Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hazardous materials (HAZMAT) Spill Center strategic plan  

SciTech Connect

This strategic Plan was developed in keeping with the Department of Energy`s mission for partnership with its customers to contribute to our Nation`s welfare by providing the technical information and the scientific and educational foundation for the technology, policy and institutional leadership necessary to achieve efficiency in energy use, diversity in energy sources, a more productive and competitive economy, improved environmental quality, and a secure national defense. The Plan provides the concepts for realigning the Departments`s Hazardous Materials Spill Center (HSC) in achieving its vision of becoming the global leader in meeting the diverse HAZMAT needs in the areas of testing, training, and technology. Each of these areas encompass many facets and a multitude of functional and operational requirements at the Federal, state, tribal, and local government levels, as well as those of foreign governments and the private sector. The evolution of the limited dimensional Liquefied Gaseous Fuels Spill Test Facility into a multifaceted HAZMAT Spill Center will require us to totally redefine our way of thinking as related to our business approach, both within and outside of the Department. We need to establish and maintain a viable and vibrant outreach program through all aspects of the public (via government agencies) and private sectors, to include foreign partnerships. The HAZMAT Spill Center goals and objectives provide the direction for meeting our vision. This direction takes into consideration the trends and happenings identified in the {open_quotes}Strategic Outlook{close_quotes}, which includes valuable input from our stakeholders and our present and future customers. It is our worldwide customers that provide the essence of the strategic outlook for the HAZMAT Spill Center.

1996-01-01T23:59:59.000Z

2

Emergency response planning for railroad transportation related spills of oil or other hazardous materials  

E-Print Network (OSTI)

In December 1984 an unintentional release of poison gas from a chemical plant in Bhopal, India killed over 2,500 people. Thousands of others were injured. Although this material was not in transportation at the time, this accident raised public awareness. Americans began to ask, "What if something similar happened here?" Chemicals with hazardous properties have become part of daily life. Industry, government, and the public have become aware of the need to respond to problems involving hazardous materials. Safe transportation of hazardous materials is very important. Union Pacific Railroad transports more hazardous material shipments than any other carrier. Early on they realized the benefits to having a dedicated team of personnel to respond to incidents involving hazardous materials. In order to remain the safest carrier of these commodities, an emergency response plan utilizing in house response personnel was needed. This document describes how that plan was created and includes a copy of the plan for the Union Pacific Railroad's Settegast Yard in Houston, Texas. Other carriers may use this as a template to establish their own in house response teams or emergency response plans.

Reeder, Geoffrey Benton

1995-01-01T23:59:59.000Z

3

Oil or Hazardous Spills Releases Law (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Georgia Program Type Environmental Regulations Safety and Operational Guidelines Provider Georgia Department of Natural Resources The Oil or Hazardous Spills Law requires notice to the Environmental

4

Chemical Spills In the event of a spill involving hazardous chemicals  

E-Print Network (OSTI)

Chemical Spills In the event of a spill involving hazardous chemicals: 1. Keep a safe distance from. From a safe distance, try to gather as much information on the spilled chemical as possible. If the chemical name can be found, look up its MSDS and determine the PPE required. If the chemical is very

de Lijser, Peter

5

Hazardous Material Security (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

6

Transporting & Shipping Hazardous Materials at LBNL: Chemicals  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemicals Chemicals Hand-Carry Self-Transport by Vehicle Ship by Common Carrier Conduct Field Work Hand-Carry Employees may hand-carry small quantities of hazardous materials between adjacent buildings and in connecting spaces (i.e., hallways, stairs, etc.) within buildings, provided it can be done safely and without spilling the materials. Staff must use hand carts, drip trays, or another type of secondary container to contain any spills should they occur during self-transport. Hazardous materials hand-carried between non-adjacent buildings should be packaged to a higher level of integrity. As a best practice, package these substances following the General Requirements listed under the Self-Transport by Vehicle. As with any work involving chemicals, staff must also have completed

7

Spills-  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 SWCX for Installation or Modification of Retention Tanks and Small Basins to Control Runoff and 6 SWCX for Installation or Modification of Retention Tanks and Small Basins to Control Runoff and Spills- Revision 0 Sitewide Categorical Exclusion for Installation or Modification of Retention Tanks and Small Basins to Control Runoff and Spills Introduction As defined in the U.S. Department of Energy's (DOE) Richland Operations Office Integrated Management System Procedure, NEPA Analysis at Hanford, a sitewide categorical exclusion is: An application of DOE categorical exclusions described in 10 CFR 1021, Appendices A and B, which may apply to Hanford Site proposed actions (activities) that are "sitewide" in nature and extent, which the cognizant DOE Hanford NCO has determined fit within the scope (i.e., same nature and intent, and of the same or lesser scope) of DOE categorical exclusions described in 10

8

CHEMICAL OR RADIATION SPILL Observe the following procedures in the event of a chemical or radiation spill  

E-Print Network (OSTI)

CHEMICAL OR RADIATION SPILL Observe the following procedures in the event of a chemical or radiation spill: · Report immediately any spillage of a hazardous chemical or radioactive material to campus

Meyers, Steven D.

9

Transporting & Shipping Hazardous Materials at LBNL: Waste -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste: Hazardous, Biohazardous, Medical or Radioactive Do not transport or ship hazardous material wastes off-site. Only Waste Management, Radiation Protection or approved...

10

Department of Transportation Pipeline and Hazardous Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation...

11

Weather and the Transport of Hazardous Materials | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials More Documents & Publications...

12

BNL | CFN: Transport of Hazardous Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation of Hazardous Materials and Nanomaterials Transportation of Hazardous Materials and Nanomaterials The following contains guidance for transporting materials to and from BNL and for on-site transfers. All staff and users must adhere to Laboratory guidelines when making plans to move materials either by commercial carrier or in rented or personal vehicles. BNL hazardous material transport guidelines apply for products that meet the definition of hazardous materials according to 49 CFR 171.8 and any nanomaterial that has known hazardous properties (toxic, flammable, reactive). BNL guidelines are also provided for all other nanomaterials even if they have not been identified as hazardous materials. Some materials may be transported in personal vehicles as per "Materials of Trade" (MOT) guidance. The regulations for transporting MOT are much

13

CRAD, Packaging and Transfer of Hazardous Materials and Materials of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transfer of Hazardous Materials and Materials Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials

14

Transporting & Shipping Hazardous Materials at LBNL: Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Batteries Lithium batteries are considered hazardous materials when shipped by air. Notify Shipping for any shipments that include lithium batteries. Note: If you need to...

15

Enhancing Railroad Hazardous Materials Transportation Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16,...

16

Hazardous Material Transportation Safety (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

17

Date: ____________ MATERIAL FOR HAZARDOUS WASTE DISPOSAL  

E-Print Network (OSTI)

Feb 2003 Date: ____________ MATERIAL FOR HAZARDOUS WASTE DISPOSAL 1) Source: Bldg: ________________________________________ Disinfection? cc YES, Autoclaved (each container tagged with `Treated Biomedical Waste') cc YES, Chemical

Sinnamon, Gordon J.

18

HAZARDOUS MATERIALS MANAGEMENT AND EMERGENCYRESPONSE TRAINING...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Authorization Act authorized the establishment of Hazardous Materials Management and Emergency Response (HAMMER) Training and Education Centers at Department of Energy sites...

19

Transporting & Shipping Hazardous Materials at LBNL  

NLE Websites -- All DOE Office Websites (Extended Search)

EHSS EHSS Industrial Hygiene Group HazMat Transport/Shipping Home Biological & Infectious Substances Chemicals Compressed Gas Cryogens Dry Ice Engineered Nanomaterials Gasoline Lithium Betteries Radioactive Materials Waste: Hazardous, Biohazardous, Medical or Radioactive Mixed Hazardous Materials Personal/Rental Vehicles HazMat Transport/Shipping Transporting and shipping hazardous materials can be dangerous, but both activities can be done safely - much of it by the researchers themselves. Each of the items below is subject to some transportation or shipping restrictions. Click on the applicable hazardous material icon below to learn how you can safely (and legally) transport that hazardous material and to learn what laboratory resources are available to you for your shipping needs.

20

130 The Journal of Ocean Technology Spindrift Copyright Journal of Ocean Technology 2012 Planning for oil spill response requires identifying key hazards that could cause an incident,  

E-Print Network (OSTI)

, GIS data, and personnel. It activated its Disaster Response Team to provide assistance to users and services through its disaster response web site. These included an online oil spill plume trajectory model Planning for oil spill response requires identifying key hazards that could cause an incident, an analysis

Wright, Dawn Jeannine

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Proceedings: Hazardous Waste Material Remediation Technology Workshop  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI workshop on hazardous waste materials remediation. The workshop was the fourth in a series initiated by EPRI to aid utility personnel in assessing technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of hazardous waste management as they relate to nuclear plant decommissioning. The information will help utilities understand hazardous waste issues, select technologies for their individual projects, and reduce decom...

1999-11-23T23:59:59.000Z

22

Enhancing Railroad Hazardous Materials Transportation Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Railroad Hazardous g Railroad Hazardous g Materials Transportation Safety Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Radioactive Materials Program Manager Radioactive Materials Program Manager H d M t i l Di i i H d M t i l Di i i Hazmat Hazardous Materials Division Hazardous Materials Division Federal Railroad Administration Federal Railroad Administration Presentation for the Presentation for the DOE NTSF Meeting DOE NTSF Meeting May 10 May 10- -12, 2011 12, 2011 Our Regulated Community * More than 550 l d railroads * 170,000 miles of track * 220,000 employees * 1.3 million railcars * 20,000 locomotives Hazmat * 3,500 chemical shippers * Roughly 2 Million Roughly 2 Million annual HM shipments HM-232E Introduction * Notice of Proposed Rulemaking d b * Issued December 21, 2006 * Interim Final Rule

23

Detection device for hazardous material  

DOE Patents (OSTI)

This invention is comprised of a detection device that is activated by the interaction of a hazardous chemical with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

Partin, J.K.; Grey, A.E.

1990-12-31T23:59:59.000Z

24

Massachusetts Oil and Hazardous Material Release Prevention and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Hazardous Material Release Prevention and Response Act, State Superfund Law (Massachusetts) Massachusetts Oil and Hazardous Material Release Prevention and Response Act,...

25

Apparatus for transporting hazardous materials  

DOE Patents (OSTI)

An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

1992-01-01T23:59:59.000Z

26

Training Program EHS 657 ~ Self-Transporting Hazardous Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment, Health, & Safety Training Program EHS 657 Self-Transporting Hazardous Materials Training Course Syllabus...

27

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

28

Permit Fees for Hazardous Waste Material Management (Connecticut...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Material Management (Connecticut) Permit Fees for Hazardous Waste Material Management (Connecticut) Eligibility Agricultural Commercial Construction Fed. Government...

29

Nuclear and hazardous material perspective  

SciTech Connect

The reemerging nuclear enterprise in the 21. century empowering the power industry and nuclear technology is still viewed with fear and concern by many of the public and many political leaders. Nuclear phobia is also exhibited by many nuclear professionals. The fears and concerns of these groups are complex and varied, but focus primarily on (1) management and disposal of radioactive waste [especially spent nuclear fuel and low level radioactive waste], (2) radiation exposures at any level, and (3) the threat nuclear terrorism. The root cause of all these concerns is the exaggerated risk perceived to human health from radiation exposure. These risks from radiation exposure are compounded by the universal threat of nuclear weapons and the disastrous consequences if these weapons or materials become available to terrorists or rogue nations. This paper addresses the bases and rationality for these fears and considers methods and options for mitigating these fears. Scientific evidence and actual data are provided. Radiation risks are compared to similar risks from common chemicals and familiar human activities that are routinely accepted. (authors)

Sandquist, Gary M. [Applied Science Professionals, PO Box 9052 Salt Lake City, UT 84109 (United States); Kunze, Jay F. [Idaho State University PO Box 8060 Pocatello, ID 83209 (United States); Rogers, Vern C. [University of Utah PO Box 510087 Salt Lake City, UT 84151 (United States)

2007-07-01T23:59:59.000Z

30

Hazardous Materials Incident Response Procedure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure The purpose of this procedure is to provide guidance for developing an emergency response plan, as outlined in OSHA's 29 CFR 1910.120(q), for facility response. This model has been adopted and applied to work for response to transportation accidents involving radioactive material or other hazardous materials incidents Hazardous Materials Incident Response Procedure.docx More Documents & Publications Handling and Packaging a Potentially Radiologically Contaminated Patient Decontamination Dressdown at a Transportation Accident Involving Radioactive Material Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

31

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOT/PHMSA DOT/PHMSA A ti iti Activities Michael Conroy U S Department of Transportation - 1 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety Radioactive Materials U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Overview * Harmonization with International Regulations * Update on Revisions to International Regulations * Recent Letters of Interpretation * Update on Rulemakings * PHMSA Information Resources - 2 - * PHMSA Information Resources 2 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration HM-230 Harmonized with 2000 Version of IAEA's 1996 Edition - 3 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

32

Weather and the Transport of Hazardous Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FHWA FHWA R d W h M P FHWA R d W h M P FHWA Road Weather Management Program FHWA Road Weather Management Program " "Weather and the transport of Hazardous Materials" Ray Murphy Office of Technical Services Ray Murphy, Office of Technical Services U.S. DOT - Federal Highway Administration Breako t Session Using Technolog to Dispatch U.S. DOE National Transportation Stakeholder Forum Breakout Session: Using Technology to Dispatch and Monitor Shipments During Adverse Conditions Presentation Contents Presentation Contents * * Context Context Cl Cl I iti ti I iti ti * * Clarus Clarus Initiative Initiative * * Connected Vehicles & Weather Connected Vehicles & Weather Connected Vehicles & Weather Connected Vehicles & Weather U.S. DOE National Transportation Stakeholder Forum

33

Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site  

Science Conference Proceedings (OSTI)

The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

Patton, S.E.; Novo, M.G.; Shinn, J.H.

1986-04-01T23:59:59.000Z

34

Expansion of the Volpentest Hazardous Materials Management and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment Expansion of the Volpentest Hazardous Materials Management and Emergency Response Training and Education Center, Hanford Site, Richland, Washington U.S....

35

Process of cleaning oil spills and the like  

SciTech Connect

A process of cleaning spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like from bodies of water, garage floors, roadways and the like, comprising spraying unbonded shredded fiberglass blowing wool composition particles onto the spill, absorbing the spill into the shredded fiberglass blowing wool composition particles, and removing the soaked shredded fiberglass blowing wool composition particles and the spill absorbed therein. An absorbent composition for absorbing spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and like, comprising shredded fiberglass blowing wool particles, and means for absorbing the spill and for stiffening the co-position so that the composition fights against being compressed so that less of the absorbed spill escapes from the composition when it is being removed from the spill, said means including cork particles dispersed in with the fiberglass blowing wool particles. An absorbent sock for absorbing or containing a spill of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like, comprising a hollow tube, said tube being permeable to the toxic or hazardous materials and being made of nylon or polypropylene, and unbonded, shredded fiberglass blowing wool composition particles enclosed in the tube. Apparatus for controlling an oil slick on the surface of water, comprising a craft for traversing the slick, a supply of fiberglass blowing wool composition particles stored on the craft in position for being dispersed, shredding means on the craft for shredding the fiberglass blowing wool particles to form unbonded, shredded fiberglass blowing wool particles, and dispensing means on the craft for dispensing the unbonded, shredded fiberglass blowing wool particles onto the slick.

Breisford, J.A.

1993-06-01T23:59:59.000Z

36

Conversion of hazardous materials using supercritical water oxidation  

DOE Patents (OSTI)

A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The hazardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

Rofer, C.K.; Buelow, S.J.; Dyer, R.B.; Wander, J.D.

1991-03-29T23:59:59.000Z

37

Experiment Hazard Class 8.1 - Radioactive Materials/Samples  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Radioactive Materials 1 - Radioactive Materials Applicability This hazard classification applies to all experiments involving radioactive materials as samples. The requirements of this hazard class also apply to sealed radioactive sources that are used as a sample (i.e. a target for x-ray radiation). Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. The current requirements can be found in the APS Policy for Conducting Radioactive Sample Experiments in APS Experiment Enclosures. NOTE: The APS must be notified of shipment of any radioactive materials to the site well in advance of the proposed experiment. All radioactive materials must arrive through Argonne Receiving in Building 46 and the Argonne Materials Control & Accountability group (MC&A). Please contact

38

Toll Policies for Mitigating Hazardous Materials Transport Risk  

Science Conference Proceedings (OSTI)

In this paper, we investigate toll setting as a policy tool to regulate the use of roads for dangerous goods shipments. We propose a mathematical formulation as well as a solution method for the hazardous materials toll problem. Based on a comparative ... Keywords: bilevel programming, hazardous materials transportation, network design, toll setting

Patrice Marcotte; Anne Mercier; Gilles Savard; Vedat Verter

2009-05-01T23:59:59.000Z

39

Functional design criteria for the Hazardous Materials Management and Emergency Response (HAMMER) Training Center. Revision 1  

SciTech Connect

Within the United States, there are few hands-on training centers capable of providing integrated technical training within a practical application environment. Currently, there are no training facilities that offer both radioactive and chemical hazardous response training. There are no hands-on training centers that provide training for both hazardous material operations and emergency response that also operate as a partnership between organized labor, state agencies, tribes, and local emergency responders within the US Department of Energy (DOE) complex. Available facilities appear grossly inadequate for training the thousands of people at Hanford, and throughout the Pacific Northwest, who are required to qualify under nationally-mandated requirements. It is estimated that 4,000 workers at the Hanford Site alone need hands-on training. Throughout the Pacific Northwest, the potential target audience would be over 30,000 public sector emergency response personnel, as well as another 10,000 clean-up workers represented by organized labor. The HAMMER Training Center will be an interagency-sponsored training center. It will be designed, built, and operated to ensure that clean-up workers, fire fighters, and public sector management and emergency response personnel are trained to handle accidental spills of hazardous materials. Training will cover wastes at clean-up sites, and in jurisdictions along the transportation corridors, to effectively protect human life, property, and the environment.

Sato, P.K.

1995-03-10T23:59:59.000Z

40

Experiment Hazard Class 7.5 - Human Tissue/Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

5 - Human Tissue/Materials 5 - Human Tissue/Materials Applicability This hazard classification applies to all experiments involving biohazards requiring the use of human tissue/materials. Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. Human tissue/materials must also be evaluated for their biosafety level and as such will have to go through the process for that particular Biosafety Level. IMPORTANT NOTE: For non-Argonne employees, all experiment protocols involving human tissue are required to be either reviewed or declared exempt from review by their home institution's Institutional Review Board (IRB). Documentation of the review should be filed in the ESAF system and with the APS BioSafety Officer (BSO) (Nena Moonier 2-8504,

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Transporting & Shipping Hazardous Materials at LBNL: Dry Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Ice Dry ice is regulated as a hazardous material if shipped by air or water. Contact Shipping for any shipments that include dry ice (x5094, x4388, or shipping@lbl.gov)....

42

Sandia National Laboratories, California Hazardous Materials Management Program annual report.  

SciTech Connect

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2011-02-01T23:59:59.000Z

43

Conversion of hazardous materials using supercritical water oxidation  

DOE Patents (OSTI)

A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

Rofer, Cheryl K. (Los Alamos, NM); Buelow, Steven J. (Los Alamos, NM); Dyer, Richard B. (Los Alamos, NM); Wander, Joseph D. (Parker, FL)

1992-01-01T23:59:59.000Z

44

Transporting & Shipping Hazardous Materials at LBNL: Biological...  

NLE Websites -- All DOE Office Websites (Extended Search)

containment as needed to keep the primary containers upright. Remove gloves and wash hands after preparing biological materials for transport. Lab coat, clean gloves, and...

45

Material instability hazards in mine-processing operations  

SciTech Connect

Many accidents occur in the mining industry as a result of the instability of material during handling and processing operation. Accidents due to dump point instability at stockpiles, and at spoil or waste piles, for example, occur with alarming frequency. Miners must be trained to be better aware of these hazards. Information on safe working procedures at stockpiles and surge piles is provided. Mine operators must review their training and operating procedures regularly to ensure that hazardous conditions are avoided.

Fredland, J.W.; Wu, K.K.; Kirkwood, D.W.

1993-10-01T23:59:59.000Z

46

Ensuring Safe Shipment of Hazardous Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring Safe Shipment of Hazardous Materials Ensuring Safe Shipment of Hazardous Materials Ensuring Safe Shipment of Hazardous Materials March 28, 2013 - 12:00pm Addthis A truck carries a waste shipment from Brookhaven National Laboratory in New York. EM completed legacy cleanup activities at the site last year. A truck carries a waste shipment from Brookhaven National Laboratory in New York. EM completed legacy cleanup activities at the site last year. Emergency responders participate in a training exercise in the Transportation Emergency Preparedness Program (TEPP), which also recently released its annual report. Administered by EM’s Office of Packaging and Transportation, TEPP ensures federal, state, tribal and local responders have access to the plans, training and technical assistance necessary to safely, efficiently and effectively respond to radiological transportation accidents.

47

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents (OSTI)

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

48

Massachusetts Oil and Hazardous Material Release Prevention and Response Act, State Superfund Law (Massachusetts)  

Energy.gov (U.S. Department of Energy (DOE))

This Act contains information on prevention strategies for hazardous material release, permits for facilities managing hazardous waste, and response tactics and liability in the event such release...

49

Hazardous Materials Management and Emergency Response training Center needs assessment  

SciTech Connect

For the Hanford Site to provide high-quality training using simulated job-site situations to prepare the 4,000 Site workers and 500 emergency responders for known and unknown hazards a Hazardous Materials Management and Emergency Response Training Center is needed. The center will focus on providing classroom lecture as well as hands-on, realistic training. The establishment of the center will create a partnership among the US Department of Energy; its contractors; labor; local, state, and tribal governments; and Xavier and Tulane Universities of Louisiana. This report presents the background, history, need, benefits, and associated costs of the proposed center.

McGinnis, K.A. [Westinghouse Hanford Co., Richland, WA (United States); Bolton, P.A. [Pacific Northwest Lab., Richland, WA (United States); Robinson, R.K. [RKR, Inc. (United States)

1993-09-01T23:59:59.000Z

50

Transporting & Shipping Hazardous Materials at LBNL: Radioactive Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Materials Radioactive Materials Refer to transportation guidelines in the applicable Radioactive Work Authorization (RWA). Contact the Radiation Protection Group (x7652) if transportation assistance is needed or if radioactive materials need to be shipped. Refer to RPG's Zone sheet to identifying the RCT or HP for your building: https://ehswprod.lbl.gov/rpg/who_to_call.shtml Need radioactive material shipped from LBNL? Please complete the request for shipment form online, print, sign, and forward to your building assigned RPG support person: RPG Transportation - Request for Shipment Form: http://www.lbl.gov/ehs/rpg/assets/docs/Transportation4.pdf Receiving radioactive material at LBNL? If receiving radioactive material at LBNL; radioactive material should be sent to the following address:

51

Method and apparatus for the management of hazardous waste material  

DOE Patents (OSTI)

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

Murray, H. Jr.

1995-02-21T23:59:59.000Z

52

Method and apparatus for the management of hazardous waste material  

DOE Patents (OSTI)

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

Murray, Jr., Holt (Hopewell, NJ)

1995-01-01T23:59:59.000Z

53

PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper...

54

Hydrothermal oxidation of Navy shipboard excess hazardous materials  

SciTech Connect

This study demonstrated effective destruction, using a novel supercritical water oxidation reactor, of oil, jet fuel, and hydraulic fluid, common excess hazardous materials found on-board Navy vessels. This reactor uses an advanced injector design to mix the hazardous compounds with water, oxidizer, and a supplementary fuel and it uses a transpiring wall to protect the surface of the reactor from corrosion and salt deposition. Our program was divided into four parts. First, basic chemical kinetic data were generated in a simple, tubular-configured reactor for short reaction times (<1 second) and long reaction times (>5 seconds) as a function of temperature. Second, using the data, an engineering model was developed for the more complicated industrial reactor mentioned above. Third, the three hazardous materials were destroyed in a quarter-scale version of the industrial reactor. Finally, the test data were compared with the model. The model and the experimental results for the quarter-scale reactor are described and compared in this report. A companion report discusses the first part of the program to generate basic chemical kinetic data. The injector and reactor worked as expected. The oxidation reaction with the supplementary fuel was initiated between 400 {degrees}C and 450 {degrees}C. The released energy raised the reactor temperature to greater than 600 {degrees}C. At that temperature, the hazardous materials were efficiently destroyed in less than five seconds. The model shows good agreement with the test data and has proven to be a useful tool in designing the system and understanding the test results. 16 refs., 17 figs., 11 tabs.

LaJeunesse, C.A.; Haroldsen, B.L.; Rice, S.F.; Brown, B.G.

1997-03-01T23:59:59.000Z

55

Hydrothermal oxidation of Navy shipboard excess hazardous materials  

Science Conference Proceedings (OSTI)

This study demonstrated effective destruction, using a novel supercritical water oxidation reactor, of oil, jet fuel, and hydraulic fluid, common excess hazardous materials found on-board Navy vessels. This reactor uses an advanced injector design to mix the hazardous compounds with water, oxidizer, and a supplementary fuel and it uses a transpiring wall to protect the surface of the reactor from corrosion and salt deposition. Our program was divided into four parts. First, basic chemical kinetic data were generated in a simple, tubular-configured reactor for short reaction times (5 seconds) as a function of temperature. Second, using the data, an engineering model was developed for the more complicated industrial reactor mentioned above. Third, the three hazardous materials were destroyed in a quarter-scale version of the industrial reactor. Finally, the test data were compared with the model. The model and the experimental results for the quarter-scale reactor are described and compared in this report. A companion report discusses the first part of the program to generate basic chemical kinetic data. The injector and reactor worked as expected. The oxidation reaction with the supplementary fuel was initiated between 400 {degrees}C and 450 {degrees}C. The released energy raised the reactor temperature to greater than 600 {degrees}C. At that temperature, the hazardous materials were efficiently destroyed in less than five seconds. The model shows good agreement with the test data and has proven to be a useful tool in designing the system and understanding the test results. 16 refs., 17 figs., 11 tabs.

LaJeunesse, C.A.; Haroldsen, B.L.; Rice, S.F.; Brown, B.G.

1997-03-01T23:59:59.000Z

56

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12T23:59:59.000Z

57

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

58

Assessment of synfuel spill cleanup options  

DOE Green Energy (OSTI)

Existing petroleum-spill cleanup technologies are reviewed and their limitations, should they be used to mitigate the effects of synfuels spills, are discussed. The six subsections of this report address the following program goals: synfuels production estimates to the year 2000; possible sources of synfuel spills and volumes of spilled fuel to the year 2000; hazards of synfuels spills; assessment of existing spill cleanup technologies for oil spills; assessment of cleanup technologies for synfuel spills; and disposal of residue from synfuel spill cleanup operations. The first goal of the program was to obtain the most current estimates on synfuel production. These estimates were then used to determine the amount of synfuels and synfuel products likely to be spilled, by location and by method of transportation. A review of existing toxicological studies and existing spill mitigation technologies was then completed to determine the potential impacts of synthetic fuel spills on the environment. Data are presented in the four appendixes on the following subjects: synfuel production estimates; acute toxicity of synfuel; acute toxicity of alcohols.

Petty, S.E.; Wakamiya, W.; English, C.J.; Strand, J.A.; Mahlum, D.D.

1982-04-01T23:59:59.000Z

59

Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

60

An evaluation of current hazardous material management procedures for the Texas Department of Transportation  

E-Print Network (OSTI)

Dealing with hazardous materials on a day-to-day basis requires a fine--tuned material management system to minimize risk of exposure or injury to workers or to the public. An effective hazardous material management system should also keep up with all current regulatory requirements. This study evaluates the current hazardous material management procedures that the Texas Department of Transportation (TXDOT) is utilizing to ensure that if falls within the legal scope of the law and to provide recommendations for any areas of concern that may need to be improved. To satisfy this objective, a review of all the current and applicable federal regulations is conducted to determine the correct procedures for handling the hazardous materials that TXDOT uses daily. A discussion of the various state regulatory agencies is also included, as well as, a copy of all the applicable forms and documents that TXDOT must complete for these agencies. Since federal compliance is required of all the state transportation agencies, a brief review of several state DOT hazardous material management plans is covered to determine-nine how other agencies are handling their hazardous materials. And finally, TxDOT's current hazardous material handling procedures are discussed, including identification of several problem areas of concern, along with a series of recommendations to help improve TxDOT's current hazardous material management system.

