years of nuclear experience, Belgium started decommissioning of nuclear facilities in the eighties with two main projects: the BR3-PWR plant and the Eurochemic reprocessing plant. The BR3-decommissioning project is carried out at the Belgian Nuclear Research Centre, while the decommissioning of the former Eurochemic reprocessing plant is managed and operated by Belgoprocess n.v., which is also operating the centralized waste treatment facilities and the interim storage for Belgian radioactive waste. Some fundamental principles have to be considered for the management of materials resulting from the decommissioning of nuclear installations, equipment and/or components, mainly based on the guidelines of the ''IAEA-Safety Fundamentals. The Principles of Radioactive Waste Management. Safety Series No. 111-F, IAEA, Vienna, 1995'' with respect to radioactive waste management. Two of the fundamental principles indicated in this document are specifically dealing with the strategy for the management of materials from decommissioning, ''Generation of radioactive waste shall be kept to the minimum practicable'' (seventh principle), and ''Radioactive waste shall be managed in such a way that it will not impose undue burdens on future generations'' (fifth principle). Based on these fundamental principles, Belgoprocess has made a straightforward choice for a strategy with minimization of the amount of materials to be managed as radioactive waste. This objective is obtained through the use of advanced decontamination techniques and the unconditional release of decontaminated materials. Unconditionally released materials are recycled, such as i.e., metal materials that are removed to conventional melting facilities, or are removed to conventional industrial disposal sites if they have no remaining value. In order to achieve these objectives, Belgoprocess uses techniques and equipment that enable the high degrees of decontamination to be obtained, while based on commercially available technology. As an example, for concrete surfaces, where the contamination has not penetrated deeply, significant improvement in operation efficiency was achieved when developing dry hand held and automated floor and wall shaving systems as an alternative for scabbling. As it was also shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, an industrial automated dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. Moreover, a specific facility was developed and operations started for taking representative samples and monitoring concrete material in view of the final demolition and unconditional release of remaining structures of buildings after completing all dismantling and decontamination work.

Teunckens, L.; Lewandowski, P.; Walthery, R.; Ooms. B.

2003-02-27T23:59:59.000Z

298

Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management  

Science Conference Proceedings (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

NONE

1995-07-14T23:59:59.000Z

299

Advanced Nuclear Technology: EPRI Materials Management Matrix ProjectToshiba Advanced Boiling Water Reactor Materials Managem ent Table Report, Revision 0  

Science Conference Proceedings (OSTI)

Experience gained through years of operating nuclear plants has shown that materials performance issues can be a significant concern related to economic and safe long-term plant operations. Although concerns remain, industry efforts to address materials performance issues at operating plants have led to several important advances in both the underlying scientific understanding of materials degradation and the implementation of practical mitigation and management technologies. The Electric Power Research...

2010-02-09T23:59:59.000Z

300

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Preliminary hazards analysis -- vitrification process  

SciTech Connect

This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1994-06-01T23:59:59.000Z

302

Proactive Management of Materials Degradation - A Review of Principles and Programs  

SciTech Connect

The U.S. Nuclear Regulatory Commission (NRC) has undertaken a program to lay the technical foundation for defining proactive actions so that future degradation of materials in light water reactors (LWRs) is limited and, thereby, does not diminish either the integrity of important LWR components or the safety of operating plants. This technical letter report was prepared by staff at Pacific Northwest National Laboratory in support of the NRC Proactive Management of Materials Degradation (PMMD) program and relies heavily on work that was completed by Dr. Joseph Muscara and documented in NUREG/CR-6923. This report concisely explains the basic principles of PMMD and its relationship to prognostics, provides a review of programs related to PMMD being conducted worldwide, and provides an assessment of the technical gaps in PMMD and prognostics that need to be addressed. This technical letter report is timely because the majority of the U.S. reactor fleet is applying for license renewal, and many plants are also applying for increases in power rating. Both of these changes could increase the likelihood of materials degradation and underline, therefore, the interest in proactive management in the future.

Bond, Leonard J.; Doctor, Steven R.; Taylor, Theodore T.

2008-08-28T23:59:59.000Z

303

Russian-U.S. joint program on the safe management of nuclear materials  

SciTech Connect

The Russian-US joint program on the safety of nuclear materials was initiated in response to the 1993 Tomsk-7 accident. The bases for this program are the common technical issues confronting the US and Russia in the safe management of excess weapons grade nuclear materials. The US and Russian weapons dismantlement process is producing hundreds of tons of excess Pu and HEU fissile materials. The US is on a two path approach for disposition of excess Pu: (1) use Pu in existing reactors and/or (2) immobilize Pu in glass or ceramics followed by geologic disposal. Russian plans are to fuel reactors with excess Pu. US and Russia are both converting and blending HEU into LEU for use in existing reactors. Fissile nuclear materials storage, handling, processing, and transportation will be occurring in both countries for tens of years. A table provides a history of the major events comprising the Russian-US joint program on the safety of nuclear materials. A paper delineating program efforts was delivered at the SPECTRUM '96 conference. This paper provides an update on program activities since then.

Witmer, F.E.; Krumpe, P.F. [Dept. of Energy, Washington, DC (US); Carlson, D.D. [Sandia National Labs., Albuquerque, NM (US)] [and others

1997-12-01T23:59:59.000Z

304

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

305

FIRE HAZARDS ANALYSIS - BUSTED BUTTE  

SciTech Connect

The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

R. Longwell; J. Keifer; S. Goodin

2001-01-22T23:59:59.000Z

306

Method of recycling hazardous waste  

SciTech Connect

The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

NONE

1999-11-11T23:59:59.000Z

307

PRESENTATIONS OF 1963 AEC-CONTRACTORS NUCLEAR MATERIALS MANAGEMENT MEETING, %HELD AT< IDAHO FALLS, IDAHO, OCTOBER 16-18, 1963  

SciTech Connect

Fifteen papers presented at the Ninth Annual AEC and Contractor Nuclear Materials Management Meeting are given. Separate abstracts were prepared for eleven papers. Four papers were previously abstracted for NSA. (M.C.G.)

1963-10-10T23:59:59.000Z

308

Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Tebes is affiliated with the University of Illinois. Tebes is affiliated with the University of Illinois. ANL/EAD-2 Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry by K.P. Smith, D.L. Blunt, G.P. Williams, and C.L. Tebes * Environmental Assessment Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 September 1996 Work sponsored by the United States Department of Energy, Office of Policy iii CONTENTS ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

309

EPRI Materials Management Matrix Project: Advanced Light-Water Reactor - Pressurized Water Reactor Degradation Matrix - Revision 1  

Science Conference Proceedings (OSTI)

The Advanced Light Water Reactor - Pressurized Water Reactor Degradation Matrix (ALWR PWR DM) is an integral piece of the Electric Power Research Institutes (EPRIs) Materials Management Matrix (MMM) initiative for ALWR designs. The MMM provides a tool to assist the industry in proactive identification and consideration of materials issues and mitigation/management opportunities from the design phase through component fabrication and plant construction to operations and maintenance.

2010-09-22T23:59:59.000Z

310

What is Hazardous Hazardous waste is  

E-Print Network (OSTI)

What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic, reactive, cor- rosive, flammable, combustible that is unwanted, dis- carded or no longer useful. This waste may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E-Waste

de Lijser, Peter

311

Training Program EHS 604 ~ Hazardous Waste Generator Training  

NLE Websites -- All DOE Office Websites (Extended Search)

604 Hazardous Waste Generator Training Course Syllabus Subject Category: Waste Management Course Prerequisite: EHS0348 or equivalent Course Length: 45 minutes Medical Approval:...

312

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste...

313

Material and energy recovery in integrated waste management systems: Project overview and main results  

Science Conference Proceedings (OSTI)

Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

Consonni, Stefano, E-mail: stefano.consonni@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); Giugliano, Michele [DIIAR, Environmental Section, Politecnico di Milano, P.za L. Da Vinci 32, 20133 Milan (Italy); Massarutto, Antonio [Dse, Universita degli Studi di Udine and IEFE, Via Tomadini 30/a, 33100 Udine (Italy); Ragazzi, Marco [Department of Civil and Environmental Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Saccani, Cesare [DIEM, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

2011-09-15T23:59:59.000Z

314

Material management: experience on the Alaska North Slope Project. [Kuparuk River Project  

SciTech Connect

The Kuparuk River Unit Project started in 1978, with the first major production facility sea lifted to the construction site on the North Slope of Alaska in the summer of 1981. The oil production field is located approximately 25 miles west of the Prudhoe Bay facility and 250 miles north of the Arctic Circle. The size of the Kuparuk site is 215 square miles, overlaying a projected recoverable reservoir of 1.2 billion barrels of oil. The present plan calls for approximately 50 drillsite pads, with the possibility of up to 32 wells on each pad. Modular construction was the most cost-effective method to use. The need for intensive material management on the Kuparuk River Unit Project became evident as the scope of engineering effort increased, shortening the amount of time available for acquisition of purchased materials and for the construction of the modules to meet the annual six-week sea-lift delivery period. The logistics of the Kuparuk construction site, the timeframe required to do the modular construction, the support facilities necessary, and several contractors and types of contracts, required Stearns Catalytic Corporation to consider a sophisticated material control system to identify the various areas of concern. The computerized system set up to solve the problems is discussed here generically.

Humphreys, R.B.

1985-08-01T23:59:59.000Z

315

Montana Hazardous Waste Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental Quality is authorized to enact regulations pertaining to all aspects of hazardous waste storage and disposal, and the Act addresses permitting requirements for disposal

316

Transportation of RCRA hazardous wastes. RCRA Information Brief  

Science Conference Proceedings (OSTI)

The Resource Conservation and Recovery Act (RCRA) and the Hazardous Materials Transportation Act (HMTA) regulate the transport of hazardous wastes. Under these statutes, specific pretransport regulatory requirements must be met by DOE before the shipment of hazardous wastes, including radioactive mixed wastes. The pretransport requirements are designed to help reduce the risk of loss, leakage, or exposure during shipment of hazardous materials and to communicate information on potential hazards posed by the hazardous material in transport. These goals are accomplished through the tracking of shipments, correctly packaging and labeling containers, and communicating potential hazards. Specific requirements include manifesting, packaging, marking and labeling waste packages; placarding transport vehicles; choosing appropriate waste transporters and shipment destinations; and record keeping and reporting. This information Brief focuses primarily on the transporter requirements both for transportation within a DOE facility and using a commercial transporter to transport RCRA hazardous wastes off-site.

