National Library of Energy BETA

Sample records for hazardous material assessment

  1. Journal of Hazardous Materials 132 (2006) 98110 Assessment of environmental radon hazard using human

    E-Print Network [OSTI]

    Yu, Peter K.N.

    2006-01-01

    Journal of Hazardous Materials 132 (2006) 98­110 Assessment of environmental radon hazard using Abstract Radon is a natural radioactive gas derived from geological materials. It has been estimated to assess the health hazard from environmental radon is reviewed. A short history of dosimetric models

  2. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  3. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  4. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  5. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  6. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  7. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  8. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  9. Hazards Survey and Hazards Assessments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

  10. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    SciTech Connect (OSTI)

    Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

    2010-10-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision points such as; crash, location, etc. For each pass through the routines, when a crash is randomly selected, crash parameters are then used to determine if failure has occurred using either external look up tables, correlations functions from deterministic calculations, or built in data libraries. The effectiveness of the software was recently demonstrated in safety analyses of the transportation of radioisotope systems for the US Dept. of Energy. These methods are readily adaptable to estimating risks associated with a variety of hazardous shipments such as spent nuclear fuel, explosives, and chemicals.

  11. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect (OSTI)

    Gerald Sehlke; Paul Wichlacz

    2010-12-01

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  12. WORKPLACE HAZARD ASSESSMENT Location: Task

    E-Print Network [OSTI]

    Rubloff, Gary W.

    WORKPLACE HAZARD ASSESSMENT Location: Task: Performed by: Date: This form may be used as an aid in performing hazard assessment. Review listed hazard classifications, identify all hazards, possible hazards and their sources. Hazard classification listing is not intended to be complete but is provided as a guide

  13. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials Program Manager. Enhancing Railroad Hazardous Materials...

  14. Hazards assessment for the Hazardous Waste Storage Facility

    SciTech Connect (OSTI)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

  15. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  16. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  17. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    nickel alloy Titanium Polyimide Flexible polymers Notes:hazard substrate material is: polyimide. The only metal backdioxide Molybdenum Polyimide Notes: This is a subset of all

  18. Appendix C: Hazardous Property Assessment

    E-Print Network [OSTI]

    Siddharthan, Advaith

    Appendix C: Hazardous Property Assessment The aim of this appendix is to: · give advice on the hazards properties H1 to H14 identified in Annex III of the HWD; · provide assessment methods and threshold concentrations for the hazards; and · advise on which test methods should be considered

  19. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Conroy U S Department of Transportation - 1 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety...

  20. Transportation of Hazardous Evidentiary Material.

    SciTech Connect (OSTI)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being shipped, and will otherwise maintain it as nearly as possible in its original condition.The recommendations provided are short-term solutions to the problems of shipping evidence, and have considered only currently commercially available containers. These containers may not be appropriate for all cases. Design, testing, and certification of new transportation containers would be necessary to provide a container appropriate for all cases.Table 1 provides a summary of the recommendations for each class of hazardous material.Table 1: Summary of RecommendationsContainerCost1-quart paint can with ArmlockTM seal ringLabelMaster(r)%242.90 eachHazard Class 3, 4, 5, 8, or 9 Small ContainersTC Hazardous Material Transport ContainerCurrently in Use4 DraftDraftDraftTable 1: Summary of Recommendations (continued)ContainerCost55-gallon open or closed-head steel drumsAll-Pak, Inc.%2458.28 - %2473.62 eachHazard Class 3, 4, 5, 8, or 9 Large Containers95-gallon poly overpack LabelMaster(r)%24194.50 each1-liter glass container with plastic coatingLabelMaster(r)%243.35 - %243.70 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Small ContainersTC Hazardous Material Transport ContainerCurrently in Use20 to 55-gallon PIH overpacksLabelMaster(r)%24142.50 - %24170.50 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Large Containers65 to 95-gallon poly overpacksLabelMaster(r)%24163.30 - %24194.50 each1-liter transparent containerCurrently in UseHazard Class 6 Division 6.2 Infectious Material Small ContainersInfectious Substance ShipperSource Packaging of NE, Inc.%24336.00 eachNone Commercially AvailableN/AHazard Class 6 Division 6.2 Infectious Material Large ContainersNone Commercially Available N/A5

  1. The Use of Small Scale Fire Test Data for the Hazard Assessment of Bulk Materials 

    E-Print Network [OSTI]

    Foley, Marianne

    1995-01-01

    An experimental study of fire testing of solid materials has been carried out to investigate whether or not these tests yield useful data for the burning of materials stored in bulk, for example in warehouses. Tests were ...

  2. HEALTH AND HAZARD ASSESSMENT QUESTIONNAIRE

    E-Print Network [OSTI]

    Fleming, Andrew J.

    1 HEALTH AND HAZARD ASSESSMENT QUESTIONNAIRE The information on this form will be kept strictly the property of the University Health Service of the University of Newcastle. The University of Newcastle is committed to achieving a safe and healthy workplace for its staff. Based on the completed Health and Hazard

  3. Hazardous Materials Alert Departmental Contact(s)

    E-Print Network [OSTI]

    Hickman, Mark

    Hazardous Materials Alert Departmental Contact(s): Name ___________________________________________________________________________________ Hazardous Materials Alert If the release of a hazardous chemical or gas is affecting people in your area yourself at risk. 2. isOlATE the hazardous material by clearing the area, close the doors. If safe to do so

  4. Hazards assessment for the Waste Experimental Reduction Facility

    SciTech Connect (OSTI)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  5. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    programsprocedures Reconstruction of retrospective plant operation and health and safety programs ORISE and collaborators have, for example, conducted an assessment of health...

  6. Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C

    SciTech Connect (OSTI)

    Gary Mecham; Don Konoyer

    2009-11-01

    The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

  7. Weather and the Transport of Hazardous Materials | Department...

    Office of Environmental Management (EM)

    Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials More Documents & Publications The...

  8. Weather and the Transport of Hazardous Materials | Department...

    Office of Environmental Management (EM)

    Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials More Documents & Publications...

  9. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    E-Print Network [OSTI]

    Jones, Robert; Wills, Brandon; Kang, Christopher

    2010-01-01

    Chlorine Gas: An Evolving Hazardous Material Threat andChlorine gas represents a hazardous material threat fromrepresents a persistent hazardous material (HAZMAT) threat.

  10. Laboratory Hazard Assessment Tool UC Laboratory Hazard Assessment v11 UC Regents Page 1 of 28

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Laboratory Hazard Assessment Tool UC Laboratory Hazard Assessment v11 © UC Regents Page 1 of 28 This Laboratory Hazard Assessment Tool (LHAT) facilitates identification of hazards and identifies the Personal or personnel. The LHAT will provide a summary report of hazards present in the laboratory and the PPE

  11. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16,...

  12. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  13. Suggested Approaches for Probabilistic Flooding Hazard Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Suggested Approaches for Probabilistic Flooding Hazard Assessment Ahmed “Jemie” Dababneh, Ph.D., P.E. and Jeffrey Oskamp, E.I.T. Presentation for U.S. Department of Energy Natural Phenomena Hazards Meeting October 22, 2014

  14. NGNP SITE 2 HAZARDS ASSESSMENT

    SciTech Connect (OSTI)

    Wayne Moe

    2011-10-01

    The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

  15. Determining risks for hazardous material operations

    SciTech Connect (OSTI)

    Cournoyer, M. E.; Dare, J. H.

    2002-01-01

    Integrated Safety Management (ISM) is structured to manage and control work at the activity level. Fundamental to ISM is that all work will be performed safely while meeting the applicable institutional-, facility-, and activity-level expectations. High and medium initial risk activities require certain levels of independent peer and/or Environmental, Health & Safety subject matter expert reviews prior to authorization. A key responsibility of line management and chemical workers is to assign initial risk adequately, so that the proper reviews are obtained. Thus, the effectiveness of an ISM system is largely dependent upon the adequacy and accuracy of this initial risk determination. In the following presentation, a Risk Determination Model (RDM) is presented for physical, health and ecological hazards associated with materials. Magnitude of exposure (Le., dose or concentration), frequency, duration, and quantity are the four factors most difficult to capture in a research and development setting. They are factored into the determination, as a function of the quantity of material. Quantity and magnitude of exposure components are simplified by using boundary criteria. This RDM will promote conformity and consistency in the assignment of risk to hazardous material activities. In conclusion, the risk assessors (line manager and chemical worker) should be capable of more accurately assessing the risk of exposure to a specific chemical with regard to the employee, public, and the environment.

  16. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    Ed. ), Handbook on Life Cycle Assessment: Operational GuideManagement – Life Cycle Assessment – Principles andthe gap between life cycle assessments and product design,

  17. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    Ed. ), Handbook on Life Cycle Assessment: Operational Guidethe gap between life cycle assessments and product design,Management – Life Cycle Assessment – Principles and

  18. Hazard Assessment for Personal Protective Equipment Northwestern University Office for Research Office for Research Safety

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Hazard Assessment for Personal Protective Equipment Northwestern University Office for Research Office for Research Safety Page 1 of 1 H:\\Courses\\Laboratory Standard\\Course Materials\\PPE_Hazard_Assess.doc Name: PI and Department: Date: Eye Hazards - Tasks that can cause eye hazards include: Working

  19. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  20. Activity Hazard Assessment 6.0 Page 1 of 6 Activity Hazard

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Activity Hazard Assessment 6.0 Page 1 of 6 Activity Hazard Assessment Tool This form must Hazard Assessment specific to activities in their laboratories. The Activity Hazard Assessment identifies hazards to employees and specifies personal protective equipment (PPE) to protect employees during work

  1. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID)

    1994-01-01

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  2. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K.; Grey, Alan E.

    1994-04-05

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  3. Hazardous Material Code Identification NFPA 704, 1996 Edition

    E-Print Network [OSTI]

    Slatton, Clint

    Hazardous Material Code Identification NFPA 704, 1996 Edition Identification of Health Hazard Color offer no hazard. 00 Materials that will not burn. 00 Materials that in themselves are normally stable DAMAGE TO LIVING TISSUE. MATERIALS POSSESSING RADIOACTIVITY HAZARDS. The identification systems

  4. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

    1992-01-01

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  5. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  6. SEISMIC HAZARD AND VULNERABILITY ASSESSMENT IN TURRIALBA, COSTA RICA Seismic hazard and vulnerability

    E-Print Network [OSTI]

    SEISMIC HAZARD AND VULNERABILITY ASSESSMENT IN TURRIALBA, COSTA RICA I Seismic hazard and vulnerability assessment in Turrialba, Costa Rica Rafael German Urban Lamadrid March 2002 #12;SEISMIC HAZARD AND VULNERABILITY ASSESSMENT IN TURRIALBA, COSTA RICA II Seismic hazard and vulnerability assessment in Turrialba

  7. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  8. Assessment of Health Hazards of Repeated Inhalation of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

  9. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Mercury used in many laboratory areas on campus. All laboratory areas and former laboratory areas should. Cleanup by a hazardous materials contractor is required before demolition or construction can begin

  10. Hazardous Materials Shipping Policy for Laboratories Policy Statement

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Page 1 Hazardous Materials Shipping Policy for Laboratories Policy Statement In order to ensure compliance with all regulations governing transportation of hazardous materials, all University faculty, staff, and students who work in laboratories and intend to ship hazardous materials from the University

  11. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    E-Print Network [OSTI]

    Cowan-Ellsberry, Christina E.

    2010-01-01

    Chemicals in Hazard and Risk Assessment Christina E. Cowan-implications for chemical risk assessment. J Environ MonitJM. 2006. Screening level risk assessment model for chemical

  12. NIH POLICY MANUAL 3034 -Working with Hazardous Materials

    E-Print Network [OSTI]

    Bandettini, Peter A.

    NIH POLICY MANUAL 3034 - Working with Hazardous Materials Issuing Office: ORS/DOHS (301) 496 and procedure governing work with hazardous chemicals as described in the NIH Hazard Communication Program page. A. Purpose: This chapter establishes the NIH policy for working with hazardous chemicals

  13. ORISE Resources: Hospital All-Hazards Self-Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partners with CDC to develop Hospital All-Hazards Self-Assessment to identify gaps in planning efforts The Hospital All-Hazards Self-Assessment, or HAH, is designed to help...

  14. Training Package on National Scale Multi Hazard Risk Assessment

    E-Print Network [OSTI]

    1 Training Package on National Scale Multi Hazard Risk Assessment Theory Book National Scale Multi Hazard Risk Assessment By Cees van Westen, Michiel Damen and Wim Feringa University Twente, Faculty-EAST National Scale Multi-Hazard Risk Assessment Date: 2013-11-18 2 Note about the PPRD EAST project This manual

  15. Are you shipping a DOT Hazardous Material? Is your material listed

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Are you shipping a DOT Hazardous Material? Is your material listed on the DOT Hazmat Table? http://www.myregs.com/dotrspa/ (select Hazmat Table upper left) Your material is a Hazardous Material and must be shipped following the full regulations. Follow the instructions on the linked page, select the hazard of the material

  16. Chemical and Hazardous Materials Department of Environmental Health and Safety

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Chemical and Hazardous Materials Safety Department of Environmental Health and Safety 800 West information useful in the recognition, evaluation, and control of workplace hazards and environmental factors safety, fire safety, and hazardous waste disposal. Many chemicals have properties that make them

  17. HAZARDOUS MATERIAL SAFETY Effective Date: January 1, 1992

    E-Print Network [OSTI]

    Cui, Yan

    HAZARDOUS MATERIAL SAFETY PROCEDURES Effective Date: January 1, 1992 Revised Date: March 1993 UT Memphis shall implement a program that protects its employees from hazardous chemical in accordance with Section 1910.1200 of the Occupational Safety and Health Act (OSHA), entitled ³Hazard Communication

  18. Guidance Note 052 RISK ASSESSMENTS FOR HAZARDOUS CHEMICALS

    E-Print Network [OSTI]

    Guidance Note 052 RISK ASSESSMENTS FOR HAZARDOUS CHEMICALS as required under the CONTROL OF SUBSTANCES HAZARDOUS TO HEALTH REGULATIONS (COSHH) and the DANGEROUS SUBSTANCES AND EXPLOSIVE ATMOSPHERES Involving the Use of Hazardous Chemicals. COSHH requires health risks to be assessed and controlled

  19. Mr. Steve lappe, Project Leader Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lappe, Project Leader Hazardous Materials Bureau Department of Energy Carlsbad Field Office P o. Box 3090 Carlsbad, New Mexico 88221 FEB I 3110 New Mexico Environment Department...

  20. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Site of specifications for projects in areas with site contamination. Overview Many locations on University of Washington industrial activities such as fuel storage or dispensing or hazardous material spills prior to University

  1. Incompatible Hazardous Materials Each material must be individually evaluated to determine where and how it should be stored. The

    E-Print Network [OSTI]

    de Lijser, Peter

    Incompatible Hazardous Materials Each material must be individually evaluated to determine where compounds) detergents/soaps, oxidizers heat, fire hazard compressed gases (oxygen, acetylene, propane, helium) heat sources fire hazard, explosion hazards corrosion preventative compounds (corrosion

  2. Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals

    E-Print Network [OSTI]

    Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals The following outline provides) or other sources of information. In cases where substances with significant or unusual potential hazards of experience and the degree of potential hazard associated with the proposed experiment, it may be necessary

  3. R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet All hazardous material must be inventoried and accounted for by a Marine Technician BEFORE being

    E-Print Network [OSTI]

    Wilcock, William

    R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet · All hazardous material must and placarded in accordance with the IMDG Code, CFRs and MARPOL 73/78. · All hazardous material to be brought hazardous material containers, no matter how small or how many, must be labeled with the name and phone

  4. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Fluorescent are hazardous waste, so take care to ensure the tubes remain intact during removal and storage. Fluorescent offsite locations, the EH&S Environmental Programs Office (EPO) will arrange directly with the recycling

  5. Hazard/Risk Assessment A REFINED AQUATIC ECOLOGICAL RISK ASSESSMENT FOR A PYRETHROID

    E-Print Network [OSTI]

    Peterson, Robert K. D.

    Hazard/Risk Assessment A REFINED AQUATIC ECOLOGICAL RISK ASSESSMENT FOR A PYRETHROID INSECTICIDE risk assessments, the authors performed a probabilistic aquatic ecological risk assessment. The present study is the first ecological risk assessment for pyrethroids to quantitatively integrate

  6. Hazardous Material Identification With StreetLab Mobile | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Material Identification With StreetLab Mobile Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  7. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  8. Conversion of hazardous materials using supercritical water oxidation

    DOE Patents [OSTI]

    Rofer, Cheryl K. (Los Alamos, NM); Buelow, Steven J. (Los Alamos, NM); Dyer, Richard B. (Los Alamos, NM); Wander, Joseph D. (Parker, FL)

    1992-01-01

    A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

  9. Hazardous Material Shipments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of Hazardous

  10. Health assessment for Fletcher's Paint Works and Storage Facility Hazardous Waste Material, Milford, Hillsborough County, New Hampshire, Region 1. CERCLIS No. NHD981067614. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1990-06-11

    Fletcher's Paint Works and Storage Facility Hazardous Waste Site (Fletcher's Paint Site) in Milford, New Hampshire, consists of three distinct entities: Fletcher's Paint Works at 21 Elm Street, Fletcher's Paint Storage Facility on Mill Street, and a drainage ditch leading from the storage facility property to Hampshire Paper Company property. The aggregation of these three properties was based on the similar nature of operations and wastes, the close proximity of the areas, the same target population, and the same underlying aquifer at risk of contamination. The aggregated site has contributed to the contamination of soil, groundwater, surface water, sediment, and air with various volatile organic chemicals (VOCs), semivolatile organic chemicals (SVOCs), heavy metals, and polychlorinated biphenyls (PCBs). Environmental monitoring related to the Fletcher's Paint Site has consisted of sampling of the Keyes Well by the NH WSPCC, and sampling at the paint works, storage facility and drainage ditch by NUS Corporation and EPA's Environmental Services Division (ESD). Contaminant levels at each location is discussed individually. Based upon the available information, the Fletcher's Paint NPL Site is considered to be of potential public health concern because of the risk to public health caused by potential exposure to hazardous substances, such as VOCs, PCBs, PAHs, and heavy metals, at concentrations that may result in adverse health effects. Exposure to contaminated soil and surface water, and potentially contaminated fish may be occurring. The site is located in a densely populated part of town, while the storage facility is readily accessible to children walking to and from school.

  11. PPE Certification of Hazard Assessment Dept: Area: Job Classification/Task

    E-Print Network [OSTI]

    Slatton, Clint

    PPE 7 Appendix A PPE Certification of Hazard Assessment Dept: Area: Job Classification/Task: HAZARDS (Circle Hazards) Describe Specific Hazards Identify Type of PPE Required for the Hazards Eye Hazard Impact Penetration Dust Chemical Radiation Heat Bioaerosols Projectiles Head Hazard Burn Electric

  12. Hazardous Material Identification and Material Safety Data Sheets UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Pennycook, Steve

    Hazardous Material Identification and Material Safety Data Sheets UT-B Contracts Div July 2006 Page 1 of 1 haz-mat-id-msds-ext-july06.doc HAZARDOUS MATERIAL IDENTIFICATION AND MATERIAL SAFETY DATA SHEETS (July 2006) (a) "Hazardous material," as used in this clause, means any material defined

  13. Removal of radioactive and other hazardous material from fluid waste

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  14. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    to construction debris recycling facilities even if the lead concentrations are below Hazardous Waste levels in construction debris. It is most often found in pipes, copper pipes with lead solder, and interior and exterior, lead-containing materials have the potential to negatively impact the health of construction workers

  15. Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals

    E-Print Network [OSTI]

    Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals The following outline provides a summary of the steps that laboratory workers should use to assess the risks of handling toxic chemicals with each chemical involved in the proposed work. Are any of the chemicals carcinogens or suspected

  16. Medical University of South Carolina Environmental Hazards Assessment Program. Deliverables: Volume 3, Annual report, July 1, 1993--June 30, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-18

    This reference is concerned with the Crossroads of Humanity workshop which is part of the Environmental Hazards Assessment Program at the Medical University of South Carolina. This workshop was held during the month of June and July 1994. Topics discussed include: Perceived Risk Advisory Committee Meeting, surveys of public opinion about hazardous and radioactive materials, genetics,antibodies, and regulatory agencies.

  17. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  18. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, Jr., Holt (Hopewell, NJ)

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  19. Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area, Clark County, Nevada

    E-Print Network [OSTI]

    Ahmad, Sajjad

    1 Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area, Clark County..................................................................................................................................... 4 Piedmont Geomorphology and Related Flood Hazards..................... 6 The Field Area

  20. University of Connecticut Health Center Policy for Transporting, Shipping, Importing / Exporting Hazardous Materials

    E-Print Network [OSTI]

    Kim, Duck O.

    Hazardous Materials Policy The University of Connecticut Health Center requires that all materials classified as "hazardous materials" by the U.S. Department of Transportation and/or the State of Connecticut be transported in approved containers and in compliance with all transportation regulations. Hazardous materials

  1. Federal program for regulating highly hazardous materials finally takes off

    SciTech Connect (OSTI)

    Lessard, P.C. [Block Environmental Services Inc., Pleasant Hill, CA (United States)

    1996-11-01

    The Risk Management Program (RMP) rule, Section 112(r) of the Clean Air Act (CAA), was signed on May 24 and finalized on June 20. RMP is one of the most comprehensive, technically based regulatory programs for preventing, detecting and responding to accidental hazardous materials releases to have been issued in recent times. Although facilities have three years to comply, EPA estimates that the rule will affect an estimated 66,000 facilities that store highly hazardous or acutely toxic materials. The 1990 CAA Amendments are designed to prevent accidental releases of highly hazardous chemicals from stationary sources. Two significant regulatory programs that have emerged from the revised CAA are the Process Safety Management (PSM) standard and RMP. PSM is designed to protect employees and regulated by the Occupational Safety and Health Administration. RMP`s purpose is to protect the public and the environment from highly hazardous chemicals. It authorizes EPA to create a list of substances (distinct from the list generated under PSM) known to cause serious adverse effects and to implement a program for accidental chemical release prevention.

  2. Sandia Administrative Micrographics Facility, Building 802: Hazards assessment document

    SciTech Connect (OSTI)

    Swihart, A.

    1994-12-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Administrative Micrographics Facility, Building 802. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 33 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 75 meters.

  3. Journal of Hazardous Materials 192 (2011) 16161622 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Sparks, Donald L.

    2011-01-01

    Journal of Hazardous Materials 192 (2011) 1616­1622 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Effects of dissolved

  4. Journal of Hazardous Materials 175 (2010) 872882 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    2010-01-01

    Journal of Hazardous Materials 175 (2010) 872­882 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Model for a solid­liquid stirred tank

  5. Journal of Hazardous Materials 191 (2011) 190195 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    2011-01-01

    Journal of Hazardous Materials 191 (2011) 190­195 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Treatment of substituted phenol

  6. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

  7. Hazardous Materials Reporting UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Hazardous Materials Reporting UT-B Contracts Div July 2006 Page 1 of 1 haz-mat-rept-ext-venx-july06.doc HAZARDOUS MATERIALS REPORTING (July 2006) (a) The Company is required by regulations to maintain records and report on quantities of hazardous materials that are on site at U. S. Department

  8. EOC Title: Hazardous Materials Liaison (Emergency Support Function #10) Coordinating Campus Unit: EH&S

    E-Print Network [OSTI]

    Walker, Matthew P.

    OPERATIONS EOC Title: Hazardous Materials Liaison (Emergency Support Function #10) Coordinating Campus Unit: EH&S General Description The Hazardous Materials Emergency Support Function coordinates response to and recovery from an actual or potential discharge and/or release of a hazardous material

  9. Modeling and Simulation of Hazardous Material Releases for Homeland Security Applications

    E-Print Network [OSTI]

    Magee, Joseph W.

    i Modeling and Simulation of Hazardous Material Releases for Homeland Security Applications DRAFT in the breakout track on Hazardous Material Release at the workshop on Homeland Security Modeling & Simulation...........................................................................................................................................................1 2. Introduction to Hazardous Material Releases (HMR) and Associated DHS Guidance

  10. Monthly Theme January 2010 Movement of Hazardous Materials between or within buildings Monthly Theme January 2010

    E-Print Network [OSTI]

    Calgary, University of

    Monthly Theme January 2010 ­ Movement of Hazardous Materials between or within buildings Monthly Theme ­ January 2010 MOVEMENT OF HAZARDOUS MATERIALS BETWEEN OR WITHIN BUILDINGS Effective immediately for pick-up. This will reduce the transport hazard and cost when purchasing from Chemistry Stores (40% mark

  11. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  12. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  13. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    SciTech Connect (OSTI)

    Boyd D. Christensen; Annette L. Schafer

    2014-02-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

  14. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    SciTech Connect (OSTI)

    Boyd D. Christensen; Annette L. Schafer

    2013-11-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

  15. Application of probabilistic consequence analysis to the assessment of potential radiological hazards of fusion reactors

    E-Print Network [OSTI]

    Sawdye, Robert William

    1978-01-01

    A methodology has been developed to provide system reliability criteria based on an assessment of the potential radiological hazards associated with a fusion reactor design and on hazard constraints which prevent fusion ...

