National Library of Energy BETA

Sample records for hazardous air pollutant

  1. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  2. National Emission Standards for Hazardous Air Pollutants submittal -- 1997

    SciTech Connect (OSTI)

    Townsend, Y.E.; Black, S.C.

    1998-06-01

    Each potential source of Nevada Test Site (NTS) emissions was characterized by one of the following methods: (1) monitoring methods and procedures previously developed at the NTS; (2) a yearly radionuclide inventory of the source, assuming that volatile radionuclide are released to the environment; (3) the measurement of tritiated water (as HTO or T{sub 2}O) concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) using a combination of environmental measurements and CAP88-PC to calculate emissions. The emissions for National Emission Standards for Hazardous Air Pollutants (NESHAPs) reporting are listed. They are very conservative and are used in Section 3 to calculate the EDE to the maximally exposed individual offsite. Offsite environmental surveillance data, where available, are used to confirm that calculated emissions are, indeed, conservative.

  3. National Emission Standards for Hazardous Air Pollutants submittal -- 1994

    SciTech Connect (OSTI)

    Townsend, Y.E.; Black, S.C.

    1995-06-01

    This report focuses on air quality at the Nevada Test Site (NTS) for 1994. A general description of the effluent sources are presented. Each potential source of NTS emissions was characterized by one of the following: (1) by monitoring methods and procedures previously developed at NTS; (2) by a yearly radionuclide inventory of the source, assuming that volatile radionuclides are released to the environment; (3) by the measurement of tritiated water concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) by using a combination of environmental measurements and CAP88-PC to calculate emissions. Appendices A through J describe the methods used to determine the emissions from the sources. These National Emission Standards for Hazardous Air Pollutants (NESHAP) emissions are very conservative, are used to calculate the effective dose equivalent to the Maximally Exposed Individual offsite, and exceed, in some cases, those reported in DOE`s Effluent Information System (EIS). The NESHAP`s worst-case emissions that exceed the EIS reported emissions are noted. Offsite environmental surveillance data are used to confirm that calculated emissions are, indeed, conservative.

  4. 1998 INEEL National Emission Standard for Hazardous Air Pollutants - Radionuclides

    SciTech Connect (OSTI)

    J. W. Tkachyk

    1999-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1998. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1998, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  5. 1999 INEEL National Emission Standards for Hazardous Air Pollutants - Radionuclides

    SciTech Connect (OSTI)

    J. W. Tkachyk

    2000-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1999. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1999, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  6. National Emission Standards for Hazardous Air Pollutants Calendar Year 2005

    SciTech Connect (OSTI)

    Bechtel Nevada

    2006-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nation’s site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides that are resuspended into the air (e.g., by winds, dust-devils) along with historically-contaminated soils on the NTS. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (40 Code of Federal Regulations 61 Subpart H) limits the release of radioactivity from a U. S. Department of Energy (DOE) facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent (EDE) to any member of the public. This is the dose limit established for someone living off of the NTS for inhaling radioactive particles that may be carried by wind off of the NTS. This limit assumes that members of the public surrounding the NTS may also inhale “background levels” or radioactive particles unrelated to NTS activities that come from naturally-occurring elements in the environment (e.g., radon gas from the earth or natural building materials) or from other man-made sources (e.g., cigarette smoke). The U. S. Environmental Protection Agency (EPA) requires DOE facilities (e.g., the NTS) to demonstrate compliance with the NESHAP dose limit by annually estimating the dose to a hypothetical member of the public, referred to as the maximally exposed individual (MEI), or the member of the public who resides within an 80-kilometer (50-mile) radius of the facility who would experience the highest annual dose. This dose to a hypothetical person living close to the NTS cannot exceed 10 mrem/yr. C.1 This report has been produced annually for the EPA Region IX, and for the state of Nevada since 1992 and documents that the estimated EDE to the MEI has been, and continues to be, well below the NESHAP dose limit. The report format and level of technical detail has been dictated by the EPA and DOE Headquarters over the years. It is read and evaluated for NESHAP compliance by federal and state regulators. Each section and appendix presents technical information (e.g., NTS emission source estimates, onsite air sampling data, air transport model input parameters, dose calculation methodology, etc.), which supports the annual dose assessment conclusions. In 2005, as in all previous years for which this report has been produced, the estimated dose to the public from inhalation of radiological emissions from current and past NTS activities is shown to be well below the 10 mrem/yr dose limit. This was demonstrated by air sampling data collected onsite at each of six EPA-approved “critical receptor” stations on the NTS. The sum of measured EDEs from the four stations at the NTS boundaries is 2.5 mrem/yr. This dose is 25 percent of the allowed NESHAP dose limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, this individual receives only a small fraction of this dose. NESHAP compliance does not require DOE facilities to estimate annual inhalation dose from non-DOE activities. Therefore, this report does not estimate public radiation doses from any other sources or activities (e.g., naturally-occurring radon, global fallout).

  7. National Emission Standards for Hazardous Air Pollutants, June 2005

    SciTech Connect (OSTI)

    Robert F. Grossman

    2005-06-01

    The sources of radionuclides include current and previous activities conducted on the NTS. The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing has included (1) atmospheric testing in the 1950s and early 1960s, (2) underground testing between 1951 and 1992, and (3) open-air nuclear reactor and rocket engine testing (DOE, 1996a). No nuclear tests have been conducted since September 23,1992 (DOE, 2000), however; radionuclides remaining on the soil surface in many NTS areas after several decades of radioactive decay are re-suspended into the atmosphere at concentrations that can be detected by air sampling. Limited non-nuclear testing includes spills of hazardous materials at the Non-Proliferation Test and Evaluation Complex (formerly called the Hazardous Materials Spill Center), private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses; handling, transport, storage, and assembly of nuclear explosive devices or radioactive targets for the Joint Actinide Shock Physics Experimental Research (JASPER) gas gun; and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE, 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in calendar year (CY) 2004 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and water pumped from wells used to characterize the aquifers at the sites of past underground nuclear tests, (2) onsite radioanalytical laboratories, (3) the Area 3 and Area 5 RWMS facilities, and (4) diffuse sources of tritium (H{sup 3}) and re-suspension of plutonium ({sup 239+240}Pu) and americium ({sup 241}Am) at the sites of past nuclear tests. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility (NLVF). At the NLVF, parts of Building A-1 were contaminated with tritium by a previous contractor in 1995. The incident involved the release of tritium as HTO. This unusual occurrence led to a very small potential exposure to an offsite person. The HTO emission has continued at lower levels (probably re-emanation from building materials), even after cleanup activities in November and December 1997. A description of the incident and the potential effective dose equivalent (EDE) for offsite exposure are set forth in Appendix A.

  8. National Emission Standards for Hazardous Air Pollutants Calendar Year 2001

    SciTech Connect (OSTI)

    Y. E. Townsend

    2002-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) as the site for nuclear weapons testing, now limited to readiness activities, experiments in support of the national Stockpile Stewardship Program, and the activities listed below. Located in Nye County, Nevada, the site's southeast corner is about 88 km (55 mi) northwest of the major population center, Las Vegas, Nevada. The NTS covers about 3,561 km2 (1,375 mi2), an area larger than Rhode Island. Its size is 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands (Figure 1.0). The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS, and slow-moving groundwater is present hundreds to thousands of feet below the land surface. The sources of radionuclides include current and previous activities conducted on the NTS (Figure 2.0). The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing above or at ground surface has included (1) atmospheric testing in the 1950s and early 1960s, (2) earth-cratering experiments, and (3) open-air nuclear reactor and rocket engine testing. Since the mid-1950s, testing of nuclear explosive devices has occurred underground in drilled vertical holes or in mined tunnels (DOE 1996a). No such tests have been conducted since September 23, 1992 (DOE 2000). Limited non-nuclear testing includes spills of hazardous materials at the Hazardous Materials Spill Center, private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses, and handling is restricted to transport, storage, and assembly of nuclear explosive devices and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in CY 2001 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and from discharges of two wells (Well U-3cn PS No. 2 and Well ER-20-5 No.3) into lined ponds, (2) onsite radio analytical laboratories, (3) the Area 5 RWMS (RWMS-5) facility, and (4) diffuse sources of tritium and re- suspension of plutonium and americium. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility.

  9. National Emission Standards for Hazardous Air Pollutants Calendar Year 2006

    SciTech Connect (OSTI)

    NSTec Environmental Technical Services

    2007-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically-contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration.

  10. 1990 INEL national emission standards for hazardous air pollutants

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The Environmental Protection Agency issued on December 15, 1989 final rules governing air emissions of radionuclides. Requirements concerning radionuclide emissions from Department of Energy Facilities are addressed under Title 40, Code Federal Regulations (CFR) 61, Subpart H, National Emission Standards for Emissions of Radionuclides other Than Radon From Department of Energy Facilities.'' Section 61.94 of the regulations require that each DOE facility submit on an annual basis a report documenting compliance with the Subpart H requirements. This report addresses the section 61.94 reporting requirements for operations at the Idaho National Engineering Laboratory (INEL) for calendar year 1990. The Idaho Operations Office of the Department of Energy is the primary contact concerning NESHAPs compliance at the INEL.

  11. National Emission Standards for Hazardous Air Pollutants Calendar Year 1999

    SciTech Connect (OSTI)

    R. F. Grossman

    2000-06-01

    The Nevada Test Site (NTS) is operated by the US Department of Energy's Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing, now limited to readiness activities and experiments in support of the national Stockpile Stewardship Management Program. It is located in Nye County, Nevada, with the southeast corner about 105 km (65 mi) northwest of Las Vegas, Nevada. The NTS covers about 3,561 km{sup 2} (1,375 mi{sup 2}), an area larger than Rhode Island. Its size is about 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands. The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS and there is great depth to slow-moving groundwater.

  12. National Emission Standards for Hazardous Air Pollutants Submittal - 1998

    SciTech Connect (OSTI)

    Stuart Black; Yvonne Townsend

    1999-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing, now limited to readiness activities and experiments in support of the national Stockpile Stewardship Management Program. It is located in Nye County, Nevada, with the southeast corner about 105 km (65 mi) northwest of Las Vegas, Nevada. The NTS covers about 3,500 km2 (1,350 mi2), an area larger than Rhode Island. Its size is about 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi)north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands. The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Surface waters are scarce on the NTS and there is great depth to slow-moving groundwater.

  13. National Emission Standards for Hazardous Air Pollutants. Calendar Year 2012 INL Report for Radionuclides (2013)

    SciTech Connect (OSTI)

    Verdoorn, Mark; Haney, Tom

    2013-06-01

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, ''Protection of the Environment,'' Part 61, ''National Emission Standards for Hazardous Air Pollutants,'' Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  14. National Emission Standards for Hazardous Air Pollutants. Calendar Year 2013 INL Report for Radionuclides [2014

    SciTech Connect (OSTI)

    Verdoorn, Mark; Haney, Tom

    2014-06-01

    This report documents the calendar year 2013 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, ''Protection of the Environment,'' Part 61, ''National Emission Standards for Hazardous Air Pollutants,'' Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'' The effective dose equivalent to the maximally exposed individual member of the public was 3.02 E-02 mrem per year, 0.30 percent of the 10 mrem standard.

  15. Applicability issues and compliance strategies for the proposed oil and gas industry hazardous air pollutant standards

    SciTech Connect (OSTI)

    Tandon, N.; Winborn, K.A.; Grygar, W.W. II

    1999-07-01

    The US Environmental Protection Agency (US EPA) has targeted oil and natural gas transmission and storage facilities located across the United States for regulation under the National Emission Standards for Hazardous Air Pollutants (NESHAP) program (proposed in Title 40, Code of Federal Regulations, Part 63 [40 CFR 63], Subparts HH and HHH). The proposed NESHAP were published in the February 6, 1998 Federal Register and are expected to be promulgated in May 1999. These rules are intended to reduce Hazardous Air Pollutants (HAP) emitted from oil and gas facilities. It is expected that these rules will require more than 400 major sources and more than 500 non-major sources (also referred to as area sources) to meet maximum achievable control technology (MACT) standards defined in the NESHAP. The rules would regulate HAP emission from glycol dehydration units, storage vessels and various fugitive leak sources. This technical paper addresses the applicability issues and compliance strategies related to the proposed NESHAP. The applicability criteria for both rules differ from those promulgated for other source categories under 40 CFR 63. For example, individual unit throughput and/or HAP emission thresholds may exempt specific units from the MACT standards in the NESHAP. The proposed Subpart HH would apply not only to major sources, but also to triethylene glycol (TEC) dehydration units at area sources located in urban areas. For both proposed NESHAP all 199 HAP must be considered for the major source determinations, but only 15 specific HAP are targeted for control under the proposed standards. An overview of the HAP control requirements, exemption criteria, as well as initial and continued compliance determination strategies are presented. Several industry examples are included to assist industry develop compliance strategies.

  16. Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1993-08-01

    The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ``major`` sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ``an ample margin of safety,`` the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country`s economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern.

  17. A study of hazardous air pollutants at the Tidd PFBC Demonstration Plant

    SciTech Connect (OSTI)

    1994-10-01

    The US Department of Energy (DOE) Clean Coal Technology (CCD Program is a joint effort between government and industry to develop a new generation of coal utilization processes. In 1986, the Ohio Power Company, a subsidiary of American Electric Power (AEP), was awarded cofunding through the CCT program for the Tidd Pressure Fluidized Bed Combustor (PFBC) Demonstration Plant located in Brilliant, Ohio. The Tidd PFBC unit began operation in 1990 and was later selected as a test site for an advanced particle filtration (APF) system designed for hot gas particulate removal. The APF system was sponsored by the DOE Morgantown Energy Technology Center (METC) through their Hot Gas Cleanup Research and Development Program. A complementary goal of the DOE CCT and METC R&D programs has always been to demonstrate the environmental acceptability of these emerging technologies. The Clean Air Act Amendments of 1990 (CAAA) have focused that commitment toward evaluating the fate of hazardous air pollutants (HAPs) associated with advanced coal-based and hot gas cleanup technologies. Radian Corporation was contacted by AEP to perform this assessment of HAPs at the Tidd PFBC demonstration plant. The objective of this study is to assess the major input, process, and emission streams at Plant Tidd for the HAPs identified in Title III of the CAAA. Four flue gas stream locations were tested: ESP inlet, ESP outlet, APF inlet, and APF outlet. Other process streams sampled were raw coal, coal paste, sorbent, bed ash, cyclone ash, individual ESP hopper ash, APF ash, and service water. Samples were analyzed for trace elements, minor and major elements, anions, volatile organic compounds, dioxin/furan compounds, ammonia, cyanide, formaldehyde, and semivolatile organic compounds. The particle size distribution in the ESP inlet and outlet gas streams and collected ash from individual ESP hoppers was also determined.

  18. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2011-06-30

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations (U.S. Environmental Protection Agency [EPA] and DOE, 1995). This method was approved by the EPA for use on the NNSS in 2001(EPA, 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2010, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1 percent to a maximum of 17 percent of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of that measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000032 mrem/yr, more than 300,000 times lower than the 10 mrem/yr limit.

  19. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2007

    SciTech Connect (OSTI)

    Robert Grossman; Ronald Warren

    2008-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This is the dose limit established for someone living off of the NTS from radionuclides emitted to air from the NTS. This limit does not include the radiation doses that members of the public may receive through the intake of radioactive particles unrelated to NTS activities, such as those that come from naturally occurring elements in the environment (e.g., naturally occurring radionuclides in soil or radon gas from the earth or natural building materials), or from other man-made sources (e.g., medical treatments). The NTS demonstrates compliance using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. There are six critical receptor locations on the NTS that are actually pseudocritical receptor locations because they are hypothetical receptor locations; no person actually resides at these onsite locations. Annual average concentrations of detected radionuclides are compared with Concentration Levels (CL) for Environmental Compliance values listed in 40 CFR 61, Appendix E, Table 2. Compliance is demonstrated if the sum of fractions (CL/measured concentrations) of all detected radionuclides at each pseudo-critical receptor location is less than one. In 2007, as in all previous years for which this report has been produced, the NTS has demonstrated that the potential dose to the public from radiological emissions to air from current and past NTS activities is well below the 10 mrem/yr dose limit. Air sampling data collected onsite at each of the six pseudo-critical receptor stations on the NTS had average concentrations of nuclear test-related radioactivity that were a fraction of the limits listed in Table 2 in Appendix E of 40 CFR 61. They ranged from less than 1 percent to a maximum of 20 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS.

  20. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2013

    SciTech Connect (OSTI)

    Warren, R.

    2014-06-04

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitations to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2013, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from 0.2% to a maximum of 10.1% of the allowed NESHAP limit. Because the nearest member of the public resides about 9 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000011 mrem/yr, more than 900,000 times lower than the 10 mrem/yr limit.

  1. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2012

    SciTech Connect (OSTI)

    Warren, R.

    2013-06-10

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2012, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 0.5% to a maximum of 11.1% of the allowed NESHAP limit. Because the nearest member of the public resides about 9 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000024 mrem/yr, more than 400,000 times lower than the 10 mrem/yr limit.

  2. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2011

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2012-06-19

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan. Radionuclides from the Fukushima nuclear power plant were detected at the NNSS in March 2011 and are discussed further in Section III. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the EPA for use on the NNSS in 2001 and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2. For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2011, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1% to a maximum of 12.2% of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000024 mrem/yr, more than 400,000 times lower than the 10 mrem/yr limit.

  3. Savannah River Site radionuclide air emissions annual report for national emission standards for hazardous air pollutants

    SciTech Connect (OSTI)

    Sullivan, I.K.

    1993-12-31

    The radiological air emission sources at the SRS have been divided into three categories, Point, Grouped and Non-Point, for this report. Point sources, analyzed individually, are listed with a listing of the control devices, and the control device efficiency. The sources listed have been grouped together either for security reasons or where individual samples are composited for analytical purposes. For grouped sources the listed control devices may not be on all sources within a group. Point sources that did not have continuous effluent monitoring/sampling in 1993 are noted. The emissions from these sources was determined from Health Protection smear data, facility radionuclide content or other calculational methods, including process knowledge, utilizing existing analytical data. This report also contain sections on facility descriptions, dose assessment, and supplemental information.

  4. Filtration technology for the control of solid hazardous air pollutants in paint booth operations

    SciTech Connect (OSTI)

    Stolle, M.

    1997-12-31

    In October of 1996, the EPA released the draft Aerospace NESHAP regulation that targets hazardous air pollutant (HAP) emissions from aerospace manufacturing and rework operations. One of the key provisions focuses on the control of inorganic HAPs released from application operations involving hexavalent chromium based primers. The NESHAP regulation mandates that coating facilities which release inorganic HAPS meet specific particulate emission control efficiencies or requirements, and further specifies different control requirements for new and existing facilities. The provisions pertaining to inorganic HAP emissions from coating operations were developed through the efforts of many individuals from the industrial, military, manufacturing, and regulatory sectors, and were the subject of intense discussion that spanned a period of years. Throughout this process, a topic of major debate was the development of dry filter particulate control efficiency requirements that would achieve an appropriate level of emission control, and could reasonably met by manufacturers and filter suppliers alike. The control requirements that are the topic of this paper mandate specific collection efficiencies for various particle size ranges. Recent studies on particle size characteristics of overspray generated by hexavalent chrome primer applications indicate that the NESHAP standard may not achieve the level of emission control that was initially intended. This paper presents the results of a detailed, third party analysis that focuses on the actual control efficiencies for chromate-based priming operations that will be achieved by the new standard. Following a general filtration efficiency discussion, an overview of the procedure employed to evaluate the overall efficiencies that will be achieved by NESHAP compliant filters is provided. The data upon which the evaluation was derived are presented.

