Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sandia National Laboratories, California Hazardous Materials Management Program annual report.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2011-02-01T23:59:59.000Z

2

Permit Fees for Hazardous Waste Material Management (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe applicable fees for permit application, modification, and transfer for permits related to hazardous waste management.

3

Mission: Possible. Center of Excellence for Hazardous Materials Management  

SciTech Connect (OSTI)

The Center of Excellence for Hazardous Materials Management (CEHMM) was established in May 2004 as a nonprofit research organization. Its purpose is to develop a sustainable technical/scientific community located in Carlsbad, New Mexico, that interacts worldwide to find solutions to hazardous materials management issues. An important part of the mission is to achieve improved protection of worker safety, human health, and the environment. Carlsbad has a large technical community due to the presence of the Waste Isolation Pilot Plant (WIPP) and its many contractors and support organizations. These groups include the Carlsbad Environmental Monitoring and Research Center, Washington Group International, Los Alamos National Laboratory, and Sandia National Laboratories. These organizations form the basis of a unique knowledge community with strengths in many areas, such as geosciences, actinide chemistry, environmental monitoring, and waste transportation. CEHMM works cooperatively with these organizations and others to develop projects that will maintain this knowledge community beyond the projected closure date of WIPP. At present, there is an emphasis in bio-monitoring, air monitoring, hazardous materials educational programs, and endangered species remediation. CEHMM is also currently working with a group from the American Nuclear Society to help facilitate their conference scheduled for April 2006 in Carlsbad. CEHMM is growing rapidly and is looking forward to a diverse array of new projects. (authors)

Bartlett, W.T.; Prather-Stroud, W. [Center of Excellence for Hazardous Materials Management, 505 North Main Street, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

4

Hazardous Material Security (Maryland)  

Broader source: Energy.gov [DOE]

All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

5

An evaluation of current hazardous material management procedures for the Texas Department of Transportation  

E-Print Network [OSTI]

Dealing with hazardous materials on a day-to-day basis requires a fine--tuned material management system to minimize risk of exposure or injury to workers or to the public. An effective hazardous material management system should also keep up...

Lovell, Cheryl Alane

1993-01-01T23:59:59.000Z

6

Hazardous Waste Management Training  

E-Print Network [OSTI]

Hazardous Waste Management Training Persons (including faculty, staff and students) working with hazardous materials should receive annual training that addresses storage, use, and disposal of hazardous before handling hazardous waste. Departments are re- quired to keep records of training for as long

Dai, Pengcheng

7

Method and apparatus for the management of hazardous waste material  

DOE Patents [OSTI]

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

Murray, Jr., Holt (Hopewell, NJ)

1995-01-01T23:59:59.000Z

8

Method and apparatus for the management of hazardous waste material  

DOE Patents [OSTI]

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

Murray, H. Jr.

1995-02-21T23:59:59.000Z

9

Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100  

SciTech Connect (OSTI)

The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

Borgeson, M.E.

1994-11-09T23:59:59.000Z

10

The California State University, Fullerton Emergency Management Plan establishes the framework for campus response to emergency situations. The Hazardous Material  

E-Print Network [OSTI]

1 I. Policy The California State University, Fullerton Emergency Management Plan establishes the framework for campus response to emergency situations. The Hazardous Material Contingency Plan (plan) defines specific actions and information for responding to campus hazardous materials incidents. II

de Lijser, Peter

11

POLICY FOR THE MANAGEMENT OF HAZARDOUS MATERIALS Effective Date: February 15, 2010 Originating Office: Office of the  

E-Print Network [OSTI]

POLICY FOR THE MANAGEMENT OF HAZARDOUS MATERIALS Effective Date: February 15, 2010 Originating. The following policies also relate to the management of hazardous materials and should be used as references. Radiation Safety Policy (VPS-46) outlines the management of radioactive materials as required

Doedel, Eusebius

12

HAZARDOUS MATERIALS EMERGENCY RESPONSE  

E-Print Network [OSTI]

ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

13

Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center  

SciTech Connect (OSTI)

For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel.

Kelly, K.E. [Westinghouse Hanford Co., Richland, WA (United States)] [Westinghouse Hanford Co., Richland, WA (United States)

1994-11-09T23:59:59.000Z

14

Georgia Hazardous Waste Management Act  

Broader source: Energy.gov [DOE]

The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

15

Hazardous Waste Management (Arkansas)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

16

Hazardous Waste Management (Delaware)  

Broader source: Energy.gov [DOE]

The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

17

Hazardous Wastes Management (Alabama)  

Broader source: Energy.gov [DOE]

This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

18

Hazardous Materials and Controlled Hazardous Substances (Maryland)  

Broader source: Energy.gov [DOE]

A permit is required to own, establish, operate, or maintain a facility in the state of Maryland that transfers quantities of a single hazardous material in excess of 100,000 pounds at any time...

19

Hazardous Waste Management (New Mexico)  

Broader source: Energy.gov [DOE]

The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

20

Enhancing Railroad Hazardous Materials Transportation Safety...  

Office of Environmental Management (EM)

Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hazardous Waste Management (North Dakota)  

Broader source: Energy.gov [DOE]

The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

22

CRAD, Packaging and Transfer of Hazardous Materials and Materials...  

Office of Environmental Management (EM)

CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

23

Sustainable System for Residual Hazards Management  

SciTech Connect (OSTI)

Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today’s waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous longterm management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by externalintrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the longterm success of the prescribed system. In fact, given that society has become more reliant on and confident of engineered controls, there may be a growing tendency to be even less concerned with institutional controls.

Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

2004-06-01T23:59:59.000Z

24

Missouri Hazardous Waste Management Law (Missouri)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

25

Hazardous Materials Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSiteAboutRadioactiveHazardous

26

Waste management facilities cost information for transportation of radioactive and hazardous materials  

SciTech Connect (OSTI)

This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

Feizollahi, F.; Shropshire, D.; Burton, D.

1995-06-01T23:59:59.000Z

27

Hazardous Waste Management Regulations (Mississippi)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the...

28

Massachusetts Oil and Hazardous Material Release Prevention and Response Act, State Superfund Law (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act contains information on prevention strategies for hazardous material release, permits for facilities managing hazardous waste, and response tactics and liability in the event such release...

29

Hazardous Waste Management (Michigan)  

Broader source: Energy.gov [DOE]

A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

30

Hazardous Waste Management (Oklahoma)  

Broader source: Energy.gov [DOE]

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

31

CRAD, Hazardous Waste Management- December 4, 2007  

Broader source: Energy.gov [DOE]

Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

32

Hazardous Waste Management (Indiana)  

Broader source: Energy.gov [DOE]

The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

33

Hazardous Waste Management Standards and Regulations (Kansas)  

Broader source: Energy.gov [DOE]

This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

34

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

2010-11-18T23:59:59.000Z

35

Hazardous Material Transportation Safety (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

36

Hazardous Material Packaging for Transport - Administrative Procedures  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

1986-09-30T23:59:59.000Z

37

Packaging and Transfer of Hazardous Materials and Materials of...  

Broader source: Energy.gov (indexed) [DOE]

PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSANevada Site Office Facility Representative Division Performance...

38

Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)  

SciTech Connect (OSTI)

Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

Estrella, R.

1994-10-01T23:59:59.000Z

39

Oklahoma Hazardous Waste Management Act (Oklahoma)  

Broader source: Energy.gov [DOE]

A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility...

40

MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL  

E-Print Network [OSTI]

MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL Record of Property Transferred from ______ ___________________________________ 2. DEAN (If Applies) ______ ___________________________________ 5. UNIVERSITY DIRECTOR OF MATERIALS MANAGEMENT ______ ___________________________________ 3. HOSPITAL DIRECTOR (If Applies) ______ IF YOU NEED

Oliver, Douglas L.

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Extremely Hazardous Substances Risk Management Act (Delaware)  

Broader source: Energy.gov [DOE]

This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

42

Hazardous Materials Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

2015-04-20T23:59:59.000Z

43

Hazardous materials transportation and emergency response programs  

SciTech Connect (OSTI)

This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY).

Joy, D.S.; Fore, C.S.

1983-01-01T23:59:59.000Z

44

MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL  

E-Print Network [OSTI]

MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL NOTICE OF DESIGNATED DEPARTMENTAL OF MATERIALS MANAGEMENT ______ FURTHER INSTRUCTIONS 1. Include a copy of any relevant documents. 2. Item MATERIALS COORDINATOR ­ IC-8 Mail, Fax or PDF the entire package to: MC 2010 Fax: 679-4240 REFERENCE # DMC

Oliver, Douglas L.

45

THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT  

E-Print Network [OSTI]

THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT Offered by The College of Architecture and The Hazard Reduction and Recovery Center Texas A&M University #12;2 THE GRADUATE CERTIFICATE IN ENVIRONMENTAL..................................................................................3 C. Approved Courses in the College of Architecture .............................4 D. Approved

46

Apparatus for transporting hazardous materials  

DOE Patents [OSTI]

An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

1992-01-01T23:59:59.000Z

47

CONTRACTOR HAZARDOUS MATERIALS INVENTORY REPORT Project Name: ORNL Y-12 Project Begin Date: Estimated Project End Date  

E-Print Network [OSTI]

CONTRACTOR HAZARDOUS MATERIALS INVENTORY REPORT Project Name: ORNL Y-12 Project Begin Date: Phone Numbers: Project Manager: Field Representative: SHEST Representative: List of Hazardous Materials: Estimated Project End Date: Contractor/Service Subcontractor Name: Contractor/Service Subcontractor Address

Pennycook, Steve

48

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect (OSTI)

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

49

Hazardous Waste Management (North Carolina)  

Broader source: Energy.gov [DOE]

These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

50

Hazardous waste management in the Pacific basin  

SciTech Connect (OSTI)

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

51

Process safety management for highly hazardous chemicals  

SciTech Connect (OSTI)

Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

NONE

1996-02-01T23:59:59.000Z

52

Management of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

2009-08-17T23:59:59.000Z

53

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect (OSTI)

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

54

Enhancing Railroad Hazardous Materials Transportation Safety  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES AND INTER-JURISDICTIONAL CHALLENGESRailroad Hazardous g Materials

55

NIH POLICY MANUAL 3034 -Working with Hazardous Materials  

E-Print Network [OSTI]

NIH POLICY MANUAL 3034 - Working with Hazardous Materials Issuing Office: ORS/DOHS (301) 496-2960 Release Date: 3/21/06 1. Explanation of Material Transmitted: This release establishes NIH policy and procedure governing work with hazardous chemicals as described in the NIH Hazard Communication Program

Bandettini, Peter A.

56

Air Quality: Monthly Hazardous Material Use, Fuel Consumption, and Equipment Operation Forms  

E-Print Network [OSTI]

Air Quality: Monthly Hazardous Material Use, Fuel Consumption, and Equipment Operation Forms Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 The conditions of SLAC's air quality permits specify that all subject hazardous

Wechsler, Risa H.

57

Management of hazardous medical waste in Croatia  

SciTech Connect (OSTI)

This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

Marinkovic, Natalija [Medical School University of Zagreb, Department for Chemistry and Biochemistry, Salata 3b, 10 000 Zagreb (Croatia)], E-mail: nmarinko@snz.hr; Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar ['Andrija Stampar' School of Public Health, Medical School University of Zagreb, Rockefellerova 4, 10 000 Zagreb (Croatia); Pavic, Tomo [Ministry of Health and Social Welfare, Ksaver 200, 10 000 Zagreb (Croatia)

2008-07-01T23:59:59.000Z

58

Management of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 410.2. Admin Chg 1 dated 4-10-2014, cancels DOE O 410.2.

2009-08-17T23:59:59.000Z

59

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), materials transportation and packaging to ensure the safe, secure, efficient packaging and transportation of materials, both hazardous and nonhazardous. Cancels DOE O 460.2 and DOE O 460.2 Chg 1

2004-12-22T23:59:59.000Z

60

Hazardous waste management in the Texas construction industry  

E-Print Network [OSTI]

This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations...

Sprinkle, Donald Lee

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mission Support Alliance, LLC Volpentest Hazardous Materials...  

Broader source: Energy.gov (indexed) [DOE]

Organization (FERO) roles and responsibilities, training requirements and the conduct of operations. Each project is responsible for developing and maintaining EP Hazards...

62

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.  

SciTech Connect (OSTI)

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

2012-02-01T23:59:59.000Z

63

Management of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

1994-05-26T23:59:59.000Z

64

Advanced Materials Laboratory hazards assessment document  

SciTech Connect (OSTI)

The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

Barnett, B.; Banda, Z.

1995-10-01T23:59:59.000Z

65

Massachusetts Hazardous Waste Management Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

66

Hazardous Materials Shipping Policy for Laboratories Policy Statement  

E-Print Network [OSTI]

Page 1 Hazardous Materials Shipping Policy for Laboratories Policy Statement In order to ensure shall follow the procedures established in this policy. Reason for Policy/Purpose Transportation # Policy Statement............................................................................... 1 Reason

Shull, Kenneth R.

67

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

project having the potential to impact lead-containing building materials, including lead paint. ResultsUNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Lead Basis, lead-containing materials have the potential to negatively impact the health of construction workers

Wilcock, William

68

Conversion of hazardous materials using supercritical water oxidation  

DOE Patents [OSTI]

A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

Rofer, Cheryl K. (Los Alamos, NM); Buelow, Steven J. (Los Alamos, NM); Dyer, Richard B. (Los Alamos, NM); Wander, Joseph D. (Parker, FL)

1992-01-01T23:59:59.000Z

69

Survey of hazardous materials used in nuclear testing  

SciTech Connect (OSTI)

The use of hazardous'' materials in routine underground nuclear tests at the Nevada Test Site has been reviewed. In addition the inventory of test yields, originally reported in 1976 has been updated. A trail down-hole inventory'' has been conducted for a selected test. The inorganic hazardous materials introduced during testing (with the exception of lead and the fissionable materials) produce an incremental change in the quantity of such materials already present in the geologic media surrounding the test points. 1 ref., 3 tabs.

Bryant, E.A.; Fabryka-Martin, J.

1991-02-01T23:59:59.000Z

70

Freeze Concentration Applied to Hazardous Waste Management  

E-Print Network [OSTI]

steps to remove or destroy the hazardous components prior to discharge. Incineration is widely used to destroy a broad range of these hazardous components. Its disposal efficiency is often used when defining the Best Available Technology for EPA... standards. However, high water content streams are expensive to incinerate since the incinerator must be designed to handle the feed volume even though the water in the feed is in itself harmless. Some hazardous components require operating temperatures...

Ruemekorf, R.

71

DC Hazardous Waste Management (District of Columbia)  

Broader source: Energy.gov [DOE]

This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

72

Hazardous Waste Management System-General (Ohio)  

Broader source: Energy.gov [DOE]

This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

73

Hazardous Material Shipments | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960Options forHazardous

74

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

air pollution control agency and the Department of Labor and Industries (L&I) at least ten (10) days construction and renovation projects. Asbestos is a stringently regulated hazardous material and many Construction projects which impact existing building materials must include an environmental consultant

Wilcock, William

75

Hazardous Waste Management Act (South Dakota)  

Broader source: Energy.gov [DOE]

It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive...

76

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents [OSTI]

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

77

Coding Hazardous Tree Failures for a Data Management System  

E-Print Network [OSTI]

management; computer programs; coding. The Author Lee A. Paine is a forest pathologist, stationed in Berkeley in the manual on the indicated pages. Page 7, just above H. Property or Person Directly Affected, insert: CityCoding Hazardous Tree Failures for a Data Management System Lee A. Paine PACIFIC SOUTHWEST

Standiford, Richard B.

78

Smoldering combustion hazards of thermal insulation materials  

SciTech Connect (OSTI)

Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.

Ohlemiller, T.J.; Rogers, F.E.

1980-07-01T23:59:59.000Z

79

Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York)  

Broader source: Energy.gov [DOE]

These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators,...

80

HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN  

SciTech Connect (OSTI)

In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial to understanding how heavy metals move through wetlands environments. These data, coupled with plume characterization data, indicate that Bayou Trepagnier is a model system for understanding how wetlands populations of fish, amphibians, and plants respond to long-term hydrocarbon and metals contamination. The CBR has fifteen years of experience in developing model aquatic ecosystems for evaluating environmental problems relevant to DOE cleanup activities. Using biotechnology screens and biomarkers of exposure, this project supports other CBR research demonstrating that chemicals in the environment can signal/alter the development of species in aquatic ecosystems, and show detrimental impacts on community, population, and the ecosystem, including human health. CBR studies funded through this grant have resulted in private sector investments, international collaborations, development of new technologies, and substantial new knowledge concerning the effects of hazardous materials on human and ecosystem health. Through the CBR, Tulane and Xavier Universities partnered with DOE-EM to lay groundwork for an effective research agenda that has become part of the DOE long term stewardship science and technology program and institutional management of the DOE complex.

John A. McLachlan

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A  

SciTech Connect (OSTI)

This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Plan for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.

Gary Mecham

2010-08-01T23:59:59.000Z

82

Hydrothermal oxidation of Navy shipboard excess hazardous materials  

SciTech Connect (OSTI)

This study demonstrated effective destruction, using a novel supercritical water oxidation reactor, of oil, jet fuel, and hydraulic fluid, common excess hazardous materials found on-board Navy vessels. This reactor uses an advanced injector design to mix the hazardous compounds with water, oxidizer, and a supplementary fuel and it uses a transpiring wall to protect the surface of the reactor from corrosion and salt deposition. Our program was divided into four parts. First, basic chemical kinetic data were generated in a simple, tubular-configured reactor for short reaction times (<1 second) and long reaction times (>5 seconds) as a function of temperature. Second, using the data, an engineering model was developed for the more complicated industrial reactor mentioned above. Third, the three hazardous materials were destroyed in a quarter-scale version of the industrial reactor. Finally, the test data were compared with the model. The model and the experimental results for the quarter-scale reactor are described and compared in this report. A companion report discusses the first part of the program to generate basic chemical kinetic data. The injector and reactor worked as expected. The oxidation reaction with the supplementary fuel was initiated between 400 {degrees}C and 450 {degrees}C. The released energy raised the reactor temperature to greater than 600 {degrees}C. At that temperature, the hazardous materials were efficiently destroyed in less than five seconds. The model shows good agreement with the test data and has proven to be a useful tool in designing the system and understanding the test results. 16 refs., 17 figs., 11 tabs.

LaJeunesse, C.A.; Haroldsen, B.L.; Rice, S.F.; Brown, B.G.

1997-03-01T23:59:59.000Z

83

Ross Hazardous and Toxic Materials Handling Facility: Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) owns a 200-acre facility in Washington State known as the Ross Complex. Activities at the Ross Complex routinely involve handling toxic substances such as oil-filled electrical equipment containing polychlorinated biphenyls (PCBs), organic and inorganic compounds for preserving wood transmission poles, and paints, solvents, waste oils, and pesticides and herbicides. Hazardous waste management is a common activity on-site, and hazardous and toxic substances are often generated from these and off-site activities. The subject of this environmental assessment (EA) concerns the consolidation of hazardous and toxic substances handling at the Complex. This environmental assessment has been developed to identify the potential environmental impacts of the construction and operation of the proposal. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) to determine if the proposed action is likely to have a significant impact on the environment. In addition to the design elements included within the project, mitigation measures have been identified within various sections that are now incorporated within the project. This facility would be designed to improve the current waste handling practices and to assist BPA in meeting Federal and state regulations.

URS Consultants, Inc.

1992-06-01T23:59:59.000Z

84

R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet All hazardous material must be inventoried and accounted for by a Marine Technician BEFORE being  

E-Print Network [OSTI]

R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet · All hazardous material must be inventoried and accounted for by a Marine Technician BEFORE being loaded aboard the vessel. · The correct inventory forms. · All safety equipment such as eye protection, aprons, gloves, respirators, etc. must

Wilcock, William

85

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12T23:59:59.000Z

86

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

87

Managing Research Materials and Data: Recordkeeping Guidelines  

E-Print Network [OSTI]

Managing Research Materials and Data: Recordkeeping Guidelines 1. Introduction Research Council and Universities Australia Managing Research Materials and Data: Recordkeeping Guidelines the management and disposal of research materials and data in accordance with the requirements

88

Technological options for management of hazardous wastes from US Department of Energy facilities  

SciTech Connect (OSTI)

This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

1982-08-01T23:59:59.000Z

89

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

be shipped directly from site and recycled through the WA State Hazardous Waste Service Contract. Please call

Wilcock, William

90

Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

91

Material Stabilization Project Management Plan  

SciTech Connect (OSTI)

This plan presents the overall objectives, description, justification and planning for the plutonium Finishing Plant (PFP) Materials Stabilization project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev. 0. This is the top-level definitive project management document that specifies the technical (work scope), schedule, and cost baselines to manager the execution of this project. It describes the organizational approach and roles/responsibilities to be implemented to execute the project. This plan is under configuration management and any deviations must be authorized by appropriate change control action. Materials stabilization is designated the responsibility to open and stabilize containers of plutonium metal, oxides, alloys, compounds, and sources. Each of these items is at least 30 weight percent plutonium/uranium. The output of this project will be containers of materials in a safe and stable form suitable for storage pending final packaging and/or transportation offsite. The corrosion products along with oxides and compounds will be stabilized via muffle furnaces to reduce the materials to high fired oxides.

SPEER, D.R.

1999-09-01T23:59:59.000Z

92

Optimizing Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk  

E-Print Network [OSTI]

1 Optimizing Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk M. Rapik Saat hazardous materials transport risk by rail · Tank Car Design Optimization Model Tank car weight and capacity model Metrics to assess tank car performance Illustration of the optimization model

Barkan, Christopher P.L.

93

Journal of Hazardous Materials 194 (2011) 1523 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Chromate reduction in FeJournal of Hazardous Materials 194 (2011) 15­23 Contents lists available at ScienceDirect Journal Engineering, University of Leeds, Leeds LS2 9JT, UK d Diamond Light Source, Harwell Science and Innovation

Burke, Ian

94

Journal of Hazardous Materials 262 (2013) 456463 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Perfluorooctanoic acid degradationJournal of Hazardous Materials 262 (2013) 456­463 Contents lists available at ScienceDirect Journal light, indicating that UV radiation is required for PFOA decomposition. Spectroscopic analysis indicates

Alvarez, Pedro J.

95

Rules and Regulations for Hazardous Waste Management (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

96

Automated accountability of hazardous materials at AlliedSignal Inc., Kansas City Division  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Kansas City Plant (KCP), currently operated by AlliedSignal Inc. has developed a comprehensive Hazardous Material Information System (HMIS). The purpose of this system is to provide a practical and automated method to collect, analyze and distribute hazardous material information to DOE, KCP associates, and regulatory agencies. The drivers of the HMIS are compliance with OSHA Hazard Communications, SARA reporting, pollution prevention, waste minimization, control and tracking of hazards, and emergency response. This report provides a discussion of this system.

Depew, P.L.