Lovell, Cheryl Alane

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

GRR/Section 18 - Waste and Hazardous Material Assessment Process | Open  

Open Energy Info (EERE)

- Waste and Hazardous Material Assessment Process - Waste and Hazardous Material Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18 - Waste and Hazardous Material Assessment Process 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Environmental Protection Agency Regulations & Policies RCRA CERCLA 40 CFR 261 Triggers None specified Click "Edit With Form" above to add content 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The use of underground and above ground storage tanks, discovery of waste

62

HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN  

Science Conference Proceedings (OSTI)

In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial to understanding how heavy metals move through wetlands environments. These data, coupled with plume characterization data, indicate that Bayou Trepagnier is a model system for understanding how wetlands populations of fish, amphibians, and plants respond to long-term hydrocarbon and metals contamination. The CBR has fifteen years of experience in developing model aquatic ecosystems for evaluating environmental problems relevant to DOE cleanup activities. Using biotechnology screens and biomarkers of exposure, this project supports other CBR research demonstrating that chemicals in the environment can signal/alter the development of species in aquatic ecosystems, and show detrimental impacts on community, population, and the ecosystem, including human health. CBR studies funded through this grant have resulted in private sector investments, international collaborations, development of new technologies, and substantial new knowledge concerning the effects of hazardous materials on human and ecosystem health. Through the CBR, Tulane and Xavier Universities partnered with DOE-EM to lay groundwork for an effective research agenda that has become part of the DOE long term stewardship science and technology program and institutional management of the DOE complex.

John A. McLachlan

2003-12-01T23:59:59.000Z

63

HM-ACCESS Project (Framework for the Use of Electronic Shipping Papers for the Transport of Hazardous Materials)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline and Hazardous Materials Pipeline and Hazardous Materials Safety Administration Pipeline and Hazardous Materials Safety Administration HM-ACCESS Initiative James Simmons Acting Chief, Research and Development Office of Hazardous Materials Safety Engineering and Research Division May 2012 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration 2 H-azardous M-aterials A-utomated C-argo C-ommunication for E-fficient and S-afe S-hipments U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Background Purpose: To identify and eliminate barriers to the use of paperless hazard communication technologies to improve the delivery of critical hazardous materials (HM) safety information throughout the transportation chain.

64

PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 The objective of this surveillance is to evaluate the effectiveness of the contractor's programs, policies, and procedures to transport radioactive and hazardous materials off-site or to receive such materials for routine operations, treatment, storage, or disposal. The Facility Representative observes preparation of materials for shipment and receipt of materials and reviews specific documents to determine compliance with requirements imposed by DOE and by applicable regulations from the U.S. Nuclear Regulatory Commission and the Department of Transportation. PTS13-01.doc More Documents & Publications Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION SAFETY, DOE O

65

Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100  

SciTech Connect

The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

Borgeson, M.E.

1994-11-09T23:59:59.000Z

66

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

Michigan, Oil Spills, Underground Storage, Monitoring Two column tests were conducted using aquifer material to simulate the nitrate field

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

67

An OSHA based approach to safety analysis for nonradiological hazardous materials  

SciTech Connect

The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

Yurconic, M.

1992-08-01T23:59:59.000Z

68

An OSHA based approach to safety analysis for nonradiological hazardous materials  

SciTech Connect

The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

Yurconic, M.

1992-08-01T23:59:59.000Z

69

Screening tests for hazard classification of complex waste materials - Selection of methods  

Science Conference Proceedings (OSTI)

In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which can be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of waste materials. Test results are presented in a second paper. As the application of many of the proposed test methods is new in the field of waste management, the principles of the tests are described. The selected tests tackle important hazardous properties but refinement of the test battery is needed to fulfil the a priori conditions.

Weltens, R., E-mail: reinhilde.weltens@vito.be [VITO Flemish Institute for Technological Research, Boeretang 200, B 2400 Mol (Belgium); Vanermen, G.; Tirez, K. [VITO Flemish Institute for Technological Research, Boeretang 200, B 2400 Mol (Belgium); Robbens, J. [University of Antwerp - Laboratory for Ecophysiology, Biochemistry and Toxicology, Groenenborgerlaan 171, B2020 Antwerp (Belgium); Deprez, K.; Michiels, L. [University of Hasselt - Biomedical Research Institute, University Hasselt, Campus Diepenbeek, Agoralaan A, B3590 Diepenbeek (Belgium)

2012-12-15T23:59:59.000Z

70

Regulations Establishing Restricted Zones for the Transportation of Hazardous Materials (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish a Shore Clearance Line which cannot be crossed except in an emergency by any vessel transporting oil or hazardous materials in bulk in Long Island Sound. For the purpose...

71

Atmospheric Release Advisory Capability: Real-Time Modeling of Airborne Hazardous Materials  

Science Conference Proceedings (OSTI)

The Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory is a centralized federal project for assessing atmospheric releases of hazardous materials in real time. Since ARAC began making assessments in 1974, the ...

Thomas J. Sullivan; James S. Ellis; Connee S. Foster; Kevin T. Foster; Ronald L. Baskett; John S. Nasstrom; Walter W. Schalk III

1993-12-01T23:59:59.000Z

72

Surveillance Guides - PTS 13.1 Radioactive And Hazardous Material Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOACTIVE AND HAZARDOUS MATERIALS TRANSPORTATION RADIOACTIVE AND HAZARDOUS MATERIALS TRANSPORTATION 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's programs, policies, and procedures to transport radioactive and hazardous materials off-site or to receive such materials for routine operations, treatment, storage, or disposal. The Facility Representative observes preparation of materials for shipment and receipt of materials and reviews specific documents to determine compliance with requirements imposed by DOE and by applicable regulations from the U.S. Nuclear Regulatory Commission and the Department of Transportation. 2.0 References DOE O 460.1A, Packaging and Transportation Safety DOE O 460.2, Chg1, Departmental Materials Transportation and Packaging

73

Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.  

SciTech Connect

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2009-02-01T23:59:59.000Z

74

Oil Spills and Wildlife  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Spills and Wildlife Name: jess Location: NA Country: NA Date: NA Question: what are some effects of oil spills on plants? Replies: The effects of oil spills over the last...

75

Evaluation of Alternative Spill Containment Systems  

Science Conference Proceedings (OSTI)

This report provides information on spill containment design practices and the capabilities of equipment, materials and/or structures to contain and prevent releases of mineral oil. The information will aid in the design and selection of cost-effective spill containment systems that adequately address the risks posed by oil spills at a particular substation. The report discusses methods other than conventional containment systems comprised of concrete basins or vaults and earthen berms that are ...

2013-05-07T23:59:59.000Z

76

Flows of selected hazardous materials by rail. Final report for Sep 87-Apr 91  

SciTech Connect

The report is a review of hazardous materials rail traffic in the continental United States. It focuses on the year 1986, a relatively typical recent year in which an estimated total of 1,477 million net tons of freight was moved by rail. Of this, 63 million net tons, or four percent of the total, were hazardous materials. The report is designed to characterize the flow of selected hazardous materials and show their geographical distribution. It focusses on materials that (1) have large tonnages moving by rail, such as Products of Refining, (2) are regarded as especially dangerous, such as Products That May Be Toxic by Inhalation, or (3) have been recently designated as hazardous materials, such as molten or liquid sulphur. Its scope includes national, state and Business Economic Areas (BEAs) rail traffic. The purpose of the report is to help those in government and industry who are interested in the flows of hazardous materials see how these materials are geographically distributed by rail.

Beier, F.; Church, R.; Zebe, P.; Frev, J.

1991-05-01T23:59:59.000Z

77

Experiment Hazard Class 6.7 - Explosive and Energetic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

.7 - Explosive and Energetic Materials .7 - Explosive and Energetic Materials Applicability All experiments involving the use of small quantities ( < 10 mg total) of explosive material for beamline analysis. Visiting scientists at the APS periodically perform beamline experiments involving small quantities of explosive material (ie, TATB, HMX, RDX, PETN, HNFX). The samples that are analyzed within the x-ray beam are typically encased within a Diamond Anvil Cell (DAC) that is designed to exert pressures of ~ 100 GPa as its routine function. Following a few hours of analysis within the x-ray flux, the samples degrade and must be replenished. For this purpose, up to ten 1 mg samples of the explosive material are shipped with the DAC to allow for a complete data set. Explosive material must be transported to and from ANL through Bldg. 46,

78

Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment  

Science Conference Proceedings (OSTI)

This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: Determination of the design basis flood (DBFL) Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

Gerald Sehlke; Paul Wichlacz

2010-12-01T23:59:59.000Z

79

Organic and Inorganic Hazardous Waste Stabilization Using Coal Combustion By-Product Materials  

Science Conference Proceedings (OSTI)

This report describes a laboratory investigation of four clean-coal by-products to stabilize organic and inorganic constituents of hazardous waste stream materials. The wastes included API separator sludge, metal oxide-hydroxide waste, metal plating sludge, and creosote-contaminated soil. Overall, the investigation showed that the high alkalinity of the by-products may cost-effectively stabilize the acidic components of hazardous waste.

1994-10-08T23:59:59.000Z

80

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ultraviolet reflector materials for solar detoxification of hazardous waste  

DOE Green Energy (OSTI)

Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.

Jorgensen, G.; Govindarajan, R.

1991-07-01T23:59:59.000Z

82

Electrolytic decontamination of conductive materials for hazardous waste management  

SciTech Connect

Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodium nitrate concentrations of 200 g L{sup -1} and higher. Stirring was also observed to increase the uniformity of the stripping process.

Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

1996-12-31T23:59:59.000Z

83

Liquefied Gaseous Fuels Spill Test Facility: Overview of STF capabilities  

SciTech Connect

The Liquefied Gaseous Fuels Spill Test Facility (STF) constructed at the Department of Energy`s Nevada Test Site is a basic research tool for studying the dynamics of accidental releases of various hazardous liquids. This Facility is designed to (1) discharge, at a controlled rate, a measured volume of hazardous test liquid on a prepared surface of a dry lake bed (Frenchman Lake); (2) monitor and record process operating data, close-in and downwind meteorological data, and downwind gaseous concentration levels; and (3) provide a means to control and monitor these functions from a remote location. The STF will accommodate large and small-scale testing of hazardous test fluid release rates up to 28,000 gallons per minute. Spill volumes up to 52,800 gallons are achievable. Generic categories of fluids that can be tested are cryogenics, isothermals, aerosol-forming materials, and chemically reactive. The phenomena that can be studied include source definition, dispersion, and pool fire/vapor burning. Other capabilities available at the STF include large-scale wind tunnel testing, a small test cell for exposing personnel protective clothing, and an area for developing mitigation techniques.

Gray, H.E.

1993-09-01T23:59:59.000Z

84

Hazardous material minimization for radar assembly. Final report  

SciTech Connect

The Clean Air Act Amendment, enacted in November 1990, empowered the Environmental Protection Agency (EPA) to completely eliminate the production and usage of chlorofluorocarbons (CFCs) by January 2000. A reduction schedule for methyl chloroform beginning in 1993 with complete elimination by January 2002 was also mandated. In order to meet the mandates, the processes, equipment, and materials used to solder and clean electronic assemblies were investigated. A vapor-containing cleaning system was developed. The system can be used with trichloroethylene or d-Limonene. The solvent can be collected for recycling if desired. Fluxless and no-clean soldering were investigated, and the variables for a laser soldering process were identified.

Biggs, P.M.

1997-03-01T23:59:59.000Z

85

Safety implications of a large LNG tanker spill over water.  

SciTech Connect

The increasing demand for natural gas in the United States could significantly increase the number and frequency of marine LNG (liquefied natural gas) imports. Although many studies have been conducted to assess the consequences and risks of potential LNG spills, the increasing importance of LNG imports suggests that consistent methods and approaches be identified and implemented to help ensure protection of public safety and property from a potential LNG spill. For that reason the U.S. Department of Energy (DOE), Office of Fossil Energy, requested that Sandia National Laboratories (Sandia) develop guidance on a risk-based analysis approach to assess and quantify potential threats to an LNG ship, the potential hazards and consequences of a large spill from an LNG ship, and review prevention and mitigation strategies that could be implemented to reduce both the potential and the risks of an LNG spill over water. Specifically, DOE requested: (1) An in-depth literature search of the experimental and technical studies associated with evaluating the safety and hazards of an LNG spill from an LNG ship; (2) A detailed review of four recent spill modeling studies related to the safety implications of a large-scale LNG spill over water; (3) Evaluation of the potential for breaching an LNG ship cargo tank, both accidentally and intentionally, identification of the potential for such breaches and the potential size of an LNG spill for each breach scenario, and an assessment of the potential range of hazards involved in an LNG spill; (4) Development of guidance on the use of modern, performance-based, risk management approaches to analyze and manage the threats, hazards, and consequences of an LNG spill over water to reduce the overall risks of an LNG spill to levels that are protective of public safety and property.

Hightower, Marion Michael; Gritzo, Louis Alan; Luketa-Hanlin, Anay Josephine

2005-04-01T23:59:59.000Z

86

Original Research Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon  

E-Print Network (OSTI)

Chlorine gas represents a hazardous material threat from industrial accidents and as a terrorist weapon. This review will summarize recent events involving chlorine disasters and its use by terrorists, discuss pre-hospital considerations and suggest strategies for the initial management for acute chlorine exposure events. [West J Emerg Med. 2010; 11(2):151-156.

Robert Jones Md; Brandon Wills Do; Christopher Kang Md

2009-01-01T23:59:59.000Z

87

The Hazardous Material Technician Apprenticeship Program at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

This document describes an apprenticeship training program for hazardous material technician. This entry-level category is achieved after approximately 216 hours of classroom and on-the-job training. Procedures for evaluating performance include in-class testing, use of on-the-job checks, and the assignment of an apprentice mentor for each trainee. (TEM)

Steiner, S.D.

1987-07-01T23:59:59.000Z

88

SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES TOXIC/HAZARDOUS MATERIAL TRANSFER FACILITY DESIGN  

E-Print Network (OSTI)

facilities transferring toxic/hazardous materials with the following exceptions: A) gasoline station or similar installation solely incident to the retail sale or personal consumption of motor fuels for motor, phone number, signature and seal: C) Suffolk County tax map number (District-Section-Block-Lot); D

Homes, Christopher C.

89

Emergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas  

E-Print Network (OSTI)

-492-6025. For Non-Emergency Fire and Natural Gas Questions call the CU Fire Marshall @ 303-492-4042. AdditionalEmergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas leaks, the following actions should be taken: 1) Life Safety First 2) Evacuate Immediate Area 3

Colorado at Boulder, University of

90

Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PACKAGING AND TRANSFER PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials Regulations

91

Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials  

DOE Patents (OSTI)

The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

1999-01-01T23:59:59.000Z

92

Oil spill response resources  

E-Print Network (OSTI)

Pollution has become one of the main problems being faced by humanity. Preventing pollution from occurring might be the best idea but is not possible in this fast developing world. So the next best thing to do would be to respond to the pollution source in an effective manner. Oil spills are fast becoming pollution sources that are causing the maximum damage to the environment. This is owing to the compounds that are released and the way oil spreads in both water and land. Preventing the oil spill would be the best option. But once the oil has been spilled, the next best thing to do is to respond to the spill effectively. As a result, time becomes an important factor while responding to an oil spill. Appropriate response to contain and cleanup the spill is required to minimize its potential damage to the ecosystem. Since time and money play a very important role in spill response, it would be a great idea if decisions can be made in such a way that a quick response can be planned. The first part of this study deals with the formation of an 'Oil Spill Resources Handbook', which has information on all the important Oil Spill Contractors. The second and the main part of the study, deals with creating a database in Microsoft Access of the Oil Spill Contractors. The third portion of the study deals with planning an oil spill response using a systems approach.

Muthukrishnan, Shankar

1996-01-01T23:59:59.000Z

93

An overview of safety assessment, regulation, and control of hazardous material use at NREL  

DOE Green Energy (OSTI)

This paper summarizes the methodology we use to ensure the safe use of hazardous materials at the National Renewable Energy Laboratory (NREL). First, we analyze the processes and the materials used in those processes to identify the hazards presented. Then we study federal, state, and local regulations and apply the relevant requirements to our operations. When necessary, we generate internal safety documents to consolidate this information. We design research operations and support systems to conform to these requirements. Before we construct the systems, we perform a semiquantitative risk analysis on likely accident scenarios. All scenarios presenting in unacceptable risk require system or procedural modifications to reduce the risk. Following these modifications, we repeat the risk analysis to ensure that the respective accident scenarios present acceptable risk. Once all risks are acceptable, we conduct an operational readiness review (ORR). A management appointed panel performs the ORR ensuring compliance with all relevant requirements. After successful completion of the ORR, operations can begin.

Nelson, B.P.; Crandall, R.S. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

1992-01-01T23:59:59.000Z

94

Review of the Lawrence Livermore Nationa Laboratory Identiified Defective Department of Transportation Hazardous Material Packages  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Site Visit Report - Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages This site visit report documents the results of Office of Health, Safety and Security's review of the Lawrence Livermore National Laboratory (LLNL) identification, immediate actions, communications, documentation, evaluation, reporting and follow-up to the discovery of defective Department of Transportation (DOT) UN1A2 55- and 30-gallon open head single bolt closure steel drums intended for storage and transportation of hazardous waste and materials. This review, conducted on January 26-29, 2010, was sponsored by the DOE Livermore Site Office (LSO) to support interface with the lab and this report is intended to support follow-up

95

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

(s): Teeth. Cardiovascular system. HMIS RATING HEALTH: 3* FLAMMABILITY: 0 REACTIVITY: 2 SPECIAL HAZARD or soda ash, pick up, keep in a closed container, and hold for waste disposal. Ventilate area and wash spill site after material pickup is complete. Section 7 - Handling and Storage HANDLING ALDRICH - 435589

Lin, Anna L.

96

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

Section 3 - Hazards Identification EMERGENCY OVERVIEW Irritant. Irritating to eyes, respiratory system FOR CLEANING UP Cover with dry lime or soda ash, pick up, keep in a closed container, and hold for waste disposal. Ventilate area and wash spill site after material pickup is complete. Section 7 - Handling

Choi, Kyu Yong

97

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1999-03-16T23:59:59.000Z

98

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1999-03-16T23:59:59.000Z

99

Hazardous properties and environmental effects of materials used in solar heating and cooling (SHAC) technologies: interim handbook  

DOE Green Energy (OSTI)

General background informaion related to SHAC systems, how a particular material was chosen for this handbook, and codes and standards are given. Materials are categorized according to their functional use in SHAC systems as follows: (1) heat transfer fluids and fluid treatment chemicals, (2) insulation materials, (3) seals and sealant materials, (4) glazing materials, (5) collector materials, and (6) storage media. The informaion is presented under: general properties, chemical composition, thermal degradation products, and thermoxidative products of some commercial materials; toxic properties and other potential health effects; fire hazard properties; and environmental effects of and disposal methods for SHAC materials. (MHR)

Searcy, J.Q.

1978-12-01T23:59:59.000Z

100

Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division  

Office of Legacy Management (LM)

AUG 0 3 1998 AUG 0 3 1998 Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Dr. S. Denver, Colorado 80222-1530 _,l ' 7. ,;:""" I,!._ -~~ . Dear Mr. Simpson: We have reviewed your letter of July 10, 1998, requesting that the Department of Energy (DOE) reconsider its decision to exclude the Marion Millsite in Boulder County, Colorado, from remediation under the Formerly Utilized Sites Remedial Action Program (FUSRAP). As you may know, FUSRAP is no longer administered and executed by DOE as Congress transferred the program to the U.S. Army Corps of Engineers beginning.in fiscal year 1998. Nonetheless, we weighed the information included in your letter against the

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Emerging Technologies Applicable to the Safe and Secure Transportation of Hazardous Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Transportation Stakeholders Forum National Transportation Stakeholders Forum May 16, 2012 HMCRP Project HM-04: Emerging Technologies Applicable to Hazardous Materials Transportation Safety and Security 2 The HM-04 Team * Battelle - Prime - Bill Tate, Project Director/PI & Co-Author * Dr. Mark Abkowitz, Vanderbilt University - Co-Author * American Transportation Research Institute (ATRI) - Dan Murray, Lead * Visionary Solutions, LLC - Dan Hoglund, Lead * Olin Chemical Chlor-Alkali Division - Don Loftis 3 Project Objectives * Develop a list of near-term (less than 5 years) and longer-term (5-15 years) technologies that are candidates for enhancing safety and security of Hazmat transportation; * Identify emerging technologies that hold the greatest promise (in terms of effectiveness) of being introduced

102

ORNL IntelligentFreight Initiative:Enhanced End-to-End Supply Chain Visibility of Security Sensitive Hazardous Materials  

SciTech Connect

In the post September 11, 2001 (9/11) world the federal government has increased its focus on the manufacturing, distributing, warehousing, and transporting of hazardous materials. In 2002, Congress mandated that the Transportation Security Agency (TSA) designate a subset of hazardous materials that could pose a threat to the American public when transported in sufficiently large quantities. This subset of hazardous materials, which could be weaponized or subjected to a nefarious terrorist act, was designated as Security Sensitive Hazardous Materials (SSHM). Radioactive materials (RAM) were of special concern because actionable intelligence had revealed that Al Qaeda desired to develop a homemade nuclear device or a dirty bomb to use against the United States (US) or its allies.1 Because of this clear and present danger, it is today a national priority to develop and deploy technologies that will provide for visibility and real-time exception notification of SSHM and Radioactive Materials in Quantities of Concern (RAMQC) in international commerce. Over the past eight years Oak Ridge National Laboratory (ORNL) has been developing, implementing, and deploying sensor-based technologies to enhance supply chain visibility. ORNL s research into creating a model for shipments, known as IntelligentFreight, has investigated sensors and sensor integration methods at numerous testbeds throughout the national supply chain. As a result of our research, ORNL believes that most of the information needed by supply chain partners to provide shipment visibility and exceptions-based reporting already exists but is trapped in numerous proprietary or agency-centric databases.

Walker, Randy M [ORNL; Shankar, Mallikarjun [ORNL; Gorman, Bryan L [ORNL

2009-01-01T23:59:59.000Z

103

Safety Analysis: Evaluation of Accident Risks in the Transporation of Hazardous Materials by Truck and Rail at the Savannah River Plant  

Science Conference Proceedings (OSTI)

This report presents an analysis of the consequences and risks of accidents resulting from hazardous material transportation at the Savannah River Plant.

Blanchard, A.

1999-04-15T23:59:59.000Z

104

The Legacy of Oil Spills  

E-Print Network (OSTI)

When a 1979 exploratory oil well blew out and leaked oil foraddicted to oil directly causes spills as well as globalmagnitudes of past oil spills. They are well aware of the

Trevors, J. T.; Saier, M. H.

2010-01-01T23:59:59.000Z

105

Breach and safety analysis of spills over water from large liquefied natural gas carriers.  

SciTech Connect

In 2004, at the request of the Department of Energy, Sandia National Laboratories (Sandia) prepared a report, ''Guidance on the Risk and Safety Analysis of Large Liquefied Natural Gas (LNG) Spills Over Water''. That report provided framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. The report also presented the general scale of possible hazards from a spill from 125,000 m3 o 150,000 m3 class LNG carriers, at the time the most common LNG carrier capacity.

Hightower, Marion Michael; Luketa-Hanlin, Anay Josephine; Attaway, Stephen W.

2008-05-01T23:59:59.000Z

106

Final report of the accident phenomenology and consequence (APAC) methodology evaluation. Spills Working Group  

Science Conference Proceedings (OSTI)

The Spills Working Group was one of six working groups established under the Accident Phenomenology and Consequence (APAC) methodology evaluation program. The objectives of APAC were to assess methodologies available in the accident phenomenology and consequence analysis area and to evaluate their adequacy for use in preparing DOE facility safety basis documentation, such as Basis for Interim Operation (BIO), Justification for Continued Operation (JCO), Hazard Analysis Documents, and Safety Analysis Reports (SARs). Additional objectives of APAC were to identify development needs and to define standard practices to be followed in the analyses supporting facility safety basis documentation. The Spills Working Group focused on methodologies for estimating four types of spill source terms: liquid chemical spills and evaporation, pressurized liquid/gas releases, solid spills and resuspension/sublimation, and resuspension of particulate matter from liquid spills.

Brereton, S.; Shinn, J. [Lawrence Livermore National Lab., CA (United States); Hesse, D [Battelle Columbus Labs., OH (United States); Kaninich, D. [Westinghouse Savannah River Co., Aiken, SC (United States); Lazaro, M. [Argonne National Lab., IL (United States); Mubayi, V. [Brookhaven National Lab., Upton, NY (United States)

1997-08-01T23:59:59.000Z

107

Absorbents for Mineral Oil Spill Cleanup  

Science Conference Proceedings (OSTI)

Residual mineral oil on the ground surface following electrical equipment spills is often removed using a surface application of an absorbent material. Traditional absorbent products include clays, sawdust-like products, silica-based products, and various organic industry byproduct materials. After the material has had time to absorb the mineral oil on the ground surface, it is removed and normally sent to a landfill with a liner and leachate collection system designed to Subtitle D standards for municip...

2011-08-23T23:59:59.000Z

108

Chemical stability of salt cake in the presence of organic materials. [Detonation hazard  

DOE Green Energy (OSTI)

High-level waste stored as salt cake is principally NaNO/sub 3/. Some organic material is known to have been added to the waste tanks. It has been suggested that some of this organic material may have become nitrated and transformed to a detonable state. Arguments are presented to discount the presence of nitrated organics in the waste tanks. Nitrated organics generated accidentally usually explode at the time of formation. Detonation tests show that salt cake and ''worst-case'' organic mixtures are not detonable. Organic mixtures with salt cake are compared with black powder, a related exothermic reactant. Black-powder mixtures of widely varying composition can and do burn explosively; ignition temperatures are 300-450/sup 0/C. However, black-powder-type mixes cannot be ignited by radiation and are shock-insensitive. Temperatures generated by radionuclide decay in the salt are below 175/sup 0/C and would be incapable of igniting any of these mixtures. The expected effect of radiation on organics in the waste tanks is a slow dehydrogenation and depolymerization along with a slight increase in sensitivity to oxidation. The greatest explosion hazard, if any exists, is a hydrogen--oxygen explosion from water radiolysis, but the hydrogen must first be generated and then trapped so that the concentration of hydrogen can rise above 4 vol percent. This is impossible in salt cake. Final confirmation of the safety against organic-related explosive reactions in the salt cake will be based upon analytical determinations of organic concentrations. 12 tables, 5 fig. (DLC)

Beitel, G.A.

1976-04-01T23:59:59.000Z

109

A review of large-scale LNG spills : experiment and modeling.  

SciTech Connect

The prediction of the possible hazards associated with the storage and transportation of liquefied natural gas (LNG) by ship has motivated a substantial number of experimental and analytical studies. This paper reviews the experimental and analytical work performed to date on large-scale spills of LNG. Specifically, experiments on the dispersion of LNG, as well as experiments of LNG fires from spills on water and land are reviewed. Explosion, pool boiling, and rapid phase transition (RPT) explosion studies are described and discussed, as well as models used to predict dispersion and thermal hazard distances. Although there have been significant advances in understanding the behavior of LNG spills, technical knowledge gaps to improve hazard prediction are identified. Some of these gaps can be addressed with current modeling and testing capabilities. A discussion of the state of knowledge and recommendations to further improve the understanding of the behavior of LNG spills on water is provided.

Luketa-Hanlin, Anay Josephine

2005-04-01T23:59:59.000Z

110

Life-cycle analysis of hazardous chemicals in the Department of Materials Science & Engineering  

E-Print Network (OSTI)

MIT policies set forth by the Department of Environment, Health, and Safety (EHS) require that all laboratories maintain a chemical inventory to properly document the use of hazardous chemicals. While EHS has provided a ...

Chia, Valerie Jing-chi

2013-01-01T23:59:59.000Z

111

Qualitative evaluation of the accuracy of maps for release of hazardous materials.  

Science Conference Proceedings (OSTI)

The LinguisticBelief%C2%A9 software tool developed by Sandia National Laboratories was applied to provide a qualitative evaluation of the accuracy of various maps that provide information on releases of hazardous material, especially radionuclides. The methodology, %E2%80%9CUncertainty for Qualitative Assessments,%E2%80%9D includes uncertainty in the evaluation. The software tool uses the mathematics of fuzzy sets, approximate reasoning, and the belief/ plausibility measure of uncertainty. SNL worked cooperatively with the Remote Sensing Laboratory (RSL) and the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL) to develop models for three types of maps for use in this study. SNL and RSL developed the maps for %E2%80%9CAccuracy Plot for Area%E2%80%9D and %E2%80%9CAerial Monitoring System (AMS) Product Confidence%E2%80%9D. SNL and LLNL developed the %E2%80%9CLLNL Model%E2%80%9D. For each of the three maps, experts from RSL and LLNL created a model in the LinguisticBelief software. This report documents the three models and provides evaluations of maps associated with the models, using example data. Future applications will involve applying the models to actual graphs to provide a qualitative evaluation of the accuracy of the maps, including uncertainty, for use by decision makers. A %E2%80%9CQuality Thermometer%E2%80%9D technique was developed to rank-order the quality of a set of maps of a given type. A technique for pooling expert option from different experts was provided using the PoolEvidence%C2%A9 software.