  16. Permit Fees for Hazardous Waste Material Management (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe applicable fees for permit application, modification, and transfer for permits related to hazardous waste management.

  17. The California State University, Fullerton Emergency Management Plan establishes the framework for campus response to emergency situations. The Hazardous Material

    E-Print Network [OSTI]

    de Lijser, Peter

    the framework for campus response to emergency situations. The Hazardous Material Contingency Plan (plan) defines specific actions and information for responding to campus hazardous materials incidents. II personnel in the event of an unplanned release or spill of hazardous materials or hazardous waste. B

  18. Environmental Hazards Assessment Program quarterly report, January--March 1995

    SciTech Connect (OSTI)

    NONE

    1995-04-30

    The objectives of the Environmental Hazards Assessment Program (EHAP) stated in the proposal to DOE are to: develop a holistic, national basis for risk assessment, risk management, and risk communication that recognizes the direct impact of environmental hazards on the health and well-being of all; develop a pool of talented scientists and experts in cleanup activities, especially in human health aspects; and identify needs and develop programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health oriented aspects of environmental restoration and waste management. This report describes activities and reports on progress for the third quarter (January--March) of the third year of the grant. It reports progress against these grant objectives and the Program Implementation Plan published at the end of the first year of the grant. Questions, comments, or requests for further information concerning the activities under this grant can be forwarded to Jack Davis in the EHAP office of the Medical University of South Carolina at (803) 727-6450.

  19. Journal of Hazardous Materials 180 (2010) 662667 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Ma, Lena

    2010-01-01

    Journal of Hazardous Materials 180 (2010) 662­667 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Optimum P levels for arsenic removal Hyperaccumulation Groundwater a b s t r a c t Optimization of arsenic uptake by Pteris vittata may reduce

  20. Reducing the Risk of Rail Transport of Hazardous Materials by Route Rationalization

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Reducing the Risk of Rail Transport of Hazardous Materials by Route Rationalization Athaphon;Kawprasert & Barkan 08-2801 2 ABSTRACT Hazardous materials traffic originates and terminates at numerous different locations throughout the North American railroad network. Rerouting of this traffic, especially

  1. Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic)

    SciTech Connect (OSTI)

    Snow, Robert L.; Ross, Steven B.; Sullivan, Robin S.

    2010-09-24

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the Hanford 200 Areas, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. The review includes all natural phenomena hazards with the exception of seismic/earthquake hazards, which are being addressed under a separate effort. It was determined that existing non-seismic NPH assessments are consistent with current design methodology and site specific data.

  2. Development of sensors and techniques to assess earthquake hazards and submarine slope stability

    E-Print Network [OSTI]

    Blum, John

    2010-01-01

    The Parkfield, California earthquake prediction experiment.prediction and hazard assessment from the 2004 Parkfield earthquake.earthquake differed in both character and date of the 1985 prediction (

  3. Environmental Hazards Assessment Program. Quarterly report, April--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-07-31

    The objectives of this report are to: (1) develop a holistic, national basis for risk assessment, risk management, and risk communication that recognizes the direct impact of environmental hazards, both chemical and radiation, on the health and well-being of all; (2) develop a pool of talented scientists and experts in cleanup activities, especially in human health aspects; and (3) identify needs and develop programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health oriented aspects of environmental restoration and waste management. This report describes the progress made this quarter in the following areas: public and professional outreach; science programs; clinical programs; and information support and access systems.

  4. Environmental Hazards Assessment Program annual report, [June 1992--June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report, the Environment Hazards Assessment Program (EHAP) Annual Report, is the second of three reports that document activities under the EHAP grant and details progress made during the first year of the grant. The first year was devoted to the development of a working program implementation plan. During the developmental process some key objectives were achieved such as developing a Doctor of Philosophy degree program in Environmental Studies at MUSC (Medical University of South Carolina) and conducting the first Crossroads of Humanity series Round Table Forum. The PIP (Program Implementation Program) details the objectives, management and budgetary basis for the overall management and control of the grant over the next four years, the yearly program plans provide the monthly and day-to-day programmatic and budgetary control by which the PIP was developed.

  5. Assessment of the Grouted IXC Monolith in Support of K East Basin Hazard Categorization

    SciTech Connect (OSTI)

    Short, Steven M.; Dodson, Michael G.; Alzheimer, James M.; Meyer, Perry A.

    2007-10-12

    Addendum to original report updating the structural analysis of the I-beam accident to reflect a smaller I-beam than originally assumed (addendum is 2 pages). The K East Basin currently contains six ion exchange columns (IXCs) that were removed from service over 10 years ago. Fluor Hanford plans to immobilize the six ion exchange columns (IXCs) in place in a concrete monolith. PNNL performed a structural assessment of the concrete monolith to determine its capability to absorb the forces imposed by postulated accidents and protect the IXCs from damage and thus prevent a release of radioactive material. From this assessment, design specifications for the concrete monolith were identified that would prevent a release of radioactive material for any of the postulated hazardous conditions.

  6. Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100

    SciTech Connect (OSTI)

    Borgeson, M.E.

    1994-11-09

    The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

  7. Mr. John Kieling, Acting Chief Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory to certify waste in accordance with the Waste Isolation Pilot Plant Hazardous Waste Facility Permit. The audit was conducted on June 7-9, 2011. I certify under...

  8. Intention to Ship Hazardous Materials Complete and submit this form to EHS if you intend to ship material that may be

    E-Print Network [OSTI]

    Intention to Ship Hazardous Materials Complete and submit this form to EHS if you intend to ship material that may be classified as hazardous material. EHS will determine if the shipment is regulated and/supervisor Department Phone Email Description of material (commercial product name, chemical name, etc.): Known hazards

  9. Journal of Hazardous Materials 254255 (2013) 206213 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    2013-01-01

    Journal of Hazardous Materials 254­255 (2013) 206­213 Contents lists available at SciVerse ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Simultaneous

  10. COMPREHENSIVE ASSESSMENT OF CONTAMINATED FLUVIAL SEDIMENTS EROSION RISK AND ECOLOGICAL HAZARD

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    COMPREHENSIVE ASSESSMENT OF CONTAMINATED FLUVIAL SEDIMENTS ­ EROSION RISK AND ECOLOGICAL HAZARD assessment of contaminated aquatic sediments has to consider both sediment hydraulics and ecology. Since layers of contaminated sediments are often buried under less polluted deposits, the risk of erosion

  11. VULNERABILITY ANALYSIS AND RISK ASSESSMENT FOR SEISMIC AND FLOOD HAZARD IN TURIALBA CITY, COSTA RICA

    E-Print Network [OSTI]

    VULNERABILITY ANALYSIS AND RISK ASSESSMENT FOR SEISMIC AND FLOOD HAZARD IN TURIALBA CITY, COSTA and Earth Observation (ITC) Enschede Netherlands Figure 5.4. Damage maps for #12;Vulnerability Analysis And Risk Assessment For Seismic And Flood Hazard In Turialba City, Costa Rica By Muh Aris Marfai and Jacob

  12. Journal of Hazardous Materials 252253 (2013) 355366 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Reid, Scott A.

    2013-01-01

    Journal of Hazardous Materials 252­253 (2013) 355­366 Contents lists available at SciVerse ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Chitosan. / Journal of Hazardous Materials 252­253 (2013) 355­366 Scheme 1. Structure of microcystins. due

  13. POLICY FOR THE MANAGEMENT OF HAZARDOUS MATERIALS Effective Date: February 15, 2010 Originating Office: Office of the

    E-Print Network [OSTI]

    Doedel, Eusebius

    POLICY FOR THE MANAGEMENT OF HAZARDOUS MATERIALS Effective Date: February 15, 2010 Originating, storage, removal or disposal of chemicals or other hazardous chemical products on University premises. For the purposes of this Policy, hazardous materials includes chemicals, biological, and radioactive materials

  14. Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site

    SciTech Connect (OSTI)

    Snow, Robert L.; Ross, Steven B.

    2011-09-15

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).

  15. DRAFT - DOE O 460.1D, Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  16. An evaluation of current hazardous material management procedures for the Texas Department of Transportation 

    E-Print Network [OSTI]

    Lovell, Cheryl Alane

    1993-01-01

    with all current regulatory requirements. This study evaluates the current hazardous material management procedures that the Texas Department of Transportation (TXDOT) is utilizing to ensure that if falls within the legal scope of the law and to provide...

  17. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  18. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  19. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    SciTech Connect (OSTI)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  20. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  1. Assessment of External Hazards at Radioactive Waste and Used Fuel Management Facilities - 13505

    SciTech Connect (OSTI)

    Gerchikov, Mark; Schneider, Glenn; Khan, Badi; Alderson, Elizabeth [AMEC NSS, 393 University Ave., Toronto, ON (Canada)] [AMEC NSS, 393 University Ave., Toronto, ON (Canada)

    2013-07-01

    One of the key lessons from the Fukushima accident is the importance of having a comprehensive identification and evaluation of risks posed by external events to nuclear facilities. While the primary focus has been on nuclear power plants, the Canadian nuclear industry has also been updating hazard assessments for radioactive waste and used fuel management facilities to ensure that lessons learnt from Fukushima are addressed. External events are events that originate either physically outside the nuclear site or outside its control. They include natural events, such as high winds, lightning, earthquakes or flood due to extreme rainfall. The approaches that have been applied to the identification and assessment of external hazards in Canada are presented and analyzed. Specific aspects and considerations concerning hazards posed to radioactive waste and used fuel management operations are identified. Relevant hazard identification techniques are described, which draw upon available regulatory guidance and standard assessment techniques such as Hazard and Operability Studies (HAZOPs) and 'What-if' analysis. Consideration is given to ensuring that hazard combinations (for example: high winds and flooding due to rainfall) are properly taken into account. Approaches that can be used to screen out external hazards, through a combination of frequency and impact assessments, are summarized. For those hazards that cannot be screened out, a brief overview of methods that can be used to conduct more detailed hazard assessments is also provided. The lessons learnt from the Fukushima accident have had a significant impact on specific aspects of the approaches used to hazard assessment for waste management. Practical examples of the effect of these impacts are provided. (authors)

  2. Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity tests

    E-Print Network [OSTI]

    Short, Daniel

    Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity tests V. Tsiridis 2012 Keywords: Fly ash Toxicity Leaching tests Waste characterization Bioassays a b s t r a c t The environmental hazard of six coal fly ash samples collected from various coal incineration plants were examined

  3. Use of hazard assessments to achieve risk reduction in the USDOE Stockpile Stewardship (SS-21) Program

    SciTech Connect (OSTI)

    Fischer, S.R.; Konkel, H.; Bott, T.; Eisenhawer, S.W. [Los Alamos National Lab., NM (United States); DeYoung, L.; Hockert, J. [Odgen Environmental and Energy Services, Albuquerque, NM (United States)

    1995-07-01

    This paper summarizes the nuclear explosive hazard assessment activities performed to support US Department of Energy (DOE) Stockpile Stewardship Demonstration Project SS-21, better known as the ``Seamless Safety`` program. Past practice within the DOE Complex has dictated the use of a significant number of post-design/fabrication safety reviews to analyze the safety associated with operations on nuclear explosives and to answer safety questions. These practices have focused on reviewing-in or auditing-in safety vs incorporating safety in the design process. SS-21 was proposed by the DOE as an avenue to develop a program to ``integrate established, recognized, verifiable safety criteria into the process at the design stage rather than continuing the reliance on reviews, evaluations and audits.`` The entire Seamless Safety design and development process is verified by a concurrent hazard assessment (HA). The primary purpose of the SS-21 Demonstration Project HA was to demonstrate the feasibility of performing concurrent HAs as part of an engineering design and development effort and then to evaluate the use of the HA to provide an indication in the risk reduction or gain in safety achieved. To accomplish this objective, HAs were performed on both baseline (i.e., old) and new (i.e. SS-21) B61-0 Center Case Section disassembly processes. These HAs were used to support the identification and documentation of weapon- and process-specific hazards and safety-critical operating steps. Both HAs focused on identifying accidents that had the potential for worker injury, public health effects, facility damage, toxic gas release, and dispersal of radioactive materials. A comparison of the baseline and SS-21 process risks provided a semi-quantitative estimate of the risk reduction gained via the Seamless Safety process.

  4. Hazardous Materials Packaging and Transportation Safety - DOE Directives,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of HazardousDelegations,

  5. Probabilistic Hazard Assessment of Tsunamis Induced by the Translational Failure of Multiple Submarine Rigid Landslides 

    E-Print Network [OSTI]

    Jimenez Martinez, Arturo

    2012-10-19

    A numerical study aimed at probabilistically assessing the coastal hazard posed by tsunamis induced by one-dimensional submarine rigid landslides that experience translational failure is presented. The numerical model here ...

  6. Modeling of Tsunami Propagation in the Atlantic Ocean Basin for Tsunami Hazard Assessment along the North Shore of Hispaniola

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Modeling of Tsunami Propagation in the Atlantic Ocean Basin for Tsunami Hazard Assessment along to estimating future seismic and tsunami hazard in Hispaniola. In 2013, the UNESCO commissioned initial modeling studies to assess tsunami hazard along the North shore of Hispaniola (NSOH), which is shared

  7. POLICY FOR THE MANAGEMENT OF HAZARDOUS MATERIALS Effective Date: February 15, 2010 Originating Office: Office of the

    E-Print Network [OSTI]

    Doedel, Eusebius

    is responsible for the safe handling and disposal of hazardous waste (including transport as per TDG regulations. For the purposes of this Policy, hazardous materials includes chemicals, biological, and radioactive materials. Radiation Safety Policy (VPS-46) outlines the management of radioactive materials as required

  8. Material Analysis for a Fire Assessment.

    SciTech Connect (OSTI)

    Brown, Alexander; Nemer, Martin

    2014-08-01

    This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

  9. Applying radiological emergency planning experience to hazardous materials emergency planning within the nuclear industry

    SciTech Connect (OSTI)

    Foltman, A.; Newsom, D.; Lerner, K.

    1988-01-01

    The nuclear industry has extensive radiological emergency planning (REP) experience that is directly applicable to hazardous materials emergency planning. Recently, the Feed Materials Production Center near Cincinnati, Ohio, successfully demonstrated such application. The REP experience includes conceptual bases and standards for developing plans that have been tested in hundreds of full-scale exercises. The exercise program itself is also well developed. Systematic consideration of the differences between chemical and radiological hazards shows that relatively minor changes to the REP bases and standards are necessary. Conduct of full-scale, REP-type exercises serves to test the plans, provide training, and engender confidence and credibility.

  10. Journal of Hazardous Materials 179 (2010) 650657 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    2010-01-01

    of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Calcium polysulfide treatment of Cr(VI)-contaminated-ray absorption spectroscopy a b s t r a c t Batch treatability studies for a Cr(VI)-contaminated glacial soil et al. [1] summarize the main attributes of the environmental chemistry of Cr. Toxic and car

  11. Emergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    -492-6025. For Non-Emergency Fire and Natural Gas Questions call the CU Fire Marshall @ 303-492-4042. AdditionalEmergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas leaks, the following actions should be taken: 1) Life Safety First 2) Evacuate Immediate Area 3

  12. Materials SafetyProper Disposal of Waste Contaminated with Hazardous Solvents

    E-Print Network [OSTI]

    Materials SafetyProper Disposal of Waste Contaminated with Hazardous Solvents A M e s s a g e f r o released from solvent-soaked polishing cloths that had been improperly tossed in a general trash can in the hallway. As the janitor removed the bag from the trashcan, she inhaled concentrated solvent vapor

  13. Packaging performance evaluation and performance oriented packaging standards for large packages for poison inhalation hazard materials

    SciTech Connect (OSTI)

    Griego, N.R.; Mills, G.S.; McClure, J.D. [and others

    1997-07-01

    The U.S. Department of Transportation Research & Special Programs Administration (DOT-RSPA) has sponsored a project at Sandia National Laboratories to evaluate the protection provided by current packagings used for truck and rail transport of materials that have been classified as Poison Inhalation Hazards (PIH) and to recommend performance standards for these PIH packagings. Hazardous materials span a wide range of toxicity and there are many parameters used to characterize toxicity; for any given hazardous material, data are not available for all of the possible toxicity parameters. Therefore, it was necessary to select a toxicity criterion to characterize all of the PIH compounds (a value of the criterion was derived from other parameters in many cases) and to calculate their dispersion in the event of a release resulting from a transportation accident. Methodologies which account for material toxicity and dispersal characteristics were developed as a major portion of this project and applied to 72 PIH materials. This report presents details of the PIH material toxicity comparisons, calculation of their dispersion, and their classification into five severity categories. 16 refs., 5 figs., 7 tabs.

  14. Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process

    SciTech Connect (OSTI)

    Fix, N.J.

    1995-03-01

    Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

  15. Multi-hazard Reliability Assessment of Offshore Wind Turbines 

    E-Print Network [OSTI]

    Mardfekri Rastehkenari, Maryam 1981-

    2012-12-04

    A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

  16. A stochastic approach to risk assessment of hazardous waste sites 

    E-Print Network [OSTI]

    Arangath, Vishwanathan Vasu

    1995-01-01

    A deterministic risk assessment model was evaluated for the variability in its input parameters, Information on these variables was gathered to characterize the variability. Statistical distributions were assigned to the variables based...

  17. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  18. SOFTWARE TOOLS THAT ADDRESS HAZARDOUS MATERIAL ISSUES DURING NUCLEAR FACILITY D and D

    SciTech Connect (OSTI)

    M. COURNOYER; R. GRUNDEMANN

    2001-03-01

    The 49-year-old Chemistry and Metallurgy Research (CMR) Facility is where analytical chemistry and metallurgical studies on samples of plutonium and nuclear materials are conduct in support of the Department of Energy's nuclear weapons program. The CMR Facility is expected to be decontaminated and decommissioned (D and D) over the next ten to twenty years. Over the decades, several hazardous material issues have developed that need to be address. Unstable chemicals must be properly reassigned or disposed of from the workspace during D and D operation. Materials that have critical effects that are primarily chronic in nature, carcinogens, reproductive toxin, and materials that exhibit high chronic toxicity, have unique decontamination requirements, including the decontrolling of areas where these chemicals were used. Certain types of equipment and materials that contain mercury, asbestos, lead, and polychlorinated biphenyls have special provisions that must be addressed. Utilization of commercially available software programs for addressing hazardous material issues during D and D operations such as legacy chemicals and documentation are presented. These user-friendly programs eliminate part of the tediousness associated with the complex requirements of legacy hazardous materials. A key element of this approach is having a program that inventories and tracks all hazardous materials. Without an inventory of chemicals stored in a particular location, many important questions pertinent to D and D operations can be difficult to answer. On the other hand, a well-managed inventory system can address unstable and highly toxic chemicals and hazardous material records concerns before they become an issue. Tapping into the institutional database provides a way to take advantage of the combined expertise of the institution in managing a cost effective D and D program as well as adding a quality assurance element to the program. Using laboratory requirements as a logic flow diagram, quality and cost effective methods are used to provide necessary information of programmatic, quality, and safety issues concerns. In summary, by seamlessly managing non-programmatic issues, chemical software programs allow scientists in nuclear research facilities more time to concentrate on their technical areas of interest.

  19. HAZARD COMMUNICATION PROGRAM The______________________________ Department has developed a Hazard Communication

    E-Print Network [OSTI]

    Zhang, Yuanlin

    HAZARD COMMUNICATION PROGRAM The______________________________ Department has developed a Hazard about chemical hazards and other hazardous substances via our comprehensive Hazard Communication Program. The Hazard Communication Program will include: WORKPLACE CHEMICAL LIST MATERIAL SAFETY DATA SHEETS CONTAINER

  20. PPE Hazard Assessment Checklist Certification Dept/Shop: __________________________________ Conducted by: _________________________

    E-Print Network [OSTI]

    Johnson, Eric E.

    -related exposure to: abrasive blasting sanding airborne dust chopping sawing dirt cutting grinding UV drilling, such as: cleaning foundry work cooking welding siphoning mixing painting pouring molten dip tank of PPE? Yes Nobaking material handling blood cooking sanding irritating chemicals If no, use: grinding

  1. Report on the Implementation of Periodic Natural Phenomena Hazards Assessment Reviews at Department of Energy Sites

    Broader source: Energy.gov [DOE]

    This report provides the results of a review conducted by the Office of Nuclear Safety (AU-30) of the implementation of periodic Natural Phenomena Hazards (NPH) assessment reviews by sites reporting to the National Nuclear Security Administration (NNSA), and the Offices of Environmental Management, Nuclear Energy, and Science.

  2. Hazard/Risk Assessment MULTIPLE STRESSORS AND COMPLEX LIFE CYCLES: INSIGHTS FROM A

    E-Print Network [OSTI]

    Hopkins, William A.

    Hazard/Risk Assessment MULTIPLE STRESSORS AND COMPLEX LIFE CYCLES: INSIGHTS FROM A POPULATION with complex life cycles, population models may be useful in understanding impacts of stressors that are unique to the habitat type (aquatic, terrestrial) and that operate at different times in the life cycle. We investigated

  3. Hazard/Risk Assessment SOURCES OF ENDOCRINE-DISRUPTING COMPOUNDS IN NORTH CAROLINA WATERWAYS

    E-Print Network [OSTI]

    Kwak, Thomas J.

    Hazard/Risk Assessment SOURCES OF ENDOCRINE-DISRUPTING COMPOUNDS IN NORTH CAROLINA WATERWAYSDepartment of Applied Ecology, North Carolina State University, Raleigh, North Carolina zDepartment of Biological Sciences,, Program in Environmental & Molecular Toxicology, North Carolina State University, Raleigh, North

  4. Assessment of the tsunami-induced current hazard Patrick J. Lynett1

    E-Print Network [OSTI]

    Lynett, Patrick

    Assessment of the tsunami-induced current hazard Patrick J. Lynett1 , Jose Borrero1,2 , Sangyoung Abstract The occurrence of tsunami damage is not limited to events causing coastal inundation. Even without. Nearshore tsunami currents are governed by nonlinear and turbulent physics and often have large spatial

  5. Biotests for hazard assessment of biofuel fermentation Sebastian Heger,a

    E-Print Network [OSTI]

    Angenent, Lars T.

    ecotoxicological investigation of a biomass-to-biofuel production process with respect to the generation and biofuel production streams should be conducted very early in the biofuel life cycle in parallelBiotests for hazard assessment of biofuel fermentation Sebastian Heger,a Kerstin Bluhm,a Matthew T

  6. Participatory health impact assessment for the development of local government regulation on hazard control

    SciTech Connect (OSTI)

    Inmuong, Uraiwan; Rithmak, Panee; Srisookwatana, Soomol; Traithin, Nathathai; Maisuporn, Pornpun

    2011-07-15

    The Thai Public Health Act 1992 required the Thai local governments to issue respective regulations to take control of any possible health-hazard related activities, both from commercial and noncommercial sources. Since 1999, there has been centrally decentralized of power to a new form of local government establishment, namely Sub-district Administrative Organization (SAO). The SAO is asmall-scale local governing structure while its legitimate function is for community services, including control of health impact related activities. Most elected SAO administrators and officers are new and less experience with any of public health code of practice, particularly on health-hazard control. This action research attempted to introduce and apply a participatory health impact assessment (HIA) tool for the development of SAO health-hazard control regulation. The study sites were at Ban Meang and Kok See SAOs, Khon Kaen Province, Thailand, while all intervention activities conducted during May 2005-April 2006. A set of cooperative activities between researchers and community representatives were planned and organized by; surveying and identifying place and service base locally causing local environmental health problems, organizing community participatory workshops for drafting and proposing the health-hazard control regulation, and appropriate practices for health-hazard controlling measures. This action research eventually could successfully enable the SAO administrators and officers understanding of local environmental-related health problem, as well as development of imposed health-hazard control regulation for local community.