1993-12-01T23:59:59.000Z

97

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

98

UNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all students, staff, and  

E-Print Network [OSTI]

chemical waste, hazardous solid chemical waste (i.e. items that have been contaminated with hazardous are preferred for all hazardous liquid chemical waste. - Plastic bags are preferred for all hazardous solidUNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all

Northern British Columbia, University of

99

Inter-relation between technical and jurisdictional aspects of hazardous waste management in Houston  

E-Print Network [OSTI]

of hazardous waste such as dump sites, landfills, hazardous material spills, underground storage tanks and others come from journals and reports. This literature is used for background information and for evaluating the Hazardous Waste Issues Groundwater... related Transport, ation related Wastewater related Spills Transportation Pretreatment Small quantity Generators Dump sites Landfi 1 Is Plant-site contamination Underground storage tanks Figure I-Hazardous waste ismm classification current...

Vasavada, Nishith Maheshbhai

1987-01-01T23:59:59.000Z

100

UNCLASSIFIED UNCLASSIFIED Nuclear Materials Management & Safeguards...  

National Nuclear Security Administration (NNSA)

UNCLASSIFIED Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Name Email:...

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Materials Sciences Division Integrated Safety Management Plan  

E-Print Network [OSTI]

Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by: signed Feb. 9, 2012 Rick Kelly, Facility/EH&S Manager Submitted by: signed Feb. 9, 2012 Miquel Salmeron.1 RESPONSIBILITY AND AUTHORITY THROUGH LINE MANAGEMENT............................................................5

102

Hazardous Waste Program (Alabama)  

Broader source: Energy.gov [DOE]

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

103

An OSHA based approach to safety analysis for nonradiological hazardous materials  

SciTech Connect (OSTI)

The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

Yurconic, M.

1992-08-01T23:59:59.000Z

104

An OSHA based approach to safety analysis for nonradiological hazardous materials  

SciTech Connect (OSTI)

The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

Yurconic, M.

1992-08-01T23:59:59.000Z

105

Regulations Establishing Restricted Zones for the Transportation of Hazardous Materials (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations establish a Shore Clearance Line which cannot be crossed except in an emergency by any vessel transporting oil or hazardous materials in bulk in Long Island Sound. For the purpose...

106

South Carolina Hazardous Waste Management Act (South Carolina)  

Broader source: Energy.gov [DOE]

The Department of Health and Environmental Control is authorized to promulgate rules and regulations to prevent exposure of persons, animals, or the environment to hazardous waste. The construction...

107

Failure Mode Analysis of a Proposed Manipulator-based Hazardous Material Retrieval System  

E-Print Network [OSTI]

for manipulators involved in hazardous waste management operations, where failure could be both expensive (supplied by Westinghouse Hanford Company), a design report on the Hose Management Arm (HMA),1 modes of a robot manipulator-based system for tank waste retrieval. The advantages and limitations

Cavallaro, Joseph R.

108

Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C  

SciTech Connect (OSTI)

The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

Gary Mecham; Don Konoyer

2009-11-01T23:59:59.000Z

109

Management of Naturally Occurring Radioactive Materials (NORM) in Canada  

SciTech Connect (OSTI)

In Canada, nuclear and radiological regulatory responsibilities are shared between the provinces/territories and the federal government. The Canadian Nuclear Safety Commission (CNSC) regulates nuclear fuel cycle materials and man-made radionuclides under the Nuclear Safety and Control Act (2000). The provinces and territories regulate NORM arising from industrial activities, not involving the nuclear fuel cycle materials. Present guideline--Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)--was published in 2000 in order to bring uniformity to the management of NORM-related procedures to provide adequate radiation protection for workers and the general public. The basic premise of these guidelines is that the NORM-related activities should not be posing any greater hazard than those activities regulated under the Nuclear Safety and Control Act; these concepts are described in this paper.

Baweja, Anar S.; Tracy, Bliss L. [Radiation Protection Bureau, Health Canada, Ottawa, Ontario (Canada)

2008-08-07T23:59:59.000Z

110

Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment  

SciTech Connect (OSTI)

This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

Gerald Sehlke; Paul Wichlacz

2010-12-01T23:59:59.000Z

111

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect (OSTI)

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

112

Nuclear Materials Management Program at the NNSS  

SciTech Connect (OSTI)

The Nevada National Security Site (NNSS), formerly the Nevada Test Site, was established in 1951 mainly for weapons testing; because special nuclear materials (SNM) were expended during the tests, a nuclear material management program was not required. That changed in December 2004 with the receipt of Category I SNM for purposes other than weapons testing. At that time, Material Control and Accountability and Nuclear Material Management were a joint laboratory (Los Alamos and Lawrence Livermore) effort with nuclear material management being performed at the laboratories. That changed in March 2006 when the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office appointed sole responsibility to the Management and Operations (M&O) contractor, National Security Technologies, LLC (NSTec). Since 2006 the basic nuclear material management work was completed by a combination of M&O employees and subcontractors, but a true Nuclear Material Management (NMM) Program was not determined to be necessary until recently. With expanding missions and more nuclear material (NM) coming to the NNSS, it became imperative to have an organization to manage these materials; therefore, an NMM Manager was officially appointed by NSTec in 2012. In June 2011 a Gap Analysis and white paper was completed by a subcontractor; this presentation will include highlights from those documents along with our plans to resolve the “gaps” and stand up a functional and compliant NMM Program at the NNSS.

,

2012-06-08T23:59:59.000Z

113

Experiment Hazard Class 6.7 - Explosive and Energetic Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

experiments involving small quantities of explosive material (ie, TATB, HMX, RDX, PETN, HNFX). The samples that are analyzed within the x-ray beam are typically encased within a...

114

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

, fuel storage tanks, heating oil tanks, emergency generator tanks, industrial activities and landfills from an underground storage tank (UST) or associated piping are required within 24 hours of discovery Handling Facilities classify and manage petroleum-contaminated soils by the concentration of gas-, diesel

Wilcock, William

115

Assessment of External Hazards at Radioactive Waste and Used Fuel Management Facilities - 13505  

SciTech Connect (OSTI)

One of the key lessons from the Fukushima accident is the importance of having a comprehensive identification and evaluation of risks posed by external events to nuclear facilities. While the primary focus has been on nuclear power plants, the Canadian nuclear industry has also been updating hazard assessments for radioactive waste and used fuel management facilities to ensure that lessons learnt from Fukushima are addressed. External events are events that originate either physically outside the nuclear site or outside its control. They include natural events, such as high winds, lightning, earthquakes or flood due to extreme rainfall. The approaches that have been applied to the identification and assessment of external hazards in Canada are presented and analyzed. Specific aspects and considerations concerning hazards posed to radioactive waste and used fuel management operations are identified. Relevant hazard identification techniques are described, which draw upon available regulatory guidance and standard assessment techniques such as Hazard and Operability Studies (HAZOPs) and 'What-if' analysis. Consideration is given to ensuring that hazard combinations (for example: high winds and flooding due to rainfall) are properly taken into account. Approaches that can be used to screen out external hazards, through a combination of frequency and impact assessments, are summarized. For those hazards that cannot be screened out, a brief overview of methods that can be used to conduct more detailed hazard assessments is also provided. The lessons learnt from the Fukushima accident have had a significant impact on specific aspects of the approaches used to hazard assessment for waste management. Practical examples of the effect of these impacts are provided. (authors)

Gerchikov, Mark; Schneider, Glenn; Khan, Badi; Alderson, Elizabeth [AMEC NSS, 393 University Ave., Toronto, ON (Canada)] [AMEC NSS, 393 University Ave., Toronto, ON (Canada)

2013-07-01T23:59:59.000Z

116

Applying radiological emergency planning experience to hazardous materials emergency planning within the nuclear industry  

SciTech Connect (OSTI)

The nuclear industry has extensive radiological emergency planning (REP) experience that is directly applicable to hazardous materials emergency planning. Recently, the Feed Materials Production Center near Cincinnati, Ohio, successfully demonstrated such application. The REP experience includes conceptual bases and standards for developing plans that have been tested in hundreds of full-scale exercises. The exercise program itself is also well developed. Systematic consideration of the differences between chemical and radiological hazards shows that relatively minor changes to the REP bases and standards are necessary. Conduct of full-scale, REP-type exercises serves to test the plans, provide training, and engender confidence and credibility.

Foltman, A.; Newsom, D.; Lerner, K.

1988-01-01T23:59:59.000Z

117

Management of Transuranic Contaminated Material  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

1982-09-30T23:59:59.000Z

118

Supply chain management (SCM) involves the management of materials and information across the entire supply chain. This includes raw material  

E-Print Network [OSTI]

Supply chain management (SCM) involves the management of materials and information across this concentration will be required to take three core courses: Materials and Supply Chain Management, Transportation Purchasing identify global sources of materials, select vendors, and manage negotiati

Calgary, University of

119

Hazardous material minimization for radar assembly. Final report  

SciTech Connect (OSTI)

The Clean Air Act Amendment, enacted in November 1990, empowered the Environmental Protection Agency (EPA) to completely eliminate the production and usage of chlorofluorocarbons (CFCs) by January 2000. A reduction schedule for methyl chloroform beginning in 1993 with complete elimination by January 2002 was also mandated. In order to meet the mandates, the processes, equipment, and materials used to solder and clean electronic assemblies were investigated. A vapor-containing cleaning system was developed. The system can be used with trichloroethylene or d-Limonene. The solvent can be collected for recycling if desired. Fluxless and no-clean soldering were investigated, and the variables for a laser soldering process were identified.

Biggs, P.M.

1997-03-01T23:59:59.000Z

120

Interim Management of Nuclear Materials  

Broader source: Energy.gov (indexed) [DOE]

containing dissolved nuclear materials and recovered isotopes in stainless-steel tanks; and product and scrap forms of metals or oxides in containers (cans, drums, etc.)...

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Journal of Hazardous Materials 83 (2001) 93122 Field portable XRF analysis of  

E-Print Network [OSTI]

Journal of Hazardous Materials 83 (2001) 93­122 Field portable XRF analysis of environmental by Elsevier Science B.V. Keywords: XRF; Field portable XRF; Environmental; In situ; Soil contamination; On analysis of the composition of a sample. XRF spectrometry has been utilized in the laboratory for many

Short, Daniel

122

Emergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas  

E-Print Network [OSTI]

-492-6025. For Non-Emergency Fire and Natural Gas Questions call the CU Fire Marshall @ 303-492-4042. AdditionalEmergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas leaks, the following actions should be taken: 1) Life Safety First 2) Evacuate Immediate Area 3

Mojzsis, Stephen J.

123

The Hazardous Material Technician Apprenticeship Program at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This document describes an apprenticeship training program for hazardous material technician. This entry-level category is achieved after approximately 216 hours of classroom and on-the-job training. Procedures for evaluating performance include in-class testing, use of on-the-job checks, and the assignment of an apprentice mentor for each trainee. (TEM)

Steiner, S.D.

1987-07-01T23:59:59.000Z

124

Journal of Hazardous Materials B89 (2002) 213232 Characteristics of chromated copper  

E-Print Network [OSTI]

Journal of Hazardous Materials B89 (2002) 213­232 Characteristics of chromated copper arsenate. When chromated copper arsenate (CCA)-treated wood is present as part of the wood fuel mix, concentrations of arsenic, chromium, and copper become elevated in the ash. The objectives of this study were

Florida, University of

125

SEVERE WEATHER EXPLOSION HAZARDOUS MATERIALS Alert people in the immediate area to  

E-Print Network [OSTI]

SEVERE WEATHER EXPLOSION HAZARDOUS MATERIALS EVACUATE · Alert people in the immediate area not operate any electrical devices, phones, appliances, light switches, or equipment with open flames within the affected area EVACUATE · Leave area and go to an exterior location where you can call 911 from a land line

Karonis, Nicholas T.

126

Material stabilization characterization management plan  

SciTech Connect (OSTI)

This document presents overall direction for characterization needs during stabilization of SNM at the Plutonium Finishing Plant (PFP). Technical issues for needed data and equipment are identified. Information on material categories and links to vulnerabilities are given. Comparison data on the material categories is discussed to assist in assessing the relative risks and desired processing priority.

GIBSON, M.W.

1999-08-31T23:59:59.000Z

127

Hazardous Waste Management: The Role of Journalists in Decision Making Process  

SciTech Connect (OSTI)

The journalists are crucial for informing and education of general public about facts related to hazardous and radioactive waste management. Radio programs, TV and newspapers are daily reporting on relevant facts and news. In general, it is true that the majority of journalists are interested more in so called daily politics than in educating general public on certain technical or scientific topics. Therefore, hazardous and radioactive waste management was introduced to Croatian general public in last ten years mainly through various news on site selection of radioactive waste disposal facilities and some problems related to hazardous waste management. This paper presents APO's experience with journalists in last ten years includes program and activities referring informing and educating of journalists from all media.

Eerskov-Klika, M.; Lokner, V.; Subasiae, D.; Schaller, A.

2002-02-28T23:59:59.000Z

128

MATERIALS MANAGEMENT OFFICE SUPPLY REQUEST FORM -MM-4  

E-Print Network [OSTI]

MATERIALS MANAGEMENT OFFICE SUPPLY REQUEST FORM - MM-4 REQUESTER'S NAME: DEPARTMENT: TTILE: MAIL. Include the justification with this form when faxing or mailing to Materials Management. Fax 679: ________________ University Director of Materials Management: _________________________________________________________ Date

Oliver, Douglas L.

129

Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials  

DOE Patents [OSTI]

The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

1999-01-01T23:59:59.000Z

130

Managing Category I and II Asbestos-Containing Materials During...  

Energy Savers [EERE]

Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition Managing Category I and II Asbestos-Containing Materials During Decontamination and...

131

State of Tennessee Hazardous Waste Management Permit, TNHW-122  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

refuse, sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, including solid, liquid, semisolid,...

132

State of Tennessee Hazardous Waste Management Permit, TNHW-127  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

refuse, sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, including solid, liquid, semisolid,...

133

Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary  

SciTech Connect (OSTI)

This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

Not Available

1990-06-01T23:59:59.000Z

134

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

1992-07-01T23:59:59.000Z

135

Chemical hazard evaluation of material disposal area (MDA) B closure project  

SciTech Connect (OSTI)

TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

Laul, Jadish C [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

136

Expansion of the Volpentest Hazardous Materials Management and...  

Broader source: Energy.gov (indexed) [DOE]

federal, state, and private lands. A total of 60,254 acres (24,384 hectares) within the Hanford Site burned, including areas in and around the HAMMER expansion. Fire suppression...

137

Expansion of the Volpentest Hazardous Materials Management and...  

Broader source: Energy.gov (indexed) [DOE]

federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation...

138

The strategy of APO-Hazardous Waste Management Agency in forming the model of public acceptance of Croatian Waste Management Facility  

SciTech Connect (OSTI)

Some of basic elements related to public participation in hazardous and radioactive waste management in Croatia are underlined in the paper. Most of them are created or led by the APO-Hazardous Waste Management Agency. Present efforts in improvement of public participation in the field of hazardous and radioactive waste management are important in particular due to negligible role of public in environmentally related issues during former Yugoslav political system. For this reason it is possible to understand the public fearing to be deceived or neglected again. Special attention is paid to the current APO editions related to public information and education in the field of hazardous and radioactive waste management. It is important because only the well-informed public can present an active and respectful factor in hazardous and radioactive waste management process.

Klika, M.C.; Kucar-Dragicevic, S.; Lokner, V. [APO, Zagreb (Croatia)] [and others

1996-12-31T23:59:59.000Z

139

Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection  

SciTech Connect (OSTI)

The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision points such as; crash, location, etc. For each pass through the routines, when a crash is randomly selected, crash parameters are then used to determine if failure has occurred using either external look up tables, correlations functions from deterministic calculations, or built in data libraries. The effectiveness of the software was recently demonstrated in safety analyses of the transportation of radioisotope systems for the US Dept. of Energy. These methods are readily adaptable to estimating risks associated with a variety of hazardous shipments such as spent nuclear fuel, explosives, and chemicals.

Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

2010-10-01T23:59:59.000Z

140

H-Area Hazardous Waste Management Facility Corrective Action Report, Third and Fourth Quarter 1998, Volumes I and II  

SciTech Connect (OSTI)

The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah Site (SRS) is monitored periodically for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

Chase, J.

1999-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

1992-07-01T23:59:59.000Z

142

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

1992-07-01T23:59:59.000Z

143

Control of Major-Accident Hazards Involving Land Transmission Charlotte BOUISSOU, Project Manager for Pipelines Risk Assessment  

E-Print Network [OSTI]

Control of Major-Accident Hazards Involving Land Transmission Pipelines Charlotte BOUISSOU, Project Nicolas DECHY, Project Manager for Accidents Analysis and Learning from Experience Contact : charlotte, this Directive does not apply to land transmission pipelines... According to several accidents analysis

Paris-Sud XI, Université de

144

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1999-03-16T23:59:59.000Z

145

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1999-03-16T23:59:59.000Z

146

Hazard Baseline Documentation  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

1995-12-04T23:59:59.000Z

147

INCREASING STORAGE CAPAPCITY OF DREDGED MATERIAL MANAGEMENT AREAS  

E-Print Network [OSTI]

INCREASING STORAGE CAPAPCITY OF DREDGED MATERIAL MANAGEMENT AREAS Timothy D. Stark, Ph.D., P. The Craney Island Dredged Material Management Area near Norfolk, Virginia is used to illustrate the use of the model in estimating the long-term storage capacity of confined dredged material management facilities

148

The environmental impact of a hazardous material spill is a complex function of the material's physical and chemical characteristics and the  

E-Print Network [OSTI]

of environmental damage that will result from a spill varies depending on the characteristics of the location where12 The environmental impact of a hazardous material spill is a complex function of the material's physical and chemical characteristics and the local environmental conditions in which it is spilled

Barkan, Christopher P.L.

149

Emergency response planning for railroad transportation related spills of oil or other hazardous materials  

E-Print Network [OSTI]

awareness. Americans began to ask, "What if something similar happened here?" Chemicals with hazardous properties have become part of daily life. Industry, government, and the public have become aware of the need to respond to problems involving hazardous...

Reeder, Geoffrey Benton

1995-01-01T23:59:59.000Z

150

INL's Environmental Management System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and minimize environmental impacts throughout the lifecycle of INL facilities and operations. Conduct all activities and manage hazardous and radioactive materials and...

151

Safety Analysis: Evaluation of Accident Risks in the Transporation of Hazardous Materials by Truck and Rail at the Savannah River Plant  

SciTech Connect (OSTI)

This report presents an analysis of the consequences and risks of accidents resulting from hazardous material transportation at the Savannah River Plant.

Blanchard, A.

1999-04-15T23:59:59.000Z

152

Resource Management Services: Water Regulation, Parts 595-599: Hazardous Substances (New York)  

Broader source: Energy.gov [DOE]

These regulations aim to prevent the release of hazardous substances into surface water and groundwater resources. They contain guidance for facilities which store and process hazardous substances,...

153

Water Management in A PEMFC: Water Transport Mechanism and Material  

E-Print Network [OSTI]

Water Management in A PEMFC: Water Transport Mechanism and Material Degradation in Gas Diffusion on the water management of the PEMFC, namely the transport of product water (both liquid and vapor its water management performance and func- tion as indicators of the degradation of GDL material

Kandlikar, Satish

154

Application of United States Department of Transportation regulations to hazardous material and waste shipments on the Hanford Site  

SciTech Connect (OSTI)

All hazardous material and waste transported over roadways open to the public must be in compliance with the US Department of Transportation (DOT) regulations. The DOT states that the hazardous material regulations (HMR) also apply to government-owned, contractor-operated (GOCO) transportation operations over any US Department of Energy (DOE) site roadway where the public has free and unrestricted access. Hazardous material and waste in packages that do not meet DOE regulations must be transported on DOE site roadways in a manner that excludes the public and nonessential workers. At the DOE Richland Field Office (the Hanford Site), hazardous material and waste movements that do not meet DOE requirements are transported over public access roadways during off-peak hours with the roadways barricaded. These movements are accomplished using a transportation plan that involves the DOE, DOE contractors, and private utilities who operate on or near the Hanford Site. This method, which is used at the Hanford Site to comply with DOE regulations onsite, can be communicated to other DOE sites to provide a basis for achieving consistency in similar transportation operations.

Burnside, M.E.

1992-01-01T23:59:59.000Z

155

Journal of Hazardous Materials B114 (2004) 7591 Leaching of CCA-treated wood: implications for waste disposal  

E-Print Network [OSTI]

Journal of Hazardous Materials B114 (2004) 75­91 Leaching of CCA-treated wood: implications, and copper from chromated copper arsenate (CCA)-treated wood poses possible environmental risk when disposed. Samples of un-weathered CCA-treated wood were tested using a variety of the US regulatory leaching

Florida, University of

156

Journal of Hazardous Materials B132 (2006) 244252 Zeolite synthesis from paper sludge ash at low temperature  

E-Print Network [OSTI]

Journal of Hazardous Materials B132 (2006) 244­252 Zeolite synthesis from paper sludge ash at low 2005 Available online 4 November 2005 Abstract Paper sludge ash was partially converted into zeolites by reaction with 3 M NaOH solution at 90 C for 24 h. The paper sludge ash had a low abundance of Si

Downs, Robert T.

2006-01-01T23:59:59.000Z

157

EL Program: Sustainable Engineered Materials Program Manager: Aaron Forster, Division  

E-Print Network [OSTI]

1 EL Program: Sustainable Engineered Materials Program Manager: Aaron Forster, Division Associate Program Manager: None Strategic Goal: Sustainable and Energy-Effic Infrastructure 731 ient Manufacturing used in infrastructure, construction, and manufacturing are not able to ensure sustainable performance

158

Putting It Down: Hazardous-Waste Management in the Throwaway Culture  

E-Print Network [OSTI]

protocols existed for these indicators. 68 Even granting that EPA's testing criteria for hazardous waste

Stockton, Wendy

1981-01-01T23:59:59.000Z

159

Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations apply to underground storage facilities for petroleum and hazardous waste, and seek to protect water resources from contamination. The regulations establish procedures for the...

160

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995  

SciTech Connect (OSTI)

During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters.

NONE

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Incompatible Hazardous Materials Each material must be individually evaluated to determine where and how it should be stored. The  

E-Print Network [OSTI]

reaction, heat, gas generation adhesives (epoxies, isocyanates) acids, oxidizers, flammables, combustibles compounds) detergents/soaps, oxidizers heat, fire hazard compressed gases (oxygen, acetylene, propane and storage requirements shall be applied. As a general rule, flammable or combustible liquids, toxic

de Lijser, Peter

162

Flood Assessment at the Area 5 Radioactive Waste Management Site and the Proposed Hazardous Waste Storage Unit, DOE/Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

A flood assessment at the Radioactive Waste Management Site (RWMS) and the proposed Hazardous Waste Storage Unit (HWSU) in Area 5 of the Nevada Test Site (NTS) was performed to determine the 100-year flood hazard at these facilities. The study was conducted to determine whether the RWMS and HWSU are located within a 100-year flood hazard as defined by the Federal Emergency Management Agency, and to provide discharges for the design of flood protection.