Darby, John L.; Marianno, Craig [National Security Technologies, Las Vegas, NV] National Security Technologies, Las Vegas, NV

2008-08-01T23:59:59.000Z

112

Expansion of the Volpentest Hazardous Materials Management and Emergency Response Training and Education Center, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT EXPANSION OF THE VOLPENTEST HAZARDOUS MATERIALS MANAGEMENT AND EMERGENCY RESPONSE TRAINING AND EDUCATION CENTER HANFORD SITE, RICHLAND, WASHINGTON U.S. DEPARTMENT OF ENERGY November 2002 1 November 2002 U.S. Department of Energy Finding of No Significant Impact This page intentionally left blank. 2 November 2002 U.S. Department of Energy Finding of No Significant Impact AGENCY: U.S. Department of Energy ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1412, for expanding training and equipment testing facilities at the Volpentest Hazardous Materials Management and Emergency Response Training and Education Center (HAMMER) on the

113

Wind tunnel simulation of wind effects and associated displacement hazards on flat surface construction materials such as plywood  

E-Print Network (OSTI)

Accidents and hazards continue to plague the construction industry. One often overlooked hazard to workers is the potential for flying debris and materials during high winds. This research was designed to evaluate the wind velocity required to create such an airborne hazard with flat surface materials such as plywood. This research was developed to show select correlations between the wind velocity, lifting forces and the susceptibility to movement of large surface area flat sheets of construction material, specifically four feet by eight feet sheets of floordeck plywood weighing 107 pounds. It also examined and evaluated the correlation of a shape coefficient to movement of materials and wind velocities, so that calculations can be made to adequately predict the potential movement of these materials. This will allow construction supervisors to reasonably prepare for such anticipated conditions. The Texas A&M University low speed wind tunnel was used to place a ftffl-scale stack of plywood floor decking material with the air stream flowing over the stack until top sheet separated or lifted from the stack. Next, a half-scale model was placed in the test section of the tunnel with pressure ports attached to a high speed sampling transducer to measure the actual pressures at select velocities. This allowed for a correlation between the ftifl-scale data and the sampled data. Tests were performed for several front and side angles of the wind striking the edge surface of the materials. Velocities were used up to 60 miles per hour full-scale equivalent. The full-scale model achieved lift forces exceeding the material weight of 107 pounds at one orientation angle at a velocity just below 30 miles per hour. This was consistent with the half-scale test pressures for a similar orientation. Various orientations yielded different forces as was anticipated. From this information a pressure coefficient was developed which when applied with a safety factor allows for reasonable calculations to be made to determine potential hazards and adequately secure materials on any sites where large flat materials may be handled or stored.

Madeley, Jack T.

1996-01-01T23:59:59.000Z

114

Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C  

Science Conference Proceedings (OSTI)

The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

Gary Mecham; Don Konoyer

2009-11-01T23:59:59.000Z

115

BP Oil Spill November 10, 2011  

E-Print Network (OSTI)

BP Oil Spill Qiyam Tung November 10, 2011 1 Introduction Figure 1: BP Oil spill (source: http://thefoxisblack.com/2010/05/02/the-bp-oil-spill-in-the-gulf-of-mexico/) Last year, there was a major oil spill caused major techniques to minimize the threat once it happened. What kind of damage would an oil spill like this cause

Lega, Joceline

116

Vapor spill monitoring method  

DOE Patents (OSTI)

Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

117

Vapor spill pipe monitor  

DOE Patents (OSTI)

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

118

Chemical hazard evaluation of material disposal area (MDA) B closure project  

SciTech Connect

TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

Laul, Jadish C [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

119

Journal of Hazardous Materials 179 (2010) 895900 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

al. [7] showed that TCLP-Pb (toxicity characteristic leaching procedure) of the surface soil in a Florida shooting range exceeded USEPA hazardous waste criteria of 5 mg Pb L-1. The TCLP-Pb leachability rate (TCLP-Pb:total Pb) was controlled by lead carbonate precipi- tation/dissolution reactions in soils

Ma, Lena

120

Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994  

SciTech Connect

Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

Abdelghani, A.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, October 1, 1993--December 31, 1993  

Science Conference Proceedings (OSTI)

This quarterly project status report discusses research projects being conducted on hazardous materials in aquatic environments of the Mississippi River basin. We continued to seek improvement in our methods of communication and interactions to support the inter-disciplinary, inter-university collaborators within this program. In addition to the defined collaborative research teams, there is increasing interaction among investigators across projects. Planning for the second year of the project has included the development of our internal request for proposals, and refining the review process for selection of proposals for funding.

Not Available

1993-12-31T23:59:59.000Z

122

PCB spill response and notification requirements  

SciTech Connect

Polychlorinated biphenyls (PCBs) are a class of organic chemicals that had become widely used in industrial applications due to their practical physical and chemical properties. Historical uses of PCBs include dielectric fluids (used in utility transformers, capacitors, etc.), hydraulic fluids, and other applications requiring stable, fire-retardant materials. Due to findings that PCBs may cause adverse health effects and due to their persistence and accumulation in the environment. The Toxic Substances Control Act (TSCA), enacted on october 11, 1976, banned the manufacture of PCBs after 1978 [Section 6(e)]. The first PCB regulations, promulgated at 40 CFR Part 761, were finalized on February 17, 1978. These PCB regulations include requirements specifying disposal methods and marking (labeling) procedures, and controlling PCB use. To assist the Department of Energy (DOE) in its efforts to comply with the TSCA statute and implementing regulations, the Office of Environmental Guidance has prepared the document ``Guidance on the Management of Polychlorinated Biphenyls (PCBs).`` That document explains the requirements specified in the statute and regulations for managing PCBs including PCB use, storage, transport, and disposal. The Environmental Protection Agency (EPA) established regulations at 40 CFR 761 Subpart G for the reporting and cleanup of spills resulting from the release of any quantity of material containing PCBs at concentrations of {ge} 50 ppm. The regulations, known collectively as the TSCA Spill Cleanup Policy, contain requirements for the notification, cleanup, decontamination verification, and recordkeeping of PCB spills. This Information Brief supplements the PCB guidance document by responding to common questions concerning PCB spill response and notification requirements. It is one of a series of Information Briefs pertinent to PCB management issues.

NONE

1994-12-01T23:59:59.000Z

123

Nanotechnology-based solutions for oil spills  

E-Print Network (OSTI)

acknowledged to be among the worst ocean oil spills in world history. Inevitably, the spill has once againNanotechnology-based solutions for oil spills :: Texas Tech News http://today.ttu.edu/2011/02/nanotechnology-based-solutions-for-oil-spills/[2/23/2011 8:58:19 AM] February 22, 2011 nanowerk - Nanotechnology

Rock, Chris

124

Chemical Spill Response Procedure Initial Response  

E-Print Network (OSTI)

Chemical Spill Response Procedure Initial Response 1. Advise lab occupants of the spill such as quantity spilled and chemical name. Risk Assessment 3. Conduct an initial risk assessment to determine if to the chemical spill. This link can be found at the bottom of the Campus Security homepage, http

125

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

and bald eagles following the Exxon Valdez oil spill. In:oil, seabirds, eagles, Exxon Valdez, oil spill. Americanshorelines following the Exxon Valdez spill. In: Proceedings

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

126

PLT Activity Connections to the Gulf Oil Spill  

U.S. Energy Information Administration (EIA)

Habitat loss, wetland loss. Useful websites: 1. Smithsonian Gulf Oil Spill: Science Smithsonian Holdings May Show Oil Spills Impact in

127

Quantitative transportation risk analysis based on available data/databases: decision support tools for hazardous materials transportation  

E-Print Network (OSTI)

Historical evidence has shown that incidents due to hazardous materials (HazMat) releases during transportation can lead to severe consequences. The public and some agencies such as the Department of Transportation (DOT) show an increasing concern with the hazard associated with HazMat transportation. Many hazards may be identified and controlled or eliminated through use of risk analysis. Transportation Risk Analysis (TRA) is a powerful tool in HazMat transportation decision support system. It is helpful in choosing among alternate routes by providing information on risks associated with each route, and in selecting appropriate risk reduction alternatives by demonstrating the effectiveness of various alternatives. Some methodologies have been developed to assess the transportation risk; however, most of those proposed methodologies are hard to employ directly by decision or policy makers. One major barrier is the lack of the match between available data/database analysis and the numerical methodologies for TRA. In this work methodologies to assess the transportation risk are developed based on the availability of data or databases. The match between the availability of data/databases and numerical TRA methodologies is pursued. Each risk component, including frequency, release scenario, and consequence, is assessed based on the available data/databases. The risk is measured by numerical algorithms step by step in the transportation network. Based on the TRA results, decisions on HazMat transportation could be made appropriately and reasonably. The combination of recent interest in expanding or building new facilities to receive liquefied natural gas (LNG) carriers, along with increased awareness and concern about potential terrorist action, has raised questions about the potential consequences of incidents involving LNG transportation. One of those consequences, rapid phase transition (RPT), is studied in this dissertation. The incidents and experiments of LNG-water RPT and theoretical analysis about RPT mechanism are reviewed. Some other consequences, like pool spread and vapor cloud dispersion, are analyzed by Federal Energy Regulatory Commission (FERC) model.

Qiao, Yuanhua

2003-05-01T23:59:59.000Z

128

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

1992-07-01T23:59:59.000Z

129

The Legacy of Oil Spills  

E-Print Network (OSTI)

010-0527-5 The Legacy of Oil Spills J. T. Trevors & M. H.workers were killed, and oil has been gushing out everday. It is now June, and oil continues to spew forth into

Trevors, J. T.; Saier, M. H.

2010-01-01T23:59:59.000Z

130

Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-5507-2013 STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT Washington, D.C. 20585 Distribution Statement: A. Approved for public release; distribution is unlimited This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services,

131

Radiation Hazards Program (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

132

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

1992-07-01T23:59:59.000Z

133

Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

1992-07-01T23:59:59.000Z

134

Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, December 30, 1992--December 29, 1993  

Science Conference Proceedings (OSTI)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy`s programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993.

Not Available

1993-12-31T23:59:59.000Z

135

Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993  

Science Conference Proceedings (OSTI)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases.

Not Available

1993-12-31T23:59:59.000Z

136

ASSET RECOVERY OF HAZARDOUS MATERIALS BENEFICIAL REUSE OF RADIOLOGICALLY ENCUMBERED LEAD STOCKS  

Science Conference Proceedings (OSTI)

Underutilized and surplus lead stocks and leaded components are a common legacy environmental problem across much of the Department of Energy (DOE) Complex. While seeking to dispose of these items through its Environmental Management Program, DOE operational programs continue to pursue contemporary mission requirements such as managing and/or storing radioactive isotopes that require lead materials for shielding. This paradox was identified in late 1999 when DOE's policies for managing scrap metal were assessed. In January 2000, the Secretary of Energy directed the National Center of Excellence for Materials Recycle (NMR) to develop and implement a comprehensive lead reuse program for all of DOE. Fluor Hanford, contractor for DOE Richland Operations, subsequently contacted NMR to pilot lead reclamation and reuse at the Hanford Site. This relationship resulted in the development of a beneficial reuse pathway for lead reclaimed from spent fuel transport railcars being stored at Hanford. The 1.3 million pounds of lead in the railcars is considered radiologically encumbered due to its prior use. Further, the material was considered a mixed Resource Conservation and Recovery Act (RCRA) low-level radioactive waste that would require expensive storage or macro encapsulation to meet land disposal restrictions prior to burial. Working closely with Flour Hanford and the Office of Air, Water, and Radiation (EH-412), NMR developed a directed reuse pathway for this and other radiologically encumbered lead. When derived supplemental release limits were used, the lead recovered from these railcars became eligible for reuse in shielding products to support DOE and commercial nuclear industry operations. Using this disposition pathway has saved Hanford one third of the cost of disposing of the lead and the cost of acquiring additional lead for nuclear shielding applications. Furthermore, the environmental costs associated with mining and producing new lead for shielding products a nd stewardship of the waste was eliminated. Methods and processes developed in cooperation with Fluor Hanford are applicable to, and have been successfully applied to, lead stocks at DOE sites such as Savannah River, Mound, Los Alamos, and Idaho.

Lloyd, E.R.; Meehan, R.W.

2003-02-27T23:59:59.000Z

137

Filamentous Carbon Particles for Cleaning Oil Spills  

cleaning oil spills. Crude oil and other petroleum products can cause severe damage to the environment and wildlife when spilled into the water. Oil is not only transferred by supertanker, but also by underwater pipelines an kept in coastal ...

138

BP Oil Spill Update | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Oil Spill Update BP Oil Spill Update BP Oil Spill Update August 10, 2010 - 10:48am Addthis Sec. Chu working on solutions to the BP Oil spill with a member of the Federal Science Team. | Energy Department Photo | Sec. Chu working on solutions to the BP Oil spill with a member of the Federal Science Team. | Energy Department Photo | Secretary Chu Secretary Chu Former Secretary of Energy "We also must remain focused on helping the people, businesses and communities in the Gulf Coast region who have been affected by this spill." Secretary Steven Chu As you may know, I've spent much of the last three months working to help contain the BP oil spill. I recently returned from my seventh trip to Houston, and I thought this would be a good opportunity to update you on our work to seal the damaged well in the Gulf.

139

Absorbents for Mineral Oil Spill Cleanup, Phase 3: Field Performance  

Science Conference Proceedings (OSTI)

Residual mineral oil on the ground surface following electrical equipment spills is often removed using a surface application of an absorbent material. Traditional absorbent products include clays, sawdust-like products, silica-based products, and various organic industry byproduct materials. This project was performed in three phases. Phase 1 included testing to measure overall mineral oil absorption efficiency of 24 absorbents. In Phase 2, absorbents studied in Phase 1 were further ...

2012-12-10T23:59:59.000Z

140

H. R. 2223: Oil Spill Resource Restoration Act. Introduced in the House of Representatives, One Hundred First Congress, First Session, May 3, 1989  

Science Conference Proceedings (OSTI)

H.R. 2223 would provide for expedited assessment of damages from major oil spills, and would amend the Internal Revenue Code of 1986 to disallow deduction of the costs for cleanup of oil or hazardous substance discharges. Upon receiving a petition for expedited preliminary damage, the administrator would immediately initiate an assessment of the damages to natural resources. Within 20 days if it is found to be a major spill, the administrator designates trustees for overseeing both Federal and state natural resources that are affected, establishes a commission of these trustees, makes a determination regarding the party responsible for the spill, and directs that party to establish a trust fund accessible to the commission in an amount determined to be adequate to pay reasonable costs incurred by the commission for a full assessment of the damages and for preparing a restoration and replacement plan. Deductions for cleanup of spills would be allowed only if it can be certified that the taxpayer made good faith efforts to comply with the Clean Water Act for oil spills or with the Comprehensive Environmental Response, Compensation, and Liability Act for hazardous substances spills or if it can be proved that the spill was caused by an act of God, and act of war, negligence on the part of the US government, or an act of omission of a third party. The bill would be applicable to spills occurring after March 23, 1989.

Not Available

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

User`s guide for the KBERT 1.0 code: For the knowledge-based estimation of hazards of radioactive material releases from DOE nuclear facilities  

Science Conference Proceedings (OSTI)

The possibility of worker exposure to radioactive materials during accidents at nuclear facilities is a principal concern of the DOE. The KBERT software has been developed at Sandia National Laboratories under DOE support to address this issue by assisting in the estimation of risks posed by accidents at chemical and nuclear facilities. KBERT is an acronym for Knowledge-Based system for Estimating hazards of Radioactive material release Transients. The current prototype version of KBERT focuses on calculation of doses and consequences to in-facility workers due to accidental releases of radioactivity. This report gives detailed instructions on how a user who is familiar with the design, layout and potential hazards of a facility can use KBERT to assess the risks to workers in that facility. KBERT is a tool that allows a user to simulate possible accidents and observe the predicted consequences. Potential applications of KBERT include the evaluation of the efficacy of evacuation practices, worker shielding, personal protection equipment and the containment of hazardous materials.

Browitt, D.S.; Washington, K.E.; Powers, D.A. [and others

1995-07-01T23:59:59.000Z

142

Collusion Through Insurance: Sharing the Costs of Oil Spill Cleanups  

E-Print Network (OSTI)

Insurance: Sharing the Costs of Oil Spill Cleanups." EddieInsurance: Sharing the Costs of Oil Spill Cleanups EddieINSURANCE: SHARING THE COSTS OF OIL SPILL CLEANUPS Eddie

Dekel, Eddie; Scothmer, Suzanne

1989-01-01T23:59:59.000Z

143

The Economic Impact of Oil Spills  

U.S. Energy Information Administration (EIA)

Oil spills not only affect environmentally but also economically. The economic impacts are directly or indirectly related to the environmental impacts ...

144

ROOT CAUSE ANALYSIS REPORT OF PLUTONIUM SPILL ...  

Science Conference Proceedings (OSTI)

... research reactor, supported the Nuclear Regulatory Commission (NRC) in ... root cause analysis of a major oil pipeline rupture and spill in a ...

145

Appendix D Draft Oil Spill Response Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D D Draft Oil Spill Response Plan U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix D Draft Oil Spill Response Plan DRAFT Oil Spill Response Plan CAPE WIND ASSOCIATES, LLC BOSTON, MASSACHUSETTS PREPARED FOR Cape Wind Associates, LLC 75 Arlington Street Boston, Massachusetts 02116 PREPARED BY ESS Group, Inc. 401 Wampanoag Trail, Suite 400 East Providence, Rhode Island 02915 Project No. E159-601 December 2005 DRAFT OIL SPILL RESPONSE PLAN Cape Wind Associates, LLC Boston, Massachusetts Prepared For: Cape Wind Associates, LLC 75 Arlington Street Boston, Massachusetts 02116 Prepared By: ESS Group, Inc. 401 Wampanoag Trail, Suite 400

146

Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, 1 April--30 June 1994  

Science Conference Proceedings (OSTI)

This report contains a cluster of twenty separate project reports concerning the fate, environmental transport, and toxicity of hazardous wastes in the Mississippi River Basin. Some of topics investigated involve: biological uptake and metabolism; heavy metal immobilization; biological indicators; toxicity; and mathematical models.

Not Available

1994-08-01T23:59:59.000Z

147

Preliminary assessment of an oil-spill trajectory model using satellite-tracked, oil-spill-simulating drifters  

Science Conference Proceedings (OSTI)

Ninety-seven oil-spill-simulating drifters were deployed over the continental shelf of the northeastern Gulf of Mexico during five hydrographic surveys conducted from 1997 through 1999. Earlier, comparisons with spilled crude petroleum on the ocean surface ... Keywords: Model assessment, Model verification, Oil-spill model, Oil-spill model assessment, Oil-spill model verification, Statistical oil-spill model, Trajectory model

James M. Price; Mark Reed; Matthew K. Howard; Walter R. Johnson; Zhen-Gang Ji; Charles F. Marshall; Norman L. Guinasso, Jr.; Gail B. Rainey

2006-02-01T23:59:59.000Z

148

Assessment of synfuel spill cleanup options  

DOE Green Energy (OSTI)

This paper presents a preliminary assessment of the projected magnitude and impact of liquid synfuel spillage over the next 20 years and the effectiveness of conventional mitigation measures. Production levels were projected through the year 2000. By applying crude oil spill histories to these projections, estimates can be prepared for the quantities of synfuel products most likely to be spilled. The toxicity of the synfuels will depend on its density, composition, and physical properties and the environment in which it is spilled. Toxicological impacts of synfuel spills to the environment can be classified into 2 classes - acute and chronic and will be most severe in proximity to the spill site. Possible impacts to human populations are also discussed. (DMC)

Mercer, B.W.; Wakamiya, W.; Petty, S.E.; Strand, J.A.; Mahlum, D.D.

1981-07-23T23:59:59.000Z

149

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada  

DOE Green Energy (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the activities necessary to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites. CAU 398, located in Area 25 of the Nevada Test Site, is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996), and consists of the following 13 Corrective Action Sites (CASs) (Figure 1): (1) CAS 25-44-01 , a fuel spill on soil that covers a concrete pad. The origins and use of the spill material are unknown, but the spill is suspected to be railroad bedding material. (2) CAS 25-44-02, a spill of liquid to the soil from leaking drums. (3) CAS 25-44-03, a spill of oil from two leaking drums onto a concrete pad and surrounding soil. (4) CAS 25-44-04, a spill from two tanks containing sulfuric acid and sodium hydroxide used for a water demineralization process. (5) CAS 25-25-02, a fuel or oil spill from leaking drums that were removed in 1992. (6) CAS 25-25-03, an oil spill adjacent to a tipped-over drum. The source of the drum is not listed, although it is noted that the drum was removed in 1991. (7) CAS 25-25-04, an area on the north side of the Engine-Maintenance, Assembly, and Disassembly (E-MAD) facility, where oils and cooling fluids from metal machining operations were poured directly onto the ground. (8) CAS 25-25-05, an area of oil and/or hydraulic fluid spills beneath the heavy equipment once stored there. (9) CAS 25-25-06, an area of diesel fuel staining beneath two generators that have since been removed. (10) CAS 25-25-07, an area of hydraulic oil spills associated with a tunnel-boring machine abandoned inside X-Tunnel. (11) CAS 25-25-08, an area of hydraulic fluid spills associated with a tunnel-boring machine abandoned inside Y-Tunnel. (12) CAS 25-25-16, a diesel fuel spill from an above-ground storage tank located near Building 3320 at Engine Test Stand-1 (ETS-1) that was removed in 1998. (13) CAS 25-25-17, a hydraulic oil spill associated with the historical operations of a vacuum pump oil recovery system at the E-MAD facility.

K. B. Campbell

2001-11-01T23:59:59.000Z

150

Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)  

SciTech Connect

Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

Estrella, R.

1994-10-01T23:59:59.000Z

151

Hazardous Waste  

Science Conference Proceedings (OSTI)

Table 6   General refractory disposal options...D landfill (b) Characterized hazardous waste by TCLP

152

2010 oil spill: trajectory projections based on ensemble drifter analyses  

E-Print Network (OSTI)

2010 oil spill: trajectory projections based on ensemble drifter analyses Yu-Lin Chang & Leo Oey # Springer-Verlag 2011 Abstract An accurate method for long-term (weeks to months) projections of oil spill released at the northern Gulf of Mexico spill site is demonstrated during the 2010 oil spill

153

OrlandoSentinel.com OIL SPILL IN THE GULF  

E-Print Network (OSTI)

OrlandoSentinel.com OIL SPILL IN THE GULF Gauging BP oil spill's damage may take a decade Florida marine scientists take lead in researching oil-spill disaster's effects in Gulf By William E. Gibson polluted plankton on the floor of the Gulf of Mexico, an indication that toxic oil from the BP spill may

Belogay, Eugene A.

154

The Deepwater Horizon oil spill and Miami-Dade County  

E-Print Network (OSTI)

The Deepwater Horizon oil spill and Miami-Dade County Issue 8.2 Background On Tuesday, April 20 days later off the coast of Louisiana. The Deepwater Horizon oil spill is now the largest oil spill in U.S. history and has been designated as a Spill of Na- tional Significance. Current projections from

Jawitz, James W.

155

Spills worsen problems in global oil movements  

SciTech Connect

Since early 1978 there have been several serious accidents involving oil tankers and terminals. The wreck of the Amoco Cadiz off the northwestern coast of France on March 16, 1978, resulted in the largest oil spill in history; about 230,000 tons were spilled over 60 mi of the French coastline. Other less spectacular spills have had similar damaging effects. International spill liability agreements are discussed. The bulk of coastal pollution throughout the world is caused by ballast tank discharges that are in excess of limits set by international convention. Minimizing or eliminating ballast discharges is a primary goal of individual oil companies and international groups. Theoretically, the load on top method of ballast tank cleaning should largely eliminate pollution from ships with facilities to use this technique. Examined are methods of enforcing international regulation of ballast tank cleaning operations and implementing widespread use of the load on top cleaning technique. (1 map, 5 photos, 1 table)

Vielvoye, R.

1979-06-25T23:59:59.000Z

156

Tulane/Xavier Center for Bioenvironmental Research; project: hazardous materials in aquatic environments; subproject: biomarkers and risk assessment in Bayou Trepagnier, LA  

Science Conference Proceedings (OSTI)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established in 1989 as the umbrella organization to coordinate environmental research at both universities. CBR projects funded by the DOE under the Hazardous Materials in Aquatic Environments grant are defining the following: (1) the complex interactions that occur during the transport of contaminants through wetlands environments, (2) the actual and potential impact of contaminants on ecological systems and health, (3) the mechanisms and new technologies through which these impacts might be remediated, and (4) new programs aimed at educating and training environmental workers of the future. The subproject described in this report, `Biomarkers and Risk Assessment in Bayou Trepagnier, LN`, is particularly relevant to the US Department of Energy`s Environmental Restoration and Waste Management program aimed at solving problems related to hazard monitoring and clean-up prioritization at sites with aquatic pollution problems in the DOE complex.

Ide, C.

1996-12-31T23:59:59.000Z

157

Underestimation of oxygen deficiency hazard through use of linearized temperature profiles  

Science Conference Proceedings (OSTI)

The failure mode analysis for any cryogenic system includes the effects of a large liquid spill due to vessel rupture or overfilling. The Oxygen Deficiency Hazard (ODH) analysis for this event is a strong function of the estimated heat flux entering the spilled liquid. A common method for estimating the heat flux is to treat the surface on which the liquid spills as a semi-infinite solid. This note addresses the effect of linearizing the temperature profile in this form of analysis, and shows it to cause the calculated flux to be underestimated by more than a factor of two. 3 refs., 2 figs.

Kerby, J.

1989-06-15T23:59:59.000Z

158

CHEMICAL SPILL KIT LOCATION/CONTENTS 1. Chemical spill kits are located in areas with the highest probability of a chemical spill. The  

E-Print Network (OSTI)

CHEMICAL SPILL KIT LOCATION/CONTENTS 1. Chemical spill kits are located in areas with the highest probability of a chemical spill. The locations are: 1. Chemistry Department E810 2. Chemistry Department E715 4th Level Loading Area 6. Parkway Service Complex Shipping and Receiving Loading Area 7. Chemical

Seldin, Jonathan P.

159

Hazards assessment for the Hazardous Waste Storage Facility  

SciTech Connect

This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

Knudsen, J.K.; Calley, M.B.

1994-04-01T23:59:59.000Z

160

FAQ 12-What are the hazards associated with uranium hexafluoride...  

NLE Websites -- All DOE Office Websites (Extended Search)

hazards associated with uranium hexafluoride? What are the hazards associated with uranium hexafluoride? The characteristics of UF6 pose potential health risks, and the material is...

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

National Emission Standards for Hazardous Air Pollutants, June 2005  

DOE Green Energy (OSTI)

The sources of radionuclides include current and previous activities conducted on the NTS. The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing has included (1) atmospheric testing in the 1950s and early 1960s, (2) underground testing between 1951 and 1992, and (3) open-air nuclear reactor and rocket engine testing (DOE, 1996a). No nuclear tests have been conducted since September 23,1992 (DOE, 2000), however; radionuclides remaining on the soil surface in many NTS areas after several decades of radioactive decay are re-suspended into the atmosphere at concentrations that can be detected by air sampling. Limited non-nuclear testing includes spills of hazardous materials at the Non-Proliferation Test and Evaluation Complex (formerly called the Hazardous Materials Spill Center), private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses; handling, transport, storage, and assembly of nuclear explosive devices or radioactive targets for the Joint Actinide Shock Physics Experimental Research (JASPER) gas gun; and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE, 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in calendar year (CY) 2004 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and water pumped from wells used to characterize the aquifers at the sites of past underground nuclear tests, (2) onsite radioanalytical laboratories, (3) the Area 3 and Area 5 RWMS facilities, and (4) diffuse sources of tritium (H{sup 3}) and re-suspension of plutonium ({sup 239+240}Pu) and americium ({sup 241}Am) at the sites of past nuclear tests. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility (NLVF). At the NLVF, parts of Building A-1 were contaminated with tritium by a previous contractor in 1995. The incident involved the release of tritium as HTO. This unusual occurrence led to a very small potential exposure to an offsite person. The HTO emission has continued at lower levels (probably re-emanation from building materials), even after cleanup activities in November and December 1997. A description of the incident and the potential effective dose equivalent (EDE) for offsite exposure are set forth in Appendix A.

Robert F. Grossman

2005-06-01T23:59:59.000Z

162

Oak Ridge Health Studies Phase 1 report, Volume 2: Part D, Dose Reconstruction Feasibility Study. Tasks 6, Hazard summaries for important materials at the Oak Ridge Reservation  

Science Conference Proceedings (OSTI)

The purpose of Task 6 of Oak Ridge Phase I Health Studies is to provide summaries of current knowledge of toxic and hazardous properties of materials that are important for the Oak Ridge Reservation. The information gathered in the course of Task 6 investigations will support the task of focussing any future health studies efforts on those operations and emissions which have likely been most significant in terms of off-site health risk. The information gathered in Task 6 efforts will likely also be of value to individuals evaluating the feasibility of additional health,study efforts (such as epidemiological investigations) in the Oak Ridge area and as a resource for citizens seeking information on historical emissions.

Bruce, G.M.; Walker, L.B.; Widner, T.E.