  5. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2008

    SciTech Connect (OSTI)

    Ronald Warren and Robert F. Grossman

    2009-06-30

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to under-ground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by winds) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the North Las Vegas Facility (NLVF), an NTS support complex in the city of North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2008a) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from other man-made sources such as medical treatments. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration of each detected radionuclide at each of these locations is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2008a). At any one location, if multiple radionuclides are detected then compliance with NESHAP is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2008, the potential dose from radiological emissions to air, from both current and past NTS activities, at onsite compliance monitoring stations was a maximum of 1.9 mrem/yr; well below the 10 mrem/yr dose limit. Air sampling data collected at all six pseudo-critical receptor stations had average concentrations of radioactivity that were a fraction of the CL values listed in Table 2 in Appendix E of 40 CFR 61 (CFR, 2008a). Concentrations ranged from less than 1 percent to a maximum of 19 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS. Potential dose to the public from NLVF was also very low at 0.00006 mrem/yr; more than 160,000 times lower than the 10 mrem/yr limit.

  6. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2009

    SciTech Connect (OSTI)

    Ciucci, John

    2010-06-11

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada Test Site (NTS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the NLVF, an NTS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from sources such as medically or commercially used radionuclides. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration of each detected radionuclide at each of these locations is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2. At any one location, if multiple radionuclides are detected, then compliance with NESHAP is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2009, the potential dose from radiological emissions to air, resulting from both current and past NTS activities, at onsite compliance monitoring stations was a maximum of 1.69 mrem/yr, well below the 10 mrem/yr dose limit. Air sampling data collected at all six critical receptor stations had average concentrations of radioactivity that were a fraction of the CL values listed in Table 2 in Appendix E of 40 CFR 61. Concentrations ranged from less than 1 percent to a maximum of 17 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers from potential release points on the NTS, concentrations at this location would be only a small fraction of that measured on the NTS. The potential dose to the public from NLVF emissions was also very low at 0.000044 mrem/yr, 230,000 times lower than the 10 mrem/yr limit.

  7. Basis to demonstrate compliance with the National Emission Standards for Hazardous Air Pollutants for the Stand-off Experiments Range

    SciTech Connect (OSTI)

    Michael Sandvig

    2011-01-01

    The purpose of this report is to provide the basis and the documentation to demonstrate general compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPS) 40 CFR 61 Subpart H, “National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities,” (the Standard) for outdoor linear accelerator operations at the Idaho National Laboratory (INL) Stand-off Experiments Range (SOX). The intent of this report is to inform and gain acceptance of this methodology from the governmental bodies regulating the INL.

  8. Lawrence Livermore National Laboratory Quality Assurance Project Plan for National Emission Standards for Hazardous Air Pollutants (NESHAPs), Subpart H

    SciTech Connect (OSTI)

    Hall, L.; Biermann, A

    2000-06-27

    As a Department of Energy (DOE) Facility whose operations involve the use of radionuclides, Lawrence Livermore National Laboratory (LLNL) is subject to the requirements of 40 CFR 61, the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Subpart H of this Regulation establishes standards for exposure of the public to radionuclides (other than radon) released from DOE Facilities (Federal Register, 1989). These regulations limit the emission of radionuclides to ambient air from DOE facilities (see Section 2.0). Under the NESHAPs Subpart H Regulation (hereafter referred to as NESHAPs), DOE facilities are also required to establish a quality assurance program for radionuclide emission measurements; specific requirements for preparation of a Quality Assurance Program Plan (QAPP) are given in Appendix B, Method 114 of 40 CFR 61. Throughout this QAPP, the specific Quality Assurance Method elements of 40 CFR 61 Subpart H addressed by a given section are identified. In addition, the US Environmental Protection Agency (US EPA) (US EPA, 1994a) published draft requirements for QAPP's prepared in support of programs that develop environmental data. We have incorporated many of the technical elements specified in that document into this QAPP, specifically those identified as relating to measurement and data acquisition; assessment and oversight; and data validation and usability. This QAPP will be evaluated on an annual basis, and updated as appropriate.

  9. Evaluation of innovative volatile organic compound and hazardous air-pollutant-control technologies for U. S. Air Force paint spray booths. Final report, Aug 88-Aug 89

    SciTech Connect (OSTI)

    Ritts, D.H.; Garretson, C.; Hyde, C.; Lorelli, J.; Wolbach, C.D.

    1990-10-01

    Significant quantities of volatile organic compounds (VOCs) and hazardous air pollutants are released into the atmosphere during USAF maintenance operations. Painting operations conducted in paint spray booths are major sources of these pollutants. Solvent based epoxy primers and solvent-based polyurethane coatings are typically used by the Air Force for painting aircraft and associated equipment. Solvents used in these paints include methyl ethyl ketone (MEK), toluene, lacquer thinner, and other solvents involved in painting and component cleaning. In this report, carbon paper adsorption/catalytic incineration (CPACI) and fluidized-bed catalytic incineration (FBCI) were evaluated as control technologies to destroy VOC emissions from paint spray booths. Simultaneous testing of pilot-scale units was performed to evaluate the technical performance of both technologies. Results showed that each technology maintained greater than 99 percent Destruction and Removal Efficiencies (DREs). Particulate emissions from both pilot-scale units were less than 0.08 grains/dry standard cubic foot. Emissions of the criteria pollutants--sulfur oxides, nitrogen oxides, and carbon monoxide--were also below general regulatory standards for incinerators. Economic evaluations were based on a compilation of manufacturer-supplied data and energy consuption data gathered during the pilot scale testing. CPACM and FBCI technologies are less expensive than standard VOC control technologies when net present costs for a 15-year equipment life are compared.

  10. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    SciTech Connect (OSTI)

    1997-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,`` each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  11. Hanford Site radionuclide national emission standards for hazardous air pollutants registered stack source assessment

    SciTech Connect (OSTI)

    Davis, W.E.; Barnett, J.M.

    1994-07-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency,, Region 10. The Compliance Order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford Site . The evaluation also determined if the effective dose equivalent from any of these stack emissions exceeded 0.1 mrem/yr, which will require the stack to have continuous monitoring. The result of this assessment identified a total of 16 stacks as having potential emissions that,would cause an effective dose equivalent greater than 0.1 mrem/yr.

  12. 1990 INEL national emission standards for hazardous air pollutants. Annual report, June 1991

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The Environmental Protection Agency issued on December 15, 1989 final rules governing air emissions of radionuclides. Requirements concerning radionuclide emissions from Department of Energy Facilities are addressed under Title 40, Code Federal Regulations (CFR) 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides other Than Radon From Department of Energy Facilities.`` Section 61.94 of the regulations require that each DOE facility submit on an annual basis a report documenting compliance with the Subpart H requirements. This report addresses the section 61.94 reporting requirements for operations at the Idaho National Engineering Laboratory (INEL) for calendar year 1990. The Idaho Operations Office of the Department of Energy is the primary contact concerning NESHAPs compliance at the INEL.

  13. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1992-09-01

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions).

  14. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect (OSTI)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  15. Global Atmospheric Pollution Forum Air Pollutant Emission Inventory...

    Open Energy Info (EERE)

    Atmospheric Pollution Forum Air Pollutant Emission Inventory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Atmospheric Pollution (GAP) Forum Air Pollutant...

  16. A reevaluation of the National Emission Standards for Hazardous Air Pollutants (NESHAP - 40 CFR 61, Subpart H) program at Sandia National Laboratories, New Mexico

    SciTech Connect (OSTI)

    Culp, T.A.; Hylko, J.M.

    1997-10-01

    The initial National Emission Standards for Hazardous Air Pollutants (NESHAP - 40 CFR 61, Subpart H) Program at Sandia National Laboratories, New Mexico (SNL/NM) required: (1) continuous air monitoring of sources if the calculated effective dose equivalent (EDE) to the maximum exposed individual (MEI) was > 0.1 mrem/yr; (2) the determination of emissions based on measurements or measured parameters if the EDE to the MEI was < 0.1 mrem/yr; and (3) the calculation of worst case releases when the expected air concentrations were below detection limits using standard monitoring equipment. This conservative interpretation of the regulation guided SNL/NM to model, track, and trend virtually all emission sources with the potential to include any radionuclides. The level of effort required to implement these activities was independent of the EDE contributing from individual sources. A recent programmatic review found the NESHAP program to be in excess of the legal requirements. A further review found that, in summation, 13 of 16 radionuclide sources had a negligible impact on the final calculated EDE to the MEI used to demonstrate compliance at 20 separate on-site receptor locations. A reevaluation was performed to meet the legal requirements of 40 CFR 61, Subpart H, and still be reasonable and appropriate under the existing circumstances.

  17. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report

    SciTech Connect (OSTI)

    1998-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

  18. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  19. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    SciTech Connect (OSTI)

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  20. Looking for Hazardous Pollutants in Your Kitchen

    ScienceCinema (OSTI)

    Singer, Brett

    2014-05-13

    For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.

  1. Looking for Hazardous Pollutants in Your Kitchen

    SciTech Connect (OSTI)

    Singer, Brett

    2013-07-22

    For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.

  2. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  3. Title 40 CFR 300 National Oil and Hazardous Substances Pollution...

    Open Energy Info (EERE)

    0 National Oil and Hazardous Substances Pollution Contingency Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal...

  4. Lidar techniques for chemical and aerosol air pollution studies

    SciTech Connect (OSTI)

    Hardesty, R.M.

    1993-12-31

    At the Wave Propagation Laboratory (WPL), lidar methods are being applied in several areas of air pollution research. Differential absorption lidar (DIAL) systems for measuring ozone, ethylene, and other pollutants have been recently developed. The ozone instrument profiles ozone concentration in the boundary layer and lower troposphere to study sources, sinks, and transport of ozone. A goal is to combine DIAL and Doppler lidar techniques for measurement of the vertical fluxes of ozone and other pollutants. Doppler lidars have been also used at WPL to study visibility reduction caused by aerosol pollutants at the Grand Canyon, and to investigate dispersion of hazardous emissions near the Rocky Flats nuclear plant.

  5. Hawaii Air Pollution Control Permits Webpage | Open Energy Information

    Open Energy Info (EERE)

    Air Pollution Control Permits Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Air Pollution Control Permits Webpage Abstract Information...

  6. Knowledge Partnership for Measuring Air Pollution and Greenhouse...

    Open Energy Info (EERE)

    Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and...

  7. EPA Air Pollution and the Clean Air Act Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Pollution and the Clean Air Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Air Pollution and the Clean Air Act Webpage Abstract...

  8. Colorado Air Pollutant Emission Notice (APEN) Form | Open Energy...

    Open Energy Info (EERE)

    Department of Public Health and Environment of the construction of a new source of pollution. Form Type ApplicationNotice Form Topic Air Pollutant Emission Notice &...

  9. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. 2005 Diesel Engine Emissions...

  10. Nevada Bureau of Air Pollution Control Permit Forms Webpage ...

    Open Energy Info (EERE)

    Bureau of Air Pollution Control Permit Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Bureau of Air Pollution Control Permit...

  11. Commonwealth of Virginia, State Air Pollution Control Board,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Commonwealth of Virginia, State Air ...

  12. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2010 INL Report for Radionuclides (2011)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2011-06-01

    This report documents the calendar Year 2010 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'

  13. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2011 INL Report for Radionuclides (2012)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2012-06-01

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  14. Air-pollutant emissions from kerosene space heaters

    SciTech Connect (OSTI)

    Leaderer, B.P.

    1982-12-10

    Air pollutant emissions from portable convective and radiant kerosene space heaters were measured in an environmental chamber. Emission factors for nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, and oxygen depletion are presented. The data suggest that the use of such heaters in residences can result in exposures to air pollutants in excess of ambient air quality standards and in some cases in excess of occupational health standards.

  15. WAC 173-400 - General Regulations for Air Pollution Sources ...

    Open Energy Info (EERE)

    400 - General Regulations for Air Pollution Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC 173-400 - General...

  16. Observing Emissions of Air Pollutants from Space | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to study the future turnover of vehicle fleets around the world and the likely effects on air pollution and climate. This project has used satellite data to monitor CO, CO2,...

  17. WAC - 173-400 General Regulations for Air Pollution Sources ...

    Open Energy Info (EERE)

    400 General Regulations for Air Pollution Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173-400 General...

  18. Harboring Pollution: Air Quality Impacts of Marine Ports | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Harboring Pollution: Air Quality Impacts of Marine Ports Harboring Pollution: Air Quality Impacts of Marine Ports 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Resources Defense Council PDF icon 2004_deer_bailey.pdf More Documents & Publications Cleaning Up Diesel Engines South Coast AQMD Clean Transportation Programs Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility

  19. Lichens as bioindicators of geothermal air pollution in central Italy

    SciTech Connect (OSTI)

    Loppi, S.

    1996-11-01

    The suitability of lichens as bioindicators of geothermal air pollution was evaluated in central Italy. Fifty-one sites were sampled in the Travale-Radicondoli geothermal field, an area of about 15 km{sup 2}. Lichens on 1-5 trees per station were sampled, using 30 x 50 cm grids on tree boles, where lichens were most dense. Index of Atmospheric Purity (IAP) was calculated as the sum of the frequencies of all lichen species present at the station. Using automatic mapping programs, the area was divided into four air quality zones and the lowest IAP values were found within about 500 m of geothermal power plants. No direct measurements of air pollution are available for the whole study area, however, other studies show that air pollution levels (mercury, boron) fall with distance from a geothermal source. Also no substrate parameter (height, circumference, bark pH, and buffer capacity of the trees) discriminates between IAP zones. This suggests that air pollution arising from geothermal emissions is responsible for the zonation shown, with values for species richness and IAP rising with distance from geothermal installations. It is concluded that lichens are reliable bioindicators of geothermal pollution. 64 refs., 1 fig., 3 tabs.

  20. Commonwealth of Virginia, State Air Pollution Control Board, Order by

    Energy Savers [EERE]

    Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 | Department of Energy Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Docket No. EO-05-01: This is a Consent Order issued under the authority of Va. Code § § 10.1-1307D and 10.1-1307.1, between the

  1. Winter season air pollution in El Paso-Ciudad Juarez. A review of air pollution studies in an international airshed

    SciTech Connect (OSTI)

    Einfeld, W.; Church, H.W.

    1995-03-01

    This report summarizes a number of research efforts completed over the past 20 years in the El Paso del Norte region to characterize pollution sources and air quality trends. The El Paso del Norte region encompasses the cities of El Paso, Texas and Ciudad Juarez, Chihuahua and is representative of many US-Mexico border communities that are facing important air quality issues as population growth and industrialization of Mexican border communities continue. Special attention is given to a group of studies carried out under special US Congressional funding and administered by the US Environmental Protection Agency. Many of these studies were fielded within the last several years to develop a better understanding of air pollution sources and trends in this typical border community. Summary findings from a wide range of studies dealing with such issues as the temporal and spatial distribution of pollutants and pollution potential from both stationary and mobile sources in both cities are presented. Particular emphasis is given to a recent study in El Paso-Ciudad Juarez that focussed on winter season PM{sub 10} pollution in El Paso-Ciudad Juarez. Preliminary estimates from this short-term study reveal that biomass combustion products and crustal material are significant components of winter season PM{sub 10} in this international border community.

  2. Process for removal of hazardous air pollutants from coal

    DOE Patents [OSTI]

    Akers, David J. (Indiana, PA); Ekechukwu, Kenneth N. (Silver Spring, MD); Aluko, Mobolaji E. (Burtonsville, MD); Lebowitz, Howard E. (Mountain View, CA)

    2000-01-01

    An improved process for removing mercury and other trace elements from coal containing pyrite by forming a slurry of finely divided coal in a liquid solvent capable of forming ions or radicals having a tendency to react with constituents of pyrite or to attack the bond between pyrite and coal and/or to react with mercury to form mercury vapors, and heating the slurry in a closed container to a temperature of at least about 50.degree. C. to produce vapors of the solvent and withdrawing vapors including solvent and mercury-containing vapors from the closed container, then separating mercury from the vapors withdrawn.

  3. H.A.R. 11-60.1 - Air Pollution Control | Open Energy Information

    Open Energy Info (EERE)

    60.1 - Air Pollution Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-60.1 - Air Pollution ControlLegal...

  4. Pollution prevention benefits of non-hazardous shielding glovebox gloves - 11000

    SciTech Connect (OSTI)

    Cournoyer, Michael E; Dodge, Robert L

    2011-01-11

    Radiation shielding is commonly used to protect the glovebox worker from unintentional direct and secondary radiation exposure, while working with plutonium-238 and plutonium-239. Shielding glovebox gloves are traditionally composed of lead-based materials, i.e., hazardous waste. This has prompted the development of new, non-hazardous shielding glovebox gloves. No studies, however, have investigated the pollution prevention benefits of these new glovebox gloves. We examined both leaded and non-hazardous shielding glovebox gloves. The nonhazardous substitutes are higher in cost, but this is offset by eliminating the costs associated with onsite waste handling of Resource Conservation and Recovery Act (RCRA) items. In the end, replacing lead with non-hazardous substitutes eliminates waste generation and future liability.

  5. InMAP: a new model for air pollution interventions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-29

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations – the air pollution outcome generally causing the largest monetized health damages – attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical andmore »chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3) concentrations. The InMAP model source code and input data are freely available online.« less

  6. Lower Rio Grande Valley transboundary air pollution project (TAPP). Project report 1996--1997

    SciTech Connect (OSTI)

    Mukerjee, S.; Shadwick, D.S.; Dean, K.E.; Carmichael, L.Y.; Bowser, J.J.

    1999-04-01

    The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a US-Mexico Border XXI project to find out if air pollutants were moving across the border from Mexico into the Lower Rio Grande Valley of Texas and to see what levels of air pollutants were present. Ambient measurements and meteorology were collected data for a year (March 1996-March 1997) at three fixed sites in and near Brownsville, Texas very close to the US-Mexico border on a continuous and 24-h internal basis. Overall levels of air pollution were similar to or lower than other areas in Texas and elsewhere. Based on wind sector analyses, transport of air pollution across the border did not appear to adversely impact air quality on the US side of the Valley. Southeasterly winds from the Gulf of Mexico were largely responsible for the clean air conditions.

  7. 5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution...

    Open Energy Info (EERE)

    -5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: 5 CCR...

  8. A methodology for evaluating air pollution strategies to improve the air quality in Mexico City

    SciTech Connect (OSTI)

    Barrera-Roldan, A.S.; Guzman, F.; Hardie, R.W.; Thayer, G.R.