  7. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    SciTech Connect (OSTI)

    Wayne Moe

    2013-10-01

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license will be granted to construct and operate a nuclear facility. Examples of significant site-related concerns include area geotechnical and geological hazard properties, local climatology and meteorology, water resource availability, the vulnerability of surrounding populations and the environmental to adverse effects in the unlikely event of radionuclide release, the socioeconomic impacts of SMR plant installation and the effects it has on aesthetics, proximity to energy use customers, the topography and area infrastructure that affect plant constructability and security, and concerns related to the transport, installation, operation and decommissioning of major plant components.

  8. Produced water radionuclide hazard/risk assessment, Phase 1

    SciTech Connect (OSTI)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01

    Petroleum production may be accompanied by the production of saline water, called ``produced water.`` Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium.

  9. Produced water radionuclide hazard/risk assessment, Phase 1

    SciTech Connect (OSTI)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01

    Petroleum production may be accompanied by the production of saline water, called produced water.'' Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium.

  10. Regional flood hazard assessment of the Paducah and Portsmouth Gaseous Diffusion Plants

    SciTech Connect (OSTI)

    Johnson, R.O.; Wang, J.C.; Lee, D.W.

    1991-01-01

    Regional flood-hazard assessments performed for the Paducah and Portsmouth Gaseous Diffusion Plants are reviewed, compared, and contrasted to determine the relationship of probable maximum flood methodology with respect to US Department of Energy design and evaluation guidelines. The Paducah assessment was carried out using probable maximum flood methodology, while the Portsmouth assessment utilized probabilistic techniques. Results indicated that regional flooding along nearby rivers would not inundate either plant, and that the guidelines were satisfied. A comparison of results indicated that the probable maximum flood recurrence interval associated with the Paducah assessment exceeded the 10,000 years depending on the choice of the probabilistic model used to perform the assessment. It was concluded, based on an analysis of two data points, that smaller watersheds driven by single event storms could be assessed using probabilistic techniques, while probable maximum flood methodology could be applied to larger drainage basins flooded by storm sequences. 32 refs., 3 figs.

  11. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    SciTech Connect (OSTI)

    Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank

    2008-11-01

    Fate and exposure modeling has not thus far been explicitly used in the risk profile documents prepared to evaluate significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include: (1) Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk. (2) Directly estimating the exposure of the environment, biota and humans to provide information to complement measurements, or where measurements are not available or are limited. (3) To identify the key processes and chemical and/or environmental parameters that determine the exposure; thereby allowing the effective prioritization of research or measurements to improve the risk profile. (4) Predicting future time trends including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and whether the assumptions and input data are relevant in the context of the application. It is possible to have confidence in the predictions of many of the existing models because of their fundamental physical and chemical mechanistic underpinnings and the extensive work already done to compare model predictions and empirical observations. The working group recommends that modeling tools be applied for benchmarking PBT/POPs according to exposure-to-emissions relationships, and that modeling tools be used to interpret emissions and monitoring data. The further development of models that couple fate, long-range transport, and bioaccumulation should be fostered, especially models that will allow time trends to be scientifically addressed in the risk profile.

  12. Post-Fire Debris-Flow Hazard Assessment of the Area Burned by the 2013 Beaver Creek Fire near Hailey, Central Idaho

    E-Print Network [OSTI]

    Torgersen, Christian

    Post-Fire Debris-Flow Hazard Assessment of the Area Burned by the 2013 Beaver Creek Fire near-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho: U­1273 Prepared in cooperation with Blaine County, Idaho #12;#12;Post-Fire Debris-Flow Hazard Assessment

  13. Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell

    SciTech Connect (OSTI)

    Gan, Yong X.; Gan, Bo J.; Clark, Evan; Su, Lusheng; Zhang, Lihua

    2012-09-15

    Highlights: ? A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ? The fuel cell decomposes environmentally hazardous materials to produce electricity. ? Doping the anode with a transition metal oxide increases the visible light sensitivity. ? Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.

  14. The Safety Data Sheet, or SDS, is written or printed material used to convey the hazards of a hazardous chemical product. It contains 16 sections of important chemical information, including

    E-Print Network [OSTI]

    The Safety Data Sheet, or SDS, is written or printed material used to convey the hazards of a hazardous chemical product. It contains 16 sections of important chemical information, including: Chemical characteristics; Physical and health hazards, including relevant exposure limits; Precautions for safe handling

  15. Hazardous materials in aquatic environments of the Mississippi River Basin Project management. Technical quarterly progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    McLachlan, J.; Ide, C.F.; O`Connor, S.

    1996-08-01

    This quarterly report summarizes accomplishments for the Project examining hazardous materials in aquatic environments of the Mississippi River Basin. Among the many research areas summarized are the following: assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure; hazardous wastes in aquatic environment;ecological sentinels of aquatic contamination in the lower Mississippi River System; remediation of selected contaminants; rapid on-site immunassay for heavy metal contamination; molecular mechanisms of developmental toxicity induced by retinoids and retinoid-like molecules; resuseable synthetic membranes for the removal of aromatic and halogenated organic pollutants from waste water; Effects of steroid receptor activation in neurendocrine cell of the mammalian hypothalamus; modeling and assessment of environmental quality of louisiana bayous and swamps; enhancement of environmental education. The report also contains a summary of publications resulting from this project and an appendix with analytical core protocals and target compounds and metals.

  16. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  17. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  18. Identification of Submarine Landslide for Tsunami Hazard Assessment in the Gulf of Mexico Using a Probabilistic Approach 

    E-Print Network [OSTI]

    Lohithakshan Parambath, Lisha

    2014-04-23

    The eastern coast of USA, including the Gulf of Mexico (GOM), is more prone to tsunamis caused by submarine landslides than earthquakes. The Tsunami Hazard Assessment research program lead by ten Brink, 2009, reported the presence of ancient...

  19. The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment

    E-Print Network [OSTI]

    Peresan, Antonella; Soloviev, Alexander; Panza, Giuliano F

    2014-01-01

    The reliable statistical characterization of the spatial and temporal properties of large earthquakes occurrence is one of the most debated issues in seismic hazard assessment, due to the unavoidably limited observations from past events. We show that pattern recognition techniques, which are designed in a formal and testable way, may provide significant space-time constraints about impending strong earthquakes. This information, when combined with physically sound methods for ground shaking computation, like the neo-deterministic approach (NDSHA), may produce effectively preventive seismic hazard maps. Pattern recognition analysis of morphostructural data provide quantitative and systematic criteria for identifying the areas prone to the largest events, taking into account a wide set of possible geophysical and geological data, whilst the formal identification of precursory seismicity patterns (by means of CN and M8S algorithms), duly validated by prospective testing, provides useful constraints about impend...

  20. Mission hazard assessment for STARS Mission 1 (M1) in the Marshall Islands area

    SciTech Connect (OSTI)

    Outka, D.E.; LaFarge, R.A.

    1993-07-01

    A mission hazard assessment has been performed for the Strategic Target System Mission 1 (known as STARS M1) for hazards due to potential debris impact in the Marshall Islands area. The work was performed at Sandia National Laboratories as a result of discussion with Kwajalein Missile Range (KMR) safety officers. The STARS M1 rocket will be launched from the Kauai Test Facility (KTF), Hawaii, and deliver two payloads to within the viewing range of sensors located on the Kwajalein Atoll. The purpose of this work has been to estimate upper bounds for expected casualty rates and impact probability or the Marshall Islands areas which adjoin the STARS M1 instantaneous impact point (IIP) trace. This report documents the methodology and results of the analysis.

  1. Hazard assessment in geothermal exploration: The case of Mt. Parker, Southern Philippines

    SciTech Connect (OSTI)

    Delfin, F.G. Jr.; Salonga, N.D.; Bayon, F.E.B.

    1996-12-31

    Hazard assessment of the Mt. Parker geothermal prospect, conducted in parallel with the surface exploration from 1992 to 1994, was undertaken to determine the long-term suitability of the prospect for development. By comparison with other acidic magmatic-hydrothermal systems in the Philippines, the geochemical data indicated minimal input of acidic magmatic fluids into Mt. Parker`s hydrothermal system. This system was regarded to be a neutral-pH and high-enthalpy chloride reservoir with temperature of at least 200-250{degrees}C. These favorable geochemical indications contrasted sharply with the C-14 and volcanological data indicating a shallow magmatic body with a potential for future eruption. This hazard led PNOC EDC to discontinue the survey and abandon the prospect by late 1994. On September 6, 1995, a flashflood of non-volcanic origin from the caldera lake killed nearly 100 people on the volcano`s northwestern flank.

  2. Seismic hazard for the Savannah River Site: A comparative evaluation of the EPRI and LLNL assessments

    SciTech Connect (OSTI)

    Wingo, H.E.

    1992-05-20

    This report was conducted to: (1) develop an understanding of causes for the vast differences between the two comprehensive studies, and (2) using a methodology consistent with the reconciled methods employed in the two studies, develop a single seismic hazard for the Savannah River Site suitable for use in seismic probabilistic risk assessments with emphasis on the K Reactor. Results are presented for a rock site which is a typical because detailed evaluations of soil characteristics at the K Reactor are still in progress that account for the effects of a soil stablizing grouting program. However when the soils analysis is completed, the effects of soils can be included with this analysis with the addition of a single factor that will decrease slightly the seismic hazard for a rock site.

  3. Environmental hazards assessment program. Annual report, July 1, 1994--June 30, 1995

    SciTech Connect (OSTI)

    1995-07-31

    This report describes activities and reports on progress for the third year of the DOE grant to support the Environmental Hazards Assessment Program (EHAP). It reports progress against grant objectives and the Program Implementation Plan published at the end of the first year of the grant. As the program has evolved, more projects have been funded and many existing projects have become more complex. Thus, to accomplish better the objectives over the years and retain a solid focus on the total mission, we have reorganized the grant effort from three to five majoe elements: Public and professional outreach; Clinical programs; Science programs; Information systems; and, Program management.

  4. Integrating Chemical Hazard Assessment into the Design of Inherently Safer Processes 

    E-Print Network [OSTI]

    Lu, Yuan

    2012-02-14

    Reactive hazard associated with chemicals is a major safety issue in process industries. This kind of hazard has caused the occurrence of many accidents, leading to fatalities, injuries, property damage and environment pollution. Reactive hazards...

  5. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    SciTech Connect (OSTI)

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  6. Safety Analysis: Evaluation of Accident Risks in the Transporation of Hazardous Materials by Truck and Rail at the Savannah River Plant

    SciTech Connect (OSTI)

    Blanchard, A.

    1999-04-15

    This report presents an analysis of the consequences and risks of accidents resulting from hazardous material transportation at the Savannah River Plant.

  7. Journal of Hazardous Materials B132 (2006) 244252 Zeolite synthesis from paper sludge ash at low temperature

    E-Print Network [OSTI]

    Downs, Robert T.

    2006-01-01

    Journal of Hazardous Materials B132 (2006) 244­252 Zeolite synthesis from paper sludge ash at low 2005 Available online 4 November 2005 Abstract Paper sludge ash was partially converted into zeolites by reaction with 3 M NaOH solution at 90 C for 24 h. The paper sludge ash had a low abundance of Si

  8. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  9. UNCOVERING BURIED VOLCANOES: NEW DATA FOR PROBABILISTIC VOLCANIC HAZARD ASSESSMENT AT YUCCA MOUNTAIN

    SciTech Connect (OSTI)

    F.V. Perry

    2005-10-13

    Basaltic volcanism poses a potential hazard to the proposed Yucca Mountain nuclear waste repository because multiple episodes of basaltic volcanism have occurred in the Yucca Mountain region (YMR) in the past 11 Ma. Intervals between eruptive episodes average about 1 Ma. Three episodes have occurred in the Quaternary at approximately 1.1 Ma (5 volcanoes), 350 ka (2 volcanoes), and 80 ka (1 volcano). Because Yucca Mountain lies within the Basin and Range Province, a significant portion of the pre-Quaternary volcanic history of the YMR may be buried in alluvial-filled basins. An exceptionally high-resolution aeromagnetic survey and subsequent drilling program sponsored by the U.S. Department of Energy (DOE) began in 2004 and is gathering data that will enhance understanding of the temporal and spatial patterns of Pliocene and Miocene volcanism in the region (Figure 1). DOE has convened a ten-member expert panel of earth scientists that will use the information gathered to update probabilistic volcanic hazard estimates originally obtained by expert elicitation in 1996. Yucca Mountain is a series of north-trending ridges of eastward-tilted fault blocks that are bounded by north to northeast-trending normal faults. Topographic basins filled with up to 500 m of alluvium surround it to the east, south and west. In the past several decades, nearly 50 holes have been drilled in these basins, mainly for Yucca Mountain Project Site Characterization and the Nye County Early Warning Drilling Program. Several of these drill holes have penetrated relatively deeply buried (300-400 m) Miocene basalt; a Pliocene basalt dated at 3.8 Ma was encountered at a relatively shallow depth (100 m) in the northern Amargosa Desert (Anomaly B in Figure 1). The current drilling program is the first to specifically target and characterize buried basalt. Based on the new aeromagnetic survey and previous air and ground magnetic surveys (Connor et al. 2000; O'Leary et al. 2002), at least eight drill holes are planned with the goal of sampling each geographic subpopulation of magnetic anomalies in the region (Figure 1). This will result in a more complete characterization of the location, age, volume and composition of buried basaltic features for the purpose of updating the volcanic hazard assessment. Smith and Keenan (2005) suggested that volcanic hazard estimates might be 1-2 orders of magnitude higher than estimated by the DOE expert elicitation in 1996, based on (1) a proposed relationship between recurrence rates in the YMR and the Reveille-Lunar Crater volcanic field to the north, and (2) the implication that a number of so-far-undiscovered buried volcanoes would have a significant impact on hazard estimates. This article presents the new aeromagnetic data and an interpretation of the data that suggests magnetic anomalies nearest the proposed repository site represent buried Miocene basalt that will likely have only a minor impact on the volcanic hazard.

  10. Track 2 sites: Guidance for assessing low probability hazard sites at the INEL. Revision 6

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document presents guidance for assessment of Track 2 low probability hazard sites (LPHS) at the Idaho National Engineering Laboratory (INEL). The Track 2 classification was developed specifically for the INEL to streamline the implementation of Comprehensive Environmental Response, Compensation, and Liability Act. Track 2 LPHSs are described as sites where insufficient data are available to make a decision concerning the risk level or to select or design a remedy. As such, these types of sites are not described in the National Contingency Plan or existing regulatory guidance. The goal of the Track 2 process is to evaluate LPHSs using existing qualitative and quantitative data to minimize the collection of new environmental data. To this end, this document presents a structured format consisting of a series of questions and tables. A qualitative risk assessment is used. The process is iterative, and addresses an LPHS from multiple perspectives (i.e., historical, empirical, process) in an effort to generate a reproducible and defensible method. This rigorous approach follows the data quality objective process and establishes a well organized, logical approach to consolidate and assess existing data, and set decision criteria. If necessary, the process allows for the design of a sampling and analysis strategy to obtain new environmental data of appropriate quality to support decisions for each LPHS. Finally, the guidance expedites consensus between regulatory parties by emphasizing a team approach to Track 2 investigations.

  11. Medical University of South Carolina Environmental Hazards Assessment Program. Deliverables: Volume 2, Annual report, July 1, 1993--June 30, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-18

    This reference is concerned with the Crossroads of Humanity workshop which is part of the Environmental Hazards Assessment Program at the Medical University of South Carolina. This workshop was held during the months of June and July 1994. Topics discussed include: Radioactive contamination, aging, medical ethics, and environmental risk analysis.

  12. Life-cycle analysis of hazardous chemicals in the Department of Materials Science & Engineering

    E-Print Network [OSTI]

    Chia, Valerie Jing-chi

    2013-01-01

    MIT policies set forth by the Department of Environment, Health, and Safety (EHS) require that all laboratories maintain a chemical inventory to properly document the use of hazardous chemicals. While EHS has provided a ...

  13. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    Hazardous Waste Management Training Persons (including faculty, staff and students) working with hazardous materials should receive annual training that addresses storage, use, and disposal of hazardous before handling hazardous waste. Departments are re- quired to keep records of training for as long

  14. Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994

    SciTech Connect (OSTI)

    Abdelghani, A.

    1994-06-01

    Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

  15. Chemical hazard evaluation of material disposal area (MDA) B closure project

    SciTech Connect (OSTI)

    Laul, Jagdish C

    2010-04-19

    TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

  16. Assessment tool for nuclear material acquisition pathways 

    E-Print Network [OSTI]

    Ford, David Grant

    2009-05-15

    . An organization interested in a smaller required infrastructure may choose to simply obtain material that can be enriched directly, most of these pathways begin in Figure 7 with the exceptions of the EMIS path in Figure 6 and the AVLIS path in Figure 8... Produce 1 SQ of Uranium Metal Produce 1 SQ of Highly Enriched Uranium Metal Develop Basic Heavy Machinery Manufacturing Skills Develop Basic Understanding of Lasers and Optics Construct AVLIS Pilot Plant Master AVLIS Method Construct Full Scale...

  17. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  18. Gasification characteristics of an activated carbon catalyst during the decomposition of hazardous waste material in supercritical water

    SciTech Connect (OSTI)

    Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

    1996-12-31

    Recently, carbonaceous materials including activated carbon were proven to be effective catalysts for hazardous waste gasification in supercritical water. Using coconut shell activated carbon catalyst, complete decomposition of industrial organic wastes including methanol and acetic acid was achieved. During this process, the total mass of the activated carbon catalyst changes by two competing processes: a decrease in weight via gasification of the carbon by supercritical water, or an increase in weight by deposition of carbonaceous materials generated by incomplete gasification of the biomass feedstocks. The deposition of carbonaceous materials does not occur when complete gasification is realized. Gasification of the activated carbon in supercritical water is often favored, resulting in changes in the quality and quantity of the catalyst. To thoroughly understand the hazardous waste decomposition process, a more complete understanding of the behavior of activated carbon in pure supercritical water is needed. The gasification rate of carbon by water vapor at subcritical pressures was studied in relation to coal gasification and generating activated carbon.

  19. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  20. Hazardous waste transportation risk assessment for the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement -- human health endpoints

    SciTech Connect (OSTI)

    Hartmann, H.M.; Policastro, A.J.; Lazaro, M.A.

    1994-03-01

    In this presentation, a quantitative methodology for assessing the risk associated with the transportation of hazardous waste (HW) is proposed. The focus is on identifying air concentrations of HW that correspond to specific human health endpoints.

  1. Preliminary materials assessment for the Satellite Power System (SPS)

    SciTech Connect (OSTI)

    Teeter, R.R.; Jamieson, W.M.

    1980-01-01

    Presently, there are two SPS reference design concepts (one using silicon solar cells; the other using gallium arsenide solar cells). A materials assessment of both systems was performed based on the materials lists set forth in the DOE/NASA SPS Reference System Report: Concept Development and Evaluation Program. This listing identified 22 materials (plus miscellaneous and organics) used in the SPS. Tracing the production processes for these 22 materials, a total demand for over 20 different bulk materials (copper, silicon, sulfuric acid, etc.) and nealy 30 raw materials (copper ore, sand, sulfur ore, etc.) was revealed. Assessment of these SPS material requirements produced a number of potential material supply problems. The more serious problems are those associated with the solar cell materials (gallium, gallium arsenide, sapphire, and solar grade silicon), and the graphite fiber required for the satellite structure and space construction facilities. In general, the gallium arsenide SPS option exhibits more serious problems than the silicon option, possibly because gallium arsenide technology is not as well developed as that for silicon. Results are presented and discussed in detail. (WHK)

  2. Seismic hazard for the Savannah River Site: A comparative evaluation of the EPRI and LLNL assessments. Volume 1

    SciTech Connect (OSTI)

    Wingo, H.E.

    1992-05-20

    This report was conducted to: (1) develop an understanding of causes for the vast differences between the two comprehensive studies, and (2) using a methodology consistent with the reconciled methods employed in the two studies, develop a single seismic hazard for the Savannah River Site suitable for use in seismic probabilistic risk assessments with emphasis on the K Reactor. Results are presented for a rock site which is a typical because detailed evaluations of soil characteristics at the K Reactor are still in progress that account for the effects of a soil stablizing grouting program. However when the soils analysis is completed, the effects of soils can be included with this analysis with the addition of a single factor that will decrease slightly the seismic hazard for a rock site.

  3. A non-intrusive screening methodology for environmental hazard assessment at waste disposal sites for water resources protection

    SciTech Connect (OSTI)

    Simons, B.A.; Woldt, W.E.; Jones, D.D. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Biological Systems Engineering

    1995-12-31

    The environmental and health risks posed by unregulated waste disposal sites are potential concerns of Pacific Rim regions and island ares because of the need to protect aquifers and other valuable water resources. A non-intrusive screening methodology to determine site characteristics including possible soil and/or groundwater contamination, areal extent of waste, etc. is being developed and tested at waste disposal sites in Nebraska. This type of methodology would be beneficial to Pacific Rim regions in investigating and/or locating unknown or poorly documented contamination areas for hazard assessment and groundwater protection. Traditional assessment methods are generally expensive, time consuming, and potentially exacerbate the problem. Ideally, a quick and inexpensive assessment method to reliably characterize these sites is desired. Electromagnetic (EM) conductivity surveying and soil-vapor sampling techniques, combined with innovative three-dimensional geostatistical methods are used to map the data to develop a site characterization of the subsurface and to aid in tracking any contaminant plumes. The EM data is analyzed to determine/estimate the extent and volume of waste and/or leachate. Soil-vapor data are analyzed to estimate a site`s volatile organic compound (VOC) emission rate to the atmosphere. The combined information could then be incorporated as one part of an overall hazard assessment system.

  4. Gasification characteristics of an activated carbon catalyst during the decomposition of hazardous waste materials in supercritical water

    SciTech Connect (OSTI)

    Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

    1996-10-01

    Recently, carbonaceous materials were proved to be effective catalysts for hazardous waste decomposition in supercritical water. Gasification of the carbonaceous catalyst itself is also expected, however, under supercritical conditions. Thus, it is essential to determine the gasification rate of the carbonaceous materials during this process to determine the active lifetime of the catalysts. For this purpose, the gasification characteristics of granular coconut shell activated carbon in supercritical water alone (600-650{degrees}C, 25.5-34.5 MPa) were investigated. The gasification rate at subatmospheric pressure agreed well with the gasification rate at supercritical conditions, indicating the same reaction mechanism. Methane generation under these conditions is via pyrolysis, and thus is not affected by the water pressure. An iodine number increase of 25% was observed as a result of the supercritical water gasification.

  5. Joint probability safety assessment for NPP defense infrastructure against extreme external natural hazards

    SciTech Connect (OSTI)

    Guilin, L.; Defu, L.; Huajun, L.; Fengqing, W.; Tao, Z.

    2012-07-01

    With the increasing tendency of natural hazards, the typhoon, hurricane and tropical Cyclone induced surge, wave, precipitation, flood and wind as extreme external loads menacing Nuclear Power Plants (NPP) in coastal and inland provinces of China. For all of planned, designed And constructed NPP the National Nuclear Safety Administration of China and IAEA recommended Probable Maximum Hurricane /Typhoon/(PMH/T), Probable Maximum Storm Surge (PMSS), Probable Maximum Flood (PMF), Design Basis Flood (DBF) as safety regulations for NPP defense infrastructures. This paper discusses the joint probability analysis of simultaneous occurrence typhoon induced extreme external hazards and compare with IAEA 2006-2009 recommended safety regulation design criteria for some NPP defense infrastructures along China coast. (authors)

  6. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky and Portsmouth, Ohio

    SciTech Connect (OSTI)

    1997-03-01

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the, ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  7. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky, and Portsmouth, Ohio

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  8. Radiation Hazards Program (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

  9. Assessment of Natural Hazard Damage and Reconstruction: A Case Study from Band Aceh, Indonesia

    E-Print Network [OSTI]

    Gillespie, Thomas; Frankenberg, Elizabeth; Braughton, Matt; Cooke, Abigail M.; Armenta, Tiffany; Thomas, Duncan

    2009-01-01

    mapping to assist flood risk and flood damage assessment.Banda Aceh. Flood estimations of populations at risk depend

  10. Emergency response planning for railroad transportation related spills of oil or other hazardous materials 

    E-Print Network [OSTI]

    Reeder, Geoffrey Benton

    1995-01-01

    In December 1984 an unintentional release of poison gas from a chemical plant in Bhopal, India killed over 2,500 people. Thousands of others were injured. Although this material was not in transportation at the time, this accident raised public...