1993-09-01T23:59:59.000Z

163

CHSP: HAZARD CONTROLS  

NLE Websites -- All DOE Office Websites (Extended Search)

HYGIENE HYGIENE AND SAFETY PLAN CHSP SITE MAP HAZARD CONTROLS CONTROLS FOR HAZARDOUS MATERIALS arrow image WORK PRACTICE CONTROLS arrow image CHEMICAL STORAGE GUIDELINES DECOMISSIONING LAB AND SHOP SPACES SPECIFIC CONTROLS AND PROCEDURES arrow image EMERGENCY PROCEDURES AND EQUIPMENT arrow image APPENDICES arrow image FAQs QUESTIONS Search the CHSP: > Go spacer image EH&S Home PUB 3000 LBNL Home LBNL A-Z Index LBNL Search LBNL Phone Book Privacy & Security Notice spacer spacer image spacer image spacer image HAZARD CONTROLS This section discusses control procedures for limiting employee exposure to chemical hazards. Technical Areas Technical areas include laboratories, shops, workrooms, and similar areas where non-administrative activities are performed. For the purpose of the

164

Hazardous Waste Program (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

165

Department of Energy Activities in Response to the Deepwater BP Oil Spill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activities in Response to the Deepwater BP Oil Spill Activities in Response to the Deepwater BP Oil Spill At the request of the President, Secretary Chu and Secretary Salazar traveled to Houston and participated in meetings today with DOE and national lab staff, industry officials and other engineers and scientists involved in finding solutions to cap the flow of oil and contain the spill. Secretary Chu assembled a group of top scientific experts from inside and outside of government to join in today's discussions in Houston about possible solutions. This team includes: * Dr. Tom Hunter, Director of the Department of Energy's Sandia National Labs * Dr. George A. Cooper, an expert in materials science and retired professor from UC Berkeley * Richard Lawrence Garwin, a physicist and IBM Fellow Emeritus

166

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

for screening spill and source oil samples. In: ProceedingsZafiriou, O. C. 1973. Oil spill-source correlation by gasS. Greenham. 1991. Ship-source oil pollution fund: 20 years

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

167

Electrical hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

associated with your work or the equipment you are using, stop the work and ask your CAT representative for guidance in developing safe work practices that minimize the hazards...

168

Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Volume 2, Appendices  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

1992-07-01T23:59:59.000Z

169

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

prevention is still the best medicine. Key words: oil spills, emergency plans, Gulf of Alaska, land pollution

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

170

A Tale of Two Spills: Novel Science and Policy Implications of an Emerging New Oil Spill Model  

E-Print Network (OSTI)

The 2010 Deepwater Horizon oil release posed the challenges of two types of spill: a familiar spill characterized by buoyant oil, fouling and killing organisms at the sea surface and eventually grounding on and damaging ...

Adams, E. Eric

171

OIL SPILL SENSOR USING MULTISPECTRAL INFRARED IMAGING VIA 1 MINIMIZATION  

E-Print Network (OSTI)

OIL SPILL SENSOR USING MULTISPECTRAL INFRARED IMAGING VIA 1 MINIMIZATION Yingying Li , Wei Computational and Applied Mathematics, Rice University ABSTRACT Early detection of oil spill events is the key in detecting the early onset of a small-scale oil spill event. Based on an infrared oil-water contrast model

Yin, Wotao

172

TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY  

E-Print Network (OSTI)

6 TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY Peter C. Chu and Kleanthis, Inc., 70 Dean Knauss Drive, Narragansett, RI 02882, USA ABSTRACT A coupled hydrodynamic-chemical spill model is used to investigate the chemical spill in the San Diego Bay. The hydrodynamic model shows

Chu, Peter C.

173

JOM: The Member Journal of TMS - JOM Monthly - Materials ...  

Science Conference Proceedings (OSTI)

Jun 3, 2010... materials science engineers holds promise for cleaning up environmental catastrophes, such as BP's massive oil spill in the Gulf of Mexico.

174

IXTOC OIL SPILL ASSESSMENT FINAL REPORT  

E-Print Network (OSTI)

IXTOC OIL SPILL ASSESSMENT FINAL REPORT EXECUTIVE SUMMARY Prepared for : Bureau of Land Management in input of tar/oil to the Texas Gulf Coast (Geyer ;, 1981) have less of an obvious ecological impact, if any . The Brittany coast of France has been affected for several years by the acute oil input from

Mathis, Wayne N.

175

Apparatus for transporting hazardous materials  

DOE Patents (OSTI)

An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis.

Osterman, R.A.; Cox, R.

1991-01-22T23:59:59.000Z

176

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in...

177

A predictive ocean oil spill model  

SciTech Connect

This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Initially, the project focused on creating an ocean oil spill model and working with the major oil companies to compare their data with the Los Alamos global ocean model. As a result of this initial effort, Los Alamos worked closely with the Eddy Joint Industry Project (EJIP), a consortium oil and gas producing companies in the US. The central theme of the project was to use output produced from LANL`s global ocean model to look in detail at ocean currents in selected geographic areas of the world of interest to consortium members. Once ocean currents are well understood this information could be used to create oil spill models, improve offshore exploration and drilling equipment, and aid in the design of semi-permanent offshore production platforms.

Sanderson, J.; Barnette, D. [Sandia National Labs., Albuquerque, NM (United States); Papodopoulos, P. [Oak Ridge National Lab., TN (United States); Schaudt, K. [Marathon Oil Co., Littleton, CO (United States); Szabo, D. [Mobil Research and Development Corp., Dallas, TX (United States)

1996-07-01T23:59:59.000Z

178

Survey to assess Persian Gulf spill effects  

Science Conference Proceedings (OSTI)

This paper reports that an international group is poised for an extensive survey of the Persian Gulf, including an assessment of the long term effects of last year's oil spill, a legacy of the Persian Gulf war. Saudi Arabia plans a $450 million cleanup program on beaches fouled by the massive spill. Plans for the survey were disclosed by the United National Educational, Scientific and Cultural Organization (Unesco). It is to be carried out under the auspices of the Regional Organization for the Protection of the Marine Environment (Ropme), Unesco's Intergovernmental Oceanographic Commission, and the U.S. National Oceanic and Atmospheric Administration. Ropme member countries are Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates.

Not Available

1992-02-10T23:59:59.000Z

179

Expedited approach to a carbon tetrachloride spill interim remedial action  

Science Conference Proceedings (OSTI)

Monitored natural attenuation was selected as an interim measure for a carbon tetrachloride spill site where source removal or in situ treatment cannot currently be implemented due to the surrounding infrastructure. Rather than delay action until the site is more accessible to an interim action, this more expedited approach would support a final action. Individual Hazard Substance Site (IHSS) 118.1 is a former underground storage tank at Rocky Flats Environmental Technology Site (RFETS) that stored carbon tetrachloride for process use. Inadvertent releases associated with filling and failure of the tank system resulted in an accumulation of carbon tetrachloride in a bedrock depression around a group of former process waste tanks. Access to the source of contamination is obstructed by numerous utilities, the process waste tanks, and other components of the site infrastructure that limit the ability to conduct an effective remedial action. A preremedial field investigation was conducted in September 1997 to identify and delineate the extent of the dense nonaqueous phase liquid (DNAPL) in the subsurface. Data collected from the investigation revealed that natural processes might be limiting the migration of contaminants from the source area.

Cowdery, C.; Primrose, A. [Rocky Mountain Remediation Services, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Uhland, J. [Kaiser-Hill, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Environmental Technology Site

1998-07-01T23:59:59.000Z

180

Radioactive Material or Multiple Hazardous Materials Decontamination  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this procedure is to provide guidance for performing decontamination ofindividuals who have entered a hot zone during transportation incidents involving radioactive.

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history  

E-Print Network (OSTI)

the 1989 Alaskan oil Spill. Exxon: Houston, TX, 1992. 4.of bioremediation for the Exxon Valdez oil spill. Natureof recovery from the 1989 Exxon Valdez oil spill. Mar. Ecol.

Atlas, R.M.

2012-01-01T23:59:59.000Z

182

Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history  

E-Print Network (OSTI)

Costa, C. F. EPAs Alaska oil spill bioremediation project.for the Exxon Valdez oil spill. Nature 1994, 368, 413418.from the 1989 Exxon Valdez oil spill. Mar. Ecol. Prog. Ser.

Atlas, R.M.

2012-01-01T23:59:59.000Z

183

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

transport, gasoline, land pollution, mapping, monitoring,words: health, environment, land pollution, water pollution25 pp. Key words: Land Pollution, Oil Spills, Recovery Two

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

184

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

Key words: Wetland, Estuary, Louisiana, Oil Spill, Cleaning,wetland loss in Louisiana; beach nourishment; impact of sea level rise; history of shoreline protection methods; oil

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

185

Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 Identification of Hazardous Chemical Waste  

E-Print Network (OSTI)

Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 · Identification of Hazardous Chemical Waste OBJECTIVES Do you know how to do the following? If you do, skip ahead a material must be considered a hazardous chemical waste by using the Radiological-Chemical

Ford, James

186

Argonne CNM: Shipping MaterialsM  

NLE Websites -- All DOE Office Websites (Extended Search)

CNM General In general, users are not permitted to transport hazardous material on the Argonne site or arrange for shipment directly to the CNM. Hazardous materials must be...

187

Preliminary hazards analysis -- vitrification process  

SciTech Connect

This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1994-06-01T23:59:59.000Z

188

Paul E. Hargraves: Spill, Baby, Spill: poison on the Paul E. Hargraves  

E-Print Network (OSTI)

that the spewing of crude oil into the Gulf of Mexico may be over 800,000 gallons per day, and the total oil now attempts to restore damaged economic and environmental disasters caused by oil spills have, at best, been. It's a human failure affecting all of us. The other players in this tragedy are Transocean LTD

Belogay, Eugene A.

189

Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report  

SciTech Connect

The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

Not Available

1993-10-15T23:59:59.000Z

190

Composition and Biodegradation of a Synthetic Oil Spilled on the  

E-Print Network (OSTI)

characteristics. Composition and natural attenuation of the spilled aviation diesel fuel are discussed in JaraulaComposition and Biodegradation of a Synthetic Oil Spilled on the Perennial Ice Cover of LakeAeroshell500.Molecularcompositionsoftheoilswereanalyzed by gas chromatography-mass spectrometry and compared

Priscu, John C.

191

Closure Report for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996, and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SA4FER) Plan for CAU 398: Area 25 Spill Sites, Nevada Test Site, Nevada (U.S. Department of Energy, Nevada Operations Office [DOEN], 2001). CAU 398 consists of the following thirteen Corrective Action Sites (CASs) all located in Area 25 of the Nevada Test Site (NTS) (Figure 1): CAS 25-25-02, Oil Spills, CAS 25-25-03, Oil Spills, CAS 25-25-04, Oil Spills, CAS 25-25-05, Oil Spills, CAS 25-25-06, Oil Spills, CAS 25-25-07, Hydraulic Oil Spill(s), CAS 25-25-08, Hydraulic Oil Spill(s), CAS 25-25-16, Diesel Spill (from CAS 25-01-02), CAS 25-25-17, Subsurface Hydraulic Oil Spill, CAS 25-44-0 1, Fuel Spill, CAS 25-44-04, Acid Spill (from CAS 25-01-01), CAS 25-44-02, Spill, and CAS 25-44-03, Spill. Copies of the analytical results for the site verification samples are included in Appendix B. Copies of the CAU Use Restriction Information forms are included in Appendix C.

K. B. Campbell

2003-04-01T23:59:59.000Z

192

FIRE HAZARDS ANALYSIS - BUSTED BUTTE  

SciTech Connect

The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

R. Longwell; J. Keifer; S. Goodin

2001-01-22T23:59:59.000Z

193

Method of recycling hazardous waste  

SciTech Connect

The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

NONE

1999-11-11T23:59:59.000Z

194

What is Hazardous Hazardous waste is  

E-Print Network (OSTI)

What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic, reactive, cor- rosive, flammable, combustible that is unwanted, dis- carded or no longer useful. This waste may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E-Waste

de Lijser, Peter

195

OIL SPILL BACKGROUND Marcia K McNutt, Juan Lasheras, 'Franklin Shaffer',  

E-Print Network (OSTI)

OIL SPILL BACKGROUND Marcia K McNutt, Juan Lasheras, 'Franklin Shaffer', BlIIlehr to: pmbommer on the fate and behavior of spilled oil. Of course, since this spill originates a mile deep, some. ~ Lehr book chapter .pdf #12;Review of modeling procedures for oil spill weathering behavior William J

Fleskes, Joe

196

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data  

E-Print Network (OSTI)

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data Javier large spill oil events threatening coastal habitats and species. Some recent examples include the 2002 Prestige tanker oil spill in Galicia, Northern Spain, as well as repeated oil spill leaks evidenced

Plaza, Antonio J.

197

National Emission Standards for Hazardous Air Pollutants Calendar Year 2001  

DOE Green Energy (OSTI)

The Nevada Test Site (NTS) is operated by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) as the site for nuclear weapons testing, now limited to readiness activities, experiments in support of the national Stockpile Stewardship Program, and the activities listed below. Located in Nye County, Nevada, the site's southeast corner is about 88 km (55 mi) northwest of the major population center, Las Vegas, Nevada. The NTS covers about 3,561 km2 (1,375 mi2), an area larger than Rhode Island. Its size is 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands (Figure 1.0). The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS, and slow-moving groundwater is present hundreds to thousands of feet below the land surface. The sources of radionuclides include current and previous activities conducted on the NTS (Figure 2.0). The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing above or at ground surface has included (1) atmospheric testing in the 1950s and early 1960s, (2) earth-cratering experiments, and (3) open-air nuclear reactor and rocket engine testing. Since the mid-1950s, testing of nuclear explosive devices has occurred underground in drilled vertical holes or in mined tunnels (DOE 1996a). No such tests have been conducted since September 23, 1992 (DOE 2000). Limited non-nuclear testing includes spills of hazardous materials at the Hazardous Materials Spill Center, private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses, and handling is restricted to transport, storage, and assembly of nuclear explosive devices and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in CY 2001 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and from discharges of two wells (Well U-3cn PS No. 2 and Well ER-20-5 No.3) into lined ponds, (2) onsite radio analytical laboratories, (3) the Area 5 RWMS (RWMS-5) facility, and (4) diffuse sources of tritium and re- suspension of plutonium and americium. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility.

Y. E. Townsend

2002-06-01T23:59:59.000Z

198

Transportation of RCRA hazardous wastes. RCRA Information Brief  

Science Conference Proceedings (OSTI)

The Resource Conservation and Recovery Act (RCRA) and the Hazardous Materials Transportation Act (HMTA) regulate the transport of hazardous wastes. Under these statutes, specific pretransport regulatory requirements must be met by DOE before the shipment of hazardous wastes, including radioactive mixed wastes. The pretransport requirements are designed to help reduce the risk of loss, leakage, or exposure during shipment of hazardous materials and to communicate information on potential hazards posed by the hazardous material in transport. These goals are accomplished through the tracking of shipments, correctly packaging and labeling containers, and communicating potential hazards. Specific requirements include manifesting, packaging, marking and labeling waste packages; placarding transport vehicles; choosing appropriate waste transporters and shipment destinations; and record keeping and reporting. This information Brief focuses primarily on the transporter requirements both for transportation within a DOE facility and using a commercial transporter to transport RCRA hazardous wastes off-site.

Not Available

1994-04-01T23:59:59.000Z

199

Hazards assessment for the Waste Experimental Reduction Facility  

Science Conference Proceedings (OSTI)

This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

Calley, M.B.; Jones, J.L. Jr.

1994-09-19T23:59:59.000Z

200

Collusion Through Insurance: Sharing the Costs of Oil Spill Cleanups  

E-Print Network (OSTI)

Introduction When the Exxon Valdez snagged on an underwaterso far as to suggest that Exxon would actually profit fromfive times the size of the Exxon spill,^ and therefore it

Dekel, Eddie; Scothmer, Suzanne

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

transformers, insulating oil, cost analysis, ground water,Baltimore, MD. Key words: costs, oil spill, cleanup. Moller,the savings in fuel oil and disposal costs brought about by

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

202

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

cleanup rule. E&P Environment. 4:7. E&P Environment. 1993.Texas crude oil spill rule takes effect. E&P Environment.4:23. E&P Environment. 1993. Arco, NRDC settle North Slope

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

203

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

abandonment/removal of an offshore platform in Brunei. In:Anderson, R.C. Offshore platform pollution oil spillOil Optimization of offshore platform layouts. In: the 13th

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

204

Specialties [solar wings, oil spill avoidance, on-line patents  

Science Conference Proceedings (OSTI)

The author briefly describes the development of the solar wing, a solar powered prototype aircraft named Pathfinder. The author also describes a navigation system to help ships avoid oil-spills and other obstacles. The author also briefly describes access ...

J. A. Adam

1995-01-01T23:59:59.000Z

205

The Department of Energy's Scientific Response to the Oil Spill |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy's Scientific Response to the Oil Spill The Department of Energy's Scientific Response to the Oil Spill The Department of Energy's Scientific Response to the Oil Spill May 28, 2010 - 12:00am Addthis At the request of President Obama, Secretary Chu and the Department of Energy's National Laboratories are providing round-the-clock scientific support to help inform strategies to stop the BP oil spill. Secretary Chu has spent several days in Houston monitoring the top kill attempt, analyzing the data as it comes in and helping to develop strategies to give it the best chances of success. In the days leading up to the "top kill" attempt, the Secretary and his team of scientists provided expert advice and technical support to test the assumptions behind BP's work and to offer analytical rigor. When diagnostic and pressure tests

206

Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials  

Science Conference Proceedings (OSTI)

This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

1995-07-01T23:59:59.000Z

207

International rail freight transportation in south Texas: Decreasing fuel consumption, roadway damage, and hazardous materials movement on Texas roadways. Research report  

Science Conference Proceedings (OSTI)

The objectives of the research were to examine impediments to the greater use of rail in the transport of freight, and to document projected reductions in congestion, roadway damage, hazards, and energy usage resulting from such a modal shift. In pursuing these objectives, an examination was made of the roles that are performed by decision-making agencies at the federal, state, and local levels. The findings of this examination are discussed in terms of how these roles interfere with the adoption of increased use of intermodal transportation. Additionally, the logistics associated with cross-border freight transportation are described, documenting the institutional and governmental inefficiencies hindering smooth flow of trade across the border. The balance of the research concerns itself with the potential of rail transportation to mitigate the negative impacts associated with truck transportation.

Roop, S.S.; Dickinson, R.W.

1995-07-01T23:59:59.000Z

208

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 540: Spill Sites Nevada Test Site, Nevada, Rev. No.: 0, with Errata  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses closure for Corrective Action Unit (CAU) 540, Spill Sites, identified in the ''Federal Facility Agreement and Consent Order''. Corrective Action Unit 540 consists of the nine following Corrective Action Sites (CASs) located in Areas 12 and 19 of the Nevada Test Site: (1) 12-44-01, ER 12-1, Well Site Release; (2) 12-99-01, Oil Stained Dirt; (3) 19-25-02, Oil Spill; (4) 19-25-04, Oil Spill; (5) 19-25-05, Oil Spill; (6) 19-25-06, Oil Spill; (7) 19-25-07, Oil Spill; (8) 19-25-08, Oil Spills (3); and (9) 19-44-03, U-19bf Drill Site Release. This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 540 using the SAFER process. The data quality objective process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels (FALs), leading to a no further action declaration; (2) characterization of the nature and extent of contamination, leading to closure in place with use restrictions; or (3) clean closure by remediation and verification. The expected closure options were selected based on available information including contaminants of potential concern (COPC), future land use, and assumed risks. A decision flow process was developed to define an approach necessary to achieve closure. There are two decisions that need to be resolved for closure. Decision I is to conduct an investigation to determine whether COPCs are present in concentrations exceeding the FALs. If COPCs are found to be present above FALs, excavation of the contaminated material will occur with the collection of confirmation samples to ensure removal of contaminants below FALs.

Pastor, Laura

2005-11-01T23:59:59.000Z

209

Assessment of treated vs untreated oil spills. Final report  

Science Conference Proceedings (OSTI)

The results of a series of studies conducted to determine the practicability and feasibility of using dispersants to mitigate the impact of an oil spill on the environment are described. The method of approach is holistic in that it combines the physical, chemical, microbial and macro-fauna response to a spill treated with dispersants and compares this with spills that are left untreated. The program integrates mathematical, laboratory, meso-scale (three 20 foot high by three feet in diameter tanks, in-situ experiments and analyses to determine if the use of dispersants is an effective oil spill control agent. In summary, it appears viable to use dispersants as determined on a case by case basis. The case for using dispersants has to be based on whether or not their use will mitigate the environmental impact of the spill. In the case of an open ocean spill that is being driven into a rich inter-tidal community, the use of dispersants could greatly reduce the environmental impact. Even in the highly productive George's Bank area at the height of the cod spawning season, the impact of the use of dispersants is well within the limits of natural variability when the threshold toxicity level is assumed to be as low as 100 ppB, a level which is often found in the open ocean. Thus, it appears that dispersants can and should be used when it is evident that their use will mitigate the impacts of the spill. Their use in areas where there is poor circulation and therefore little possibility of rapid dilution is more questionable and should be a subject of future studies.

Wilson, M.P.

1981-02-01T23:59:59.000Z

210

Hazard Analysis Database report  

Science Conference Proceedings (OSTI)

This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J.

1997-08-12T23:59:59.000Z

211

Corrective Action Investigation Plan for Corrective Action Unit 234: Mud Pits, Cellars, and Mud Spills, Nevada Test Site, Nevada, Revision 0  

SciTech Connect

Corrective Action Unit 234, Mud Pits, Cellars, and Mud Spills, consists of 12 inactive sites located in the north and northeast section of the NTS. The 12 CAU 234 sites consist of mud pits, mud spills, mud sumps, and an open post-test cellar. The CAU 234 sites were all used to support nuclear testing conducted in the Yucca Flat and Rainier Mesa areas during the 1950s through the 1970s. The CASs in CAU 234 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting appropriate corrective action alternatives.

Grant Evenson

2007-08-01T23:59:59.000Z

212

Blowout in the Gulf: The BP Oil Spill Disaster and the Future of Energy in America  

E-Print Network (OSTI)

Blowout in the Gulf: The BP Oil Spill Disaster and theBlowout in the Gulf. The BP Oil Spill Disaster and theApril 20 th 2010, eleven oil workers died as the Deepwater

Ferrara, Enzo

2011-01-01T23:59:59.000Z

213

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (3 of 4) BP Oil Spill Footage...

214

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (2 of 4) BP Oil Spill Footage...

215

BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010 (1 of 4) BP Oil Spill Footage...

216

BP Oil Spill Footage (High Def) - Top Hat Procedure at 4850'...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (2 of 4) BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010 (1 of 4) Re-Building Greensburg The...

217

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (2 of 4) BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010 (1 of 4) Re-Building Greensburg The...

218

BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (3 of 4) BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (2 of 4) Re-Building Greensburg The...

219

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (3 of 4) BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010 (1 of 4) Re-Building Greensburg The...

220

Hazard Analysis Database Report  

Science Conference Proceedings (OSTI)

The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

GRAMS, W.H.

2000-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coal-ash spills highlight ongoing risk to ecosystems  

SciTech Connect

Two recent large-scale spills of coal combustion waste have highlighted the old problem of handling the enormous quantity of solid waste produced by coal. Both spills happened at power plants run by the Tennessee Valley Authority (TVA). In December 2008 a holding pond for coal ash collapsed at a power plant in Kingstom, Tenn., releasing coal-ash sludge onto farmland and into rivers: in January 2009 a break in a pipe removing water from a holding pond for gypsum caused a spill at Widows Creek Fossil Plant in Stevenson, Ala. The article discusses the toxic outcome of such disasters on ecosystems, quoting work by Willaim Hopkins at Virginia Polytechnic Institute and State University and recommendations and reports of the US EPA. 2 photos.

Chatterjee, R.

2009-05-01T23:59:59.000Z

222

Hazard Communications Training Deadline Approaches | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazard Communications Training Deadline Approaches Hazard Communications Training Deadline Approaches Hazard Communications Training Deadline Approaches November 1, 2013 - 8:45am Addthis Hazard Communications Training Deadline Approaches 10 CFR 851, Worker Safety and Health Program, requires all DOE Federal and contractor employees with hazardous chemicals in their workplaces to complete new Hazard Communication Standard Training. The major changes to the standard include hazard classification, labeling, Safety Data Sheets, information and training. In order to assist you with meeting this deadline, training materials can be found at: http://orise.orau.gov/ihos/hottopics/training.htm; or http://efcog.org/wg/esh_cslm/index.htm The Hazard Communication Standard can be found at: https://www.osha.gov/dsg/hazcom/ghs-final-rule.html

223

A forecasting solution to the oil spill problem based on a hybrid intelligent system  

Science Conference Proceedings (OSTI)

Oil spills represent one of the most destructive environmental disasters. Predicting the possibility of finding oil slicks in a certain area after an oil spill can be critical in reducing environmental risks. The system presented here uses the Case-Based ... Keywords: Case-Based Reasoning, Ensembles, Fusion algorithms, Oil spill, Radial Basis Function, Self organizing memory

Bruno Baruque; Emilio Corchado; Aitor Mata; Juan M. Corchado

2010-05-01T23:59:59.000Z

224

A region-based GLRT detection of oil spills in SAR images  

Science Conference Proceedings (OSTI)

In the study, we propose a fast region-based method for the detection of oil spills in SAR images. The proposed method combines the image segmentation technique and conventional detection theory to improve the accuracy of oil spills detection. From the ... Keywords: Constant false alarm ratio (CFAR), Generalizes likelihood ratio test (GLRT), Image segmentation, Oil spills, SAR image

Lena Chang; Z. S. Tang; S. H. Chang; Yang-Lang Chang

2008-10-01T23:59:59.000Z

225

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

226

Oklahoma Hazardous Waste Management Act (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) < Back Eligibility Agricultural Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility engaged in the operation of storing, treating or disposing of hazardous waste or storing recyclable materials. The Department shall not issue a permit for the treatment, disposal or temporary storage of any liquid hazardous waste in a

227

Hazard Analysis Database Report  

Science Conference Proceedings (OSTI)

The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

GAULT, G.W.

1999-10-13T23:59:59.000Z

228

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

229

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in our homes and can result in serious injuries if not properly handled. Household items such as bleach can result in harmful chlorine gas or hydrochloric acid if carelessly used. Gasoline fumes from containers for lawnmowers or boats can result in major health hazards if inhaled. DOE Oak Ridge uses thousands of chemicals in its varied research and other operations. New chemicals are or can be created as a result of the research or other activities. DOE follows national safety requirements in storing and handling these chemicals to minimize the risk of injuries from its chemical usage. However, accidents can occur despite careful attention to proper handling and storage procedures.

230

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Siting of Industrial 1: Siting of Industrial Hazardous Waste Facilities (New York) Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Siting and Permitting Provider NY Department of Environmental Conservation These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used for the purpose of treating, storing, compacting, recycling, exchanging or disposing of industrial hazardous waste materials, including treatment, compacting,

231

Helpful links for materials transport, safety, etc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

232

Oil Spills Since the Exxon Valdez Between June 1988 and June 1989 there were five to six  

E-Print Network (OSTI)

APPENDIX A Oil Spills Since the Exxon Valdez Between June 1988 and June 1989 there were five to six thousand spills involving oil and other toxic substances along the coasts and in other navigable waters or morel The months since the Valdez spill have clearly demonstrated that the problem of oil spills

US Army Corps of Engineers

233

Effects of the Exxon Valdez Oil Spill on bald eagles. Bird study number 4. Exxon Valdez Oil Spill state/federal natural resource damage assessment final report  

Science Conference Proceedings (OSTI)

We estimated that about 8000 bald eagles (Halieetus leucocephalus) inhabited the area affected by the spill at the time of the Exxon Valdez oil spill. We conducted a 3-year study to determine effects of the spill on the bald eagle population and reproduction and survival of adults and fledglings. The greatest injuries to bald eagles occurred in 1989 and were manifested by direct mortality of bald eagles throughout the spill area and significantly reduced reproduction in PWS. We could not discern negative effects on the population or reproduction of eagles after 1989.

Bowman, T.D.; Schempf, P.F.; Bernatowicz, J.A.

1993-12-01T23:59:59.000Z

234

Oil spill still motivates Santa Barbara to be green | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil spill still motivates Santa Barbara to be green Oil spill still motivates Santa Barbara to be green Oil spill still motivates Santa Barbara to be green May 14, 2010 - 11:58am Addthis The massive offshore oil spill in Santa Barbara in 1969 galvanized the environmental movement, locally and perhaps nationally. | Photo courtesy Bob Duncan The massive offshore oil spill in Santa Barbara in 1969 galvanized the environmental movement, locally and perhaps nationally. | Photo courtesy Bob Duncan Joshua DeLung Many residents of Santa Barbara County in California still remember the 1969 oil spill there, when an oil drill six miles off the county's coast blew out, spilling an estimated 8,000 to 10,000 barrels of crude oil. The resulting oil slick covered 800 square miles of ocean, killing thousands of birds and marine animals and depositing tar on beaches throughout the

235

Texas Tech Toxicologists Use Duck Eggs to Study Effects of Deepwater Horizon Oil Spill http://texas-oil-spill-classaction.org/texas-tech-toxicologists-use-duck-eggs-to-study-effects-of-deepwater-horizon-oil-spill/[8/2/2011 1:44:16 PM  

E-Print Network (OSTI)

Texas Tech Toxicologists Use Duck Eggs to Study Effects of Deepwater Horizon Oil Spill http://texas-oil-spill-classaction.org/texas-tech-toxicologists-use-duck-eggs-to-study-effects-of-deepwater-horizon-oil-spill/[8/2/2011 1:44:16 PM] « US Approves First Deep-Water Oil Well in Gulf Since BP Spill Texas Tech

Rock, Chris

236

Hazardous Waste Management Training  

E-Print Network (OSTI)

Hazardous Waste Management Training Persons (including faculty, staff and students) working be thoroughly familiar with waste handling and emergency procedures ap- plicable to their job responsibilities before handling hazardous waste. Departments are re- quired to keep records of training for as long

Dai, Pengcheng

237

Natural Phenomena Hazards Modeling Project: Seismic Hazard Models for Department of Energy Sites  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the US. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. This report summarizes the final seismic hazard models and response spectra recommended for each site and the methodology used to develop these models. 15 references, 2 figures, 1 table.