    1995-05-01

    The Mexico City Air Quality Research Initiative has developed a methodology to assist decision makers in determining optimum pollution control strategies for atmospheric pollutants. The methodology introduces both objective and subjective factors in the comparison of various strategies for improving air quality. Strategies or group of options are first selected using linear programming. These strategies are then compared using Multi-Attribute Decision Analysis. The decision tree for the Multi-Attribute Decision Analysis was generated by a panel of experts representing the organizations in Mexico that are responsible for formulating policy on air quality improvement. Three sample strategies were analyzed using the methodology: one to reduce ozone by 33% using the most cost effective group of options, the second to reduce ozone by 43% using the most cost effective group of options and the third to reduce ozone by 43% emphasizing the reduction of emissions from industrial sources. Of the three strategies, the analysis indicated that strategy 2 would be the preferred strategy for improving air quality in Mexico City.

  9. WAC 173-460 - Controls for New Sources of Toxic Air Pollutants...

    Open Energy Info (EERE)

    73-460 - Controls for New Sources of Toxic Air Pollutants Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC 173-460 -...

  10. NAC 445B.287 et seq - Air Pollution Control Operating Permits...

    Open Energy Info (EERE)

    287 et seq - Air Pollution Control Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.287 et seq -...

  11. NAC 445B.3485 et seq - Air Pollution Control: Class III Operating...

    Open Energy Info (EERE)

    85 et seq - Air Pollution Control: Class III Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC...

  12. NAC 445B.3453 et seq - Air Pollution Control: Class II Operating...

    Open Energy Info (EERE)

    53 et seq - Air Pollution Control: Class II Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.3453...

  13. NAC 445B.352 et seq - Air Pollution Control: Class IV Operating...

    Open Energy Info (EERE)

    52 et seq - Air Pollution Control: Class IV Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.352...

  14. NAC 445B.3361 et seq - Air Pollution Control: Class I Operating...

    Open Energy Info (EERE)

    361 et seq - Air Pollution Control: Class I Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.3361...

  15. IDAPA 58.01.01 - Rules for the Control of Air Pollution in Idaho...

    Open Energy Info (EERE)

    1 - Rules for the Control of Air Pollution in Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA 58.01.01 - Rules...

  16. Emission factors for several toxic air pollutants from fluidized-bed combustion of coal

    SciTech Connect (OSTI)

    Smith, A.E.

    1986-03-01

    Clean coal technologies such as fluidized-bed combustion have the potential to emit the same trace elements as conventional combustors. Since the US Environmental Protection Agency (EPA) is likely to promulgate National Emission Standards for Hazardous Air Pollutants for several trace elements, the feasibility of using fluidized-bed combustors to reduce sulfur dioxide emissions may depend in part on the relative amounts of trace elements emitted by fluidized-bed and conventional combustors. Emissions of trace elements from both atmospheric and pressurized fluidized-bed combustors were compared with those from conventional combustors by developing fluidized-bed emission factors from information available in the literature and comparing them with the emission factors for conventional combustors recommended in a literature search conducted for EPA. The comparisons are based on the mass of emission per unit of heat input for antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, vanadium, and zinc. When inaccuracies in the data were taken into account, the trace element emissions from atmospheric fluidized-bed combustion seem to be somewhat higher than those from a conventional utility boiler burning pulverized coal and somewhat lower than those from pressurized fluidized-bed combustion.

  17. Greenhouse Gas and Air Pollution Interactions and Synergies ...

    Open Energy Info (EERE)

    in five-year intervals through the year 2050. GAINS provides estimates on ambient air quality and the subsequent impacts on human health and ecosystems, as well as...

  18. Bibliography of work on the photocatalytic removal of hazardous compounds from water and air

    SciTech Connect (OSTI)

    Blake, D.M.

    1994-05-01

    This is a bibliography of information in the open literature on work that has been done to date on the photocatalytic oxidation of compounds, principally organic compounds. The goal of the listing is removing hazardous oompounds from water or air. It contains lists of substances and literature citations. The bibliography includes information obtained through the middle of 1993 and some selected references for the balance of that year.

  19. LITERATURE SEARCH FOR METHODS FOR HAZARD ANALYSES OF AIR CARRIER OPERATIONS.

    SciTech Connect (OSTI)

    MARTINEZ - GURIDI,G.; SAMANTA,P.

    2002-07-01

    Representatives of the Federal Aviation Administration (FAA) and several air carriers under Title 14 of the Code of Federal Regulations (CFR) Part 121 developed a system-engineering model of the functions of air-carrier operations. Their analyses form the foundation or basic architecture upon which other task areas are based: hazard analyses, performance measures, and risk indicator design. To carry out these other tasks, models may need to be developed using the basic architecture of the Air Carrier Operations System Model (ACOSM). Since ACOSM encompasses various areas of air-carrier operations and can be used to address different task areas with differing but interrelated objectives, the modeling needs are broad. A literature search was conducted to identify and analyze the existing models that may be applicable for pursuing the task areas in ACOSM. The intent of the literature search was not necessarily to identify a specific model that can be directly used, but rather to identify relevant ones that have similarities with the processes and activities defined within ACOSM. Such models may provide useful inputs and insights in structuring ACOSM models. ACOSM simulates processes and activities in air-carrier operation, but, in a general framework, it has similarities with other industries where attention also has been paid to hazard analyses, emphasizing risk management, and in designing risk indicators. To assure that efforts in other industries are adequately considered, the literature search includes publications from other industries, e.g., chemical, nuclear, and process industries. This report discusses the literature search, the relevant methods identified and provides a preliminary assessment of their use in developing the models needed for the ACOSM task areas. A detailed assessment of the models has not been made. Defining those applicable for ACOSM will need further analyses of both the models and tools identified. The report is organized in four chapters. Chapter 2 briefly describes ACOSM, and its structure, using the format of the Integrated Definition Function Model (IDEFO). A reader who is familiar with ACOSM may want to skip this chapter and continue with Chapter 3 that discusses the process we used for identifying applicable approaches for hazard analysis of air-carrier operations as modeled in ACOSM. It consisted of the following three main steps: (1) Search the literature containing articles related to hazard- or risk-analysis with potential applicability to air-carrier operations, (2) Review the selected publications and identify those with possible relevance to ACOSM, and (3) Group the selected publications or methods according to certain characteristics, such as their pertinence to specific areas of ACOSM. Chapter 4 discusses the applicability of the identified approaches to ACOSM, the areas of methods development, and comments related to methods development for ACOSM. The following areas were defined to identify the methods that may be applicable for ACOSM: (1) Identification of hazards associated with operations and activities; (2) Hazard-assessment techniques; (3) Modeling dependencies and interrelations leading to vulnerabilities; (4) Risk-management tools; (5) Data-assessment techniques; and (6) Risk-indicator identification. In addition, issues of human reliability and operational culture are relevant for all the above areas. They are expected to be addressed within each of them. We do not include in this report all the lists of publications that we obtained because they are voluminous. We keep them in our records which are available to the interested reader.

  20. A statistical study of the macroepidemiology of air pollution and total mortality

    SciTech Connect (OSTI)

    Lipfert, F.W.; Malone, R.G.; Daum, M.L.; Mendell, N.R.; Yang, Chin-Chun

    1988-04-01

    A statistical analysis of spatial patterns of 1980 US urban total mortality (all causes) was performed, evaluating demographic, socioeconomic and air pollution factors as predictors. Specific mortality predictors included cigarette smoking, drinking water hardness, heating fuel use, and 1978-1982 annual concentrations of the following air pollutants: ozone, carbon monoxide, sulfate aerosol, particulate concentrations of lead, iron, cadmium, manganese, vanadium, as well as total and fine particle mass concentrations from the inhalable particulate network (dichotomous samplers). In addition, estimates of sulfur dioxide, oxides of nitrogen, and sulfate aerosol were made for each city using the ASTRAP long-range transport diffusion model, and entered into the analysis as independent variables. Because the number of cities with valid air quality and water hardness data varied considerably by pollutant, it was necessary to consider several different data sets, ranging from 48 to 952 cities. The relatively strong associations (ca. 5--10%) shown for 1980 pollution with 1980 total mortality are generally not confirmed by independent studies, for example, in Europe. In addition, the US studies did not find those pollutants with known adverse health effects at the concentrations in question (such as ozone or CO) to be associated with mortality. The question of causality vs. circumstantial association must therefore be regarded as still unresolved. 59 refs., 20 figs., 40 tabs.

  1. Effects of air pollution on the respiratory health of children: a cross-sectional study

    SciTech Connect (OSTI)

    Spinaci, S.; Arossa, W.; Bugiani, M.; Natale, P.; Bucca, C.; de Candussio, G.

    1985-09-01

    To investigate the effects of air pollution on the respiratory health of children, a subject of some controversy, a comparative study was undertaken of 2,385 school children who lived in central urban, peripheral urban, and suburban areas. Daily monitoring of sulfur dioxide and total suspended particle concentrations in all areas showed that pollutant concentrations in central and peripheral urban areas were above commonly accepted safety levels for respiratory health, while concentrations in the suburban area were within acceptable limits. A questionnaire administered to each mother assessed environmental exposure to pollutants in the household, the occurrence of respiratory symptoms as well as lung diseases as diagnosed by a physician, and general information. Children were interviewed about smoking habits and any acute respiratory symptoms. Children also performed standard lung function tests. Results showed that children from both urban areas had lessened pulmonary function and a higher prevalence of bronchial secretion with common colds than did those from the suburban area. These differences persisted after corrections for exposure to indoor pollutants, active or passive smoking, socioeconomic status, and sex. Parental cigarette smoking was related to a fall in forced expiratory volume in 1 second and an increased incidence of acute respiratory illnesses and chronic cough in children. Although boys had higher lung volumes and lower air flow, regression analysis showed no significant influence of the interactions sex-geographic area and sex-smoking on lung function. It was concluded that air pollution has a significant effect on the respiratory health of children.

  2. Pulmonary function and respiratory symptoms of school children exposed to ambient air pollution

    SciTech Connect (OSTI)

    Kim, Yoon Shin; Ko, Ung Ring

    1996-12-31

    This study was undertaken to evaluate the health effect of air pollution on pulmonary function and respiratory symptoms of Korean school children between 7 and 10 years of age during November 1995-January 1996. A standard respiratory symptom questionnaire was administered and spirometry was performed to examine pulmonary function of 121 children in an urban polluted area, Seoul, and of 119 children in non-polluted area, Sokcho, respectively. There was significant difference in the level of pulmonary function [forced expiratory volume in second (FEV{sub 1.0}) and forced vital capacity (FVC)] between exposed groups to polluted area and non-polluted area. Parental smoking was significantly related to respiratory symptoms of cough, phlegm, and the level of pulmonary function. The observed changes in FEV{sub 1.0} and FVC seemed to relate to home cooking fuel, not to respiratory symptoms. The additional longitudinal work that carefully monitors ambient and indoor air pollution and health effects data should be conducted to confirm these results.

  3. Air Force pollution prevention research and development program

    SciTech Connect (OSTI)

    Montoya, G.

    1995-12-01

    The prevention surveys pollution prevention R&D in selected technology areas to meet high priority customer needs. Projects are categorized into four areas: Ozone Deleting Compound (ODC) Elimination, HAZMAT Materials and Substitution, HAZMAT Waste Reduction, and Volatile Organic Compound (VOC) Elimination. Each category has specific goals. The ODC Elimination goal was to eliminate the purchases of ODCs by 1 Apr 94. The HAZMAT Materials and Process Replacement goal is to reduce the purchase of EPA 17 materials from 1992 baseline 50% by the end of 1996. The HAZMAT Waste Reduction goal is 25% by the end of 1996, and 50% by the end of 1999. VOC elimination goals are included in the HAZMaT Materials and Substitution and HAZMAT Waste Reduction areas. Each category consists of a portfolio of projects which meet high priority customer technology needs (TNs) and contributes to meeting specific goals. The presentation provides more detailed information for the On-Board Halon Replacement Program, Atomic Oxygen Cleaning process for Oxygen Systems, Non-Chemical Metal Surface Preparation, and LARPS.

  4. Combatting urban air pollution through Natural Gas Vehicle (NGV) analysis, testing, and demonstration

    SciTech Connect (OSTI)

    1995-03-01

    Deteriorating urban air quality ranks as a top concern worldwide, since air pollution adversely affects both public health and the environment. The outlook for improving air quality in the world`s megacities need not be bleak, however, The use of natural gas as a transportation fuel can measurably reduce urban pollution levels, mitigating chronic threats to health and the environment. Besides being clean burning, natural gas vehicles (NGVs) are economical to operate and maintain. The current cost of natural gas is lower than that of gasoline. Natural gas also reduces the vehicle`s engine wear and noise level, extends engine life, and decreases engine maintenance. Today, about 700,000 NGVs operate worldwide, the majority of them converted from gasoline or diesel fuel. This article discusses the economic, regulatory and technological issues of concern to the NGV industry.

  5. Integrated Air Pollution Control System (IAPCS), Executable Model (Version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  6. Daily air pollution effects on children's respiratory symptoms and peak expiratory flow

    SciTech Connect (OSTI)

    Vedal, S.; Schenker, M.B.; Munoz, A.; Samet, J.M.; Batterman, S.; Speizer, F.E.

    1987-06-01

    To identify acute respiratory health effects associated with air pollution due to coal combustion, a subgroup of elementary school-aged children was selected from a large cross-sectional study and followed daily for eight months. Children were selected to obtain three equal-sized groups: one without respiratory symptoms, one with symptoms of persistent wheeze, and one with cough or phlegm production but without persistent wheeze. Parents completed a daily diary of symptoms from which illness constellations of upper respiratory illness (URI) and lower respiratory illness (LRI) and the symptom of wheeze were derived. Peak expiratory flow rate (PEFR) was measured daily for nine consecutive weeks during the eight-month study period. Maximum hourly concentrations of sulfur dioxide, nitrogen dioxide, ozone, and coefficient of haze for each 24-hour period, as well as minimum hourly temperature, were correlated with daily URI, LRI, wheeze, and PEFR using multiple regression models adjusting for illness occurrence or level of PEFR on the immediately preceding day. Respiratory illness on the preceding day was the most important predictor of current illness. A drop in temperature was associated with increased URI and LRI but not with increased wheeze or with a decrease in level of PEFR. No air pollutant was strongly associated with respiratory illness or with level of PEFR, either in the group of children as a whole, or in either of the symptomatic subgroups; the pollutant concentrations observed, however, were uniformly lower than current ambient air quality standards.

  7. Polycyclic aromatic hydrocarbons in olive fruits as a measure of air pollution in the valley of Florence (Italy)

    SciTech Connect (OSTI)

    Ignesti, G.; Lodovici, M.; Dolara, P.; Lucia, P.; Grechi, D.

    1992-06-01

    Plants have often been used for monitoring air pollution, such as Tradescantia for detecting mutagenic chemicals, or mosses which are bio-accumulators of heavy metals. Mosses have also been used as indicators of pollution from hexachlorobenzene and polycyclic aromatic hydrocarbons. PAH are present in most crops, and are deposited on the foliar surface of plants exposed to polluted air. Plants grown in heavily polluted environments have a higher concentration of PAH than those growing in clean environments, and plants grown in cabinets with filtered air have a very low concentration of PAH. Alimentary oils have high concentrations of PAH due to crop exposure to air pollutants and a high solubility of PAH in oils. PAH are important initiators of some human cancers and their monitoring is believed to be important for public health. Most Italian towns are heavily polluted by car exhaust and industrial sources, and a high concentration of PAH has been reported in the air particulate of urban areas. On the basis of these premises we thought it of interest to determine the concentration of some PAH in the olive fruits of trees growing in the valley of Florence (Italy), to establish if this approach could be useful for monitoring air pollution by PAH. 9 refs., 3 figs.

  8. The effects of air pollution regulations on the US refining industry. Task 3

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    Numerous air pollution regulations affecting petroleum refineries recently have been promulgated, have been proposed, or are under consideration at the federal, state, and local level. As shown in Figure ES-1, all of these environmental regulations are intended to take effect over the relatively short time period from 1989 through 1995. In the aggregate these regulatory activities have significant implications for the US refining industry and the Nation, including: Major investment requirements; changes in industry profitability; potential closure of some refineries; and potential changes in crude oil or product import dependence. At issue is whether the cumulative effect of these regulations could so adversely affect the US refining industry that US national security would be affected. In addition to the regulations outlined in Figure ES-1, President Bush recently presented a major new plan to improve the nation`s air quality. The aspects of the President`s plan that could strongly affect US refineries are summarized below.

  9. Daily diaries of respiratory symptoms and air pollution: Methodological issues and results

    SciTech Connect (OSTI)

    Schwartz, J. ); Wypij, D.; Dockery D.; Ware, J.; Spengler, J.; Ferris, B. Jr. ); Zeger, S. )

    1991-01-01

    Daily diaries of respiratory symptoms are a powerful technique for detecting acute effects of air pollution exposure. While conceptually simple, these diary studies can be difficult to analyze. The daily symptom rates are highly correlated, even after adjustment for covariates, and this lack of independence must be considered in the analysis. Possible approaches include the use of incidence instead of prevalence rates and autoregressive models. Heterogeneity among subjects also induces dependencies in the data. These can be addressed by stratification and by two-stage models such as those developed by Korn and Whittemore. These approaches have been applied to two data sets: a cohort of school children participating in the Harvard Six Cities Study and a cohort of student nurses in Los Angeles. Both data sets provide evidence of autocorrelation and heterogeneity. Controlling for autocorrelation corrects the precision estimates, and because diary data are usually positively autocorrelated, this leads to larger variance estimates. Controlling for heterogeneity among subjects appears to increase the effect sizes for air pollution exposure. Preliminary results indicate associations between sulfur dioxide and cough incidence in children and between nitrogen dioxide and phlegm incidence in student nurses.

  10. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOE Patents [OSTI]

    Bose, Ranendra K.

    2002-06-04

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

  11. Determination of a cost-effective air pollution control technology for the control of VOC and HAP emissions from a steroids processing plant

    SciTech Connect (OSTI)

    Hamel, T.M.

    1997-12-31

    A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductions of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.

  12. Air pollution and morbidity: a further analysis of the Los Angeles student nurses data

    SciTech Connect (OSTI)

    Schwartz, J.; Hasselblad, V.; Pitcher, H.

    1988-02-01

    Hammer et al. analyzed daily diary reports of headache, eye irritation, cough, and chest discomfort in a study of Los Angeles student nurses, and found a statistically significant association between these symptoms and daily maximum one-hour oxidant concentrations at a nearby air quality monitor. Our analysis examines the student nurse data for the possible significance of other pollutants. We used new model specifications designed to account for the probabilistic nature of the outcome variables, and to allow for complications arising from the time series aspects of the data. We replicated the finding of a significant relationship between oxidants and coughing and eye irritation, and also found that; carbon monoxide was significantly related to headache symptoms; nitrogen dioxide was significantly related to eye irritation; and sulfur dioxide was significantly related to chest discomfort.