  11. Chemical agents for conversion of chrysotile asbestos into non-hazardous materials

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY); Petrakis, Leon (Port Jefferson, NY)

    1998-06-09

    A composition and methods for converting a chrysotile asbestos-containing material to a non-regulated environmentally benign solid which comprises a fluoro acid decomposing agent capable of dissociating the chrysotile asbestos to non-regulated components, wherein non-regulated components are non-reactive with the environment, and a binding agent which binds the non-regulated components to form an environmentally benign solid.

  12. Development of sensors and techniques to assess earthquake hazards and submarine slope stability

    E-Print Network [OSTI]

    Blum, John

    2010-01-01

    Assessment of seismic risk for subsea production systems ina company specializing in subsea acoustics and applications.and Hitchcock, 2007), and subsea structures in the Gulf of

  13. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  14. Combined Fire Hazards Analysis/Assessment, Building 9116- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This assessment/analysis is intended to provide a comprehensive evaluation of the risks from fire and fire related perils in Building 9116 at the Oak Ridge Y-12 Plant. The assessment/analysis has been prepared in accordance with the criteria listed in DOE Order 5480.7A.

  15. 1/18/11 1:21 PMNBMG Report XX, Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area, Clark County, Nevada Page 1 of 58http://dev.nbmg.unr.edu/Pubs/Reports/rXX/

    E-Print Network [OSTI]

    Ahmad, Sajjad

    of Contents NBMG Report XX Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area management and more detailed studies related to hazard mitigation efforts in the area. Ideally, the maps `none', and nearly 53% of that area (125 mi2) is classified as having a hazard status high List

  16. MARSHALL UNIVERSITY HAZARDOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Sanyal, Suman

    /16/2005 1 #12;Marshall University Hazardous Waste Program POLICY STATEMENT- Hazardous Materials Management of the Hazardous Waste Management Program is to ensure that proper handling and legal disposal of hazardous wastes Management Program will apply to the following: 1. Any liquid, semi-solid, solid or gaseous substance defined

  17. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect (OSTI)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  18. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect (OSTI)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W. [and others] [and others

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  19. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

  20. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect (OSTI)

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  1. Assessment of the KE Basin Sand Filter Inventory In Support of Hazard Categorization

    SciTech Connect (OSTI)

    Ross, Steven B.; Young, Jonathan

    2005-09-28

    In 1978, the water cleaning system for the KE Basin was upgraded by adding a sand filter and ion exchange columns. Basin water containing finely divided solids is collected by three surface skimmers and pumped to the sand filter. Filtrate from the sand filter is further treated in the ion exchange modules. The suspended solids accumulate in the sand until the pressure drop across the filter reaches established operating limits, at which time the sand filter is backwashed. The backwash is collected in the NLOP, where the solids are allowed to settle as sludge. Figure 2-1 shows a basic piping and instrumentation diagram depicting the relationship among the basin skimmers, sand filter, and NLOP. During the course of deactivation and decommissioning (D&D) of the K-Basins, the sand filter and its media will need to be dispositioned. The isotopic distribution of the sludge in the sand filter has been estimated in KE Basin Sand Filter Monolith DQO (KBC-24705). This document estimates the sand filter contribution to the KE hazard categorization using the data from the DQO.

  2. Site 300 hazardous-waste-assessment project. Interim report: December 1981. Preliminary site reconnaissance and project work plan

    SciTech Connect (OSTI)

    Raber, E.; Helm, D.; Carpenter, D.; Peifer, D.; Sweeney, J.

    1982-01-20

    This document was prepared to outline the scope and objectives of the Hazardous Waste Assessment Project (HWAP) at Site 300. This project was initiated in October, 1981, to investigate the existing solid waste landfills in an effort to satisfy regulatory guidelines and assess the potential for ground-water contamination. This involves a site-specific investigation (utilizing geology, hydrology, geophysics and geochemistry) with the goal of developing an effective ground-water quality monitoring network. Initial site reconnaissance work has begun and we report the results, to date, of our geologic hydrogeologic studies. All known solid waste disposal locations are underlain by rocks of either the Late Miocene Neroly Formation or the Cierbo Formation, both of which are dominantly sandstones interbedded with shale and claystone. The existence of a regional confined (artesian) aquifer, as well as a regional water-table aquifer is postulated for Site 300. Preliminary analysis has led to an understanding of directions and depths of regional ground-water flow.

  3. Study of Risk Assessment Programs at Federal Agencies and Commercial Industry Related to the Conduct or Regulation of High Hazard Operations

    SciTech Connect (OSTI)

    Bari, R.; Rosenbloom, S.; O'Brien, J.

    2011-03-13

    In the Department of Energy (DOE) Implementation Plan (IP) for Defense Nuclear Facilities Safety Board's Recommendation 2009-1, the DOE committed to studying the use of quantitative risk assessment methodologies at government agencies and industry. This study consisted of document reviews and interviews of senior management and risk assessment staff at six organizations. Data were collected and analyzed on risk assessment applications, risk assessment tools, and controls and infrastructure supporting the correct usage of risk assessment and risk management tools. The study found that the agencies were in different degrees of maturity in the use of risk assessment to support the analysis of high hazard operations and to support decisions related to these operations. Agencies did not share a simple, 'one size fits all' approach to tools, controls, and infrastructure needs. The agencies recognized that flexibility was warranted to allow use of risk assessment tools in a manner that is commensurate with the complexity of the application. The study also found that, even with the lack of some data, agencies application of the risk analysis structured approach could provide useful insights such as potential system vulnerabilities. This study, in combination with a companion study of risk assessment programs in the DOE Offices involved in high hazard operations, is being used to determine the nature and type of controls and infrastructure needed to support risk assessments at the DOE.

  4. Hanford Site radionuclide national emission standards for hazardous air pollutants registered stack source assessment

    SciTech Connect (OSTI)

    Davis, W.E.; Barnett, J.M.

    1994-07-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency,, Region 10. The Compliance Order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford Site . The evaluation also determined if the effective dose equivalent from any of these stack emissions exceeded 0.1 mrem/yr, which will require the stack to have continuous monitoring. The result of this assessment identified a total of 16 stacks as having potential emissions that,would cause an effective dose equivalent greater than 0.1 mrem/yr.

  5. Earthquake risk reduction in the United States: An assessment of selected user needs and recommendations for the National Earthquake Hazards Reduction Program

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    This Assessment was conducted to improve the National Earthquake Hazards Reduction Program (NEHRP) by providing NEHRP agencies with information that supports their user-oriented setting of crosscutting priorities in the NEHRP strategic planning process. The primary objective of this Assessment was to take a ``snapshot`` evaluation of the needs of selected users throughout the major program elements of NEHRP. Secondary objectives were to conduct an assessment of the knowledge that exists (or is being developed by NEHRP) to support earthquake risk reduction, and to begin a process of evaluating how NEHRP is meeting user needs. An identification of NEHRP`s strengths also resulted from the effort, since those strengths demonstrate successful methods that may be useful to NEHRP in the future. These strengths are identified in the text, and many of them represent important achievements since the Earthquake Hazards Reduction Act was passed in 1977.

  6. Materials technology assessment for a 1050 K Stirling Space Engine design

    SciTech Connect (OSTI)

    Scheuermann, C.M.; Dreshfield, R.L.; Gaydosh, D.J.; Kiser, J.D.; MacKay, R.A.; McDanels, D.L.; Petrasek, D.W.; Vannucci, R.D.; Bowles, K.J.; Watson, G.K.

    1988-10-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor; however, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  7. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

  8. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    SciTech Connect (OSTI)

    Zucca, J J; Walter, W R; Rodgers, A J; Richards, P; Pasyanos, M E; Myers, S C; Lay, T; Harris, D; Antoun, T

    2008-11-19

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags contemporary research. Current monitoring practice is to use relatively simple Earth models that generally afford analytical prediction of seismic observables (see Examples of Current Monitoring Practice below). Empirical relationships or corrections to predictions are often used to account for unmodeled phenomena, such as the generation of S-waves from explosions or the effect of 3-dimensional Earth structure on wave propagation. This approach produces fast and accurate predictions in areas where empirical observations are available. However, accuracy may diminish away from empirical data. Further, much of the physics is wrapped into an empirical relationship or correction, which limits the ability to fully understand the physical processes underlying the seismic observation. Every generation of seismology researchers works toward quantitative results, with leaders who are active at or near the forefront of what has been computationally possible. While recognizing that only a 3-dimensional model can capture the full physics of seismic wave generation and propagation in the Earth, computational seismology has, until recently, been limited to simplifying model parameterizations (e.g. 1D Earth models) that lead to efficient algorithms. What is different today is the fact that the largest and fastest machines are at last capable of evaluating the effects of generalized 3D Earth structure, at levels of detail that improve significantly over past efforts, with potentially wide application. Advances in numerical methods to compute travel times and complete seismograms for 3D models are enabling new ways to interpret available data. This includes algorithms such as the Fast Marching Method (Rawlison and Sambridge, 2004) for travel time calculations and full waveform methods such as the spectral element method (SEM; Komatitsch et al., 2002, Tromp et al., 2005), higher order Galerkin methods (Kaser and Dumbser, 2006; Dumbser and Kaser, 2006) and advances in more traditional Cartesian finite difference methods (e.g. Pitarka, 1999; Nilsson et al., 2007). The ability to compute seis

  9. Journal of Hazardous Materials A135 (2006) 2131 Leaching of chromated copper arsenate (CCA)-treated wood in a

    E-Print Network [OSTI]

    Florida, University of

    2006-01-01

    , and chromium, is a concern to the solid waste management community. Landfills are often the final repository, but management as a solid wastebegins.DiscardedCCA-treatedwoodisexemptfromchar- acterization as a hazardous waste, mining waste, or wood. The feasibility of managing CCA-treated wood in monofills was examined using

  10. Written Hazard Communication (HAZCOM) Program

    E-Print Network [OSTI]

    Jia, Songtao

    chemicals The potential hazards of chemicals in the work area How to protect yourself from these potential for their respective work areas MSDS's shall be maintained by each department for all hazardous chemicals&S office has developed several employee training modules for specific work areas and hazardous materials

  11. Hazard Sampling Dialog General Layout

    E-Print Network [OSTI]

    Zhang, Tao

    1 Hazard Sampling Dialog General Layout The dialog's purpose is to display information about the hazardous material being sampled by the UGV so either the system or the UV specialist can identify the risk level of the hazard. The dialog is associated with the hazmat reading icons (Table 1). Components

  12. Methods for managing uncertainly in material selection decisions : robustness of early stage life cycle assessment

    E-Print Network [OSTI]

    Nicholson, Anna L. (Anna Louise)

    2009-01-01

    Utilizing alternative materials is an important tactic to improve the environmental performance of products. Currently a growing array of materials candidates confronts today's product designer. While life-cycle assessment ...

  13. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE TheForensic Science Forensic Science TheHIV/AIDSHazard

  14. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  15. Preliminary Hazards Analysis Plasma Hearth Process

    SciTech Connect (OSTI)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P.

    1993-11-01

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

  16. In-field analysis and assessment of nuclear material

    SciTech Connect (OSTI)

    Morgado, R.E.; Myers, W.S.; Olivares, J.A.; Phillips, J.R.; York, R.L.

    1996-05-01

    Los Alamos National Laboratory has actively developed and implemented a number of instruments to monitor, detect, and analyze nuclear materials in the field. Many of these technologies, developed under existing US Department of Energy programs, can also be used to effectively interdict nuclear materials smuggled across or within national borders. In particular, two instruments are suitable for immediate implementation: the NAVI-2, a hand-held gamma-ray and neutron system for the detection and rapid identification of radioactive materials, and the portable mass spectrometer for the rapid analysis of minute quantities of radioactive materials. Both instruments provide not only critical information about the characteristics of the nuclear material for law-enforcement agencies and national authorities but also supply health and safety information for personnel handling the suspect materials.

  17. GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Tennessee, University of

    GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE The proper management of hazardous waste and regulatory compliance are achieved: 1. Make sure that no hazardous materials are placed into regular solid in the departmental chemical hygiene plan (CHP) before you begin to use hazardous substances. 3. Make sure you know

  18. Integration of landslide hazard maps into probabilistic risk assessment in context of global changes: an alpine test site

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    their uncertainty in the analysis. In this perspective, a new hazard modeling method has been developed, a daily index of the soil water content has been computed thanks to a reservoir-based model (GARDENIA site. Mechanical approaches represent a solution to quantify landslide susceptibility and to model

  19. An Alternative Solution for Modelling Lava Flow Path and Length: applied for hazard assessment at Hekla and Eyjafjallajökull, Iceland 

    E-Print Network [OSTI]

    O'Hara, Mhairi

    2012-08-08

    are in extremely good agreement with the real flow fields, with an average accuracy of 94.42%. The Lava Flow model is also used to produce hazard maps for both Hekla and Eyjafjallajökull, by identifying zones on the volcanoes flanks that will confine the lava...

  20. Approaches for Developing Uniform Hazard Spectra at Critical...

    Office of Environmental Management (EM)

    Hazard Spectra at Critical Facilities Preliminary Assessment of the Impact of 2014 Seismic Study on WTP Design Evaluation of the SRS Seismic Hazard Considering the EPRI 2013...

  1. Assessing Models of Public Understanding In ELSI Outreach Materials

    SciTech Connect (OSTI)

    Bruce V. Lewenstein, Ph.D.; Dominique Brossard, Ph.D.

    2006-03-01

    Advances in the science of genetics have implications for individuals and society, and have to be taken into account at the policy level. Studies of ethical, legal and social issues related to genomic research have therefore been integrated in the Human Genome Project (HGP) since the earliest days of the project. Since 1990, three to five percent of the HGP annual budget has been devoted to such studies, under the umbrella of the Ethical, Legal, and Social Implications (ELSI) Programs of the National Human Genome Research Institute of the National Institute of Health, and of the Office of Biological and Environmental Research of the U.S. Department of Energy (DOE). The DOE-ELSI budget has been used to fund a variety of projects that have aimed at ?promoting education and help guide the conduct of genetic research and the development of related medical and public policies? (HGP, 2003). As part of the educational component, a significant portion of DOE-ELSI funds have been dedicated to public outreach projects, with the underlying goal of promoting public awareness and ultimately public discussion of ethical, legal, and social issues surrounding availability of genetic information (Drell, 2002). The essential assumption behind these projects is that greater access to information will lead to more knowledge about ethical, legal and social issues, which in turn will lead to enhanced ability on the part of individuals and communities to deal with these issues when they encounter them. Over the same period of time, new concepts of ?public understanding of science? have emerged in the theoretical realm, moving from a ?deficit? or linear dissemination of popularization, to models stressing lay-knowledge, public engagement and public participation in science policy-making (Lewenstein, 2003). The present project uses the base of DOE-funded ELSI educational project to explore the ways that information about a new and emerging area of science that is intertwined with public issues has been used in educational public settings to affect public understanding of science. After a theoretical background discussion, our approach is three-fold. First, we will provide an overview, a ?map? of DOE-funded of outreach programs within the overall ELSI context to identify the importance of the educational component, and to present the criteria we used to select relevant and representative case studies. Second, we will document the history of the case studies. Finally, we will explore an intertwined set of research questions: (1) To identify what we can expect such projects to accomplish -in other words to determine the goals that can reasonably be achieved by different types of outreach, (2) To point out how the case study approach could be useful for DOE-ELSI outreach as a whole, and (3) To use the case study approach as a basis to test theoretical models of science outreach in order to assess to what extent those models accord with real world outreach activities. For this last goal, we aim at identifying what practices among ELSI outreach activities contribute most to dissemination, or to participation, in other words in which cases outreach materials spark action in terms of public participation in decisions about scientific issues.

  2. Evaluation of ferrocyanide/nitrate explosive hazard

    SciTech Connect (OSTI)

    Cady, H.H.

    1992-06-01

    Los Alamos National Laboratory agreed to assist Pacific Northwest Laboratory in the Ferrocyanide Safety Evaluation Program by helping to evaluate the explosive hazard of several mixtures of simulated ferrocyanide waste-tank sludge containing sodium nitrite and sodium nitrate. This report is an evaluation of the small-scale safety tests used to assess the safety of these materials from an explosive point of view. These tests show that these materials are not initiated by mechanical insult, and they require an external heat source before any exothermic chemical reaction can be observed.

  3. Life cycle assessment of materials and construction in commercial structures : variability and limitations

    E-Print Network [OSTI]

    Hsu, Sophia Lisbeth

    2010-01-01

    Life cycle assessment has become an important tool for determining the environmental impact of materials and products. It is also useful in analyzing the impact a structure has over the course of its life cycle. The ...

  4. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA.

    SciTech Connect (OSTI)

    Ottmar, Roger, D.; Blake, John, I.; Crolly, William, T.

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuelbeds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for building fuelbeds and mapping fire behavior potential, evaluating fuel treatment options for effectiveness, and providing a comparative analysis of landscape modeled fire behavior using three different data sources including the Fuel Characteristic Classification System, LANDFIRE, and the Southern Wildfire Risk Assessment. The research demonstrates that fine scale fuel measurements associated with fuel inventories repeated over time can be used to assess broad scale wildland fire potential and hazard mitigation treatment effectiveness in the southeastern USA and similar fire prone regions. Additional investigations will be needed to modify and improve these processes and capture the true potential of these fine scale data sets for fire and fuel management planning.

  5. Oak Ridge Health Studies Phase 1 report, Volume 2: Part D, Dose Reconstruction Feasibility Study. Tasks 6, Hazard summaries for important materials at the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Bruce, G.M.; Walker, L.B.; Widner, T.E.

    1993-09-01

    The purpose of Task 6 of Oak Ridge Phase I Health Studies is to provide summaries of current knowledge of toxic and hazardous properties of materials that are important for the Oak Ridge Reservation. The information gathered in the course of Task 6 investigations will support the task of focussing any future health studies efforts on those operations and emissions which have likely been most significant in terms of off-site health risk. The information gathered in Task 6 efforts will likely also be of value to individuals evaluating the feasibility of additional health,study efforts (such as epidemiological investigations) in the Oak Ridge area and as a resource for citizens seeking information on historical emissions.

  6. Method and apparatus for assessing material properties of sheet-like materials

    DOE Patents [OSTI]

    Telschow, Kenneth L. (Idaho Falls, ID); Deason, Vance A. (Idaho Falls, ID)

    2002-01-01

    Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.

  7. Wind tunnel simulation of wind effects and associated displacement hazards on flat surface construction materials such as plywood 

    E-Print Network [OSTI]

    Madeley, Jack T.

    1996-01-01

    decking material with the air stream flowing over the stack until top sheet separated or lifted from the stack. Next, a half-scale model was placed in the test section of the tunnel with pressure ports attached to a high speed sampling transducer...

  8. Combined Fire Hazards Analysis/Assessment, Building 9203 & 9203A Complex- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This assessment/analysis is intended to provide a comprehensive assessment of the risks from fire and fire related perils in the Building 9203 and 9203A Complex at the Oak Ridge Y-12 Plant. The analysis has been prepared in accordance with the criteria listed in DOE Order 5480.7A.

  9. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Volume 2, Appendices

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  10. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  11. Material Aging and Degradation Detection and Remaining Life Assessment for Plant Life Management

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Henager, Charles H.; Griffin, Jeffrey W.; Meyer, Ryan M.; Coble, Jamie B.; Pitman, Stan G.; Bond, Leonard J.

    2012-12-31

    One of the major factors that may impact long term operations is structural material degradation, Detecting materials degradation, estimating the remaining useful life (RUL) of the component, and determining approaches to mitigating the degradation are important from the perspective of long term operations. In this study, multiple nondestructive measurement and monitoring methods were evaluated for their ability to assess the material degradation state. Metrics quantifying the level of damage from these measurements were defined, and evaluated for their ability to provide estimates of remaining life of the component. An example of estimating the RUL from nondestructive measurements of material degradation condition is provided.

  12. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL FROM PHWR'S IN A CLOSED THORIUM FUEL CYCLE

    SciTech Connect (OSTI)

    Sleaford, B W; Collins, B A; Ebbinghaus, B B; Bathke, C G; Prichard, A W; Wallace, R K; Smith, B W; Hase, K R; Bradley, K S; Robel, M; Jarvinen, G D; Ireland, J R; Johnson, M W

    2010-04-26

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.

  13. Hazard Communication Program 1.0 REFERENCE

    E-Print Network [OSTI]

    de Lijser, Peter

    Hazard Communication Program 1.0 REFERENCE California Code of Regulations, Title 8, Sections 337 the properties and potential safety and health hazards of the materials which they use or to which they are exposed. Employees who use or may be exposed to potentially hazardous substances or harmful physical

  14. Hazard evaluation

    SciTech Connect (OSTI)

    Vervalin, C.H.

    1986-12-01

    Recent major disasters in the hydrocarbon processing industry (HPI) have inspired renewed interest in the fine-tuning of hazard evaluation methods. In addition to traditional risk-study methods, the computer promises eventual expert systems to vastly improve the speed of assembling and using loss-prevention information. But currently, the computerization of hazard evaluation finds the HPI taking a back seat to aerospace/nuclear industries. The complexity of creating computer databases and expert systems has not-however-kept some HPI companies from plunging in. Arabian American Oil Co. (Aramco) has used computer-generated information in working with probabilistic risk analysis. Westinghouse has used its risk-analysis experience in the nuclear field to build a computer-based program for HPI clients. An Exxon plant has a huge data bank as the basis for its Hazard Loss Information System.

  15. A framework for assessing ecological risks of petroleum-derived materials in soil

    SciTech Connect (OSTI)

    Suter, G.W. II

    1997-05-01

    Ecological risk assessment estimates the nature and likelihood of effects of human actions on nonhuman organisms, populations, and ecosystems. It is intended to be clearer and more rigorous in its approach to estimation of effects and uncertainties than previously employed methods of ecological assessment. Ecological risk assessment is characterized by a standard paradigm that includes problem formulation, analysis of exposure and effects, risk characterization, and communication with a risk manager. This report provides a framework that applies the paradigm to the specific problem of assessing the ecological risks of petroleum in soil. This type of approach requires that assessments be performed in phases: (1) a scoping assessment to determine whether there is a potential route of exposure for potentially significant ecological receptors; (2) a screening assessment to determine whether exposures could potentially reach toxic levels; and (3) a definitive assessment to estimate the nature, magnitude, and extent of risks. The principal technical issue addressed is the chemically complex nature of petroleum--a complexity that may be dealt with by assessing risks on the basis of properties of the whole material, properties of individual chemicals that are representative of chemical classes, distributions of properties of the constituents of chemical classes, properties of chemicals detected in the soil, and properties of indicator chemicals. The advantages and feasibility of these alternatives are discussed. The report concludes with research recommendations for improving each stage in the assessment process.

  16. A Probabilistic Approach to Site-Specific, Hazard-Consistent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flooding Hazard Assessment State of Practice Approaches in Geomorphology, Geochronology and Probabilistic Analyses for Addressing Fault Capability at Nuclear Facilities...

  17. An assessment of potential environmental impacts of cement kiln dust produced in kilns co-fired with hazardous waste fuels

    SciTech Connect (OSTI)

    Goad, P.T.; Millner, G.C.; Nye, A.C.

    1998-12-31

    The Keystone Cement Company (Keystone), located in Bath, Pennsylvania, produces cement in two kilns that are co-fired with hazardous waste-derived fuels. Beginning in the late 1970`s Keystone began storing cement kiln dust (CKD) in an aboveground storage pile located on company property adjacent to the cement kilns. Storm water runoff from the CKD pile is channeled into a storm water settling pond which in turn discharges into Monocacy Creek, a stream running along the eastern property boundary. Monocacy Creek sustains a thriving trout fishery and is routinely fished during the open recreational fishing season in pennsylvania. The CKD pile has a surface area of approximately 12 acres, with an average height of approximately 35 feet. The southern edge of the pile is contiguous with an adjacent company-owned field in which field corn is grown for cattle feed. Some of the corn on the edges of the field is actually grown in direct contact with CKD that comprises the edge of the storage pile. The CKD pile is located approximately 150 yards to the west of Monocacy Creek. In 1995--1996 water, sediment and fish (trout) samples were obtained from Monocacy Creek sampling stations upstream and downstream of the point of discharge of storm water runoff from the CKD pile. In addition, corn samples were obtained from the field contiguous with the CKD pile and from a control field located distant to the site. The sediment, water, fish, and corn samples were analyzed for various chemicals previously identified as chemicals of potential concern in CKD. These data indicate that chemical constituents of CKD are not contaminating surface water or sediment in the stream, and that bioaccumulation of organic chemicals and/or metals has not occurred in field corn grown in direct contact with undiluted CKD, or in fish living in the waters that receive CKD pile runoff.