Coats, D.W.; Murray, R.C.

1984-11-01T23:59:59.000Z

238

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

Science Conference Proceedings (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

Richard C. Logan

2002-03-28T23:59:59.000Z

239

Railroad accident report: Head-on collision between Iowa Interstate Railroad Extra 470 West and Extra 406 East with release of hazardous materials near Altoona, Iowa, on July 30, 1988. Irregular report  

SciTech Connect

About 11:40 a.m. central daylight saving time on July 30, 1988, Iowa Interstate Railroad Ltd. (IAIS) freight trains Extra 470 West and Extra 406 East collided head on within the yard limits of Altoona, Iowa, about 10 miles east of Des Moines, Iowa. All 5 locomotive units from both trains; 11 cars of Extra 406 East; and 3 cars, including two tank cars containing denatured alcohol, of Extra 470 West derailed. The denatured alcohol, which was released through the pressure relief valves and the manway domes of the two derailed tank cars, was ignited by the fire resulting from the collision of the locomotives. Both crew members of Extra 470 West were fatally injured; the two crew members of Extra 406 East were only slightly injured. The estimated damage (including lading) as a result of this accident exceeded $1 million. The major safety issues in the accident include operational methods employed by the IAIS, training and selection of train and engine personnel, supervisory oversight by the IAIS, design of closure fittings on hazardous materials rail tanks, and oversight of regional railroads by the Federal Railroad Administration.

Not Available

1989-07-06T23:59:59.000Z

240

Experiment Hazard Class 9 - Magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

hazard classification applies to all experiments involving magnets, magnetic fields, and electric fields. Other hazard classifications such as electrical safety and their...

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hazardous Waste Management (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

242

Deepwater Horizon Oil Spill PI ConferenceDeepwater Horizon Oil Spill PI Conference Session: Crude oil & dispersants-impact on human  

E-Print Network (OSTI)

Deepwater Horizon Oil Spill PI ConferenceDeepwater Horizon Oil Spill PI Conference Session: Crude oil & dispersants-impact on human health & socioeconomic systems Panelist: James H. Diaz, MD, MPH, Dr Health #12;Oil/dispersants: impact health & S-E systems. Outline of Research Questions? 1. What

243

MANAGEMENT OF HAZARDOUS MATERIALS TRANSPORTATION: LITERATURE SUMMARY  

E-Print Network (OSTI)

-011 | March 2006 www.epa.gov/radiation/wipp Karst in the Area of the WIPP Some stakeholders believe that the geologic characterization of the subsurface surrounding the WIPP repository does not adequately identify of karst at WIPP and the possible impacts of the long- termcontainmentofwasteforthe2004WIPPRecertification

244

Transporting & Shipping Hazardous Materials at LBNL: Cryogens  

NLE Websites -- All DOE Office Websites (Extended Search)

applicable guidance. Controls & Limits required for Self-Transporting Cryogens by Vehicle flow chart General Requirements General requirements are designed to minimize the...

245

Surveillance Guides - Hazards Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazards Control Hazards Control 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's programs and policy for establishing controls to mitigate hazards affecting the public, worker, and environment. 2.0 References 2.1 DOE 4330.4B Maintenance Management Program 2.2 48 CFR 1970.5204-2 Department of Energy Acquisition Regulations 3.0 Requirements Implemented This surveillance is conducted to verify implementation of DOE 450.4-1A Volume 2 Appendix E core expectation #3 (CE II-3). CE II-3: An integrated process has been established and is utilized to develop controls which mitigate the identified hazards present within a facility or activity. The set of controls ensure adequate protection of the public, worker, and the environment and are established as agreed upon by DOE.

246

Job Hazard Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Step by Step Instructions - Page 1 of 2 Helpful Information STEP 1. Log in to the EH&S Job Hazards Analysis (JHA) system at https:ehswprod.lbl.govehstrainingjhalogin.aspx...

247

Using oil-spill dispersants on the sea  

Science Conference Proceedings (OSTI)

The committee was charged to assess the state of knowledge and practice about the use of dispersants in responding to open-ocean oil-spills. The assessment will guide federal and local governments and industry in both the United States and Canada, in defining the role of dispersants in oil spill response and implementing the use of dispersants. Equally important is the charge to identify gaps in knowledge where research is especially needed. The committee was specifically asked to: determine the effectiveness of dispersants and identify the best techniques for their use; identify the possible impacts of dispersants and dispersed oil on marine and coastal environments; and provide guidance about when and where dispersants should or should not be used.

Not Available

1989-01-01T23:59:59.000Z

248

K Basin Hazard Analysis  

Science Conference Proceedings (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

249

Controlling mercury spills in laboratories with a thermometer exchange program  

SciTech Connect

This paper presents a case for replacing mercury thermometers with their organic-liquid-filled counterparts. A review of liquid-in glass-thermometers is given. In addition, a brief summary of mercury's health effects and exposure limits is presented. Spill cleanup methods and some lessons learned from our experience are offered as well. Finally, an overview of the mercury thermometer exchange program developed at Lawrence Berkeley National Laboratory is presented.

McLouth, Lawrence D.

2002-03-25T23:59:59.000Z

250

Particles of spilled oil-absorbing carbon in contact with water  

Science Conference Proceedings (OSTI)

Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.

Muradov, Nazim (Melbourne, FL)

2011-03-29T23:59:59.000Z

251

NEHRP - Advisory Committee on Earthquake Hazards ...  

Science Conference Proceedings (OSTI)

NEHRP logo National Earthquake Hazards Reduction Program. ... Advisory Committee on Earthquake Hazards Reduction. Highlights. ...

252

The Mechanism of Long-Term Environmental Impact Assessment for Large Oil Spill Events.  

E-Print Network (OSTI)

??Ever since humans began using cargo by sea to transport oil, oil spill incidents have occurred on different scales in different environments. Oil leaks by (more)

Tsao, Kai

2011-01-01T23:59:59.000Z

253

A Web-Based GIS Planning Framework For Urban Oil Spill Management.  

E-Print Network (OSTI)

??The thesis is comprised of five chapters. Chapter 1 presents an introduction and identifies the spill issues and strategy gaps at the municipal level. The (more)

Han, Helena Y.

2008-01-01T23:59:59.000Z

254

Chemical process hazards analysis  

SciTech Connect

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

255

Experiment Hazard Class 5.3 High Pressure Vessels  

NLE Websites -- All DOE Office Websites (Extended Search)

3 High Pressure Vessels 3 High Pressure Vessels Applicability This hazard classification applies to working with pressure vessels and systems. Other hazard classifications and associated controls may apply to experiments in this hazard class. Experiment Category Experiments involving previously reviewed hazard controls are catergorized as medium risk experiments. Experiments involving new equipment, processes or materials, or modified hazard control schemes are categorized as high risk experiments. Hazard Control Plan Verification Statements Engineered Controls - The establishment of applicable controls in accordance with the (American Society of Mechanical Engineers) ASME Boiler and Pressure Code, ASME B.31 Piping Code and applicable federal, state, and local codes. Verify vessel is stampled with ASME Code Symbol or allowable

256

Experiment Hazard Class 7.2 - BSL - 2 Biohazards  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - BSL-2 Biohazards 2 - BSL-2 Biohazards Applicability This hazard classification applies to all experiments requiring Biosafety Level 2 (BSL-2) precautions. Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. Experiments involving human subjects/materials or living animals, even if not biohazardous, are included in this Hazard Class. Biosafety Level 2 is similar to Biosafety Level 1 and is suitable for work involving agents of moderate potential hazard to personnel and the environment. It differs from BSL-1 in that (1) laboratory personnel have specific training in handling pathogenic agents and are directed by competent scientists; (2) access to the laboratory is limited when work is being conducted; (3) extreme precautions are taken with contaminated sharp

257

Identification of Aircraft Hazards  

Science Conference Proceedings (OSTI)

Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

K. Ashley

2006-12-08T23:59:59.000Z

258

Remote vacuum compaction of compressible hazardous waste  

DOE Patents (OSTI)

A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

1996-12-31T23:59:59.000Z

259

Remote vacuum compaction of compressible hazardous waste  

DOE Patents (OSTI)

A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

260

Remote vacuum compaction of compressible hazardous waste  

DOE Patents (OSTI)

A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

1998-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hazards and accident analyses, an integrated approach, for the Plutonium Facility at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

This paper describes an integrated approach to perform hazards and accident analyses for the Plutonium Facility at Los Alamos National Laboratory. A comprehensive hazards analysis methodology was developed that extends the scope of the preliminary/process hazard analysis methods described in the AIChE Guidelines for Hazard Evaluations. Results fro the semi-quantitative approach constitute a full spectrum of hazards. For each accident scenario identified, there is a binning assigned for the event likelihood and consequence severity. In addition, each accident scenario is analyzed for four possible sectors (workers, on-site personnel, public, and environment). A screening process was developed to link the hazard analysis to the accident analysis. Specifically the 840 accident scenarios were screened down to about 15 accident scenarios for a more through deterministic analysis to define the operational safety envelope. The mechanics of the screening process in the selection of final scenarios for each representative accident category, i.e., fire, explosion, criticality, and spill, is described.

Pan, P.Y.; Goen, L.K.; Letellier, B.C.; Sasser, M.K.

1995-07-01T23:59:59.000Z

262

Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation  

Science Conference Proceedings (OSTI)

Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

Goranson, C.

1992-09-01T23:59:59.000Z

263

Detection of Oil Spills in SAR Images Using Wavelets and Region Growing  

E-Print Network (OSTI)

Detection of Oil Spills in SAR Images Using Wavelets and Region Growing R?GIA T. S. ARA?JO, FÁTIMA an algorithm to detect oil spills in Synthetic Aperture Radar (SAR) images that can be used to support sensing of environmental disasters. Spillage of oil in coastal waters can be a catastrophic event

de Figueiredo, Luiz Henrique

264

BP Oil Spill and Air Chemistry Crude oil contains various hydrocarbons  

E-Print Network (OSTI)

BP Oil Spill and Air Chemistry Crude oil contains various hydrocarbons NOAA and CIRES here at CU went to the oil spill in an aircraft that was equipped with instruments to measure the air quality. 1/3 of the oil dissolved into the water column (methane completely, benzene and ethane almost completely) Showed

Toohey, Darin W.

265

Advanced Oil Spill Recovery in Marine Environments Victoria Broje and Arturo A. Keller  

E-Print Network (OSTI)

Advanced Oil Spill Recovery in Marine Environments Victoria Broje and Arturo A. Keller Bren School of Environmental Science and Management, University of California, Santa Barbara Almost 14,000 oil spills research will help identifying parameters having major effect on oil adhesion to the recovery surface

Keller, Arturo A.

266

South Florida Sun-Sentinel.com NSU, FAU among schools selected to research Gulf oil spill  

E-Print Network (OSTI)

South Florida Sun-Sentinel.com NSU, FAU among schools selected to research Gulf oil spill By Scott in an effort to research the impact of the BP oil spill on the Gulf of Mexico. Florida Atlantic University. Among the projects selected: ·FIU and Nova will use sharks and scavengers to assess the impact of oil

Belogay, Eugene A.

267

Level and Degradation of Deepwater Horizon Spilled Oil in Coastal Marsh Sediments and Pore-Water  

E-Print Network (OSTI)

eight months after the spill. By contrast, pore-water separated from heavily oiled Louisiana wetland-waters extracted from heavily oiled Louisiana wetlands. Environmental Science & Technology Article dx.doi.org/10 wetlands decades after the Amoco-Cadiz oil spill. The fate and biotransformation of oils in coastal

Wang, Yang

268

Degradation and resilience in Louisiana salt marshes after the BPDeepwater Horizon oil spill  

E-Print Network (OSTI)

Degradation and resilience in Louisiana salt marshes after the BP­Deepwater Horizon oil spill Brian (high resil- ience) but also permanent marsh area loss after the BP­Deepwater Horizon oil spill. Field that heavy oil cov- erage on the shorelines of Louisiana marshes, already experiencing elevated retreat

Silliman, Brian

269

Missouri Hazardous Waste Management Law (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

270

Evaluation of Fire Dynamics Simulator for Liquefied Natural Gas Vapor Dispersion Hazards.  

E-Print Network (OSTI)

??The Federal Energy Regulatory Commission (FERC) and Pipeline and Hazardous Material Administration (PHMSA) require vapor dispersion modeling as part of a siting analysis for liquefied (more)

Kohout, Andrew Joseph

2011-01-01T23:59:59.000Z

271

Evaluation of fire dynamics simulator for liquefied natural gas vapor dispersion hazards.  

E-Print Network (OSTI)

?? The Federal Energy Regulatory Commission (FERC) and Pipeline and Hazardous Material Administration (PHMSA) require vapor dispersion modeling as part of a siting analysis for (more)

Kohout, Andrew Joseph

2012-01-01T23:59:59.000Z

272

Report Wildland Fire Area Hazard  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. How to report wildland fire hazard Use the following form to report any wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. Fill out this form as completely as possible so we can better assess the hazard. All submissions will be assessed as promptly as possible. For assistance with a non-emergency situation, contact the Operations Support Center at 667-6211. Name (optional): Hazard Type (check one): Wildlife Sighting (check box if animal poses serious threat) Trails (access/egress)

273

Preliminary Hazards Analysis Plasma Hearth Process  

SciTech Connect

This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1993-11-01T23:59:59.000Z

274

HAZARD CATEGORIZATION OF ENVIRONMENTAL RESTORATION SITES AT HANFORD WASHINGTON  

SciTech Connect

Environmental restoration activities, defined here as work to identify and characterize contaminated sites and then contain, treat, remove or dispose of the contamination, now comprises a significant fraction of work in the DOE complex. As with any other DOE activity, a safety analysis must be in place prior to commencing restoration. The rigor and depth of this safety analysis is in part determined by the site's hazard category. This category in turn is determined by the facility's hazardous material inventory and the consequences of its release. Progressively more complicated safety analyses are needed as a facility's hazard category increases from radiological to hazard category three (significant local releases) to hazard category two (significant on-site releases). Thus, a facility's hazard category plays a crucial early role in helping to determine the level of effort devoted to analysis of the facility's individual hazards. Improper determination of the category can result in either an inadequate safety analysis in the case of underestimation of the hazard category, or an unnecessarily cumbersome analysis in the case of overestimation. Contaminated sites have been successfully categorized and safely restored or remediated at the former DOE production site at Hanford, Washington. This paper discusses various means used to categorize former plutonium production or support sites at Hanford. Both preliminary and final hazard categorization is discussed. The importance of the preliminary (initial) hazard categorization in guiding further DOE involvement and approval of the safety analyses is discussed. Compliance to DOE direction provided in ''Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports'', DOE-STD-1027-92, is discussed. DOE recently issued 10 CFR 830, Subpart B which codifies previous DOE safety analysis guidance and orders. The impact of 10 CFR 830, Subpart B on hazard categorization is also discussed.

BISHOP, G.E.

2001-05-01T23:59:59.000Z

275

Corrective Action Investigation Plan for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada, Revision 0  

SciTech Connect

Corrective Action Unit (CAU) 557 is located in Areas 1, 3, 6, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada, and is comprised of the four corrective action sites (CASs) listed below: 01-25-02, Fuel Spill 03-02-02, Area 3 Subdock UST 06-99-10, Tar Spills 25-25-18, Train Maintenance Bldg 3901 Spill Site These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 3, 2008, by representatives of the Nevada Division of Environmental Protection (NDEP); U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 557. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 557 includes the following activities: Move surface debris and/or materials, as needed, to facilitate sampling. Conduct radiological survey at CAS 25-25-18. Perform field screening. Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern are present. If contaminants of concern are present, collect additional step-out samples to define the extent of the contamination. Collect samples of investigation-derived waste, as needed, for waste management purposes.

Alfred Wickline

2008-07-01T23:59:59.000Z

276

ALTERNATE APPROACH TO HAZARD CATEGORIZATION FOR SALTSTONE FACILITY AT SRS  

Science Conference Proceedings (OSTI)

The Saltstone Facility at Savannah River Site (SRS) was originally segmented into two segments: the Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). Based on the inventory of radionuclides available for release the SPF and SDF were categorized as Nonreactor Hazard Category (HC)-3. The hazard categorization recognized the SDF will contain contributions of radionuclides which would exceed the HC-2 Threshold Quantity (TQ) in the form of grout. However it was determined not to impact the facility hazard categorization based on the grout being in a solid, monolithic form which was not easily dispersible. But, the impact of a quantity of unset grout expected to be present at the vault following operation of the process was not addressed. A Potential Inadequacy in Safety Analysis (PISA) was later issued based on the hazard categorization determination for the facility not addressing unset grout. This initiated a re-evaluation of the accident scenarios within the hazards analysis. During this re-evaluation, the segmentation of the facility was challenged based on the potential interaction between facility segments; specifically, the leachate return line and the grout transfer line, which were considered separate segments, are located in close proximity at one point. such that for certain events (NPH as well as External Vehicle Impact) both could be damaged simultaneously and spill contents on the ground that could commingle. This would violate the guideline for segmentation. Therefore, the Hazard Categorization (HC) was reevaluated based on the facility being a single segment and including the additional unset grout as part of total inventory. This total inventory far exceeded the limit for HC-2 TQ and made the facility's initial categorization as HC-2. However, alternative analysis methodology based on credible release fractions allowed in DOE-STD-1027-92 (Ref.1) showed that the Saltstone facility could still be categorized as Hazard Category 3 Nuclear Facility with no segmentation. Since it was the first time any facility at SRS tried this alternate approach safety analyst had to face substantial resistance and reservations from both the facility and local DOE customers which were eventually overcome with approval and acceptance from DOE-HQ.

Roy, B.

2009-04-28T23:59:59.000Z

277

Hazardous Waste Management Keith Williams  

E-Print Network (OSTI)

Hazardous Waste Management Keith Williams DES ­ Environmental Affairs Extension 53163 #12,100 Locally · 1998 Univ of Va $33,990 · 1998 Univ. of MD $0 !!!!! #12;Hazardous Waste Disposal Procedures Hazardous (Chemical) Waste Management in University of Maryland Laboratories o All laboratories and work

Appelbaum, Ian

278

Evaluation of options for disposition of dispersible material in B-Cell  

SciTech Connect

The radioactive contaminants in the dispersible material in B-cell of the 324 Building Radiochemical Energy (RE) hot-cell complex at the Hanford Site in southeastern Washington exceed the allowable level. In 1986, there was a spill of 1.3 million curies of concentrated cesium and strontium in B-cell. Cleanup is required, and candidate technologies for cleaning up or otherwise addressing problems associated with the dispersible material are being evaluated by Pacific Northwest Laboratory (PNL). The RE hot-cell complex in 324 Building was constructed in the late 1950s. From the early 1960s until today the complex has been the site of numerous research, development, and demonstration programs using radioactive and hazardous materials. In mid-FY 1988, a program to clean B-cell was initiated. At present, dispersible material has been collected from 45% of the cell floor area, and 64% of the equipment and support racks have been removed from the cell. The evaluation of decontamination procedures are described.

Tokarz, R.D.; Defferding, L.J.; Adickes, M.D.; Keene, K.E.; Pilger, J.P.; Alzheimer, J.M. [Pacific Northwest Lab., Richland, WA (United States); Paxton, M.M. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

279

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

with skin and if swallowed. Irritating to eyes, respiratory system and skin. May cause sensitization by skin-lime, sand, or soda ash. Place in covered containers using non-sparking tools and transport outdoors. Ventilate area and wash spill site after material pickup is complete. Section 7 - Handling and Storage

Choi, Kyu Yong

280

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

, in contact with skin and if swallowed. Irritating to respiratory system and skin. Risk of serious damage - 319953 www.sigma-aldrich.com Page 2 #12;METHODS FOR CLEANING UP Cover with dry-lime, sand, or soda ash spill site after material pickup is complete. Section 7 - Handling and Storage HANDLING User Exposure

Choi, Kyu Yong

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

. Harmful by inhalation. Risk of serious damage to eyes. Target organ(s): Central nervous system. Blood, or soda ash. Place in covered containers using non-sparking tools and transport outdoors. Ventilate area and wash spill site after material pickup is complete. Section 7 - Handling and Storage ALDRICH - E12508

Choi, Kyu Yong

282

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

. Irritating to eyes, respiratory system and skin. For additional information on toxicity, please refer or soda ash, pick up, keep in a closed container, and hold for waste disposal. Ventilate area and wash spill site after material pickup is complete. Section 7 - Handling and Storage HANDLING User Exposure

Choi, Kyu Yong

283

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

for the environment. Harmful by inhalation and if swallowed. Irritating to eyes, respiratory system and skin. Toxic with dry-lime, sand, or soda ash. Place in covered containers using non-sparking tools and transport outdoors. Ventilate area and wash spill site after material pickup is complete. Section 7 - Handling

Choi, Kyu Yong

284

Cold Weather Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Cold Weather Hazards June 2010 NSA_cwh_Rev10.doc 1 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Cold Weather Hazards Winter Conditions at the North Slope of Alaska The North Slope of Alaska is north of the Arctic Circle at latitudes ranging from 69 to 72 degrees. Barrow, the largest town on the North Slope (pop. 4500), is the site of a National Weather Service Station, which has been active for several decades, so the climatology of the Alaska arctic coastal region as represented by Barrow is relatively well known. The North Slope is covered with ice and snow typically eight months of the year (October-May). During part of November, all of December, and most of January, the sun does not come above the horizon; this

285

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

286

Review and evaluation of contingency plans for oil and hazardous substances in the upper Great Lakes region. Final report  

SciTech Connect

The purpose of this study was to update and supplement a contingency plan review conducted for the Corps in 1979 by the St. Lawrence-Eastern Ontario Commission for handling oil and hazardous-substance spills on the upper Great Lakes and their connecting channels. Special attention was given to cleanup and control methods described for ice conditions that may exist in the region in winter. The report identifies existing contingency plans in the study area; tabulates amounts, types, and locations of equipment and manpower that exist to implement the plans; describes methods to contain and recover oil in ice conditions; describes spill-mitigation plans and techniques to protect natural resources; describes techniques of deflecting oil in swift flowing waters; and describes disposal plans identified in the contingency plans.

Gundlach, E.R.; Murday, M.; Fanning, W.L.

1986-11-15T23:59:59.000Z

287

Oil and Hazardous Substance Discharge Preparedness (Minnesota...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Substance Discharge Preparedness (Minnesota) Oil and Hazardous Substance Discharge Preparedness (Minnesota) Eligibility Utility Fed. Government Commercial Agricultural...

288

National Earthquake Hazards Reduction Program Staff ...  

Science Conference Proceedings (OSTI)

National Earthquake Hazards Reduction Program Staff. National Earthquake Hazards Reduction Program (731.05). Dr. John (Jack) R. Hayes, Jr. ...

2013-08-12T23:59:59.000Z

289

Closure Report for Corrective Action Unit 540: Spill Sites, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 540: Spill Sites, Nevada Test Site, Nevada. This CR complies with the requirements of the 'Federal Facility Agreement and Consent Order' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 540 is located within Areas 12 and 19 of the Nevada Test Site and is comprised of the following Corrective Action Sites (CASs): CAS 12-44-01, ER 12-1 Well Site Release; CAS 12-99-01, Oil Stained Dirt; CAS 19-25-02, Oil Spill; CAS 19-25-04, Oil Spill; CAS 19-25-05, Oil Spill; CAS 19-25-06, Oil Spill; CAS 19-25-07, Oil Spill; CAS 19-25-08, Oil Spills (3); and CAS 19-44-03, U-19bf Drill Site Release. The purpose of this CR is to provide documentation supporting recommendations of no further action for the CASs within CAU 540. To achieve this, the following actions were performed: (1) Reviewed the current site conditions, including the concentration and extent of contamination; (2) Performed closure activities to address the presence of substances regulated by 'Nevada Administrative Code' 445A.2272 (NAC, 2002); and (3) Documented Notice of Completion and closure of CAU 540 issued by the Nevada Division of Environmental Protection.

McClure, Lloyd

2006-10-01T23:59:59.000Z

290

ABSTRACT The Deepwater Horizon Oil Spill Disaster: A Graphical Assessment of its Impact on  

E-Print Network (OSTI)

The Deepwater Horizon oil spill occurred in the Gulf of Mexico on April 20, 2010. Considered the largest accidental marine oil spill in history, oil flowed for three months and approximately five million barrels of oil spilled through by mid-July 2010. In this report, we analyse fish and bird data to assess the impact of the oil spill on the Gulf wildlife. Our findings based on the available fish data for 2005, 2006, and 2010 are not very helpful to make a judgement on the negative impact of the oil spill on fish species. On the other hand, the bird data analysis shows that the closer the surface oil spill area approached to bird habitats, the more dead birds were observed. The highest number of dead birds was observed in July and August when birds bred and raised their offspring. However, the migration behaviour of different bird species makes it impossible to entirely estimate the full impact of the oil spill on birds. (362 pages) iii ACKNOWLEDGMENTS I would like to thank my advisor Dr. Jrgen Symanzik for spending countless hours in assistance and guidance over the completion of this project. His wisdom,

Anvar Suyundikov; Dr. Jrgen Symanzik

2012-01-01T23:59:59.000Z

291

2007 NTS ES&H.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of mass destruction), and defense and civil technologies (e.g., conventional explosive testing, characterization of hazardous material spills, emergency response training). NTS...

292

2007 NTS EM report.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of mass destruction), and defense and civil technologies (e.g., conventional explosive testing, characterization of hazardous material spills, emergency response training). NTS...

293

Green Materials and Processes for Managing Electronic Waste - TMS  

Science Conference Proceedings (OSTI)

Disassembly selective disassembly, targeting hazardous or valuable components ... materials for the refining process, such as grinding plastics into powders.

294

CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 390: AREAS 9, 10, AND 12 SPILL SITES, NEVADA TEST SITE, NEVADA  

SciTech Connect

Corrective Action Unit (CAU) 390 consists four Corrective Action Sites (CASs) located in Areas 9, 10, and 12 of the Nevada Test Site. The closure activities performed at the CASs include: (1) CAS 09-99-03, Wax, Paraffin: 2 cubic yards of drilling polymer was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (2) CAS 10-99-01, Epoxy Tar Spill: 2 cubic feet of asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (3) CAS 10-99-03, Tar Spills: 3 cubic yards of deteriorated asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (4) CAS 12-25-03, Oil Stains (2); Container: Approximately 16 ounces of used oil were removed from ventilation equipment on June 28,2005, and recycled. One CAS 10-22-19, Drums, Stains, was originally part of CAU 390 but was transferred out of CAU 390 and into CAU 550, Drums, Batteries, and Lead Materials. The transfer was approved by the Nevada Division of Environmental Protection on August 19,2005, and a copy of the approval letter is included in Appendix D of this report.

NONE

2005-10-01T23:59:59.000Z

295

CHSP: Material Safety Data Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

HYGIENE HYGIENE AND SAFETY PLAN CHSP SITE MAP WHO TO CALL MATERIAL SAFETY DATA SHEETS ROLES AND RESPONSIBILITIES arrow image CHEMICAL PROCUREMENT, TRANSPORTATION AND INVENTORY arrow image CHEMICAL HAZARD: DEFINITION arrow image CHEMICAL HAZARD ASSESSMENTS arrow image HAZARD CONTROLS arrow image TRAINING AND HAZARD INFORMATION arrow image EXPOSURE MONITORING & MEDICAL CONSULTATION arrow image APPENDICES arrow image FAQs QUESTIONS Search the CHSP: > Go spacer image EH&S Home PUB 3000 LBNL Home LBNL A-Z Index LBNL Search LBNL Phone Book Privacy & Security Notice spacer spacer image spacer image Material Safety Data Sheets and Chemical Information Resources A Material Safety Data Sheet (MSDS) is a manufacturer/importer's informational document of a hazardous chemical that describes its physical and chemical properties, hazards, and recommended precautions for handling, storage and disposal. How to Read an MSDS

296

Perceptions of BP: Successes of Post 2010 Oil Spill Recover Effort By  

E-Print Network (OSTI)

This purpose of this project was to determine peoples opinions of BPs post 2010 oil spill recovery effort. The researcher examined 65 faculty at the University of Southern Mississippi in order to determine their beliefs, attitudes, and intentions concerning different elements of the BP oil spill recovery effort. The researcher found that there is an overall negative opinion concerning the economic, ecological, and overall recovery effort aspects of the spill. This research suggests that BP still has some work to do in order to restore the gulf coast like they promised.