  13. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect (OSTI)

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Molecular Science Institute, School of Chemistry, University of Witwatersrand, Johannesburg; Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester ; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.; Centre for Environmental Sciences, Hasselt University, Diepenbeek

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  14. Passive smoking, air pollution, and acute respiratory symptoms in a diary study of student nurses

    SciTech Connect (OSTI)

    Schwartz, J.; Zeger, S. )

    1990-01-01

    A cohort of approximately 100 student nurses in Los Angeles was recruited for a diary study of the acute effects of air pollution. Smoking histories and presence of asthma and other allergies were determined by questionnaire. Diaries were completed daily and collected weekly for as long as 3 yr. Air pollution was measured at a monitoring location within 2.5 miles of the school. Incidence and duration of a symptom were modeled separately. Pack-years of cigarettes were predictive of the number of episodes of coughing (p less than 0.0001) and of bringing up phlegm (p less than 0.0001). Current smoking, rather than cumulative smoking, was a better predictor of the duration of a phlegm episode (p less than 0.0001). Controlling for personal smoking, a smoking roommate increased the risk of an episode of phlegm (odds ratio (OR) = 1.41, p less than 0.001), but not of cough. Excluding asthmatics (who may be medicated), increased the odds ratio for passive smoking to 1.76 (p less than 0.0001). In logistic regression models controlling for temperature and serial correlation between days, an increase of 1 SD in carbon monoxide exposure (6.5 ppm) was associated with increased risk of headache (OR = 1.09, p less than 0.001), photochemical oxidants (7.4 pphm) were associated with increased risk of chest discomfort (OR = 1.17, p less than 0.001) and eye irritation (OR = 1.20 p less than 0.001), and nitrogen dioxide (9.1 pphm) was associated with increased risk of phlegm (OR = 1.08 p less than 0.01), sore throats (OR = 1.26, p less than 0.001), and eye irritation (OR = 1.16, p less than 0.001).

  15. Reduce air, reduce compliance cost new patented spray booth technology

    SciTech Connect (OSTI)

    McGinnis, F.

    1997-12-31

    A New Paint Spray Booth System that dramatically reduces air volumes normally required for capturing and controlling paint overspray that contains either Volatile Organic Compounds (VOC) or Hazardous Air Pollutants (HAP), or both. In turn, a substantial reduction in capital equipment expenditures for air abatement systems and air make-up heaters as well as related annual operating expenses is realized.

  16. Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment

    SciTech Connect (OSTI)

    Sayer, J.H.

    1995-06-01

    The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

  17. Air pollution and childhood respiratory health: Exposure to sulfate and ozone in 10 Canadian Rural Communities

    SciTech Connect (OSTI)

    Stern, B.R.; Raizenne, M.E.; Burnett, R.T.; Jones, L.; Kearney, J.; Franklin, C.A. )

    1994-08-01

    This study was designed to examine differences in the respiratory health status of preadolescent school children, aged 7-11 years, who resided in 10 rural Canadian communities in areas of moderate and low exposure to regional sulfate and ozone pollution. Five of the communities were located in central Saskatchewan, a low-exposure region, and five were located in southwestern Ontario, an area with moderately elevated exposures resulting from long-range atmospheric transport of polluted air masses. In this cross-sectional study, the child's respiratory symptoms and illness history were evaluated using a parent-completed questionnaire, administered in September 1985. Respiratory function was assessed once for each child in the schools between October 1985 and March 1986, by the measurement of pulmonary function for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1.0]), peak expiratory flow rate (PEFR), mean forced expiratory flow rate during the middle half of the FVC curve (FEF[sub 25-75]), and maximal expiratory flow at 50% of the expired vital capacity (V[sub 50]max). After controlling for the effects of age, sex, parental smoking, parental education and gas cooking, no significant regional differences were observed in rates of chronic cough or phlegm, persistent wheeze, current asthma, bronchitis in the past year, or any chest illness that kept the child at home for 3 or more consecutive days during the previous year. Children living in southwestern Ontario had statistically significant (P < 0.01) mean decrements of 1.7% in FVC and 1.3% in FEV[sub 1.0] compared with Saskatchewan children, after adjusting for age, sex, weight, standing height, parental smoking, and gas cooking. There were no statistically significant regional differences in the pulmonary flow parameters (P > 0.05). 54 refs., 1 fig., 7 tabs.

  18. Indoor air pollution from portable kerosene-fired space heaters. [Effects of wick height and fuel consumption rate

    SciTech Connect (OSTI)

    Traynor, G.W.; Apte, M.G.; Dillworth, J.F.; Grimsrud, D.T.

    1983-02-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutant levels. Laboratory tests were conducted on radiant and convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Laboratory-derived CO and NO/sub 2/ emission rates from unvented portable kerosense-fired space heaters are summarized and the effect of wick height and fuel consumption rate on CO and NO/sub 2/ emissions is given. Pollutant concentration profiles resulting from the use of kerosene heaters in a 27m/sup 3/ environmental chamber and a 240m/sup 3/ house are presented. When such heaters are operated for one hour in a 27m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard. Further data on parameters such as heater usage patterns and air exchange rates are needed to determine the actual pollutant exposure that kerosene heater users experience.

  19. State air pollution permit program under subchapter 5 of the Clean Air Act as of August 8, 1995. Master`s thesis

    SciTech Connect (OSTI)

    Smith, J.M.

    1995-05-01

    The Clean Air Act Amendments of 1990 imposed the requirement for a comprehensive set of state air pollution permit programs on a nationwide basis for the first time. Prior to the passage of this law, there were about thirty-five state permit programs, and they were not subject to Federal supervision. During the debate in the House of Representives it was stated that the purpose of the permit program was to clarify and make more enforceable a source`s pollution control requirements. In addition, the Congress wanted to encourage public involvement in the process so that interested citizens will be able to review and help enforce a source`s obligations under the Act.

  20. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  1. Sensitivity analysis of ozone formation and transport for a Central California air pollution episode

    SciTech Connect (OSTI)

    Jin, Ling; Tonse, Shaheen; Cohan, Daniel S.; Mao, Xiaoling; Harley, Robert A.; Brown, Nancy J.

    2009-05-15

    CMAQ-HDDM is used to determine spatial and temporal variations in ozone limiting reagents and local vs upwind source contributions for an air pollution episode in Central California. We developed a first- and second- order sensitivity analysis approach with the Decoupled Direct Method to examine spatial and temporal variations of ozone-limiting reagents and the importance of local vs upwind emission sources in the San Joaquin Valley of central California for a five-day ozone episode (29th July-3rd Aug, 2000). Despite considerable spatial variations, nitrogen oxides (NO{sub x}) emission reductions are overall more effective than volatile organic compound (VOC) control for attaining the 8-hr ozone standard in this region for this episode, in contrast to the VOC control that works better for attaining the prior 1-hr ozone standard. Inter-basin source contributions of NO{sub x} emissions are limited to the northern part of the SJV, while anthropogenic VOC (AVOC) emissions, especially those emitted at night, influence ozone formation in the SJV further downwind. Among model input parameters studied here, uncertainties in emissions of NO{sub x} and AVOC, and the rate coefficient of the OH + NO{sub 2} termination reaction, have the greatest effect on first-order ozone responses to changes in NO{sub x} emissions. Uncertainties in biogenic VOC emissions only have a modest effect because they are generally not collocated with anthropogenic sources in this region.

  2. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect (OSTI)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  3. Integrated Air Pollution Control System (IAPCS), Executable Model and Source Model (version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  4. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    SciTech Connect (OSTI)

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  5. Biological Air Emissions Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Air Emissions Control Biological Air Emissions Control Innovative Technology Enables Low-Cost, Energy-Efficient Treatment of Industrial Exhaust Streams Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol, formaldehyde, acetylaldehyde, and acrolein) during production of wood products must be tightly controlled. Conventional VOCs and HAPs emission

  6. Practical ways to abate air and water pollution worldwide including a unique way to significantly curb global warming

    SciTech Connect (OSTI)

    Snell, J.R.

    1998-07-01

    This paper points out that in the next 50 years it will largely be the developing countries of the world which will continue to industrialize rapidly and hence pollute the water and air of not only their countries but that this pollution is becoming global (80% of the World's population.) From the author's 25 years of consulting experience in the developing countries, their greatest need is to have available to them low cost, innovative processes for pollution abatement will be neglected and the whole world will suffer immensely. The paper discusses in some detail the type of innovative low cost methods which have successfully been used in the categories of wastewater and solid wastes and names 6 other categories where many others exist. All these innovative methods need to be discovered, listed, and tested for quality and dependability, and then made widely available. Large Environmental Engineering Universities and International Consulting Engineering firms need to be organized to undertake these important tasks. The paper also points out the connection between Global Warming and the Solid waste industry and shows how it can be controlled inexpensively by employing a new, unique, and rapid method of converting municipal refuse into methane and then using that to make electricity. Information given in this paper could lead to a vast reduction in future pollution, with the resulting better global health and at the same time save trillions of dollars.

  7. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  8. CRS 25-7-100 et seq - Air Pollution and Prevention Control Act...

    Open Energy Info (EERE)

    Prevention and Control Act. This statutory section sets forth requirements for Colorado's air quality control program. Published NA Year Signed or Took Effect 1980 Legal Citation...

  9. Computed tomography and optical remote sensing: Development for the study of indoor air pollutant transport and dispersion

    SciTech Connect (OSTI)

    Drescher, A.C.

    1995-06-01

    This thesis investigates the mixing and dispersion of indoor air pollutants under a variety of conditions using standard experimental methods. It also extensively tests and improves a novel technique for measuring contaminant concentrations that has the potential for more rapid, non-intrusive measurements with higher spatial resolution than previously possible. Experiments conducted in a sealed room support the hypothesis that the mixing time of an instantaneously released tracer gas is inversely proportional to the cube root of the mechanical power transferred to the room air. One table-top and several room-scale experiments are performed to test the concept of employing optical remote sensing (ORS) and computed tomography (CT) to measure steady-state gas concentrations in a horizontal plane. Various remote sensing instruments, scanning geometries and reconstruction algorithms are employed. Reconstructed concentration distributions based on existing iterative CT techniques contain a high degree of unrealistic spatial variability and do not agree well with simultaneously gathered point-sample data.

  10. Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California

    SciTech Connect (OSTI)

    Ewing, Stephanie A.; Christensen, John N.; Brown, Shaun T.; Vancuren, Richard A.; Cliff, Steven S.; DePaolo, Donald J.

    2010-10-25

    During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29 Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models.

  11. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S.

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_lawson.pdf More Documents & Publications Weekend/Weekday Ozone Study in the South Coast Air Basin Real-World Studies of Ambient Ozone Formation as a Function of NOx Reductions Â… Summary and Implications for Air Quality Impacts The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment

  12. 1995 Idaho National Engineering Laboratory (INEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs): Radionuclides. Annual report

    SciTech Connect (OSTI)

    1996-06-01

    Under Section 61.94 of 40 CFR 61, Subpart H (National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities), each DOE facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at INEL for CY 1995. For that year, airborne radionuclide emissions from INEL operations were calculated to result in a maximum individual dose to a member of the public of 1.80E-02 mrem (1.80E-07 Sievert), well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  13. Precombustion control of air toxics

    SciTech Connect (OSTI)

    Akers, D.J.; Harrison, C.; Nowak, M.; Toole-O`Neil, B.

    1996-12-31

    If regulation of hazardous air pollutant emissions from utility boilers occurs in the next few years, the least-cost, lowest-risk control method for many utilities is likely to be some form of coal cleaning. Approximately 75 percent of coal mined east of the Mississippi River is already cleaned before it is used by the electric utility industry. Current methods of coal cleaning reduce ash and sulfur content by removing ash-forming and sulfur-bearing minerals; these same methods have the capability to remove large amounts of most of the 14 elements named as hazardous air pollutants (HAPs) in Title III of the 1990 Amendments to the Clean Air Act.

  14. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 ?g/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 ?g/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 ?g/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is China’s 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.

  15. Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air, Update Number 2 to October 1996

    SciTech Connect (OSTI)

    Blake, D.M.

    1997-01-01

    The Solar Industrial Program has developed processes that destroy hazardous substances in or remove them from water and air. The processes of interest in this report are based on the application of heterogeneous photocatalysts, principally titanium dioxide or modifications thereof, but work on other heterogeneous catalysts is included in this compilation. This report continues bibliographies that were published in May, 1994, and October, 1995. The previous reports included 663 and 574 citations, respectively. This update contains an additional 518 references. These were published during the period from June 1995 to October 1996, or are references from prior years that were not included in the previous reports. The work generally focuses on removing hazardous contaminants from air or water to meet environmental or health regulations. This report also references work on properties of semiconductor photocatalysts and applications of photocatalytic chemistry in organic synthesis. This report follows the same organization as the previous publications. The first part provides citations for work done in a few broad categories that are generic to the process. Three tables provide references to work on specific substances. The first table lists organic compounds that are included in various lists of hazardous substances identified by the US Environmental Protection Agency (EPA). The second table lists compounds not included in those categories, but which have been treated in a photocatalytic process. The third table covers inorganic compounds that are on EPA lists of hazardous materials or that have been treated by a photocatalytic process. A short update on companies that are active in providing products or services based on photocatalytic processes is provided.

  16. Advanced Materials Laboratory hazards assessment document

    SciTech Connect (OSTI)

    Barnett, B.; Banda, Z.

    1995-10-01

    The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

  17. Clean Air Mercury Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    On February 8, 2008, a three-judge panel on the D.C. Circuit of the U.S. Court of Appeals issued a decision to vacate the Clean Air Mercury Rule (CAMR). In its ruling, the panel cited the history of hazardous air pollutant regulation under Section 112 of the Clean Air Act (CAA). Section 112, as written by Congress, listed emitted mercury as a hazardous air pollutant that must be subject to regulation unless it can be proved harmless to public welfare and the environment. In 2000, the Environmental Protection Agency ruled that mercury was indeed hazardous and must be regulated under Section 112 and, therefore, subjected to the best available control technology for mitigation.

  18. Efficiency of clay-TiO2 nanocomposites on the photocatalytic eliminationof a model hydrophobic air pollutant

    SciTech Connect (OSTI)

    Kibanova, Daria; Cervini-Silva, Javiera; Destaillats, Hugo

    2009-01-01

    Clay-supported TiO2 photocatalysts can potentially improve the performance of air treatment technologies via enhanced adsorption and reactivity of target volatile organic compounds (VOCs). In this study, a bench-top photocatalytic flow reactor was used to evaluate the efficiency of hectorite-TiO2 and kaolinite-TiO2, two novel composite materials synthesized in our laboratory. Toluene, a model hydrophobic VOC and a common indoor air pollutant, was introduced in the air stream at realistic concentrations, and reacted under UVA (gamma max = 365 nm) or UVC (gamma max = 254 nm) irradiation. The UVC lamp generated secondary emission at 185 nm, leading to the formation of ozone and other short-lived reactive species. Performance of clay-TiO2 composites was compared with that of pure TiO2 (Degussa P25), and with UV irradiation in the absence of photocatalyst under identical conditions. Films of clay-TiO2 composites and of P25 were prepared by a dip-coating method on the surface of Raschig rings, which were placed inside the flow reactor. An upstream toluene concentration of ~;;170 ppbv was generated by diluting a constant flow of toluene vapor from a diffusion source with dry air, or with humid air at 10, 33 and 66percent relative humidity (RH). Toluene concentrations were determined by collecting Tenax-TA (R) sorbent tubes downstream of the reactor, with subsequent thermal desorption -- GC/MS analysis. The fraction of toluene removed, percentR, and the reaction rate, Tr, were calculated for each experimental condition from the concentration changes measured with and without UV irradiation. Use of UVC light (UV/TiO2/O3) led to overall higher reactivity, which can be partially attributed to the contribution of gas phase reactions by short-lived radical species. When the reaction rate was normalized to the light irradiance, Tr/I gamma, the UV/TiO2 reaction under UVA irradiation was more efficient for samples with a higher content of TiO2 (P25 and Hecto-TiO2), but not for Kao-TiO2. In all cases, reaction rates peaked at 10percent RH, with Tr values between 10 and 50percent higher than those measured under dry air. However, a net inhibition was observed as RH increased to 33percent and 66percent, indicating that water molecules competed effectively with toluene for reactive surface sites and limited the overall photocatalytic conversion. Compared to P25, inhibition by co-adsorbed water was less significant for Kao-TiO2 samples, but was more dramatic for Hecto-TiO2 due to the high water uptake capacity of hectorite.

  19. Design, operation, and performance of a modern air pollution control system for a refuse derived fuel combustion facility

    SciTech Connect (OSTI)

    Weaver, E.H.; Azzinnari, C.

    1997-12-01

    The Robbins, Illinois refuse derived fuel combustion facility was recently placed into service. Large and new, the facility is designed to process 1600 tons of waste per day. Twenty-five percent of the waste, or 400 tons per day, is separated out in the fuel preparation process. The remaining 1200 tons per day is burned in two circulating fluidized bed boilers. The system is designed to meet new source performance standards for municipal waste combustion facilities, including total particulate, acid gases (HCl, SO{sub 2}, HF), heavy metals (including mercury), and dioxins. The system utilizes semi-dry scrubbers with lime and activated carbon injected through dual fluid atomizers for control of acid gases. Final polishing of acid gas emissions, particulate control, heavy metals removal, and control of dioxins is accomplished with pulse jet fabric filters. This paper discusses the design of the facility`s air pollution control system, including all auxiliary systems required to make it function properly. Also discussed is the actual operation and emissions performance of the system.

  20. The progress of pollution prevention in San Diego County

    SciTech Connect (OSTI)

    Hess, J.R.

    1995-12-01

    The goal of pollution prevention to reduce or eliminate the creation of pollutants through source reduction has gained popularity in the industrial and legislative communities. Corporations have instituted voluntary pollution prevention programs and are participating in government sponsored programs such as the U.S. EPA`s 33/50 program. In parallel to these voluntary efforts, legislation has been promulgated at both the federal and state levels which require industrial facilities to establish hazardous waste minimization programs and to include manufacturing activity data when submitting chemical releases reports under TRI. However, the success of these efforts on a county wide basis has not been established. This study establishes a pollutant prevention index that indicates that pollution prevention and economic activity are not mutually exclusive and evaluates the pollutant discharge trends in San Diego County, California from 1987 through 1992. The pollutant discharges evaluated include: hazardous waste generation, as reported to the Cal-EPA on the uniform hazardous waste manifests; air emissions from annual emission inventories; heavy metal concentrations in industrial wastewater discharges; and annual toxic chemical releases as reported on the SARA 313 Toxic Chemical Release Inventory. Economic indicators used as the ratio denominator for normalizing the pollutant data included: energy use, gross regional product, and value of manufactured product. The relationship of between discharges and economic indicators was analyzed using the Spearman Rank Correlation Coefficient. An evaluation of the raw data was conducted to determine which ratio(s) would be representative pollution prevention indices. Two ratios emerge as viable pollution indices. These are hazardous waste per gross regional product and toxic chemical releases per value of manufactured product.