Schmeltzer, J. S., Millier, J. J., Gustafson, D. L.

1993-01-01T23:59:59.000Z

163

M-Area Hazardous Waste Management Facility groundwater monitoring and corrective-action report. Second quarter 1995, Volume 1  

SciTech Connect (OSTI)

This report describes the corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site during second quarter 1995. Topics include: changes in sampling, analysis, and reporting; water levels; remedial action of groundwater; and hydrology of the affected aquifer zones.

NONE

1995-08-01T23:59:59.000Z

164

FEASIBILITY OF TARGET MATERIAL RECYCLING AS WASTE MANAGEMENT ALTERNATIVE  

E-Print Network [OSTI]

FEASIBILITY OF TARGET MATERIAL RECYCLING AS WASTE MANAGEMENT ALTERNATIVE L. EL-GUEBALY,* P. WILSON for Publication February 3, 2004 The issue of waste management has been studied simultaneously along with the development of the ARIES heavy-ion-driven inertial fusion energy (IFE) concept. Options for waste management

California at San Diego, University of

165

UNCLASSIFIED Nuclear Materials Management & Safeguards System  

National Nuclear Security Administration (NNSA)

UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: Project Title: Associated Materials: Programmatic RIS Previous...

166

Nuclear Materials Management and Safeguards System Reporting and Data Submission  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual provides clear and detailed instructions and procedures for documenting and reporting data submissions for nuclear materials transactions, inventories, and material balances to the Nuclear Materials Management and Safeguards System (NMMSS). Cancels DOE 5633.3B. Canceled by DOE M 474.1-2A.

1998-02-10T23:59:59.000Z

167

H-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1  

SciTech Connect (OSTI)

The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah River Site (SRS) is monitored periodically for various hazardous and radioactive constituents as required by Module III, Section D, of the 1995 Resource Conservation and Recovery ACT (RCRA) Renewal Permit (South Carolina Hazardous and Mixed Waste Permit SC1-890-008-989), effective October 5, 1995. Currently, the H-Area HWMF monitoring network consists of 130 wells of the HSB series and 8 wells of the HSL series screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the H-Area HWMF. This report presents the results of the required groundwater monitoring program as identified in provision IIIDH.11.c

NONE

1997-03-01T23:59:59.000Z

168

Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).  

SciTech Connect (OSTI)

Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

2004-11-01T23:59:59.000Z

169

Process for evaluating options for materials management outsourcing  

E-Print Network [OSTI]

This thesis investigates the issues involved with the outsourcing of the materials management function within aerospace assembly, proposing a process for determining whether all or part of the responsibility should be given ...

Hagan, Mark

2004-01-01T23:59:59.000Z

170

Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994  

SciTech Connect (OSTI)

Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

Abdelghani, A.

1994-06-01T23:59:59.000Z

171

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels: DOE 1540.1A, DOE 1540.2, and DOE 1540.3A.

1995-10-26T23:59:59.000Z

172

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels DOE 1540.1A, DOE 1540.2, DOE 1540.3A.

1995-09-27T23:59:59.000Z

173

Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, October 1, 1993--December 31, 1993  

SciTech Connect (OSTI)

This quarterly project status report discusses research projects being conducted on hazardous materials in aquatic environments of the Mississippi River basin. We continued to seek improvement in our methods of communication and interactions to support the inter-disciplinary, inter-university collaborators within this program. In addition to the defined collaborative research teams, there is increasing interaction among investigators across projects. Planning for the second year of the project has included the development of our internal request for proposals, and refining the review process for selection of proposals for funding.

Not Available

1993-12-31T23:59:59.000Z

174

Potential applications of nanostructured materials in nuclear waste management.  

SciTech Connect (OSTI)

This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

2003-09-01T23:59:59.000Z

175

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1995  

SciTech Connect (OSTI)

During second quarter 1995, samples from seven new AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for a comprehensive list of constituents. Two parameters exceeded standards during the quarter. Lead and nickel appear to exceed final Primary Drinking Water Standards (PDWS) in AMB-18A. These data were suspect and a rerun of the samples showed levels below flagging criteria. This data will be monitored in 3Q95. Aluminum, iron, manganese, boron, silver and total organic halogens exceeded Flag 2 criteria in at least one well each during second quarter 1995. This data, as well, will be confirmed by 3Q95 testing. Groundwater flow directions in the M-Area Aquifer Zone were similar to previous quarters; the flow rate estimate, however, differs because of an error noted in the scales of measurements used for previous estimates. The estimate was 470 ft/year during second quarter 1995. Reliable estimates of flow directions and rates in the Upper Lost Lake Aquifer Zone could not be determined in previous quarters because data were insufficient. The first estimate from second quarter 1995 shows a 530 ft/year rate. Reliable estimates of flow directions and rates in the Lower Lost Lake Aquifer Zone and in the Middle Sand Aquifer Zone of the CBCU could not be calculated because of the low horizontal gradient and the near-linear distribution of the monitoring wells. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and was completed in March of this year. Analytical data from these wells are presented in this report for the first time.

Chase, J.A.

1995-09-01T23:59:59.000Z

176

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

NONE

1997-03-01T23:59:59.000Z

177

Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Volume 2, Appendices  

SciTech Connect (OSTI)

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

1992-07-01T23:59:59.000Z

178

A Uniform Framework of Global Nuclear Materials Management  

SciTech Connect (OSTI)

Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must build on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures.

Dupree, S.A.; Mangan, D.L.; Sanders, T.L; Sellers, T.A.

1999-04-20T23:59:59.000Z

179

Preliminary report of the past and present uses, storage, and disposal of hazardous materials at the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This report contains the findings of a records search performed to survey the past and present use, storage, and disposal of hazardous materials and wastes at the Lawrence Livermore National Laboratory (LLNL) site. This report provides a point of departure for further planning of environmental protection activities at the site. This report was conducted using the LLNL archives and library, documents from the US Navy, old LLNL Plant Engineering blueprint files, published articles and reports, Environmental Protection Program records, employee interviews, and available aerial photographs. Sections I and II of this report provide an introduction to the LLNL site and its environmental characteristics. Several tenants have occupied the site prior to the establishment of LLNL, currently operated by the University of California for the US Department of Energy. Section III of this report contains information on environmentally related operations of early site users, the US Navy and California Research and Development. Section IV of this report contains information on the handling of hazardous materials and wastes by LLNL programs. The information is presented in 12 sub-sections, one for each currently operating LLNL program. General site areas, i.e., garbage trenches, the traffic circle landfill, the taxi strip, and old ammunition bunkers are discussed in Section V. 12 refs., 23 figs., 27 tabs.

Dreicer, M.

1985-12-01T23:59:59.000Z

180

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

Chase, J.

1998-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)  

SciTech Connect (OSTI)

The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford`s environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO{sub 3} plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996).

Higginson, M.C.

1994-10-01T23:59:59.000Z

182

Novel technologies and materials for thermal management  

E-Print Network [OSTI]

Efficient thermal engineering solutions for the entire heat load path from source to sink (sensor to cooling plant) are crucial for the future silicon detectors, more than even before. The particularly demanding cooling requirements are coming from the extreme radiation environment, causing high leakage current in the silicon sensors, as well as from the high power dissipated in the front-end electronics, featuring enhanced functionality and high channel count. The need to carry out dedicated R&D has encouraged increased cooperation among the HEP experiments, to identify state-of-the-art materials and construction principles that can help fulfilling the requirements, and to develop more efficient active cooling systems like CO2 cooling, which is now widely accepted as an excellent detector cooling technology.

Verlaat, B; The ATLAS collaboration

2013-01-01T23:59:59.000Z

183

H-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1  

SciTech Connect (OSTI)

Groundwater at the H-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental control (SCDHEC) Groundwater Protection Standard (GWPS). Historically as well as currently, nitrate-nitrite as nitrogen, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the second half of 1995. Elevated constituents were found primarily in the water table (Aquifer Zone IIB{sub 2}), however, constitutents exceeding standards also occurred in several different aquifer zones monitoring wells. Water-level maps indicate that the groundwater flow rates and directions at the H-Area HWMF have remained relatively constant since the basins ceased to be active in 1988.

NONE

1996-03-01T23:59:59.000Z

184

Management of sewage sludge and ash containing radioactive materials.  

SciTech Connect (OSTI)

Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

2007-01-01T23:59:59.000Z

185

Hazardous waste operational plan for site 300  

SciTech Connect (OSTI)

This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

Roberts, R.S.

1982-02-12T23:59:59.000Z

186

Radiation Hazards Program (Minnesota)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

187

To the best of my knowledge, the following hazardous materials are/were  

E-Print Network [OSTI]

surfaces must be performed with an appropriate instrument. If radioactive contamination is detected Chemicals (Poisons|Toxics) Radioactive Materials 9/30/2010 #12;GUIDELINES FOR LABORATORY EQUIPMENT. Resurvey to assure contamination has been removed to less than 100 counts per minute per 100 cm2

Washington at Seattle, University of

188

Chemical agents for conversion of chrysotile asbestos into non-hazardous materials  

DOE Patents [OSTI]

A composition and methods are disclosed for converting a chrysotile asbestos-containing material to a non-regulated environmentally benign solid which comprises a fluoro acid decomposing agent capable of dissociating the chrysotile asbestos to non-regulated components, wherein non-regulated components are non-reactive with the environment, and a binding agent which binds the non-regulated components to form an environmentally benign solid. 2 figs.

Sugama, Toshifumi; Petrakis, L.

1998-06-09T23:59:59.000Z

189

Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)  

SciTech Connect (OSTI)

In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America’s nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in “green” technology.

Jesse Schreiber

2008-03-01T23:59:59.000Z

190

Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)  

SciTech Connect (OSTI)

In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America’s nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in “green” technology.

Jesse Schrieber

2008-07-01T23:59:59.000Z

191

When and how to end shelter-in-place protection from a release of airborne hazardous material : report on a decision-making concept and methodology.  

SciTech Connect (OSTI)

Shelter-in-place (SIP) is considered a credible alternative to immediate evacuation to protect the population on and around Army chemical warfare agent stockpile storage sites from accidental agent releases of short duration. To be effective, this strategy requires immediate SIP to minimize initial exposure to agent vapor, followed by timely and appropriate termination of SIP to minimize additional exposure to agent vapor accumulations in the shelter when the air outside becomes less hazardous. However, a major challenge facing emergency managers has been how to decide the best time and way to end SIP to obtain this ideal. This report describes a concept to make this decision, and suggests a methodology to apply the concept as a site-specific response tool. The major conditions that influence the exposure of a population are the source term values of the agent that is released, meteorological conditions, shelter air change rates, the distance of the shelter from the source, and th e dose-response relationship of the hazardous material. The circumstances that contribute to overall exposure associated with a SIP strategy involve exposure during the time before taking shelter, exposure while sheltered due to vapor infiltration, and additional exposure (if any) following the termination of SIP. Options to end SIP are to resume normal activities with no restrictions, to ventilate the shelter but remain indoors, to exit from the shelter and remain nearby, or to relocate to a designated facility. The optimal time and way to end SIP involves examining the relationships among the conditions and circumstances listed above to find the combination of these variables that gives the smallest area where a sheltered population might receive a certain level of toxic effect. For example, find the combination of times, conditions, and circumstances that produce the smallest area where fatalities are possible. In this case, the best time and action to end SIP to minimize fatalities is that combination of variables which produces the smallest area where this level of effect is expected. The methodology to apply the concept is to use a computer model to examine the relationships among these conditions and circumstances (many of which are pre-planned default inputs), and display the best time and action to end SIP quickly, in a user-friendly format. A computer model that was developed to prove the concept and demonstrate the methodology (called the TSIP Model) is described in the report, and the use of the TSIP Model is illustrated in a case study in an appendix to the report. The report also discusses public education and emergency instructions essential for implementing this concept, and makes recommendations for agreements, plans, and exercises relevant to deciding when and how to end SIP. This concept and methodology is independent of the atmospheric dispersion model used, and is not limited to chemical warfare agent vapor hazards. Thus it can help make decisions on when and how to end SIP following the accidental release of many other non-flammable non-reactive hazardous vapors if sufficient information is available about the characteristics of the material and the circumstances of the release.

Yantosik, G.; Lerner, K.; Maloney, D.; Wasmer, F.

2002-02-13T23:59:59.000Z

192

COORDINATING HUMAN AND MATERIAL RESOURCES Construction project management is the art of directing and coordinating human and material  

E-Print Network [OSTI]

COORDINATING HUMAN AND MATERIAL RESOURCES Construction project management is the art of directing and coordinating human and material resources throughout the life of a project by using modern management. Today's construction engineers and managers are faced with unprecedented challenges in planning

Simaan, Nabil

193

Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, December 30, 1992--December 29, 1993  

SciTech Connect (OSTI)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy`s programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993.

Not Available

1993-12-31T23:59:59.000Z

194

Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993  

SciTech Connect (OSTI)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases.

Not Available

1993-12-31T23:59:59.000Z

195

Development of the RFID System for nuclear materials management.  

SciTech Connect (OSTI)

Radio frequency identification (RFID) is one of today's most rapidly growing technologies in the automatic data collection industry. Although commercial applications are already widespread, the use of this technology for managing nuclear materials is only in its infancy. Employing an RFID system has the potential to offer an immense payback: enhanced safety and security, reduced need for manned surveillance, real-time access to status and event history data, and overall cost-effectiveness. The Packaging Certification Program (PCP) in the U.S. Department of Energy's (DOE's) Office of Environmental Management (EM), Office of Packaging and Transportation (EM-63), is developing an RFID system for nuclear materials management. The system consists of battery-powered RFID tags with onboard sensors and memories, a reader network, application software, a database server and web pages. The tags monitor and record critical parameters, including the status of seals, movement of objects, and environmental conditions of the nuclear material packages in real time. They also provide instant warnings or alarms when preset thresholds for the sensors are exceeded. The information collected by the readers is transmitted to a dedicated central database server that can be accessed by authorized users across the DOE complex via a secured network. The onboard memory of the tags allows the materials manifest and event history data to reside with the packages throughout their life cycles in storage, transportation, and disposal. Data security is currently based on Advanced Encryption Standard-256. The software provides easy-to-use graphical interfaces that allow access to all vital information once the security and privilege requirements are met. An innovative scheme has been developed for managing batteries in service for more than 10 years without needing to be changed. A miniature onboard dosimeter is being developed for applications that require radiation surveillance. A field demonstration of the RFID system was recently conducted to assess its performance. The preliminary results of the demonstration are reported in this paper.

Chen, K.; Tsai, H.; Liu, Y. Y. (Decision and Information Sciences)

2008-01-01T23:59:59.000Z

196

Hazardous Waste Remedial Actions Program annual progress report, FY 1990  

SciTech Connect (OSTI)

The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

Not Available

1990-12-01T23:59:59.000Z

197

Montana Hazardous Waste Act (Montana)  

Broader source: Energy.gov [DOE]

This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

198

M-area hazardous waste management facility groundwater monitoring and corrective-action report, First quarter 1995, Volume 1  

SciTech Connect (OSTI)

This report, in three volumes, describes the ground water monitoring and c corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during the fourth quarter 1994 and first quarter 1995. Concise description of the program and considerable data documenting the monitoring and remedial activities are included in the document. This is Volume 1 covering the following topics: sampling and results; hydrogeologic assessment; water quality assessment; effectiveness of the corrective-action program; corrective-action system operation and performance; monitoring and corrective-action program assessment; proposed monitoring and corrective-action program modifications. Also included are the following appendicies: A-standards; B-flagging criteria; C-figures; D-monitoring results tables; E-data quality/usability assessment.

NONE

1995-05-01T23:59:59.000Z

199

Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

1998-03-01T23:59:59.000Z

200

3Q/4Q00 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 2000 - Volumes I, II, and II  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 2000. This program is required by South Carolina Resource Conservation and Recovery Act (RCRA) Hazardous Waste Permit SC1890008989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations.

Cole, C.M. Sr.

2001-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation Center  

E-Print Network [OSTI]

1 U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation Center Summary of the Materials Management Stakeholder Committee Teleconference Wednesday, July 29, 2009 meeting of the Materials Management Committee (March 31, 2009): · Because it is not always clear whether

202

Moving Beyond NDE to Proactive Management of Materials Degradation  

SciTech Connect (OSTI)

There is growing interest in life extensions to enable longer term operation (LTO) for both existing nuclear power plants (NPPs) and proposed new NPPs. In order to justify an initial license extension for the 40-60 year period, new non-destructive examination (NDE) approaches have been developed and deployed by NPP operators in their Aging Management Programs (AMPs). However, to achieve the goals of even longer term operation, and specifically for the USA in looking at methodologies to support subsequent license renewal periods (i.e., 60-80 years, and beyond), it is necessary to understand the capabilities of current NDE methods to detect, monitor and trend degradation and hence enable timely implementation of appropriate corrective actions. This paper discusses insights from past experience, the state-of-the-art, and current activities in the move towards providing a capacity for proactive management of materials degradation (PMMD) to support NPP LTO.

Bond, Leonard J.

2010-07-20T23:59:59.000Z

203

Moving Beyond Nondestructive Examination to Proactive Management of Materials Degradation  

SciTech Connect (OSTI)

There is growing interest in life extensions to enable longer term operation (LTO) for both existing nuclear power plants (NPPs) and proposed new NPPs. In order to justify an initial license extension for the 40-60 year period, new non-destructive examination (NDE) approaches have been developed and deployed by NPP operators in their Aging Management Programs (AMPs). However, to achieve the goals of even longer term operation, and specifically for the USA in looking at methodologies to support subsequent license renewal periods (i.e., 60-80 years, and beyond), it is necessary to understand the capabilities of current NDE methods to detect, monitor and trend degradation and hence enable timely implementation of appropriate corrective actions. This paper discusses insights from past experience, the state-of-the-art, and current activities in the move towards providing a capacity for proactive management of materials degradation (PMMD) to support NPP LTO.

Bond, Leonard J.

2010-07-01T23:59:59.000Z

204

Proactive Management of Materials Degradation (PMMD) and Enhanced Structural Reliability  

SciTech Connect (OSTI)

This paper discusses the U.S. Nuclear Regulatory Commission’s (NRC) activities to further the Proactive Management of Materials Degradation (PMMD), including those to determine the effectiveness of emerging NDE techniques. The paper discusses the first part of the development of a methodology to determine the effectiveness of these emerging NDE techniques for managing metallic degradation. This methodology draws on experience derived from evaluating techniques that have ‘emerged’ in the past. The methodology will follow five stages: a definition of inspection parameters, a technical evaluation, laboratory testing, round-robin testing, and the design of a performance demonstration program. This methodology will document the path taken for previous techniques and set a standardized course for future NDE techniques.

Doctor, Steven R.; Bond, Leonard J.; Cumblidge, Stephen E.; Hull, Amy; Malik, Shah

2009-09-01T23:59:59.000Z

205

Transporting Hazardous Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From modeling and simulationTransporting

206

Implementation Plan: Jasper Management Prestart Review (Surrogate Material Experiments)  

SciTech Connect (OSTI)

Able Site is located 24 km northwest of Mercury on the Nevada Test Site. The Nevada Test Site is approximately 105 km northwest of Las Vegas, NV. Major facilities at Able Site include Buildings 5100,5180, and 5191. Significant external interfaces for the JASPER site include the electrical system, wastewater system, communications systems, and water supply system, which provides both potable and fire-protection water. Support services, which are provided on the Nevada Test Site, include medical, emergency response (NTS Fire Department), radiation protection, industrial hygiene, and waste management. Although JASPER will ultimately be used for actinide research, the start-up process requires system demonstration using surrogates in place of the actinide targets. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. A second MPR will be conducted before actinide experiments are executed. This document addresses implementation requirements for only the first MPR. This first review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before this formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating special nuclear material (SNM) into future experiments, the team will convene again as part of the process of authorizing those activities. A summary of the review schedule is provided.

Cooper, W.E.

2000-09-29T23:59:59.000Z

207

Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - : Mr.~of the Deputy.., ;:

208

Nebraska Hazardous Waste Regulations (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

209

Tulane/Xavier University Hazardous Materials in Aquatic Environments of the Mississippi River Basin. Quarterly progress report, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

This progress report covers activities for the period January 1 - March 31, 1995 on project concerning `Hazardous Materials in Aquatic Environments of the Mississippi River Basin.` The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants in aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl.

NONE

1995-05-01T23:59:59.000Z

210

UBC Museum of Anthropology Guidelines for Management of Culturally Sensitive Materials  

E-Print Network [OSTI]

UBC Museum of Anthropology Guidelines for Management of Culturally Sensitive Materials © Museum for identifying and managing such sensitive material so that the responsibilities of both the Museum that these objects may have a non-material side embodying cultural rights, values, knowledge, and ideas which

Strynadka, Natalie

211

ReprintedfromDredging and Management of Dredged Material Proceedingsof 3 sessionsheld in conjunction with the  

E-Print Network [OSTI]

BNL- 64400 ReprintedfromDredging and Management of Dredged Material Proceedingsof 3 sessionsheld Polytechnic Institute, Troy, New York 12180- 3590. 49 #12;50 DREDGED MATERIAL MANAGEMENT metals Processing of NY/NJ Harbor Estuarine Dredged Material K. W. Jones', E. A. Stern', K. Donato3, N. L. Clesceri

Brookhaven National Laboratory

212

Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiments)  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is to take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before the formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating SNM into future experiments, the team will convene again as part of the process of authorizing those activities.

Cooper, W.E.

2000-09-29T23:59:59.000Z

213

Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiment)  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is to take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before the formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating SNM into future experiments, the team will convene again as part of the process of authorizing those activities.

Cooper, W E

2000-12-05T23:59:59.000Z

214

OFFICE OF MATERIALS & LOGISTICS MANAGEMENT Policy for Charge Capture of Implant(s), Instrument(s), Device(s)  

E-Print Network [OSTI]

OFFICE OF MATERIALS & LOGISTICS MANAGEMENT Policy for Charge Capture of Implant(s), Instrument entirety and fax to Materials Management at x1993. 3.0 Materials Management must complete Section 2 Service. Materials Management will provide the product part number, cost and charge code, if applicable

Oliver, Douglas L.

215

Chemical process hazards analysis  

SciTech Connect (OSTI)

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

216

E-Print Network 3.0 - agency listed hazardous Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Listing of Hazardous Waste 40 CFR... Hazardous Waste Management Regulations 6 NYCRR 371 Identification and Listing of Hazardous Waste 6 NYCRR 372... Substance Bulk Storage...