Jordan R. Mathews; Jordan Mathews; David R. Davies

2013-01-01T23:59:59.000Z

297

Method and apparatus for incinerating hazardous waste  

DOE Patents (OSTI)

An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

Korenberg, Jacob (York, PA)

1990-01-01T23:59:59.000Z

298

Mediated electrochemical hazardous waste destruction  

SciTech Connect

There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag{sup 2+} or Ce{sup +4} are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs.

Hickman, R.G.; Farmer, J.C.; Wang, F.T.

1991-08-01T23:59:59.000Z

299

Hazardous waste identification: A guide to changing regulations  

Science Conference Proceedings (OSTI)

The Resource Conservation and Recovery Act (RCRA) was enacting in 1976 and amended in 1984 by the Hazardous and Solid Waste Amendments (HSWA). Since then, federal regulations have generated a profusion of terms to identify and describe hazardous wastes. Regulations that5 define and govern management of hazardous wastes are codified in Title 40 of the code of Federal Regulations, Protection of the environment''. Title 40 regulations are divided into chapters, subchapters and parts. To be defined as hazardous, a waste must satisfy the definition of solid waste any discharged material not specifically excluded from regulation or granted a regulatory variance by the EPA Administrator. Some wastes and other materials have been identified as non-hazardous and are listed in 40 CFR 261.4(a) and 261.4(b). Certain wastes that satisfy the definition of hazardous waste nevertheless are excluded from regulation as hazardous if they meet specific criteria. Definitions and criteria for their exclusion are found in 40 CFR 261.4(c)-(f) and 40 CFR 261.5.

Stults, R.G. (OHM Remediation Services Corp., Findlay, OH (United States))

1993-03-01T23:59:59.000Z

300

Hazardous Waste: Resource Pack for Trainers and Communicators | Open Energy  

Open Energy Info (EERE)

Hazardous Waste: Resource Pack for Trainers and Communicators Hazardous Waste: Resource Pack for Trainers and Communicators Jump to: navigation, search Tool Summary Name: Hazardous Waste: Resource Pack for Trainers and Communicators Agency/Company /Organization: International Solid Waste Association (ISWA), United Nations Development Programme (UNDP), United Nations Industrial Development Organization (UNIDO) Sector: Energy, Land, Water Focus Area: Renewable Energy, - Waste to Energy Phase: Evaluate Options Topics: Adaptation, Implementation, Low emission development planning, -LEDS Resource Type: Guide/manual, Training materials Website: www.trp-training.info/ Cost: Paid Language: English References: Training Resource Pack[1] "The new TRP+ provides a structured package of notes, technical summaries, visual aids and other training material concerning the (hazardous) waste

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hazardous Gas Production by Alpha Particles  

DOE Green Energy (OSTI)

This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

Jay A. LaVerne, Principal Investigator

2001-11-26T23:59:59.000Z

302

Experiment Hazard Class 11 - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Hydrogen 1 - Hydrogen Applicability This hazard classification applies to all experiments and processes involving the use of gaseous hydrogen. This class includes work performed in the Experiment Hall Beamline Stations and any preparatory/setup/testing work performed in the LOM laboratories. Other hazard controls such as fire protection and life safety regulations may apply to experiments of this hazard class. A summary of controls for hydrogen use is available in the hydrogen summary document. Experiment Category Experiments involving previously reviewed hazard controls qualify for categorized as medium risk. Experiments involving new equipment or modified hazard control schemes are categorized as high risk. Experiment Hazard Control Verification Statements Engineered Controls - Applicable controls for storage and use of

303

Communication in hazardous environments  

SciTech Connect

Radios were investigated for use in hazardous environments where protective breathing equipment such as plastic suits and respirators interfere with communication. A radio system, manufactured by Communications-Applied technology (C-AT), was identified that was designed specifically for hazardous environment communications. This equipment had been used successfully by the US Army and NASA for several years. C-AT equipment was evaluated in plantwide applications at the Savannah River Plant (SRP) using temporary frequencies obtained by the Department of Energy-Savannah River (DOE-SR). Radios performed well in all applications, which included a tritium facility, high-level caves, a nuclear reactor building, tank farm, and a canyon building interior. Permanent frequencies were obtained by DOE-SR for two complete six-man C-AT systems at SRP. Because of the relatively short range of these systems, replicates will cover all applications of this type of equipment plantwide. Twelve radio systems are currently being used successfully in plantwide applications.

Rankin, W N; Herold, T R

1986-01-01T23:59:59.000Z

304

DOE Makes Public Detailed Information on the BP Oil Spill | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Makes Public Detailed Information on the BP Oil Spill Makes Public Detailed Information on the BP Oil Spill DOE Makes Public Detailed Information on the BP Oil Spill June 8, 2010 - 12:00am Addthis WASHINGTON - As part of the Obama Administration's ongoing commitment to transparency surrounding the response to the BP oil spill, U.S. Energy Secretary Steven Chu announced today that Department is providing online access to schematics, pressure tests, diagnostic results and other data about the malfunctioning blowout preventer. Secretary Chu insisted on making the data widely available to ensure the public is as informed as possible, and to ensure that outside experts making recommendations have access to the same information that BP and the government have. The site will be updated with additional data soon. "Transparency is not only in the public interest, it is part of the

305

Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Postpones China Trip to Continue Work on BP Oil Spill Postpones China Trip to Continue Work on BP Oil Spill Response Efforts Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill Response Efforts May 21, 2010 - 12:00am Addthis Washington DC -- Energy Secretary Steven Chu will postpone a trip to China, scheduled for next week, at the request of President Obama and stay in the country to continue his work on response efforts to the BP oil spill. "Finding a solution to this crisis is a matter of national importance," Secretary Chu said. "I want to continue to play a role in assisting in the efforts and stopping this leak as soon as possible." Secretary Chu was originally scheduled to visit Beijing and Shanghai and discuss further progress on bilateral clean energy cooperation.

306

Smooth Cord Grass (Spartina Alterniflora) Response to Simulated Oil Spills in Sediment-Water Microcosms.  

E-Print Network (OSTI)

?? Simulated oil spills were created in S. alterniflora sediment-water microcosms to determine the effects of applied crude oil on S.alterniflora during two 90-day studies. (more)

Beenk, Elliott E.

2013-01-01T23:59:59.000Z

307

BP Oil Spill Footage (High Def) - Top Hat Procedure at 4850'...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home BP Oil Spill Footage (High Def) - Top Hat Procedure at 4850' - June 3 2010 (4 of 4) BP Oil...

308

Effects of droplet size on intrusion of sub-surface oil spills  

E-Print Network (OSTI)

This thesis explores the effects of droplet size on droplet intrusion in sub-surface oil spills. Laboratory experiments were performed where glass beads of various sizes, which serve to simulate oil droplets in deepsea oil ...

Chan, Godine Kok Yan

2013-01-01T23:59:59.000Z

309

Hazardous Waste Act (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

"Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may: cause or significantly...

310

SERVO SYSTEM FOR MAGNETIC CONTROLLED CONSTANT INTENSITY FLAT TOP BEAM SPILL- OUT  

SciTech Connect

It is noted that a uniform flat-top beam spill-out cannot be obtained in the Cosmotron by manual control. A servo system is proposed which will control this spill-out by sensing the external beam intensity, and correcting the magnet voltage to keep this intensity constant. This servo must operate through the transfer function of the main ignitron system and the flat-top filter. An analysis of these special transfer functions is presented. (J.R.D.)

Cottingham, J.G.

1961-11-21T23:59:59.000Z

311

Reduced Spill at Hydropower Dams: Opportunities for More Generation and Increased Fish Population  

DOE Green Energy (OSTI)

This report indicates that reduction of managed spill at hydropower dams can speed implementation of technologies for fish protection and achieve economic goals. Spill of water over spillways is managed in the Columbia River basin to assist downstream-migrating juvenile salmon, and is generally believed to be the most similar to natural migration, benign and effective passage route; other routes include turbines, intake screens with bypasses, and surface bypasses. However, this belief may be misguided, because spill is becoming recognized as less than natural, with deep intakes below normal migration depths, and likely causing physical damages from severe shear on spillways, high turbulence in tail waters, and collisions with baffle blocks that lead to disorientation and predation. Some spillways induce mortalities comparable to turbines. Spill is expensive in lost generation, and controversial. Fish-passage research is leading to more fish-friendly turbines, screens and bypasses that are more effective and less damaging, and surface bypasses that offer passage of more fish per unit water volume than does spill (leaving more water for generation). Analyses by independent economists demonstrated that goals of increased fish survival over the long term and net gain to the economy can be obtained by selectively reducing spill and diverting some of the income from added power generation to research, development, and installation of fish-passage technologies. Such a plan would selectively reduce spill when and where least damaging to fish, increase electricity generation using the water not spilled and use innovative financing to direct monetary gains to improving fish passage.

Coutant, Charles C [ORNL; Mann, Roger [RMecon, Davis, California; Sale, Michael J [ORNL

2006-09-01T23:59:59.000Z

312

Innovation in Storm Water and Oil Spill Control Techniques for Substations  

Science Conference Proceedings (OSTI)

Electric utilities must comply with a wide range of state and federal regulatory policies. One regulation of particular concern to electric utilities in the United States is the Spill Prevention Control and Countermeasures (SPCC) Rule (40 CFR Part 112). This regulation, administered by the U.S. Environmental Protection Agency (EPA), requires some facilities that produce, store, or use oil to implement oil spill control measures. Explosive failure of secondary electrical equipment such as small transforme...

2005-08-22T23:59:59.000Z

313

Mineral Oil Spill Evaluation System-Multi Phase (MOSES-MP), Version 4  

Science Conference Proceedings (OSTI)

The MOSES-MP software is used to determine whether a spill of mineral oil from electrical equipment is likely to reach nearby surface water via overland flow or to migrate through the subsurface to underlying groundwater. The program consists of two integrated modules: the Mineral Oil Spill Evaluation System (MOSES) module calculates the probabilities and volumes of oil reaching a water body, and the Multiphase (MP) module simulates transport through soils to groundwater. In addition to ...

2012-10-23T23:59:59.000Z

314

Bald eagle survival and population dynamics in Alaska after the Exxon Valdez oil spill  

SciTech Connect

We investigated age-specific annual survival rates for 159 bald eagles (Haliaeetus Leucocephalus) radiotagged from 1989 to 1992 in Prince William Sound (PWS), Alaska. We monitored radio-tagged eagles for {le}3 years beginning 4 months after the Exxon Valdez oil spill. There was no difference (P > 0.10) in survival rates between eagles radiotagged in oiled areas and eagles radiotagged in unoiled areas of PWS. Pooled annual survival rates were 71% for first-year eagles, 95% for subadults, and 88% for adult bald eagles. Most deaths occurred from March to May. We found no indication that survival of bald eagles radiotagged >4 months after the oil spill in PWS was directly influenced by the spill and concluded that any effect of the spill on survival occurred before eagles were radiotagged. A deterministic life table model suggests that the PWS bald eagle population has an annual finite growth rate of 2%. Given the cumulative effects of direct mortality and reduced productivity caused by the oil spill, we predicted that the bald eagle population would return to its pre-spill size by 1992. 27 refs., 2 figs., 2 tabs.

Bowman, T.D.; Bernatowicz, J.A. [Fish and Wildlife Service, Anchorage, AK (United States); Schempf, P.F. [Fish and Wildlife Service, Juneau, AK (United States)

1995-04-01T23:59:59.000Z

315

Memorandum on Chemical Reactors and Reactor Hazards  

SciTech Connect

Two important problems in the investigation of reactor hazards are the chemical reactivity of various materials employed in reactor construction and the chracteristics of heat transfer under transient conditions, specifically heat transfer when driven by an exponentially increasing heat source (exp t/T). Although these problems are independent of each other, when studied in relation to reactor hazards they may occur in a closely coupled sequence. For example the onset of a dangerous chemical reactor may be due to structural failure of various reactor components under an exponentially rising heat source originating with a runaway nuclear reactor. For this reason, these two problems should eventually be studied together after an exploratory experimental survey has been made in which they are considered separately.

Mills, M.M.; Pearlman, H.; Ruebsamen, W.; Steele, G., Chrisney, J.

1951-07-05T23:59:59.000Z

316

Hazardous Solvent Substitution Data System tutorial  

SciTech Connect

This manual is the tutorial for the Hazardous Solvent Substitution Data System (HSSDS), an online, comprehensive system of information on alternatives to hazardous solvents and related subjects. The HSSDS data base contains product information, material safety data sheets, toxicity reports, usage reports, biodegradable data, product chemical element lists, and background information on solvents. HSSDS use TOPIC{reg_sign} to search for information based on a query defined by the user. TOPIC provides a full text retrieval of unstructured source documents. In this tutorial, a series of lessons is provided that guides the user through basic steps common to most queries performed with HSSDS. Instructions are provided for both window-based and character-based applications.

Twitchell, K.E.; Skinner, N.L.

1993-07-01T23:59:59.000Z

317

Closure Report for Housekeeping Category Corrective Action Unit 387: Spill Sites and Releases, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Closure Report documents the closure activities conducted for CAU 387: Spill Sites and Releases. Closure activities were performed in two phases. Phase I activities consisted of collecting waste characterization samples of soil at appropriate sites. The results were used to determine how waste generated during closure activities would be handled and disposed (i.e., as nonhazardous sanitary or hazardous waste). Phase 2 activities consisted of closing each CAS by removing debris and/or soil, disposing of the generated waste, and verifying that each site was clean-closed by visual inspection and/or collecting soil verification samples for laboratory analysis. Additionally, seven sites were closed with no further action after concurrence with Nevada Division of Environmental Protection (NDEP). Four other sites were moved into different CAUs in Appendix III of the FFACO because the housekeeping process was not adequate to close them. Copies of the analytical results for the site verification samples are included in Appendix A. Copies of the Sectored Housekeeping Site Closure Verification Forms for each of the 16 CAS are included in Appendix B.

T. M. Fitzmaurice

2001-10-01T23:59:59.000Z

318

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

analysis, porous materials multiphase flow, aquifers, grounddimensional multiphase flow in porous media. In: Proceedingsclaculations, porous materials multiphase flow, flow rate,

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

319

Overview hazard analysis for the H2Fuel Bus Program  

DOE Green Energy (OSTI)

The H2Fuel Bus project is a joint development effort to produce a safe, near-zero emission, 32 passenger bus that is propelled by electric power with continuous on-board hydrogen powered battery recharging. A key initiative in the hydrogen bus development effort is a rigorous evaluation of operational safety. Westinghouse Savannah River Co., the prime contractor at the Department of Energy`s Savannah River Site, has developed a hazard analysis methodology designed to provide a systematic, comprehensive identification and evaluation of hazards. Although originally developed to support nuclear/chemical facility safety basis documentation, the SRS Methodology has widespread applicability to operations and/or systems that utilize hazardous materials and energy. This methodology was used to perform an overview hazard analysis for the H2Fuel Bus project to focus attention on those hypothetical circumstances that pose the greatest threat to the populace and property. The hazard analysis yields a listing of all known H2Fuel Bus hazards, postulated accident scenarios describing possible hazardous releases or conditions, an assessment of the scenarios in terms of frequency of occurrence and consequence, and binning in frequency-consequence space to assess the relative severity of postulated scenarios.

Hovis, G.L.

1996-06-18T23:59:59.000Z

320

Spill exercise 1980: an LLNL emergency training exercise  

Science Conference Proceedings (OSTI)

An emergency training exercise at Lawrence Livermore National Laboratory (LLNL) demonstrated that off-hours emergency personnel can respond promptly and effecively to an emergency situation involving radiation, hazardous chemicals, and injured persons. The exercise simulated an explosion in a chemistry laboratory and a subsequent toxic-gas release.

Morse, J.L.; Gibson, T.A.; Vance, W.F.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Apparatus for incinerating hazardous waste  

DOE Patents (OSTI)

An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

Chang, R.C.W.

1994-12-20T23:59:59.000Z

322

Apparatus for incinerating hazardous waste  

DOE Patents (OSTI)

An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

Chang, Robert C. W. (Martinez, GA)

1994-01-01T23:59:59.000Z

323

Support for the delisting of decontaminated liquid chemical surety materials as listed hazardous waste from specific sources (state) MD02 in COMAR 10. 51. 02. 16-1. Technical report, December 1987-February 1988  

SciTech Connect

Maryland recently enacted regulations that listed decontaminated residues of certain chemical warfare agents as hazardous wastes. The State would consider delisting if the Army document the effects of its decontamination procedures. Army specialists at U.S. Army Chemical Research, Development and Engineering Center (CRDEC), Aberdeen Proving Ground, MD, have had exhaustive experience in this area since 1918 when chemical agents were first used in combat in World War I. Competence accrued during this 70-year legacy includes destruction of laboratory and training wastes, combat decontamination, and largescale demilitarization of unserviceable and obsolete agent-filled munitions. The facts and circumstances enumerated in this document indicate that current decontamination practices are safe, scientifically valid, and result in the total destruction of agents in questions.

Durst, H.D.; Sarver, E.W.; Yurow, H.W.; Beaudry, W.T.; D'Eramo, P.A.

1988-11-01T23:59:59.000Z

324

Control of incidental asbestos exposure at hazardous waste sites  

Science Conference Proceedings (OSTI)

This paper discusses asbestos regulations that are not part of Superfund and examines how these regulations can help to identify, evaluate and manage the risk associated with Asbestos Containing Material (ACM) at hazardous waste cleanup sites. Unless one knows where to look for ACM at hazardous waste sites, it may go undetected even after all the traditional sampling is done. Although EPA is currently developing a policy for evaluating risk from asbestos exposure at certain Superfund sites, information from existing regulations can be used to manage hazards associated with asbestos exposure at hazardous waste sites. This paper also identifies where to find governmental agency personnel and consultants who may be retained for site-specific help.

Kaustas, R.N. (Environmental Protection Agency, Edison, NJ (United States))

1991-08-01T23:59:59.000Z

325

Potential Health Hazards of Radiation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation More Documents &...

326

Behavioral constraints on harlequin duck population recovery from the Exxon Valdez oil spill in Prince William Sound, Alaska.  

E-Print Network (OSTI)

??I investigated the relationship between harlequin duck (Histrionicus histrionicus) behavior and lack of recovery from the Exxon Valdez oil spill in Prince William Sound, Alaska. (more)

[No author

2004-01-01T23:59:59.000Z

327

Harlequin duck demography during winter in Prince William Sound, Alaska : effects of the Exxon Valdez oil spill.  

E-Print Network (OSTI)

??The 1989 Exxon Valdez oil spill was a major perturbation of nearshore habitats of Prince William Sound, a wintering area for harlequin ducks (Histrionicus histrionicus). (more)

[No author

2000-01-01T23:59:59.000Z

328

Parens Patriae Litigation to Redress Societal Damages from the BP Oil Spill: The Latest Stage in the Evolution of Crimtorts  

E-Print Network (OSTI)

oil slick polluted "the precious wetlands, bays, and estuaries of Louisiana'sLouisiana seeks compensation for damages caused by the oil spill to its "marshes, wetlands,

Rustad, Michael L.; Koenig, Thomas H.

2011-01-01T23:59:59.000Z

329

Materials Characterization Paper In Support of the Proposed Rulemaking: Identification of Nonhazardous Secondary Materials That Are Solid Waste Used Oil  

E-Print Network (OSTI)

EPA defines used oil as any oil that has been refined from crude oil, or any synthetic oil, that has been used and as a result of such use is contaminated by physical or chemical impurities. 1 EPAs criteria for used oil: Origin: Used oil must have been refined from crude oil or made from synthetic materials (i.e., derived from coal, shale, or polymers). Examples of crude-oil derived oils and synthetic oils are motor oil, mineral oil, laminating surface agents, and metal working oils. Thus, animal and vegetable oils are not included. Bottom clean-out from virgin fuel oil storage tanks or virgin oil recovered from a spill, as well as products solely used as cleaning agents or for their solvent properties, and certain petroleum-derived products such as antifreeze and kerosene are also not included. Use: The oil must have been used as a lubricant, coolant, heat (non-contact) transfer fluid, hydraulic fluid, heat transfer fluid or for a similar use. Lubricants include, but are not limited to, used motor oil, metal working lubricants, and emulsions. An example of a hydraulic fluid is transmission fluid. Heat transfer fluids can be materials such as coolants, heating media, refrigeration oils, and electrical insulation oils. Authorized states or regions determine what is considered a similar use on a site-specific basis according to whether the material is used and managed in a manner consistent with Part 279 (e.g., used as a buoyant). Contaminants: The used oil must be contaminated by physical (e.g., high water content, metal shavings, or dirt) or chemical (e.g., lead, halogens, solvents or other hazardous constituents) impurities as a result of use. 2. Annual Quantities of Used Oil Generated and Used

unknown authors

2010-01-01T23:59:59.000Z

330

Hazardous Waste Management Standards and Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

331

Load on Trough Bellows Following an Argon Spill  

SciTech Connect

In the case of a gross argon spill from the DO detector, the liquid argon is caught in three plenums. These plenums are to be connected by bellows to make a horizontal trough open at one end for removing the argon. The design of these bellows is dependent on the maximum argon load they must carry. Bellows to connect the three argon-catching plenums in the DO detector must be able to carry at least 92 lbs of argon when closed and 231 lbs when open, plus the load due to argon in the convolutions. Examples of such loads and the method for their calculations are contained in the Discussion. It should be noted that a set of assumptions was used in these calculations. First, we considered a uniform channel and uniform flow. Second, we used a value for Manning's n meant for a similar, but not exactly the same, case. Finally, we were forced to define an average depth, d, to be used to state the hydraulic radius, R, and area of flow, A. These facts may warrant consideration in future calculations.

Chess, K.; /Fermilab

1988-07-12T23:59:59.000Z

332

Microbial petroleum degradation enhancement by oil spill bioremediation products  

E-Print Network (OSTI)

Biodegradation of an artificially weathered crude oil (Alaska North Slope) was compared using 13 different oil spill bioremediation agents. All products were evaluated under identical conditions emulating a marine environment. The research was conducted using unpolluted, natural seawater. The products were tested in triplicate using 250 ml Erlenmeyer flasks and evaluated over a 28 day period to determine the products' capabilities based on the extent of petroleum degradation. Toxicity and petroleum chemistry data were used to assess the products' degrading capabilities. Total petroleum hydrocarbons analyses were completed on all the products. GC-MS analyses of the petroleum fractions helped to determine the concentration of target compounds for the products. Six products showed a significant extent of microbial degradation, however only one met the toxicity criteria. A total of 68 analytes were quantified from the six successful products. The petroleum hydrocarbons were significantly degraded by six treatments as compared with the nutrient and non-nutrient control. The saturate resolved hydrocarbons were reduced an average of 90% of the original weight, while the aromatic resolved hydrocarbons were degraded approximately 60%. The toxicity criteria reduced the initial number of products to one product only. Biodegradation to a lesser extent was also achieved by the indigenous microbial population with the addition of nutrients alone. Further research should be completed before considering any of these products for application in the field.

Lee, Salvador Aldrett

1996-01-01T23:59:59.000Z

333

Encapsulation of hazardous wastes into agglomerates  

SciTech Connect

The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

Guloy, A.

1992-01-28T23:59:59.000Z

334

REGARDING RADIATION HAZARDS  

SciTech Connect

Within 24 to 36 hr after detonation on July 6 and 24 in the Nevada testing area of 2 thermonuclear bombs of the order of 10 kiloton magnitude, the I/ sup 131/ levels of milk from several Utah milk sheds repeatedly exceeded hazardous levels. These findings, reflected in daily I/sup 131/ counts, led the Director of Public Health in Utah to have milk diverted from fluid distribution to milk-products manufacture, thereby permitting time for these dairy foods to become safe for consumer use. In other cities sudden peak levels have also occurred. Thus, Troy, New York, in April, 1953, was exposed by a flash rainstorm, which occurred 18 hr after a Nevada test explosion, to radioactive fallout sufficient to produce levels in milk estimated at more than a 1000 times the safe limit by British or American standards, more than 4 times the British annual allowance in 1 quart of milk. It is suggested that public-health authorities, working in coliaboration with the nation's medical centers, should institute routine, daily I/sup 131/ thyroid-uptake counts on the infants in various parts of the country. (H.H.D.)

Boardman, D.W.

1962-09-13T23:59:59.000Z

335

Closure Report for Corrective Action Unit 499: Hydrocarbon Spill Site, Tonopah Test Range, Nevada  

DOE Green Energy (OSTI)

This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 499: Hydrocarbon Spill Site, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 499: Hydrocarbon Spill Site, Tonopah Test Range (TTR), Nevada (US Department of Energy, Nevada Operations Office [DOE/NV], 2001). CAU 499 consists of one Corrective Action Site (CAS): RG-25-001-RD24: Radar 24 Diesel Spill Site which is approximately 4.0 kilometers (2.5 miles) southwest of the Area 3 Compound at the end of Avenue 24. The Hydrocarbon Spill Site is a diesel fuel release site that is assumed to have been caused by numerous small historical over-fillings, spills, and leaks from an above-ground storage tank (AST) over a period of approximately 36 years. The tank was located on the east side of Building 24-50 on the TTR.

K. B. Campbell

2002-07-01T23:59:59.000Z

336

ARM - SGP Rural Driving Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Rural Driving Hazards Rural Driving Hazards SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on unpaved, dirt and gravel, roads. Visitors should be aware of the driving hazards this presents by taking the following precautions: Proceed cautiously: Many rural roads have unmarked and blind intersections. Slow down: Sanded and gravel raods can cause a vehicle to swerve. Maintain a safe following distance: During the dry season, vehicles

337

Surveillance Guides - Identification of Hazards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identification of Hazards Identification of Hazards 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs. Surveillance activities encompass maintenance and implementation of safety basis documentation (SARs, ISBs, BIOs, JCOs, HASPs etc) as well as activity level hazards identification via JHAs, AJHAs, JSAs etc.) 2.0 References 2.1 DOE 4330.4B Maintenance Management Program 2.2 48 CFR 1970 Department of Energy Acquisition Regulations 2.3 DOE O 5480.21, Unreviewed Safety Questions 2.4 DOE O 5480.23, Nuclear Safety Analysis Reports 3.0 Requirements Implemented This surveillance verifies implementation of guiding principle #5 and core value #2 as specified in 48 CFR 1970.5204-2 (b) (5) and (c) (2) respectively. Additionally, it verifies implementation of

338

Hazard-free connection release.  

E-Print Network (OSTI)

??Fault-tolerant communication in a distributed system requires reliable connection management and message delivery. Reliable connection management includes the guarantee of hazard-free release, in which no (more)

Walter, Jennifer E.

2012-01-01T23:59:59.000Z

339

Oil Spill Response: The LSU School of the Coast and Environment and the LSU College of Engineering  

E-Print Network (OSTI)

sectors to discuss the government's response to the spill and various other aspects of the disaster list is not meant to be comprehensive. For more information about LSU's response to the disasterOil Spill Response: The LSU School of the Coast and Environment and the LSU College of Engineering

340

Hindcast of oil-spill pollution during the Lebanon crisis in the Eastern Mediterranean, JulyAugust 2006  

E-Print Network (OSTI)

Hindcast of oil-spill pollution during the Lebanon crisis in the Eastern Mediterranean, July, Athens, Greece a r t i c l e i n f o Keywords: Lebanese oil-pollution event Oil-spill modeling Oceanography Network http://www.moon-oceanforecasting.eu) pro- vides near-real-time information on oil

Georgiou, Georgios

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling THE AMOUNT AND FATE OF THE OIL  

E-Print Network (OSTI)

- 1 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling THE AMOUNT AND FATE OF THE OIL ---Draft--- Staff Working Paper No. 3 Staff Working Papers are written by the staff of the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling for the use of members

Meyers, Steven D.

342

Parens Patriae Litigation to Redress Societal Damages from the BP Oil Spill: The Latest Stage in the Evolution of Crimtorts  

E-Print Network (OSTI)

harmed by the oil spill. B. History of Parens Patriae 1. Theoil spill has led to some of the most complex legal dilemmas in Anglo-American history.oil 5 created the largest marine environmental catastrophe in U.S. history.

Rustad, Michael L.; Koenig, Thomas H.

2011-01-01T23:59:59.000Z

343

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management  

E-Print Network (OSTI)

Products such as paints, solvents, adhesives, oils, cleaners, batteries, pesticides and wood preservatives are commonly used in households and on farms, but they can be hazardous to ground water if handled improperly. This publication explains proper methods of using, storing and disposing of hazardous materials.

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

1997-08-29T23:59:59.000Z

344

http://blogs.universitybusiness.com/[7/14/2010 2:35:58 PM] Higher Ed's Help with Oil Spill Response  

E-Print Network (OSTI)

called "Oil and Water: The Gulf Oil Spill of 2010" centering on the Gulf's history and ecologyUB Buzz http://blogs.universitybusiness.com/[7/14/2010 2:35:58 PM] Higher Ed's Help with Oil Spill and universities across the country have been getting their hands dirty with the Gulf Coast oil spill

Rock, Chris

345

NEHRP - National Earthquake Hazards Reduction Program ...  