Not Available

1994-04-01T23:59:59.000Z

317

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the normal'' municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan's programs. Focusing on the Plan's household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

1991-10-01T23:59:59.000Z

318

Annual report: Purchasing and Materials Management Organization, Sandia National Laboratories, fiscal year 1992  

SciTech Connect

This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1992. Activities for both the New Mexico and California locations are included. Topics covered in this report include highlights for fiscal year 1992, personnel, procurements (small business procurements, disadvantaged business procurements, woman-owned business procurements, New Mexico commercial business procurements, Bay area commercial business procurements), commitments by states and foreign countries, and transportation activities. Also listed are the twenty-five commercial contractors receiving the largest dollar commitments, commercial contractors receiving commitments of $1,000 or more, integrated contractor and federal agency commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California, and transportation commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California.

Zaeh, R.A.

1993-04-01T23:59:59.000Z

319

International rail freight transportation in south Texas: Decreasing fuel consumption, roadway damage, and hazardous materials movement on Texas roadways. Research report  

Science Conference Proceedings (OSTI)

The objectives of the research were to examine impediments to the greater use of rail in the transport of freight, and to document projected reductions in congestion, roadway damage, hazards, and energy usage resulting from such a modal shift. In pursuing these objectives, an examination was made of the roles that are performed by decision-making agencies at the federal, state, and local levels. The findings of this examination are discussed in terms of how these roles interfere with the adoption of increased use of intermodal transportation. Additionally, the logistics associated with cross-border freight transportation are described, documenting the institutional and governmental inefficiencies hindering smooth flow of trade across the border. The balance of the research concerns itself with the potential of rail transportation to mitigate the negative impacts associated with truck transportation.

Roop, S.S.; Dickinson, R.W.

1995-07-01T23:59:59.000Z

320

The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways  

SciTech Connect

This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

Sala, D. R.; Furhman, P.; Smith, J. D.

2002-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Emergency Management Lines of Inquiry, April 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2008 EMERGENCY MANAGEMENT Inspection Criteria, Activities, and Lines of Inquiry Functional Area: Hazards Survey (HS) and Emergency Planning Hazards Assessment (EPHA) Inspection...

322

Emergency Management Lines of Inquiry, April 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2008 EMERGENCY MANAGEMENT Inspection Criteria, Activities, and Lines of Inquiry Functional Area: Hazards Survey (HS) and Emergency Planning Hazards Assessment (EPHA) Inspection...

323

Evaluating the quality and effectiveness of hazardous waste training programs  

SciTech Connect

An installation`s compliance with Resource Conservation and Recovery Act (RCRA) hazardous waste regulations is strongly dependent on the knowledge, skill, and behavior of all individuals involved in the generation and management of hazardous waste. Recognizing this, Headquarters Air Force Materiel Command (HQ/AFMC) determined that an in-depth evaluation of hazardous waste training programs at each AFMC installation was an appropriate element in assessing the overall effectiveness of installation hazardous waste management programs in preventing noncompliant conditions. Consequently, pursuant to its authority under Air Force Instruction (AFI) 32-7042, Solid and Hazardous Waste Compliance (May 12, 1994) to support and maintain hazardous waste training, HQ/AFMC directed Argonne National Laboratory to undertake the Hazardous Waste Training Initiative. This paper summarizes the methodology employed in performing the evaluation and presents the initiative`s salient conclusions.

Kolpa, R.L.; Haffenden, R.A. [Argonne National Lab., IL (United States); Weaver, M.A. [Headquarters Air Force Materiel Command, Wright-Patterson Air Force Base, OH (United States)

1996-05-01T23:59:59.000Z

324

Hazard Analysis Database report  

Science Conference Proceedings (OSTI)

This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J.

1997-08-12T23:59:59.000Z

325

DRAINING HAZARDOUS FLUIDS DURING BUILDING 221-1F DEACTIVATION AT THE SAVANNAH RIVER SITE  

SciTech Connect

Several years ago, SRS completed a four year mission to decommission {approx}250 excess facilities. As part of that effort, SRS deactivated multiple facilities (e.g. Building 247-F, Naval Fuels Facility, and Building 211-F, Outside Facilities for F-Canyon) that contained extensive piping systems filled with hazardous material (e.g. nitric acid). Draining of hazardous materials from piping was successfully completed in all facilities without incident. In early 2009, the decommissioning program at SRS was restarted as a result of funding made available by the American Recovery & Reinvestment Act (ARRA). Under ARRA, draining of piping containing hazardous material was initiated in multiple facilities including Building 221-1F (or A-Line). This paper describes and reviews the draining of piping containing hazardous materials at A-Line, with emphasis on an incident involving the draining of nitric acid. The paper is intended to be a resource for engineers, planners, and project managers, who face similar draining challenges.

Musall, J.

2010-05-11T23:59:59.000Z

326

Nuclear materials control technology in the post-cold war world: Radiation-based methods and information management systems  

SciTech Connect

The end of the cold war is providing both opportunities and requirements for improving the control of nuclear materials around the world. The dismantlement of nuclear weapons and the growth of nuclear power, including the use of plutonium in light water reactors and breeder reactor programs, coupled with enhanced proliferation concerns, drive the need for improved nuclear materials control. We describe nuclear materials control and the role of technology in making controls more effective and efficient. The current use and anticipated development in selected radiation-based methods and related information management systems am described briefly.

Tape, J.W.; Eccleston, G.W.; Ensslin, N.; Markin, J.T.

1993-06-01T23:59:59.000Z

327

DOE O 460.2A, Departmental Materials Transportation and Packaging Management  

Directives, Delegations, and Requirements

The Order establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration ...

2004-12-22T23:59:59.000Z

328

Hazard Analysis Database Report  

Science Conference Proceedings (OSTI)

The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

GRAMS, W.H.

2000-12-28T23:59:59.000Z

329

Hazard Communications Training Deadline Approaches | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazard Communications Training Deadline Approaches Hazard Communications Training Deadline Approaches Hazard Communications Training Deadline Approaches November 1, 2013 - 8:45am Addthis Hazard Communications Training Deadline Approaches 10 CFR 851, Worker Safety and Health Program, requires all DOE Federal and contractor employees with hazardous chemicals in their workplaces to complete new Hazard Communication Standard Training. The major changes to the standard include hazard classification, labeling, Safety Data Sheets, information and training. In order to assist you with meeting this deadline, training materials can be found at: http://orise.orau.gov/ihos/hottopics/training.htm; or http://efcog.org/wg/esh_cslm/index.htm The Hazard Communication Standard can be found at: https://www.osha.gov/dsg/hazcom/ghs-final-rule.html

330

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

331

Hazard Analysis Database Report  

Science Conference Proceedings (OSTI)

The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

GAULT, G.W.

1999-10-13T23:59:59.000Z

332

ARG-US RFID System for Management of HIgh-Risk Materials  

operations and aging management, while enhancing safety, security, safeguards and sustainability. Since 2010, ARG-US RFID has been extensively tested

333

Materials Reliability Program: Strategies for Managing Aging Effects in PWR Vessel Internals - Interim Update (MRP-99)  

Science Conference Proceedings (OSTI)

This report updates the previous EPRI report on developing strategies for managing aging effects in pressurized water reactor (PWR) internals during the license renewal term.

2003-12-04T23:59:59.000Z

334

Oak Ridge Health Studies Phase 1 report, Volume 2: Part A, Dose Reconstruction Feasibility Study. Tasks 1 and 2, A summary of historical activities on the Oak Ridge Reservation with emphasis on information concerning off-site emissions of hazardous materials  

Science Conference Proceedings (OSTI)

The Phase I feasibility study has focused on determining the availability of information for estimating exposures of the public to chemicals and radionuclides released as a result of historical operation of the facilities at the Oak Ridge Reservation (ORR). The estimation of such past exposures is frequently called dose reconstruction. The initial project tasks, Tasks 1 and 2 were designed to identify and collect information that documents the history of activities at the ORR that resulted in the release of contamination and to characterize the availability of data that could be used to estimate the magnitude of the contaminant releases or public exposures. A history of operations that are likely to have generated off-site releases has been documented as a result of Task 1 activities. The activities required to perform this task involved the extensive review of historical operation records and interviews with present and past employees as well as other knowledgeable individuals. The investigation process is documented in this report. The Task 1 investigations have led to the documentation of an overview of the activities that have taken place at each of the major complexes, including routine operations, waste management practices, special projects, and accidents and incidents. Historical activities that appear to warrant the highest priority in any further investigations were identified based on their likely association with off-site emissions of hazardous materials as indicated by the documentation reviewed or information obtained in interviews.

Bruce, G.M.; Buddenbaum, J.E.; Lamb, J.K.; Widner, T.E.

1993-09-01T23:59:59.000Z

335

Characterization of radioactive and hazardous waste at Los Alamos National Laboratory  

SciTech Connect

Radioactive and hazardous waste from actinide processing in nuclear facilities must be characterized in order to ensure safe and regulatory compliant disposal. Nondestructive assay techniques are used to determine nuclear material content and analytical chemistry methods are used to establish composition, but these activities are time-consuming and expensive. Regulations allow acceptable knowledge to be used in order to reduce analytical requirements, provided the integrity of documentation can be demonstrated. The viability of the program is based upon record management and traceability and must withstand the rigors of audit. Electronic inventory and data-gathering systems are implemented to reduce record management and reporting burdens.

Wieneke, Ronald E.; Balkey, J. J. (James J.)

2001-01-01T23:59:59.000Z

336

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

337

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in our homes and can result in serious injuries if not properly handled. Household items such as bleach can result in harmful chlorine gas or hydrochloric acid if carelessly used. Gasoline fumes from containers for lawnmowers or boats can result in major health hazards if inhaled. DOE Oak Ridge uses thousands of chemicals in its varied research and other operations. New chemicals are or can be created as a result of the research or other activities. DOE follows national safety requirements in storing and handling these chemicals to minimize the risk of injuries from its chemical usage. However, accidents can occur despite careful attention to proper handling and storage procedures.