217

Construction materials as a waste management solution for cellulose sludge  

SciTech Connect (OSTI)

Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

Modolo, R., E-mail: regina.modolo@ua.pt [University of Aveiro, Civil Engineering Department/CICECO, 3810-193 Aveiro (Portugal); Ferreira, V.M. [University of Aveiro, Civil Engineering Department/CICECO, 3810-193 Aveiro (Portugal); Machado, L.M. [RAIZ - Forest and Paper Research Institute, Portucel-Soporcel, Eixo (Portugal); Rodrigues, M.; Coelho, I. [CIMIANTO - Sociedade Tecnica Hidraulica, S.A., Alhandra (Portugal)

2011-02-15T23:59:59.000Z

218

Quantitative transportation risk analysis based on available data/databases: decision support tools for hazardous materials transportation  

E-Print Network [OSTI]

............................139 6.2.2. Hazard Assessment Methodology.................................139 6.2.2.1. FERC Models for Assessing LNG Carrier Spills on Water ................................................139 6.2.2.2. FERC Scenario for Cargo Tank Vapor... Assessment .....................................................144 6.2.3.1. Breach Diameter................................................144 6.2.3.2. Wind Stability Class and Wind Speed ..............147 6.2.3.3. Cargo Tank Ullage Pressure...

Qiao, Yuanhua

2007-09-17T23:59:59.000Z

219

Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications  

E-Print Network [OSTI]

Based Thermal Interface Materials for the Next GenerationA), Applications and Materials 208, 1, 144-146 (2011). M. Z.A) Applications and Materials 208, 1, 144-146 (2011). M. Z.

Shahil, Khan Mohammad Farhan

2012-01-01T23:59:59.000Z

220

Quantifying improvements in the Engineering-Procurement-Construction (EPC) process from the implementation of information management strategies within materials management  

E-Print Network [OSTI]

Throughout all industries where material flow or handling is involved, employers have implemented various information management technologies with the following goals: 1) to reduce cost, time, and effort, 2) to improve productivity, 3) to streamline...

Toon, Jeffrey Lee

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cu-Bi as a Model System For Liquid Phase Sintered Thermal Interface Management Materials  

E-Print Network [OSTI]

relates electrical resistivity to thermal conductivity for materials where electrons are principleCu-Bi as a Model System For Liquid Phase Sintered Thermal Interface Management Materials P to produce composite materials. A high melting phase (HMP) and low melting phase (LMP) are mixed

Collins, Gary S.

222

Manual for Nuclear Materials Management and Safeguards System Reporting and Data Submission  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual provides detailed instructions for documenting and reporting data submissions for nuclear materials transactions, inventories, and material balances to the Nuclear Materials Management and Safeguards System (NMMSS). Cancels DOE M 474.1-2. Canceled by DOE M 470.4-6.

2003-08-19T23:59:59.000Z

223

Submitted to Conference on Dredged Material Management: Options and Environmental Considerations  

E-Print Network [OSTI]

Submitted to Conference on Dredged Material Management: Options and Environmental Considerations Cambridge, Massachusetts ­ 3-6 December 2000 Decontamination and Beneficial Use of Dredged Materials* E of dredged material decontamination technologies for the NY/NJ Harbor. The goal of the project is to assemble

Brookhaven National Laboratory

224

Improving tamper detection for hazardous waste security  

SciTech Connect (OSTI)

After September 11, waste managers are increasingly expected to provide improved levels of security for the hazardous materials in their charge. Many low-level wastes that previously had minimal or no security must now be well protected, while high-level wastes require even greater levels of security than previously employed. This demand for improved security comes, in many cases, without waste managers being provided the necessary additional funding, personnel, or security expertise. Contributing to the problem is the fact that--at least in our experience--waste managers often fail to appreciate certain types of security vulnerabilities. They frequently overlook or underestimate the security risks associated with disgruntled or compromised insiders, or the potential legal and political liabilities associated with nonexistent or ineffective security. Also frequently overlooked are potential threats from waste management critics who could resort to sabotage, vandalism, or civil disobedience for purposes of discrediting a waste management program.

Johnston, R. G. (Roger G.); Garcia, A. R. E. (Anthony R. E.); Pacheco, A. N. (Adam N.); Trujillo, S. J. (Sonia J.); Martinez, R. K. (Ronald K.); Martinez, D. D. (Debbie D.); Lopez, L. N. (Leon N.)

2002-01-01T23:59:59.000Z

225

Materials management FY 1995 site support program plan WBS 6.10.7  

SciTech Connect (OSTI)

The Work Breakdown Structure is tabulated for the six main activities within the materials management site support program. Materials Management involves the receipt, storage, issuance, management and disposition of the government`s physical assets. Property Management involves maintaining acceptable levels of property accountability and proper utilization of government owned property. Warehousing involves the shipping, receiving, storage, issuance, and distribution of materials, parts, components and equipment required to support the ongoing operation of the Hanford Site. Inventory Management maintains appropriate levels of general supplies, spare parts, and essential materials to ensure availability of items required to support site operations is timely and provided at the lowest possible cost. Investment Recovery involves the identification and disposition of assets excess to the needs of the site through redeployment, recycling initiatives, and public sale of surplus property. Property Systems operate, maintain and enhance the development of cost effective data systems to control and administer multi-contractor personal property assets.

Dahlin, E.C.

1994-09-01T23:59:59.000Z

226

Journal of Hazardous Materials A135 (2006) 2131 Leaching of chromated copper arsenate (CCA)-treated wood in a  

E-Print Network [OSTI]

-treated wood is incinerated, resulting arsenic emis- sions demand the use of proper air pollution control, mining waste, or wood. The feasibility of managing CCA-treated wood in monofills was examined using

Florida, University of

227

Carbon Foam Thermal Management Materials for Electronic Packaging...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report Environmental Effects on Power Electronic Devices Low Cost Carbon Fiber from Renewable Resources...

228

Materials management in an internationally safeguarded fuels reprocessing plant  

SciTech Connect (OSTI)

The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

1980-04-01T23:59:59.000Z

229

Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste  

E-Print Network [OSTI]

-hazardous solid chemicals may go in the trash. Have you disposed of "waste-like", legacy and unknown c Manage anyFocus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

Wilcock, William

230

Applicability of the New York State Department of Environmental Conservation (NYSDEC) Regulations to the Management of Navigational Dredged Material from  

E-Print Network [OSTI]

to the Management of Navigational Dredged Material from the New York/New Jersey Harbor by Thomas John A thesis Management of Dredged Material........................................12 2.2 New York State Soil Clean Up

Brookhaven National Laboratory

231

Federal Emergency Management Information System (FEMIS) Bill of Materials (BOM) for FEMIS Version 1.4.6  

SciTech Connect (OSTI)

Federal Emergency Management Information System (FEMIS) Bill of Materials (BOM) for FEMIS Version 1.4.6

Downing, Timothy R.; Fangman, Patricia M.; Homer, Brian J.; Johnson, Daniel M.; Johnson, Ranata L.; Johnson, Sharon M.; Millard, W. David; Stoops, Lamar R.; Wood, Blanche M.

1999-03-05T23:59:59.000Z

232

Oak Ridge Health Studies Phase 1 report, Volume 2: Part D, Dose Reconstruction Feasibility Study. Tasks 6, Hazard summaries for important materials at the Oak Ridge Reservation  

SciTech Connect (OSTI)

The purpose of Task 6 of Oak Ridge Phase I Health Studies is to provide summaries of current knowledge of toxic and hazardous properties of materials that are important for the Oak Ridge Reservation. The information gathered in the course of Task 6 investigations will support the task of focussing any future health studies efforts on those operations and emissions which have likely been most significant in terms of off-site health risk. The information gathered in Task 6 efforts will likely also be of value to individuals evaluating the feasibility of additional health,study efforts (such as epidemiological investigations) in the Oak Ridge area and as a resource for citizens seeking information on historical emissions.

Bruce, G.M.; Walker, L.B.; Widner, T.E.

1993-09-01T23:59:59.000Z

233

Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies  

SciTech Connect (OSTI)

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

none,

1992-10-01T23:59:59.000Z

234

Purchasing and Materials Management Organization, Sandia National Laboratories annual report, fiscal year 1993  

SciTech Connect (OSTI)

This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1993. Activities for both the New Mexico and California locations are included.

Martin, D.R.

1994-02-01T23:59:59.000Z

235

Product-level bill of material development process : managing complexity  

E-Print Network [OSTI]

Cisco's current process for developing and maintaining product-level bills of materials (BOMs) has resulted in inconsistencies in BOM structure leading to product launch delays, increased product support costs, and lower ...

Lester, Ryan John

2009-01-01T23:59:59.000Z

236

Environmental Hazards and  

E-Print Network [OSTI]

. 2. Pollution -Mexico. 3. Transboundary pollution. 4. Conservation of natural resources - UnitedEnvironmental Hazards and Bioresource Management in the United States- Mexico Borderlands Edited. -(Special studies ;v. 3) Includes bibliographical references. ISBN 0-87903-503-X 1. Pollution -United States

Murphy, Bob

237

The History and Future of NDE in the Management of Nuclear Power Plant Materials Degradation  

SciTech Connect (OSTI)

The author has spent more than 25 years conducting engineering and research studies to quantify the performance of nondestructive evaluation (NDE) in nuclear power plant (NPP) applications and identifying improvements to codes and standards for NDE to manage materials degradation. This paper will review this fundamental NDE engineering/research work and then look to the future on how NDE can be optimized for proactively managing materials degradation in NPP components.

Doctor, Steven R.

2009-04-01T23:59:59.000Z

238

Russia-U.S. joint program on the safe management of nuclear materials  

SciTech Connect (OSTI)

The Russia-US joint program on the safe management of nuclear materials was initiated to address common technical issues confronting the US and Russia in the management of excess weapons grade nuclear materials. The program was initiated after the 1993 Tomsk-7 accident. This paper provides an update on program activities since 1996. The Fourth US Russia Nuclear Materials Safety Management Workshop was conducted in March 1997. In addition, a number of contracts with Russian Institutes have been placed by Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL). These contracts support research related to the safe disposition of excess plutonium (Pu) and highly enriched uranium (HEU). Topics investigated by Russian scientists under contracts with SNL and LLNL include accident consequence studies, the safety of anion exchange processes, underground isolation of nuclear materials, and the development of materials for the immobilization of excess weapons Pu.

Witmer, F.E.; Krumpe, P.F. [Dept. of Energy, Washington, DC (United States); Carlson, D.D. [Sandia National Labs., Albuquerque, NM (United States)] [and others

1998-06-01T23:59:59.000Z

239

MATERIAL FLUX ANALYSIS (MFA) FOR PLANNING OF DOMESTIC WASTES AND WASTEWATER MANAGEMENT  

E-Print Network [OSTI]

i MATERIAL FLUX ANALYSIS (MFA) FOR PLANNING OF DOMESTIC WASTES AND WASTEWATER MANAGEMENT: CASE nutrient management, organic waste, wastewater and septage that contained high concentration of nutrients area. The nitrogen fluxes in relation to organic waste and wastewater were chosen as indicators

Richner, Heinz

240

Uintah -a scalable framework for hazard analysis Martin Berzins  

E-Print Network [OSTI]

Uintah - a scalable framework for hazard analysis Martin Berzins Scientific Computing and Imaging of Uintah to a petascale problem in hazard analysis arising from "sympathetic" explosions in which. Devices containing such materials undergo extensive testing for hazard classification prior

Utah, University of

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hazards Survey and Hazards Assessments  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

1997-08-21T23:59:59.000Z

242

RISK MANAGEMENT HANDBOOK The UNIVERSITY of VERMONT  

E-Print Network [OSTI]

for handling hazardous situations and materials should be followed conscientiously. Directors, managersRISK MANAGEMENT HANDBOOK UVM PEOPLE WORKING 2004 The UNIVERSITY of VERMONT #12;2 © 2004 University · Fire and Life Safety · Property Protection · Vehicle Safety · Liability Risk Management · Insurance

Hayden, Nancy J.

243

A Program to Stabilize Nuclear Materials as Managed by the Plutonium Focus Area  

SciTech Connect (OSTI)

This paper describes the program to stabilize nuclear materials, consistent with the Department of Energy Office of Environmental Management (EM) plan, Accelerating Cleanup: Paths to Closure. The program is managed by the Plutonium Stabilization and Disposition Focus Area, which defines and manages technology development programs to stabilize nuclear materials and assure their subsequent safe storage and final disposition. The scope of the Plutonium Stabilization and Disposition Focus Area (PFA) activities includes non-weapons plutonium materials, special isotopes, and other fissile materials. The PFA provides solutions to site-specific and complex wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. Our paper describes an important programmatic function of the Department of Energy nuclear materials stabilization program, including the tie-in of policy to research needs and funding for the nuclear materials disposition area. The PFA uses a rigorous systems engineering determination of technology needs and gaps, under the guidance of a Technical Advisory Panel, consisting of complex-wide experts. The Research and Development planning provides an example for other waste areas and should be of interest to Research and Development managers. The materials disposition maps developed by the PFA and described in this paper provide an evaluation of research needs, data gaps and subsequent guidance for the development of technologies for nuclear materials disposition. This paper also addresses the PFA prioritization methodology and its ability to forecast actual time to implementation.

B. Kenley (Kenley Consulting); B. Scott; B. Seidel (ANL-W); D. Knecht (LMITCO); F. Southworth; K. Osborne (DOE-ID); N. Chipman; T. Creque

1999-03-01T23:59:59.000Z

244

ULearn Materials Management Training Services, Organizational Effectiveness/OHR 612-626-1373 ULearn  

E-Print Network [OSTI]

ULearn Materials Management Training Services, Organizational Effectiveness/OHR · 612-626-1373 ULearn www.umn.edu/ohr/trainingservices 10-1-12 A Materials can be created in ULearn as a learning object Services, Organizational Effectiveness/OHR · 612-626-1373 ULearn www.umn.edu/ohr/trainingservices 10

Minnesota, University of

245

Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries  

E-Print Network [OSTI]

with graphene. Incorporation of graphene increases thermal conductivity of phase change materials. Graphene that common PCMs are characterized by very low thermal conductivity, K, with typical values in the range of 0Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

246

INVENTORY MANAGEMENT PROBLEM A particular material is used in manufacturing a  

E-Print Network [OSTI]

1 INVENTORY MANAGEMENT PROBLEM · A particular material is used in manufacturing a product. An initial inventory of 10 units is on hand. The maximum inventory capacity is 20 units. An inventory of 8 of keeping the material in inventory is 0.25 per month. · Contractual obligations require production which

Shier, Douglas R.

247

CONTROL OF HAZARDOUS ENERGY 12.A GENERAL  

E-Print Network [OSTI]

on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program by the contractor-managed HECP (e.g., QA's on construction sites, etc.), they shall comply with the contractor and implementation of these activities. Each shall inform the other of their HECPs and Hazardous Energy Control (HEC

US Army Corps of Engineers

248

Ablative thermal management structural material on the hypersonic vehicles  

SciTech Connect (OSTI)

A hypersonic vehicle is designed to fly at high Mach number in the earth`s atmosphere that will result in higher aerodynamic heating loads on specific areas of the vehicle. A thermal protection system is required for these areas that may exceed the operating temperature limit of structural materials. This paper delineates the application of ablative material as the passive type of thermal protection system for the nose or wing leading edges. A simplified quasi-steady-state one-dimensional computer model was developed to evaluate the performance and thermal design of a leading edge. The detailed description of the governing mathematical equations and results are presented. This model provides a quantitative information to support the design estimate, performance optimization, and assess preliminary feasibility of using ablation as a design approach.

Shortland, H.; Tsai, C. [Rockwell International Corporation, Seal Beach, CA (United States)

1995-09-01T23:59:59.000Z

249

Materials System Inventory Management Practices at Washington River Protection Solutions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergy Objective: DevelopMaterials System

250

Seventh State of the Environment Report 3.11 Waste Management 3.11 WASTE MANAGEMENT  

E-Print Network [OSTI]

Seventh State of the Environment Report ­ 3.11 Waste Management 211 3.11 WASTE MANAGEMENT 3 on waste management: specific types of waste (end-of-life vehicles, white goods) must be collected materials are available. A small share of hazardous waste is also disposed of abroad, for ex- ample

Columbia University

251

Hazardous Substance Release Reporting Under CERCLA, EPCR {section}304 and DOE Emergency Management System (EMS) and DOE Occurrence Reporting Requirements. Environmental Guidance  

SciTech Connect (OSTI)

Releases of various substances from DOE facilities may be subject to reporting requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Emergency Planning and Community Right-to-Know Act (EPCRA), as well as DOE`s internal ``Occurrence Reporting and Processing of Operations Information`` and the ``Emergency Management System`` (EMS). CERCLA and EPCPA are Federal laws that require immediate reporting of a release of a Hazardous Substance (HS) and an Extremely Hazardous Substance (EHS), respectively, in a Reportable Quantity (RQ) or more within a 24-hour period. This guidance uses a flowchart, supplemental information, and tables to provide an overview of the process to be followed, and more detailed explanations of the actions that must be performed, when chemical releases of HSs, EHSs, pollutants, or contaminants occur at DOE facilities. This guidance should be used in conjunction with, rather than in lieu of, applicable laws, regulations, and DOE Orders. Relevant laws, regulations, and DOE Orders are referenced throughout this guidance.

Traceski, T.T.

1994-06-01T23:59:59.000Z

252

Materials Management Report Request Please Fax Completed Form Back to: 679-1993 or Mail to MC 2012  

E-Print Network [OSTI]

Materials Management Report Request Please Fax Completed Form Back to: 679-1993 or Mail to MC 2012 to the Authorized Employee? (from Box #2) __ Yes __ No FOR MATERIALS & RESOURCE MANAGEMENT OFFICE USE ONLY Ship To Location (5) AUTHORIZED BY: (Department Head or Manager

Oliver, Douglas L.

253

Identification of Aircraft Hazards  

SciTech Connect (OSTI)

Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

K. Ashley

2006-12-08T23:59:59.000Z

254

1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

Chase, J.

2000-10-24T23:59:59.000Z

255

Oil and Hazardous Substance Discharge Preparedness (Minnesota)  

Broader source: Energy.gov [DOE]

Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

256

Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1  

SciTech Connect (OSTI)

This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

Not Available

1993-12-31T23:59:59.000Z

257

INL Reactor Technology Complex Out-of-Service Buried Piping Hazards  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) Reactor Technology Complex (RTC) buried piping and components are being characterized to determine if they should be managed as hazardous waste and subject to the Hazardous Waste Management Act /Resource Conservation and Recovery Act (RCRA). RTC buried piping and components involve both active piping and components from currently operating nuclear facilities, such as the Advanced Test Reactor (ATR), and inactive lines from facilities undergoing D&D activities. The issue exists as to the proper methods to analyze and control hazards associated with D&D activities on facilities collocated with existing operating nuclear facilities, or future collocated facilities being considered with the resurgent nuclear industry. During initial characterization activities, it was determined that residual radioactive material in several inactive RTC lines and components could potentially exceed hazard category (HC) 3 thresholds. In addition, concerns were raised as to how to properly isolate active nuclear facility piping and components from those inactive lines undergoing RCRA actions, and whether the operating facility safety basis could be impacted. Work was stopped, and a potential inadequacy in the safety analysis (PISA) was declared, even though no clear safety basis existed for the inactive, abandoned lines and equipment. An unreviewed safety question (USQ) and an occurrence report resulted. A HC 3 or greater Nuclear Facility/Activity for the buried piping and components was also declared in the occurrence report. A qualitative hazard assessment was developed to evaluate the potential hazards associated with characterization activities, and any potential effects on the safety basis of the collocated RTC operating nuclear facilities. The hazard assessment clearly demonstrated the low hazards associated with the activities based on form and dispersiblity of the radioactive material in the piping and components. The hazard assessment developed unique controls to isolate active RTC piping and components from inactive components, and demonstrated that existing safety management programs were adequate for protection of the worker.

Douglas M. Gerstner

2008-05-01T23:59:59.000Z

258

EIS-0220: Interim Management of Nuclear Materials at the Savannah River Site  

Broader source: Energy.gov [DOE]

This environmental impact statement assesses the potential environmental impacts of actions necessary to manage nuclear materials at the Savannah River Site (SRS) in Aiken, South Carolina, until decisions on their ultimate disposition are made and implemented. The Department of Energy has decided to initiate actions which will stabilize certain of the SRS materials that represent environment, safety and health vulnerabilities in their current storage condition or which may represent a vulnerability within the next 10 years.

259

Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management  

SciTech Connect (OSTI)

The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Peddicord, K.L. [Texas A and M Univ., College Station, TX (United States); Witmer, F.E.; Krumpe, P.F. [USDOE, Washington, DC (United States); Lazarev, L.; Moshkov, M. [Radievyj Inst., Leningrad (Russian Federation)

1997-04-09T23:59:59.000Z

260

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

262

Effluent and Material Management from Barge Work Surfaces for Large Bridge  

E-Print Network [OSTI]

Effluent and Material Management from Barge Work Surfaces for Large Bridge Department of Transporta:on Office of Environmental Stewardship #12;Environmental · Drill shaT slurry seUling effec:ve treatment · SoT soil and wetland func

Minnesota, University of

263

Feasibility study on consolidation of Fernald Environmental Management Project depleted uranium materials  

SciTech Connect (OSTI)

In 1991, the DOE made a decision to close the FMPC located in Fernald, Ohio, and end its production mission. The site was renamed FEMP to reflect Fernald`s mission change from uranium production to environmental restoration. As a result of this change, the inventory of strategic uranium materials maintained at Fernald by DOE DP will need to be relocated to other DOE sites. Although considered a liability to the Fernald Plant due to its current D and D mission, the FEMP DU represents a potentially valuable DOE resource. Recognizing its value, it may be important for the DOE to consolidate the material at one site and place it in a safe long-term storage condition until a future DOE programmatic requirement materializes. In August 1995, the DOE Office of Nuclear Weapons Management requested, Lockheed Martin Energy Systems (LMES) to assess the feasibility of consolidating the FEMP DU materials at the Oak Ridge Reservation (ORR). This feasibility study examines various phases associated with the consolidation of the FEMP DU at the ORR. If useful short-term applications for the DU fail to materialize, then long-term storage (up to 50 years) would need to be provided. Phases examined in this report include DU material value; potential uses; sampling; packaging and transportation; material control and accountability; environmental, health and safety issues; storage; project management; noneconomic factors; schedule; and cost.

NONE

1995-11-30T23:59:59.000Z

264

E-Print Network 3.0 - acid gas hazards Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND SCOPE Arizona State University... Management, generate a variety of hazardous chemical wastes. ASU is classified as a hazardous waste generator... ) and has been assigned...

265

Radioactive Material or Multiple Hazardous Materials Decontamination |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoansDepartment of Energy Radioactive

266

Canister Storage Building (CSB) Hazard Analysis Report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.

POWERS, T.B.

2000-03-16T23:59:59.000Z

267

Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"  

SciTech Connect (OSTI)

The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguards System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our findings and conclusions based on our audit objectives. The audit included tests of controls and compliance with laws and regulations related to managing the Department-owned nuclear materials provided to non-Departmental domestic licensees. Because our review was limited it would not necessarily have disclosed all internal control deficiencies that may have existed at the time of our audit. We examined the establishment of performance measures in accordance with Government Performance and Results Act of 1993, as they related to the audit objective. We found that the Department had established performance measures related to removing or disposing of nuclear materials and radiological sources around the world. We utilized computer generated data during our audit and performed procedures to validate the reliability of the information as necessary to satisfy our audit objective. As noted in the report, we questioned the reliability of the NMMSS data.