Science Conference Proceedings (OSTI)

... Failures I by John Egan National Earthquake Hazards Reduction Program. A research and implementation partnership. ...

2013-08-28T23:59:59.000Z

346

Potential environmental hazards associated with geopressured-geothermal resource development in coastal Louisiana  

Science Conference Proceedings (OSTI)

Gulf Coast high temperature (> 275 F) geopressured brines are more or less saturated with dissolved natural gas. These can be exploited at high flow rated (> 20,000 barrels per day) using wells completed with modified conventional technology for extracting gas from brine. Surface subsidence, fault reactivation, induced subsurface faulting and fracturing, brine spills, wetland loss, and the contamination of fresh water aquifers are the major potential hazards involved in this resource development which were all taken into consideration for implementing the environmental monitoring program being currently carried out at the well test sites. High volume production from a geopressured reservoir causes depressurization, compaction, and dewatering which could translate into surface subsidence rates that are greater than base line rates unless pressure is maintained by water ingress at the boundaries of producing reservoirs. Subsidence is of critical concern in coastal Louisiana where much of the land surface is at or below sea level. Increased subsidence will result in urban flooding, wetland loss, and loss of ecosystem habitats. Induced stresses could result in new faulting and fracturing enabling fluid flow between previously unconnected reservoirs and possibly contaminating fresh water aquifers. Fault displacements and minor earth movements can be detected with microseismic monitoring which is being done. Brine spills at well sites which could not be contained within levees will seriously impact the surrounding marshes and some minor wetland loss may occur in establishing production sites. Continued no major environmental impact attributable to resource testing.

John, C.J.; Groat, C.G.; Lindstedt, D.; Jensen, B. (Louisiana Geological Survey, Baton Rouge, LA (United States))

1992-01-01T23:59:59.000Z

347

Hazardous Wastes Management (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

348

DOE's Portal to Deepwater Horizon Oil Spill Data  

DOE Data Explorer (OSTI)

On April 20, 2010, the Deepwater Horizon platform in the Gulf of Mexico exploded. The explosion and fire killed and injured workers on the oil rig, and caused major releases of oil and gas into the Gulf for several months. The Department of Energy, in keeping with the Obama Administrations ongoing commitment to transparency, provided online access to data and information related to the response to the BP oil spill. Included are schematics, pressure tests, diagnostic results, video clips, and other data. There are also links to the Restore the Gulf website, to the trajectory forecasts from NOAA, and oil spill information from the Environmental Protection Agency.

349

The IXTOC I oil spill: the Federal Scientific Response. Special report  

Science Conference Proceedings (OSTI)

On 3 June 1979, a Petroleos Mexicanos (PEMEX) exploratory well, IXTOC I, blew out in the Bay of Campeche, about 80 km northwest of Ciudad del Carmen, Mexico. The spill, not brought under control until 27 March 1980, became the largest oil spill in history. The following summary described the numerous operation support activities and scientific studies performed under the purview of the Federal Scientific Support Coordinator. The primary purpose of the physical, chemical, and biological activities described herein was to provide the Federal On-Scene Coordinator (OSC) with timely information concerning the location, toxicity, and potential ecological impact of the oil on the Texas coastline.

Hooper, C.H.

1981-12-01T23:59:59.000Z

350

Thoughts on Hazard Assessment (Oct)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hazard Assessment of Chemical Air Hazard Assessment of Chemical Air Contaminants Measured in Residences J.M. Logue, T.E. McKone, M. H. Sherman, B.C. Singer Environmental Energy Technologies Division June 2010 Funding was provided by the U.S. Dept. of Energy Building Technologies Program, Office of Energy Efficiency and Renewable Energy under DOE Contract No. DE-AC02-05CH11231; by the U.S. Dept. of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control through Interagency Agreement I-PHI-01070, and by the California Energy Commission through Contract 500-08-06. LBNL Report Number 3650-E 1 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States

351

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

352

New insights into microbial responses to oil spills from the Deepwater Horizon incident  

Science Conference Proceedings (OSTI)

On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea in the Gulf of Mexico. In particular putative hydrocarbon degrading Bacteria appeared to bloom in response to the Deepwater Horizon oil spill, even though the temperature at these depths is never >5 C. As the plume aged the shifts in the microbial community on a temporal scale suggested that different, yet metabolically important members of the community were able to respond to a myriad of plume constituents, e.g. shifting from propane/ethane to alkanes and finally to methane. Thus, the biodegradation of hydrocarbons in the plume by Bacteria was a highly significant process in the natural attenuation of many compounds released during the Deepwater Horizon oil spill.

Mason, O.U.; Hazen, T.C.

2011-06-15T23:59:59.000Z

353

Estimating Surface Oil Extent from the Deepwater Horizon Oil Spill using ASCAT Backscatter  

E-Print Network (OSTI)

Estimating Surface Oil Extent from the Deepwater Horizon Oil Spill using ASCAT Backscatter Richard Provo, UT 84602 Abstract--The damping effects of oil on capillary ocean waves alter the backscattered backscatter from the ocean surface uncontaminated by surface oil. Large differences between expected

Long, David G.

354

Gulf oil spill's ripples still a worry Warranted or not, disaster fears loom  

E-Print Network (OSTI)

Gulf oil spill's ripples still a worry Warranted or not, disaster fears loom BY JIM WAYMER from the nation's worst-ever oil mess. Oceanographers want to know the paths of underwater oil plumes. Biologists wonder if nesting sea turtles that accidentally gulped oil will lay viable eggs or whether eggs

Belogay, Eugene A.

355

Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas  

E-Print Network (OSTI)

Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas By David Gardner Last updated at 11:32 AM on 3rd June 2010 BP's giant oil slick was bearing down on Florida holidaymakers a year visit Florida and state leaders fear the oil will devastate a tourist industry

Belogay, Eugene A.

356

Did BP's oil-dissolving chemical make the spill By Kate Spinner  

E-Print Network (OSTI)

Did BP's oil-dissolving chemical make the spill worse? By Kate Spinner Published: Monday, May 30, 2011 at 8:47 p.m. BP succeeded in sinking the oil from its blown well out of sight -- and keeping much chemicals. But the impact on the ecosystem as a whole may have been more damaging than the oil alone

Belogay, Eugene A.

357

Harbor Branch researcher on top of bottom life ahead of oil spill  

E-Print Network (OSTI)

Harbor Branch researcher on top of bottom life ahead of oil spill By Ed Killer Saturday, June 12 like if touched by an underwater plume of oil. No doubt, much of it would be gone forever. Reed inhabiting the reefs, Reed hoped the oil would not be swept around the tip of Florida and onto the fragile

Belogay, Eugene A.

358

Effects of oil spills on coastal wetlands and their recovery: Year 4, final report  

Science Conference Proceedings (OSTI)

Oil spills can have a significant short-term impact on coastal marshes, but the long term effects and perhaps eventual recovery are not well documented. The overall goal of the investigation is to document the long-term recovery rate of a Louisiana brackish marsh impacted by an oil spill on 23 April 1985, to separate the effect of the oil spill on marsh deterioration from ambient rates of marsh degradation, and to test means by which recovery can be accelerated and the damage mitigated. These goals have been accomplished through both remote sensing and ground truth assessments, ground based vegetation stress measurements, and manipulative field experiments. A total of 68 permanent plots that were established in the oiled and control marshes at the study site in 1985 were re-surveyed for plant and soil recovery in the fall of 1989 and assessed for species composition, live and dead percentage cover, and residual oil impact. Significant vegetative recovery of the oil-impacted marsh four years after the spill was evident as indicated by significant increases in vegetative cover.

Mendelssohn, I.A.; Hester, M.W.; Hill, J.M.

1993-09-01T23:59:59.000Z

359

GLOBAL SUSTAINABILITY/OIL SPILL COMMUNITY SEMINAR "Natural and Unnatural Oil in the Gulf of Mexico  

E-Print Network (OSTI)

GLOBAL SUSTAINABILITY/OIL SPILL COMMUNITY SEMINAR "Natural and Unnatural Oil in the Gulf of Mexico in the Gulf of Mexico has been cited as a factor that may have pre-conditioned the gulf ecosystem better a strong Gulf of Mexico focus, but includes work on the deep-sea biology of hydrothermal vents

360

A hazard separation system for dismantlement of nuclear weapon components  

SciTech Connect

Over the next decade, the US Department of Energy (DOE) must retire and dismantle many nuclear weapon systems. In support of this effort, Sandia National Laboratories (SNL) has developed the Hazard Separation System (HSS). The HSS combines abrasive waterjet cutting technology and real-time radiography. Using the HSS, operators determine the exact location of interior, hazardous sub-components and remove them through precision cutting. The system minimizes waste and maximizes the recovery of recyclable materials. During 1994, the HSS was completed and demonstrated. Weapon components processed during the demonstration period included arming, fusing, and firing units; preflight control units; neutron generator subassemblies; and x-units. Hazards removed included radioactive krytron tubes and gap tubes, thermal batteries, neutron generator tubes, and oil-filled capacitors. Currently, the HSS is being operated at SNL in a research and development mode to facilitate the transfer of the technology to other DOE facilities for support of their dismantlement operations.

Lutz, J.D.; Purvis, S.T.; Hospelhorn, R.L.; Thompson, K.R.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network (OSTI)

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can liners. This waste stream must be boxed to protect custodial staff. It goes directly to the landfill lined cardboard box. Tape seams with heavy duty tape to contain waste. Limit weight to 20 lbs. Or

Sheridan, Jennifer

362

MOSES Leak Tool 1.0 - Mineral Oil Spill Evaluation System Leak Tool, Version 1.0  

Science Conference Proceedings (OSTI)

The purpose of the Mineral Oil Spill Evaluation System (MOSES) Leak Tool Version 1.0 is to provide a Monte-Carlo estimate of the initial horizontal spill radius from leaks in either at-grade or pole-mounted transformers. The internal transformer pressure is specified as either being atmospheric or at pressurized conditions. This tool is intended to supplement the MOSES-MP code (EPRI, 2002). The MOSES-MP code estimates the extent of oil migration from leaks and spills from electrical oil-filled equipment ...

2007-08-20T23:59:59.000Z

363

Experiment Hazard Class 4.4 -Class 4 Lasers  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of Class 4 Lasers Applicability This hazard classification applies to all experiments involving class 4 lasers. Other hazard classifications and their associated hazard...

364

Massachusetts Hazardous Waste Management Act (Massachusetts)  

Energy.gov (U.S. Department of Energy (DOE))

This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

365

Modeling and Hazard Analysis Using Stpa  

E-Print Network (OSTI)

A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software ...

Ishimatsu, Takuto

366

Is the situation and immediate threat to life and health? Spill/Leak/Release Medical Emergency Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor? Possible Fire / Natural Gas  

E-Print Network (OSTI)

? Possible Fire / Natural Gas (including chemicals and bio agents") (not including chemicals or bio agents Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor

367

Program: Structural Performance Under Multi-Hazards  

Science Conference Proceedings (OSTI)

... derive lessons learned from disasters and failures ... hazard failure analysis, and disaster and failure ... heat transfer, and nonlinear structural response. ...

2013-01-03T23:59:59.000Z

368

NEHRP - Hazard Vulnerability and Disaster Resiliency ...  

Science Conference Proceedings (OSTI)

... Hazard Vulnerability and Disaster Resiliency. 2013. ... gaps for achieving resilience in the ... protection, emergency response, business continuity, and ...

369

NEHRP - Earthquake Risk and Hazard Research ...  

Science Conference Proceedings (OSTI)

Grants&Contracts. Earthquake Risk and Hazard Research, Implementation, and Outreach Roadmap. Award. Contract SB134106Z0011 ...

370

Earthquake Hazards Reduction Information at NIST  

Science Conference Proceedings (OSTI)

... 2013). Earthquakes (08/15/2011). Fifteen Named to Earthquake Hazards Reduction Advisory Committee (10/05/2010). Final ...

2010-09-23T23:59:59.000Z

371

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products  

E-Print Network (OSTI)

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products containing toxic chemicals. These wastes CANNOT be disposed of in regular garbage. Any should be considered hazardous. You cannot treat hazardous wastes like other kinds of garbage

de Lijser, Peter

372

Parens Patriae Litigation to Redress Societal Damages from the BP Oil Spill: The Latest Stage in the Evolution of Crimtorts  

E-Print Network (OSTI)

at 331 (interpreting the Exxon Valdez oil spill as lying onRodgers, Jr. , et al. , The Exxon Valdez Reopener: NaturalThe 1991 settlement between Exxon and the United States and

Rustad, Michael L.; Koenig, Thomas H.

2011-01-01T23:59:59.000Z

373

Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.  

Science Conference Proceedings (OSTI)

While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

2004-12-01T23:59:59.000Z

374

What comes next? : employment opportunities for Vietnamese American fisherfolk affected by the BP gulf oil spill in Louisiana  

E-Print Network (OSTI)

This thesis explores potential employment opportunities in energy efficiency construction and aquaculture for Vietnamese American fisherfolk significantly impacted by the BP oil spill in Louisiana. First, the thesis explains ...

Dang, Mai T. (Mai Thuy Tran)

2011-01-01T23:59:59.000Z

375

Deepwater Horizon Oil Spill Principal Investigator (PI) Conference Sponsored by the NSTC SOST, hosted by the University of South Florida  

E-Print Network (OSTI)

Deepwater Horizon Oil Spill Principal Investigator (PI) Conference Sponsored Ballroom · Oil/dispersant - extent and fate Tom Ryerson, National Oceanic and Atmospheric Administration · Oil/dispersant - impacts and mitigation in coastal

Meyers, Steven D.

376

Oak Ridge Health Studies Phase 1 report, Volume 2: Part A, Dose Reconstruction Feasibility Study. Tasks 1 and 2, A summary of historical activities on the Oak Ridge Reservation with emphasis on information concerning off-site emissions of hazardous materials  

Science Conference Proceedings (OSTI)

The Phase I feasibility study has focused on determining the availability of information for estimating exposures of the public to chemicals and radionuclides released as a result of historical operation of the facilities at the Oak Ridge Reservation (ORR). The estimation of such past exposures is frequently called dose reconstruction. The initial project tasks, Tasks 1 and 2 were designed to identify and collect information that documents the history of activities at the ORR that resulted in the release of contamination and to characterize the availability of data that could be used to estimate the magnitude of the contaminant releases or public exposures. A history of operations that are likely to have generated off-site releases has been documented as a result of Task 1 activities. The activities required to perform this task involved the extensive review of historical operation records and interviews with present and past employees as well as other knowledgeable individuals. The investigation process is documented in this report. The Task 1 investigations have led to the documentation of an overview of the activities that have taken place at each of the major complexes, including routine operations, waste management practices, special projects, and accidents and incidents. Historical activities that appear to warrant the highest priority in any further investigations were identified based on their likely association with off-site emissions of hazardous materials as indicated by the documentation reviewed or information obtained in interviews.

Bruce, G.M.; Buddenbaum, J.E.; Lamb, J.K.; Widner, T.E.

1993-09-01T23:59:59.000Z

377

OSHA List of Hazardous Chemicals  

NLE Websites -- All DOE Office Websites (Extended Search)

OSHA List of Hazardous Chemicals OSHA List of Hazardous Chemicals ACETALDEHYDE ACETAMIDE ACETIC ACID ACETIC ANHYDRIDE ACETONE ACETONItr ILE ACETYLAMINOFLUORENE, 2- ACETYLENE ACETYLENE DICHLORIDE ACETYLENE TETRABROMIDE ACETYLSALICYLIC ACID (ASPIRIN) ACROLEIN ACRYLAMIDE ACRYLIC ACID ACRYLONITRILE ACTINOMYCIN D ADRIAMYCIN AFLATOXINS ALDRIN ALLYL ALCOHOL ALLYL CHLORIDE ALLYL GLYCIDYL ETHER (AGE) ALLYL PROPYL DISULFIDE ALUMINA ALUMINUM, METAL DUST, AS AL ALUMINUM, PYRO POWDERS, AS AL ALUMINUM, SOLUBLE SALTS, AS AL ALUMINUM, WELDING FUMES, AS AL ALUMINUM, ALKYLS, NOT OTHERWISE CLASSIFIED, AS AL ALUMINUM OXIDE, AS AL AMINOANTHRAQUINONE (AAQ), AMINOAZOTOLUENE, O- AMINOBIPHENYL, 4- AMINOETHANOL, 2- AMINO-2-METHYLANTHRAQUINONE, 1- AMINO-5-(5-NITRO-2-FURYL)- -1, 3,4-THIADIADIAZOLE, 2- AMINOPYRIDINE, 2- AMINO-1,2,4-TRIAZOLE, 3-

378

Models of volcanic eruption hazards  

SciTech Connect

Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

Wohletz, K.H.

1992-01-01T23:59:59.000Z

379

Models of volcanic eruption hazards  

SciTech Connect

Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

Wohletz, K.H.

1992-06-01T23:59:59.000Z

380

Order Module--self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

self-study program: HAZARDOUS WASTE OPERATIONS AND self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE Order Module--self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE This module will discuss the objectives and requirements associated with this rule from the code of federal regulations. We have provided an example to help familiarize you with the material. The example will also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste operations and emergency response or through the course manager. You may need to refer to these documents to complete the example, practice, and criterion test. DOE Order Self Study Modules - 29 CFR 1910.120 Hazardous Waste Operations

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Implementation of the hazardous debris rule  

SciTech Connect

Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

Sailer, J.E.

1993-01-05T23:59:59.000Z

382

Lagrangian kinematics of steep waves up to the inception of a spilling breaker  

E-Print Network (OSTI)

Horizontal Lagrangian velocities and accelerations at the surface of steep water-waves are studied by Particle Tracking Velocimetry (PTV) for gradually increasing crest heights up to the inception of a spilling breaker. Localized steep waves are excited using wavemaker-generated Peregrine breather-type wave trains. Actual crest and phase velocities are estimated from video recorded sequences of the instantaneous wave shape as well as from surface elevation measurements by wave gauges. Effects of nonlinearity and spectral width on phase velocity, as well as relation between the phase velocity and crest propagation speed are discussed. The inception of a spilling breaker is associated with the horizontal velocity of water particles at the crest attaining that of the crest, thus confirming the kinematic criterion for inception of breaking.

Shemer, Lev

2013-01-01T23:59:59.000Z

383

Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report  

SciTech Connect

Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

1982-05-01T23:59:59.000Z

384

Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1  

SciTech Connect

This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

Not Available

1993-12-31T23:59:59.000Z

385

Management Practices for Prevention and Retention of Oil Spills from Substation Equipment  

Science Conference Proceedings (OSTI)

Releases of mineral oil from insulated substation equipment present potential environmental and economic burden. The purpose of this report is to discuss practices utilized to prevent releases of mineral oil, to the extent practical, and then to contain spills/leaks that do occur. Discussion is provided to aid a company's decision in identifying those management practices that are best for their conditions, with "best" being defined as those that provide the optimal balance of cost, performance, and envi...

2003-05-19T23:59:59.000Z

386

Integrating Chemical Hazard Assessment into the Design of Inherently Safer Processes  

E-Print Network (OSTI)

Reactive hazard associated with chemicals is a major safety issue in process industries. This kind of hazard has caused the occurrence of many accidents, leading to fatalities, injuries, property damage and environment pollution. Reactive hazards can be eliminated or minimized by applying Inherently Safer Design (ISD) principles such as "substitute" or "moderate" strategies. However, ISD would not be a feasible option for industry without an efficient methodology for chemical hazard assessment, which provides the technical basis for applying ISD during process design. In this research, a systematic chemical hazard assessment methodology was developed for assisting the implementation of ISD in the design of inherently safer process. This methodology incorporates the selection of safer chemicals and determination of safer process conditions, which correspond to "substitute" and "moderate" strategies in ISD. The application of this methodology in conjunction with ISD technique can effectively save the time and investment spent on the process design. As part of selecting safer chemicals, prediction models were developed for predicting hazardous properties of reactive chemicals. Also, a hazard index was adopted to rate chemicals according to reactive hazards. By combining the prediction models with the hazard index, this research can provide important information on how to select safer chemicals for the processes, which makes the process chemistry inherently safer. As part of determining safer process conditions, the incompatibility of Methyl Ethyl Ketone Peroxide (MEKPO) with iron oxide was investigated. It was found that iron oxide at low levels has no impact on the reactive hazards of MEKPO as well as the operational safety. However, when iron oxide is beyond 0.3 wt%, it starts to change the kinetics of MEKPO runaway reaction and even the reaction mechanism. As a result, with the presence of a certain level of iron oxide (> 0.3 wt%), iron oxide can intensify the reactive hazards of MEKPO and impose higher risk to process operations. The investigation results can help to determine appropriate materials for fabricating process equipment and safer process conditions.

Lu, Yuan

2011-12-01T23:59:59.000Z

387

Medical University of South Carolina Environmental Hazards Assessment Program. Deliverables: Volume 3, Annual report, July 1, 1993--June 30, 1994  

SciTech Connect

This reference is concerned with the Crossroads of Humanity workshop which is part of the Environmental Hazards Assessment Program at the Medical University of South Carolina. This workshop was held during the month of June and July 1994. Topics discussed include: Perceived Risk Advisory Committee Meeting, surveys of public opinion about hazardous and radioactive materials, genetics,antibodies, and regulatory agencies.

Not Available

1994-08-18T23:59:59.000Z

388

Process and material that encapsulates solid hazardous waste  

DOE Patents (OSTI)

A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

O' Brien, Michael H. (Idaho Falls, ID); Erickson, Arnold W. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

389

Transporting & Shipping Hazardous Materials at LBNL: Compressed Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gases Compressed Gases Self-Transport by Hand & Foot Self-Transport by Vehicle Ship by Common Carrier Conduct Field Work Return Cylinders Self-Transport by Hand & Foot Staff may personally move (self-transport) compressed gas cylinders by hand & foot between buildings and in connecting spaces (i.e., hallways, elevators, etc.) within buildings provided it can be done safely. The following safety precautions apply: Use standard cylinder dollies to transport compressed gas cylinders. While dollies are preferred, cylinders weighing 11 Kg (25 lbs) or less may be hand-carried. Never move a cylinder with a regulator connected to it. Cylinder valve-protection caps and valve-opening caps must be in place when moving cylinders. Lecture bottles and other cylinders that are

390

Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon  

E-Print Network (OSTI)

Vegas Dodged a Bullet: Chlorine-hauling Tanker Rolls Free. March 19, 11. Parsons C. Chlorine Truck Blast Kills Five inA. Iraq Insurgents Employ Chlorine in Bomb Attacks. New

Jones, Robert; Wills, Brandon; Kang, Christopher

2010-01-01T23:59:59.000Z

391

Hazardous Materials Transportation RNL has a staff with  

E-Print Network (OSTI)

Radioactive Waste Management plan the transportation system for the shipment of spent nuclear fuel and high Systems Logistics Management Supply Chain Management Modeling and Simulation Transportation Operations, design, and testing · Detailed simulation of loading, transportation, and maintenance facilities

392

Hazardous Materials Transportation RNL has a staff with  

E-Print Network (OSTI)

Radioactive Waste Management plan the transportation system for the shipment of spent nuclear fuel and high Systems Logistics Management Supply Chain Management Modeling and Simulation Transportation Operations, and testing Detailed simulation of loading, transportation, and maintenance facilities for the transportation

393

Author's personal copy Journal of Hazardous Materials 190 (2011) 909915  

E-Print Network (OSTI)

Biochar & Co. im Kampf gegen Bodenerosion und Ausbreitung der Wüsten Di 10.Mai 2011, Zentrum für, UFT 09:15 Desertifikation in Europa UNCCD (noch nicht bestätigt) 10:00 Was ist Biochar? Prof. Dr. B (Hengstbacherhof) Vermikompost und Biochar Herr Grand, Absdorf, ?sterreich 12:15 Anwendung von Biochar Herr H

Ma, Lena

394

Author's personal copy Journal of Hazardous Materials 185 (2011) 983989  

E-Print Network (OSTI)

the fronds [16,17], and (3) disposal costs for harvested biomass at waste management facilities. Typically of 600 L capacity each at an electrical power substation in Florida. Its roof was covered with two layers. In conclusion this study established the basic cultural prac- tices to operate a large-scale cleanup project

Ma, Lena

395

Railroad transportation of nuclear waste and other Hazardous materials  

Science Conference Proceedings (OSTI)

Railroads continue to have duties to shippers and the public, and they may not take the law into their own hands. Except for emergencies - and then only for the duration of the emergency - they must carry all commodities without regard to whether they are dangerous, unless the proper agency of the federal government has relieved them of that obligation. (author)

McBride, Michael F.

2008-04-15T23:59:59.000Z

396

Mr. Steve lappe, Project Leader Hazardous Materials Bureau  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico 87502-6110 Subject Transmittal of the Audit Report for the Savannah River SiteCentral Characterization Project Recertification Audit A 1 001 Dear Mr. Zappe : This...

397

Process and material that encapsulates solid hazardous waste  

DOE Patents (OSTI)

A method is described for encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150 C and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200 C and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

O' Brien, Michael H.; Erickson, Arnold W.

1997-12-01T23:59:59.000Z

398

Teleoperated Control of Hydraulic Equipment for Hazardous Material Handling.  

E-Print Network (OSTI)

??Traditionally, teleoperation has been an expensive and lengthy process. This thesis shows that by incorporating off-the-shelf technology into a modular design, teleoperation can be developed (more)

Fleming, Michael Ryals

2004-01-01T23:59:59.000Z

399

Author's personal copy Journal of Hazardous Materials 177 (2010) 620625  

E-Print Network (OSTI)

-ray analysis, resembles that of silk and wool keratin. The information gathered by Bamford's group events in Israel's modern history occurred when I was Presi- dent. I refer to the Yom Kippur War

Ma, Lena

400

Environmental Hazards: Radioactive Materials and Wastes: A Reference Handbook  

E-Print Network (OSTI)

of Atomic Physics; Nuclear Weapons Development; Nucleartechnology, radiation, nuclear weapons and warfare, nuclear

Peterson, Christina A.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing  

Energy.gov (U.S. Department of Energy (DOE))

Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY

402

CHEMICAL HYGIENE PLAN AND HAZARDOUS MATERIALS SAFETY MANUAL FOR  

E-Print Network (OSTI)

AWARENESS CERTIFICATION For CHP of: ______________________________ Professor, building, rooms, instructor, or P. I. for your work area: Room: Signature: Date: Completed CHP Awareness Certifications this document as a starting point for creating their work area specific CHP. Minimally this cover page

Holland, Jeffrey

403

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network (OSTI)

procedure (TCLP) for lead. Contaminated Soils Soil sampling is neither required nor recommended prior and characterized using TCLP prior to disposal at a disposal facility included on the List of UW-Approved Disposal

Wilcock, William

404

Section A -1 HAZARDOUS MATERIALS AND HUMAN HEALTH  

E-Print Network (OSTI)

Interdomain Communication in Hsp104 The lack of density for most of the coiled-coil domain in the TClpB EM

Lu, Guoiqng

405

Electrical Sitchgear Building No. 5010-ESF Fire Hazards Technical Report  

SciTech Connect

The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives, identified in DOE Order 420.1, Change 2, Fire Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire or related event; (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of the employees, the public, and the environment; (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; (4) Property losses from a fire and related events exceeding defined limits established by DOE; and (5) Critical process controls and safety class systems being damaged as a result of a fire and related event.

N.M. Ruonavaara

2001-05-08T23:59:59.000Z

406

DOE natural phenomenal hazards design and evaluation criteria  

Science Conference Proceedings (OSTI)

It is the policy of the Department of Energy (DOE) to design, construct, and operate DOE facilities so that workers, the general public, and the environment are protected from the impacts of natural phenomena hazards (NPH). Furthermore, DOE has established explicit goals of acceptable risk for NPH performance. As a result, natural phenomena hazard (earthquake, extreme wind, and flood) design and evaluation criteria for DOE facilities have been developed based on target probabilistic performance goals. These criteria include selection of design/evaluation NPH input from probabilistic hazard curves combined with commonly practiced deterministic response evaluation methods and acceptance criteria with controlled levels of conservatism. For earthquake considerations, conservatism is intentionally introduced in specification of material strengths and capacities, in the allowance of limited inelastic behavior, and by a seismic scale factor. Criteria have been developed following a graded approach for several performance goals ranging from that appropriate for normal-use facilities to that appropriate for facilities involving hazardous or critical operations. Performance goals are comprised of qualitative expressions of acceptable behavior and of target quantitative probabilities that acceptable limits of behavior are maintained. The criteria are simple procedures but have a rigorous basis. This paper addresses DOE seismic design and evaluation criteria.