338

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Siting of Industrial 1: Siting of Industrial Hazardous Waste Facilities (New York) Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Siting and Permitting Provider NY Department of Environmental Conservation These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used for the purpose of treating, storing, compacting, recycling, exchanging or disposing of industrial hazardous waste materials, including treatment, compacting,

339

Materials Reliability Program: Aging Management Strategies for Westinghouse and Combustion Engineering PWR Internals (MRP-232)  

Science Conference Proceedings (OSTI)

This report summarizes the aging management strategy development for Westinghouse and Combustion Engineering (CE) reactor internals. This report provides the technical basis for the aging management requirements of Westinghouse and CE reactor internals in the Pressurized Water Reactor (PWR) internals I&E guidelines (MRP-227-Rev. 0).

2008-12-22T23:59:59.000Z

340

Methods for managing uncertainly in material selection decisions : robustness of early stage life cycle assessment  

E-Print Network (OSTI)

Utilizing alternative materials is an important tactic to improve the environmental performance of products. Currently a growing array of materials candidates confronts today's product designer. While life-cycle assessment ...

Nicholson, Anna L. (Anna Louise)

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Amended Record of Decision for the Interim Management of Nuclear Materials (DOE/EIS-0220) (1/26/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

88 88 Federal Register / Vol. 66, No. 18 / Friday, January 26, 2001 / Notices 1 A ''pit'' is a nuclear weapon component. 2 A physical blend of uranium oxide and plutonium oxide. DEPARTMENT OF ENERGY Interim Management of Nuclear Materials AGENCY: Department of Energy ACTION: Amended record of decision. SUMMARY: On December 12, 1995, the U.S. Department of Energy (DOE) issued a Record of Decision (ROD) and Notice of Preferred Alternatives, 60 FR 65300 (December 19, 1995), for the final environmental impact statement, Interim Management of Nuclear Materials (IMNM EIS) (DOE/EIS-0220, October 20, 1995), at the Savannah River Site (SRS), Aiken, South Carolina. As part of its decision, DOE decided to construct a new facility, the Actinide Packaging and Storage Facility (APSF), to prepare, package, and store

342

Helpful links for materials transport, safety, etc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

343

The Chemical Hazards Assessments Prior to D&D of the Plutonium Finishing Plant Hanford Nuclear Reservation  

Science Conference Proceedings (OSTI)

All Hanford facilities, including the Plutonium Finishing Plant (PFP) were evaluated for chemical hazards in 1997, 1998 and 2000. The hazard evaluation, known as the PFP Facility Vulnerability Assessment (FVA), was prompted when chemicals in Tank A-109 in the Plutonium Reclamation Facility (PRF) exploded in May 1997. Actions were undertaken to eliminate or reduce what were thought to be the worst hazards following that evaluation. In 2001, a new PFP team was organized to review the progress to date in reducing hazards and to reassess hazards that might still remain within the facility. This reassessment continued into 2002 and is referred to as the 2002 PFP Residual Chemical Hazards Reassessment (RCHR). This report explains the results of the 2001/2002 reassessment of the chemical hazards at PFP. This reassessment effort forms the basis of the RCHR. The RCHR relied on previous assessments as the starting point for the 2001/2002 evaluation and used ranking criteria very similar to previous efforts. The RCHR team was composed of professionals representing Industrial Hygiene, Chemical Engineering, Mechanical Engineering, Hazardous Materials Handling Specialists, Solid Waste Management Specialists and Environmental Specialists. All areas of concern that could be accessed were physically examined and photographed where possible. Information from processing records, facility drawings and documents, design engineers, process engineers and work packages were compiled. The PFP vessel inventory was examined and expanded where required. New items listed in the vessel inventory were investigated. All items investigated were ranked using the hazard ranking criteria developed. This information was put on data sheets and compiled in a database.

FITCH, L.R.; HOPKINS, A.M.

2003-01-01T23:59:59.000Z

344

ARAC: A support capability for emergency managers  

SciTech Connect

This paper is intended to introduce to the non-radiological emergency management community the 20-year operational history of the Atmospheric Release Advisory Capability (ARAC), its concept of operations, and its applicability for use in support of emergency management decision makers. ARAC is a centralized federal facility for assessing atmospheric releases of hazardous materials in real time, using a robust suite of three-dimensional atmospheric transport and diffusion models, extensive geophysical and source-description databases, automated meteorological data acquisition systems, and experienced staff members. Although originally conceived to respond to nuclear accidents, the ARAC system has proven to be extremely adaptable, and has been used successfully during a wide variety of nonradiological hazardous chemical situations. ARAC represents a proven, validated, operational support capability for atmospheric hazardous releases.

Pace, J.C.; Sullivan, T.J.; Baskett, R.L. [and others

1995-08-01T23:59:59.000Z

345

Guidelines for Managing Reactor Vessel Material Uncertainties: Part 1: General Approach Part 2: Implementation Guide  

Science Conference Proceedings (OSTI)

Uncertainties about reactor vessel material toughness properties can be a concern for utilities when characterizing vessel integrity. In addition, recent emphasis on variability in material chemistry and initial toughness properties has added to regulatory concerns. This two-part guidelines document provides a general approach (Part 1) for dealing with weld metal property variability and material uncertainties and demonstrates examples of different approaches (Part 2) for dealing with these uncertainties...

1997-04-30T23:59:59.000Z

346

Natural Phenomena Hazards Modeling Project: Seismic Hazard Models for Department of Energy Sites  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the US. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. This report summarizes the final seismic hazard models and response spectra recommended for each site and the methodology used to develop these models. 15 references, 2 figures, 1 table.

Coats, D.W.; Murray, R.C.

1984-11-01T23:59:59.000Z

347

Application for managing model-based material properties for simulation-based engineering  

DOE Patents (OSTI)

An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

Hoffman, Edward L. (Alameda, CA)

2009-03-03T23:59:59.000Z

348

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

Science Conference Proceedings (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

Richard C. Logan

2002-03-28T23:59:59.000Z

349

Railroad accident report: Head-on collision between Iowa Interstate Railroad Extra 470 West and Extra 406 East with release of hazardous materials near Altoona, Iowa, on July 30, 1988. Irregular report  

SciTech Connect

About 11:40 a.m. central daylight saving time on July 30, 1988, Iowa Interstate Railroad Ltd. (IAIS) freight trains Extra 470 West and Extra 406 East collided head on within the yard limits of Altoona, Iowa, about 10 miles east of Des Moines, Iowa. All 5 locomotive units from both trains; 11 cars of Extra 406 East; and 3 cars, including two tank cars containing denatured alcohol, of Extra 470 West derailed. The denatured alcohol, which was released through the pressure relief valves and the manway domes of the two derailed tank cars, was ignited by the fire resulting from the collision of the locomotives. Both crew members of Extra 470 West were fatally injured; the two crew members of Extra 406 East were only slightly injured. The estimated damage (including lading) as a result of this accident exceeded $1 million. The major safety issues in the accident include operational methods employed by the IAIS, training and selection of train and engine personnel, supervisory oversight by the IAIS, design of closure fittings on hazardous materials rail tanks, and oversight of regional railroads by the Federal Railroad Administration.

Not Available

1989-07-06T23:59:59.000Z

350

Resource Recovery and Management Act (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Protection administers the state solid and hazardous waste management programs. The programs aim to:...

351

Process hazards analysis (PrHA) program, bridging accident analyses and operational safety  

SciTech Connect

Recently the Final Safety Analysis Report (FSAR) for the Plutonium Facility at Los Alamos National Laboratory, Technical Area 55 (TA-55) was revised and submitted to the US. Department of Energy (DOE). As a part of this effort, over seventy Process Hazards Analyses (PrHAs) were written and/or revised over the six years prior to the FSAR revision. TA-55 is a research, development, and production nuclear facility that primarily supports US. defense and space programs. Nuclear fuels and material research; material recovery, refining and analyses; and the casting, machining and fabrication of plutonium components are some of the activities conducted at TA-35. These operations involve a wide variety of industrial, chemical and nuclear hazards. Operational personnel along with safety analysts work as a team to prepare the PrHA. PrHAs describe the process; identi fy the hazards; and analyze hazards including determining hazard scenarios, their likelihood, and consequences. In addition, the interaction of the process to facility systems, structures and operational specific protective features are part of the PrHA. This information is rolled-up to determine bounding accidents and mitigating systems and structures. Further detailed accident analysis is performed for the bounding accidents and included in the FSAR. The FSAR is part of the Documented Safety Analysis (DSA) that defines the safety envelope for all facility operations in order to protect the worker, the public, and the environment. The DSA is in compliance with the US. Code of Federal Regulations, 10 CFR 830, Nuclear Safety Management and is approved by DOE. The DSA sets forth the bounding conditions necessary for the safe operation for the facility and is essentially a 'license to operate.' Safely of day-to-day operations is based on Hazard Control Plans (HCPs). Hazards are initially identified in the PrI-IA for the specific operation and act as input to the HCP. Specific protective features important to worker safety are incorporated so the worker can readily identify the safety parameters of the their work. System safety tools such as Preliminary Hazard Analysis, What-If Analysis, Hazard and Operability Analysis as well as other techniques as necessary provide the groundwork for both determining bounding conditions for facility safety, operational safety, and day-to-clay worker safety.

Richardson, J. A. (Jeanne A.); McKernan, S. A. (Stuart A.); Vigil, M. J. (Michael J.)

2003-01-01T23:59:59.000Z

352

Management of radioactive material safety programs at medical facilities. Final report  

SciTech Connect

A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

Camper, L.W.; Schlueter, J.; Woods, S. [and others

1997-05-01T23:59:59.000Z

353

Quality management in environmental programs: Los Alamos National Laboratory`s approach  

SciTech Connect

Since its inception in 1943, Los Alamos National Laboratory`s (LANL`s) primary mission has been nuclear weapons research and development, which involved the use of hazardous and radioactive materials, some of which were disposed of onsite. LANL has established an extensive Environmental Restoration Project (Project) to investigate and remediate those hazardous and radioactive waste disposal sites. This paper describes LANL`s identification and resolution of critical issues associated with the integration and management of quality in the Project.