None

2009-02-01T23:59:59.000Z

268

Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment  

SciTech Connect (OSTI)

This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the assessment of the environmental performance of any integrated waste management scheme address the importance of properly defining, beyond the design value assumed for the separate collection as a whole, also the yields of each material recovered; particular significance is finally related to the amount of residues deriving from material recovery activities, resulting on average in the order of 20% of the collected materials.

Giugliano, Michele; Cernuschi, Stefano [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Grosso, Mario, E-mail: mario.grosso@polimi.it [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Rigamonti, Lucia [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy)

2011-09-15T23:59:59.000Z

269

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect (OSTI)

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

270

Preliminary hazards analysis -- vitrification process  

SciTech Connect (OSTI)

This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1994-06-01T23:59:59.000Z

271

Damage Assessment Technologies for Prognostics and Proactive Management of Materials Degradation  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission has undertaken a program to lay the groundwork for defining proactive actions to manage degradation of materials in light water reactors (LWRs). This paper discusses the U.S. Nuclear Regulatory Commission’s Proactive Management of Materials Degradation (PMMD) program and its application to nuclear power plant structures, systems and components. The PMMD program is examining LWR component materials and the degradation phenomena that affect them. Of particular interest is how such phenomena can be monitored to predict degradation and prevent component failure. Some forms of degradation, such as stress corrosion cracking, are characterized by a long initiation time followed by a rapid growth phase. Monitoring such long-term degradation will require new NDE methods and measurement procedures. A critical analysis of all reactor components is required to determine if new inspection strategies are required to effectively manage slow degradation mechanisms that may lead to component failure. As reactor lifetimes are extended, degradation mechanisms previously considered too long-term to be of consequence (such as concrete and wiring insulation degradation) may become more important. This paper includes a review of techniques with potential for sensing and monitoring degradation in its early stages and will concisely explain the basic principles of PMMD and its relationship to in-service inspection, condition based maintenance, and advanced diagnostics and prognostics.

Bond, Leonard J.; Doctor, Steven R.; Griffin, Jeffrey W.; Hull, Amy; Malik, Shah

2011-02-26T23:59:59.000Z

272

Damage Assessment Technologies for Prognostics and Proactive Management of Materials Degradation  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission has undertaken a program to lay the groundwork for defining proactive actions to manage degradation of materials in light water reactors (LWRs). This paper discusses the U.S. Nuclear Regulatory Commission’s Proactive Management of Materials Degradation (PMMD) program and its application to nuclear power plant structures, systems and components. The PMMD program is examining LWR component materials and the degradation phenomena that affect them. Of particular interest is how such phenomena can be monitored to predict degradation and prevent component failure. Some forms of degradation, including some modes of stress corrosion cracking, are characterized by a long initiation time followed by a rapid growth phase. Monitoring such long-term degradation will require new non-destructive evaluation (NDE) methods and measurement procedures. A critical analysis of all reactor components is required to determine if new inspection strategies are required to effectively manage slow degradation mechanisms that may lead to component failure. As reactor lifetimes are extended, degradation mechanisms previously considered too long-term to be of consequence (such as concrete and wiring insulation degradation) may become more important. This paper includes a review of techniques with potential for sensing and monitoring degradation in its early stages and will concisely explain the basic principles of PMMD and its relationship to in-service inspection, condition based maintenance, and advanced diagnostics and prognostics.

Bond, Leonard J.; Doctor, Steven R.; Griffin, Jeffrey W.; Hull, Amy B.; Malik, Shah

2011-01-01T23:59:59.000Z

273

HS663(b) Pre-purchase form for hazardous materials Version 4: 19/03/2013 Reference HS316: Purchasing Guidelines  

E-Print Network [OSTI]

segregated storage area and if yes, is one available? Is a safe method available to transport the chemical guideline Is the chemical a Schedule 4 or Schedule 8 Drug. Some S4s and all S8s require additional: Purchasing Guidelines This form can be used to assist consider the risks of introducing new hazardous

New South Wales, University of

274

PUREX facility hazards assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

Sutton, L.N.

1994-09-23T23:59:59.000Z

275

Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management  

SciTech Connect (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

NONE

1995-07-14T23:59:59.000Z

276

Method of recycling hazardous waste  

SciTech Connect (OSTI)

The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

NONE

1999-11-11T23:59:59.000Z

277

FIRE HAZARDS ANALYSIS - BUSTED BUTTE  

SciTech Connect (OSTI)

The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

R. Longwell; J. Keifer; S. Goodin

2001-01-22T23:59:59.000Z

278

Toxic hazards of underground excavation  

SciTech Connect (OSTI)

Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

1982-09-01T23:59:59.000Z

279

Performance-oriented packaging: A guide to identifying and designing. Identifying and designing hazardous materials packaging for compliance with post HM-181 DOT Regulations  

SciTech Connect (OSTI)

With the initial publication of Docket HM-181 (hereafter referred to as HM-181), the U.S. Department of Energy (DOE), Headquarters, Transportation Management Division decided to produce guidance to help the DOE community transition to performance-oriented packagings (POP). As only a few individuals were familiar with the new requirements, elementary guidance was desirable. The decision was to prepare the guidance at a level easily understood by a novice to regulatory requirements. This document identifies design development strategies for use in obtaining performance-oriented packagings that are not readily available commercially. These design development strategies will be part of the methodologies for compliance with post HM-181 U.S. Department of Transportation (DOT) packaging regulations. This information was prepared for use by the DOE and its contractors. The document provides guidance for making decisions associated with designing performance-oriented packaging, and not for identifying specific material or fabrication design details. It does provide some specific design considerations. Having a copy of the regulations handy when reading this document is recommended to permit a fuller understanding of the requirements impacting the design effort. While this document is not written for the packaging specialist, it does contain guidance important to those not familiar with the new POP requirements.

Not Available

1994-08-01T23:59:59.000Z

280

Russian-U.S. joint program on the safe management of nuclear materials  

SciTech Connect (OSTI)

The Russian-US joint program on the safety of nuclear materials was initiated in response to the 1993 Tomsk-7 accident. The bases for this program are the common technical issues confronting the US and Russia in the safe management of excess weapons grade nuclear materials. The US and Russian weapons dismantlement process is producing hundreds of tons of excess Pu and HEU fissile materials. The US is on a two path approach for disposition of excess Pu: (1) use Pu in existing reactors and/or (2) immobilize Pu in glass or ceramics followed by geologic disposal. Russian plans are to fuel reactors with excess Pu. US and Russia are both converting and blending HEU into LEU for use in existing reactors. Fissile nuclear materials storage, handling, processing, and transportation will be occurring in both countries for tens of years. A table provides a history of the major events comprising the Russian-US joint program on the safety of nuclear materials. A paper delineating program efforts was delivered at the SPECTRUM '96 conference. This paper provides an update on program activities since then.

Witmer, F.E.; Krumpe, P.F. [Dept. of Energy, Washington, DC (US); Carlson, D.D. [Sandia National Labs., Albuquerque, NM (US)] [and others

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Improving Tamper Detection for Hazardous Waste Security  

SciTech Connect (OSTI)

Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

2003-02-26T23:59:59.000Z

282

Proactive Management of Materials Degradation - A Review of Principles and Programs  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) has undertaken a program to lay the technical foundation for defining proactive actions so that future degradation of materials in light water reactors (LWRs) is limited and, thereby, does not diminish either the integrity of important LWR components or the safety of operating plants. This technical letter report was prepared by staff at Pacific Northwest National Laboratory in support of the NRC Proactive Management of Materials Degradation (PMMD) program and relies heavily on work that was completed by Dr. Joseph Muscara and documented in NUREG/CR-6923. This report concisely explains the basic principles of PMMD and its relationship to prognostics, provides a review of programs related to PMMD being conducted worldwide, and provides an assessment of the technical gaps in PMMD and prognostics that need to be addressed. This technical letter report is timely because the majority of the U.S. reactor fleet is applying for license renewal, and many plants are also applying for increases in power rating. Both of these changes could increase the likelihood of materials degradation and underline, therefore, the interest in proactive management in the future.

Bond, Leonard J.; Doctor, Steven R.; Taylor, Theodore T.

2008-08-28T23:59:59.000Z

283

Material and energy recovery in integrated waste management systems: A life-cycle costing approach  

SciTech Connect (OSTI)

Highlights: > The study aims at assessing economic performance of alternative scenarios of MSW. > The approach is the life-cycle costing (LCC). > Waste technologies must be considered as complementary into an integrated strategy. - Abstract: A critical assumption of studies assessing comparatively waste management options concerns the constant average cost for selective collection regardless the source separation level (SSL) reached, and the neglect of the mass constraint. The present study compares alternative waste management scenarios through the development of a desktop model that tries to remove the above assumption. Several alternative scenarios based on different combinations of energy and materials recovery are applied to two imaginary areas modelled in order to represent a typical Northern Italian setting. External costs and benefits implied by scenarios are also considered. Scenarios are compared on the base of the full cost for treating the total waste generated in the area. The model investigates the factors that influence the relative convenience of alternative scenarios.

Massarutto, Antonio [University of Udine, Udine (Italy); IEFE, Bocconi University, Milan (Italy); Carli, Alessandro de, E-mail: alessandro.decarli@unibocconi.it [IEFE, Bocconi University, Milan (Italy); Graffi, Matteo [University of Udine, Udine (Italy); IEFE, Bocconi University, Milan (Italy)

2011-09-15T23:59:59.000Z

284

EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program  

Broader source: Energy.gov [DOE]

The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

285

Knowledge Management Initiatives Used to Maintain Regulatory Expertise in Transportation and Storage of Radioactive Materials - 12177  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) was established in 1974 with the mission to license and regulate the civilian use of nuclear materials for commercial, industrial, academic, and medical uses in order to protect public health and safety, and the environment, and promote the common defense and security. Currently, approximately half (?49%) of the workforce at the NRC has been with the Agency for less than six years. As part of the Agency's mission, the NRC has partial responsibility for the oversight of the transportation and storage of radioactive materials. The NRC has experienced a significant level of expertise leaving the Agency due to staff attrition. Factors that contribute to this attrition include retirement of the experienced nuclear workforce and mobility of staff within or outside the Agency. Several knowledge management (KM) initiatives have been implemented within the Agency, with one of them including the formation of a Division of Spent Fuel Storage and Transportation (SFST) KM team. The team, which was formed in the fall of 2008, facilitates capturing, transferring, and documenting regulatory knowledge for staff to effectively perform their safety oversight of transportation and storage of radioactive materials, regulated under Title 10 of the Code of Federal Regulations (10 CFR) Part 71 and Part 72. In terms of KM, the SFST goal is to share critical information among the staff to reduce the impact from staff's mobility and attrition. KM strategies in place to achieve this goal are: (1) development of communities of practice (CoP) (SFST Qualification Journal and the Packaging and Storing Radioactive Material) in the on-line NRC Knowledge Center (NKC); (2) implementation of a SFST seminar program where the seminars are recorded and placed in the Agency's repository, Agency-wide Documents Access and Management System (ADAMS); (3) meeting of technical discipline group programs to share knowledge within specialty areas; (4) development of written guidance to capture 'administrative and technical' knowledge (e.g., office instructions (OIs), generic communications (e.g., bulletins, generic letters, regulatory issue summary), standard review plans (SRPs), interim staff guidance (ISGs)); (5) use of mentoring strategies for experienced staff to train new staff members; (6) use of Microsoft SharePoint portals in capturing, transferring, and documenting knowledge for staff across the Division from Division management and administrative assistants to the project managers, inspectors, and technical reviewers; and (7) development and implementation of a Division KM Plan. A discussion and description of the successes and challenges of implementing these KM strategies at the NRC/SFST will be provided. (authors)

Lindsay, Haile; Garcia-Santos, Norma; Saverot, Pierre; Day, Neil; Gambone Rodriguez, Kimberly; Cruz, Luis; Sotomayor-Rivera, Alexis; Vechioli, Lucieann; Vera, John; Pstrak, David [United States Nuclear Regulatory Commission, Mail Stop EBB-03D-02M, 6003 Executive Boulevard, Rockville, MD 20852 (United States)

2012-07-01T23:59:59.000Z

286

Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia Nemat-Nasser  

E-Print Network [OSTI]

Stress-wave energy management through material anisotropy Alireza V. Amirkhizi, Aref Tehranian, Sia that if this axis initially coincides with the stress-wave vector, then the energy of the plane waves would closely the required anisotropy, and to experimentally demonstrate the management of stress-wave energy in a desired

Nemat-Nasser, Sia

287

Materials Scientist  

Broader source: Energy.gov [DOE]

Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

288

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Broader source: Energy.gov (indexed) [DOE]

00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This...

289

Track 3: Exposure Hazards  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

290

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the ``normal`` municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan`s programs. Focusing on the Plan`s household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

291

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the normal'' municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan's programs. Focusing on the Plan's household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

292

Material and energy recovery in integrated waste management systems: Project overview and main results  

SciTech Connect (OSTI)

Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

Consonni, Stefano, E-mail: stefano.consonni@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); Giugliano, Michele [DIIAR, Environmental Section, Politecnico di Milano, P.za L. Da Vinci 32, 20133 Milan (Italy); Massarutto, Antonio [Dse, Universita degli Studi di Udine and IEFE, Via Tomadini 30/a, 33100 Udine (Italy); Ragazzi, Marco [Department of Civil and Environmental Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Saccani, Cesare [DIEM, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

2011-09-15T23:59:59.000Z

293

45USDA Forest Service Gen. Tech. Rep. PSW-GTR-158. 1995. Legal Barriers to Fuel Management1  

E-Print Network [OSTI]

Ecosystems, February 15-17, 1994, Walnut Creek, California. 2Fire and Hazardous Materials Program Manager45USDA Forest Service Gen. Tech. Rep. PSW-GTR-158. 1995. Legal Barriers to Fuel Management1 Anita E resources and resource management is low on the list of priorities for this state's lawmakers. BEWARE

Standiford, Richard B.

294

Annual report: Purchasing and Materials Management Organization, Sandia National Laboratories, fiscal year 1992  

SciTech Connect (OSTI)

This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1992. Activities for both the New Mexico and California locations are included. Topics covered in this report include highlights for fiscal year 1992, personnel, procurements (small business procurements, disadvantaged business procurements, woman-owned business procurements, New Mexico commercial business procurements, Bay area commercial business procurements), commitments by states and foreign countries, and transportation activities. Also listed are the twenty-five commercial contractors receiving the largest dollar commitments, commercial contractors receiving commitments of $1,000 or more, integrated contractor and federal agency commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California, and transportation commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California.

Zaeh, R.A.

1993-04-01T23:59:59.000Z

295

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

296

The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways  

SciTech Connect (OSTI)

This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

Sala, D. R.; Furhman, P.; Smith, J. D.

2002-02-26T23:59:59.000Z

297

DRAINING HAZARDOUS FLUIDS DURING BUILDING 221-1F DEACTIVATION AT THE SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

Several years ago, SRS completed a four year mission to decommission {approx}250 excess facilities. As part of that effort, SRS deactivated multiple facilities (e.g. Building 247-F, Naval Fuels Facility, and Building 211-F, Outside Facilities for F-Canyon) that contained extensive piping systems filled with hazardous material (e.g. nitric acid). Draining of hazardous materials from piping was successfully completed in all facilities without incident. In early 2009, the decommissioning program at SRS was restarted as a result of funding made available by the American Recovery & Reinvestment Act (ARRA). Under ARRA, draining of piping containing hazardous material was initiated in multiple facilities including Building 221-1F (or A-Line). This paper describes and reviews the draining of piping containing hazardous materials at A-Line, with emphasis on an incident involving the draining of nitric acid. The paper is intended to be a resource for engineers, planners, and project managers, who face similar draining challenges.

Musall, J.

2010-05-11T23:59:59.000Z

298

Hazard Analysis Database report  

SciTech Connect (OSTI)

This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J.

1997-08-12T23:59:59.000Z

299

Hazard analysis results report  

SciTech Connect (OSTI)

This document describes and defines the Hazard Analysis Results for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J., Westinghouse Hanford

1996-09-30T23:59:59.000Z

300

Hazards Control Department annual technology review, 1987  

SciTech Connect (OSTI)

This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

Griffith, R.V.; Anderson, K.J. (eds.)

1988-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

WEATHER HAZARDS Basic Climatology  

E-Print Network [OSTI]

Prediction Center (SPC) Watch Atmospheric conditions are right for hazardous weather ­ hazardous weather is likely to occur Issued by SPC Warning Hazardous weather is either imminent or occurring Issued by local NWS office #12;Outlooks--SPC Storm Prediction Center (SPC) Outlook=Convective Outlook Day 1 Day 2

302

Laboratory to demolish excavation enclosures at Material Disposal Area B  

E-Print Network [OSTI]

to hazardous and radiological contamination while excavating and packaging contaminated debris and soil from of a highly successful environmental cleanup project at Material Disposal Area B," said Ed Worth, federal project manager #12;- 2 - with the National Nuclear Security Administration's Los Alamos Site Office. "We

303

Material and energy recovery in integrated waste management systems: The potential for energy recovery  

SciTech Connect (OSTI)

Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).

Consonni, Stefano [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy); Vigano, Federico, E-mail: federico.vigano@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP -Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy)

2011-09-15T23:59:59.000Z

304

Hazard Analysis Database Report  

SciTech Connect (OSTI)

The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

GRAMS, W.H.

2000-12-28T23:59:59.000Z

305

HAZARDOUS WASTE & HAZARDOUS MATERIALS Volume 13, Number 2, 1996  

E-Print Network [OSTI]

to contaminated sites in Brazil, where gasoline contains about 22% of ethanol. Preliminary laboratory studies show of 2 million underground tanks storing gasoline in the USA are or will soon be leaking [1]. In Brazil stations in the country. Considering that the mean life time of underground storage tanks is about 20 years

Alvarez, Pedro J.

306

This article was published in the above mentioned Springer issue. The material, including all portions thereof, is protected by copyright;  

E-Print Network [OSTI]

and Green Logistics Abdelkader Sbihi · Richard W. Eglese Published online: 31 October 2009 © Springer, waste management and vehicle routing and scheduling. Keywords Green Logistics · Reverse logistics · Combinatorial optimization · Waste management · Hazardous materials 1 Introduction Green Logistics is concerned

Paris-Sud XI, Université de

307

Radiation Safety Training Materials  

Broader source: Energy.gov [DOE]

The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

308

Helpful links for materials transport, safety, etc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

309

Benefits and costs of load management: a technical assistance and resource material handbook  

SciTech Connect (OSTI)

This handbook will assist state regulatory authorities and electric utilities in complying with the Load Management Standard of the Public Utility Regulatory Policies Act of 1978. The handbook has two major sections. The first discusses load-management techniques in terms of equipment, customer applications, combinations of techniques, etc. Key steps for evaluating the costs and benefits of load management options also are presented. These steps are intended to sequentially eliminate ineffective load-management options as the cost-benefit calculation becomes more detailed. The second section includes up-to-date information on available load-management technologies, models for utility costing, load-management data transfer, prescreening of load-management options, and the load-management literature.

None

1980-06-01T23:59:59.000Z

310

Oak Ridge Health Studies Phase 1 report, Volume 2: Part A, Dose Reconstruction Feasibility Study. Tasks 1 and 2, A summary of historical activities on the Oak Ridge Reservation with emphasis on information concerning off-site emissions of hazardous materials  

SciTech Connect (OSTI)

The Phase I feasibility study has focused on determining the availability of information for estimating exposures of the public to chemicals and radionuclides released as a result of historical operation of the facilities at the Oak Ridge Reservation (ORR). The estimation of such past exposures is frequently called dose reconstruction. The initial project tasks, Tasks 1 and 2 were designed to identify and collect information that documents the history of activities at the ORR that resulted in the release of contamination and to characterize the availability of data that could be used to estimate the magnitude of the contaminant releases or public exposures. A history of operations that are likely to have generated off-site releases has been documented as a result of Task 1 activities. The activities required to perform this task involved the extensive review of historical operation records and interviews with present and past employees as well as other knowledgeable individuals. The investigation process is documented in this report. The Task 1 investigations have led to the documentation of an overview of the activities that have taken place at each of the major complexes, including routine operations, waste management practices, special projects, and accidents and incidents. Historical activities that appear to warrant the highest priority in any further investigations were identified based on their likely association with off-site emissions of hazardous materials as indicated by the documentation reviewed or information obtained in interviews.

Bruce, G.M.; Buddenbaum, J.E.; Lamb, J.K.; Widner, T.E.

1993-09-01T23:59:59.000Z

311

The Chemical Hazards Assessments Prior to D&D of the Plutonium Finishing Plant Hanford Nuclear Reservation  

SciTech Connect (OSTI)

All Hanford facilities, including the Plutonium Finishing Plant (PFP) were evaluated for chemical hazards in 1997, 1998 and 2000. The hazard evaluation, known as the PFP Facility Vulnerability Assessment (FVA), was prompted when chemicals in Tank A-109 in the Plutonium Reclamation Facility (PRF) exploded in May 1997. Actions were undertaken to eliminate or reduce what were thought to be the worst hazards following that evaluation. In 2001, a new PFP team was organized to review the progress to date in reducing hazards and to reassess hazards that might still remain within the facility. This reassessment continued into 2002 and is referred to as the 2002 PFP Residual Chemical Hazards Reassessment (RCHR). This report explains the results of the 2001/2002 reassessment of the chemical hazards at PFP. This reassessment effort forms the basis of the RCHR. The RCHR relied on previous assessments as the starting point for the 2001/2002 evaluation and used ranking criteria very similar to previous efforts. The RCHR team was composed of professionals representing Industrial Hygiene, Chemical Engineering, Mechanical Engineering, Hazardous Materials Handling Specialists, Solid Waste Management Specialists and Environmental Specialists. All areas of concern that could be accessed were physically examined and photographed where possible. Information from processing records, facility drawings and documents, design engineers, process engineers and work packages were compiled. The PFP vessel inventory was examined and expanded where required. New items listed in the vessel inventory were investigated. All items investigated were ranked using the hazard ranking criteria developed. This information was put on data sheets and compiled in a database.

FITCH, L.R.; HOPKINS, A.M.

2003-01-01T23:59:59.000Z

312

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

313

Surveillance Guides - Hazards Control  

Broader source: Energy.gov (indexed) [DOE]

briefings adequately address controls for the identified hazards? Examples would be lockouttagout requirements, hold points, confined space, radiological work permits, fire...