Murray, R.C.; Nelson, T.A. [Lawrence Livermore National Lab., CA (United States); Short, S.A. [EQE International, Inc., Irvine, CA (United States); Kennedy, R.P.; Chander, H. [RPK Structural Mechanics Consulting, Inc., Yorba Linda, CA (United States); Hill, J.R.; Kimball, J.K. [USDOE, Washington, DC (United States)

1994-10-01T23:59:59.000Z

407

NGNP SITE 2 HAZARDS ASSESSMENT  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

Wayne Moe

2011-10-01T23:59:59.000Z

408

Vitrification: Destroying and immobilizing hazardous wastes  

Science Conference Proceedings (OSTI)

Researchers at the US Department of Energy`s Pacific Northwest Laboratory (PNL) have led the development of vitrification a versatile adaptable process that transforms waste solutions, slurries, moist powder and/or dry solids into a chemically durable glass form. The glass form can be safely disposed or used for other purposes, such as construction material if non-radioactive. The feed used in the process can be either combustible or non-combustible. Organic compounds are decomposed in the melters` plenum, while the inorganic residue melts into a molten glass pool. The glass produced by this process is a chemically durable material comparable to natural obsidian. Its properties typically allow it to pass the EPA Toxicity (TCLP) test as non-hazardous. To date, no glass produced by vitrification has failed the TCLP test. Vitrification is thus an ideal method of treating DOE`s mixed waste because of its ability to destroy organic compounds and bind toxic or radioactive elements. This article provides an overview of the technology.

Chapman, C.C.; Peters, R.D.; Perez, J.M.

1994-04-01T23:59:59.000Z

409

Method of recovering hazardous waste from phenolic resin filters  

DOE Patents (OSTI)

A method has been found for treating phenolic resin filter, whereby the filter is solubilized within the filter cartridge housing so the filter material can be removed from the cartridge housing in a remote manner. The invention consists of contacting the filter within the housing with an aqueous solution of about 8 to 12M nitric acid, at a temperature from about 110 to 190{degree}F, maintaining the contact for a period of time sufficient to solubilize the phenolic material within the housing, and removing the solubilized phenolic material from the housing, thereby removing the filter cartridge from the housing. Any hazardous or other waste material can then be separated from the filter material by chemical or other means.

Meikrantz, D.H.; Bourne, G.L.; McFee, J.N.; Burdge, B.G.; McConnell, J.W. Jr.

1990-12-31T23:59:59.000Z

410

and environments and natural hazards  

E-Print Network (OSTI)

The purpose of the curriculum is to provide basic knowledge and understanding of marine debris and its hazardous impact on the marine and coastal ecosystems as well as human health and safety. The primary goal of the curriculum is to provide activities which help students understand the impact of their actions on the marine environment and themselves. The curriculum will provide several hands-on activities and graphing opportunities using Microsoft Excel. The activities and graphing exercises may be modified for other grade levels.

Created Matthew Brim

2009-01-01T23:59:59.000Z

411

Grout formulation for disposal of low-level and hazardous waste streams containing fluoride  

DOE Patents (OSTI)

A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

1987-06-02T23:59:59.000Z

412

Hazardous Waste Management (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Transportation Utility Program Info State Arkansas Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7-202.) The Hazardous Waste Program is based off of the Federal Resource Conservation and Recovery Act set forth in 40 CFR parts 260-279. Due to the great similarity to the

413

Hazardous waste management in the Pacific basin  

Science Conference Proceedings (OSTI)

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

414

Computer Viruses and Other Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Viruses and Other Hazards Computer Viruses and Other Hazards Name: Paul Status: other Grade: 12+ Location: IL Country: USA Date: May 2, 2011 Question: What is a Computer Virus? What do viruses do? How do viruses Spread? How do I prevent a virus? What are Trojan Horse programs? Malware? Phishing? Replies: Paul From National Institute of Science and Technology Which is the US government office in charge of this problem and should be your reference for this subject At this URL: http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pdf Please find the following definitions from paragraph 5: 5.1.1 Virus: A virus is designed to self-replicate-make copies of itself-and distribute the copies to other files, programs, or computers. Viruses insert themselves into host programs and propagate when the infected program is executed, generally by user interaction (e.g., opening a file, running a program, clicking on a file attachment). Viruses have many purposes-some are designed to play annoying tricks, whereas others have destructive intent. Some viruses present themselves as jokes while performing secret destructive functions. There two major types of viruses are compiled viruses, which are executed by the operating system, and interpreted viruses, which are executed by an application.

415

Hazardous Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Environmental Management The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental Management is tasked regulating hazardous waste management facilities and practices. Provisions pertaining to permitting, site approval, construction, reporting, transportation, and remediation practices and fees are discussed in these

416

Experiment Hazard Class 3 - High Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

* RF and Microwave * UV Light Hydrogen * Hydrogen Electronics * Electrical Equipment * High Voltage Other * Other Class 3 - High Temperatures Applicability The hazard controls...

417

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

418

Hazardous waste management and pollution prevention  

SciTech Connect

The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

Chiu, Shen-yann.

1992-01-01T23:59:59.000Z

419

Hazardous waste management and pollution prevention  

SciTech Connect

The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

Chiu, Shen-yann

1992-03-01T23:59:59.000Z

420

DC Hazardous Waste Management (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hazardous Waste Management (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Michigan) Hazardous Waste Management (Michigan) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction...

422

Hazardous Waste Management (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management (Delaware) Hazardous Waste Management (Delaware) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

423

Hazardous Waste Management (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

treatment and storage of such waste. It also mentions the availability of tax credits for waste facilities. Energy recovery from the destruction of a hazardous waste may be...

424

Advisory Committee on Earthquake Hazards Reduction ...  

Science Conference Proceedings (OSTI)

... N ational Research Council road map entitled, National ... A recent upswing in oil and gas activity ... in US national seismic hazard maps 2) Determine ...

2013-03-18T23:59:59.000Z

425

Louisiana Hazardous Waste Control Law (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

426

Hazardous Waste Management Implementation Inspection Criteria...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Director of the Office of ES&H Evaluations on (301) 903-5392. Subject: Hazardous Waste Management Inplementation Inspection Criteria, Approach, Evaluations Management Date:...

427

Extremely Hazardous Substances Risk Management Act (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

428

AGREEMENT BETWEEN NEW MEXICO ENVIRONMENT DEPARTMENT HAZARDOUS...  

NLE Websites -- All DOE Office Websites (Extended Search)

BETWEEN NEW MEXICO ENVIRONMENT DEPARTMENT HAZARDOUS WASTE BUREAU AND WASTE ISOLATION PILOT PLANT PERMITTEES REGARDING A TIME EXTENSION FOR DISPUTE RESOLUTION RELATED TO FINAL AUDIT...

429

Engineered Nanomaterials, Sexy New Technology and Potential Hazards  

DOE Green Energy (OSTI)

Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lung deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls.

Beaulieu, R A

2009-05-04T23:59:59.000Z

430

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

431

Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste  

E-Print Network (OSTI)

Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you. Are your waste containers properly labeled? us Waste label as soon t Do you accumulate waste in a safe

Wilcock, William

432

Site characterization and hazard assessment criteria for natural phenomena hazards at DOE sites  

Science Conference Proceedings (OSTI)

This paper briefly summarizes requirements for site characterization and hazard assessment of Natural Phenomena Hazards for compliance with DOE Order 5480.28. The site characterization criteria for NPH evaluation are provided in a draft DOE-STD-1022-XX and the assessment criteria of natural phenomena hazards are provided in draft DOE-STD-1023-XX.

Chen, J.C.; Lu, S.C.; Ueng, T.S.; Boissonnade, A.C.

1993-09-01T23:59:59.000Z

433

Lawn and Garden Tool Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Root Out Lawn and Garden Tool Hazards For many Americans, working outdoors on the lawn and in the garden is a great way to exercise and relax. However, safety experts warn that, if caution is not employed with lawn and garden tools, you could wind up spending more time indoors, starting with a trip to a hospital emergency room. "The most frequent injuries are from lawn mowers, which are unforgiving machines," cautions John Drengenberg, manager of Consumer Affairs for Underwriters Laboratories Inc., Northbrook, Ill., a not-for-profit product safety testing organization. "Statistics tell us that each year lawn mower accidents send close to 85,000 people to emergency rooms. But that's not all. Nearly 15,000 others need medical treatment for injuries from trimmers and other power garden

434

Hazardous Waste Technician Vandenberg AFB, California  

E-Print Network (OSTI)

Hazardous Waste Technician Vandenberg AFB, California POSITION A Hazardous Waste Technician, California. ORGANIZATION CEMML is a research, education and service unit within the Warner College of Natural of California. The base, with its 45 miles of scenic coastline, is home to 53 species of mammals, 315 species

435

Heavy metals hazardous components of Eaf dust  

Science Conference Proceedings (OSTI)

Electric arc furnace (EAF) dust is a waste generated in the EAF during the steel production process. Among different wastes, EAF dust represents one of the most hazardous, since it contains heavy metals such as Zn, Fe, Cr, Cd and Pb. The goal of the ... Keywords: electric arc furnace (EAF), furnace additives, hazard components, heavy metals, scrap composition, x-ray fluorescence spectroscopy

Cristiana-Zizi Rizescu; Zorica Bacinschi; Elena Valentina Stoian; Aurora Poinescu; Dan Nicolae Ungureanu

2011-02-01T23:59:59.000Z

436

Fire and explosion hazards of oil shale  

SciTech Connect

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

1989-01-01T23:59:59.000Z

437

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Clinical Engineering 2964 #12;TABLE OF CONTENTS CHEMICAL HYGIENE

Oliver, Douglas L.

438

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Officer Biological (Accident Reports) 2204 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN (CHP) (4/2007) 1

Oliver, Douglas L.

439

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN

Kim, Duck O.

440

Energy and solid/hazardous waste  

Science Conference Proceedings (OSTI)

This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

None

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DEEPWATER HORIZON OIL SPILL ESTIMATE: UPDATE JUNE 11, 2010 by Professor Satish Nagarajaiah, Rice University (www.ruf.rice.edu/~nagaraja &  

E-Print Network (OSTI)

DEEPWATER HORIZON OIL SPILL ESTIMATE: UPDATE JUNE 11, 2010 by Professor Satish Nagarajaiah, Rice. http://www.nytimes.com/2010/06/11/us/11spill.html?hp New Estimates Double Rate of Oil Flowing on Thursday essentially doubled its estimate of how much oil has been spewing from the out-of-control BP well

Nagarajaiah, Satish

442

Discoveries http://www.depts.ttu.edu/vpr/discoveries/Spring-2011/oil-spill.php[4/25/2011 8:00:52 AM  

E-Print Network (OSTI)

.S. history. However, Kendall said dispersing the oil could cause more problems than having left the oil aloneDiscoveries http://www.depts.ttu.edu/vpr/discoveries/Spring-2011/oil-spill.php[4/25/2011 8:00:52 AM Horizon Oil Spill ­ One Year Later Watch Video on YouTube Ron Kendall, Director of the Institute

Rock, Chris

443

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 499: Hydrocarbon Spill Site, Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 499, Hydrocarbon Spill Site, Tonopah Test Range (TTR). This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996). CAU 499 is located on the TTR and consists of the following single Corrective Action Site (CAS) (Figure 1): CAS RG-25-001-RD24 - Radar 24 Diesel Spill Site is a diesel fuel release site that is assumed to have been cased by numerous small historical over fillings, spills and leaks from an above-ground storage tank (AST) over a period of 36 years. The tank was located on the north side of Building 24-50 on the TTR approximately 4.0 kilometers (2.5 miles) southwest of the Area 3 Compound at the end of the Avenue 24.

T. M. Fitzmaurice

2001-09-01T23:59:59.000Z

444

Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill  

Science Conference Proceedings (OSTI)

Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

1994-07-01T23:59:59.000Z

445

Mineral Oil Spill Evaluation System -- Multi Phase Code, Version 3.0 (MOSES-MP)  

Science Conference Proceedings (OSTI)

The MOSES-MP Version 3.0 software for Windows-based PC computers provides an easy-to-use method for predicting the likelihood of mineral oil spills from substations or other fluids from aboveground storage tanks reaching groundwater or nearby surface water. MOSES-MP also predicts the quantity of oil that infiltrates the ground beneath electrical equipment and provides soil saturation profiles at user-specified times. The effects of frozen days and fire events can also be evaluated. Options allow the user...

2002-08-29T23:59:59.000Z

446

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) < Back Eligibility Commercial Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct, maintain, and/or operate a hazardous waste facility in a city or town is demonstrated, a local assessment committee will be established by that community. The

447

One year later, Tech finds no evidence of oil spill in seafood -KCBD, NewsChannel 11 Lubbock http://www.kcbd.com/story/14486201/one-year-later-tech-finds-no-evidence-of-bp-oil-spill-in-seafood[4/21/2011 8:09:22 AM  

E-Print Network (OSTI)

One year later we remember the start of the largest oil spill in U.S. history. Last summer the leakOne year later, Tech finds no evidence of oil spill in seafood - KCBD, NewsChannel 11 Lubbock http://www.kcbd.com/story/14486201/one-year-later-tech-finds-no-evidence-of-bp-oil-spill-in-seafood[4/21/2011 8:09:22 AM] Email Share

Rock, Chris

448

Hazard Analysis for In Tank Spray Leaks  

SciTech Connect

The River Protection Project (RPP) Authorization Basis (AB) contains controls that address spray leaks in tanks. However, there are no hazardous conditions in the Hazards Database that specifically identify in-tank spray leak scenarios. The purpose of this Hazards Evaluation is to develop hazardous conditions related to in-tank spray leaks for the Hazards Database and to provide more complete coverage of Tank Farm facilities. Currently, the in-tank spray leak is part of the ''Spray Leak in Structures or From Waste Transfer Lines'' accidents in Section 3.4.2.9 of the Final Safety Analysis Report (FSAR) (CHG, 2000a). The accident analysis for the ''Spray Leak in Structure or From Waste Transfer Lines'' states the following regarding the location of a possible spray leak: Inside ventilated waste storage tanks (DSTs, DCRTs, and some SSTs). Aerosols could be generated inside a storage tank during a transfer because of a leak from the portion of the transfer pipe inside the tank. The tank ventilation system could help disperse the aerosols to the atmosphere should the vent system HEPA filters fail. This Hazards Evaluation also evaluates the controls currently assigned to the spray leak in structure accident and determines the applicability of the controls to the new hazardous conditions. This comparison reviews both the analysis in the FSAR and the controls found in the Technical Safety Requirements (TSRs) (CHG, 2000h). If the new hazardous conditions do not match the analyzed accident conditions and controls, then additional analysis may be required. This document is not intended to authorize the activity or determine the adequacy of controls; it is only intended to provide information about the hazardous conditions associated with this activity. The Control decision process as defined in the AB will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

GRAMS, W.H.

2000-06-13T23:59:59.000Z

449

Technology transfer in hazardous waste management  

SciTech Connect

Hazardous waste is a growing problem in all parts of the world. Industrialized countries have had to deal with the treatment and disposal of hazardous wastes for many years. The newly industrializing countries of the world are now faced with immediate problems of waste handling. The developing nations of the world are looking at increasing quantities of hazardous waste generation as they move toward higher levels of industrialization. Available data are included on hazardous waste generation in Asia and the Pacific as a function of Gross Domestic Product (GDP). Although there are many inconsistencies in the data (inconsistent hazardous waste definitions, inconsistent reporting of wastes, etc.) there is definite indication that a growing economy tends to lead toward larger quantities of hazardous waste generation. In developing countries the industrial sector is growing at a faster rate than in the industrialized countries. In 1965 industry accounted for 29% of GDP in the developing countries of the world. In 1987 this had grown to 37% of GDP. In contrast, industry accounted for 40% of GDP in 1965 in industrialized countries and dropped to 35% in 1987. This growth in industrial activity in the developing countries brings an increase in the need to handle hazardous wastes. Although hazardous wastes are ubiquitous, the control of hazardous wastes varies. The number of regulatory options used by various countries in Asia and the Pacific to control wastes are included. It is evident that the industrialized countries, with a longer history of having to deal with hazardous wastes, have found the need to use more mechanisms to control them. 2 refs., 2 figs.

Drucker, H.

1989-01-01T23:59:59.000Z

450

Pollution prevention benefits of non-hazardous shielding glovebox gloves - 11000  

SciTech Connect

Radiation shielding is commonly used to protect the glovebox worker from unintentional direct and secondary radiation exposure, while working with plutonium-238 and plutonium-239. Shielding glovebox gloves are traditionally composed of lead-based materials, i.e., hazardous waste. This has prompted the development of new, non-hazardous shielding glovebox gloves. No studies, however, have investigated the pollution prevention benefits of these new glovebox gloves. We examined both leaded and non-hazardous shielding glovebox gloves. The nonhazardous substitutes are higher in cost, but this is offset by eliminating the costs associated with onsite waste handling of Resource Conservation and Recovery Act (RCRA) items. In the end, replacing lead with non-hazardous substitutes eliminates waste generation and future liability.

Cournoyer, Michael E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory

2011-01-11T23:59:59.000Z

451

Significance of Cytochrome P450 System Responses and Levels of Bile Fluorescent Aromatic Compounds in Marine Wildlife Following Oil Spills  

SciTech Connect

The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 in marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a linkage to higher order biological effects, e.g. toxicity, lesions, reproductive failure.

Lee, Richard F.; Anderson, Jack W.

2005-07-01T23:59:59.000Z

452

Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)  

SciTech Connect

This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

Fatell, L.B.; Woolsey, G.B.

1993-04-15T23:59:59.000Z

453

Transporting US oil imports: The impact of oil spill legislation on the tanker market  

SciTech Connect

The Oil Pollution Act of 1990 ( OPA'') and an even more problematic array of State pollution laws have raised the cost, and risk, of carrying oil into and out of the US. This report, prepared under contract to the US Department of energy's Office of Domestic and International Policy, examines the impact of Federal and State oil spill legislation on the tanker market. It reviews the role of marine transportation in US oil supply, explores the OPA and State oil spill laws, studies reactions to OPA in the tanker and tank barge industries and in related industries such as insurance and ship finance, and finally, discusses the likely developments in the years ahead. US waterborne oil imports amounted to 6.5 million B/D in 1991, three-quarters of which was crude oil. Imports will rise by almost 3 million B/D by 2000 according to US Department of energy forecasts, with most of the crude oil growth after 1995. Tanker demand will grow even faster: most of the US imports and the increased traffic to other world consuming regions will be on long-haul trades. Both the number of US port calls by tankers and the volume of offshore lightering will grow. Every aspect of the tanker industry's behavior is affected by OPA and a variety of State pollution laws.

Rowland, P.J. (Rowland (P.) Associates (United States))

1992-05-01T23:59:59.000Z

454

Prioritized research for reducing the seismic hazards of ...  

Science Conference Proceedings (OSTI)

... to improve performance under other hazards (eg, wind hazards or ... versus re-use a building (ie, evaluation based on equivalent carbon footprint) ...

2008-03-13T23:59:59.000Z

455

Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona...

456

Abatement of Air Pollution: Hazardous Air Pollutants (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe maximum allowable stack concentrations and hazard limiting values for the emission of hazardous air pollutants. The regulations also discuss sampling procedures for...

457

Hazards Control, 3/9/35 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazards Control, 3935 Hazards Control, 3935 The objective of this surveillance is to evaluate the effectiveness of the contractor's programs and policy for establishing...

458

Solid Waste Disposal, Hazardous Waste Management Act, Underground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Eligibility...

459

Integrating waste management with Job Hazard analysis  

Science Conference Proceedings (OSTI)

The web-based Automated Job Hazard Analysis (AJHA) system is a tool designed to help capture and communicate the results of the hazard review and mitigation process for specific work activities. In Fluor Hanford's day-to-day work planning and execution process, AJHA has become the focal point for integrating Integrated Safety Management (ISM) through industrial health and safety principles; environmental safety measures; and involvement by workers, subject-matter experts and management. This paper illustrates how AJHA has become a key element in involving waste-management and environmental-control professionals in planning and executing work. To support implementing requirements for waste management and environmental compliance within the core function and guiding principles of an integrated safety management system (ISMS), Fluor Hanford has developed the a computer-based application called the 'Automated Job Hazard Analysis' (AJHA), into the work management process. This web-based software tool helps integrate the knowledge of site workers, subject-matter experts, and safety principles and requirements established in standards, and regulations. AJHA facilitates a process of work site review, hazard identification, analysis, and the determination of specific work controls. The AJHA application provides a well-organized job hazard analysis report including training and staffing requirements, prerequisite actions, notifications, and specific work controls listed for each sub-task determined for the job. AJHA lists common hazards addressed in the U.S. Occupational, Safety, and Health Administration (OSHA) federal codes; and State regulations such as the Washington Industrial Safety and Health Administration (WISHA). AJHA also lists extraordinary hazards that are unique to a particular industry sector, such as radiological hazards and waste management. The work-planning team evaluates the scope of work and reviews the work site to identify potential hazards. Hazards relevant to the work activity being analyzed are selected from the listing provided in AJHA. The work team can also enter one-time hazards unique to the work activity. Because AJHA is web based, it can be taken into the field during site walk-downs using wireless or cell- phone technologies. Once hazards are selected, AJHA automatically lists mandatory and optional controls, based on the referenced codes and good work practices. The hazards selected may also require that additional specific analysis be performed, focusing on the unique characteristics of the job being analyzed. For example, the physical characteristics, packaging, handling, and disposal requirements for a specific waste type. The work team then evaluates the identified hazards and related controls and adds details as needed for the specific work activity being analyzed. The selection of relevant hazards also triggers required reviews by subject-matter experts (SMEs) and the on-line completion of necessary forms and permits. The details of the hazard analysis are reviewed on line or in a work- team group setting. SME approvals are entered on-line and are published in the job hazard analysis report. (authors)

NONE

2007-07-01T23:59:59.000Z

460

Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste  

SciTech Connect

A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous material spill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

LEACHING ASSESSMENT OF RED MUD AND PHOSPHOGYPSUM FOR BENEFICIAL USE AS CONSTRUCTION MATERIALS.  

E-Print Network (OSTI)

??Beneficial use involves the application of a secondary material from an industrial process, which otherwise may be considered a potentially hazardous waste, as a building (more)

Kirkland, Ryan Anderson

2009-01-01T23:59:59.000Z

462

Using the TODIM-FSE method as a decision-making support methodology for oil spill response  

Science Conference Proceedings (OSTI)

This paper introduces a multi-criteria method for solving classification problems, called TODIM-FSE. This name was chosen because its structure merges characteristics from two different methods: TODIM and FSE. In order to demonstrate TODIM-FSE, a model ... Keywords: Environmental damage, Multiple criteria analysis, Oil spill response, SISNOLEO, TODIM-FSE

Aderson Campos Passos, Marcello Goulart Teixeira, Katia Cristina Garcia, Anelise Menezes Cardoso, Luiz Flavio Autran Monteiro Gomes

2014-02-01T23:59:59.000Z

463

Dedicated to Sharing Information About Water Management and the Florida LAKEWATCH Program Volume 50 (2010) The Gulf Coast Oil Spill  

E-Print Network (OSTI)

50 (2010) The Gulf Coast Oil Spill It has been five months since the explosion and fire on an offshore oil-drilling platform Deepwater Horizon on April 20 in the Gulf of Mexico. Three months later that it was a success and that no more oil would flow into the Gulf from the Deepwater Horizon well. The National

Watson, Craig A.

464

Ecological Modelling 117 (1999) 261267 Modeling bird mortality associated with the M/V Citrus oil spill  

E-Print Network (OSTI)

Ecological Modelling 117 (1999) 261­267 Modeling bird mortality associated with the M/V Citrus oil of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York NY 10024, USA/V Citrus oil spill in February 1996. Most of the islands beaches were searched on an irregular schedule

Rockwell, Robert F.

465

Chemical Spills, Releases, Explosions, Exposures, or Injuries (includes corrosive, reactive, flammable, and toxic chemicals in solid, liquid or gas form)  

E-Print Network (OSTI)

Chemical Spills, Releases, Explosions, Exposures, or Injuries (includes corrosive, reactive, flammable, and toxic chemicals in solid, liquid or gas form) EHS Contact: Kate Lumley-Sapanski (kxl3@psu apply: When to Report: · All chemical exposures or explosions requiring medical attention must

Yener, Aylin

466

All Hazard Awareness Employee Pocket Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Hazard Hazard Awareness Employee Pocket Guide produced by Emergency Services Program For emergencies dial x7911 911 from cell phones berkeley lab Lawrence Berkeley National Laboratory 2 Emergency Preparedness Response FOR EMERGENCY RESPONSE x7911 911 from cell phones Employee Pocket Guide 3 FOR EMERGENCY RESPONSE x7911 911 from cell phones Employee Emergency Response Expectations Before an emergency: * Accept personal responsibility for your own safety. * Prepare your personal/family emergency plan. * Review your Building Emergency Plan (BEP) or Emergency Response Guide. * Know the location of all your building's exits and Assembly Areas. * Know the specific hazards in your area and the response procedures for each hazard. * Understand how to report an emergency.

467

Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS  

E-Print Network (OSTI)

of potentially hazardous processes in regions with mountain permafrost. Buildings and utilities may be dam- aged for the maintenance or construction of high- mountain infrastructure. Increasing rockfall activity and a number

Kääb, Andreas

468

Hazards Control Department 1995 annual report  

Science Conference Proceedings (OSTI)

This annual report of the Hazards Control Department activities in 1995 is part of the department`s efforts to foster a working environment at Lawrence Livermore National Laboratory (LLNL) where every person desire to work safely.

Campbell, G.W.

1996-09-19T23:59:59.000Z

469

Cold Vacuum Drying Facility hazard analysis report  

SciTech Connect

This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

Krahn, D.E.

1998-02-23T23:59:59.000Z

470

RADIATION HAZARDS ENCOUNTERED IN ARC MELTING THORIUM  

SciTech Connect

A project to provide information on the hazards associated wlth arc melting of Th is described. A general airsampling analysis was made to determine the separation, concentration, and distribution of Th daughter (decay) products throughout arc melting, machining, and forging processes found in a handling facility. The value of well coordinated health physics program is stressed in connection with potential health hazards and personnel protection. Building, equipment, and exhaust ventilation requirements for such a facility are discussed, along wlth special handling methods. (auth)

Lowery, R.R.

1960-11-01T23:59:59.000Z

471

Hazards from radioactive waste in perspective  

SciTech Connect

This paper compares the hazards from wastes from a 1000-MW(e) nuclear power plant to these from wastes from a 1000-MW(e) coal fueled power plant. The latter hazard is much greater than the former. The toxicity and carcinogenity of the chemicals prodcued in coal burning is emphasized. Comparisions are also made with other toxic chemicals and with natural radioactivity. (DLC)

Cohen, B.L.

1979-02-27T23:59:59.000Z

472

Process safety management for highly hazardous chemicals  

Science Conference Proceedings (OSTI)

Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

NONE

1996-02-01T23:59:59.000Z

473

Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102  

SciTech Connect

Tank 241-SY-101 (SY-101) waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from SY-101 to 241-SY-102 (SY-102). The results of the hazards evaluation will be compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. This document is not intended to authorize the activity or determine the adequacy of controls; it is only intended to provide information about the hazardous conditions associated with this activity. The Unreviewed Safety Question (USQ) process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

SHULTZ, M.V.

1999-02-12T23:59:59.000Z

474

Closure Report for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada, Revision 0  

SciTech Connect

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: 02-37-08, Cellar & Mud Pit 02-37-09, Cellar & Mud Pit 07-09-01, Mud Pit 09-09-46, U-9itsx20 PS #1A Mud Pit 10-09-01, Mud Pit 12-09-03, Mud Pit 19-09-01, Mud Pits (2) 19-09-03, Mud Pit 19-09-04, Mud Pit 19-25-01, Oil Spill 19-99-06, Waste Spill 20-09-01, Mud Pits (2) 20-09-02, Mud Pit 20-09-03, Mud Pit 20-09-04, Mud Pits (2) 20-09-06, Mud Pit 20-09-07, Mud Pit 20-09-10, Mud Pit 20-25-04, Oil Spills 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: Review the current site conditions, including the concentration and extent of contamination. Implement any corrective actions necessary to protect human health and the environment. Properly dispose of corrective action and investigation wastes. Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.

Mark Krauss and Catherine Birney

2011-05-01T23:59:59.000Z

475

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the normal'' municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan's programs. Focusing on the Plan's household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

1991-10-01T23:59:59.000Z

476

Proceedings of the eighteenth mid-Atlantic industrial waste conference on toxic and hazardous wastes  

SciTech Connect

This book presents the papers given at a conference on the management of hazardous materials. Topics considered at the conference included underground storage tanks, underground industrial waste tank releases, regulations, cost estimation, metal leaching, spent oil shales, siting power plant ash disposal areas, phosphorous removal by a coal media filter, and waste water characterization and treatment for the coal slurry pipeline industry.

Boardman, G.D.

1986-01-01T23:59:59.000Z

477

DRAINING HAZARDOUS FLUIDS DURING BUILDING 221-1F DEACTIVATION AT THE SAVANNAH RIVER SITE  

SciTech Connect

Several years ago, SRS completed a four year mission to decommission {approx}250 excess facilities. As part of that effort, SRS deactivated multiple facilities (e.g. Building 247-F, Naval Fuels Facility, and Building 211-F, Outside Facilities for F-Canyon) that contained extensive piping systems filled with hazardous material (e.g. nitric acid). Draining of hazardous materials from piping was successfully completed in all facilities without incident. In early 2009, the decommissioning program at SRS was restarted as a result of funding made available by the American Recovery & Reinvestment Act (ARRA). Under ARRA, draining of piping containing hazardous materia