  18. Hanford Site radionuclide national emission standards for hazardous ari pollutants registered and and unregistered stack (powered exhaust) source assessment

    SciTech Connect (OSTI)

    Davis, W.E.

    1995-12-01

    On February 3, 1993, US DOE Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Div. of US EPA, Region X. The compliance order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford site to determine which are subject to the continuous emission measurement requirements in Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, and to continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request required The provision of a written compliance plan to meet the requirements of the compliance order. A compliance plan was submitted to EPA, Region X, on April 30, 1993. It set as one of the milestones, the complete assessment of the Hanford Site 84 stacks registered with the Washington State Department of Health, by December 17, 1993. This milestone was accomplished. The compliance plan also called for reaching a Federal Facility Compliance Agreement; this was reached on February 7, 1994, between DOE Richland Operations and EPA, Region X. The milestone to assess the unregistered stacks (powered exhaust) by August 31, 1994, was met. This update presents assessments for 72 registered and 22 unregistered stacks with potential emissions > 0.1 mrem/yr.

  19. Reproductive Hazards in the Lab Reproductive Hazards

    E-Print Network [OSTI]

    de Lijser, Peter

    Reproductive Hazards in the Lab Reproductive Hazards The term reproductive hazard refers to agents healthy children. Reproductive hazards may have harmful effects on libido, sexual behavior, or sperm the effects of reproductive hazards may be reversible for the parent, the effects on the fetus or offspring

  20. HAZARDOUS MATERIALS Hazardous materials can be silent killers.

    E-Print Network [OSTI]

    Markopoulou, Athina

    can be very dangerous - bleach mixed with ammonia creates poisonous gas(es) #12;Isolation: · Close off, ammonia, bleach Laundry · bleach, spot removers, cleaners Garage · gasoline, solvents, pesticides, paints at the building entrance or in the storage area. #12;The 704 Diamond is divided into four quadrants. Each quadrant

  1. Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

  2. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    Ga)(S,Se) 2 based thin ?lm photovoltaics: present status andcycle of CIGS thin ?lm photovoltaics Daniel A. Eisenberg a ,selenium–sul?de Thin ?lm photovoltaics Life cycle thinking a

  3. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    aspects of ?exible CIGS solar cells and modules, Sol. Energycell technologies [2,3]. CIGS solar cells are comprised oflayers are used in CIGS solar cells, as illustrated in Table

  4. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    Polydimethylsiloxane Thermoplastic polyurethane Notes: Thispolydimethylsiloxane (PDMS) and thermoplastic polyurethane.emerging technology with thermoplastic polyurethane has a

  5. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    market supply for consumer solar panels. Although CIGS isadvocate photovoltaic (solar) panels as a sustainablesolar cells (found within solar panels) of greater than 19%

  6. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    deposition; ALD, atomic layer deposition; ILGAR, ion layerdeposition; ALD, atomic layer deposition. D.A. Eisenberg et

  7. Hazardous Materials Incident Response Procedure

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for developing an emergency response plan, as outlined in OSHA’s 29 CFR 1910.120(q), for facility response.  This model has been adopted and...

  8. A Protocol for Lifetime Energy and Environmental Impact Assessment of Building Insulation Materials

    SciTech Connect (OSTI)

    Shrestha, Som S; Biswas, Kaushik; Desjarlais, Andre Omer

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors, and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist that provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines.

  9. Medical University of South Carolina Environmental Hazards Assessment Program annual report, July 1, 1993--June 30, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Institute of Medicine and the Pew Health Profession Commission have advocated that physicians broaden their participation in the envirorunental aspects of medical care. Accordingly, both organizations recommend training of future primary care physicians for greater competencies and appreciation of this area of medicine. The extent to which family practice educators are receptive to incorporating this topic into the residency curriculum is not known. A national survey of directors of family practice programs was conducted to assess their attitudes about environmental health education in family practice residency training. The ultimate goal of this study was to provide information that will guide the development of an environmental health curriculum for family practice residency programs. Videotapes supporting this program have been indexed individually.

  10. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  11. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    SciTech Connect (OSTI)

    Shrestha, Som S. Biswas, Kaushik; Desjarlais, Andre O.

    2014-04-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined.

  12. Nat. Hazards Earth Syst. Sci., 7, 607614, 2007 www.nat-hazards-earth-syst-sci.net/7/607/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 607­614, 2007 www.nat-hazards-earth-syst-sci.net/7/607/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences A probabilistic approach for earthquake hazard assessment of the Province of Eskis¸ehir, Turkey A

  13. Nat. Hazards Earth Syst. Sci., 13, 11431158, 2013 www.nat-hazards-earth-syst-sci.net/13/1143/2013/

    E-Print Network [OSTI]

    Wu, Yih-Min

    Nat. Hazards Earth Syst. Sci., 13, 1143­1158, 2013 www.nat-hazards-earth-syst-sci.net/13 Hazards and Earth System Sciences OpenAccess G Atmospheric Chemistry and Physics OpenAccess Atmospheric OpenAcces Time-dependent probabilistic seismic hazard assessment and its application to Hualien City

  14. Nat. Hazards Earth Syst. Sci., 6, 471483, 2006 www.nat-hazards-earth-syst-sci.net/6/471/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 471­483, 2006 www.nat-hazards-earth-syst-sci.net/6/471/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Integrating public risk perception into formal natural hazard risk assessment Th. Plattner1, T

  15. Nat. Hazards Earth Syst. Sci., 7, 283288, 2007 www.nat-hazards-earth-syst-sci.net/7/283/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 283­288, 2007 www.nat-hazards-earth-syst-sci.net/7/283/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Physical vulnerability modelling in natural hazard risk assessment J. Douglas BRGM ­ ARN/RIS, 3

  16. Nat. Hazards Earth Syst. Sci., 7, 185193, 2007 www.nat-hazards-earth-syst-sci.net/7/185/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 185­193, 2007 www.nat-hazards-earth-syst-sci.net/7/185/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Validation of landslide hazard assessment by means of GPS monitoring technique ­ a case study

  17. Radioactive Material or Multiple Hazardous Materials Decontamination

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for performing decontamination of individuals who have entered a “hot zone” during transportation incidents involving  radioactive.

  18. UC Irvine Construction Related Hazardous Waste Some construction related wastes are hazardous and require special handling. Examples of such wastes

    E-Print Network [OSTI]

    Mease, Kenneth D.

    UC Irvine Construction Related Hazardous Waste Scope Some construction related wastes are hazardous the hazardous waste manifest. Process 1. When a construction project will generate hazardous wastes, the project and require special handling. Examples of such wastes include: · Asbestos Containing Materials · Mercury

  19. What is Hazardous Hazardous waste is

    E-Print Network [OSTI]

    de Lijser, Peter

    What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E.calrecycle.ca.gov www.earth911.com Campus Hazardous Waste Roundup Roundups conducted the last week of: January April

  20. Hazardous Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of Hazardous Gases090041

  1. Material Balance Assessment for Double-Shell Tank Waste Pipeline Transfer

    SciTech Connect (OSTI)

    Onishi, Yasuo; Wells, Beric E.; Hartley, Stacey A.; Enderlin, Carl W.; White, Mike

    2002-10-30

    PNNL developed a material balance assessment methodology based on conservation of mass for detecting leaks and mis-routings in pipeline transfer of double-shell tank waste at Hanford. The main factors causing uncertainty in these transfers are variable property and tank conditions of density, existence of crust, and surface disturbance due to mixer pump operation during the waste transfer. The methodology was applied to three waste transfers from Tanks AN-105 and AZ-102.

  2. Environment, safety and health compliance assessment, Feed Materials Production Center, Fernald, Ohio

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    The Secretary of Energy established independent Tiger Teams to conduct environment, safety, and health (ES H) compliance assessments at US Department of Energy (DOE) facilities. This report presents the assessment of the Feed Materials Production Center (FMPC) at Fernald, Ohio. The purpose of the assessment at FMPC is to provide the Secretary with information regarding current ES H compliance status, specific ES H noncompliance items, evaluation of the adequacy of the ES H organizations and resources (DOE and contractor), and root causes for noncompliance items. Areas reviewed included performance under Federal, state, and local agreements and permits; compliance with Federal, state and DOE orders and requirements; adequacy of operations and other site activities, such as training, procedures, document control, quality assurance, and emergency preparedness; and management and staff, including resources, planning, and interactions with outside agencies.

  3. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    1999-04-05

    Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

  4. Assessment of database for interaction of tritium with ITER plasma facing materials

    SciTech Connect (OSTI)

    Dolan, T.J.; Anderl, R.A.

    1994-09-01

    The present work surveys recent literature on hydrogen isotope interactions with Be, SS and Inconels, Cu, C, and V, and alloys of Cu and V. The goals are (1) to provide input to the International Thermonuclear Experimental Reactor (ITER) team to help with tritium source term estimates for the Early Safety and Environmental Characterization Study and (2) to provide guidance for planning additional research that will be needed to fill gaps in the present materials database. Properties of diffusivity, solubility, permeability, chemical reactions, Soret effect, recombination coefficient, surface effects, trapping, porosity, layered structures, interfaces, and oxides are considered. Various materials data are tabulated, and a matrix display shows an assessment of the quality of the data available for each main property of each material. Recommendations are made for interim values of diffusivity and solubility to be used, pending further discussion by the ITER community.

  5. Assessment of dome-fill technology and potential fill materials for the Hanford single-shell tanks

    SciTech Connect (OSTI)

    Smyth, J.D.; Shade, J.W.; Somasundaram, S.

    1992-05-01

    This study is part of a task that will identify dome-fill materials to stabilize and prevent the collapse of the structures of 149 single- shell tanks (SSTs). The SSTs were built at the Hanford Site in Washington State and used between 1944 and 1980 to store radioactive and other hazardous wastes. In addition to identifying suitable fill materials, this task will develop the technology and methods required to fill the tanks with the selected material. To date, basalt is the only candidate fill material with any testing conducted for its suitability as a dome-fill material. Sufficient data do not exist to select or eliminate basalt as a candidate material. This report documents a review of past dome-fill work at the Hanford Site and of other pertinent literature to establish a baseline for the dome-fill technology. In addition, the report identifies existing dome-fill technology, preliminary performance criteria for dome-fill technology development, potential testing strategies, and potential fill materials. As a part of this study, potential fill materials are qualitatively evaluated and a list of preliminary candidate fill materials is identified. Future work will further screen these materials. The dome-fill task work will ultimately contribute to the development of a final waste form package and the safe isolation of wastes from the Hanford Site SSTs.

  6. Toxic hazards of underground excavation

    SciTech Connect (OSTI)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  7. Assessing the Relationship Between Hazard Mitigation Plan Quality and Rural Status in a Cohort of 57 Counties from 3 States in the Southeastern U.S.

    E-Print Network [OSTI]

    Horney, Jennifer A.; Naimi, Ashley I.; Lyles, Ward; Simon, Matt; Salvesen, David; Berke, Philip

    2013-08-13

    Rural counties face unique challenges with regard to disaster vulnerability and resilience. We compared the quality of hazard mitigation plans (HMPs) completed in accordance with provisions of the Disaster Mitigation Act of 2000 from 21 urban and 36...

  8. Reducing Physical Hazards: Encouraging Inherently Safer Production (Chapter 17)

    E-Print Network [OSTI]

    Ashford, Nicholas A.

    Physical hazards differ from hazards related to the toxicity of chemicals and materials in a number of ways. Their origin is the sudden and accidental release of chemicals and/ or energy - that is, chemical accidents, ...

  9. Standard Operating Procedures Template for Highly Hazardous Chemicals Title of Procedure

    E-Print Network [OSTI]

    1 Standard Operating Procedures Template for Highly Hazardous Chemicals Title of Procedure: Date/Date: Risk Assessment Hazardous Chemicals: (List chemicals used. Include chemical name, common name and abbreviation) Potential Hazard(s): (Describe the potential hazards associated with the chemicals

  10. Avoiding Mold Hazards In Your Flooded Home

    E-Print Network [OSTI]

    Avoiding Mold Hazards In Your Flooded Home A flood-damaged home requires special attention to avoid or correct a mold population explosion. Mold is likely to multiply on materials that stay wet for more than two or three days. The longer mold is allowed to grow, the greater the hazard and the harder

  11. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    SciTech Connect (OSTI)

    Naus, Dan J; Mattus, Catherine H; Dole, Leslie Robert

    2007-06-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.

  12. Track 3: Exposure Hazards

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

  13. Proceedings Hazards and Disasters

    E-Print Network [OSTI]

    Wang, Hai

    Proceedings Hazards and Disasters Researchers Meeting of the Boulder, Colorado July 11­12, 2007 #12;Hazards and Disasters Researchers Meeting Beginning in 1997, hazards and disaster researchers gathered in the field of hazards and disasters. As a new feature of this year's meeting, short papers based

  14. Hazardous Chemical Waste Management Reference Guide for Laboratories 11 Empty Container Decision Tree

    E-Print Network [OSTI]

    Ford, James

    Hazardous Chemical Waste Management Reference Guide for Laboratories 11 Empty Container Decision Tree Chemical waste materials must be handled as hazardous unless they are on the Non-Hazardous Waste List. Used hazardous materials containers are an exception, however. They have their own resource

  15. Process Waste Assessment Electroplating Research Facility

    SciTech Connect (OSTI)

    Phillips, N.M.

    1992-06-01

    This process Waste Assessment was conducted on the Electroplating Research Facility to identify waste generating processes with the goal of minimizing hazardous wastes. The primary focus was on the hazardous chemical and toxic waste streams with special attention given to the Oakite 90 alkaline cleaning solution. It was concluded that this facility, which contributes less than 1% of the hazardous wastes to the site`s overall waste stream, is committed to minimization of hazardous wastes. It is recommended that a research program be implemented to study the possibility of replacing the Oakite 90 cleaning solution with a less hazardous one and/or minimizing its volume of waste. Instituting a formal documentation system to keep track of the most used raw materials would be helpful also.

  16. Recent Improvements in State-of-the-art Models for Tsunami Hazard Assessment: Applications to Both Large Historical and Future Case Studies

    E-Print Network [OSTI]

    and 2011 in the Japan Trench have demonstrated that tsunamis pose one of the major coastal hazards to human and efficient parallel implementation on large scale computer clusters of a new generation of fully nonlinear and dispersive long wave models, as well as non-hydrostatic three-dimensional models, and their application

  17. October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday...

    Office of Environmental Management (EM)

    Flooding Hazard Assessment Los Alamos National Laboratory Plutonium Facility (PF-4) Seismic Safety Implementation of DOE NPH Requirements at the Thomas Jefferson National...

  18. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Page Edit with form History ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search...

  19. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  20. Materials Flow Analysis and Dynamic Life-cycle Assessment of Lightweight Automotive Materials in the US Passenger Vehicle Fleet

    E-Print Network [OSTI]

    Cheah, Lynette Wan Ting

    To achieve better fuel economy, automakers are seriously considering vehicle weight and size reduction. This is achieved by using lighter-weight materials like high-strength steel and aluminum, better vehicle design, and ...

  1. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  2. Hazard analysis results report

    SciTech Connect (OSTI)

    Niemi, B.J., Westinghouse Hanford

    1996-09-30

    This document describes and defines the Hazard Analysis Results for the Tank Waste Remediation System Final Safety Analysis Report.

  3. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Winfree, Erik

    HAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office@caltech.edu http://safety.caltech.edu #12;Hazardous Waste Management Reference Guide Page 2 of 36 TABLE OF CONTENTS Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT Labeling

  4. Estimated airborne release of plutonium from Atomics International's Nuclear Materials Development Facility in the Santa Susana site, California, as a result of postulated damage from severe wind and earthquake hazard

    SciTech Connect (OSTI)

    Mishima, J.; Ayer, J.E.

    1981-09-01

    The potential mass of airborne releases of plutonium (source term) that could result from wind and seismic damage is estimated for the Atomics International Company's Nuclear Materials Development Facility (NMDF) at the Santa Susana site in California. The postulated source terms will be useful as the basis for estimating the potential dose to the maximum exposed individual by inhalation and to the total population living within a prescribed radius of the site. The respirable fraction of airborne particles is thus the principal concern. The estimated source terms are based on the damage ratio, and the potential airborne releases if all enclosures suffer particular levels of damage. In an attempt to provide a realistic range of potential source terms that include most of the normal processing conditions, a best estimate bounded by upper and lower limits is provided. The range of source terms is calculated by combining a high best estimate and a low damage ratio, based on a fraction of enclosures suffering crush or perforation, with the airborne release from enclosures based upon an upper limit, average, and lower limit inventory of dispersible materials at risk. Two throughput levels are considered. The factors used to evaluate the fractional airborne release of materials and the exchange rates between enclosed and exterior atmospheres are discussed. The postulated damage and source terms are discussed for wind and earthquake hazard scenarios in order of their increasing severity.

  5. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials Access to

  6. Establishing sitewide risk perspectives due to cumulative impacts from AB, EP, and NEPA hazard analyses

    SciTech Connect (OSTI)

    Olinger, S.J.; Foppe, T.L.

    1998-06-01

    With the end of the Cold War in 1992, the mission for the Rocky Flats Environmental Technology Site (Site) was changed from production of nuclear weapon components to special nuclear materials (SNM) and waste management, accelerated cleanup, reuse and closure of the Site. This change in mission presents new hazards and risk management challenges. With today`s shrinking DOE budget, a balance needs to be achieved between controlling those hazards related to SNM and waste management and interim storage, and those hazards related to accelerated closure of the Site involving deactivation, decontamination, and decommissioning (DD and D) of surplus nuclear facilities. This paper discusses how risk assessments of normal operations and potential accidents have provided insights on the risks of current operations and planned closure activities.

  7. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non- Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

  8. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 2: Supporting documents

    SciTech Connect (OSTI)

    Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-08-01

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains presentation material and a transcript of the workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report.

  9. HAZARDOUS WASTE & HAZARDOUS MATERIALS Volume 13, Number 2, 1996

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    bioremediation systems in Brazil. INTRODUCTION Groundwater contamination by petroleum hydrocarbons contamination by the toxic and water soluble components such as benzene, toluene, and xylenes (BTX promise as a cost-effective approach to hydrocarbon plume management. This technique requires thorough

  10. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  11. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  12. FFaacciilliittiieess MMaannaaggeemmeenntt//EEnnvviirroonnmmeennttaall HHeeaalltthh && SSaaffeettyy Hazardous Work Area/Equipment Repair Form

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Hazardous Work Area/Equipment Repair Form Form Instructions: Client is responsible for completing this form to assure that equipment and/or immediate work areas are not contaminated with any hazardous materials, tissue, etc.) Do Safety Hazards exist in the work area? N ___ Y ___ (Electrical, burn, or trip hazards

  13. Storing Hazardous Waste In Your Laboratory EPA Compliance Fact Sheet: Revision 1

    E-Print Network [OSTI]

    Wikswo, John

    Storing Hazardous Waste In Your Laboratory EPA Compliance Fact Sheet: Revision 1 Vanderbilt.safety.vanderbilt.edu HAZARDOUS WASTE CONTAINERS Hazardous waste must be stored in containers (including lids) made of materials that are compatible with the waste. Hazardous waste containers must be in good condition and free of leaks or any

  14. Enabling streamlined life cycle assessment : materials-classification derived structured underspecification

    E-Print Network [OSTI]

    Rampuria, Abhishek

    2012-01-01

    As environmental footprint considerations for companies gain greater importance, the need for quantitative impact assessment tools such as life cycle assessment (LCA) has become a higher priority. Currently, the cost and ...

  15. Hazard Analysis Database Report

    SciTech Connect (OSTI)

    GAULT, G.W.

    1999-10-13

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

  16. EA-1412: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Expansion of the Volpentest Hazardous Materials Management and Emergency Response Training and Education Center, Hanford Site, Richland, Washington

  17. Risk Assessment Form (This is an active document and must be maintained)

    E-Print Network [OSTI]

    Cambridge, University of

    Risk Assessment Form (This is an active document and must be maintained) Materials Science to several days), might be followed by water/oil quenching. SECTION 1: Identify all significant hazards, who: Review - This assessment must be reviewed every 12 months or earlier if the basis of the original

  18. Risk Assessment Form (This is an active document and must be maintained)

    E-Print Network [OSTI]

    Cambridge, University of

    Risk Assessment Form (This is an active document and must be maintained) Materials Science), might be followed by water/oil quenching. SECTION 1: Identify all significant hazards, who or what may of Assessor(s) Date: Signature of Supervisor Date: SECTION 3: Review - This assessment must be reviewed every

  19. Hazard communication program

    SciTech Connect (OSTI)

    Porter, E.A.

    1994-10-04

    Implements Internal Publication No. WHC-IP-0914. Section 1.1, providing management and employee guidance for working with hazardous chemicals and physical agents.

  20. DOE/EA-1651: Final Environmental Assessment for U-233 Material...

    Office of Environmental Management (EM)

    and Disposition Environmental Assessment 2-3 drafted air would be vented through an air pollution control system and discharged under the requirements of an air emissions...

  1. Chapter 1 -Hazard Communication Hazard Communication and Training Act

    E-Print Network [OSTI]

    and Training Act require employers to inform workers about hazardous chemicals in their work areas13 Chapter 1 - Hazard Communication Hazard Communication and Training Act The Hazard Communication and Safety (EH&S) to administer a program to comply with this law. Hazardous Chemicals Index EH&S maintains

  2. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial

  3. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  4. Life-Cycle Environmental and Economic Assessment of Using Recycled Materials for Asphalt Pavements

    E-Print Network [OSTI]

    Horvath, Arpad

    2003-01-01

    1993] MOEE. Spent Foundry Sand - Alternative Uses Study.Flue Gas Scrubber Material Foundry Sands Kiln Dusts Mineralin highway construction is foundry sand. Silica sand coated

  5. ISET Journal of Earthquake Technology, Paper No. 465, Vol. 42, No. 4, December 2005, pp. 189-201 ASSESSING THE HAZARD RELATED TO TSUNAMIS OF TECTONIC

    E-Print Network [OSTI]

    Gupta, Vinay Kumar

    ISET Journal of Earthquake Technology, Paper No. 465, Vol. 42, No. 4, December 2005, pp. 189 and submarine slides cannot be neglected, most tsunamis were the results of coastal and submarine earthquakes. Therefore, assessing the occurrence probability of tsunamigenic earthquakes is an important contribution

  6. Natural Phenomena Hazards Modeling Project: Seismic Hazard Models for Department of Energy Sites

    SciTech Connect (OSTI)

    Coats, D.W.; Murray, R.C.

    1984-11-01

    Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the US. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. This report summarizes the final seismic hazard models and response spectra recommended for each site and the methodology used to develop these models. 15 references, 2 figures, 1 table.

  7. Radioactive Materials Emergencies Course Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Hanford Fire Department has developed this training to assist emergency responders in understanding the hazards in responding to events involving radioactive materials, to know the fundamentals of radioactive contamination, to understand the biological affects of exposure to radioactive materials, and to know how to appropriately respond to hazardous material events involving radioactive materials.