314

Hazardous and Radioactive Mixed Waste  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

1982-12-31T23:59:59.000Z

315

Methods for managing uncertainly in material selection decisions : robustness of early stage life cycle assessment  

E-Print Network [OSTI]

Utilizing alternative materials is an important tactic to improve the environmental performance of products. Currently a growing array of materials candidates confronts today's product designer. While life-cycle assessment ...

Nicholson, Anna L. (Anna Louise)

2009-01-01T23:59:59.000Z

316

ARAC: A support capability for emergency managers  

SciTech Connect (OSTI)

This paper is intended to introduce to the non-radiological emergency management community the 20-year operational history of the Atmospheric Release Advisory Capability (ARAC), its concept of operations, and its applicability for use in support of emergency management decision makers. ARAC is a centralized federal facility for assessing atmospheric releases of hazardous materials in real time, using a robust suite of three-dimensional atmospheric transport and diffusion models, extensive geophysical and source-description databases, automated meteorological data acquisition systems, and experienced staff members. Although originally conceived to respond to nuclear accidents, the ARAC system has proven to be extremely adaptable, and has been used successfully during a wide variety of nonradiological hazardous chemical situations. ARAC represents a proven, validated, operational support capability for atmospheric hazardous releases.

Pace, J.C.; Sullivan, T.J.; Baskett, R.L. [and others

1995-08-01T23:59:59.000Z

317

Safety Responsibilities of Faculty & Lab Managers D. Heeley (14  

E-Print Network [OSTI]

Safety Responsibilities of Faculty & Lab Managers D. Heeley (14 th June 2010) 1 1) Primary responsibility for safety within their own laboratory or work space rests with the individual faculty member of their employment, on good safety practice. This will include: (i) Handling of hazardous materials (e.g. metabolic

Oyet, Alwell

318

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

SciTech Connect (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

Richard C. Logan

2002-03-28T23:59:59.000Z

319

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

SciTech Connect (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

J. L. Kubicek

2001-09-07T23:59:59.000Z

320

K Basin Hazard Analysis  

SciTech Connect (OSTI)

The K East (KE)/K West (KW) Basins in the 100 K Area of the Hanford Site have been used for storage of irradiated N Reactor and single-pass reactor fuel. Remaining spent fuel is continuing to be stored underwater in racks and canisters in the basins while fuel retrieval activities proceed to remove the fuel from the basins. The Spent Nuclear Fuel (SNF) Project is adding equipment to the facility in preparation for removing the fuel and sludge from the basins In preparing this hazard analysis, a variety of hazard analysis techniques were used by the K Basins hazard analysis team, including hazard and operability studies, preliminary hazard analyses, and ''what if'' analyses (WHC-SD-SNF-PHA-001, HNF-2032, HNF-2456, and HNF-SD-SNF-SAD-002). This document summarizes the hazard analyses performed as part of the safety evaluations for the various modification projects and combines them with the original hazard analyses to create a living hazard analysis document. As additional operational activities and modifications are developed, this document will be updated as needed to ensure it covers all the hazards at the K Basins in a summary form and to ensure the subsequent safety analysis is bounding. This hazard analysis also identifies the preliminary set of design features and controls that the facility could rely on to prevent or reduce the frequency or mitigate consequences of identified accident conditions based on their importance and significance to safety. The operational controls and institutional programs relied on for prevention or mitigation of an uncontrolled release are identified as potential technical safety requirements. All operational activities and energy sources at the K Basins are evaluated in this hazard analysis. Using a systematic approach, this document identifies hazards created by abnormal operating conditions and external events (e.g., earthquakes) that have the potential for causing undesirable consequences to the facility worker, the onsite individual, or the public. This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and complies with the requirements of 10 CFR 830.

SEMMENS, L.S.

2001-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Process hazards analysis (PrHA) program, bridging accident analyses and operational safety  

SciTech Connect (OSTI)

Recently the Final Safety Analysis Report (FSAR) for the Plutonium Facility at Los Alamos National Laboratory, Technical Area 55 (TA-55) was revised and submitted to the US. Department of Energy (DOE). As a part of this effort, over seventy Process Hazards Analyses (PrHAs) were written and/or revised over the six years prior to the FSAR revision. TA-55 is a research, development, and production nuclear facility that primarily supports US. defense and space programs. Nuclear fuels and material research; material recovery, refining and analyses; and the casting, machining and fabrication of plutonium components are some of the activities conducted at TA-35. These operations involve a wide variety of industrial, chemical and nuclear hazards. Operational personnel along with safety analysts work as a team to prepare the PrHA. PrHAs describe the process; identi fy the hazards; and analyze hazards including determining hazard scenarios, their likelihood, and consequences. In addition, the interaction of the process to facility systems, structures and operational specific protective features are part of the PrHA. This information is rolled-up to determine bounding accidents and mitigating systems and structures. Further detailed accident analysis is performed for the bounding accidents and included in the FSAR. The FSAR is part of the Documented Safety Analysis (DSA) that defines the safety envelope for all facility operations in order to protect the worker, the public, and the environment. The DSA is in compliance with the US. Code of Federal Regulations, 10 CFR 830, Nuclear Safety Management and is approved by DOE. The DSA sets forth the bounding conditions necessary for the safe operation for the facility and is essentially a 'license to operate.' Safely of day-to-day operations is based on Hazard Control Plans (HCPs). Hazards are initially identified in the PrI-IA for the specific operation and act as input to the HCP. Specific protective features important to worker safety are incorporated so the worker can readily identify the safety parameters of the their work. System safety tools such as Preliminary Hazard Analysis, What-If Analysis, Hazard and Operability Analysis as well as other techniques as necessary provide the groundwork for both determining bounding conditions for facility safety, operational safety, and day-to-clay worker safety.

Richardson, J. A. (Jeanne A.); McKernan, S. A. (Stuart A.); Vigil, M. J. (Michael J.)

2003-01-01T23:59:59.000Z

322

Material Aging and Degradation Detection and Remaining Life Assessment for Plant Life Management  

SciTech Connect (OSTI)

One of the major factors that may impact long term operations is structural material degradation, Detecting materials degradation, estimating the remaining useful life (RUL) of the component, and determining approaches to mitigating the degradation are important from the perspective of long term operations. In this study, multiple nondestructive measurement and monitoring methods were evaluated for their ability to assess the material degradation state. Metrics quantifying the level of damage from these measurements were defined, and evaluated for their ability to provide estimates of remaining life of the component. An example of estimating the RUL from nondestructive measurements of material degradation condition is provided.

Ramuhalli, Pradeep; Henager, Charles H.; Griffin, Jeffrey W.; Meyer, Ryan M.; Coble, Jamie B.; Pitman, Stan G.; Bond, Leonard J.

2012-12-31T23:59:59.000Z

323

Application for managing model-based material properties for simulation-based engineering  

DOE Patents [OSTI]

An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

Hoffman, Edward L. (Alameda, CA)

2009-03-03T23:59:59.000Z

324

Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements  

SciTech Connect (OSTI)

Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

French, Sean B [Los Alamos National Laboratory; Johns - Hughes, Kathryn W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

325

Hazardous Sites Cleanup Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste...

326

Resource Recovery and Management Act (Florida)  

Broader source: Energy.gov [DOE]

The Department of Environmental Protection administers the state solid and hazardous waste management programs. The programs aim to:...

327

Weather and the Transport of Hazardous Materials  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudget Water PowerLast Saturday

328

Enhancing Railroad Hazardous Materials Transportation Safety | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalon Clean DevelopmentCorporation -|Enhancedof Energy Safety

329

Transporting & Shipping Hazardous Materials at LBNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II:LIGHT-DUTYTransportation SafeguardsEHSS A-Z

330

BNL | CFN: Transport of Hazardous Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P. Catravas, J. M.InterfaceTheory

331

Proceedings Hazards and Disasters  

E-Print Network [OSTI]

Liang-Chun Chen, Jie-Ying Wu, Yi-Chung Liu, Sung-Ying Chien HAZARDS EDUCATION BY GEOGRAPHERS: A DECADE-DISASTER CONDOMINIUM HOUSING RECONSTRUCTION AND HOUSEHOLD CHARACTERISTICS............. 35 Jie-Ying Wu, Liang-Chun Chen

Wang, Hai

332

Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks  

SciTech Connect (OSTI)

This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

T. M. Blakley; W. D. Schofield

2007-09-10T23:59:59.000Z

333

Management of radioactive material safety programs at medical facilities. Final report  

SciTech Connect (OSTI)

A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

Camper, L.W.; Schlueter, J.; Woods, S. [and others

1997-05-01T23:59:59.000Z

334

Draft Waste Management Programmatic Environmental Impact Statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume 3, Appendix A: Public response to revised NOI, Appendix B: Environmental restoration, Appendix C, Environmental impact analysis methods, Appendix D, Risk  

SciTech Connect (OSTI)

Volume three contains appendices for the following: Public comments do DOE`s proposed revisions to the scope of the waste management programmatic environmental impact statement; Environmental restoration sensitivity analysis; Environmental impacts analysis methods; and Waste management facility human health risk estimates.

NONE

1995-08-01T23:59:59.000Z

335

K Basins Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

WEBB, R.H.

1999-12-29T23:59:59.000Z

336

K Basin Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

337

Automated Job Hazards Analysis  

Broader source: Energy.gov [DOE]

AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

338

Implementation Guide for Use with DOE O 460.2 Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The purpose of this guide is to assist those responsible for transporting and packaging Department materials, and to provide an understanding of Department policies on activities which supplement regulatory requirements.

1996-11-15T23:59:59.000Z

339

Microsoft Word - Final Nuclear Materials Management and Safeguards System Users Guide 2 4-3-13.docx  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review ofElectronic InputNuclear Materials Management and

340

Method and apparatus for using hazardous waste form non-hazardous aggregate  

SciTech Connect (OSTI)

This patent describes an apparatus for converting hazardous waste into non-hazardous, non-leaching aggregate, the apparatus. It comprises: a source of particulate solid materials, volatile gases and gaseous combustion by-products; oxidizing means comprising at least one refractory-lined, water-cooled, metal-walled vessel; means for introducing the particulate solid material, volatile gases and gaseous combustion by-products to the oxidizing means; means for inducing combustion in the oxidizing means, the heat of combustion forming molten slag and noncombustible fines from noncombustible material; means for accumulating the slag; means for introducing the noncombustible fines to the molten slag; means for removing the mixture from the apparatus; and means for cooling the mixture to form the non-hazardous, non-leaching aggregates.

Kent, J.M.; Robards, H.L. Jr.

1992-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY  

E-Print Network [OSTI]

- Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

Schaefer, Marcus

342

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

343

State of Colorado Wildfire Hazard  

E-Print Network [OSTI]

State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 the May 2001 Report to the Governor, Colorado Wildland Urban Interface; Section 2 includes the Hazard the status of the Wildland Urban Interface in Colorado; the hazards that exist; mitigation measures

344

Remote vacuum compaction of compressible hazardous waste  

DOE Patents [OSTI]

A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

345

Remote vacuum compaction of compressible hazardous waste  

DOE Patents [OSTI]

A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

1998-10-06T23:59:59.000Z

346

The Dalhousie Student Guide to Materials Management on Campus We currently divert over 60% of materials from landfill; with your help we can reach our goal of 75%!  

E-Print Network [OSTI]

) Foams & soft # 6 plastics (garbage) Broken glass (garbage) What belongs: Dry & clean paper (white Milk containers Glass bottles and containers Tin, steel, and aluminum cans Tetra juice packs & mini coffee cups Aerosol cans (empty non- hazardous) Floor sweepings Broken glass (must be boxed & taped

Brownstone, Rob

347

Material flows of mobile phones and accessories in Nigeria: Environmental implications and sound end-of-life management options  

SciTech Connect (OSTI)

Presently, Nigeria is one of the fastest growing Telecom markets in the world. The country's teledensity increased from a mere 0.4 in 1999 to 10 in 2005 following the liberalization of the Telecom sector in 2001. More than 25 million new digital mobile lines have been connected by June 2006. Large quantities of mobile phones and accessories including secondhand and remanufactured products are being imported to meet the pent-up demand. This improvement in mobile telecom services resulted in the preference of mobile telecom services to fixed lines. Consequently, the contribution of fixed lines decreased from about 95% in year 2000 to less than 10% in March 2005. This phenomenal progress in information technology has resulted in the generation of large quantities of electronic waste (e-waste) in the country. Abandoned fixed line telephone sets estimated at 120,000 units are either disposed or stockpiled. Increasing quantities of waste mobile phones estimated at 8 million units by 2007, and accessories will be generated. With no material recovery facility for e-waste and/or appropriate solid waste management infrastructure in place, these waste materials end up in open dumps and unlined landfills. These practices create the potential for the release of toxic metals and halocarbons from batteries, printed wiring boards, liquid crystal display and plastic housing units. This paper presents an overview of the developments in the Nigerian Telecom sector, the material in-flow of mobile phones, and the implications of the management practices for wastes from the Telecom sector in the country.

Osibanjo, Oladele [Department of Chemistry, University of Ibadan, Ibadan, Oyo State (Nigeria)], E-mail: osibanjo@baselnigeria.org; Nnorom, Innocent Chidi [Department of Industrial Chemistry, Abia State University Uturu (Nigeria)

2008-02-15T23:59:59.000Z

348

Hazardous Waste Compliance Program Plan  

SciTech Connect (OSTI)

The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

Potter, G.L.; Holstein, K.A.

1994-05-01T23:59:59.000Z

349

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

Flammable Hazards: Yes EXPLOSION DATA Dust Potential: This material, like most materials in powder form, is capable of creating a dust explosion. FLASH POINT 482 °F 250 °C Method: closed cup AUTOIGNITION TEMP 410 clothing to prevent contact with skin and eyes. Specific Hazard(s): Flammable solid. Emits toxic fumes

Choi, Kyu Yong

350

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network [OSTI]

hazardous waste and materials management was incomplete andAmerican Hazardous Materials Management Association are notand the Hazardous Materials Management Plan and Inventory (

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

351

Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Cancels Chapter 3 of DOE 5480.1A. Canceled by DOE O 460.1 of 9-27-1995 and by DOE N 251.4 & Para. 9c canceled by DOE O 231.1 of 9-30-1995.

1985-07-09T23:59:59.000Z

352

E-Print Network 3.0 - airflow hazard visualization Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single Pass Airflow General... Hazardous Materials 100 % Single Pass HVAC Notes: HVAC: Air ... Source: Ohta, Shigemi - Theory Group, Institute of Particle and Nuclear...

353

Hazardous waste research and development in the Pacific Basin  

SciTech Connect (OSTI)

The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

Cirillo, R.R.; Carpenter, R.A. (Argonne National Lab., IL (USA); Environment and Policy Inst., Honolulu, HI (USA))

1989-01-01T23:59:59.000Z

354

Preliminary Hazards Analysis Plasma Hearth Process  

SciTech Connect (OSTI)

This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1993-11-01T23:59:59.000Z

355

HAZARD CATEGORIZATION OF ENVIRONMENTAL RESTORATION SITES AT HANFORD WASHINGTON  

SciTech Connect (OSTI)

Environmental restoration activities, defined here as work to identify and characterize contaminated sites and then contain, treat, remove or dispose of the contamination, now comprises a significant fraction of work in the DOE complex. As with any other DOE activity, a safety analysis must be in place prior to commencing restoration. The rigor and depth of this safety analysis is in part determined by the site's hazard category. This category in turn is determined by the facility's hazardous material inventory and the consequences of its release. Progressively more complicated safety analyses are needed as a facility's hazard category increases from radiological to hazard category three (significant local releases) to hazard category two (significant on-site releases). Thus, a facility's hazard category plays a crucial early role in helping to determine the level of effort devoted to analysis of the facility's individual hazards. Improper determination of the category can result in either an inadequate safety analysis in the case of underestimation of the hazard category, or an unnecessarily cumbersome analysis in the case of overestimation. Contaminated sites have been successfully categorized and safely restored or remediated at the former DOE production site at Hanford, Washington. This paper discusses various means used to categorize former plutonium production or support sites at Hanford. Both preliminary and final hazard categorization is discussed. The importance of the preliminary (initial) hazard categorization in guiding further DOE involvement and approval of the safety analyses is discussed. Compliance to DOE direction provided in ''Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports'', DOE-STD-1027-92, is discussed. DOE recently issued 10 CFR 830, Subpart B which codifies previous DOE safety analysis guidance and orders. The impact of 10 CFR 830, Subpart B on hazard categorization is also discussed.

BISHOP, G.E.

2001-05-01T23:59:59.000Z

356

Development of a Fuel Containing Material Removal and Waste Management Strategy for the Chernobyl Unit 4 Shelter  

SciTech Connect (OSTI)

A study was performed to develop a strategy for the removal of fuel-containing material (FCM) from the Chernobyl Unit 4 Shelter and for the related waste management. This study was performed during Phase 1 of the Shelter Implementation Plan (SIP) and was funded by the Chernobyl Shelter Fund. The main objective for Phase 2 of the SIP is to stabilize the Shelter and to construct a New Confinement (NC) by the year 2007. In addition, the SIP includes studies on the strategy and on the conceptual design implications of the removal of FCM from the Shelter. This is considered essential for the ultimate goal, the transformation of the Shelter into an environmentally safe system.

Tokarevsky, V. V.; Shibetsky, Y. A.; Leister, P.; Davison, W. R.; Follin, J. F.; McNair, J.; Lins, W.; Edler, G.

2002-02-27T23:59:59.000Z

357

RECIPIENT:Soitec u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT...  

Broader source: Energy.gov (indexed) [DOE]

of Environmental Health) Hazard Management Business Plan * County of San Diego (Air Pollution Control District) Permit to Construct, Permit to Operate A Hazardous...

358

CRAD, Packaging and Transfer of Hazardous Materials and Materials of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden SaysEnergy Office FY144JuneFacilityEnergyNational

359

Chemical inventory control program for mixed and hazardous waste facilities at SRS  

SciTech Connect (OSTI)

Mixed Waste (MW) and Hazardous Waste (HW) are being stored at the Savannah River Site (SRS) pending onsite and/or offsite treatment and disposal. The inventory control for these wastes has recently been brought under Technical Safety Requirements (TSR) in accordance with DOE Order 5480.22. With the TSRs was the question of the degree of rigor with which the inventory is to be tracked, considering that the variety of chemicals present, or that could be present, numbers in the hundreds. This paper describes the graded approach program to track Solid Waste (SW) inventories relative to TSRs. The approach uses a ratio of the maximum anticipated chemical inventory to the permissible inventory in accordance with Emergency Response Planning Guideline (ERPG) limits for on- and off-site receptors. A specific threshold ratio can then be determined. The chemicals above this threshold ratio are to be included in the chemical inventory control program. The chemicals that fall below the threshold ratio are managed in accordance with existing practice per State and RCRA hazardous materials requirements. Additionally, the facilities are managed in accordance with process safety management principles, specifically using process hazards analyses, which provides safety assurance for even the small quantities that may be excluded from the formal inventory control program. The method yields a practical approach to chemical inventory control, while maintaining appropriate chemical safety margins. The resulting number of specific chemicals that require inclusion in a rigorous inventory control program is greatly reduced by about 80%, thereby resulting in significant reduction in chemical data management while preserving appropriate safety margins.

Ades, M.J.; Vincent, A.M. III

1997-07-01T23:59:59.000Z

360

Natural hazards phenomena mitigation with respect to seismic hazards at the Environmental Restoration Disposal Facility  

SciTech Connect (OSTI)

This report provides information on the seismic hazard for design of the proposed Environmental Restoration Disposal Facility (ERDF), a facility designed for the disposal of wastes generated during the cleanup of Hanford Site aggregate areas. The preferred ERDF site is located south and east of 200 East and 200 West Areas. The Washington State Groundwater Protection Program (WAC 173-303-806 (4)(a)(xxi)) requires that the characteristics of local and regional hydrogeology be defined. A plan for that work has been developed (Weekes and Borghese 1993). In addition, WAC 173-303-282 provides regulatory guidance on siting a dangerous waste facility, and US Department of Energy (DOE) Order 5480.28 requires consideration of natural phenomena hazards mitigation for DOE sites and facilities. This report provides information to evaluate the ERDF site with respect to seismic hazard. The ERDF will be a Corrective Action Management Unit (CAMU) as defined by 40 CFR 260.10.

Reidel, S.P.

1994-01-06T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

STRUCTURAL ENGINEERING, MECHANICS AND MATERIALS  

E-Print Network [OSTI]

of companies worldwide; cladding effects on, and hybrid control of, the response of tall buildings Buildings · Masonry Structures · Nano/Microstructure of Cement-based Materials · Polymeric Composite Systems · Reliable Engineering Computing · Risk Analysis · Seismic Hazard Mitigation · Smart Materials

Wang, Yuhang

362

Vermont Hazardous Waste Management Regulations (Vermont)  

Broader source: Energy.gov [DOE]

These regulations are intended to protect public health and the environment by comprehensively regulating the generation, storage, collection, transport, treatment, disposal, use, reuse, and...

363

Hazardous Waste Management Implementation Inspection Criteria...  

Broader source: Energy.gov (indexed) [DOE]

focus area. Attention will be given to on-site activities governed by 40 Subchapter I (Solid Waste) and state regulations where delegated authority exists, excluding landfill...

364

A complete electrical hazard classification system and its application  

SciTech Connect (OSTI)

The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of electrical hazards. The new comprehensive electrical hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards. Based on this electrical hazard classification system, many new tools have been developed, including (a) work controls for these hazards, (b) better selection of PPE for R&D work, (c) improved training, and (d) a new Severity Ranking Tool that is used to rank electrical accidents and incidents with various forms of electrical energy.

Gordon, Lloyd B [Los Alamos National Laboratory; Cartelli, Laura [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

365

Method and apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

Korenberg, Jacob (York, PA)

1990-01-01T23:59:59.000Z

366

RCRA/UST, superfund and EPCRA hotline training module. Introduction to: Definition of solid waste and hazardous waste recycling (40 CFR sections 261.2 and 261.9) updated as of July 1995  

SciTech Connect (OSTI)

The module explains the statutory and regulatory definitions of solid waste, including the standards governing the recycling and management of specific types of wastes. It lists and cites three use/reuse scenarios where the materials are not solid wastes and states the requirements for documentation. It lists examples of sham recycling and describes the conditions under which hazardous waste-derived products may be excluded from regulation. It cites the provisions for precious metal recovery and discusses potential regulatory developments affecting the definition of solid waste and hazardous waste recycling.

NONE

1995-11-01T23:59:59.000Z

367

Burning hazardous waste in cement kilns  

SciTech Connect (OSTI)

The cement manufacturing process is one of the oldest in the world, having been in practice for over 2000 years. It is also one of the most energy intensive, with up to 65 percent of the cost of the product attributable to energy consumption. In addition to high energy demand, the process conditions include extremely high temperatures. Cement clinker forms when the correct mixture of raw materials is heated to 2650/sup 0/ F. This requires combustion temperatures exceeding 3000/sup 0/ F. under oxidizing conditions. To accomplish this, gas temperatures above 2000/sup 0/ F. occur for several seconds (typically five seconds), which is much longer than residence times in permitted hazardous waste incinerators. These conditions are extremely favorable to the destruction of organic compounds and have led to extensive investigation into the potential for burning hazardous waste in cement kilns. Cement kilns consuming hazardous wastes have been tested for air emissions under various operating conditions. The substantial body of information on the emissions and handling of hazardous wastes from these studies has demonstrated that effective destruction of wastes can be accomplished with the added benefits of energy conservation and no significant change in air emissions.