Maassen, L.; Day, J.L.

1998-03-01T23:59:59.000Z

354

A New Class of Risk-Importance Measures to Support Reactor Aging Management and the Prioritization of Materials Degradation Research  

Science Conference Proceedings (OSTI)

As the US fleet of light water reactors ages, the risks of operation might be expected to increase. Although probabilistic risk assessment has proven a critical resource in risk-informed regulatory decision-making, limitations in current methods and models have constrained their prospective value in reactor aging management. These limitations stem principally from the use of static component failure rate models (which do not allow the impact of component aging on failure rates to be represented) and a very limited treatment of passive components (which would be expected to have an increasingly significant risk contribution in an aging system). Yet, a PRA captures a substantial knowledge base that could be of significant value in addressing plant aging. In this paper we will describe a methodology and a new class of risk importance measures that allow the use of an existing PRA model to support the management of plant aging, the prioritization of improvements to non-destructive examination and monitoring techniques, and the establishment of research emphases in materials science. This methodology makes use of data resources generated under the USNRC Proactive Management of Materials Degradation program which addresses the anticipated effects of numerous aging degradation mechanisms on a wide variety of component types.

Unwin, Stephen D.; Lowry, Peter P.; Toyooka, Michael Y.

2010-06-07T23:59:59.000Z

355

Draft Waste Management Programmatic Environmental Impact Statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume 3, Appendix A: Public response to revised NOI, Appendix B: Environmental restoration, Appendix C, Environmental impact analysis methods, Appendix D, Risk  

Science Conference Proceedings (OSTI)

Volume three contains appendices for the following: Public comments do DOE`s proposed revisions to the scope of the waste management programmatic environmental impact statement; Environmental restoration sensitivity analysis; Environmental impacts analysis methods; and Waste management facility human health risk estimates.

NONE

1995-08-01T23:59:59.000Z

356

Nebraska Hazardous Waste Regulations (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Hazardous Waste Regulations (Nebraska) Nebraska Hazardous Waste Regulations (Nebraska) Nebraska Hazardous Waste Regulations (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal restrictions

357

Experiment Hazard Class 9 - Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

hazard classification applies to all experiments involving magnets, magnetic fields, and electric fields. Other hazard classifications such as electrical safety and their...

358

Thermal Management of Batteries in Advanced Vehicles Using Phase-Change Materials (Presentation)  

DOE Green Energy (OSTI)

This Powerpoint presentation examines battery thermal management using PCM and concludes excellent performance in limiting peak temperatures at short period extensive battery use; although, vehicle designers will need to weigh the potential increase in mass and cost associated with adding PCM against the anticipated benefits.

Kim, G.-H.; Gonder, J.; Lustbader, J.; Pesaran, A.

2007-12-01T23:59:59.000Z

359

Materials Reliability Program: Updated B&W Design Information for the Issue Management Tables (MRP-157)  

Science Conference Proceedings (OSTI)

Industry has developed a Degradation Matrix (DM) and a set of Issue Management Tables (IMTs) to summarize information on the safety and operability implications of potential degradation of metallic components in the reactor coolant system (RCS) of nuclear power plants. This report updates B&W-design component information for use in IMTs.

2005-10-24T23:59:59.000Z

360

Materials Issues in Nuclear Waste Management in the 21st Century  

Science Conference Proceedings (OSTI)

Pierre Van Iseghem, Belgian Nuclear Research Center ... materials in light water or fast neutron reactors, and partitioning and transmutation of minor actinides. ... using experiments, theory, mathematical and physical modeling, and simulation.

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Training Program EHS 652 ~ Hazard Waste OPS/ER Training/40hr  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Hazard Waste OPSER Training40hr Course Syllabus Subject Category: Waste Management Course Prerequisite: None Course Length: 40 hours Medical Approval: None Delivery Mode:...

362

Training Program EHS 650 ~ Hazard Waste OPS/ER Training/24hr  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Hazard Waste OPSER Training24hr Course Syllabus Subject Category: Waste Management Course Prerequisite: None Course Length: 24 hours Medical Approval: None Delivery Mode:...

363

Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements  

Science Conference Proceedings (OSTI)

Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

French, Sean B [Los Alamos National Laboratory; Johns - Hughes, Kathryn W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

364

MLW, TRU, LLW, MIXED, HAZARDOUS WASTES AND ENVIRONMENTAL RESTORATION. WASTE MANAGEMENT/ENERGY SECURITY AND A CLEAN ENVIRONMENT. DFR Decommissioning: the Breeder Fuel Processing  

SciTech Connect

The Dounreay site, in North Scotland, was opened in 1955 and a wide range of nuclear facilities have been built and operated there by UKAEA (The United Kingdom Atomic Energy Authority) for the development of atomic energy research. The Dounreay Fast Reactor (DFR) was built between 1955 and 1957, and operated until 1977 for demonstration purposes and for producing electricity. Today, its decommissioning is a key part of the whole Dounreay Site Restoration Plan that integrates the major decommissioning activities such as the fuel treatment and the waste management. The paper presents the contract strategy and provides an overview of the BFR project which consists in the removal of the breeder elements from the reactor and their further treatment. It mainly provides particular details of the Retrieval and Processing Facilities design.

Bonnet, C.; Potier, P.; Ashton, Brian Morris

2003-02-27T23:59:59.000Z

365

Transporting & Shipping Hazardous Materials at LBNL: Cryogens  

NLE Websites -- All DOE Office Websites (Extended Search)

applicable guidance. Controls & Limits required for Self-Transporting Cryogens by Vehicle flow chart General Requirements General requirements are designed to minimize the...

366

Job Hazard Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Step by Step Instructions - Page 1 of 2 Helpful Information STEP 1. Log in to the EH&S Job Hazards Analysis (JHA) system at https:ehswprod.lbl.govehstrainingjhalogin.aspx...

367

ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 40: Chemical Lifecyle Management Purchasing Procedures  

E-Print Network (OSTI)

The purpose of these procedures is to ensure that all purchases of chemicals and other hazardous materials are placed and tracked centrally and that new chemicals are screened against established criteria to support their safe management and use. They cover adding chemicals to the chemical management services (CMS) catalog, ordering chemicals, and delivery and receipt. They apply to workers (chemical users and requesters), their supervisors and line management, CMS representatives, chemical reviewers, and ESH coordinators.

unknown authors

2013-01-01T23:59:59.000Z

368

K Basin Hazard Analysis  

Science Conference Proceedings (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

369

Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks  

SciTech Connect

This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

T. M. Blakley; W. D. Schofield

2007-09-10T23:59:59.000Z

370

Materials Reliability Program: Pressurized Water Reactor Issue Management Tables (MRP-205)  

Science Conference Proceedings (OSTI)

This report provides PWR Issue Management Tables (IMTs) that identify, prioritize, and describe R&D gaps related to degradation issues in PWR Reactor Pressure Vessels (RPVs), Reactor Internals, ASME Class 1 Piping Components, Pressurizers, and Steam Generators. An R&D "Gap" is identified whenever there are needs in the areas of degradation mechanism understanding, mitigation techniques, repair/replacement techniques, or inspection & evaluation technologies to provide reasonable assurance that a component...

2006-11-29T23:59:59.000Z

371

Steam Generator Management Program: Steam Generator Foreign Object Task Force Review Material  

Science Conference Proceedings (OSTI)

Foreign objects entering a steam generator (SG) can result in significant damage to tubing. Foreign objects have caused utilities to plug tubes, extend inspections, and, in some cases, shut down due to primary-to-secondary leakage.BackgroundTo gain a better understanding of the significance of the foreign object problem relative to SGs, the Electric Power Research Institute (EPRI) Steam Generator Management Program (SGMP) assembled a task force in 2005 made ...

2013-08-09T23:59:59.000Z

372

NEHRP - Advisory Committee on Earthquake Hazards ...  

Science Conference Proceedings (OSTI)

NEHRP logo National Earthquake Hazards Reduction Program. ... Advisory Committee on Earthquake Hazards Reduction. Highlights. ...

373

U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation Center  

E-Print Network (OSTI)

contaminated materials, their sources, and potential solutions fall within the purview of a particular ETV). Most LD technologies were developed to detect releases of petroleum and to detect the presence of water in petroleum. Since petroleum and ethanol have different chemical and physical properties, the current LD

374

Radiological dose assessment related to management of naturally occurring radioactive materials generated by the petroleum industry  

Science Conference Proceedings (OSTI)

A preliminary radiological dose assessment related to equipment decontamination, subsurface disposal, landspreading, equipment smelting, and equipment burial was conducted to address concerns regarding the presence of naturally occurring radioactive materials in production waste streams. The assessment evaluated the relative dose of these activities and included a sensitivity analysis of certain input parameters. Future studies and potential policy actions are recommended.

Smith, K.P.; Blunt, D.L.; Williams, G.P.; Tebes, C.L. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1995-05-01T23:59:59.000Z

375

Study of investigation-derived waste management options. Master's thesis  

Science Conference Proceedings (OSTI)

USAF is dedicated to the clean up of past releases of hazardous substances at its bases under the Installation Restoration Program (IRP) . Clean up decisions are based upon data produced from investigations. Large amounts of waste may be derived from investigations. Investigation-derived waste (IDW), especially that with a hazardous component, may pose significant health protection and regulatory compliance problems if neglected. This study identifies the status and the need for improvement of IDW management to avoid those problems. Information on the background of IDW management was collected through a review of environmental laws, waste management regulations, and existing guidance. Practical IDW management information was gleaned from conversations with iRP managers at twelve USAF bases around the country. This study revealed that IDW management needs improvement. All bases acknowledged IDW concerns and have adopted various methods to deal with them. However, current methods appear to rely more upon expediency rather than permanence. This study showed that critical protection and compliance issues are being overlooked. Development of specific IDW management guidance may better assure that critical issues are addressed. Waste minimization, Waste management, Environmental management, Nonhazardous wastes, Hazardous material, Solid wastes.