  1. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  2. The South Karelia Air Pollution Study. The effects of malodorous sulfur compounds from pulp mills on respiratory and other symptoms

    SciTech Connect (OSTI)

    Jaakkola, J.J.; Vilkka, V.; Marttila, O.; Jaeppinen, P.H.; Haahtela, T. )

    1990-12-01

    The paper mills in South Karelia, the southeast part of Finland, are responsible for releasing a substantial amount of malodorous sulfur compounds such as hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and methyl sulfides ((CH3)2S and (CH3)2S2), into ambient air. In the most polluted residential area the annual mean concentrations of hydrogen sulfide and methyl mercaptan are estimated to be 8 and 2 to 5 micrograms/m3 and the highest daily average concentration 100 and 50 micrograms/m3. The annual mean and highest daily concentrations of sulfur dioxide (SO2) are very low. We studied the effects of malodorous sulfur compounds on eye, nasal and respiratory symptoms, and headache in adults. A cross-sectional self-administered questionnaire was distributed in February 1987 and responded to by 488 adults living in a severely (n = 198), a moderately (n = 204), and a nonpolluted community (n = 86). This included questions about occurrence of the symptoms of interest during the previous 4 wk and 12 months and individual, behavioral, and other environmental determinants of the symptoms. The response rate was 83%. The odds ratios (OR) for symptoms experienced often or constantly in severely versus nonpolluted and moderately versus nonpolluted communities were estimated in logistic regression analysis controlling potential confounders. The odds ratios for eye (moderate exposure OR 11.70, Cl95% 2.33 to 58.65; severe exposure OR 11.78, Cl95% 2.35 to 59.09) and nasal symptoms (OR 2.01, Cl95% 0.97 to 4.15; OR 2.19, Cl95% 1.06 to 4.55) and cough (OR 1.89, Cl95% 0.61 to 5.86; OR 3.06, Cl95% 1.02 to 9.29) during the previous 12 months were increased, with a dose-response pattern.

  3. Pollution prevention opportunity assessment United States Naval Base Norfolk Naval Air Station. Project report, 20 June-30 September 1994

    SciTech Connect (OSTI)

    Bowman, D.; DeWaters, J.; Smith, J.; Snow, S.; Thomas, R.

    1995-08-01

    The approach for conducting a Pollution Prevention Opportunity Assessment (PPOA) at the Norfolk NAS is described along with background information about the site. Section 2 provides background information related to cooling tower operations and water treatment processes. Section 3 describes the current cooling tower activities and operations that were observed during the NAS site visit. Possible alternative practices for minimizing these wastes are discussed in Section 4. Recommendations on potential follow-up activities are also included in Section 4. Appendices include PPOA worksheets (Appendix A), National Pollutant Discharge Elimination Systems (NPDES) discharge limits (Appendix B), discharge data (Appendix C), material safety data sheets (MSDS) (Appendix D), the Hampton Roads Sanitation District Cooling Tower Waste Discharge Policy with Industrial Wastewater Pollutant Limitations and Discharge Requirements (Appendix E), and the MSDS for DIAS-Aid Tower Treatment XP-300 (Appendix F).

  4. Guides to pollution prevention: The paint-manufacturing industry

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    Paint manufacturing facilities generate large quantities of both hazardous and nonhazardous wastes. These wastes are: equipment cleaning wastewater and waste solvent, filter cartridges, off-spec paint, spills, leftover containers; and pigment dusts from air pollution control equipment. Reducing the generation of these wastes at the source, or recycling the wastes on- or off-site, will benefit paint manufacturers by reducing raw material needs, reducing disposal costs; and lowering the liabilities associated with hazardous waste disposal. The guide provides an overview of the paint manufacturing processes and operations that generate waste and presents options for minimizing the waste generation through source reduction or recycling.

  5. Sandia Lightning Simulation Facility Building 888. Hazards assessment document

    SciTech Connect (OSTI)

    Banda, Z.; Barnett, B.

    1994-10-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Lightning Simulation Facility, Building 888. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 65 meters.

  6. Sandia Administrative Micrographics Facility, Building 802: Hazards assessment document

    SciTech Connect (OSTI)

    Swihart, A.

    1994-12-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Administrative Micrographics Facility, Building 802. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 33 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 75 meters.

  7. Simulation Technology Laboratory Building 970 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  8. Glass Formulation and Fabrication Laboratory, Building 864, Hazards assessment document

    SciTech Connect (OSTI)

    Banda, Z.; Wood, C.L.

    1995-08-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Glass Formulation and Fabrication Laboratory, Building 864. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 threshold is 96 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  9. The NO{sub x} Budget trading program: a collaborative, innovative approach to solving a regional air pollution problem

    SciTech Connect (OSTI)

    Napolitano, Sam; Stevens, Gabrielle; Schreifels, Jeremy; Culligan, Kevin

    2007-11-15

    The NO{sub x} Budget Trading Program showed that regional cap-and-trade programs are adaptable to more than one pollutant, time period, and geographic scale, and can achieve compliance results similar to the Acid Rain Program. Here are 11 specific lessons that have emerged from the experience. (author)

  10. Installation Restoration Program (IRP) preliminary assessment of the 154th air control squadron. 154th air control squadron, Kekkaha Armory, Hawaii Air National Guard, Kekaha, Kauai, Hawaii. Final report

    SciTech Connect (OSTI)

    1995-01-01

    The document identifies ANGRC attempt to assess possible Installation Restoration Program sites at the station. The process involves research via personal interviews, record searches, review historic data, assessing `As Built Drawings`, aerial photographs, and a site visit. Site investigations of hazardous wastes, installation restoration, soil pollution, site investigations, fuel contamination at air force facilities.

  11. Federal operating permits program under Title V of the Clean Air Act. Final report

    SciTech Connect (OSTI)

    1996-08-01

    ;Table of Contents: Introduction; Transition Between Parts 70 and 71; Title V Obligations and Applicability; Synthetic Minors, Potential to Emit, and Transition Policy; Permit Application Step and Content; Flexible Permit Approaches; Hazardous Air Pollution Program Requirements for Title V; Information Sources; Appendix A. EPA Memoranda; and Appendix B. Seminar Overhead Transparencies.

  12. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect (OSTI)

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  13. 2009 LANL radionuclide air emissions report

    SciTech Connect (OSTI)

    Fuehne, David P.

    2010-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2009. This report meets the reporting requirements established in the regulations.

  14. 2010 LANL radionuclide air emissions report /

    SciTech Connect (OSTI)

    Fuehne, David P.

    2011-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  15. 2008 LANL radionuclide air emissions report

    SciTech Connect (OSTI)

    Fuehne, David P.

    2009-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2008. This report meets the reporting requirements established in the regulations.

  16. Precipitation and Air Pollution at Mountain and Plain Stations in Northern China: Insights Gained from Observations and Modeling

    SciTech Connect (OSTI)

    Guo, Jianping; Deng, Minjun; Fan, Jiwen; Li, Zhanqing; Chen, Qian; Zhai, Panmao; Dai, Zhijian; Li, Xiaowen

    2014-04-27

    We analyzed 40 year data sets of daily average visibility (a proxy for surface aerosol concentration) and hourly precipitation at seven weather stations, including three stations located on the Taihang Mountains, during the summertime in northern China. There was no significant trend in summertime total precipitation at almost all stations. However, light rain decreased, whereas heavy rain increased as visibility decreased over the period studied. The decrease in light rain was seen in both orographic-forced shallow clouds and mesoscale stratiform clouds. The consistent trends in observed changes in visibility, precipitation, and orographic factor appear to be a testimony to the effects of aerosols. The potential impact of large-scale environmental factors, such as precipitable water, convective available potential energy, and vertical wind shear, on precipitation was investigated. No direct links were found. To validate our observational hypothesis about aerosol effects, Weather Research and Forecasting model simulations with spectral-bin microphysics at the cloud-resolving scale were conducted. Model results confirmed the role of aerosol indirect effects in reducing the light rain amount and frequency in the mountainous area for both orographic-forced shallow clouds and mesoscale stratiform clouds and in eliciting a different response in the neighboring plains. The opposite response of light rain to the increase in pollution when there is no terrain included in the model suggests that orography is likely a significant factor contributing to the opposite trends in light rain seen in mountainous and plain areas.

  17. Radionuclide air emissions report for the Hanford site, Calendar year 1994

    SciTech Connect (OSTI)

    Gleckler, B.P.; Diediker, L.P.; Jette, S.J.; Rhoads, K.; Soldat, S.K.

    1995-06-01

    This report documents radionuclide air emissions from the Hanford Site in 1994, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the ``MEI.`` The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

  18. Radionuclide air emissions report for the Hanford Site, calendar year 1992

    SciTech Connect (OSTI)

    Diediker, L.P.; Johnson, A.R.; Rhoads, K.; Klages, D.L.; Soldat, J.K.; Rokkan, D.J.

    1993-06-01

    This report documents radionuclide air emissions from the Hanford Site in 1992 and the resulting effective dose equivalent to an member of the public. The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

  19. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Emission Credits Resulting from Implementation of Energy Conservation Measures

    SciTech Connect (OSTI)

    Cox, Daryl; Papar, Riyaz; Wright, Dr. Anthony

    2012-07-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  20. National Emission Standards for Hazardous Air Pollutants for Major Sources. Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Emission Credits Resulting from Implementation of Energy Conservation Measures

    SciTech Connect (OSTI)

    Papar, Riyaz; Wright, Anthony; Cox, Daryl

    2012-07-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., Subpart DDDDD of CFR Part 63).

  1. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Efficiency Credits Resulting from Implementation of Energy Conservation Measures

    SciTech Connect (OSTI)

    Cox, Daryl; Papar, Riyaz; Wright, Dr. Anthony

    2013-02-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  2. Hanford Site air operating permit application

    SciTech Connect (OSTI)

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  3. Study of air pollution: Effects of ozone on neuropeptide-mediated responses in human subjects. Final report

    SciTech Connect (OSTI)

    Boushey, H.A.

    1991-11-01

    The study examined the hypothesis that ozone inactivates the enzyme, neutral endopeptidase, responsible for limiting the effects of neuropeptides released from afferent nerve endings. Cough response of capsaicin solution delivered from a nebulizer at 2 min. intervals until two or more coughs were produced. Other endpoints measured included irritative symptoms as rated by the subjects on a nonparametric scale, spirometry, of each concentration of ozone were compared to those of filtered air in a single-blind randomized sequence. The results indicate that a 2 h. exposure to 0.4 ppm of ozone with intermittent light exercise alters the sensitivity of airway nerves that mediate the cough response to inhaled materials. This dose of ozone also caused a change in FEV1. A lower level of ozone, 0.02 ppm, caused a change in neither cough threshold nor FEV1, even when the duration of exposure was extended to three hours. The findings are consistent with the author's hypothesis that ozone may sensitize nerve endings in the airways by inactivating neutral endopeptidase, an enzyme that regulates their activity, but they do not demonstrate that directly examining an effect directly mediated by airway nerves allows detection of effects of ozone at doses below those causing effects detected by standard tests of pulmonary function.

  4. Colorado Construction Air Permit Application | Open Energy Information

    Open Energy Info (EERE)

    for a construction permit for construction of a commercial or industrial source of air pollution. Form Type ApplicationNotice Form Topic Air Pollution Control Division -...

  5. The south Karelia air pollution study: Effects of low-level expsoure to malodorous sulfur compounds on symptoms

    SciTech Connect (OSTI)

    Partti-Pellinen, K.; Marttila, O.; Vilkka, V.; Jaakkola, J.J. |

    1996-07-01

    Exposure to very low levels of ambient-air malodorous sulfur compounds and their effect on eye irritation, respiratory-tract symptoms, and central nervous system symptoms in adults were assessed. A cross-sectional self-administered questionnaire (response rate = 77%) was distributed during March and April 1992 to adults (n = 336) who lived in a neighborhood that contained a pulp mill and in a nonpolluted reference community (n = 380). In the exposed community, the measured annual mean concentrations of total reduced sulfur compounds and sulfur dioxide measured in two stations were 2 to 3 {mu}g/m{sup 3} and 1 {mu}g/m{sup 3}, respectively. In the reference community, the annual mean concentration of sulfur dioxide was 1 {mu}g/m{sup 3}. The residents of the community near the pulp mill reported an excess of cough, respiratory infections, and headache during the previous 4 wk, as well as during the preceding 12 mo. The relative risk for headache was increased significantly in the exposed community, compared with the reference area: the adjusted odds ratio (aOR) was 1.83 (95% confidence interval [95% Cl] = 1.06-3.15) during the previous 4 wk and 1.70 (95% Cl = 1.05-2.73) during the preceding 12 mo. The relative risk for cough was also increased during the preceding 12 mo (aOR = 1.64, 95% Cl = 1.01-2.64). These results indicated that adverse health effects of malodorous sulfur compounds occur at lower concentrations than reported previously. 25 refs., 3 tabs.

  6. Hazards Survey and Hazards Assessments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

  7. ABB`s investigations into air toxic emissions from fossil fuel and MSW combustion

    SciTech Connect (OSTI)

    Wesnor, J.D.

    1994-12-31

    Since passage of the Clean Air Act, Asea Brown Boveri (ABB) has been actively developing a knowledge base on the Title 3 hazardous air pollutants, more commonly called air toxics. As ABB is a multinational company, US operating companies are able to call upon work performed by European counterparts, who have faced similar legislation several years ago. In addition to the design experience and database acquired in Europe, ABB Inc. has been pursuing several other avenues to expand its air toxics knowledge. ABB Combustion Engineering (ABB CE) is presently studying the formation of organic pollutants within the combustion furnace and partitioning of trace metals among the furnace outlet streams. ABB Environmental Systems (ABBES) has reviewed available and near-term control technologies and methods. Also, both ABB CE and ABBES have conducted source sampling and analysis at commercial installations for hazardous air pollutants to determine the emission rates and removal performance of various types of equipment. Several different plants hosted these activities, allowing for variation in fuel type and composition, boiler configuration, and air pollution control equipment. This paper discusses the results of these investigations.

  8. Interaction between Titles 2 and 3 of the Clean Air Act as amended, 1990

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1996-02-01

    This report examines Some issues that would I affect the refining industry if the requirements for hazardous air pollutants set out in Title III of the Clean Air Act Amendments were to impede the market entrance of oxygenated fuels, as me; required by Title II. It describes the mandate for reformulated gasoline; considers gasoline characteristics in light of component shifts in refining; examines the supply of, demand for, and cost of various feedstocks and blendstocks; and identifies the emissions and atmospheric impacts that might result from the production and use of reformulated gasoline. Attention is focused on methanol and MTBE, two potential blendstocks that are also hazardous air pollutants, and on maximum achievable control technology standards, which might be applied to the stationary sources that produce them.

  9. Nevada Bureau of Pollution Control Webpage | Open Energy Information

    Open Energy Info (EERE)

    Site: Nevada Bureau of Pollution Control Webpage Abstract Provides information regarding air pollution control in Nevada. Author State of Nevada Division of Environmental...

  10. 49 CFR Parts 171-177: Hazardous Materials Regulations (DOT)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration regulates the transport of hazardous materials through Title 49 of the Code of Federal Regulations (49 CFR), Subchapter C, "Hazardous Materials Regulations." Parts 171-177 provide general information on hazardous materials and regulation for their packaging and their shipment by rail, air, vessel, and public highway.

  11. Photochemical air pollution. Part I

    SciTech Connect (OSTI)

    Goldstein E.; Hackney, J.D.; Rokaw, S.N.

    1985-03-01

    In this paper, epidemiologic studies are reported which indicate that high photochemical oxidant exposures: do not cause mortality or serious illness; may increase the risk of asthmatic attacks in a small percentage of asthmatic patients; appear to reduce pulmonary function in smokers and nonsmokers after long-term exposure; cause acute discomfort of eye and throat, chest irritation and cough; and interfere with athletic performance. Exposure to high ambient levels of NO/sub 2/ is not associated with mortality, serious disease or respiratory dysfunction, but self-limiting symptoms of respiratory irritation or illness may develop in children. 106 references, 2 figures, 1 table.

  12. U.S. DOE 2004 LANL Radionuclide Air Emissions

    SciTech Connect (OSTI)

    K.W. Jacobson

    2005-08-12

    Amendments to the Clean Air Act, which added radionuclides to the National Emissions Standards for Hazardous Air Pollutants (NESHAP), went into effect in 1990. Specifically, a subpart (H) of 40 CFR 61 established an annual limit on the impact to the public attributable to emissions of radionuclides from U.S. Department of Energy facilities, such as the Los Alamos National Laboratory (LANL). As part of the new NESHAP regulations, LANL must submit an annual report to the U.S. Environmental Protection Agency headquarters and the regional office in Dallas by June 30. This report includes results of monitoring at LANL and the dose calculations for the calendar year 2004.

  13. Mobile Source Air Toxics Rule (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    On February 9, 2007, the Environmental Protection Agency (EPA) released its MSAT2 rule, which will establish controls on gasoline, passenger vehicles, and portable fuel containers. The controls are designed to reduce emissions of benzene and other hazardous air pollutants. Benzene is a known carcinogen, and the EPA estimates that mobile sources produced more than 70% of all benzene emissions in 1999. Other mobile source air toxics, including 1,3-butadiene, formaldehyde, acetaldehyde, acrolein, and naphthalene, also are thought to increase cancer rates or contribute to other serious health problems.

  14. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prevention Pollution Prevention Promoting green purchasing, reuse and recycling, and the conservation of fuel, energy, and water. April 17, 2012 Pollution prevention and control...

  15. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect (OSTI)

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  16. Multimedia Environmental Pollutant Assessment System

    Energy Science and Technology Software Center (OSTI)

    1996-07-12

    Integrated system to compute long-term public health risks as the result of the release of hazardous and/or radioactive materials to air, groundwater, surface water, and overland transport pathways.

  17. Overview of the effect of Title III of the 1990 Clean Air Act Amendments on the natural gas industry

    SciTech Connect (OSTI)

    Child, C.J.

    1995-12-31

    The regulation of hazardous air pollutants by Title III of the Clean Air Act Amendments of 1990 has a potential wide-ranging impact for the natural gas industry. Title III includes a list of 189 hazardous air pollutants (HAPs) which are targeted for reduction. Under Title III, HAP emissions from major sources will be reduced by the implementation of maximum achievable control technology (MACT) standards. If the source is defined as a major source, it must also comply with Title V (operating permit) and Title VII (enhanced monitoring) requirements. This presentation will review Title III`s effect on the natural gas industry by discussing the regulatory requirements and schedules associated with MACT as well as the control technology options available for affected sources.

  18. Hazardous Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    090041 -0500 From "Eubanks, Cynthia M. (EUB) " <eub@bechteljacobs.org> Subject: Yellow Alert-Use of Non-Approved Electronic Equipment in a Class I, Division 2 Hazardous Location The following Bechtel Jacobs Company, LLC Lesson Learned Yellow Alert was generated as the result of a recent incident at the East Tennessee Technology Park (ETTP). This lesson learned is distributed to communicate to other DOE facilities concerns regarding the use of portable and installed electronic

  19. Hazardous Material Shipments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Material Shipments GET (General Employee Training): General Information: Materials and Transportation personnel perform domestic and international shipping activities associated with hazardous materials transported onsite and offsite. All activities are performed by personnel who have been trained for their respective transportation functions, as required by the Code of Federal Regulations (CFR) and International Air Transport Association (IATA). Shipments are made for the research and

  20. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect (OSTI)

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  1. Old, the new, the states, the evolution of the regulation of air toxics. Master's thesis

    SciTech Connect (OSTI)

    Vecera, D.R.