Chadbourne, J.F.; Helmsteller, A.J.

1983-06-01T23:59:59.000Z

368

Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process  

SciTech Connect (OSTI)

Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

Fix, N.J.

1995-03-01T23:59:59.000Z

369

Property Claim Packet Instructions CONTACT UVAPD -security assistance & crime reporting; Facilities Management -building damage and clean up;  

E-Print Network [OSTI]

, potential mold etc.; LSP/LSA - IT equipment impacted by water/soot. PREVENT FURTHER DAMAGE (e.g. move items; Facilities Management - building damage and clean up; Environmental Health and Safety - hazardous materials) should be used for Non-exempt & Wage University Labor for actual repair. Managerial and exempt labor

Acton, Scott

370

Puncture detecting barrier materials  

DOE Patents [OSTI]

A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

1998-03-31T23:59:59.000Z

371

addressing waste management: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outside the Former Hazardous Waste Management Homes, Christopher C. 25 Beyond 70%: Assessing Alternative Waste Management Opportunities for Institutions. Open Access Theses and...

372

ORISE: Hazard Assessments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping ApplicationEnvironment AtGraduateHazard

373

Fire Hazards Listing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified| DepartmentFindingHazards Listing

374

LAB HAZARD CHECKLIST Please check the hazards that are associated with your lab and complete the section  

E-Print Network [OSTI]

Radiation Hazards ­Any work involving class 3b or 4 lasers Flammable Gas ­ Compressed gas cylinders that contain flammable gas Toxic Gas ­ Compressed gas cylinders that contain toxic gas Flammable Materials release Radioactive Materials ­ Radiochemicals and sealed radiation sources Radio Frequency or Microwave

Firestone, Jeremy

375

National Emission Standards for Hazardous Air Pollutants, June 2005  

SciTech Connect (OSTI)

The sources of radionuclides include current and previous activities conducted on the NTS. The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing has included (1) atmospheric testing in the 1950s and early 1960s, (2) underground testing between 1951 and 1992, and (3) open-air nuclear reactor and rocket engine testing (DOE, 1996a). No nuclear tests have been conducted since September 23,1992 (DOE, 2000), however; radionuclides remaining on the soil surface in many NTS areas after several decades of radioactive decay are re-suspended into the atmosphere at concentrations that can be detected by air sampling. Limited non-nuclear testing includes spills of hazardous materials at the Non-Proliferation Test and Evaluation Complex (formerly called the Hazardous Materials Spill Center), private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses; handling, transport, storage, and assembly of nuclear explosive devices or radioactive targets for the Joint Actinide Shock Physics Experimental Research (JASPER) gas gun; and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE, 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in calendar year (CY) 2004 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and water pumped from wells used to characterize the aquifers at the sites of past underground nuclear tests, (2) onsite radioanalytical laboratories, (3) the Area 3 and Area 5 RWMS facilities, and (4) diffuse sources of tritium (H{sup 3}) and re-suspension of plutonium ({sup 239+240}Pu) and americium ({sup 241}Am) at the sites of past nuclear tests. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility (NLVF). At the NLVF, parts of Building A-1 were contaminated with tritium by a previous contractor in 1995. The incident involved the release of tritium as HTO. This unusual occurrence led to a very small potential exposure to an offsite person. The HTO emission has continued at lower levels (probably re-emanation from building materials), even after cleanup activities in November and December 1997. A description of the incident and the potential effective dose equivalent (EDE) for offsite exposure are set forth in Appendix A.

Robert F. Grossman

2005-06-01T23:59:59.000Z

376

Procurement and Materials Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FORPointsProcess forContactsProcurement

377

Hazardous Substances Act (South Carolina)  

Broader source: Energy.gov [DOE]

The Commissioner of the Department of Agriculture has the authority to promulgate regulations declaring specified substances to be hazardous and establishing labeling, transportation, storage, and...

378

Hazardous Waste Facilities Siting (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

379

Hazardous Waste Transporter Permits (Connecticut)  

Broader source: Energy.gov [DOE]

Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide information about obtaining permits and other permit...

380

Hazardous Waste Act (New Mexico)  

Broader source: Energy.gov [DOE]

"Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may:  cause or significantly...

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hazard screening application guide. Safety Analysis Report Update Program  

SciTech Connect (OSTI)

The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

none,

1992-06-01T23:59:59.000Z

382

Hazardous-waste analysis plan for LLNL operations  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

Roberts, R.S.

1982-02-12T23:59:59.000Z

383

Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories  

SciTech Connect (OSTI)

Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This paper presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.

Kwok, Kwan S.

1999-05-04T23:59:59.000Z

384

Apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

Chang, Robert C. W. (Martinez, GA)

1994-01-01T23:59:59.000Z

385

Apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

Chang, R.C.W.

1994-12-20T23:59:59.000Z

386

US Department of Energy automated transportation management system  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has approximately 80 facilities throughout the United States that specialize in either scientific research, engineering, technology, production, and/or waste management activities. These facilities can best be described as Government Owned, Contractor Operated (GOCO) sites, and vary in size from very small laboratories to large industrial plant type facilities. Each of these GOCO`s have varying needs for transportation of materials into and/or out of their facility. Therefore, Traffic Management operations will differ from site to site due to size and the internal or site specific mission. The DOE Transportation Management Division (TMD) has the corporate responsibility to provide a well managed transportation management program for the safe, efficient, and economical transportation of all DOE-owned materials. To achieve this mission, TMD provides oversight, and when necessary, resources to assist in ensuring regulatory compliance in the packaging and shipment of DOE-owned materials. A large part of TMD`s responsibility is to develop, administer, and provide policies and guidance concerning department-wide transportation and packaging operations. This responsibility includes overall Transportation Management policies and programs for the packaging and movement of all DOE materials, including radioactive materials, other hazardous materials/substances, and hazardous wastes. TMD formulates policies and guidance that assist the DOE Field Elements and GOCO`s in meeting TMD`s goal for safe, efficient and economical transportation. Considering there are at least 80 shipping and receiving sites, the challenge encountered by TMD has been the difficulty in managing such a diverse transportation community.

Thomas, T.M. [Dept. of Energy, Germantown, MD (United States); Frost, D.M.; Lopez, C.A. [MELE Associates, Rockville, MD (United States)] [and others

1996-12-31T23:59:59.000Z

387

REPORT NO. 8 radiation hazards  

E-Print Network [OSTI]

REPORT NO. 8 REVISED guidance for the control of radiation hazards in uranium mining SEPTEMBER 1967 OF RADIATION HAZARDS IN URANIUM MINING SEPTEMBER 1967 Staff Report of the FEDERAL RADIATION COUNCIL #12;FEDERAL...... .... .._ _.... Section I. Introduction. . . Section II. The Radiation Environment AssociatedWith Uranium Mining. Section

388

Regulation of above-ground oil and waste containers. Hearing before the Subcommittee on Transportation, Tourism, and Hazardous Materials of the Committee on Energy and Commerce, House of Representatives, One Hundredth Congress, Second Session, January 26, 1988  

SciTech Connect (OSTI)

Representatives from the petroleum industry, US EPA, National Bureau of Standards and Congress were among those testifying at a hearing to discuss one of the worst inland environmental disasters in this Nation's history. The January 2 collapse of the Ashland Oil Co.'s storage tank in Floreffe, Pennsylvania resulted in the release of some 4 million gallons of diesel fuel. Approximately a million gallons escaped the containment structures and spilled over into the Monongahela River. This spill has contaminated the drinking water sources for millions of people downstream, from Pittsburgh to Cincinnati to Louisville, and beyond. Attention is focused on the causes of this tank's collapse, the response measures taken by Ashland Oil, the Coast Guard, the EPA, and the need for tighter federal regulations of above-ground tanks used for the storage of petroleum and hazardous substances.

Not Available

1988-01-01T23:59:59.000Z

389

Hazardous Waste Facility Siting Program (Maryland)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

390

The effects of hazardous waste taxes on generation and disposal of chlorinated solvent waste  

E-Print Network [OSTI]

In 1989, 30 states levied taxes on e generation or management of hazardous waste. These taxes constitute one of the broadest applications of an emissions tax in U.S. environmental policy and provide a natural experiment ...

Sigman, Hilary

1992-01-01T23:59:59.000Z

391

Collective action for community-based hazard mitigation: a case study of Tulsa project impact  

E-Print Network [OSTI]

During the past two decades, community-based hazard mitigation (CBHM) has been newly proposed and implemented as an alternative conceptual model for emergency management to deal with disasters comprehensively in order to curtail skyrocketing...

Lee, Hee Min

2005-11-01T23:59:59.000Z

392

Hazard classification criteria for non-nuclear facilities  

SciTech Connect (OSTI)

Sandia National Laboratories` Integrated Risk Management Department has developed a process for establishing the appropriate hazard classification of a new facility or operation, and thus the level of rigor required for the associated authorization basis safety documentation. This process is referred to as the Preliminary Hazard Screen. DOE Order 5481.1B contains the following hazard classification for non-nuclear facilities: high--having the potential for onsite or offsite impacts to large numbers of persons or for major impacts to the environment; moderate--having the potential for considerable onsite impacts but only minor offsite impacts to people or the environment; low--having the potential for only minor onsite and negligible offsite impacts to people or the environment. It is apparent that the application of such generic criteria is more than likely to be fraught with subjective judgment. One way to remove the subjectivity is to define health and safety classification thresholds for specific hazards that are based on the magnitude of the hazard, rather than on a qualitative assessment of possible accident consequences. This paper presents the results of such an approach to establishing a readily usable set of non-nuclear facility hazard classifications.

Mahn, J.A.; Walker, S.A.

1997-03-01T23:59:59.000Z

393

Table of Organization Environmental Health & Safety  

E-Print Network [OSTI]

Safety Continues Page 3 Lauren Kelly Manager Hazardous Materials June, 2014 James Kaznosky, Senior Research Safety Lauren Kelly Manager Hazardous Materials Radioactive Waste (only) Hazardous Materials Assistant Physicist Vacant Assistant Physicist 2 #12;Environmental Safety/Hazardous Materials Management

Jia, Songtao

394

AN ENHANCED HAZARD ANALYSIS PROCESS FOR THE HANFORD TANK FARMS  

SciTech Connect (OSTI)

CH2M HILL Hanford Group, Inc., has expanded the scope and increased the formality of process hazards analyses performed on new or modified Tank Farm facilities, designs, and processes. The CH2M HILL process hazard analysis emphasis has been altered to reflect its use as a fundamental part of the engineering and change control process instead of simply being a nuclear safety analysis tool. The scope has been expanded to include identification of accidents/events that impact the environment, or require emergency response, in addition to those with significant impact to the facility worker, the offsite, and the 100-meter receptor. Also, there is now an expectation that controls will be identified to address all types of consequences. To ensure that the process has an appropriate level of rigor and formality, a new engineering standard for process hazards analysis was created. This paper discusses the role of process hazards analysis as an information source for not only nuclear safety, but also for the worker-safety management programs, emergency management, environmental programs. This paper also discusses the role of process hazards analysis in the change control process, including identifying when and how it should be applied to changes in design or process.

SHULTZ MV

2008-05-15T23:59:59.000Z

395

Safety Hazard and Risk Identification and Management In Infrastructure Management   

E-Print Network [OSTI]

Infrastructure such as transportation networks improves the condition of everyday lives by facilitating public services and systems necessary for economic activity and growth. However, constructing and maintaining ...

Campbell, Jennifer Mary

2008-01-01T23:59:59.000Z

396

Waste Management Program management plan. Revision 1  

SciTech Connect (OSTI)

As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

NONE

1997-02-01T23:59:59.000Z

397

Electronic waste management approaches: An overview  

SciTech Connect (OSTI)

Highlights: ? Human toxicity of hazardous substances in e-waste. ? Environmental impacts of e-waste from disposal processes. ? Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ? Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.

Kiddee, Peeranart [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Wong, Ming H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (China)

2013-05-15T23:59:59.000Z

398

Advanced Membrane Systems: Recovering Wasteful and Hazardous...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

399

Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site  

SciTech Connect (OSTI)

Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

NONE

1999-06-01T23:59:59.000Z

400

Hazardous and Industrial Waste (Minnesota)  

Broader source: Energy.gov [DOE]

This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Health Hazards in Indoor Air  

E-Print Network [OSTI]

Health Hazards in Indoor Air. In Proceedings of the 2010for VOCs from post-1990 indoor air concentration studies inUnion project on indoor air pollutants. Allergy, 2008. 63(

Logue, Jennifer M.

2012-01-01T23:59:59.000Z

402

LOG HAZARD REGRESSION Huiying Sun  

E-Print Network [OSTI]

LOG HAZARD REGRESSION by Huiying Sun Ph.D, Harbin Institute of Technology, Harbin, CHINA, 1991 .................................................................... .................................................................... .................................................................... .................................................................... THE UNIVERSITY OF BRITISH COLUMBIA September, 1999 c flHuiying Sun, 1999 #12; Abstract We propose using

Heckman, Nancy E.

403

Los Alamos National Laboratory emergency management plan. Revision 1  

SciTech Connect (OSTI)

The Laboratory has developed this Emergency Management Plan (EMP) to assist in emergency planning, preparedness, and response to anticipated and actual emergencies. The Plan establishes guidance for ensuring safe Laboratory operation, protection of the environment, and safeguarding Department of Energy (DOE) property. Detailed information and specific instructions required by emergency response personnel to implement the EMP are contained in the Emergency Management Plan Implementing Procedure (EMPIP) document, which consists of individual EMPIPs. The EMP and EMPIPs may be used to assist in resolving emergencies including but not limited to fires, high-energy accidents, hazardous material releases (radioactive and nonradioactive), security incidents, transportation accidents, electrical accidents, and natural disasters.

Ramsey, G.F.

1998-07-15T23:59:59.000Z

404

Bulletin No. 233 Ergonomic Hazards of the  

E-Print Network [OSTI]

July, 2004 Bulletin No. 233 Ergonomic Hazards of the Seated Posture Ergonomic Hazards of the Seated it is possible for these injuries to heal themselves when the ergonomic hazard is removed, cases do exist where;PAGE 2 ERGONOMIC HAZARDS of the SEATED POSTURE BULLETIN NO. 233 Ergonomic interventions to reduce

Martin, Jeff

405

Radiological hazards of alpha-contaminated waste  

SciTech Connect (OSTI)

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

406

Site Management Guide (Blue Book)  

SciTech Connect (OSTI)

The U.S. Department of Energy (Department) Office of Legacy Management (LM), established in 2003, manages the Department’s postclosure responsibilities and ensures the future protection of human health and the environment. During World War II and the Cold War, the Federal government developed and operated a vast network of industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Since 1989, the Department has taken an aggressive accelerated cleanup approach to reduce risks and cut costs. At most Departmental sites undergoing cleanup, some residual hazards will remain at the time cleanup is completed due to financial and technical impracticality. However, the Department still has an obligation to protect human health and the environment after cleanup is completed. LM fulfills DOE’s postclosure obligation by providing long-term management of postcleanup sites which do not have continuing missions. LM is also responsible for sites under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Currently, the U.S. Army Corps of Engineers (USACE) is responsible for site surveys and remediation at FUSRAP sites. Once remediation is completed, LM becomes responsible for long-term management. LM also has responsibility for uranium processing sites addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). UMTRCA Title II sites are sites that were commercially owned and are regulated under a U.S. Nuclear Regulatory Commission (NRC) license. For license termination, the owner must conduct an NRC-approved cleanup of any on-site radioactive waste remaining from former uranium ore-processing operations. The site owner must also provide full funding for inspections and, if necessary, ongoing maintenance. Once site cleanup is complete, LM accepts title to these sites on behalf of the United States and assumes long-term management.

None

2014-03-01T23:59:59.000Z

407

Materials management in an internationally safeguarded fuels reprocessing plant. [1500 and 210 metric tons heavy metal per year  

SciTech Connect (OSTI)

The second volume describes the requirements and functions of materials measurement and accounting systems (MMAS) and conceptual designs for an MMAS incorporating both conventional and near-real-time (dynamic) measurement and accounting techniques. Effectiveness evaluations, based on recently developed modeling, simulation, and analysis procedures, show that conventional accountability can meet IAEA goal quantities and detection times in these reference facilities only for low-enriched uranium. Dynamic materials accounting may meet IAEA goals for detecting the abrupt (1-3 weeks) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the 1-y protracted-diversion goal of 8 kg for plutonium.

Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

1980-04-01T23:59:59.000Z

408

Modern tornado design of nuclear and other potentially hazardous facilities  

SciTech Connect (OSTI)

Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.

Stevenson, J.D. [J.D. Stevenson Consulting Engineer, Cleveland, OH (United States); Zhao, Y. [Battele Energy Systems Group, Columbus, OH (United States)

1996-01-01T23:59:59.000Z

409

Waste management project fiscal year 1998 multi-year work plan WBS 1.2  

SciTech Connect (OSTI)

The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

Slaybaugh, R.R.

1997-08-29T23:59:59.000Z

410

Hazard Class Category  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSiteAboutRadioactive Material

411

Material Nature Versus Structural Nurture: The Embodied Carbon of Fundamental Structural Elements  

E-Print Network [OSTI]

progressive materials management systems consider post-useforms of post-use material management. This simplificationof end-of-life management of building materials. Resour. ,

Sathre, Roger

2013-01-01T23:59:59.000Z

412

Federal Emergency Management Information System (FEMIS) Bill of Materials (BOM) for FEMIS Version 1.4.7  

SciTech Connect (OSTI)

This document describes the hardware and software required for the Federal Emergency Management Information System version 1.4.7 (FEMIS v1.4.7) released by Pacific Northwest National Laboratory (PNNL). Information included in this document about hardware and software requirements is subject to change.

Arp, Jonathan A. (BATTELLE (PACIFIC NW LAB)); Downing, Timothy R. (BATTELLE (PACIFIC NW LAB)); Gackle, Philip P. (BATTELLE (PACIFIC NW LAB)); Homer, Brian J. (BATTELLE (PACIFIC NW LAB)); Johnson, Daniel M. (BATTELLE (PACIFIC NW LAB)); Johnson, Ranata L. (BATTELLE (PACIFIC NW LAB)); Johnson, Sharon M. (BATTELLE (PACIFIC NW LAB)); Loveall, Robert M. (BATTELLE (PACIFIC NW LAB)); Millard, W David (BATTELLE (PACIFIC NW LAB)); Stoops, Lamar R. (BATTELLE (PACIFIC NW LAB)); Tzemos, Spyridon (BATTELLE (PACIFIC NW LAB)); Wood, Blanche M. (BATTELLE (PACIFIC NW LAB))

1999-12-01T23:59:59.000Z

413

INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION  

SciTech Connect (OSTI)

The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology for this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified.

R.J. Garrett

2005-02-17T23:59:59.000Z

414

Material and energy recovery in integrated waste management system - An Italian case study on the quality of MSW data  

SciTech Connect (OSTI)

This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation was then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it.

Bianchini, A.; Pellegrini, M. [DIEM, Department of Mechanical Engineering, Faculty of Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy); Saccani, C., E-mail: cesare.saccani@unibo.it [DIEM, Department of Mechanical Engineering, Faculty of Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

2011-09-15T23:59:59.000Z

415

Charles H. Dyson School of Applied Economics and Management  

E-Print Network [OSTI]

and Management Management Communication | Spring 2014 Preliminary Course .................................................................................................................... 26 Appendix Module 1 Extra Materials ........................................................................................................ 29 Module 2 Extra Materials

Walter, M.Todd

416

Materials Safety Data Sheets  

E-Print Network [OSTI]

Materials Safety Data Sheets (MSDS) MSDS contain chemical hazard information about substances compounds and solvents. MSDS data can be accessed from the following URLs http://www.ehs.umass.edu/ http://www.chem.umass.edu/Safety the "Important Safety Sites for the University" link to reach a variety of safety related information, including

Schweik, Charles M.

417

WHC fire hazards analysis policy  

SciTech Connect (OSTI)

The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

Evans, C.B.

1994-04-01T23:59:59.000Z

418

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network [OSTI]

of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover bodies (without needles) Container: Sturdy and leakproof with Hazardous Glass label. Either: Plastic resistant, leakproof plastic carboy with green sharps label. Do not fill these containers completely. Leave

Sheridan, Jennifer

419

FURTHERING THE RECLAIMED MATERIALS EXPERIENCE  

E-Print Network [OSTI]

A comprehensive study of the reclaimed materials industry and ways it could be improved from a management standpoint by working through a Design Management problem solving approach. Project Objectives: To improve the sourcing of reclaimed materials...

Bartels, Robert A.

2012-08-31T23:59:59.000Z

420

Audit Report - The Department of Energy's Management of Surplus Nuclear Materials, OAS-L-13-04  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical5/08 Attendance List from 12/05/08 Attendance5 AuditNavalManagement of

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Potential health hazards of radiation. Fact Sheet  

SciTech Connect (OSTI)

During World War II and the Cold War, the federal government developed and operated industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Some of these sites processed uranium and vanadium, and upon closure, left behind millions of cubic yards of mill tailings on the sites and throughout the nearby communities. The U.S. Department of Energy (DOE) administers the cleanup of these areas to minimize the risks to the public and environment from exposure to the tailings and the radon gas they produce.

none,

2009-05-19T23:59:59.000Z

422

Environmental Hazards Assessment Program. Quarterly report, July--September 1993  

SciTech Connect (OSTI)

The objectives of the EHAP program stated in the proposal to DOE are to: (1) develop a holistic, national basis for risk assessment, risk management, and risk communication which recognizes the direct impact of environmental hazards on the health and well-being of all, (2) develop a pool of talented scientists and experts in cleanup activities, especially in human health aspects, and (3) identify needs and develop programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health oriented aspects of environmental restoration and waste management.

Not Available

1993-12-01T23:59:59.000Z

423

Georgia Hazardous Site Response Act (Georgia)  

Broader source: Energy.gov [DOE]

The Georgia Hazardous Site Response Act is Georgia’s version of Superfund. The Act provides for graduated fees on the disposal of hazardous waste, a trust fund to enable the EPD to clean up or plan...

424

Rules and Regulations Pertaining to the Management of Wastes (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to waste management permits and licenses, wastewater, and the release of hazardous substances.

425

Inspection of Emergency Management at the Office of Secure Transportat...  

Broader source: Energy.gov (indexed) [DOE]

with the identifi ed hazards. The emergency plan defi nes and conveys the management philosophy, organizational structure, administrative controls, decision-making...