Mountain, B.C.

1993-09-01T23:59:59.000Z

376

NNSAs Management of the $245 million Nuclear Materials Safeguards and Security Upgrades Project Phase II at Los Alamos National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSA's Management of the $245 NNSA's Management of the $245 Million Nuclear Materials Safeguards and Security Upgrades Project Phase II DOE/IG-0901 January 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 January 2, 2014 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Special Report on "NNSA's Management of the $245 million Nuclear Materials Safeguards and Security Upgrades Project Phase II at Los Alamos National Laboratory" BACKGROUND The National Nuclear Security Administration's Los Alamos National Laboratory (LANL) is responsible for the protection and control of a significant portion of the Nation's special nuclear

377

Experiment Hazard Class 5.3 High Pressure Vessels  

NLE Websites -- All DOE Office Websites (Extended Search)

3 High Pressure Vessels 3 High Pressure Vessels Applicability This hazard classification applies to working with pressure vessels and systems. Other hazard classifications and associated controls may apply to experiments in this hazard class. Experiment Category Experiments involving previously reviewed hazard controls are catergorized as medium risk experiments. Experiments involving new equipment, processes or materials, or modified hazard control schemes are categorized as high risk experiments. Hazard Control Plan Verification Statements Engineered Controls - The establishment of applicable controls in accordance with the (American Society of Mechanical Engineers) ASME Boiler and Pressure Code, ASME B.31 Piping Code and applicable federal, state, and local codes. Verify vessel is stampled with ASME Code Symbol or allowable

378

Experiment Hazard Class 7.2 - BSL - 2 Biohazards  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - BSL-2 Biohazards 2 - BSL-2 Biohazards Applicability This hazard classification applies to all experiments requiring Biosafety Level 2 (BSL-2) precautions. Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. Experiments involving human subjects/materials or living animals, even if not biohazardous, are included in this Hazard Class. Biosafety Level 2 is similar to Biosafety Level 1 and is suitable for work involving agents of moderate potential hazard to personnel and the environment. It differs from BSL-1 in that (1) laboratory personnel have specific training in handling pathogenic agents and are directed by competent scientists; (2) access to the laboratory is limited when work is being conducted; (3) extreme precautions are taken with contaminated sharp

379

Remote vacuum compaction of compressible hazardous waste  

DOE Patents (OSTI)

A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

1996-12-31T23:59:59.000Z

380

Remote vacuum compaction of compressible hazardous waste  

DOE Patents (OSTI)

A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Remote vacuum compaction of compressible hazardous waste  

DOE Patents (OSTI)

A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

1998-10-06T23:59:59.000Z

382

USING TECHNOLOGY TO SUPPORT PROACTIVE MANAGEMENT OF MATERIALS DEGRADATION FOR THE U.S. NUCLEAR REGULATORY COMMISSION  

SciTech Connect

The majority of the U.S. reactor fleet is applying for license renewal to extend the operating life from the current 40 years to 60 years, and there is now active interest in extending the operating life to beyond 60 years. Many plants are also applying for increases in power rating and both of these changes increases the need for an improved understanding of materials degradation. Many materials degrade over time and much is known about the degradation of materials under normal environmental conditions; however, less is known about the characteristics of materials degradation when the environment is subject to higher than normal radiological conditions over extended periods of time. Significant efforts are being made by industrial, academic and regulatory groups worldwide to identify, classify and mitigate potential problems arising from degradation of components in this context. From a regulatory perspective, the U.S. Nuclear Regulatory Commission (USNRC) is very interested in being able to identify ways to insure their licensees proactively manage the identification of materials degradation and the mitigation of its effects. To date, the USNRC has consolidated generic programs for mitigating aging issues in the two volume Generic Aging Lessons Learned (GALL) Report (NUREG-1801) [1][2], and have encouraged applicants for license renewal to use these programs where applicable in their plant when applying for renew of their reactors license. The USNRC has also published a comprehensive report entitled Expert Panel Report on Proactive Materials Degradation (NUREG/CR-6923) [3] that inventories the types of degradation mechanisms that could exist in each component of a Light Water Reactor (LWR) and each degradation mechanism is assessed regarding how much is known about mitigating its effects. Since the number of plant designs and materials used varies greatly within the U.S. fleet, there are many variations to implementing aging management programs (AMPs), requiring significant dialogs between the Licensee and the USNRC. These discussions are part of the licensing basis and as such are documented with up to multi-hundred page responses that are loosely coupled through the USNRC Agency-wide Document Access and Management System (ADAMS), which serves as an electronic records repository for the USNRC . These discussions have supported revisions to the GALL, including the revision that is being prepared as this paper is being written. The USNRC has sought the help of the Pacific Northwest National Laboratory to improve the staffs ability to navigate the significant numbers of documents that are generated in this process and to provide a forum for regulators, licensees and researchers to share knowledge in the efforts to improve the cyclic process for defining, applying, validating and re-defining AMPs. Work to date in this area is publicly accessible and this paper will describe that work and outline a potential path forward. The presenter will also demonstrate the capabilities of the PMMD information tools (http://pmmd.pnl.gov).

Taylor, W Boyd; Knobbs, Katherine J.; Carpenter, C. E. (Gene) [Gene; Malik, Shah

2010-07-19T23:59:59.000Z

383

A method for managing the storage of fissile materials using criticality indices  

SciTech Connect

This paper describes a method for criticality control at fissile material storage facilities. The method involves the use criticiality indices for storage canisters. The logic, methodology, and results for selected canisters are presented. A concept for an interactive computer program using the method is also introduced. The computer program can be used in real time (using precalulated data) to select a Criticality Index (CI) for a container when it is delivered to or packaged at a site. Criticality safety is assured by controlling the sum of the CIs at each storage location below a defined Emit value when containers are moved.

Philbin, J.S.; Harms, G.A.

1995-07-01T23:59:59.000Z

384

Lawn and Garden Tool Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Root Out Lawn and Garden Tool Hazards For many Americans, working outdoors on the lawn and in the garden is a great way to exercise and relax. However, safety experts warn that, if caution is not employed with lawn and garden tools, you could wind up spending more time indoors, starting with a trip to a hospital emergency room. "The most frequent injuries are from lawn mowers, which are unforgiving machines," cautions John Drengenberg, manager of Consumer Affairs for Underwriters Laboratories Inc., Northbrook, Ill., a not-for-profit product safety testing organization. "Statistics tell us that each year lawn mower accidents send close to 85,000 people to emergency rooms. But that's not all. Nearly 15,000 others need medical treatment for injuries from trimmers and other power garden

385

SRS - Programs - Solid Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

manner possible. SRS's waste is categorized as transuranic, low-level, hazardous, mixed, high-level or sanitary waste. SWM is responsible for managing all of these...

386

Balancing health effects and economics in the management of radioactive materials  

SciTech Connect

The public perception of the benefits offered by nuclear energy and the risks to health and safety from ionizing radiation has dramatically altered over the fifty years since the advent of nuclear fission. The {open_quotes}Atomic Age{close_quotes} is seldom mentioned anymore. The attitudinal change from the acceptance of nuclear energy as an essential component of national defense, {open_quotes}Atoms for Peace,{close_quotes} and a new, abundant, and clean energy source for mankind to the perception of it as an object of protest and fear has resulted from events that included nuclear fallout from atmospheric weapons testing, Three Mile Island, Chernobyl, classified radiation experiments, and a generally hostile news media. As a reflection of public concerns over radiation, federal, state, and local regulations have greatly multiplied in both the types of radioactive materials addressed and the threshold activity levels at which these regulations become effective.

Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

1994-12-31T23:59:59.000Z

387

Development and implementation of automated radioactive materials handling systems  

SciTech Connect

Material handling of radioactive and hazardous materials has forced the need to pursue remotely operated and robotic systems in light of operational safety concerns. Manual maneuvering, repackaging, overpacking and inspecting of containers which store radioactive and hazardous materials is the present mode of operation at the Department of Energy (DOE) Fernald Environmental Management Project (FEMP) in Fernald Ohio. The manual methods are unacceptable in the eyes of concerned site workers and influential community oversight committees. As an example to respond to the FEMP material handling needs, design efforts have been initiated to provide a remotely operated system to repackage thousands of degradated drums containing radioactive Thorium: Later, the repackaged Thorium will be shipped offsite to a predesignated repository again requiring remote operation.

Jacoboski, D.L.

1992-12-01T23:59:59.000Z

388

Development of a Fuel Containing Material Removal and Waste Management Strategy for the Chernobyl Unit 4 Shelter  

Science Conference Proceedings (OSTI)

A study was performed to develop a strategy for the removal of fuel-containing material (FCM) from the Chernobyl Unit 4 Shelter and for the related waste management. This study was performed during Phase 1 of the Shelter Implementation Plan (SIP) and was funded by the Chernobyl Shelter Fund. The main objective for Phase 2 of the SIP is to stabilize the Shelter and to construct a New Confinement (NC) by the year 2007. In addition, the SIP includes studies on the strategy and on the conceptual design implications of the removal of FCM from the Shelter. This is considered essential for the ultimate goal, the transformation of the Shelter into an environmentally safe system.

Tokarevsky, V. V.; Shibetsky, Y. A.; Leister, P.; Davison, W. R.; Follin, J. F.; McNair, J.; Lins, W.; Edler, G.

2002-02-27T23:59:59.000Z

389

Protocol, High Hazard Nuclear Facility Project Oversight - November 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Hazard Nuclear Facility Project Oversight - November High Hazard Nuclear Facility Project Oversight - November 2012 Protocol, High Hazard Nuclear Facility Project Oversight - November 2012 November 2012 Protocol for High Hazard Nuclear Facility Project Oversight The purpose of this protocol is to establish the requirements and responsibilities for managing and conducting Office of Health, Safety and Security (HSS) independent oversight of high-hazard nuclear facility projects. As part of the Department of Energy's (DOE) self regulatory framework for safety and security, DOE Order 227.1, Independent Oversight Program, assigns HSS the responsibility for implementing an independent oversight program. It also requires the HSS Office of Enforcement and Oversight to conduct independent evaluations of safety and security. This

390

Hazardous waste research and development in the Pacific Basin  

SciTech Connect

The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

Cirillo, R.R.; Carpenter, R.A. (Argonne National Lab., IL (USA); Environment and Policy Inst., Honolulu, HI (USA))

1989-01-01T23:59:59.000Z

391

Evaluation of Fire Dynamics Simulator for Liquefied Natural Gas Vapor Dispersion Hazards.  