    1993-02-14

    The activism associated with America in the 1960s spilled over into many areas, one of which was a new environmental movement. A product of that movement was the Clean Air Act passed in 1970. The new law included a selection aimed specifically at controlling emissions of hazardous or toxic air pollutants. However, over the next 20 years there was very little government regulation of air toxics, and this section of the Clean Air Act was considered to be a resounding failure. What went wrong. How did this lofty goal to protect human health and the environment end up on the back burner. The article will address the idealism that led to the Clean Air Act legislation, in particular the air toxics program, and explore the realities that scuttled those ideals when it came time to implement the law.

  2. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Goal 5: Pollution Prevention LANL is dedicated to finding ways to reduce waste, prevent pollution, and recycle waste that cannot be reduced. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL Technical Area 21: Water was sprayed during the demolition of 24 Cold

  3. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Pollution Prevention Promoting green purchasing, reuse and recycling, and the conservation of fuel, energy, and water. April 17, 2012 Pollution prevention and control at LANL Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Our goal is to reduce or eliminate waste whenever possible. Promoting pollution prevention to achieve sustainability Our commitment to environmental stewardship and sustainability

  4. Fire Hazards Listing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards Listing Fire Hazards Listing Focusing on fire prevention and protection. Contact Fire Management Officer Manuel J. L'Esperance Emergency Management (505) 667-1692 Email Currently reported fire hazards Below are the currently reported fire hazards. The list is updated each day by the close of business. Current fire hazards Hazard Description Date Submitted Status No hazards currently reported. Legend: R=Resolved, P=Pending, NAR=No Action Required

  5. 2014 LANL Radionuclide Air Emissions Report

    SciTech Connect (OSTI)

    Fuehne, David Patrick

    2015-07-21

    This report describes the emissions of airborne radionuclides from operations at Los Alamos National Laboratory (LANL) for calendar year 2014, and the resulting off-site dose from these emissions. This document fulfills the requirements established by the National Emissions Standards for Hazardous Air Pollutants in 40 CFR 61, Subpart H – Emissions of Radionuclides other than Radon from Department of Energy Facilities, commonly referred to as the Radionuclide NESHAP or Rad-NESHAP. Compliance with this regulation and preparation of this document is the responsibility of LANL’s RadNESHAP compliance program, which is part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being submitted to the U.S. Environmental Protection Agency (EPA) Region 6.

  6. Impending impacts of Title III and Title V of the Clean Air Act Amendments of 1990 on the coal industry

    SciTech Connect (OSTI)

    Kerch, R.L.

    1994-12-31

    The coal industry has already begun to feel the affects of the acid deposition title, particularly in Illinois. Two challenges to the producers and sellers of coal; i.e., (1) Title III, Hazardous Air Pollutants and what is in store for customers, and (2) Title V, Operating Permits, which may affect production facilities are discussed. The utilities are temporarily exempted from Title III. The Great Waters report suggests that mercury will be regulated, and it looks like risk assessments will be based on coal analysis rather than on actual emission measurements. Stack sampling is difficult, expensive and slow. Coal cleaning is important in reducing trace elements. Electrostatic precipitators also remove trace elements. ESPs are less effective for mercury and selenium because they are emitted in the gas phase. FGD can remove hazardous air pollutants, but it is not well documented.

  7. Hanford Site Hazards Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Hazards Guide 2016 Approved for Public Release; Further Dissemination Unlimited Hanford Site Hazards Guide Contents ASBESTOS .............................................................................................................................................. 2 BERYLLIUM ........................................................................................................................................... 4 CHEMICAL SAFETY

  8. Hazard Baseline Documentation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-12-04

    This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

  9. U.S. Department of Energy Report, 2005 LANL Radionuclide Air Emissions

    SciTech Connect (OSTI)

    Keith W. Jacobson, David P. Fuehne

    2006-09-01

    Amendments to the Clean Air Act, which added radionuclides to the National Emissions Standards for Hazardous Air Pollutants (NESHAP), went into effect in 1990. Specifically, a subpart (H) of 40 CFR 61 established an annual limit on the impact to the public attributable to emissions of radionuclides from U.S. Department of Energy facilities, such as the Los Alamos National Laboratory (LANL). As part of the new NESHAP regulations, LANL must submit an annual report to the U.S. Environmental Protection Agency headquarters and the regional office in Dallas by June 30. This report includes results of monitoring at LANL and the dose calculations for the calendar year 2006.

  10. Radionuclide air emission report for the Hanford Site Calendar Year 1993

    SciTech Connect (OSTI)

    Diediker, L.P.; Curn, B.L.; Rhoads, K.; Damberg, E.G.; Soldat, J.K.; Jette, S.J.

    1994-08-01

    This report documents radionuclide air emissions from the Hanford Site in 1993 and the resulting effective dose equivalent to any member of the public. The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, {open_quotes}National Emissions Standards for Hazardous Air Pollutants,{close_quotes} Subpart H, {open_quotes}National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.{close_quotes}

  11. Track 3: Exposure Hazards

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

  12. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect (OSTI)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  13. 49 CFR Subchapter C, Parts 171-177: Hazardous Materials Regulations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration regulates the transport of hazardous materials through Title 49 of the Code of Federal Regulations (49 CFR), Subchapter C, "Hazardous Materials Regulations." Parts 171-177 provide general information on hazardous materials and regulation for their packaging and their shipment by rail, air, vessel, and public highway.

  14. Hazard Communication Training - Upcoming Implementation Date for New Hazard

    Office of Environmental Management (EM)

    Communication Standard | Department of Energy Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - 10 CFR 851, Worker Safety and Health Program, requires all DOE Federal and contractor employees with hazardous chemicals in their workplaces to complete new Hazard Communication Training. Upcoming Implementation Date for

  15. Hazard Communication Training - Upcoming Implementation Date...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - Upcoming Implementation Date for New Hazard ...

  16. Natural Phenomena Hazards Program

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Natural Phenomena Hazards Program develops and maintains state-of-the-art program standards and guidance for DOE facilities exposed to natural phenomena hazards (NPHs).

  17. Cellulosic emissions (kg of pollutant per km2 county area) -...

    Open Energy Info (EERE)

    Cellulosic emissions (kg of pollutant per km2 county area) Data reflects projected air emissions of nitrogen oxides (NOX), ammonia (NH3), carbon monoxide (CO), sulfur oxide (SOX),...

  18. Synergies and conflicts in multimedia pollution control related to utility compliance with Title IV of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; Loeb, A.P.; Formento, J.W.; South, D.W.

    1994-01-01

    Most analyses of utility strategies for meeting Title IV requirements in the Clean Air Act Amendments of 1990 have focused on factors relating directly to utilities` sulfur dioxide control costs; however, there are a number of additional environmental requirements that utilities must meet at the same time they comply with the acid rain program. To illuminate the potential synergies and conflicts that these other regulatory mandates may have in connection with the acid rain program, it is necessary to conduct a thorough, simultaneous examination of the various programs. This report (1) reviews the environmental mandates that utilities must plant to meet in the next decade concurrently with those of the acid rain program, (2) evaluates the technologies that utilities may select to meet these requirements, (3) reviews the impacts of public utility regulation on the acid rain program, and (4) analyzes the interactions among the various programs for potential synergies and conflicts. Generally, this report finds that the lack of coordination among current and future regulatory programs may result in higher compliance costs than necessary. Failure to take advantage of cost-effective synergies and incremental compliance planning will increase control costs and reduce environmental benefits.

  19. Automated Hazard Analysis

    Energy Science and Technology Software Center (OSTI)

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control andmore » job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the work planning process.« less

  20. Hazard Analysis Database Report

    SciTech Connect (OSTI)

    GAULT, G.W.

    1999-10-13

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

  1. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    during the demolition of 24 Cold War-era buildings at TA-21 to protect air quality. Recycling metal from the buildings at Technical Area 21 saved LANL from generating more than...

  2. Hazard baseline documentation

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This DOE limited technical standard establishes uniform Office of Environmental Management (EM) guidance on hazards baseline documents that identify and control radiological and nonradiological hazards for all EM facilities. It provides a road map to the safety and health hazard identification and control requirements contained in the Department`s orders and provides EM guidance on the applicability and integration of these requirements. This includes a definition of four classes of facilities (nuclear, non-nuclear, radiological, and other industrial); the thresholds for facility hazard classification; and applicable safety and health hazard identification, controls, and documentation. The standard applies to the classification, development, review, and approval of hazard identification and control documentation for EM facilities.

  3. Meeting pollution prevention goals: Successful implementation

    SciTech Connect (OSTI)

    Seith, B.J. )

    1993-01-01

    This paper focuses on the essential, but often overlooked, elements of a pollution prevention program: the steps required for a successful implementation. As programs are being developed, attention must be given to assuring that the systems to support a successful introduction and continued improvement are in place. The goals of a pollution prevention plan (i.e. 50% reduction in toxics use and 40% reduction in hazardous waste generation within three years) must be translated into performance oriented-responsibilities taken throughout an organization, at all levels. Successful implementation requires a genuine commitment from management, employee awareness programs tailored to each type of audience, and a feedback system to assure that the program is continually changing to incorporate new pollution prevention challenges. Also, by conducting an economic analysis of pollution prevention opportunities and activities, and incorporating the results into the business decision-making process, a company is more apt to make wise and measurable performance towards its pollution prevention goals.

  4. Recent EPA pollution prevention initiatives

    SciTech Connect (OSTI)

    Bryant, C. )

    1993-01-01

    Today's rapidly developing and changing technologies and industrial practices frequently carry with them the increased generation of wastes and materials which, if improperly managed, may threaten public health and the environment. The US Environmental Protection Agency is charged with the mission of protecting public health and the environment from the hazards posed by these wastes and materials. As part of its effort to achieve this mandate, it has recently adopted a Pollution Prevention Program. Among other things, the program encourages the development and adoption of processing technologies and products that will lead to reducing the aggregate generation rates for pollutants entering the environment. This paper will address EPA's efforts under its Pollution Prevention Program. The paper will address regulatory and non-regulatory action EPA has taken pursuant to the Resource Conservation and Recovery Act (RCRA), the Emergency Planning and Community Right-to-Know Act, the Pollution Prevention Act of 1990, and other Federal statutes. In addition, the paper will present case studies in pollution prevention.

  5. Hazard communication program

    SciTech Connect (OSTI)

    Porter, E.A.

    1994-10-04

    Implements Internal Publication No. WHC-IP-0914. Section 1.1, providing management and employee guidance for working with hazardous chemicals and physical agents.

  6. Hanford site waste minimization and pollution prevention awareness program

    SciTech Connect (OSTI)

    Kirkendall, J.R.

    1996-09-23

    This plan documents the requirements of the Hanford Site Waste Minimization/Pollution Prevention (WMin/P2) Program. The plan specifies requirements for Hanford contractors to prevent pollution from entering the environment, to conserve resources and energy, and to reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary waste generated at Hanford. The Pollution Prevention Awareness Program required by DOE 5400.1 (DOE 1988A) is included in the Hanford WMin/P2 Program.

  7. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect (OSTI)

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  8. Radionuclide air emissions report for the Hanford site calendar year 1995

    SciTech Connect (OSTI)

    Gleckler, B.P., Westinghouse Hanford

    1996-06-26

    This report documents radionuclide air emissions from the Hanford Site in 1995, and the resulting effective dose equivalent (FDE) to the maximally exposed member of the public, referred to as the `MEI.` The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, `National Emissions Standards for Hazardous Air Pollutants,` Subpart H, `National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.` This report has also been prepared for and will be submitted in accordance with the reporting requirements of the Washington Administrative Code Chapter 246-247, `Radiation Protection-Air Emissions.`

  9. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  10. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  11. Clean Air Act | Department of Energy

    Energy Savers [EERE]

    Services » Environment » Environmental Policy and Assistance » Clean Air Act Clean Air Act The primary law governing the Department of Energy (DOE) air pollution control activities is the Clean Air Act (CAA). This law defines the role of the U.S. Environmental Protection Agency (EPA) and state, local and tribal air programs in protecting and improving the nation's air quality and stratospheric ozone layer by regulating emissions from mobile and stationary sources. The CAA contains titles

  12. EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 |

    Office of Environmental Management (EM)

    Department of Energy EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 Presentation to the Electricity Advisory Committe on October 29, 2010 by the US Environmental Protection Agency Office of Air and Radiation on Reducing Pollution from Power Plants and the need for additional rule making. PDF icon Reducing Pollution from Power Plants More Documents & Publications EEI Presentation: The

  13. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect (OSTI)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  14. Hanford site pollution prevention plan progress report, 1993

    SciTech Connect (OSTI)

    Kirkendall, J.R.

    1996-08-26

    This report tracks progress made during 1995 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307,`Plans,` for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, `Waste Reduction,` an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in- process reuse or reclamation of valuable spent material.

  15. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    SciTech Connect (OSTI)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  16. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    SciTech Connect (OSTI)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  17. Report Wildland Fire Area Hazard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sighting (check box if animal poses serious threat) Trails (accessegress) Hazard Trees (falling, fire hazard) Utilities (Lab employees: use Form 1821 (pdf) to report utility...

  18. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazard Assessments The Oak Ridge Institute for Science and Education (ORISE) analyzes accumulated data to identify potential workplace hazards to which individuals or groups of workers may be exposed. ORISE assesses both chemical and radiation exposures, and conducts both internal and external radiation dose assessments. Our capabililities include: Linkage of exposure data to site rosters Assessment of retrospective exposures Preparation of assessment protocols Design and testing of dose

  19. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

  20. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  1. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  2. Improving Air Quality with Solar Energy; U.S. DOE Clean Energy and Air Quality Integration Initiative Fact Sheet Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality with Solar Energy Many states are seeking additional air pollution control strategies. Zero-emission solar technologies, such as solar electricity and solar water heating, can help air quality and energy offcials in cities, states, and federal agencies improve air quality, achieve Clean Air Act goals, and reduce pollution control costs for both industry and taxpayers. Solar technologies provide energy for heating, cooling, and lighting homes and heating water without any direct

  3. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  4. 2006 LANL Radionuclide Air Emissions Report

    SciTech Connect (OSTI)

    David P. Fuehne

    2007-06-30

    This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

  5. Air Risk Information Support Center

    SciTech Connect (OSTI)

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  6. Identification of Aircraft Hazards

    SciTech Connect (OSTI)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  7. Multi-Pollutant Legislation and Regulations (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The 108th Congress proposed and debated a variety of bills addressing pollution control at electric power plants but did not pass any of them into law. In addition, the Environmental Protection Agency (EPA) currently is preparing two regulations-a proposed Clean Air Interstate Rule (pCAIR) and a Clean Air Mercury Rule (CAMR)-to address emissions from coal-fired power plants. Several states also have taken legislative actions to limit pollutants from power plants in their jurisdictions. This section discusses three Congressional air pollution bills and the EPA's pCAIR and CAMR regulations.

  8. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  9. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W. (Martinez, GA)

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  10. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  11. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  12. Cold Weather Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Cold Weather Hazards June 2010 NSA_cwh_Rev10.doc 1 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Cold Weather Hazards Winter Conditions at the North Slope of Alaska The North Slope of Alaska is north of the Arctic Circle at latitudes ranging from 69 to 72 degrees. Barrow, the largest town on the North Slope (pop. 4500), is the site of a National Weather Service Station, which has been active for several decades, so the

  13. Indoor air quality & airborne disease control in healthcare facilities...

    Office of Scientific and Technical Information (OSTI)

    Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; MEDICAL ESTABLISHMENTS; INDOOR AIR POLLUTION; CONTROL SYSTEMS; DISEASES; THERMAL COMFORT; SPACE HVAC SYSTEMS Word ...

  14. http://epa.gov/air/oaqps/greenbk/index.html

    National Nuclear Security Administration (NNSA)

    EPA Headquarters should be contacted only when the Regional Office is unable to answer a question. Areas of the country where air pollution levels persistently exceed the national ...

  15. New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy Production,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wins R&D 100 Award | Department of Energy Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy Production, Wins R&D 100 Award New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy Production, Wins R&D 100 Award August 16, 2013 - 1:08pm Addthis To help address concerns over glare from solar energy installations and its impact on pilots, air traffic controllers, and motorists, Sandia National Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a free

  16. Managing the analysis of air quality impacts under NEPA

    SciTech Connect (OSTI)

    Weber, Y.B.; Leslie, A.C.D.

    1995-12-31

    The National Environmental Policy Act of 1969 (NEPA) mandates the analysis and evaluation of potential impacts of major Federal actions having the potential to affect the environment. The Clean Air Act Amendments of 1990 identify an array of new air quality issues appropriate for analysis in compliance with NEPA. An example is emissions of the 189 hazardous air pollutants identified in Title III. The utility industry estimates that more than 2.4 billion pounds of toxic pollutants were emitted to the atmosphere in 1988, with the potential for resultant adverse health impacts such as cancer, reproductive effects, birth defects, and respiratory illness. The US Department of Energy (DOE) provides Federal funds for projects that utilize coal as the primary fuel, including the approximately 45 projects funded over the past ten years under the Clean Coal Technology Demonstration Program. Provision of Federal funds brings these projects under NEPA review. While electric steam generating units greater than 25 MW are currently excluded from regulatory review for the 189 air toxics listed in Title III, they are not, due to their potential impacts, excluded from NEPA review when Federally funded, in whole or in part. The authors will discuss their experiences drawn from NEPA evaluations of coal-fired power projects, the differences between regulatory requirements and NEPA requirements, source categories, major and area sources, conformity, maximum achievable control technology, mandatory licensing, radionuclides, visibility, toxics found to be emitted from coal combustion, public involvement, citizen suits, the bounty system, and how NEPA review can result in beneficial changes to proposed projects through mitigation measures to avoid or minimize potentially adverse environmental impacts.

  17. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.

    2015-05-04

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim.This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.'' The EDE to the MSL MEI due to routine operations in 2014 was 9E-05 mrem (9E-07 mSv). No non-routine emissions occurred in 2014. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  18. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.; Ballinger, Marcel Y.

    2014-05-01

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim (Sequim). This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The EDE to the Sequim MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No non-routine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  19. Tank farms hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  20. Hazard classification process at LLNL

    SciTech Connect (OSTI)

    Hildum, J. S., LLNL

    1998-05-01

    An essential part of Integrated Safety Management is the identification of hazards in the workplace and the assessment of possible consequences of accidents involving those hazards. The process of hazard classification suggested by the DOE orders on Safety Analysis is the formalization of this identification and assessment for hazards that might cause harm to the public or workers external to the operation. Possible injury to workers in the facility who are exposed to the hazard is not considered in the designation of the hazard classification for facilities at LLNL, although worker safety is discussed in facility Safety Basis documentation.

  1. Accelerator production of tritium pollution prevention design assessment

    SciTech Connect (OSTI)

    Reynolds, R.; Nowacki, P.; Sheetz, S.O.; Lanik, P.