426

D-Area Preliminary Hazards Analysis  

SciTech Connect (OSTI)

A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

Blanchard, A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Paik, I.R. [Westinghouse Safety Management Solutions, , ()

1998-04-01T23:59:59.000Z

427

Environmental Management System Plan  

SciTech Connect (OSTI)

Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management establishes the policy that Federal agencies conduct their environmental, transportation, and energy-related activities in a manner that is environmentally, economically and fiscally sound, integrated, continually improving, efficient, and sustainable. The Department of Energy (DOE) has approved DOE Order 450.1A, Environmental Protection Program and DOE Order 430.2B, Departmental Energy, Renewable Energy and Transportation Management as the means of achieving the provisions of this Executive Order. DOE Order 450.1A mandates the development of Environmental Management Systems (EMS) to implement sustainable environmental stewardship practices that: (1) Protect the air, water, land, and other natural and cultural resources potentially impacted by facility operations; (2) Meet or exceed applicable environmental, public health, and resource protection laws and regulations; and (3) Implement cost-effective business practices. In addition, the DOE Order 450.1A mandates that the EMS must be integrated with a facility's Integrated Safety Management System (ISMS) established pursuant to DOE P 450.4, 'Safety Management System Policy'. DOE Order 430.2B mandates an energy management program that considers energy use and renewable energy, water, new and renovated buildings, and vehicle fleet activities. The Order incorporates the provisions of the Energy Policy Act of 2005 and Energy Independence and Security Act of 2007. The Order also includes the DOE's Transformational Energy Action Management initiative, which assures compliance is achieved through an Executable Plan that is prepared and updated annually by Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab, or the Laboratory) and then approved by the DOE Berkeley Site Office. At the time of this revision to the EMS plan, the 'FY2009 LBNL Sustainability Executable Plan' represented the most current Executable Plan. These DOE Orders and associated policies establish goals and sustainable stewardship practices that are protective of environmental, natural, and cultural resources, and take a life cycle approach that considers aspects such as: (1) Acquisition and use of environmentally preferable products; (2) Electronics stewardship; (3) Energy conservation, energy efficiency, and renewable energy; (4) Pollution prevention, with emphasis on toxic and hazardous chemical and material reduction; (5) Procurement of efficient energy and water consuming materials and equipment; (6) Recycling and reuse; (7) Sustainable and high-performance building design; (8) Transportation and fleet management; and (9) Water conservation. LBNL's approach to sustainable environmental stewardship required under Order 450.1A poses the challenge of implementing its EMS in a compliance-based, performance-based, and cost-effective manner. In other words, the EMS must deliver real and tangible business value at a minimal cost. The purpose of this plan is to describe Berkeley Lab's approach for achieving such an EMS, including an overview of the roles and responsibilities of key Laboratory parties. This approach begins with a broad-based environmental policy consistent with that stated in Chapter 11 of the LBNL Health and Safety Manual (PUB-3000). This policy states that Berkeley Lab is committed to the following: (1) Complying with applicable environmental, public health, and resource conservation laws and regulations. (2) Preventing pollution, minimizing waste, and conserving natural resources. (3) Correcting environmental hazards and cleaning up existing environmental problems, and (4) Continually improving the Laboratory's environmental performance while maintaining operational capability and sustaining the overall mission of the Laboratory. A continual cycle of planning, implementing, evaluating, and improving processes will be performed to achieve goals, objectives, and targets that will help LBNL carry out this policy. Each year, environmental aspects will be identified and their impacts to the environm

Fox, Robert; Thorson, Patrick; Horst, Blair; Speros, John; Rothermich, Nancy; Hatayama, Howard

2009-03-24T23:59:59.000Z

428

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

appropriate precautions to minimize direct contact with skin or eyes and prevent inhalation of dust. METHODS conditions, material may decompose to form flammable and/or explosive mixtures in air. FLASH POINT N and protective clothing to prevent contact with skin and eyes. Specific Hazard(s): Emits toxic fumes under fire

Choi, Kyu Yong

429

National Emission Standards for Hazardous Air Pollutants Calendar Year 2001  

SciTech Connect (OSTI)

The Nevada Test Site (NTS) is operated by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) as the site for nuclear weapons testing, now limited to readiness activities, experiments in support of the national Stockpile Stewardship Program, and the activities listed below. Located in Nye County, Nevada, the site's southeast corner is about 88 km (55 mi) northwest of the major population center, Las Vegas, Nevada. The NTS covers about 3,561 km2 (1,375 mi2), an area larger than Rhode Island. Its size is 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands (Figure 1.0). The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS, and slow-moving groundwater is present hundreds to thousands of feet below the land surface. The sources of radionuclides include current and previous activities conducted on the NTS (Figure 2.0). The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing above or at ground surface has included (1) atmospheric testing in the 1950s and early 1960s, (2) earth-cratering experiments, and (3) open-air nuclear reactor and rocket engine testing. Since the mid-1950s, testing of nuclear explosive devices has occurred underground in drilled vertical holes or in mined tunnels (DOE 1996a). No such tests have been conducted since September 23, 1992 (DOE 2000). Limited non-nuclear testing includes spills of hazardous materials at the Hazardous Materials Spill Center, private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses, and handling is restricted to transport, storage, and assembly of nuclear explosive devices and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in CY 2001 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and from discharges of two wells (Well U-3cn PS No. 2 and Well ER-20-5 No.3) into lined ponds, (2) onsite radio analytical laboratories, (3) the Area 5 RWMS (RWMS-5) facility, and (4) diffuse sources of tritium and re- suspension of plutonium and americium. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility.

Y. E. Townsend

2002-06-01T23:59:59.000Z

430

UNC Charlotte Government Property Management Plan 1 Government Property Management Plan  

E-Print Network [OSTI]

. MANAGEMENT AND ACQUISITION Under the University's property management system, the Materials ManagementUNC Charlotte Government Property Management Plan 1 Government Property Management Plan Initially approved: 21 October 2011 Updated: August 24, 2012 SCOPE This Government Property Management Plan applies

Howitt, Ivan

431

The Role of the George Kuzmycz Training Center in Improving the Nuclear Material Management Culture in Ukraine.  

SciTech Connect (OSTI)

The George Kuzmycz Training Center for Physical Protection, Control and Accounting (GKTC) was established in 1998 in a collaborative endeavor of the State Nuclear Regulatory Administration of Ukraine, the Ukrainian Academy of Sciences, and the U.S. Department of Energy. Located at the Institute for Nuclear Research in Kyiv, the GKTC provides theoretical and practical training in physical protection, control, and accounting techniques and systems that are employed to reduce the risk of unauthorized use, theft, or diversion of weapons-usable nuclear material. Participants in GKTC workshops and courses include nuclear facility specialists as well as officials of the State's regulatory authorities. Recently, the training scope has been broadened to include students from other nations in the region.

Gavrylyuk, V. I. (Viktor I.); Scherbachenko, A. M. (Alexander M.); Bazavov, D. A. (Dmitri A.); Kyryshchuk, V. I. (Volodymyr I.); Robinson, P. (Phil); Sheppard, G. A. (Gregory A.)

2001-01-01T23:59:59.000Z

432

Networks of recyclable material waste-picker’s cooperatives: An alternative for the solid waste management in the city of Rio de Janeiro  

SciTech Connect (OSTI)

Highlights: ? In the marketing of recyclable materials, the waste-pickers are the least wins. ? It is proposed creating a network of recycling cooperatives to achieve viability. ? The waste-pickers contribute to waste management to the city. - Abstract: The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city’s main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers’ cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro.

Tirado-Soto, Magda Martina, E-mail: magda@pep.ufrj.br [Program of Production Engineering, School and Research in Engineering, Federal University of Rio de Janeiro (Brazil); Zamberlan, Fabio Luiz, E-mail: fabio@pep.ufrj.br [Program of Production Engineering, School and Research in Engineering, Federal University of Rio de Janeiro (Brazil)

2013-04-15T23:59:59.000Z

433

CSREES Nutrient Management Working Meeting  

E-Print Network [OSTI]

planning process ­ Nutrient management training ­ P-Indexes and tools developed ­ Educational materials #12Welcome CSREES Nutrient Management Working Meeting May 4 and 5, 2004 Atlanta, GA #12;University Objectives · Information Sharing Among States ­ Nutrient management regulations ­ Nutrient management

434

Chemical Hazards and Safety Issues in Fusion Safety Design  

SciTech Connect (OSTI)

Radiological inventory releases have dominated accident consequences for fusion; these consequences are important to analyze and are generally the most severe result of a fusion facility accident event. However, the advent of, or plan for, large-scale usage of some toxic materials poses the additional hazard of chemical exposure from an accident event. Examples of toxic chemicals are beryllium for magnetic fusion and fluorine for laser fusion. Therefore, chemical exposure consequences must also be addressed in fusion safety assessment. This paper provides guidance for fusion safety analysis. US Department of Energy (DOE) chemical safety assessment practices for workers and the public are reviewed. The US Environmental Protection Agency (EPA) has published some guidance on public exposure to releases of mixtures of chemicals, this guidance has been used to create an initial guideline for treating mixed radiological and toxicological releases in fusion; for example, tritiated hazardous dust from a tokamak vacuum vessel. There is no convenient means to judge the hazard severity of exposure to mixed materials. The chemical fate of mixed material constituents must be reviewed to determine if there is a separate or combined radiological and toxicological carcinogenesis, or if other health threats exist with radiological carcinogenesis. Recommendations are made for fusion facility chemical safety evaluation and safety guidance for protecting the public from chemical releases, since such levels are not specifically identified in the DOE fusion safety standard.

Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States)

2003-09-15T23:59:59.000Z

435

Architecture for a Generalized Emergency Management Software System  

SciTech Connect (OSTI)

The Federal Emergency Management Information System (FEMIS) was originally developed for the Chemical Stockpile Emergency Preparedness Program (CSEPP). It has evolved from a CSEPP-specific emergency management software system to a general-purpose system that supports multiple types of hazards. The latest step in the evolution is the adoption of a hazard analysis architecture that enables the incorporation of hazard models for each of the hazards such that the model is seamlessly incorporated into the FEMIS hazard analysis subsystem. This paper describes that new architecture.

Hoza, Mark; Bower, John C.; Stoops, LaMar R.; Downing, Timothy R.; Carter, Richard J.; Millard, W. David

2002-12-19T23:59:59.000Z

436

Medical University of South Carolina Environmental Hazards Assessment Program. Deliverables: Volume 3, Annual report, July 1, 1993--June 30, 1994  

SciTech Connect (OSTI)

This reference is concerned with the Crossroads of Humanity workshop which is part of the Environmental Hazards Assessment Program at the Medical University of South Carolina. This workshop was held during the month of June and July 1994. Topics discussed include: Perceived Risk Advisory Committee Meeting, surveys of public opinion about hazardous and radioactive materials, genetics,antibodies, and regulatory agencies.

Not Available

1994-08-18T23:59:59.000Z

437

Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work-  

E-Print Network [OSTI]

Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work- ing with hazardous materials should receive annual training that address- es lab safety, and other safety topics spe- cific to their workplace. Personnel must be thoroughly familiar with waste

Tennessee, University of

438

Implementation of the hazardous debris rule  

SciTech Connect (OSTI)

Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

Sailer, J.E.

1993-01-05T23:59:59.000Z

439

Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1  

SciTech Connect (OSTI)

Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

Not Available

1994-12-01T23:59:59.000Z

440

Materials Science and Technology Mechanical and Materials Engineering  

E-Print Network [OSTI]

Materials Science and Technology Metallurgy Mechanical and Materials Engineering Materials Science with Energy Engineering Materials Science with Business Management Course Prospectus School of Metallurgy for Metallurgy and Materials What difference will you make? #12;2 School of Metallurgy and Materials Contents

Birmingham, University of

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Floor Buffer Guidelines Floor buffers can expose employees to noise, hazardous materials, and hazards related to  

E-Print Network [OSTI]

produced by the propane buffer is considered high. Hearing protection such as ear plugs and ear muffs and use of hearing protection. Propane Re-filling Only trained and qualified personnel may refill propane containers. Propane Storage Storage of propane should occur in identified well ventilated storage containers

de Lijser, Peter

442

Journal of Hazardous Materials 132 (2006) 98110 Assessment of environmental radon hazard using human  

E-Print Network [OSTI]

rights reserved. Keywords: Radon; Radon progeny; Human respiratory tract; Dose conversion coefficient

Yu, K.N.

443

Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102  

SciTech Connect (OSTI)

Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

SHULTZ, M.V.

1999-04-05T23:59:59.000Z

444

Adaptive management: a paradigm for remediation of public facilities  

SciTech Connect (OSTI)

Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.

Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

2009-01-01T23:59:59.000Z

445

Surface Fire Hazards Analysis Technical Report-Constructor Facilities  

SciTech Connect (OSTI)

The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

R.E. Flye

2000-10-24T23:59:59.000Z

446

Electrical Sitchgear Building No. 5010-ESF Fire Hazards Technical Report  

SciTech Connect (OSTI)

The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives, identified in DOE Order 420.1, Change 2, Fire Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire or related event; (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of the employees, the public, and the environment; (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; (4) Property losses from a fire and related events exceeding defined limits established by DOE; and (5) Critical process controls and safety class systems being damaged as a result of a fire and related event.

N.M. Ruonavaara

2001-05-08T23:59:59.000Z

447

Grout formulation for disposal of low-level and hazardous waste streams containing fluoride  

DOE Patents [OSTI]

A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

1987-06-02T23:59:59.000Z

448

National Environmental Policy Act Hazards Assessment for the TREAT Alternative  

SciTech Connect (OSTI)

This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

Boyd D. Christensen; Annette L. Schafer

2013-11-01T23:59:59.000Z

449

National Environmental Policy Act Hazards Assessment for the TREAT Alternative  

SciTech Connect (OSTI)

This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

Boyd D. Christensen; Annette L. Schafer

2014-02-01T23:59:59.000Z

450

Author's personal copy Journal of Hazardous Materials 273 (2014) 272279  

E-Print Network [OSTI]

Agricultural University, Shangdong 271018, China c Soil and Water Science Department, University of Florida , Jun Luoa, , Lena Q. Maa,c, a State Key Laboratory of Pollution Control and Resource Reuse, School on Corresponding authors at: State Key Laboratory of Pollution Control and Resource Reuse, School

Ma, Lena

451

Mr. Steve lappe, Project Leader Hazardous Materials Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

initial certification CH S3000 solids waste , RH S3000 solids waste , and RH 85000 debris waste. The audit was conducted October 27-29, 2009. An electronic version of the audit...

452

Author's personal copy Journal of Hazardous Materials 185 (2011) 983989  

E-Print Network [OSTI]

), a carcinogenic metalloid, is ubiquitous in the environment. Human activities including mining, smelting, and As to arsenic via drinking con- taminated water (>50 g/L) leads to cancers, birth defects, and other diseases [3

Ma, Lena

453

Process and material that encapsulates solid hazardous waste  

DOE Patents [OSTI]

A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

O'Brien, Michael H. (Idaho Falls, ID); Erickson, Arnold W. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

454

Hazardous Materials Incident Response Procedure | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS CableMayEfficient Change |

455

Hazardous Materials Packaging and Transportation Safety - DOE Directives,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960Options

456

Mr. John Kieling, Acting Chief Hazardous Materials Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 NewKielHaza rd

457

Mr. Steve lappe, Project Leader Hazardous Materials Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1JUN 2 5 2014 NewKielHazaEn

458

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of|AL 2010-07 AcquistionEMPLOYEE

459

Ensuring Safe Shipment of Hazardous Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartment ofFeaturingThanks

460

Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalon Clean DevelopmentCorporation -|Enhanced

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Weather and the Transport of Hazardous Materials | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergyU.S. DOE6WaterWater PowerWeather

462

Department of Transportation Pipeline and Hazardous Materials Safety  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE Zero EnergyDataResearchDepartmentdraftNuclear WasteDepartment

463

Evaluation of alternative leachate liner materials  

E-Print Network [OSTI]

The purpose of this study is to evaluate alternative landfill liner materials that could be utilized in conjunction with current liners in order to improve the liner's performance by preventing the release of hazardous chemicals into the subsurface...

Biles, Daniel Franklin

1994-01-01T23:59:59.000Z

464

NGNP SITE 2 HAZARDS ASSESSMENT  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

Wayne Moe

2011-10-01T23:59:59.000Z

465

Hazard-free connection release  

E-Print Network [OSTI]

management protocol is FIFO if IM3 is added to the list of IM properties in the above implication. A (possibly FIFO) incarnation management protocol is HF if IM6 is added to the list of IM properties in the above implication. An incarnation management.... However, appending Disa to Ps results in a message being transinitted but not delivered in the same incarnation. This is a violation of correctness condition IM6 for a HF incarnation management protocol. Even though the execution Ps is not in the set...

Walter, Jennifer E.

1997-01-01T23:59:59.000Z

466

ARM - SGP Rural Driving Hazards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtendedRural Driving Hazards

467

Evaluation of alternative nonflame technologies for destruction of hazardous organic waste  

SciTech Connect (OSTI)

The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.

Schwinkendorf, W.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Musgrave, B.C. [BC Musgrave, Inc. (United States); Drake, R.N. [Drake Engineering, Inc. (United States)

1997-04-01T23:59:59.000Z

468

Benefits of On-Site Management of Environmental Restoration Wastes  

SciTech Connect (OSTI)

As Sandia National Laboratories/New Mexico (SNL/NM) began assessing options under which to conduct the remediation of environmental restoration sites, it became clear that the standard routes for permanent disposal of waste contaminated with hazardous materials would be difficult. Publicly, local citizens' groups resisted the idea of large volumes of hazardous waste being transported through their communities. Regulations for the off-site disposal are complicated due to the nature of the environmental restoration waste, which included elevated tritium levels. Waste generated from environmental restoration at SNL/NM included debris and soils contaminated with a variety of constituents. Operationally, disposal of environmental restoration waste was difficult because of the everchanging types of waste generated during site remediation. As an alternative to standard hazardous waste disposal, SNL/NM proposed and received regulatory approval to construct a Corrective Action Management Unit (CAMU). By containing the remediation wastes on-site, SNL/NM's Environmental Restoration (ER) Program managed to eliminate transportation concerns from the public, worked with regulatory agencies to develop a safe, permanent disposal, and modified the waste disposal procedures to accommodate operational changes. SNL/NM accomplished the task and saved approximately $200 million over the life of the CAMU project, as compared to off-site disposal options.

Irwin, Michael J. ,P.E.; Wood, Craig, R.E.M.; Kwiecinski, Daniel, P.E.; Alanis, Saul

2003-02-27T23:59:59.000Z

469

Chapter 30 Waste Management: General Administrative Procedures (Kentucky)  

Broader source: Energy.gov [DOE]

The waste management administrative regulations apply to the disposal of solid waste and the management of all liquid, semisolid, solid, or gaseous waste defined or identified as hazardous in KRS...

470

Copenhagen Waste Management and Incineration  

E-Print Network [OSTI]

Copenhagen Waste Management and Incineration Florence, April 24 2009 Julie B. Svendsen incentives · Waste Management plan 2012 · Incineration plants #12;Florence, April 24 20093 Copenhagen Waste ownership of treatment facilities · Incineration plants · Land fill · Disposal of hazardous waste · Source

471

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Broader source: Energy.gov [DOE]

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

472

Chapter 38 Hazardous Waste Permitting Process (Kentucky)  

Broader source: Energy.gov [DOE]

This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements...

473

Hazardous Waste Minimum Distance Requirements (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste and other land uses. The regulations require an...

474

Identification of Hazards, 3/9/95  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs.  Surveillance activities encompass maintenance and implementation of safety...

475

Canister storage building hazard analysis report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''.

POWERS, T.B.

1999-05-11T23:59:59.000Z

476

Louisiana Hazardous Waste Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

477

Fire hazards analysis of central waste complex  

SciTech Connect (OSTI)

This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

Irwin, R.M.

1996-05-30T23:59:59.000Z

478

SCIPP Chemical Hygiene Plan 4/2012 page 1 SCIPP Lab Safety  

E-Print Network [OSTI]

Materials Management ............................................................10 A. Handling Carcinogens and Other High Hazard Materials..................10 B. Procurement

California at Santa Cruz, University of

479

Analysis of Assembly 264 - Amended: Pediatric Asthma Self-Management Training and Education Services for Children at High Risk  

E-Print Network [OSTI]

health management (59%), and patient education materials ineducational materials Education in clinic and management (w/management and training, individual and group education, and patient education materials);

California Health Benefits Review Program (CHBRP)

2006-01-01T23:59:59.000Z

480

The WIPP Hazardous Waste Facility Permit Improvements--2007 Update  

SciTech Connect (OSTI)

The most significant changes to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit to date were completed during the past year with the implementation of significant revisions to the Waste Analysis Plan and the authorization to dispose of remote-handled transuranic waste. The modified Permit removes the requirement for reporting headspace gas sampling and analysis results for every container of transuranic mixed waste and provides for the use of radiography and visual examination to confirm a statistically representative subpopulation of the waste stream in each waste shipment as well as other changes that streamline the analytical data management process. Implementation began on November 17, 2006. (authors)

Kehrman, R.; Most, W. [Washington Regulatory and Environmental Services, Carlsbad, NM (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous materials management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

WIPP Hazardous Waste Facility Permit Update  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification request that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)

Kehrman, B.; Most, W. [Washington Regulatory and Environmental Services, 4021 National Parks Highway, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

482

Health care facility-based decontamination of victims exposed to chemical, biological, and radiological materials  

E-Print Network [OSTI]

contaminants, and management of contaminated materials andmanagement, triage, surveillance, decontamination procedures and materials,from the body, and management of contaminated materials and

Koenig, Kristi L MD

2008-01-01T23:59:59.000Z

483

Comparison of Hazard Analysisp y Requirements of I&C  

E-Print Network [OSTI]

) M di l D i A id tShip Accident (Ferry Sewol) Medical Device Accident (Therac-25) 3 NPP Accident­ Software Fault Tree Analysis ­ By AECL, Nancy Leveson Name of Software Hazards No % Remarks For construct hazard 4 7For construct hazard 4 7 Initialization hazard 4 7 IF-THEN-ELSE construct hazard 38 67 CASE

484

24.01.01.V1.11 HAZARDOUS CHEMICAL WASTE Supplements System Policy 24.01 and System Regulation 24.01.01  

E-Print Network [OSTI]

24.01.01.V1.11 HAZARDOUS CHEMICAL WASTE DISPOSAL Supplements System Policy 24.01 and System, and federal regulations, and is enforced by the Texas Commission on Environmental Quality (TCEQ) and the United States Environmental Protection Agency (EPA). A hazardous waste management program shall

485

Best Management Practices for Aquatic Vegetation Management Principal Investigator: Joseph E. Morris  

E-Print Network [OSTI]

. Develop educational materials related to aquatic plant identification and their specific managementBest Management Practices for Aquatic Vegetation Management Principal Investigator: Joseph E vegetation management with the ultimate goal of producing the best management practices protocol in Iowa

Koford, Rolf R.

</