E-Print Network (OSTI)

??The Federal Energy Regulatory Commission (FERC) and Pipeline and Hazardous Material Administration (PHMSA) require vapor dispersion modeling as part of a siting analysis for liquefied (more)

Kohout, Andrew Joseph

2011-01-01T23:59:59.000Z

392

Evaluation of fire dynamics simulator for liquefied natural gas vapor dispersion hazards.  

E-Print Network (OSTI)

?? The Federal Energy Regulatory Commission (FERC) and Pipeline and Hazardous Material Administration (PHMSA) require vapor dispersion modeling as part of a siting analysis for (more)

Kohout, Andrew Joseph

2012-01-01T23:59:59.000Z

393

Vermont Hazardous Waste Management Regulations (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations are intended to protect public health and the environment by comprehensively regulating the generation, storage, collection, transport, treatment, disposal, use, reuse, and...

394

Report Wildland Fire Area Hazard  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. How to report wildland fire hazard Use the following form to report any wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. Fill out this form as completely as possible so we can better assess the hazard. All submissions will be assessed as promptly as possible. For assistance with a non-emergency situation, contact the Operations Support Center at 667-6211. Name (optional): Hazard Type (check one): Wildlife Sighting (check box if animal poses serious threat) Trails (access/egress)

395

Preliminary Hazards Analysis Plasma Hearth Process  

SciTech Connect

This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1993-11-01T23:59:59.000Z

396

HAZARD CATEGORIZATION OF ENVIRONMENTAL RESTORATION SITES AT HANFORD WASHINGTON  

SciTech Connect

Environmental restoration activities, defined here as work to identify and characterize contaminated sites and then contain, treat, remove or dispose of the contamination, now comprises a significant fraction of work in the DOE complex. As with any other DOE activity, a safety analysis must be in place prior to commencing restoration. The rigor and depth of this safety analysis is in part determined by the site's hazard category. This category in turn is determined by the facility's hazardous material inventory and the consequences of its release. Progressively more complicated safety analyses are needed as a facility's hazard category increases from radiological to hazard category three (significant local releases) to hazard category two (significant on-site releases). Thus, a facility's hazard category plays a crucial early role in helping to determine the level of effort devoted to analysis of the facility's individual hazards. Improper determination of the category can result in either an inadequate safety analysis in the case of underestimation of the hazard category, or an unnecessarily cumbersome analysis in the case of overestimation. Contaminated sites have been successfully categorized and safely restored or remediated at the former DOE production site at Hanford, Washington. This paper discusses various means used to categorize former plutonium production or support sites at Hanford. Both preliminary and final hazard categorization is discussed. The importance of the preliminary (initial) hazard categorization in guiding further DOE involvement and approval of the safety analyses is discussed. Compliance to DOE direction provided in ''Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports'', DOE-STD-1027-92, is discussed. DOE recently issued 10 CFR 830, Subpart B which codifies previous DOE safety analysis guidance and orders. The impact of 10 CFR 830, Subpart B on hazard categorization is also discussed.

BISHOP, G.E.

2001-05-01T23:59:59.000Z

397

Cold Weather Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Cold Weather Hazards June 2010 NSA_cwh_Rev10.doc 1 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Cold Weather Hazards Winter Conditions at the North Slope of Alaska The North Slope of Alaska is north of the Arctic Circle at latitudes ranging from 69 to 72 degrees. Barrow, the largest town on the North Slope (pop. 4500), is the site of a National Weather Service Station, which has been active for several decades, so the climatology of the Alaska arctic coastal region as represented by Barrow is relatively well known. The North Slope is covered with ice and snow typically eight months of the year (October-May). During part of November, all of December, and most of January, the sun does not come above the horizon; this

398

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

399

A complete electrical hazard classification system and its application  

Science Conference Proceedings (OSTI)

The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of electrical hazards. The new comprehensive electrical hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards. Based on this electrical hazard classification system, many new tools have been developed, including (a) work controls for these hazards, (b) better selection of PPE for R&D work, (c) improved training, and (d) a new Severity Ranking Tool that is used to rank electrical accidents and incidents with various forms of electrical energy.

Gordon, Lloyd B [Los Alamos National Laboratory; Cartelli, Laura [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

400

Oil and Hazardous Substance Discharge Preparedness (Minnesota...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Substance Discharge Preparedness (Minnesota) Oil and Hazardous Substance Discharge Preparedness (Minnesota) Eligibility Utility Fed. Government Commercial Agricultural...

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

National Earthquake Hazards Reduction Program Staff ...  

Science Conference Proceedings (OSTI)

National Earthquake Hazards Reduction Program Staff. National Earthquake Hazards Reduction Program (731.05). Dr. John (Jack) R. Hayes, Jr. ...

2013-08-12T23:59:59.000Z

402

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result...

403

CHSP: Material Safety Data Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

HYGIENE HYGIENE AND SAFETY PLAN CHSP SITE MAP WHO TO CALL MATERIAL SAFETY DATA SHEETS ROLES AND RESPONSIBILITIES arrow image CHEMICAL PROCUREMENT, TRANSPORTATION AND INVENTORY arrow image CHEMICAL HAZARD: DEFINITION arrow image CHEMICAL HAZARD ASSESSMENTS arrow image HAZARD CONTROLS arrow image TRAINING AND HAZARD INFORMATION arrow image EXPOSURE MONITORING & MEDICAL CONSULTATION arrow image APPENDICES arrow image FAQs QUESTIONS Search the CHSP: > Go spacer image EH&S Home PUB 3000 LBNL Home LBNL A-Z Index LBNL Search LBNL Phone Book Privacy & Security Notice spacer spacer image spacer image Material Safety Data Sheets and Chemical Information Resources A Material Safety Data Sheet (MSDS) is a manufacturer/importer's informational document of a hazardous chemical that describes its physical and chemical properties, hazards, and recommended precautions for handling, storage and disposal. How to Read an MSDS

404

Method and apparatus for incinerating hazardous waste  

DOE Patents (OSTI)

An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

Korenberg, Jacob (York, PA)

1990-01-01T23:59:59.000Z

405

Hazard Analysis Reports for Nuclear Explosive Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NA-STD-3016-2006 NA-STD-3016-2006 May 2006 DOE LIMITED STANDARD HAZARD ANALYSIS REPORTS FOR NUCLEAR EXPLOSIVE OPERATIONS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-NA-STD-3016-2006 iii FORWARD This Department of Energy (DOE)/National Nuclear Security Administration (NNSA) technical standard is approved for use by the Assistant Deputy Administrator for Military Application and Stockpile Operations (NA-12), and is available for use to prepare Nuclear Explosive Operation (NEO) Hazard Analysis Reports (HARs) as required by 10 CFR 830, "Nuclear Safety Management." This Standard is

406

Identifying Lawn and Garden Tool Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Root Out Lawn and Garden Tool Hazards Root Out Lawn and Garden Tool Hazards For many Americans, working outdoors on the lawn and in the garden is a great way to exercise and relax. However, safety experts warn that, if caution is not employed with lawn and garden tools, you could wind up spending more time indoors, starting with a trip to a hospital emergency room. "The most frequent injuries are from lawn mowers, which are unforgiving machines," cautions John Drengenberg, manager of Consumer Affairs for Underwriters Laboratories Inc., Northbrook, Ill., a not-for-profit product safety testing organization. "Statistics tell us that each year lawn mower accidents send close to 85,000 people to emergency rooms. But that's not all. Nearly 15,000 others need medical treatment for injuries from trimmers and other power garden

407

Mediated electrochemical hazardous waste destruction  

SciTech Connect

There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag{sup 2+} or Ce{sup +4} are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs.

Hickman, R.G.; Farmer, J.C.; Wang, F.T.

1991-08-01T23:59:59.000Z

408

Hazardous Waste: Resource Pack for Trainers and Communicators | Open Energy  

Open Energy Info (EERE)

Hazardous Waste: Resource Pack for Trainers and Communicators Hazardous Waste: Resource Pack for Trainers and Communicators Jump to: navigation, search Tool Summary Name: Hazardous Waste: Resource Pack for Trainers and Communicators Agency/Company /Organization: International Solid Waste Association (ISWA), United Nations Development Programme (UNDP), United Nations Industrial Development Organization (UNIDO) Sector: Energy, Land, Water Focus Area: Renewable Energy, - Waste to Energy Phase: Evaluate Options Topics: Adaptation, Implementation, Low emission development planning, -LEDS Resource Type: Guide/manual, Training materials Website: www.trp-training.info/ Cost: Paid Language: English References: Training Resource Pack[1] "The new TRP+ provides a structured package of notes, technical summaries, visual aids and other training material concerning the (hazardous) waste

409

Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process  

SciTech Connect

Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

Fix, N.J.

1995-03-01T23:59:59.000Z

410

Materials Measurement Science Division Staff Directory  

Science Conference Proceedings (OSTI)

... Patricia Ridgley Division Office Manager 301-975-3914. ... Material Measurement Laboratory Materials Measurement Science Division. ...

2013-03-19T23:59:59.000Z

411

Experiment Hazard Class 11 - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Hydrogen 1 - Hydrogen Applicability This hazard classification applies to all experiments and processes involving the use of gaseous hydrogen. This class includes work performed in the Experiment Hall Beamline Stations and any preparatory/setup/testing work performed in the LOM laboratories. Other hazard controls such as fire protection and life safety regulations may apply to experiments of this hazard class. A summary of controls for hydrogen use is available in the hydrogen summary document. Experiment Category Experiments involving previously reviewed hazard controls qualify for categorized as medium risk. Experiments involving new equipment or modified hazard control schemes are categorized as high risk. Experiment Hazard Control Verification Statements Engineered Controls - Applicable controls for storage and use of

412

Communication in hazardous environments  

SciTech Connect

Radios were investigated for use in hazardous environments where protective breathing equipment such as plastic suits and respirators interfere with communication. A radio system, manufactured by Communications-Applied technology (C-AT), was identified that was designed specifically for hazardous environment communications. This equipment had been used successfully by the US Army and NASA for several years. C-AT equipment was evaluated in plantwide applications at the Savannah River Plant (SRP) using temporary frequencies obtained by the Department of Energy-Savannah River (DOE-SR). Radios performed well in all applications, which included a tritium facility, high-level caves, a nuclear reactor building, tank farm, and a canyon building interior. Permanent frequencies were obtained by DOE-SR for two complete six-man C-AT systems at SRP. Because of the relatively short range of these systems, replicates will cover all applications of this type of equipment plantwide. Twelve radio systems are currently being used successfully in plantwide applications.