    1997-09-18

    This Pollution Prevention Design Assessment (PPDA) provides data for cost-benefit analysis of the potential environmental impact of the APT, is an integral part of pollution prevention/waste minimization, and is required by DOE for any activity generating radioactive, hazardous, and mixed wastes. It will also better position the APT to meet future requirements, since it is anticipated that regulatory and other requirements will continue to become more restrictive and demanding.

  2. Impact of Soiling and Pollution on PV Generation Performance

    Broader source: Energy.gov [DOE]

    This 5-page technical letter addresses air pollution effects on PV performance by quantifying, based on a literature search, the average annual loss due to soiling, the impact of cleaning, and a recommended cleaning schedule.

  3. Tennessee Pollution Prevention Partnership | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To initially achieve performer status, the Y-12 team developed and completed a five-project plan to help prevent pollution of air, land and water, while reducing waste and ...

  4. NREL and California Air Agency to Test Clean Diesel Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Management District (SCAQMD) to determine if using the fuel can help reduce air pollution. Fischer-Tropsch fuels can be produced from natural gas, biomass or coal. ...

  5. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  6. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect (OSTI)

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  7. Fresh air indoors

    SciTech Connect (OSTI)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  8. Hazard Class Category

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive Material sample holder catalog 01/05/2015 Hazard Class Category Containment # 3 Layer containment for Very High and High Radiotoxicity (Group 1 and 2) 1.a LBNL Lexan or aluminum sample holder with kapton tape surrounded by 2 each individual heat sealed plastic bag. Layer 1- Kapton Tape, sealed Layer 2- Heat sealed plastic bag Layer 3- Heat sealed plastic bag Physical Approvals: Ambient temperature 1.b LANL cryostat sample holder Sample holder with kapton windows and indium seam Layer

  9. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D - Final Hazard Input Documents Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 D.1 Appendix D Final Hazard Input Documents Appendixes D.1 and D.2, respectively,...

  10. Installation-Restoration Program. Phase 2. Confirmation/quantification stage 1 for Minot Air Force Base, Minot, North Dakota. Volume 2. Appendices A through F. Final report, September 1985-October 1988

    SciTech Connect (OSTI)

    Not Available

    1988-10-01

    This document in the appendices A-F for the Installation-Restoration Program Report concerning Minot Air Force Base. The overall objective of the Installation Restoration Program (IRP) Phase II investigation is to assess potential contamination at past hazardous-waste-disposal and spill sites on Air Force installations. A series of stages field investigations may be required to meet this objective. The purpose of this task is to undertake a field investigation at Minot AFB ND to: (1) confirm the presence or absence of contamination within the specified areas of investigation: (2) if possible, determine the extent and degree of contamination and the potential for migration of those contaminants in various environmental media; (3) identify public health and environmental hazards of migrating pollutants based on State or Federal standards for those contaminants; and (4) delineate additional investigations required beyond this stage to reach the Phase II objectives.

  11. Enlightened self-interest key to pollution prevention

    SciTech Connect (OSTI)

    Quinn, B.

    1995-03-01

    A decade ago, pollution prevention was introduced by environmental policy-makers as an alternative to traditional end-of-pipe waste treatment. Even then, the concept was not new. Among corporate efforts, 3M`s well-publicized Pollution Prevention Pays program already had set the stage for viewing pollution prevention as an environmental and financial tool. What was new, though, was the integration of pollution prevention into the fabric of national law. The most blatant example of pollution prevention`s evolution from good idea to enforceable requirement is found in the Pollution Prevention Act of 1990. But some less-visible efforts may have an even more profound effect on the business community. The US Environmental Protection Agency (EPA) is looking for ways to incorporate pollution prevention into Title V permits under the Clean Air Act Amendments of 1990 (CAAA). And, more than 29 states have enacted environmental protection legislation that imposes specific planning requirements on the regulated community.

  12. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  13. E-Alerts: Environmental pollution and control (solid waste pollution and control). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    The paper discusses pollution by solid wastes including garbage, scrap, junked automobiles, spoil, sludge, containers; Disposal methods such as composts or land application, injection wells, incineration, sanitary landfills; Mining wastes; Processing for separation and materials recovery; Solid waste utilization; Recycling; Biological and ecological effects; Superfund (Records of Decision, etc.); SITE technology; Laws, legislation, and regulations; Public administration; Economics; Land use. The discussion includes disposal of concentrated or pure liquids such as brines, oils, chemicals, and hazardous materials.

  14. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. March 17, 2015 Real-time data monitoring for particulate matter An air monitoring field team member tests one of LANL's tapered element oscillating microbalance samplers, which collects real-time particulate matter data. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email LANL monitors air

  15. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  16. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  17. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  18. Sandia National Laboratories: Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Environmental Management System Pollution Prevention Sustainable Acquisition Electronics Stewardship Recycling Reuse Outreach Awards News Information...

  19. Hanford Site Pollution Prevention Plan Progress report, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report tracks progress against the goals stated in the Hanford Site 5-year Pollution Prevention Plan. The executive summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, executive summary, and the progress reports are elements of a pollution prevention planning program that is required by Washington Administrative Code (WAC) 173-307 for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement Chapter 70.95C, Revised Code of Washington, an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the inprocess reuse or reclamation of valuable spent material. Although the Hanford Site is exempt, it is voluntarily complying with this state regulatory-mandated program. This is the first year the Hanford Site is submitting a progress report. It covers calendar year 1993 plus the last quarter of 1992. What is reported, in accordance with WAC 173-307, are reductions in hazardous substance use and hazardous waste generated. A system of Process Waste Assessments (PWA) was chosen to meet the requirements of the program. The PWAs were organized by a physical facility or company organization. Each waste-generating facility/organization performed PWAs to identify, screen, and analyze their own reduction options. Each completed PWA identified any number of reduction opportunities, that are listed individually in the plan and summarized by category in the executive summary. These opportunities were to be implemented or evaluated further over the duration of the 5-year plan. The basis of this progress report is to track action taken on these PWA reduction opportunities in relationship to achieving the goals stated in the Pollution Prevention Plan.

  20. Pollution prevention efforts recognized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories » Pollution prevention efforts recognized Pollution prevention efforts recognized Pollution prevention awards recognize individuals or teams whose efforts minimize waste, conserve resources and apply sustainable practices. April 17, 2012 George Rael presenting a bronze award for "green" purchasing to Laboratory Deputy Director Beth Sellers. George Rael, assistant manager for national security missions for the Department of Energy's Los Alamos Site Office, presents a bronze

  1. Membranes for Reverse-Organic Air Separations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membranes for Reverse-Organic Air Separations Membranes for Reverse-Organic Air Separations New Membranes Use Reverse Separation to Reduce Pollutant Emissions Many industrial applications need a process to separate pollutants known as volatile organic compounds (VOCs) from air in order to protect the environment and save energy. One such application is the venting of vapor from underground storage tanks (UST) used in gasoline storage and dispensing. These vapors, which can build up and create

  2. Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.; Gervais, Todd L.

    2013-04-01

    This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and ashington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. This report meets the calendar year 2012 Sequim Site annual reporting requirement for its operations as a privately-owned facility as well as its federally-contracted status that began in October 2012. Compliance is indicated by comparing the estimated dose to the maximally exposed individual (MEI) with the 10 mrem/yr Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard. The dose to the Sequim Site MEI due to routine operations in 2012 was 9E-06 mrem (9E-08 mSv). No non-routine emissions occurred in 2012. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  3. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a hazard to human health when the particle size becomes small enough to enter the lungs, e.g., smoke. At LANL, particulate matter concentrations are measured continuously and...

  4. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those

  5. Boiler MACT Technical Assistance Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Protection Agency (EPA) finalized the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for...

  6. Sandia National Laboratories, California Pollution Prevention Program annual report.

    SciTech Connect (OSTI)

    Harris, Janet S.

    2011-04-01

    The annual program report provides detailed information about all aspects of the SNL/CA Pollution Prevention Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The program report describes the activities undertaken during the past year, and activities planned in future years to implement the Pollution Prevention Program, one of six programs that supports environmental management at SNL/CA. Pollution Prevention supports the goals and objectives to increase the procurement and use of environmentally friendly products and materials and minimize the generation of waste (nonhazardous, hazardous, radiological, wastewater). Through participation on the Interdisciplinary Team P2 provides guidance for integration of environmentally friendly purchasing and waste minimization requirements into projects during the planning phase. Table 7 presents SNL's corporate objectives and targets that support the elements of the Pollution Prevention program.

  7. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect (OSTI)

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  8. File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air...

    Open Energy Info (EERE)

    5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements.pdf Jump to: navigation, search File File history File usage Metadata...

  9. Air filter

    SciTech Connect (OSTI)

    Jackson, R.E.; Sparks, J.E.

    1981-03-03

    An air filter is described that has a counter rotating drum, i.e., the rotation of the drum is opposite the tangential intake of air. The intake air has about 1 lb of rock wool fibers per 107 cu. ft. of air sometimes at about 100% relative humidity. The fibers are doffed from the drum by suction nozzle which are adjacent to the drum at the bottom of the filter housing. The drum screen is cleaned by periodically jetting hot dry air at 120 psig through the screen into the suction nozzles.

  10. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Glare Hazard Analysis Tool Solar...

  11. Hazardous Materials Packaging and Transportation Safety - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60.1D, Hazardous Materials Packaging and Transportation Safety by Ashok Kapoor Functional areas: Hazardous Materials, Packaging and Transportation, Safety and Security, Work...

  12. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations and Quality Assurance of Hazard Calculations ... 10.5 10.2 Seismic Hazard Results and Sensitivity at Priority Sites ......

  13. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B - PPRP Closure Letter Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 B.1 Appendix B PPRP Closure Letter 2014 Hanford Sitewide Probabilistic Seismic Hazard Analysis...

  14. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials Program Manager. PDF icon Enhancing Railroad Hazardous...

  15. Vermont Hazardous Waste Management Regulations | Open Energy...

    Open Energy Info (EERE)

    Hazardous Waste Management Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Vermont Hazardous Waste Management...

  16. Transportation of Hazardous Evidentiary Material.

    SciTech Connect (OSTI)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being shipped, and will otherwise maintain it as nearly as possible in its original condition.The recommendations provided are short-term solutions to the problems of shipping evidence, and have considered only currently commercially available containers. These containers may not be appropriate for all cases. Design, testing, and certification of new transportation containers would be necessary to provide a container appropriate for all cases.Table 1 provides a summary of the recommendations for each class of hazardous material.Table 1: Summary of RecommendationsContainerCost1-quart paint can with ArmlockTM seal ringLabelMaster(r)%242.90 eachHazard Class 3, 4, 5, 8, or 9 Small ContainersTC Hazardous Material Transport ContainerCurrently in Use4 DraftDraftDraftTable 1: Summary of Recommendations (continued)ContainerCost55-gallon open or closed-head steel drumsAll-Pak, Inc.%2458.28 - %2473.62 eachHazard Class 3, 4, 5, 8, or 9 Large Containers95-gallon poly overpack LabelMaster(r)%24194.50 each1-liter glass container with plastic coatingLabelMaster(r)%243.35 - %243.70 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Small ContainersTC Hazardous Material Transport ContainerCurrently in Use20 to 55-gallon PIH overpacksLabelMaster(r)%24142.50 - %24170.50 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Large Containers65 to 95-gallon poly overpacksLabelMaster(r)%24163.30 - %24194.50 each1-liter transparent containerCurrently in UseHazard Class 6 Division 6.2 Infectious Material Small ContainersInfectious Substance ShipperSource Packaging of NE, Inc.%24336.00 eachNone Commercially AvailableN/AHazard Class 6 Division 6.2 Infectious Material Large ContainersNone Commercially Available N/A5

  17. MGR External Events Hazards Analysis

    SciTech Connect (OSTI)

    L. Booth

    1999-11-06

    The purpose and objective of this analysis is to apply an external events Hazards Analysis (HA) to the License Application Design Selection Enhanced Design Alternative 11 [(LADS EDA II design (Reference 8.32))]. The output of the HA is called a Hazards List (HL). This analysis supersedes the external hazards portion of Rev. 00 of the PHA (Reference 8.1). The PHA for internal events will also be updated to the LADS EDA II design but under a separate analysis. Like the PHA methodology, the HA methodology provides a systematic method to identify potential hazards during the 100-year Monitored Geologic Repository (MGR) operating period updated to reflect the EDA II design. The resulting events on the HL are candidates that may have potential radiological consequences as determined during Design Basis Events (DBEs) analyses. Therefore, the HL that results from this analysis will undergo further screening and analysis based on the criteria that apply during the performance of DBE analyses.

  18. Hazards of explosives dusts: Particle size effects

    SciTech Connect (OSTI)

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  19. Method and apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Korenberg, Jacob (York, PA)

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  20. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  1. ARM - SGP Rural Driving Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rural Driving Hazards SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on unpaved, dirt

  2. Air Sealing: A Guide for Contractors to Share with Homeowners – Volume 10

    SciTech Connect (OSTI)

    Pacific Northwest National Laboratory

    2010-04-12

    This guide provides information to contractors and homeowners to identify ways to seal unwanted air leaks in homes, while ensuring healthy levels of ventilation and avoiding indoor air pollution.

  3. EERE Success Story—New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy Production, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Air traffic controllers, motorists, and Sandia National Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a Web-based tool that complies with new federal guidelines requiring quantified assessments of glare from proposed solar installations.

  4. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  5. Voluntary pollution reduction programs

    SciTech Connect (OSTI)

    Sears, E.B.

    1997-08-01

    Despite claims that the government is reducing the amount of environmental regulation, the sheer amount of regulatory language has actually increased yearly. Yet based on media reports and citizen claims, pollution appears to go unchecked. Citizens condemn a perceived lack of government regulation of industrial pollution, while industries find themselves mired in increasingly complex regulatory programs that are sometimes far removed from real world situations. US Environmental Protection Agency (EPA) decision-makers have responded to these concerns by designing regulatory programs that abandon traditional command-and-control regulatory schemes as ill-suited to today`s pollution problems and the interests of these stakeholders. This paper analyzes the use of voluntary pollution control programs in place of command-and-control regulation. It is proposed that voluntary programs may serve as carrots to entice regulated entities to reduce pollution, but that there are a number of hurdles to their effective implementation that preclude them from being embraced as effective environmental regulatory tools. This paper reviews why agencies have moved from command-and-control regulation and examines current voluntary pollution control programs. This paper also contemplates the future of such programs.

  6. air force

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  7. Storm Water Pollution Prevention Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Control Specialist FMS - Sustainability and Environmental Programs Date ......... 47 8.6 Site Sustainability Plan ......

  8. Annual report of waste generation and pollution prevention progress 1995

    SciTech Connect (OSTI)

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995.

  9. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  10. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    SciTech Connect (OSTI)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  11. Pacific Northwest National Laboratory Site Radionuclide Air Emissions Report for Calendar Year 2011

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.

    2012-06-12

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The EDE to the PNNL Site MEI due to routine emissions in 2011 from PNNL Site sources was 1.7E 05 mrem (1.7E-7 mSv) EDE. No nonroutine emissions occurred in 2011. The total radiological dose for 2011 to the MEI from all PNNL Site radionuclide emissions was more than 10,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance.

  12. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2013

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.

    2014-06-01

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2013 from PNNL Site sources is 2E-05 mrem (2E-07 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 2E-6 mrem (2E-8 mSv) EDE. The dose from radon emissions is 1E-11 mrem (1E-13 mSv) EDE. No nonroutine emissions occurred in 2013. The total radiological dose for 2013 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 2E-5 mrem (2E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance

  13. Summary of radionuclide air emissions from Department of Energy facilities for CY 1993

    SciTech Connect (OSTI)

    1995-04-01

    Facilities owned or operated by the U.S. Department of Energy (DOE) handle and process radioactive materials in conjunction with their research, nuclear materials production, remediation, and waste disposal activities. During normal operations, some of these facilities have the potential to release small quantities of radionuclides to the environment. Radionuclide emissions to the atmosphere from DOE facilities are regulated by the U.S. Environmental Protection Agency (EPA) under the authority of Section 112 of the Clean Air Act. Subpart H of 40 CFR Part 61 of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) sets standards for public exposure to airborne radioactive materials (other than radon) released by DOE facilities, DOE radon emissions are regulated by NESHAPs in Subparts Q and T. Subparts Q and T apply specifically to DOE storage and disposal facilities for radium-containing material. Airborne radionuclide emissions are also regulated by the Department of Energy under the authority provided by the Atomic Energy Act of 1954, as amended, and the Department of Energy Organization Act of 1977, as amended. This report summarizes air emissions subject to the EPA requirements and demonstrates that DOE facilities are in compliance with the required dose limits.

  14. Pacific Northwest National Laboratory Site Radionuclide Air Emissions Report for Calendar Year 2012

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.

    2013-06-06

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2012 from PNNL Site sources is 9E-06 mrem (9E-08 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 1E-7 mrem (1E-9 mSv) EDE. The dose from radon emissions is 2E-6 mrem (2E-08 mSv) EDE. No nonroutine emissions occurred in 2012. The total radiological dose for 2012 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 1E-5 mrem (1E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance.

  15. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit The WIPP Hazardous Waste Facility Permit (HWFP) effective April 15, 2011 WIPP Hazardous Waste Facility Permit Authorizes the U.S. Department of Energy to manage, store, and dispose of contact-handled and remote-handled transuranic mixed waste at the Waste Isolation Pilot Plant. Mixed waste contains radioactive and chemically hazardous components. Information Repository Documents related to the Hazardous Waste Facility Permit

  16. Medical and pharmaceutical wastes. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The bibliography contains citations concerning medical and pharmaceutical waste regulation and disposal. The citations examine landfills and combustion as disposal options, and consider the economic viability of each. Also covered are the effects of pollutant effluents such as mercury, dioxins, infectious pathogens, residual ash, radioisotopes, and particulate air pollution. (Contains a minimum of 166 citations and includes a subject term index and title list.)

  17. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those involving highly reactive free-radical molecules. However, detailed modeling is

  18. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those involving highly reactive free-radical molecules. However, detailed modeling is

  19. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those involving highly reactive free-radical molecules. However, detailed modeling is

  20. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those involving highly reactive free-radical molecules. However, detailed modeling is

  1. Radionuclide air emissions report for the Hanford Site -- calendar year 1997

    SciTech Connect (OSTI)

    Gleckler, B.P.; Rhoads, K.

    1998-06-17

    This report documents radionuclide air emission from the Hanford Site in 1997, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the MEI. The report has been prepared in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emissions Standards for Hazardous Air Pollutants, Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. This report has also been prepared in accordance with the reporting requirements of the Washington Administrative Code Chapter 246-247, Radiation Protection-Air Emissions. The effective dose equivalent to the MEI from the Hanford Site`s 1997 point source emissions was 1.2 E-03 mrem (1.2 E-05 mSv), which is well below the 40 CFR 61 Subpart H regulatory limit of 10 mrem/yr. Radon and thoron emissions, exempted from 40 CFR 61 Subpart H, resulted in an effective dose equivalent to the MEI of 2.5 E-03 mrem (2.5 E-05 mSv). The effective dose equivalent to the MEI attributable to diffuse and fugitive emissions was 2.2 E-02 mrem (2.2 E-04 mSv). The total effective dose equivalent from all of the Hanford Site`s air emissions was 2.6 E-02 mrem (2.6 E-04 mSv). The effective dose equivalent from all of the Hanford Site`s air emissions is well below the Washington Administrative Code, Chapter 246-247, regulatory limit of 10 mrem/yr.