  8. Hazardous and radioactive substances in

    E-Print Network [OSTI]

    Hazardous and radioactive substances in danisH Marine Waters Ingela Dahllöf & Jesper H. Andersen University #12;#12;Hazardous and radioactive substances in danisH Marine Waters #12;#12;Hazardous Hazardous and radioactive substances in danisH Marine Waters status and teMporal trends #12;Hazardous

  9. Hazard Communication at Purdue University

    E-Print Network [OSTI]

    Holland, Jeffrey

    Hazard Communication at Purdue University Radiological and Environmental Management Written APPENDICES A OSHA Health Hazard Definitions B OSHA Method Of Hazard Determination C Expanded List Completed Work Area Forms HCP-4, HCP-5, HCP-8 I Health Hazard Warning Information 1. Health Hazard Rating 2

  10. WEATHER HAZARDS Basic Climatology

    E-Print Network [OSTI]

    WEATHER HAZARDS Basic Climatology Colorado Climate Center Funding provided by NOAA Sectoral) Wildfires (Jun 02) Recent Declared Disasters in Colorado No Map from FEMA provided #12;National Weather and Warnings Outlook Indicates that hazardous weather may develop ­ useful to those who need considerable

  11. Identification of chemical hazards for security risk analysis activities.

    SciTech Connect (OSTI)

    Jaeger, Calvin Dell

    2005-01-01

    The presentation outline of this paper is: (1) How identification of chemical hazards fits into a security risk analysis approach; (2) Techniques for target identification; and (3) Identification of chemical hazards by different organizations. The summary is: (1) There are a number of different methodologies used within the chemical industry which identify chemical hazards: (a) Some develop a manual listing of potential targets based on published lists of hazardous chemicals or chemicals of concern, 'expert opinion' or known hazards. (b) Others develop a prioritized list based on chemicals found at a facility and consequence analysis (offsite release affecting population, theft of material, product tampering). (2) Identification of chemical hazards should include not only intrinsic properties of the chemicals but also potential reactive chemical hazards and potential use for activities off-site.

  12. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect (OSTI)

    REMAIZE, J.A.

    2000-09-27

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  13. An exploration of materials taxonomies to support streamlined life cycle assessment

    E-Print Network [OSTI]

    Reis, Lynn (Lynn Diana)

    2013-01-01

    As life cycle assessment (LCA) gains prominence as a reliable method of environmental evaluation, concerns about data availability and quality have become more important. LCA is a resource intensive methodology, and thus ...

  14. Modeling mining economics and materials markets to inform criticality assessment and mitigation

    E-Print Network [OSTI]

    Poulizac, Claire Marie Franc?oise

    2013-01-01

    Conventional criticality-assessment methods drawn from the existing literature are often limited to evaluations of scarcity risks, or rely on price as an indicator of criticality. Such approaches, however, are ill-suited ...

  15. Assessment of Materials Issues for Light-Water Small Modular Reactors

    SciTech Connect (OSTI)

    Sandusky, David; Lunceford, Wayne; Bruemmer, Stephen M.; Catalan, Michael A.

    2013-02-01

    The primary objective of this report is to evaluate materials degradation issue unique to the operational environments of LWSMR. Concerns for specific primary system components and materials are identified based on the review of design information shared by mPower and NuScale. Direct comparisons are made to materials issues recognized for advanced large PWRs and research activities are recommended as needed. The issues identified are intended to improve the capability of industry to evaluate the significance of any degradation that might occur during long-term LWSMR operation and by extension affect the importance of future supporting R&D.

  16. Environmental, Economic, and Social Impacts of Concrete Pavement Material Choices: A Life-Cycle Assessment Approach 

    E-Print Network [OSTI]

    Park, Hyunsoung

    2014-12-12

    Transportation Agencies (STAs) in rendering better-informed decisions for the concrete pavement material choices, the major research objective is to analyze the environmental, economic, and social impacts of the four concrete pavement alternatives from...

  17. Assessment of the US regulations for fissile exemptions and fissile material general licenses

    SciTech Connect (OSTI)

    Parks, C.V.; Hopper, C.M.; Lichtenwalter, J.J. [Oak Ridge National Lab., TN (United States); Easton, E.P.; Brochman, P.G. [NRC, Washington, DC (United States)

    1997-05-01

    The paragraphs for general licenses for fissile material and exemptions (often termed exceptions in the international community) for fissile material have long been a part of the US Code of Federal Regulations (CFR) 10 CFR Part 71, Packaging and Transportation of Radioactive Material. More recently, the Nuclear Regulatory Commission (NRC) issued a final rule on Part 71 via emergency rule-making procedures in order to address an identified deficiency related to one of the fissile exemptions. To address the specified deficiency in a general fashion, the emergency rule adopted the approach of the 1996 Edition of the IAEA: Regulations for the Safe Transport of Radioactive Material (IAEA 1996), which places restrictions on certain moderating materials and limits the quantity of fissile material in a consignment. The public comments received by the NRC indicated general agreement with the need for restrictions on certain moderators (beryllium, deuterium, and graphite). The comments indicated concern relative to both the degree of restriction imposed (not more than 0.1% of fissile material mass) and the need to limit the fissile material mass of the consignment, particularly in light of the subsequent NRC staff position that the true intent was to provide control for limiting the fissile mass of the conveyance. The purpose of the review is to identify potential deficiencies that might be adverse to maintaining adequate subcriticality under normal conditions of transport and hypothetical accident conditions. In addition, ORNL has been asked to identify changes that would address any identified safety issues, enable inherently safe packages to continue to be unencumbered in transport, and seek to minimize the impact on current safe practices.

  18. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  19. THE IMPACT OF MATERIAL AND DESIGN CRITERIA ON THE ASSESSMENT OF NEGLIGIBLE CREEP

    SciTech Connect (OSTI)

    Sham, Sam [ORNL] [ORNL; Jetter, Robert I [Consultant] [Consultant; Swindeman, Robert W [Consultant] [Consultant

    2009-01-01

    Two of the proposed High Temperature Gas Reactors (HTGRs) under consideration for a demonstration plant have the design object of avoiding creep effects during normal operation. The goal of negligible creep could have different interpretations depending upon what failure modes are considered and associated criteria for avoiding the effects of creep. This paper addresses the criteria for negligible creep in Subsection NH of Section III of the ASME B&PV Code, other international design codes and some currently suggested criteria modifications and their impact on permissible operating temperatures for various reactor pressure vessel materials. There are a number of other considerations for the selection of vessel material besides avoiding creep effects. Of particular interest for this review are (1) the material s allowable stress level and impact on wall thickness (the goal being to minimize required wall thickness) and (2) ASME Code approval (inclusion as a permitted material in the relevant Section and Subsection of interest) to expedite regulatory review and approval. The application of negligible creep criteria to two of the candidate materials, SA533 and Mod 9Cr-1Mo, and to a potential alternate, normalized and tempered 2 Cr-1Mo, are illustrated and the relative advantages and disadvantages are discussed.

  20. Buried waste containment system materials. Final Report

    SciTech Connect (OSTI)

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  1. Analysis and prediction of hazard risks caused by tropical cyclones in Southern China with fuzzy mathematical and grey models

    E-Print Network [OSTI]

    Zhang, Da-Lin

    Analysis and prediction of hazard risks caused by tropical cyclones in Southern China with fuzzy 2011 Keywords: Combined weights Fuzzy mathematical models Hazard risk analysis Exceeded probability Tropical cyclones Grey prediction model a b s t r a c t A hazard-risk assessment model and a grey hazard

  2. Towards assessing the violence of reaction during cookoff of confined energetic materials

    SciTech Connect (OSTI)

    Baer, M.R.; Kipp, M.E.; Schmitt, R.G.; Hobbs, M.L.

    1996-11-01

    An analysis of post-ignition events in a variable confinement cookoff test (VCCT) geometry is presented aimed toward predicting the level of violence during cookoff of confined thermally-degraded energetic materials. This study focuses on the dynamic events following thermal initiation whereby accelerated combustion interacts with confinement. Numerical simulations, based on a model of reactive multiphase mixtures, indicate that the response of energetic material is highly dependent upon thermal/mechanical damage states prior to ignition. These damaged states affect the rate of pressurization, dynamic compaction behavior and subsequent growth to detonation. Variations of the specific surface area and porosity produced by decomposition of the energetic material causes different responses ranging from pressure burst to detonation. Calculated stress histories are used in estimating breakup of the VCCT confinement based on Grady-Kipp fragmentation theory.

  3. An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    of cumulative energy supply (Michaels, 2008). The demand for solar energy has enabled the funding of research: Life cycle assessment Quantum dots Nanophotovoltaics Quantum dot photovoltaic modules Solar energy to overcome two current barriers of solar technology: low efficiencies and high manufacturing costs. If higher

  4. Hazard Communication Site Specific Information Sheet Hazard Communication Program (HCP)

    E-Print Network [OSTI]

    Slatton, Clint

    Hazard Communication Site Specific Information Sheet Hazard Communication Program (HCP) Site Specific Information The responsible party for a unit/area should complete this section to make the Hazard Communication Program site specific. The responsible party will ensure that the Hazard Communication Program

  5. Hazardous Materials Handling High Pressure Cylinders

    E-Print Network [OSTI]

    Boynton, Walter R.

    NOT FILL CYLINDERS #12;The US Dept. of Labor, Occupational Safety Health Administration (OSHA) regulates do propose a risk,through proper handling,storage, use and filling the risk may be reduced

  6. Weather and the Transport of Hazardous Materials

    Office of Environmental Management (EM)

    route so that the vehicle travels on the downwind side of a populated area; wind speed wind speed, , which could be used to determine if there will be excessive buffeting (hi h...

  7. Enhancing Railroad Hazardous Materials Transportation Safety

    Office of Environmental Management (EM)

    June 1 2009 * Production version online June 1, 2009 Introduction The Rail Corridor Risk Management System (RCRMS) is a tool to be used by rail carriers (RCRMS) is a tool to...

  8. Transporting & Shipping Hazardous Materials at LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSS A-Z Site Map Organization

  9. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

  10. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  11. "Comparative Environmental Assessment of Conventional Materials and Wood for the Fabrication of Wind Turbine Blades"

    E-Print Network [OSTI]

    Mountziaris, T. J.

    of Wind Turbine Blades" Yashira M. Valentín Feliciano Mentor: Peggi Clouston Graduate Student: Rachel Koh of the turbine blades. Wind turbine blades are commonly made of carbon fiber and fiberglass, which are materials wind energy demands, wood is being evaluated for incorporation into wind turbine blades, since

  12. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect (OSTI)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  13. Experimental Assessment of a Phase Change Material for Wall Building Use

    E-Print Network [OSTI]

    interesting for use in buildings and particularly for renovation; (2) the air temperature in the room with PCM,version1-9Jun2014 Author manuscript, published in "Applied Energy 86, 10 (2009) 2038-2046" DOI : 10.1016/j.apenergy.2009.01.004 #12;Key words: phase change material, wallboard, energy storage, experimental investigation

  14. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect (OSTI)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  15. HAZARD ANALYSIS SOFTWARE

    SciTech Connect (OSTI)

    Sommer, S; Tinh Tran, T

    2008-04-08

    Washington Safety Management Solutions, LLC developed web-based software to improve the efficiency and consistency of hazard identification and analysis, control selection and classification, and to standardize analysis reporting at Savannah River Site. In the new nuclear age, information technology provides methods to improve the efficiency of the documented safety analysis development process which includes hazard analysis activities. This software provides a web interface that interacts with a relational database to support analysis, record data, and to ensure reporting consistency. A team of subject matter experts participated in a series of meetings to review the associated processes and procedures for requirements and standard practices. Through these meetings, a set of software requirements were developed and compiled into a requirements traceability matrix from which software could be developed. The software was tested to ensure compliance with the requirements. Training was provided to the hazard analysis leads. Hazard analysis teams using the software have verified its operability. The software has been classified as NQA-1, Level D, as it supports the analysis team but does not perform the analysis. The software can be transported to other sites with alternate risk schemes. The software is being used to support the development of 14 hazard analyses. User responses have been positive with a number of suggestions for improvement which are being incorporated as time permits. The software has enforced a uniform implementation of the site procedures. The software has significantly improved the efficiency and standardization of the hazard analysis process.

  16. Performance Assessment and Composit Analysis Material Disposal Area G Revision 4

    Broader source: Energy.gov [DOE]

    Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Most is low-level radioactive waste that is disposed of at Technical Area (TA) 54, Area G. U.S. Department of Energy (DOE) Order 435.1 requires that DOE field sites prepare and maintain site-specific radiological performance assessments and composite analyses for lowlevel radioactive waste disposal facilities that accept waste after September 26, 1988. This report presents the radiological performance assessment and composite analysis for TA 54, Area G. The performance assessment and composite analysis model the long-term performance of the Area G disposal facility so that the risk posed by the disposed waste to human health and safety and the environment can be determined. Rates of radionuclide release from the waste and the transport of these releases to locations accessible to humans are evaluated and used to project radiation doses that may be received by exposed persons. The release rates of radon gas from the disposal facility are also estimated. The dose and radon flux projections are compared to the performance objectives provided in DOE M 435.1 to evaluate the ability of the disposal facility to safely isolate the waste.

  17. Hazards and operability study for the surface moisture monitoring system

    SciTech Connect (OSTI)

    Board, B.D.

    1996-04-04

    The Hanford Nuclear Reservation Tank Farms` underground waste tanks have been used to store liquid radioactive waste from defense materials production since the 1940`s. Waste in certain of the tanks may contain material in the form of ferrocyanide or various organic compounds which could potentially be susceptible to condensed phase chemical reactions. Because of the presence of oxidizing materials (nitrate compounds) and heat sources (radioactive decay and chemical reactions), the ferrocyanide or organic material could potentially fuel a propagating exothermic reaction with undesirable consequences. Analysis and experiments indicate that the reaction propagation and/or initiation may be prevented by the presence of sufficient moisture in the waste. Because the reaction would probably be initiated at the surface of the waste, evidence of sufficient moisture concentration would help provide evidence that the tank waste can continue to be safely stored. The Surface Moisture Measurement System (SMMS) was developed to collect data on the surface moisture in the waste by inserting two types of probes (singly) into a waste tank-a neutron probe and an electromagnetic inductance (EMI) probe. The sensor probes will be placed on the surface of the waste utilizing a moveable deployment arm to lower them through an available riser. The movement of the SMMS within the tank will be monitored by a camera lowered through an adjacent riser. The SMMS equipment is the subject of this study. Hazards and Operability Analysis (HAZOP) is a systematic technique for assessing potential hazards and/or operability problems for a new activity. It utilizes a multidiscipline team of knowledgeable individuals in a systematic brainstorming effort. The results of this study will be used as input to an Unreviewed Safety Question determination.

  18. Hazardous Working Policy November 2012

    E-Print Network [OSTI]

    Doran, Simon J.

    for: The management of University workers performing hazardous tasks or working in hazardous areas;2 Hazardous Areas: are areas where a University worker may be exposed to risks that are considered greater1 Hazardous Working Policy November 2012 Introduction The University of Surrey acknowledges

  19. State of Colorado Wildfire Hazard

    E-Print Network [OSTI]

    State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 and importance of the August 1995 Wildfire Hazard Mitigation Plan and its predecessors as foundation documents on which to build and judge progress in wildfire hazard mitigation. The text version of the 1995 Plan

  20. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect (OSTI)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  1. Radon and material radiopurity assessment for the NEXT double beta decay experiment

    E-Print Network [OSTI]

    Cebrián, S; Bandac, I; Labarga, L; Álvarez, V; Barrado, A I; Bettini, A; Borges, F I G M; Camargo, M; Cárcel, S; Cervera, A; Conde, C A N; Conde, E; Dafni, T; Díaz, J; Esteve, R; Fernandes, L M P; Fernández, M; Ferrario, P; Freitas, E D C; Gehman, V M; Goldschmidt, A; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Laing, A; Liubarsky, I; López-March, N; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez, A; Martínez-Lema, G; Miller, T; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; Nebot-Guinot, M; Nygren, D; Oliveira, C A B; de Solórzano, A Ortiz; Aparicio, J L Pérez; Querol, M; Renner, J; Ripoll, L; Rodríguez, J; Santos, F P; Santos, J M F dos; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R C; White, J T; Yahlali, N

    2015-01-01

    The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has star...

  2. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Critical Materials Technology Assessment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy Headquarters Categorical| Department of Energy5: Lighting, HVAC,Critical Materials

  3. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Materials for Harsh Service Conditions Technology Assessment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy Headquarters Categorical| Department of Energy5: Lighting, HVAC,Critical Materials

  4. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for deposited material and external doses. Volume 2: Appendices

    SciTech Connect (OSTI)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Boardman, J. [AEA Technology (United Kingdom); Jones, J.A. [National Radiological Protection Board (United Kingdom); Harper, F.T.; Young, M.L. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on deposited material and external doses, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  5. Nuclear power plant cable materials : review of qualification and currently available aging data for margin assessments in cable performance.

    SciTech Connect (OSTI)

    Celina, Mathias Christopher; Gillen, Kenneth Todd; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostlyinert' aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section - a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.

  6. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  7. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  8. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  9. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect (OSTI)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  10. Navy aquatic hazardous waste sites: the problem and possible solutions. Final report

    SciTech Connect (OSTI)

    Johnston, R.K.; Wild, W.J.; Richter, K.E.; Lapota, D.; Stang, P.M.

    1989-08-01

    Data on 367 hazardous waste disposal sites at 58 Navy Marine Corps activities, located in the coastal zone, were reviewed to characterize the contaminants, disposal methods, and potentially impacted environments present at navy aquatic hazardous waste sites. This report identifies Navy aquatic hazardous waste site problems, assesses technology requirements, and describes remedial pilot projects being initiated at impacted aquatic sites.

  11. Funding Opportunity: Superfund Hazardous Substance Research and Training Program Sponsor: National Institute of Health

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Funding Opportunity: Superfund Hazardous Substance Research and Training Program (P42) Sponsor Sciences (NIEHS) is announcing the continuation of the Superfund Hazardous Substance Research and Training techniques for the detection, assessment, and evaluation of the effect on human health of hazardous

  12. Funding Opportunity: Superfund Hazardous Substance Research and Training Program (P42)

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Funding Opportunity: Superfund Hazardous Substance Research and Training Program (P42) Sponsor (NIEHS) is announcing the continuation of the Superfund Hazardous Substance Research and Training Program techniques for the detection, assessment, and evaluation of the effect on human health of hazardous

  13. Coastal pollution hazards in southern California observed by SAR imagery: stormwater plumes, wastewater plumes,

    E-Print Network [OSTI]

    Washburn, Libe

    Coastal pollution hazards in southern California observed by SAR imagery: stormwater plumes pollution hazards for the heavily populated Southern California Bight (SCB). Due to their small size observational tool for assessment and monitoring of coastal marine pollution hazards in the SCB and other

  14. Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282

    SciTech Connect (OSTI)

    Komann, Steffen; Groeke, Carsten; Droste, Bernhard

    2013-07-01

    The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

  15. Method of recovering hazardous waste from phenolic resin filters

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Bourne, Gary L. (Idaho Falls, ID); McFee, John N. (Albuquerque, NM); Burdge, Bradley G. (Idaho Falls, ID); McConnell, Jr., John W. (Idaho Falls, ID)

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  16. Identification of Aircraft Hazards

    SciTech Connect (OSTI)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  17. RESONANT FREQUENCY EDDY CURRENT LIFTOFF MEASUREMENTS FOR SHOT PEENING INTENSITY ASSESSMENT IN MATERIALS

    SciTech Connect (OSTI)

    Ko, Ray T.; Blodgett, Mark P. [Metals, Ceramics, and NDE Division, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Sathish, Shamachary; Boehnlein, Thomas R. [Structural Integrity Division, University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469-0120 (United States)

    2008-02-28

    The shot peening intensity of nickel base materials has been examined with an innovative eddy current measurement. The goal is to provide a nondestructive tool to quantitatively evaluate the surface conditions after shot peening. Traditionally, the residual stress caused by the shot peening process can be examined by X-ray diffraction. Recent eddy current works have shown promising results in evaluating the small conductivity variation due to the residual stress. This study explores the feasibility of utilizing the cable which connects to a network analyzer and a conventional eddy current probe to monitor the surface conditions due to the shot peening.

  18. Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01

    Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment. • Reactor pressure vessel • Pumps and piping

  19. Economic Assessment Environmental impact

    E-Print Network [OSTI]

    - ". Economic Assessment Environmental impact Statement NESHAPS for Radionuclides Background Economic Assessment Environmental Impact Statement for NESHAPS Radionuclides VOLUME 3 BACKGROUND Standards for Hazardous Air Pollutants (NESHAPs) for Radionuclides. An Environmental Impact Statement (EIS

  20. Radon and material radiopurity assessment for the NEXT double beta decay experiment

    E-Print Network [OSTI]

    S. Cebrián; J. Pérez; I. Bandac; L. Labarga; V. Álvarez; A. I. Barrado; A. Bettini; F. I. G. M. Borges; M. Camargo; S. Cárcel; A. Cervera; C. A. N. Conde; E. Conde; T. Dafni; J. Díaz; R. Esteve; L. M. P. Fernandes; M. Fernández; P. Ferrario; E. D. C. Freitas; L. M. P. Fernandes; V. M. Gehman; A. Goldschmidt; J. J. Gómez-Cadenas; D. González-Díaz; R. M. Gutiérrez; J. Hauptman; J. A. Hernando Morata; D. C. Herrera; I. G. Irastorza; A. Laing; I. Liubarsky; N. López-March; D. Lorca; M. Losada; G. Luzón; A. Marí; J. Martín-Albo; A. Martínez; G. Martínez-Lema; T. Miller; F. Monrabal; M. Monserrate; C. M. B. Monteiro; F. J. Mora; L. M. Moutinho; J. Muñoz Vidal; M. Nebot-Guinot; D. Nygren; C. A. B. Oliveira; A. Ortiz de Solórzano; J. L. Pérez Aparicio; M. Querol; J. Renner; L. Ripoll; J. Rodríguez; F. P. Santos; J. M. F. dos Santos; L. Serra; D. Shuman; A. Simón; C. Sofka; M. Sorel; J. F. Toledo; J. Torrent; Z. Tsamalaidze; J. F. C. A. Veloso; J. A. Villar; R. C. Webb; J. T. White; N. Yahlali

    2015-05-26

    The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.

  1. A Study of Real-Time Identification and Monitoring of Barge-Carried Hazardous Commodities

    E-Print Network [OSTI]

    A Study of Real-Time Identification and Monitoring of Barge-Carried Hazardous Commodities Yangrong 37831 Abstract-- In response to increased terrorist threats related to hazardous material movements and field test a prototype system that provides more accurate, uniform, and timely data on hazardous

  2. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  3. A new probabilistic shift away from seismic hazard reality in Italy?

    E-Print Network [OSTI]

    Nekrasova, Anastasia; Kossobokov, Volodya; Panza, Giuliano F

    2014-01-01

    Objective testing is a key issue in the process of revision and improvement of seismic hazard assessments. Therefore we continue the rigorous comparative analysis of past and newly available hazard maps for the territory of Italy against the seismic activity observed in reality. The final Global Seismic Hazard Assessment Program (GSHAP) results and the most recent version of Seismic Hazard Harmonization in Europe (SHARE) project maps, along with the reference hazard maps for the Italian seismic code, all obtained by probabilistic seismic hazard assessment (PSHA), are cross-compared to the three ground shaking maps based on the duly physically and mathematically rooted neo-deterministic approach (NDSHA). These eight hazard maps for Italy are tested against the available data on ground shaking. The results of comparison between predicted macroseismic intensities and those reported for past earthquakes (in the time interval from 1000 to 2014 year) show that models provide rather conservative estimates, which ten...

  4. Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work-

    E-Print Network [OSTI]

    Tennessee, University of

    Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work- ing with hazardous materials should receive annual training that address- es lab safety, personal protective equipment, storage, use, and disposal of hazardous materials, emergency procedures

  5. Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1985-07-09

    Cancels Chapter 3 of DOE 5480.1A. Canceled by DOE O 460.1 of 9-27-1995 and by DOE N 251.4 & Para. 9c canceled by DOE O 231.1 of 9-30-1995.

  6. Preliminary assessment report for Fort Custer Training Center, Installation 26035, Augusta, Michigan. Installation Restoration Program

    SciTech Connect (OSTI)

    Flaim, S.; Krokosz, M.

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Michigan Army National Guard property near Augusta, Michigan. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Fort Custer Training Center, phase I of the Department of Defense Installation Restoration Program. The environmentally significant operations associated with the property are (1) storage of hazardous materials and hazardous waste, (2) storage and dispensing of fuel, (3) washing of vehicles and equipment, and (4) weapons training ranges that may have accumulated lead.

  7. Risk assessment in international operations

    SciTech Connect (OSTI)

    Stricklin, Daniela L.