Rankin, W N; Herold, T R

1986-01-01T23:59:59.000Z

413

Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sheet, Preliminary Notice of Violation: Four Hazardous Energy Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL On October 17, 2012, the National Nuclear Security Administration (NNSA) issued a Preliminary Notice of Violation (PNOV) to Los Alamos National Security, LLC (LANS) for violations of Department of Energy (DOE) worker safety and health program requirements. LANS is the management and operating contractor for NNSA's Los Alamos National Laboratory (LANL), located in Los Alamos, New Mexico. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL More Documents & Publications Sandia Sled Track PNOV Press Release Fact Sheet LANS PNOV Fact Sheet LANS PNOV

414

Hazardous Waste Act (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

"Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may: cause or significantly...

415

Memorandum on Chemical Reactors and Reactor Hazards  

SciTech Connect

Two important problems in the investigation of reactor hazards are the chemical reactivity of various materials employed in reactor construction and the chracteristics of heat transfer under transient conditions, specifically heat transfer when driven by an exponentially increasing heat source (exp t/T). Although these problems are independent of each other, when studied in relation to reactor hazards they may occur in a closely coupled sequence. For example the onset of a dangerous chemical reactor may be due to structural failure of various reactor components under an exponentially rising heat source originating with a runaway nuclear reactor. For this reason, these two problems should eventually be studied together after an exploratory experimental survey has been made in which they are considered separately.

Mills, M.M.; Pearlman, H.; Ruebsamen, W.; Steele, G., Chrisney, J.

1951-07-05T23:59:59.000Z

416

Hazardous Solvent Substitution Data System tutorial  

SciTech Connect

This manual is the tutorial for the Hazardous Solvent Substitution Data System (HSSDS), an online, comprehensive system of information on alternatives to hazardous solvents and related subjects. The HSSDS data base contains product information, material safety data sheets, toxicity reports, usage reports, biodegradable data, product chemical element lists, and background information on solvents. HSSDS use TOPIC{reg_sign} to search for information based on a query defined by the user. TOPIC provides a full text retrieval of unstructured source documents. In this tutorial, a series of lessons is provided that guides the user through basic steps common to most queries performed with HSSDS. Instructions are provided for both window-based and character-based applications.

Twitchell, K.E.; Skinner, N.L.

1993-07-01T23:59:59.000Z

417

National Emission Standards for Hazardous Air Pollutants, June 2005  

DOE Green Energy (OSTI)

The sources of radionuclides include current and previous activities conducted on the NTS. The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing has included (1) atmospheric testing in the 1950s and early 1960s, (2) underground testing between 1951 and 1992, and (3) open-air nuclear reactor and rocket engine testing (DOE, 1996a). No nuclear tests have been conducted since September 23,1992 (DOE, 2000), however; radionuclides remaining on the soil surface in many NTS areas after several decades of radioactive decay are re-suspended into the atmosphere at concentrations that can be detected by air sampling. Limited non-nuclear testing includes spills of hazardous materials at the Non-Proliferation Test and Evaluation Complex (formerly called the Hazardous Materials Spill Center), private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses; handling, transport, storage, and assembly of nuclear explosive devices or radioactive targets for the Joint Actinide Shock Physics Experimental Research (JASPER) gas gun; and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE, 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in calendar year (CY) 2004 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and water pumped from wells used to characterize the aquifers at the sites of past underground nuclear tests, (2) onsite radioanalytical laboratories, (3) the Area 3 and Area 5 RWMS facilities, and (4) diffuse sources of tritium (H{sup 3}) and re-suspension of plutonium ({sup 239+240}Pu) and americium ({sup 241}Am) at the sites of past nuclear tests. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility (NLVF). At the NLVF, parts of Building A-1 were contaminated with tritium by a previous contractor in 1995. The incident involved the release of tritium as HTO. This unusual occurrence led to a very small potential exposure to an offsite person. The HTO emission has continued at lower levels (probably re-emanation from building materials), even after cleanup activities in November and December 1997. A description of the incident and the potential effective dose equivalent (EDE) for offsite exposure are set forth in Appendix A.

Robert F. Grossman

2005-06-01T23:59:59.000Z

418

Management  

E-Print Network (OSTI)

Research has indicated that, depending upon driver and passenger characteristics, passengers can have either a positive or negative influence upon driver behaviour. In conclusion to a recent study investigating the roles that passengers can play to influence, positively and negatively, driver behaviour, Regan and Mitsopoulos (2001) recommended, among other things, that the principles of Crew Resource Management (CRM) training may increase passengers ability to positively influence driver behaviour and also drivers ability to accept constructive feedback. The present study investigated the potential application of CRM training within young driver training in the Australian Capital Territory (ACT). This involved a literature review, an analysis of the differences between the driving and aviation domains, an analysis of the team-based activities and the knowledge, skills and attitudes required during driving to perform those activities, consultation with CRM experts from the aviation and medicine domains and the conduct of six focus groups involving young learner drivers, provisional licence drivers and course teachers. The findings indicate that CRM training as part of young driver training in the ACT is a viable concept to pursue. The application of CRM training within young driver training has potential to significantly enhance the positive and reduce the negative effects of passengers on young driver behaviour, and thus the safety of young drivers and passengers alike. The outcomes of this study formed the basis for a set of recommendations for the development of a young driver CRM training program in the ACT.

Young Drivers; Eve Mitsopoulos; Michael Regan; Janet Anderson; Paul Salmon; Jessica Edquist; Ii Report Documentation Page

2005-01-01T23:59:59.000Z

419

Hazardous-waste analysis plan for LLNL operations  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

Roberts, R.S.

1982-02-12T23:59:59.000Z

420

Overview hazard analysis for the H2Fuel Bus Program  

DOE Green Energy (OSTI)

The H2Fuel Bus project is a joint development effort to produce a safe, near-zero emission, 32 passenger bus that is propelled by electric power with continuous on-board hydrogen powered battery recharging. A key initiative in the hydrogen bus development effort is a rigorous evaluation of operational safety. Westinghouse Savannah River Co., the prime contractor at the Department of Energy`s Savannah River Site, has developed a hazard analysis methodology designed to provide a systematic, comprehensive identification and evaluation of hazards. Although originally developed to support nuclear/chemical facility safety basis documentation, the SRS Methodology has widespread applicability to operations and/or systems that utilize hazardous materials and energy. This methodology was used to perform an overview hazard analysis for the H2Fuel Bus project to focus attention on those hypothetical circumstances that pose the greatest threat to the populace and property. The hazard analysis yields a listing of all known H2Fuel Bus hazards, postulated accident scenarios describing possible hazardous releases or conditions, an assessment of the scenarios in terms of frequency of occurrence and consequence, and binning in frequency-consequence space to assess the relative severity of postulated scenarios.

Hovis, G.L.

1996-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Apparatus for incinerating hazardous waste  

DOE Patents (OSTI)

An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

Chang, R.C.W.

1994-12-20T23:59:59.000Z

422

Apparatus for incinerating hazardous waste  

DOE Patents (OSTI)

An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

Chang, Robert C. W. (Martinez, GA)

1994-01-01T23:59:59.000Z

423

Support for the delisting of decontaminated liquid chemical surety materials as listed hazardous waste from specific sources (state) MD02 in COMAR 10. 51. 02. 16-1. Technical report, December 1987-February 1988  

SciTech Connect

Maryland recently enacted regulations that listed decontaminated residues of certain chemical warfare agents as hazardous wastes. The State would consider delisting if the Army document the effects of its decontamination procedures. Army specialists at U.S. Army Chemical Research, Development and Engineering Center (CRDEC), Aberdeen Proving Ground, MD, have had exhaustive experience in this area since 1918 when chemical agents were first used in combat in World War I. Competence accrued during this 70-year legacy includes destruction of laboratory and training wastes, combat decontamination, and largescale demilitarization of unserviceable and obsolete agent-filled munitions. The facts and circumstances enumerated in this document indicate that current decontamination practices are safe, scientifically valid, and result in the total destruction of agents in questions.

Durst, H.D.; Sarver, E.W.; Yurow, H.W.; Beaudry, W.T.; D'Eramo, P.A.

1988-11-01T23:59:59.000Z

424

DOE Order Self Study Modules - DOE O 460.1C Packaging and Transportation Safety and DOE O 460.2A Departmental Materials Transportation and Packaging Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60.1C 60.1C PACKAGING AND TRANSPORTATION SAFETY DOE O 460.2A DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT DOE O 460.1C and 460.2A Familiar Level June 2011 1 DOE O 460.1C PACKAGING AND TRANSPORTATION SAFETY DOE O 460.2A DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT FAMILIAR LEVEL _________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the resources, you will be able to perform the following: 1. What are the objectives of U.S. Department of Energy (DOE) O 460.1C? 2. What is the DOE/National Nuclear Security Administration (NNSA) exemption process in DOE O 460.1C? 3. What are the onsite safety requirements specified by DOE O 460.1C? 4. What are the objectives of DOE O 460.2A?

425

Orlando Materials Innovation  

Science Conference Proceedings (OSTI)

Ford Motor Company. Buddy Damm. Manager, Metallurgical Applications and Modeling Dept. The Timken Company. Frank Preli. Chief Engineer,. Materials and...

426

SRNL - Cementitious Materials Workshop  

... the Department of Energy, ... engineers, project managers, ... status and future direction of the cement materials technology in radioactive waste ...

427

Potential Health Hazards of Radiation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation More Documents &...

428

The effects of hazardous waste taxes on generation and disposal of chlorinated solvent waste  

E-Print Network (OSTI)

In 1989, 30 states levied taxes on e generation or management of hazardous waste. These taxes constitute one of the broadest applications of an emissions tax in U.S. environmental policy and provide a natural experiment ...

Sigman, Hilary

1992-01-01T23:59:59.000Z

429

Hazards to Electrical Distribution in Coastal Areas Subject to Flooding and High Wind  

Science Conference Proceedings (OSTI)

EPRI, Dewberry and Davis, and the Federal Emergency Management Agency (FEMA) have jointly prepared this study on hazards to electrical distribution in coastal areas that experience coastal and river flooding and high wind.

2000-09-08T23:59:59.000Z

430

Decision analysis for INEL hazardous waste storage  

Science Conference Proceedings (OSTI)

In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

Page, L.A.; Roach, J.A.

1994-01-01T23:59:59.000Z

431

STATEMENT OF CONSIDERATIONS REQUEST BY WASTE MANAGEMENT ENVIRONMENTAL SERVICES, INC.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE MANAGEMENT ENVIRONMENTAL SERVICES, INC. WASTE MANAGEMENT ENVIRONMENTAL SERVICES, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER EG&G IDAHO, INC. SUBCONTRACT NO. EGG-C93-170221, W(A)-93-005, CH-0757 Under this subcontract, Waste Management Environmental Services, Inc. (WMES) will demonstrate key technical features of its proposed Idaho National Engineering Laboratory (INEL) Pit-9 remediation program. Pit-9 is an area in the Radioactive Waste Management Complex at the INEL containing radioactive and hazardous materials in the form of toxic metals and organic materials, including plutonium and americium. Specifically, the subject subcontract is directed toward a Proof-of-Process (POP) demonstration program intended to provide EG&G Idaho, Inc. (EG&G) with additional information that it will use in the

432

AN ENHANCED HAZARD ANALYSIS PROCESS FOR THE HANFORD TANK FARMS  

SciTech Connect

CH2M HILL Hanford Group, Inc., has expanded the scope and increased the formality of process hazards analyses performed on new or modified Tank Farm facilities, designs, and processes. The CH2M HILL process hazard analysis emphasis has been altered to reflect its use as a fundamental part of the engineering and change control process instead of simply being a nuclear safety analysis tool. The scope has been expanded to include identification of accidents/events that impact the environment, or require emergency response, in addition to those with significant impact to the facility worker, the offsite, and the 100-meter receptor. Also, there is now an expectation that controls will be identified to address all types of consequences. To ensure that the process has an appropriate level of rigor and formality, a new engineering standard for process hazards analysis was created. This paper discusses the role of process hazards analysis as an information source for not only nuclear safety, but also for the worker-safety management programs, emergency management, environmental programs. This paper also discusses the role of process hazards analysis in the change control process, including identifying when and how it should be applied to changes in design or process.

SHULTZ MV

2008-05-15T23:59:59.000Z

433

Storm Water Management Fact Sheet Employee Training DESCRIPTION  

E-Print Network (OSTI)

In-house employee training programs are established to teach employees about storm water management, potential sources of contaminants, and Best Management Practices (BMPs). Employee training programs should instill all personnel with a thorough understanding of their Storm Water Pollution Prevention Plan (SWPPP), including BMPs, processes and materials they are working with, safety hazards, practices for preventing discharges, and procedures for responding quickly and properly to toxic and hazardous material incidents. APPLICABILITY Typically, most industrial facilities have employee training programs. Usually these address such areas as health and safety training and fire protection. Training on storm water management and BMPs can be incorporated into these programs. Employees can be taught through 1) posters, employee meetings, courses, and bulletin boards about storm water management, potential contaminant sources, and prevention of contamination in surface water runoff, and 2) field training programs that show areas of potential storm water contamination and associated pollutants, followed by a discussion of site-specific BMPs by trained personnel. ADVANTAGES AND DISADVANTAGES The program can be standardized and repeated as necessary, both to train new employees and to keep its objectives fresh in the minds of more senior employees. A training program is also flexible and can be adapted as a facilitys storm water management needs change over time. Obstacles to an employee training program include: C Lack of commitment from senior management.

United States

1999-01-01T23:59:59.000Z

434

Encapsulation of hazardous wastes into agglomerates  

SciTech Connect

The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

Guloy, A.

1992-01-28T23:59:59.000Z

435

REGARDING RADIATION HAZARDS  

SciTech Connect

Within 24 to 36 hr after detonation on July 6 and 24 in the Nevada testing area of 2 thermonuclear bombs of the order of 10 kiloton magnitude, the I/ sup 131/ levels of milk from several Utah milk sheds repeatedly exceeded hazardous levels. These findings, reflected in daily I/sup 131/ counts, led the Director of Public Health in Utah to have milk diverted from fluid distribution to milk-products manufacture, thereby permitting time for these dairy foods to become safe for consumer use. In other cities sudden peak levels have also occurred. Thus, Troy, New York, in April, 1953, was exposed by a flash rainstorm, which occurred 18 hr after a Nevada test explosion, to radioactive fallout sufficient to produce levels in milk estimated at more than a 1000 times the safe limit by British or American standards, more than 4 times the British annual allowance in 1 quart of milk. It is suggested that public-health authorities, working in coliaboration with the nation's medical centers, should institute routine, daily I/sup 131/ thyroid-uptake counts on the infants in various parts of the country. (H.H.D.)

Boardman, D.W.

1962-09-13T23:59:59.000Z

436

DEACTIVATION MANAGEMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENT MANAGEMENT The purpose here is to provide information for specific aspects of project management that apply to deactivation. Overall management of deactivation projects should use a traditional project management approach, and as such is not addressed. The following specific topics are based on lessons learned during deactivation of DOE facilities.  The Deactivation Mission  The Stabilization/Deactivation "Customer"  Project Approach for a Complex Facility  Establishing the Overall End-State  Viewing Deactivation in Two Phases  Early Decisions  Early Deactivation Tasks  Facility-Specific Commitments  Hazard Reduction  Detailed End-Points  Set Up Method and Criteria  Post-Deactivation S&M Plan

437

Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site  

Science Conference Proceedings (OSTI)

Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

NONE

1999-06-01T23:59:59.000Z

438

Los Alamos National Laboratory emergency management plan. Revision 1  

SciTech Connect

The Laboratory has developed this Emergency Management Plan (EMP) to assist in emergency planning, preparedness, and response to anticipated and actual emergencies. The Plan establishes guidance for ensuring safe Laboratory operation, protection of the environment, and safeguarding Department of Energy (DOE) property. Detailed information and specific instructions required by emergency response personnel to implement the EMP are contained in the Emergency Management Plan Implementing Procedure (EMPIP) document, which consists of individual EMPIPs. The EMP and EMPIPs may be used to assist in resolving emergencies including but not limited to fires, high-energy accidents, hazardous material releases (radioactive and nonradioactive), security incidents, transportation accidents, electrical accidents, and natural disasters.

Ramsey, G.F.

1998-07-15T23:59:59.000Z

439

ARM - SGP Rural Driving Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Rural Driving Hazards Rural Driving Hazards SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on unpaved, dirt and gravel, roads. Visitors should be aware of the driving hazards this presents by taking the following precautions: Proceed cautiously: Many rural roads have unmarked and blind intersections. Slow down: Sanded and gravel raods can cause a vehicle to swerve. Maintain a safe following distance: During the dry season, vehicles

440

Materials management in an internationally safeguarded fuels reprocessing plant. [1500 and 210 metric tons heavy metal per year  

SciTech Connect

The second volume describes the requirements and functions of materials measurement and accounting systems (MMAS) and conceptual designs for an MMAS incorporating both conventional and near-real-time (dynamic) measurement and accounting techniques. Effectiveness evaluations, based on recently developed modeling, simulation, and analysis procedures, show that conventional accountability can meet IAEA goal quantities and detection times in these reference facilities only for low-enriched uranium. Dynamic materials accounting may meet IAEA goals for detecting the abrupt (1-3 weeks) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the 1-y protracted-diversion goal of 8 kg for plutonium.

Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Improving quality through partnerships : development of a raw material supplier relationship management program in the biotech industry  

E-Print Network (OSTI)

In biotechnology, much focus is put on the science behind proteins and cells; less attention has traditionally gone to the raw materials used to produce medicines. However, in the recent past, internal and external drivers ...

Cadena, Noramay J., 1981-

2011-01-01T23:59:59.000Z

442

Ceramic transactions: Environmental and waste management issues in the ceramic industry II. Volume 45  

SciTech Connect

A symposium on environmental and waste management issues in the ceramic industry was held in Indianapolis in April, 1994. The second is this series, the symposium is an expansion of the established series Nuclear Waste Management. The volume documents a number of papers presented at the symposium that are especially relevant to the field of radioactive waste processing. The four main areas covered are: Waste Management/Environmental Solution Using Ceramics; Modeling and Mechanisms of Waste Form Dissolution; Properties and Characterization of Wastes and Waste Forms; and Processing of Hazardous Materials and Nuclear Wastes. The volume focuses on research, pilot plants, and operating facilities involved with the vitrification of radioactive wastes (all types).

Bickford, D.; Bates, S.; Jain, V.; Smith, G. [eds.

1994-12-31T23:59:59.000Z

443

Categorical Exclusion 4565, Waste Management Construction Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FornI FornI Project Title: Waste Management Construction Support (4565) Program or Program Office: Y -12 Site Office Location: Oak Ridge Tennessee Project Description: This work scope is an attempt to cover the general activities that construction would perform in support of Waste Management activities. Work includes construction work performed in support of Waste Management Sustainability and Stewardship projects and programs to include: load waste into containers; open, manipulate containers; empty containers; decommission out-of-service equipment (includes removal of liquids, hazardous, and universal wastes); apply fabric and gravel to ground; transport equipment; transport materials; transport waste; remove vegetation; place barriers; place erosion controls; operate wheeled and tracked equipment; general carpentry. Work will be performed on dirt, vegetated, graveled, or paved surfaces in