    2008-11-15

    During international peace-keeping missions, a diverse number of non-battle hazards may be encountered, which range from heavily polluted areas, endemic disease, toxic industrial materials, local violence, traffic, and even psychological factors. Hence, elevated risk levels from a variety of sources are encountered during deployments. With the emphasis within the Swedish military moving from national defense towards prioritization of international missions in atypical environments, the risk of health consequences, including long term health effects, has received greater consideration. The Swedish military is interested in designing an optimal approach for assessment of health threats during deployments. The Medical Intelligence group at FOI CBRN Security and Defence in Umea has, on request from and in collaboration with the Swedish Armed Forces, reviewed a variety of international health threat and risk assessment models for military operations. Application of risk assessment methods used in different phases of military operations will be reviewed. An overview of different international approaches used in operational risk management (ORM) will be presented as well as a discussion of the specific needs and constraints for health risk assessment in military operations. This work highlights the specific challenges of risk assessment that are unique to the deployment setting such as the assessment of exposures to a variety of diverse hazards concurrently.

  8. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  9. Development of a Probabilistic Tsunami Hazard Analysis in Japan

    SciTech Connect (OSTI)

    Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka; Ken Yanagisawa [Tokyo Electric Power Company (Japan); Tadashi Annaka [Tokyo Electric Power Services Co., Ltd, 3-3, Higashiueno 3-Chome, Taito-ku, Tokyo 110-0015 (Japan)

    2006-07-01

    It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present an example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)

  10. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

  11. A century of oil and gas exploration in Albania: assessment of Naturally Occurring Radioactive Materials (NORMs)

    E-Print Network [OSTI]

    Xhixha, Gerti; Callegari, Ivan; Colonna, Tommaso; Hasani, Fadil; Mantovani, Fabio; Shala, Ferat; Strati, Virginia; Kaçeli, Merita Xhixha

    2015-01-01

    Because potential Naturally Occurring Radioactive Materials (NORMs) generated from oil and gas extractions in Albania have been disposed without regulatory criteria in many decades, an extensive survey in one of the most productive regions (Vlora-Elbasan) has been performed. Among 52 gamma-ray spectrometry measurements of soil, oil-sand, sludge, produced water and crude oil samples, we discover that relatively low activity concentrations of 226Ra, 228Ra, 228Th and 40K, which are 23 +/- 2 Bq/kg, 23 +/- 2 Bq/kg, 24 +/- 3 Bq/kg and 549 +/- 12 Bq/kg, respectively, come from oil-sand produced by hydrocarbon extraction from molasses formations. The mineralogical characterization together with the 228Ra/40K and 226Ra/40K ratios of these Neogene deposits confirm the geological and geodynamic model that predicts a dismantling of Mesozoic source rocks. The average activity concentrations (+/- standard deviations) of the radium isotopes (226Ra, 228Ra) and of the 228Th and 40K radionuclides in soil samples are determined...

  12. How information resources are used by federal agencies in risk assessment applications

    SciTech Connect (OSTI)

    Legg, W.E.

    1990-12-31

    This paper discusses the structure and responsibilities of the US Army Toxic and Hazardous Materials Agency.

  13. Binary mixture flammability characteristics for hazard assessment 

    E-Print Network [OSTI]

    Vidal Vazquez, Migvia del C.

    2005-11-01

    flash point value as the mixture flash point. Flash point predictions were performed for 14 binary mixtures using various G ex models for the activity coefficients. Quantum chemical calculations and UNIFAC, a theoretical model that does not require... Page 1. Classification of Flammability According to DOT and NFPA.......................5 2. Some Activity Coefficient (G ex Energy) Models..........................................21 3. Input Data Used for COSMO-RS Calculations...

  14. 283-E and 283-W Hazards Assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1995-09-08

    This document establishes the technical basis in support of Emergency Planning Activites for the 283-E and 283-W Facilities on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  15. Missouri Hazardous Waste Management Law (Missouri)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

  16. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  17. "" EPAT# Risk Assessments Environmental Impact

    E-Print Network [OSTI]

    "" EPAT# Risk Assessments Appendixes Environmental Impact Statement NESHAPS for Radionuclides for Hazardous Air Pollutants Risk Assessments Environmental Impact Statement for NESHAPS Radionuclides VOLUME 2 for Hazardous Air Pollutants EPA 520.1'1.-89-006,-2 Risk Assessments Environmental Impact Statement for NESHAPS

  18. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    SciTech Connect (OSTI)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  19. CRAD, Packaging and Transfer of Hazardous Materials and Materials of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About UsEnergy MarketingAsset Score00.4| Department of Energy

  20. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  1. Zurich`s hazard analysis process: A systematic team approach

    SciTech Connect (OSTI)

    Frei, H.

    1997-06-01

    The Zurich method of hazard analysis (ZHA) is a process designed to facilitate the systematic identification, assessment and reduction or elimination of hazard and risk in almost any product, system or process. It has been particularly successful as a front-end screening tool in the petrochemical, chemical, and pharmaceutical industries. The complexity and the regulation of these industries and the requirement for management of change have created a demand for highly efficient, yet thorough, hazard analysis techniques capable of capturing and managing the total risk perspective while clearly illuminating the risk priorities. Only when these priorities have been segregated and economically addressed as an organization fully leveraged the power of any hazard analysis tool. This paper will outline the Zurich Hazard Analysis process and will highlight the elements and strategies central to its success as an efficient, yet thorough methodology.

  2. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed a significant hazard. Bags of misc. plasticware that has been autoclaved to remove bio contamination. Syringe

  3. Methodology Using MELCOR Code to Model Proposed Hazard Scenario

    SciTech Connect (OSTI)

    Gavin Hawkley

    2010-07-01

    This study demonstrates a methodology for using the MELCOR code to model a proposed hazard scenario within a building containing radioactive powder, and the subsequent evaluation of a leak path factor (LPF) (or the amount of respirable material which that escapes a facility into the outside environment), implicit in the scenario. This LPF evaluation will analyzes the basis and applicability of an assumed standard multiplication of 0.5 × 0.5 (in which 0.5 represents the amount of material assumed to leave one area and enter another), for calculating an LPF value. The outside release is dependsent upon the ventilation/filtration system, both filtered and un-filtered, and from other pathways from the building, such as doorways (, both open and closed). This study is presents ed to show how the multiple leak path factorsLPFs from the interior building can be evaluated in a combinatory process in which a total leak path factorLPF is calculated, thus addressing the assumed multiplication, and allowing for the designation and assessment of a respirable source term (ST) for later consequence analysis, in which: the propagation of material released into the environmental atmosphere can be modeled and the dose received by a receptor placed downwind can be estimated and the distance adjusted to maintains such exposures as low as reasonably achievableALARA.. Also, this study will briefly addresses particle characteristics thatwhich affect atmospheric particle dispersion, and compares this dispersion with leak path factorLPF methodology.

  4. Earthquakes and faults in the Krahnjkar area Review of hazards and recommended further studies

    E-Print Network [OSTI]

    Sigmundsson, Freysteinn

    . Introduction 2. Seismic safety of dams and estimates of hazards 3. Experience from other areas in Iceland not ensure the individual authors consensus on all the details presented in the text 2. Seismic safety the hazards in a qualitative way but with limited quantitative assessment or an attempt to assess

  5. Method and apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Korenberg, Jacob (York, PA)

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  6. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect (OSTI)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift zone of Kilauea.

  7. Hazardous Gas Production by Alpha Particles

    SciTech Connect (OSTI)

    Jay A. LaVerne, Principal Investigator

    2001-11-26

    This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

  8. Risk Assessment Fact Sheet

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Risk Assessment ® Fact Sheet U.S. Army Corps of Engineers Building Strong ® Buffalo District June 2012 Risk Assessment A risk assessment is performed for hazardous, toxic, and radioactive waste sites and chemicals in the environment. Information from the risk assessment is used to determine whether action

  9. FY 1993 Projection Capability Assurance Program waste and hazard minimization. Quarterly report, October--December 1993

    SciTech Connect (OSTI)

    Haws, L.D.; Homan, D.A.

    1993-01-15

    Waste and hazard minimization efforts in the following areas are described: (1) environmentally responsive cleaning, (2) hazardous material exposure, (3) explosive processing, (4) flex circuit manufacturing, (5) tritium capture w/o conversion to water, (6) ES&H compatible pyrotechnic materials, and (7) remote explosive component assembly.

  10. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  11. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  12. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  13. FY09 recycling opportunity assessment for Sandia National Laboratories/New Mexico.

    SciTech Connect (OSTI)

    McCord, Samuel Adam

    2010-07-01

    This Recycling Opportunity Assessment (ROA) is a revision and expansion of the FY04 ROA. The original 16 materials are updated through FY08, and then 56 material streams are examined through FY09 with action items for ongoing improvement listed for most. In addition to expanding the list of solid waste materials examined, two new sections have been added to cover hazardous waste materials. Appendices include energy equivalencies of materials recycled, trends and recycle data, and summary tables of high, medium, and low priority action items.

  14. Elsevier.com -Natural Hazards: Monitoring and Assessment Using Rem... http://www.elsevier.com/wps/find/bookdescription.cws_home/30785/des... 1 of 1 5/10/2006 4:44 AM

    E-Print Network [OSTI]

    Singh, Ramesh P.

    -electromagnetic effects (M. Parrot). Application of remote sensing data in earthquake monitoring (D. Massonnet. Iglsederet al.). Satellite remote sensing data on industrial hazards (J.R. Givri). Application of vegetation index and brightness temperature for drought detection (F.N. Kogan). Monitoring of oil spills using

  15. UNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all students, staff, and

    E-Print Network [OSTI]

    Northern British Columbia, University of

    UNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all students, staff, and faculty. Hazardous waste must be handled and disposed of in a manner that ensures these materials do not pose a hazardous threat to others or end up in municipal sewers or landfills. Improper

  16. JOB SAFETY ASSESSMENT ENVIRONMENTAL

    E-Print Network [OSTI]

    Hartman, Chris

    /vapors/mists) Hazardous/Oxygen Deficient Atmospheres Adequate Ventilation Asbestos Containing Materials (ACM) Ignition Sources Adequate Lighting Wet Locations Other:_________________________ NOTES: PHYSICAL Confined Space Entry (Permit/Non-Permit) Crowd Control/Security Electrical Hazards Excavating/Trenching/Shoring Fall

  17. Comparison of environmental impacts of steel and concrete as building materials using the Life Cycle Assessment method

    E-Print Network [OSTI]

    Johnson, Timothy Werner

    2006-01-01

    In the United States, the construction industry accounts for almost 75% of total raw material used. This is an obvious drain on natural resources and has a major impact on the surrounding environment. Construction materials ...

  18. Hazard screening application guide. Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  19. Office of Emergency Management Assessments | Department of Energy

    Office of Environmental Management (EM)

    requiring a quantitative Emergency Planning Hazards Assessment. Works closely with other IEA offices and DOE line organizations to schedule and undertake assessments. Evaluates the...

  20. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W. (Martinez, GA)

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  1. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  2. Liquid Effluent Retention Facility (LERF) Final Hazard Category Determination

    SciTech Connect (OSTI)

    HUTH, L.L.

    2001-06-06

    The Liquid Effluent Retention Facility was designed to store 242-A Evaporator process condensate and other liquid waste streams for treatment at the 200 East Area Effluent Treatment Facility. The Liquid Effluent Retention Facility has been previously classified as a Category 3 Nonreactor Nuclear Facility. As defined in Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports (DOE 1992, DOE 1997), Category 3 Nuclear Facilities have the potential for significant localized (radiological) consequences. However, based on current facility design, operations, and radioactive constituent concentrations, the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences and is categorized as a Radiological Facility. This report documents the final hazard categorization process performed in accordance with DOE Order 5480.23, Nuclear Safety Analysis Reports. This report describes the current configuration and operations of the Liquid Effluent Retention Facility. Also included is a preliminary hazard categorization, which is based on current and proposed radioactive and hazardous material inventories, a preliminary hazards and accident analysis, and a final hazard category determination. The results of the hazards and accident analysis, based on the current configuration and operations of the Liquid Effluent Retention Facility and the current and proposed radioactive and hazardous material inventories, demonstrate that the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences. Based on the final hazard category analysis, the Liquid Effluent Retention Facility is a Radiological Facility. The final hazard category determination is based on a comparative evaluation of the consequence basis for the Category 3 threshold quantities to the calculated consequences for credible releases The basis for the Category 3 threshold quantities is 10 rem-equivalent man at 30 meters (98 feet) (DOE 1992, DOE 1997). The calculated 12 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, are 3.50 rem and 1.32 rem, respectively, which based upon the original hazard categorization criteria (DOE 1992) classified the Liquid Effluent Retention Facility as a Radiological Facility. Comparison of the calculated 24 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, 7.00 rem and 2.64 rem respectively, confirmed the Liquid Effluent Retention Facility classification as a Radiological Facility under the current hazard categorization criteria (DOE 1997). Both result in dose consequence values less than the allowable, 10 rem, meeting the requirements for categorizing the Liquid Effluent Retention Facility as a Radiological Facility.

  3. Hazard Lewis Farms Collection Binghamton University Libraries

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Hazard Lewis Farms Collection Binghamton University Libraries Special Collections Hazard Lewis and University Archives #12;Hazard Lewis Farms Collection Biographical Note The Hazard Lewis Farm was situated Hazard Lewis, one of the early pioneer settlers of Broome County. Colonel Lewis at one time with Christor

  4. HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY

    E-Print Network [OSTI]

    Calgary, University of

    HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 HAZARD ALERT ­ Reaction Manual. http://www.ucalgary.ca/safety/files/safety/LaboratoryFumeHoodUserStandard.pdf #12;HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 In the recent incident the sash was closed while

  5. REPORT NO. 8 radiation hazards

    E-Print Network [OSTI]

    REPORT NO. 8 REVISED guidance for the control of radiation hazards in uranium mining SEPTEMBER 1967 OF RADIATION HAZARDS IN URANIUM MINING SEPTEMBER 1967 Staff Report of the FEDERAL RADIATION COUNCIL #12;FEDERAL...... .... .._ _.... Section I. Introduction. . . Section II. The Radiation Environment AssociatedWith Uranium Mining. Section

  6. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect (OSTI)

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  7. Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction

    SciTech Connect (OSTI)

    Chen, Maozhe [Université de Lyon, INSA LYON, Laboratoire de Génie Civil et Ingénierie Environnementale (LGCIE), Bâtiment Sadi Carnot, 20 avenue A. Einstein, 69621 Villeurbanne Cedex (France); Blanc, Denise, E-mail: denise.blanc-biscarat@insa-lyon.fr [Université de Lyon, INSA LYON, Laboratoire de Génie Civil et Ingénierie Environnementale (LGCIE), Bâtiment Sadi Carnot, 20 avenue A. Einstein, 69621 Villeurbanne Cedex (France); Gautier, Mathieu; Mehu, Jacques; Gourdon, Rémy [Université de Lyon, INSA LYON, Laboratoire de Génie Civil et Ingénierie Environnementale (LGCIE), Bâtiment Sadi Carnot, 20 avenue A. Einstein, 69621 Villeurbanne Cedex (France)

    2013-05-15

    Highlights: ? We used sewage sludge ashes in ready-mix concrete recipe. ? SSAs were used as a substitution of cement. ? Compressive strength of ready-mix concrete incorporating SSAs were similar as blank one. ? Contaminants leaching from concrete monoliths were above threshold limits. - Abstract: Ashes produced by thermal treatments of sewage sludge exhibit common properties with cement. For example, major elements present in SSA are the same of major elements of cement. Hydraulic properties of SSA are quite the same of cement ones. They may therefore be used to substitute part of cement in concrete or other cementitious materials, provided that technical prescriptions are satisfied and that environmental risks are not significantly increased. The objective of the present study was to determine the appropriate substitution ratios to satisfy both technical and environmental criteria. In a first step, the elemental composition and particle size distribution of the ashes were measured. Then the ashes were used along with Portland cement and sand at different ratios of substitution to produce mortar and concrete which were cured for up to 90 days into parallelepipedic or cylindrical monoliths. The mechanical properties of the monoliths were measured using standard procedures for flexural and compressive strengths, and compared to blanks containing no ashes. The environmental criteria were assessed using leaching tests conducted according to standard protocols both on the ashes and the monoliths, and compared to the blanks. Results showed that the characteristics of the ashes ranged between those of cement and sand because of their larger particle size and higher content in SiO{sub 2} as compared to cement. The monoliths made with the highest substitution ratios exhibited a significant decrease in flexural and compressive strengths. However, when the ashes were used in partial substitution of cement at appropriate ratios, the concrete monoliths exhibited similar compressive strengths as the blank samples. The most appropriate ratios were found to be 10% substitution of cement and 2% substitution of sand. The leaching tests conducted on the ashes in their powdery form revealed that amongst the potential contaminants analyzed only Mo and Se were leached at concentrations above the threshold limits considered. The leaching tests conducted on concrete monoliths showed however that none of the contaminants monitored, including Mo and Se, were leached above the limits. In addition, whether concrete recipe incorporated ashes or not, similar concentrations were measured for each potential contaminant in the leachates. This result indicated that mixing ash with cement and sand to produce mortar or concrete induced a stabilization of Mo and Se and thereby constituted in itself a good treatment of the ashes.

  8. Hazardous Waste Management Standards and Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

  9. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  10. Remote Sensing of Permafrost-related Problems and Hazards Andreas Kaab*,y

    E-Print Network [OSTI]

    Kääb, Andreas

    hazard assessment and management. Awide range of image classification and change detection techniques support permafrost hazard studies. Digital terrain models (DTMs) derived from optical stereo, synthetic. Combining DTMs with results from spectral image classification, and with multi-temporal data from change

  11. Composite structures 4; Proceedings of the Fourth International Conference, Paisley College of Technology, Scotland, July 27-29, 1987. Volume 2 - Damage assessment and material evaluation

    SciTech Connect (OSTI)

    Marshall, I.H.

    1987-01-01

    The present collection of papers on damage assessment and material evaluation of composite structures discusses recent advancements in the dynamics of composite structures, the crush performance of composite structures, strengthening mechanisms in discontinuous SiC/Al composites, considerations for designing with metal matrix composite materials, a causal approach to the effective dynamic moduli of random composites, and failure modes for compression-loaded angle-ply plates with holes. Also discussed are the fabrication and mechanical properties of hybrid composites with braiding construction, the reprocessing of carbon fiber/PEEK laminates, rate effects on delamination fracture toughness of graphite/epoxy composites, the shear modulus testing of composites, composite materials for bone-fracture fixation, and the thermomechanical properties of three-dimensional fiber composites.

  12. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  13. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Glare Hazard Analysis Tool Solar...

  14. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    JOHNSON, B.H.

    1999-08-19

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  15. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01

    Health Hazards in Indoor Air. In Proceedings of the 2010for VOCs from post-1990 indoor air concentration studies inUnion project on indoor air pollutants. Allergy, 2008. 63(

  16. LOG HAZARD REGRESSION Huiying Sun

    E-Print Network [OSTI]

    Heckman, Nancy E.

    LOG HAZARD REGRESSION by Huiying Sun Ph.D, Harbin Institute of Technology, Harbin, CHINA, 1991 .................................................................... .................................................................... .................................................................... .................................................................... THE UNIVERSITY OF BRITISH COLUMBIA September, 1999 c flHuiying Sun, 1999 #12; Abstract We propose using

  17. An Assessment of the Attractiveness of Material Associated with a MOX Fuel Cycle from a Safeguards Perspective

    SciTech Connect (OSTI)

    Bathke, Charles G; Wallace, Richard K; Ireland, John R; Johnson, M W; Hase, Kevin R; Jarvinen, Gordon D; Ebbinghaus, Bartley B; Sleaford, Brad W; Collins, Brian A; Robel, Martin; Bradley, Keith S; Prichard, Andrew W; Smith, Brian W

    2009-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, coextraction, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant State and sub-national group capabilities. This study also considers those materials that will be recycled and burned, possibly multiple times, in LWRs [e.g., plutonium in the form of mixed oxide (MOX) fuel]. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a State and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

  18. Preliminary assessment report for Bee Caves Armory (former Nike BG-80 Fire Control Facility), Installation 48055, Austin, Texas. Installation Restoration Program

    SciTech Connect (OSTI)

    Dennis, C.

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Texas Army National Guard (ARNG) property in Austin, Texas. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing, preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining, site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Bee Caves Armory property, the requirements of the Department of Defense Installation Restoration Program. Of concern is the potential for hazardous waste to be present on the property as a result of the former Nike Missile Base operations or in the form of original construction materials. Environmentally sensitive operations associated with the property from that period include (1) underground fuel storage, (2) hazardous materials storage/use, (3) disposal of hazardous waste and (4) release of hazardous waste water.

  19. LEARNERS GUIDE FOR RESPONSIBLE HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Portman, Douglas

    1 LEARNERS GUIDE FOR RESPONSIBLE HAZARDOUS CHEMICAL WASTE MANAGEMENT UNIVERSITY OF ROCHESTER the effects of improper hazardous waste management and disposal. Each person who works with hazardous is managed by the Hazardous Waste Management Unit (HWMU) of Facilities and Services. To contact HWMU dial x

  20. Hazard % free free espresso Over Run

    E-Print Network [OSTI]

    Dill, David L.

    Total Products Hazard­ Hazard­ % free free espresso­ Over­ Run­ name in/out Method exact head time 5 0 1 dme­fast­opt 5/3 8 8 0 1 Table 2. Comparison of Hazard­Free Logic Minimization with espresso­level hazard­free minimization prob­ lem for several reasons: the general problem has not pre­ viously been

  1. CONTROL OF HAZARDOUS ENERGY 12.A GENERAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Jun 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When working on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program (HECP) is required see 12.B. Hazardous energy is any energy, including but not limited to mechanical (e

  2. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  3. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  4. Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products

    E-Print Network [OSTI]

    de Lijser, Peter

    over a larger area and releases them into the air. Pouring hazardous liquids on the ground can poisonHousehold Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion should be considered hazardous. You cannot treat hazardous wastes like other kinds of garbage

  5. Increasing Resiliency to Natural Hazards: A Strategic Plan for the Multi-Hazards

    E-Print Network [OSTI]

    Fleskes, Joe

    Increasing Resiliency to Natural Hazards: A Strategic Plan for the Multi-Hazards Demonstration Survey #12;#12;Increasing Resiliency to Natural Hazards--A Strategic Plan for the Multi-Hazards on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards

  6. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect (OSTI)

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

  7. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29

    possible. Hazardous wastes are defined as materials that are ignitable, toxic, corrosive or explosive (TWC, 1990). Lists of hazardous wastes are contained in 40 Code of Federal Regulations (CFR), Part 261.31 through 261.34. Some hazardous materials..., such as antifreeze, oil and grease H Used oil filters H Solvents for oil and grease removal and disposal H Engine, parts and equipment cleaners H Lubricants H Rust removers H Paints and paint preparation products H Brush or spray gun cleaners H Lead acid batteries...

  8. Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 1111

    E-Print Network [OSTI]

    Rose, William I.

    Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 11111 Open-File Report 01­431Open-File Report 01

  9. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    SciTech Connect (OSTI)

    Hassanein, Ahmed

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  10. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Direct Thermal Energy Conversion Materials, Devices, and Systems Technology Assessment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy Headquarters Categorical| Department of Energy5: Lighting, HVAC,Critical Materials

  11. An Assessment of the Current Day Impact of Various Materials Associated with the U.S. Nuclear Test Program in the Marshall Island

    SciTech Connect (OSTI)

    Robison, W L; Noshkin, V E; Hamilton, T F; Conrado, C L; Bogen, K T

    2001-05-01

    Different stable elements, and some natural and man-made radionuclides, were used as tracers or associated in other ways with nuclear devices that were detonated at Bikini and Enewetak Atolls as part of the U.S. nuclear testing program from 1946 through 1958. The question has been raised whether any of these materials dispersed by the explosions could be of sufficient concentration in either the marine environment or on the coral islands to be of a health concern to people living, or planning to live, on the atolls. This report addresses that concern. An inventory of the materials involved during the test period was prepared and provided to us by the Office of Defense Programs (DP) of the United States Department of Energy (DOE). The materials that the DOE and the Republic of the Marshall Islands (RMI) ask to be evaluated are--sulfur, arsenic, yttrium, tantalum, gold, rhodium, indium, tungsten, thallium, thorium-230,232 ({sup 230,232}Th), uranium-233,238 ({sup 233,238}U), polonium-210 ({sup 210}Po), curium-232 ({sup 232}Cu), and americium-241 ({sup 241}Am). The stable elements were used primarily as tracers for determining neutron energy and flux, and for other diagnostic purposes in the larger yield, multistage devices. It is reasonable to assume that these materials would be distributed in a similar manner as the fission products subsequent to detonation. A large inventory of fission product and uranium data was available for assessment. Detailed calculations show only a very small fraction of the fission products produced during the entire test series remain at the test site atolls. Consequently, based on the information provided, we conclude that the concentration of these materials in the atoll environment pose no adverse health effects to humans.

  12. Reactions of plutonium and uranium with water: Kinetics and potential hazards

    SciTech Connect (OSTI)

    Haschke, J.M.

    1995-12-01

    The chemistry and kinetics of reactions between water and the metals and hydrides of plutonium and uranium are described in an effort to consolidate information for assessing potential hazards associated with handling and storage. New experimental results and data from literature sources are presented. Kinetic dependencies on pH, salt concentration, temperature and other parameters are reviewed. Corrosion reactions of the metals in near-neutral solutions produce a fine hydridic powder plus hydrogen. The corrosion rate for plutonium in sea water is a thousand-fold faster than for the metal in distilled water and more than a thousand-fold faster than for uranium in sea water. Reaction rates for immersed hydrides of plutonium and uranium are comparable and slower than the corrosion rates for the respective metals. However, uranium trihydride is reported to react violently if a quantity greater than twenty-five grams is rapidly immersed in water. The possibility of a similar autothermic reaction for large quantities of plutonium hydride cannot be excluded. In addition to producing hydrogen, corrosion reactions convert the massive metals into material forms that are readily suspended in water and that are aerosolizable and potentially pyrophoric when dry. Potential hazards associated with criticality, environmental dispersal, spontaneous ignition and explosive gas mixtures are outlined.

  13. Assessment of Cable Aging Equipment, Status of Acquired Materials, and Experimental Matrix at the Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Fifield, Leonard S.; Westman, Matthew P.; Zwoster, Andy; Schwenzer, Birgit

    2015-03-30

    The need for increased understanding of the aging and degradation behavior for polymer components of nuclear power plant electrical cables is described in this report. The highest priority materials for study and the resources available at PNNL for these studies are also described. The anticipated outcomes of the PNNL work described are : improved understanding of appropriate accelerated aging conditions, improved knowledge of correlation between observable aging indicators and cable condition in support of advanced non-destructive evaluation methods, and practical knowledge of condition-based cable lifetime prediction.

  14. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  15. A Green Laser Pointer Hazard

    E-Print Network [OSTI]

    Jemellie Galang; Allesandro Restelli; Edward W. Hagley; Charles W. Clark

    2010-08-09

    An inexpensive green laser pointer was found to emit 20 mW of infrared radiation during normal use. This is potentially a serious hazard that would not be noticed by most users of such pointers. We find that this infrared emission derives from the design of the pointer, and describe a simple method of testing for infrared emissions using common household items.

  16. Potential health hazards of radiation. Fact Sheet

    SciTech Connect (OSTI)

    none,

    2009-05-19

    During World War II and the Cold War, the federal government developed and operated industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Some of these sites processed uranium and vanadium, and upon closure, left behind millions of cubic yards of mill tailings on the sites and throughout the nearby communities. The U.S. Department of Energy (DOE) administers the cleanup of these areas to minimize the risks to the public and environment from exposure to the tailings and the radon gas they produce.

  17. Abatement of Air Pollution: Hazardous Air Pollutants (Connecticut...

    Broader source: Energy.gov (indexed) [DOE]

    allowable stack concentrations and hazard limiting values for the emission of hazardous air pollutants. The regulations also discuss sampling procedures for hazardous air...

  18. materials so as to avoid populated areas (13). Furthermore, the inevitable transferal of risk from one community to another raises

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    and Christopher P. L. Barkan 65 Hazardous materials traffic originates and terminates at numerous locations of security concerns and several fatal railroad hazardous materials accidents, railroads' interest in all possible means of reduc- ing hazardous materials transportation risk has intensified in recent years

  19. Massachusetts Hazardous Waste Management Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

  20. Owning Hazard, A Tragedy Barbara Young Welke*

    E-Print Network [OSTI]

    Barrett, Jeffrey A.

    693 Owning Hazard, A Tragedy Barbara Young Welke* In Memory of Frances Young Welke (March 21, 1992 in the ownership of hazard from the individuals who suffered injury, to the enterprises involved in manufacturing

  1. Characterizations of the Proportional (Reversed) Hazard Class

    E-Print Network [OSTI]

    Kundu, Debasis

    Characterizations of the Proportional (Reversed) Hazard Class Debasis Kundu Department Abstract In this paper we provide two simple characterizations of the proportional (reversed) hazard class, generalized exponential, Rayleigh, Burr type X, exponentiated Weibull belong to the proportional (reversed

  2. University of Florida Hazard Communication Program

    E-Print Network [OSTI]

    Slatton, Clint

    in the following areas with regard to the inventoried hazardous chemicals to which I am exposed: a. The chemical involving them in my work area. c. The proper and safe handling of the hazardous chemicals. d. The location chemicals. f. The physical and health hazards of the chemicals in my work area. g. Methods to protect myself

  3. CONTROL OF HAZARDOUS ENERGY Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 12 CONTROL OF HAZARDOUS ENERGY Table Of Contents Section: Page 12.A General.................. .............................................. ... .12-1 12.B Hazardous Energy.......................................................12-6 #12;EM 385-1-1 XX Sep 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When

  4. Hazard & Disaster Management College of Science

    E-Print Network [OSTI]

    Hickman, Mark

    Hazard & Disaster Management College of Science 09 For further information about the University Postgraduate Programmes #12;PostgraduateProgrammes in Hazard & Disaster Management Postgraduate Diploma - BSc by risk management. These programmes aim to develop skills of hazard and disaster management through

  5. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste and submit a chemical waste pick-up request form for proper disposal. Periodically evaluate your chemical are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO

  6. Multivariate Distributions with Proportional Reversed Hazard Marginals

    E-Print Network [OSTI]

    Kundu, Debasis

    Multivariate Distributions with Proportional Reversed Hazard Marginals Debasis Kundu1 & Manuel Franco2 & Juana-Maria Vivo3 Abstract Several univariate proportional reversed hazard models have been a class of bivariate models with proportional reversed hazard marginals. It is observed that the proposed

  7. Oak Ridge Health Studies Phase 1 report, Volume 2: Part A, Dose Reconstruction Feasibility Study. Tasks 1 and 2, A summary of historical activities on the Oak Ridge Reservation with emphasis on information concerning off-site emissions of hazardous materials

    SciTech Connect (OSTI)

    Bruce, G.M.; Buddenbaum, J.E.; Lamb, J.K.; Widner, T.E.

    1993-09-01

    The Phase I feasibility study has focused on determining the availability of information for estimating exposures of the public to chemicals and radionuclides released as a result of historical operation of the facilities at the Oak Ridge Reservation (ORR). The estimation of such past exposures is frequently called dose reconstruction. The initial project tasks, Tasks 1 and 2 were designed to identify and collect information that documents the history of activities at the ORR that resulted in the release of contamination and to characterize the availability of data that could be used to estimate the magnitude of the contaminant releases or public exposures. A history of operations that are likely to have generated off-site releases has been documented as a result of Task 1 activities. The activities required to perform this task involved the extensive review of historical operation records and interviews with present and past employees as well as other knowledgeable individuals. The investigation process is documented in this report. The Task 1 investigations have led to the documentation of an overview of the activities that have taken place at each of the major complexes, including routine operations, waste management practices, special projects, and accidents and incidents. Historical activities that appear to warrant the highest priority in any further investigations were identified based on their likely association with off-site emissions of hazardous materials as indicated by the documentation reviewed or information obtained in interviews.

  8. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10?? to 10²more »MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  9. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect (OSTI)

    Andreani, C. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Anderson, I. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carpenter, J. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Festa, G. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Gorini, G. [Universita' degli Studi di Milano - Bicocca, Milano (Italy); Loong, C. -K. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Senesi, R. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy)

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10?? to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  10. This document details how to manage hazardous waste with multiple hazards. Waste Management Procedures

    E-Print Network [OSTI]

    Mease, Kenneth D.

    This document details how to manage hazardous waste with multiple hazards. Waste Management Procedures · Always manage hazardous waste as the highest ranked waste in the hazardous waste hierarchy Waste Solids Place in solid radioactive waste box. Radioactive Waste Liquids Place in liquid radioactive

  11. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  12. Risoe International Energy conference, May 2003 New Energy, new hazard ?New Energy, new hazard ?

    E-Print Network [OSTI]

    Risoe International Energy conference, May 2003 New Energy, new hazard ?New Energy, new hazard technologies expectations 3. Does hydrogen introduce any new hazard ? 4. Are fuel cell safe ? 5. Is there any organisation, ! Area of interest : - industrial hazard (fire and explosion), - chronic pollution (air, soil

  13. Hazard Avoidance in Wireless Sensor and Actor Networks

    E-Print Network [OSTI]

    Sivakumar, Raghupathy

    Hazard Avoidance in Wireless Sensor and Actor Networks Ramanuja Vedantham Zhenyun Zhuang Prof [Akyildiz'04] Network Low bandwidth (Hazards Hazards undesirable changes in the environment Reason for hazards Different latencies For different sensors and actors

  14. The Globally Harmonized System for Hazard Communication (GHS)

    E-Print Network [OSTI]

    Capogna, Luca

    The Globally Harmonized System for Hazard Communication (GHS) University of Arkansas Facilities groups. · GHS is based on major existing systems around the world, including OSHA's Hazard Communication to hazard communication, providing agreed upon criteria for classification of chemical hazards

  15. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Environmental Management (EM)

    Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems - July 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant...

  16. Enterprise Assessments Operational Awareness Record for the Review...

    Office of Environmental Management (EM)

    Hanford Site Waste Treatment and Immobilization Plant Low-Activity Facility Wide Draft Hazard Analysis Report - June 2015 Enterprise Assessments Operational Awareness Record for...

  17. Vacuum Line Hazards The purpose is to ensure that personnel are familiar with the proper procedures for protecting

    E-Print Network [OSTI]

    Sokolowski, Marla

    Vacuum Line Hazards The purpose is to ensure that personnel are familiar with the proper procedures for protecting vacuum lines and staff from potentially hazardous biological materials. Some labs may://www.ehs.utoronto.ca/services/biosafety.htm This document requires that: "Vacuum lines used for work involving the (biological) agent must be protected from

  18. NARROW AISLE MOBILE ROBOT NAVIGATION IN HAZARDOUS ENVIRONMENTS Thomas R. Collins, Andrew M. Henshaw Ronald C. Arkin

    E-Print Network [OSTI]

    in the semi-structured environment found in a hazardous waste storage facility, a sensor system should useNARROW AISLE MOBILE ROBOT NAVIGATION IN HAZARDOUS ENVIRONMENTS Thomas R. Collins, Andrew M. Henshaw it to a system more suitable for actual deployment on a robot. Routine monitoring of stored radioactive materials

  19. NARROW AISLE MOBILE ROBOT NAVIGATION IN HAZARDOUS ENVIRONMENTS Thomas R. Collins, Andrew M. Henshaw Ronald C. Arkin

    E-Print Network [OSTI]

    in the semi­structured environment found in a hazardous waste storage facility, a sensor system should useNARROW AISLE MOBILE ROBOT NAVIGATION IN HAZARDOUS ENVIRONMENTS Thomas R. Collins, Andrew M. Henshaw it to a system more suitable for actual deployment on a robot. Routine monitoring of stored radioactive materials

  20. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    SciTech Connect (OSTI)

    SINGH, G.

    2000-09-06

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the facility as constructed and with planned operation at the time of document preparation. Changes in facility planned and actual operation require that the identified fire risks associated with the CVDF be re-evaluated. Consequently, formal documentation and future revision of this FHA may be required.

  1. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOE Patents [OSTI]

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  2. Waste Toolkit A-Z Electrical (non-hazardous)

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Electrical (non-hazardous) What are non-hazardous electrical items? Non-hazardous of non-haz WEEE? Departments must make their own arrangements (and pay for) for the collection of non-hazardous not be used for the disposal of non-hazardous waste. What is considered hazardous? If your waste is classified

  3. NREL Materials Recycling Procedure Purpose To promote environmental sustainability and stewardship, NREL provides the

    E-Print Network [OSTI]

    collection locations for recyclable materials, excluding batteries and hazardous materials, from home. This procedure identifies appropriate materials, collection locations, and rules and processes for recycling. To recycle or dispose of hazardous materials from home, contact your county or city or go to the Colorado

  4. Hazard Labeling Elements 1. Product identifier: how the hazardous chemical is identified. This can be (but is not

    E-Print Network [OSTI]

    Chapman, Michael S.

    Hazard Labeling Elements 1. Product identifier: how the hazardous chemical is identified. This can of severity of hazard and alert the reader to a potential hazard on the label. There are only two signal words, "Danger" and "Warning." Within a specific hazard class, "Danger" is used for the more severe hazards

  5. Evaluation of alternative leachate liner materials 

    E-Print Network [OSTI]

    Biles, Daniel Franklin

    1994-01-01

    The purpose of this study is to evaluate alternative landfill liner materials that could be utilized in conjunction with current liners in order to improve the liner's performance by preventing the release of hazardous chemicals into the subsurface...

  6. St. Louis Sites Fact Sheet RISK ASSESSMENT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    St. Louis Sites Fact Sheet RISK ASSESSMENT "Gateway to Excellence" U.S. Army Corps of Engineers St. Louis District WHAT IS A RISK ASSESSMENT? The risk assessment is a method used to quantify threats). By examining the potential adverse effects caused by a hazardous substance, the risk assessment can help decide

  7. Simultaneous imaging/reflectivity measurements to assess diagnostic mirror cleaning

    SciTech Connect (OSTI)

    Skinner, C. H.; Gentile, C. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Doerner, R. [University of California at San Diego, La Jolla, California 92093-0417 (United States)

    2012-10-15

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We describe a technique to assess the efficacy of mirror cleaning techniques and detect any damage to the mirror surface. The method combines microscopic imaging and reflectivity measurements in the red, green, and blue spectral regions and at selected wavelengths. The method has been applied to laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150-420 nm thick. It is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber.

  8. Author's personal copy Journal of Hazardous Materials 185 (2011) 983989

    E-Print Network [OSTI]

    Ma, Lena

    2011-01-01

    of frond harvesting regimes and arsenic levels in refill water Seenivasan Natarajana,1 , Robert H. Stampsa online 8 October 2010 Keywords: Chinese brake fern Hydroponic tanks Phytoremediation Frond harvest Water, three frond-harvesting regimes (all, mature, and senescing fronds) and two water-refilling schemes

  9. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    E-Print Network [OSTI]

    Jones, Robert; Wills, Brandon; Kang, Christopher

    2010-01-01

    Been Exposed to Deadly Gas on Tacoma’s Tideflats. ” The NewsMedical Center, ATTN: MCHJ- EM, Tacoma, WA 98431. Email:of Emergency Medicine, Tacoma, WA Supervising Section

  10. Process and material that encapsulates solid hazardous waste

    DOE Patents [OSTI]

    O'Brien, Michael H. (Idaho Falls, ID); Erickson, Arnold W. (Idaho Falls, ID)

    1999-01-01

    A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

  11. Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY

  12. Hazardous Materials Packaging and Transportation Safety (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-23

    This draft has been scheduled for final review before the Directives Review Board on 11-4-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 11-2-15.

  13. Author's personal copy Journal of Hazardous Materials 190 (2011) 909915

    E-Print Network [OSTI]

    Ma, Lena

    2011-01-01

    bioenergy technologies make it possible to convert waste biomass into value-added biochar and Corresponding author. E-mail address: lqma@ufl.edu (L.Q. Ma). at the same time produce bioenergy. Sugar beet tailing

  14. Mr. John Kieling, Acting Chief Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMove dataKiel ing , ActingActing

  15. Mr. Steve lappe, Project Leader Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMove dataKiel ing , ActingActingP.En

  16. Ensuring Safe Shipment of Hazardous Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartmentApril 13,truck carries a waste shipment from

  17. Remediation of DOE hazardous waste sites: Planning and integration requirements

    SciTech Connect (OSTI)

    Geffen, C.A.; Garrett, B.A.; Cowan, C.E.; Siegel, M.R.; Keller, J.F. )

    1989-09-01

    The US Department of Energy (DOE) is faced with a immense challenge in effectively implementing a program to mitigate and manage the environmental impacts created by current operations and from past activities at its facilities. The current regulatory framework and public interest in the environmental arena have made operating DOE facilities in an environmentally responsible manner a compelling priority. This paper provides information on the results of a project funded by DOE to obtain a better understanding of the regulatory and institutional drivers in the hazardous waste market and the costs and timeframes required for remediation activities. Few realize that before remediating a hazardous waste site, a comprehensive planning process must be conducted to characterize the nature and extent of site contamination, calculate the risk to the public, and assess the effectiveness of various remediation technologies. The US Environmental Protection Agency (EPA) and others have found that it may take up to 7 years to complete the planning process at an average cost of $1.0 million per site. While cost information is not yet available for DOE sites, discussions with hazardous waste consulting firms indicate that average characterization and assessment costs will be 5 to 10 times this amount for DOE sites. The higher costs are expected because of the additional administrative requirements placed on DOE sites, the need to handle mixed wastes, the amount and extent of contamination at many of these sites, and the visibility of the sites. 15 refs., 1 fig., 2 tabs.

  18. Teaching Materials! 1. PROGRAMS OF STUDY ! ! ! ! ! ! ! ! !

    E-Print Network [OSTI]

    Burg, Theresa

    a selection on Rhythm and Music (K-6)! ! ! 5. ASSESSMENT MATERIAL! ! ! ! ! ! Curriculum GuidesMUSIC ! Teaching Materials! !!! ! 1. PROGRAMS OF STUDY ! ! ! ! ! ! ! ! ! !Music Program of Studies Assessment: A Handbook for Teaching and Assessing Music in Elementary Classrooms (Edmonton Public Schools

  19. Hazardous and Radioactive Mixed Waste

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-12-31

    To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

  20. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    SciTech Connect (OSTI)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  1. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    Biological Safety Officer Ergonomic Specialist 2723 Radiation Safety 2250 Facilities Management Office 2125. ANNUAL REVIEW AND EVALUATION OF EFFECTIVENESS OF THE CHEMICAL HYGIENE PLAN 9. HAZARD COMMUNICATION PLAN

  2. Hazardous Waste Management System-General (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

  3. Identification of Hazards, 3/9/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs.  Surveillance activities encompass maintenance and implementation of safety...

  4. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo...

  5. Vermont Conditionally Exempt Generator Handbook: A Hazardous...

    Open Energy Info (EERE)

    Conditionally Exempt Generator Handbook: A Hazardous Waste Management Guide for Smaller Vermont Business Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  6. Hazards Control, 3/9/35

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's programs and policy for establishing controls to mitigate hazards affecting the public, worker, and...

  7. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  8. Waste Issues Associated with the Safe Movement of Hazardous Chemicals

    SciTech Connect (OSTI)

    Dare, J. H.; Cournoyer, M. E.

    2002-02-26

    Moving hazardous chemicals presents the risk of exposure for workers engaged in the activity and others that might be in the immediate area. Adverse affects are specific to the chemicals and can range from minor skin, eye, or mucous membrane irritation, to burns, respiratory distress, nervous system dysfunction, or even death. A case study is presented where in the interest of waste minimization; original shipping packaging was removed from a glass bottle of nitric acid, while moving corrosive liquid through a security protocol into a Radiological Control Area (RCA). During the transfer, the glass bottle broke. The resulting release of nitric acid possibly exposed 12 employees with one employee being admitted overnight at a hospital for observation. This is a clear example of administrative controls to reduce the generation of suspect radioactive waste being implemented at the expense of employee health. As a result of this event, material handling procedures that assure the safe movement of hazardous chemicals through a security protocol into a radiological control area were developed. Specifically, hazardous material must be transferred using original shipping containers and packaging. While this represents the potential to increase the generation of suspect radioactive waste in a radiological controlled area, arguments are presented that justify this change. Security protocols for accidental releases are also discussed. In summary, the 12th rule of ''Green Chemistry'' (Inherently Safer Chemistry for Accident Prevention) should be followed: the form of a substance used in a chemical process (Movement of Hazardous Chemicals) should be chosen to minimize the potential for chemical accidents, including releases.

  9. 324 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    Eggen, C.D.

    1998-09-16

    In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the US Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480.7A. Additionally, one observation was provided. To date, four of the recommendations and the one observation have been completed. Actions identified for seven of the recommendations are currently in progress. Exemption requests will be transmitted to DOE-RL for three of the recommendations. Six of the recommendations are related to future shut down activities of the facility and the corrective actions are not being addressed as part of this plan. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process. Major Life Safety Code concerns have been corrected. The status of the recommendations and actions was confirmed during the July 1998 Fire Protection Assessment. BVMC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480.7A and RLID 5480.7.

  10. Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 Identification of Hazardous Chemical Waste

    E-Print Network [OSTI]

    Ford, James

    Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 · Identification of Hazardous Chemical Waste OBJECTIVES Do you know how to do the following? If you do, skip ahead to Minimization of Hazardous Waste section. If you do not, continue on in this section. · Determine whether

  11. ORNL grouting technologies for immobilizing hazardous wastes

    SciTech Connect (OSTI)

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon.

  12. Pollution prevention benefits of non-hazardous shielding glovebox gloves - 11000

    SciTech Connect (OSTI)

    Cournoyer, Michael E; Dodge, Robert L

    2011-01-11

    Radiation shielding is commonly used to protect the glovebox worker from unintentional direct and secondary radiation exposure, while working with plutonium-238 and plutonium-239. Shielding glovebox gloves are traditionally composed of lead-based materials, i.e., hazardous waste. This has prompted the development of new, non-hazardous shielding glovebox gloves. No studies, however, have investigated the pollution prevention benefits of these new glovebox gloves. We examined both leaded and non-hazardous shielding glovebox gloves. The nonhazardous substitutes are higher in cost, but this is offset by eliminating the costs associated with onsite waste handling of Resource Conservation and Recovery Act (RCRA) items. In the end, replacing lead with non-hazardous substitutes eliminates waste generation and future liability.

  13. Chemical Emissions of Residential Materials and Products: Review of Available Information

    E-Print Network [OSTI]

    Willem, Henry

    2010-01-01

    44: 525- Page | 39 Chemical Emissions of ResidentialHazard Assessment of Chemical Air Contaminants Measured intoxicity Page | 37 Chemical Emissions of Residential

  14. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  15. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  16. Nat. Hazards Earth Syst. Sci., 8, 577586, 2008 www.nat-hazards-earth-syst-sci.net/8/577/2008/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 8, 577­586, 2008 www.nat-hazards-earth-syst-sci.net/8 Hazards and Earth System Sciences Integrated approach for coastal hazards and risks in Sri Lanka M. Garcin the importance of knowledge and the taking into account of coastal hazards. Sri Lanka was one of the countries

  17. LAB HAZARD CHECKLIST Please check the hazards that are associated with your lab and complete the section

    E-Print Network [OSTI]

    Firestone, Jeremy

    LAB HAZARD CHECKLIST Please check the hazards that are associated with your lab and complete of Environmental Health and Safety. HAZARDS: Biological Hazard ­ Biosafety levels 2 or 3 organisms present Laser Radiation Hazards ­Any work involving class 3b or 4 lasers Flammable Gas ­ Compressed gas cylinders

  18. Nat. Hazards Earth Syst. Sci., 6, 553561, 2006 www.nat-hazards-earth-syst-sci.net/6/553/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 553­561, 2006 www.nat-hazards-earth-syst-sci.net/6/553/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Introduction Risk consists of hazard and vulnerability. We can define "hazard" like "a threatening event

  19. Nat. Hazards Earth Syst. Sci., 6, 637651, 2006 www.nat-hazards-earth-syst-sci.net/6/637/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 637­651, 2006 www.nat-hazards-earth-syst-sci.net/6/637/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Hazards and Landscape (BFW), Department of Natural Hazards and Alpine Timberline, Innsbruck, Austria 3

  20. Hazard Priority and Remediation Hazards are prioritized according to the severity of the resulting injury, potential damage, and the

    E-Print Network [OSTI]

    de Lijser, Peter

    Hazard Priority and Remediation Hazards are prioritized according to the severity of the resulting injury, potential damage, and the probability of occurrence. Imminent and serious procedures or hazards Description Correction Date 1 EMERGENCY HAZARD Emergency Hazards threaten life safety or health, property