  2. Federal program for regulating highly hazardous materials finally takes off

    SciTech Connect (OSTI)

    Lessard, P.C. [Block Environmental Services Inc., Pleasant Hill, CA (United States)

    1996-11-01

    The Risk Management Program (RMP) rule, Section 112(r) of the Clean Air Act (CAA), was signed on May 24 and finalized on June 20. RMP is one of the most comprehensive, technically based regulatory programs for preventing, detecting and responding to accidental hazardous materials releases to have been issued in recent times. Although facilities have three years to comply, EPA estimates that the rule will affect an estimated 66,000 facilities that store highly hazardous or acutely toxic materials. The 1990 CAA Amendments are designed to prevent accidental releases of highly hazardous chemicals from stationary sources. Two significant regulatory programs that have emerged from the revised CAA are the Process Safety Management (PSM) standard and RMP. PSM is designed to protect employees and regulated by the Occupational Safety and Health Administration. RMP`s purpose is to protect the public and the environment from highly hazardous chemicals. It authorizes EPA to create a list of substances (distinct from the list generated under PSM) known to cause serious adverse effects and to implement a program for accidental chemical release prevention.

  3. An evaluation of approximations of acute hazard indices based on chronic hazard indices for California fossil-fuel power stations

    SciTech Connect (OSTI)

    Gratt, L.B.; Levin, L.

    1998-12-31

    The measures for evaluating risk under the Clean Air Act Amendments of 1990 are yet to be defined. Many risk assessments have used only chronic risk measures (lifetime cancer probability and chronic hazard index) based on yearly averages of long-term dispersion of substances into ambient air. In California, many facilities prepared risk assessments using hourly meteorological data and short-term emission rates, allowing the calculation of an acute hazard index. These risk assessments are more costly and labor-intensive than those using the annualized meteorological data. A simple scheme to estimate the acute hazard index from the chronic index is proposed. This scheme is evaluated for four electric power stations in Southern California. The simple scheme was found lacking due to the inability to reasonably estimate both the hourly emission rates from annual averages and hourly concentrations from annual concentrations. The need for the acute risk measure for stack emission can be questioned based on the more detailed risk assessments performed in California.

  4. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect (OSTI)

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  5. Suggested Approaches for Probabilistic Flooding Hazard Assessment

    Broader source: Energy.gov [DOE]

    Suggested Approaches for Probabilistic Flooding Hazard Assessment Ahmed “Jemie” Dababneh, Ph.D., P.E. and Jeffrey Oskamp, E.I.T. Presentation for U.S. Department of Energy Natural Phenomena Hazards Meeting October 22, 2014

  6. NRS 459 Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    59 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: NRS 459 Hazardous WasteLegal Abstract Nevada statute setting...

  7. D-Area Preliminary Hazards Analysis

    SciTech Connect (OSTI)

    Blanchard, A.; Paik, I.R.

    1998-04-01

    A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

  8. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... http:www.opentopography.org) - Yakima Ridge, ... Hanford Sitewide Probabilistic Seismic Hazard Analysis ... Rev. 0, Bechtel Hanford, Richland, Washington. ...

  9. Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glare Hazard Analysis Tool - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  10. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K.; Grey, Alan E.

    1994-04-05

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  11. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID)

    1994-01-01

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  12. HMPT: Hazardous Waste Transportation Live 27928, Test 27929 ...

    Office of Scientific and Technical Information (OSTI)

    HMPT: Hazardous Waste Transportation Live 27928, Test 27929 Citation Details In-Document Search Title: HMPT: Hazardous Waste Transportation Live 27928, Test 27929 HMPT: Hazardous ...

  13. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  14. Air Emission Inventory for the INEEL -- 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  15. Climate and Air Pollution Planning Assistant (CAPPA) | Open Energy...

    Open Energy Info (EERE)

    and technologies); energy generation (including energy generation from landfill methane; installation of solar photovoltaic panels, solar hot water, and wind; and renewable...

  16. Microtrap assembly for greenhouse gas and air pollution monitoring

    DOE Patents [OSTI]

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  17. Idaho National Laboratory Site Pollution Prevention Plan

    SciTech Connect (OSTI)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

  18. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    BENZENE; LEUKEMOGENESIS; GEOTHERMAL INDUSTRY; ENVIRONMENTAL IMPACTS; HEALTH HAZARDS; HYDROGEN SULFIDES; BIOLOGICAL EFFECTS; MERCURY; RADON; SULFATES; ACCIDENTS; AIR POLLUTION;...

  19. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    BENZENE LEUKEMOGENESIS GEOTHERMAL INDUSTRY ENVIRONMENTAL IMPACTS HEALTH HAZARDS HYDROGEN SULFIDES BIOLOGICAL EFFECTS MERCURY RADON SULFATES ACCIDENTS AIR POLLUTION...

  20. Layton, D.W.; Anspaugh, L.R.; O'Banion, K.D. 15 GEOTHERMAL ENERGY...

    Office of Scientific and Technical Information (OSTI)

    BENZENE; LEUKEMOGENESIS; GEOTHERMAL INDUSTRY; ENVIRONMENTAL IMPACTS; HEALTH HAZARDS; HYDROGEN SULFIDES; BIOLOGICAL EFFECTS; MERCURY; RADON; SULFATES; ACCIDENTS; AIR POLLUTION;...

  1. Gas pollution control apparatus and method and wood drying system employing same

    SciTech Connect (OSTI)

    Eatherton, J.R.

    1984-02-14

    Pollution control apparatus and method are disclosed in which hot exhaust gas containing pollutants including solid particles and hydrocarbon vapors is treated by transmitting such exhaust gas through a container containing wood members, such as wood chips, which serve as a filter media for filtering out such pollutants by causing such solids to deposit and such hydrocarbon vapors to condense upon the surface of the wood members. The contaminated wood chips are discharged from the filter and further processed into chip board or other commercial wood products thereby disposing of the pollutants. Lumber may be used as the wood members of the filter in a lumber kiln by deposition of solid particles on the rough surface of such lumber. The contaminated surfaces of the lumber are removed by a planer which produces a smooth finished lumber and contaminated wood chips that may be processed into chip board or other commercial wood products. A wood drying system employing such pollution control apparatus and method includes a hot air dryer for wood or other organic material, such as a wood chip rotary dryer or a wood veneer dryer, which produces hot exhaust gases containing pollutants including hydrocarbon vapors and solid particles. This hot exhaust air is transmitted through a lumber kiln to dry lumber thereby conserving heat energy and causing solid particle pollutants to deposit on the surface of the lumber. The kiln exhaust air containing solid and hydrocarbon vapor pollutants is then transmitted up through a filter stack of wood chips.

  2. {open_quotes}Methods for the determination of the Clean Air Act Title III metallic HAPS in coal

    SciTech Connect (OSTI)

    Snider, J.

    1995-08-01

    The Clean Air Act was amended in 1990 and additional requirements were added to Title III {open_quotes}Air Toxics.{close_quotes} Title III identified one hundred eighty-nine hazardous air pollutants (HAPS) and Congress directed the EPA to study the effects of emissions of these HAPS on public health and the environment. EPA is to report to Congress in the fall of 1995 concerning their findings and make recommendations regarding fossil fuel fired combustion units. The outcome of the EPA recommendations will be of great interest to coal producers and users. Of the one hundred eighty-nine listed HAPS, eleven are trace metals found in coal. The producers and users may be required to analyze coal for these HAPS, to determine if selective mining and/or beneficiation can lower their occurrence, to determine their fate in the combustion process, etc. Indeed many coal companies have begun to study their reserves to aid the EPA investigation. Currently there are no EPA promulgated test methodologies for these elements in coal. Moreover, the American Society for Testing Materials (ASTM) does not provide standards for the analyses of all of the eleven HAPS either. In view of this lack of standardized analytical protocols the commercial laboratory is left with finding the best methods for meeting these analytical needs. This paper describes how Standard Laboratories, Inc. as a whole and particularly its Environmental Laboratory Division has met this need.

  3. Preparing for the clean air act amendments

    SciTech Connect (OSTI)

    Boomer, B.; Bensinger, D. Midwest Research Inst., Cary, NC )

    1993-09-09

    The U.S. Environmental Protection Agency (EPA) and state air quality control agencies are in the midst of developing regulations and programs to meet the ambitious goals of the Clean Air Act Amendment (CAAA) of 1990. The CAAA--which call for stricter air quality standards, a greater number of pollutants and sources to be regulated, new operating permits, and more stringent enforcement of air quality violations--are expected to have a significant impact on virtually every facility in the country. An important deadline in the implementation of the CAAA is November 1993. That is when individual states must submit their proposed operating permit programs to the EPA, as mandated by Title 5 of the Amendments. The EPA then has one year after receiving a state program to accept or reject it. Once a state's program is accepted, all major sources of air pollution in that state have one year to apply for an operating air permit. Although the initial deadlines for business and industry are up to two years away, sufficient information is now available to take the first steps toward compliance with the new air quality regulations. Even while the details of the new rules are being hammered out, plant engineering can and should begin laying the groundwork for their own permit applications. Time and effort spent preparing now for the provisions of the CAAA will pay off in the long run.

  4. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOE Patents [OSTI]

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  5. New Directions: GEIA's 2020 Vision for Better Air Emissions Information

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect New Directions: GEIA's 2020 Vision for Better Air Emissions Information Citation Details In-Document Search Title: New Directions: GEIA's 2020 Vision for Better Air Emissions Information We are witnessing a crucial change in how we quantify and understand emissions of greenhouse gases and air pollutants, with an increasing demand for science-based transparent emissions information produced by robust community efforts. Today's scientific capabilities, with

  6. NGNP SITE 2 HAZARDS ASSESSMENT

    SciTech Connect (OSTI)

    Wayne Moe

    2011-10-01

    The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

  7. Hazardous and Radioactive Mixed Waste

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-12-31

    To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

  8. Solar Glare Hazard Analysis Tool

    SciTech Connect (OSTI)

    2014-08-25

    SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximum energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energy production while mitigating glare.

  9. Solar Glare Hazard Analysis Tool

    SciTech Connect (OSTI)

    2013-04-17

    SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximum energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energy production while mitigating glare.

  10. Solar Glare Hazard Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2013-04-17

    SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximummore »energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energy production while mitigating glare.« less

  11. Solar Glare Hazard Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2014-08-25

    SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximummore »energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energy production while mitigating glare.« less

  12. Operating Experience Level 3, OSHA's Revised Hazard Communication...

    Broader source: Energy.gov (indexed) [DOE]

    Publications Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Operating Experience Level 3, Safe Management of Mercury...

  13. Draft STD-1027 Supplemental Directive (Alternate Hazard Categorization...

    Office of Environmental Management (EM)

    STD-1027 Supplemental Directive (Alternate Hazard Categorization) Methodology Draft STD-1027 Supplemental Directive (Alternate Hazard Categorization) Methodology Presentation from...

  14. Office of radiation and indoor air: Program description

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

  15. Assumption to the Annual Energy Outlook 2014 - Industrial Demand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AEO2014. Pollutants covered by Boiler MACT include the hazardous air pollutants (HAP), hydrogen chloride (HCI), mercury (HG), dioxinfuran, carbon monoxide (CO),and particulate...

  16. Air toxics evaluation of ABB Combustion Engineering Low-Emission Boiler Systems

    SciTech Connect (OSTI)

    Wesnor, J.D.

    1993-10-26

    The specific goals of the program are to identify air toxic compounds that might be emmitted from the new boiler with its various Air Pollution Control device for APCD alternatives in levels of regulatory concern. For the compounds thought to be of concern, potential air toxic control methodologies will be suggested and a Test Protocol will be written to be used in the Proof of Concept and full scale tests. The following task was defined: Define Replations and Standards; Identify Air Toxic Pollutants of Interest to Interest to Utility Boilers; Assesment of Air Toxic By-Products; State of the Art Assessment of Toxic By-Product Control Technologies; and Test Protocol Definition.

  17. Waste Minimization and Pollution Prevention

    Broader source: Energy.gov [DOE]

    The team supports efforts that promote a more sustainable environment and implements pollution prevention activities, as deemed appropriate for LM operations and approved by LM, as defined in:

  18. Emerging Latin American air quality regulation

    SciTech Connect (OSTI)

    Hosmer, A.W.; Vitale, E.M.; Guerrero, C.R.; Solorzano-Vincent, L.

    1998-12-31

    Latin America is the most urbanized region in the developing world. In recent years, significant economic growth has resulted in population migration from rural areas to urban centers, as well as in a substantial rise in the standard of living within the Region. These changes have impacted the air quality of Latin American countries as increased numbers of industrial facilities and motor vehicles release pollutants into the air. With the advent of new free trade agreements such as MERCOSUR and NAFTA, economic activity and associated pollutant levels can only be expected to continue to expand in the future. In order to address growing air pollution problems, many Latin America countries including Argentina, Brazil, Chile, Columbia, Costa Rica, and Mexico have passed, or will soon pass, new legislation to develop and strengthen their environmental frameworks with respect to air quality. As a first step toward understanding the impacts that this increased environmental regulation will have, this paper will examine the regulatory systems in six Latin American countries with respect to ambient air quality and for each of these countries: review a short history of the air quality problems within the country; outline the legal and institutional framework including key laws and implementing institutions; summarize in brief the current status of the country in terms of program development and implementation; and identify projected future trends. In addition, the paper will briefly review the international treaties that have bearing on Latin American air quality. Finally, the paper will conclude by identifying and exploring emerging trends in individual countries and the region as a whole.

  19. Bioremediation of organic pollutants in a radioactive wastewater

    SciTech Connect (OSTI)

    Oboirien, Bilainu; Molokwane, P.E.; Chirwa, Evans

    2007-07-01

    Bioremediation holds the promise as a cost effective treatment technology for a wide variety of hazardous pollutants. In this study, the biodegradation of organic compounds discharged together with radioactive wastes is investigated. Nuclear process wastewater was simulated by a mixture of phenol and strontium, which is a major radionuclide found in radioactive wastewater. Phenol was used in the study as a model compound due to its simplicity of molecular structure. Moreover, the biodegradation pathway of phenol is well known. Biodegradation studies were conducted using pure cultures of Pseudomonas aeruginosa and Pseudomonas putida. The rate of phenol degradation by both species was found to be higher in the test without strontium. This suggests some degree of inhibition in the degradation of phenol by strontium. There was no phenol degradation in the sterile controls. The results indicate the feasibility of the biodegradation of organic pollutants discharged in radioactive effluents by specialised microbial cultures. (authors)

  20. Enhancing Railroad Hazardous Materials Transportation Safety

    Office of Environmental Management (EM)

    Railroad Hazardous g Materials Transportation Safety Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Radioactive Materials Program Manager Radioactive Materials Program Manager H d M t i l Di i i H d M t i l Di i i Hazmat Hazardous Materials Division Hazardous Materials Division Federal Railroad Administration Federal Railroad Administration Presentation for the Presentation for the DOE NTSF Meeting DOE NTSF Meeting May 10 May 10- -12, 2011 12, 2011 Our Regulated

  1. Vermont Conditionally Exempt Generator Handbook: A Hazardous...

    Open Energy Info (EERE)

    Conditionally Exempt Generator Handbook: A Hazardous Waste Management Guide for Smaller Vermont Business Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. Hazards Control, 3/9/35

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's programs and policy for establishing controls to mitigate hazards affecting the public, worker, and...

  3. Seismic & Natural Phenomena Hazards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    designed to withstand the hazards. CNS maintains a panel of experts known as the Seismic Lessons-Learned Panel, which meets periodically to discuss seismic issues impacting DOE...

  4. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo...

  5. Identification of Hazards, 3/9/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs.  Surveillance activities encompass maintenance and implementation of safety...

  6. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  7. Hanford Sitewide Probabilistic Seismic Hazard Analysis - Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sitewide Probabilistic Seismic Hazard Analysis Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site...

  8. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F - Seismicity Relocation Analyses Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 F.1 Appendix F Seismicity Relocation Analyses Final Report: High-Resolution...

  9. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G - SSC Data Summary Tables Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 G.1 Appendix G SSC Data Summary Tables This appendix presents the data summary tables that...

  10. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16,...

  11. WIPP Hosts All-Hazards Planning Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 WIPP hosted the first annual All- Hazards, Offsite Interface Briefing and Regional Radiological Response Planning Meeting to provide information on changes and enhancements...

  12. Pollutant emissions from portable kerosene-fired space heaters

    SciTech Connect (OSTI)

    Traynor, G.W.; Allen, J.R.; Apte, M.G.; Girman, J.R.; Hollowell, C.D.

    1983-06-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutants. We conducted laboratory tests on two radiant and two convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Results show that carbon dioxide, carbon monoxide, nitric oxide, nitrogen dioxide, and formaldehyde were emitted by both types of heaters and that the radiant heaters and one of the convective heaters also emitted trace amounts of fine particles. When such heaters are operated for 1 h in a 27-m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard.

  13. Prevalence of respiratory symptoms and diseases in schoolchildren living in a polluted and in a low polluted area in Israel

    SciTech Connect (OSTI)

    Goren, A.I.; Hellmann, S.

    1988-02-01

    Second and fifth grade schoolchildren living in two communities with different levels of air pollution were studied. The parents of these children filled out ATS-NHLI health questionnaires. The prevalence of reported respiratory symptoms and pulmonary diseases was found to be significantly higher among children growing up in the polluted community (Ashdod) as compared with the low-pollution area (Hadera). Logistic models fitted for the respiratory conditions which differed significantly between both areas of residence also included background variables that could be responsible for these differences. Relative risk values, which were calculated from the logistic models, were in the range of 1.47 for cough without cold to 2.66 for asthma for children from Ashdod, as compared with 1.00 for children from Hadera.

  14. The use of gas separation membranes for pollution control

    SciTech Connect (OSTI)

    Logsdon, B.W.; Stull, D.; Pellegrino, J.

    1993-04-01

    Rocky Flats is considering the use of a fluidized bed oxidation unit (FBU) for the destruction of mixed waste. Public concerns about the health effects of such destruction have been intense. In order to allay such concerns and minimize the possible health impacts of the proposed mixed waste destruction, RFP has been investigating novel methods of air pollution control. Among the most promising of these techniques is the use of gas separation membranes, which is described in this report.

  15. Hanford Site waste minimization and pollution prevention awareness program plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The Hanford Site WMin/P2 program is an organized, comprehensive, and continual effort to systematically reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary wastes; conserve resources; and prevent or minimize pollutant releases to all environmental media from all Site activities. The Hanford Site WMin/P2 program plan reflects national and DOE waste minimization and pollution prevention goals and policies, and represents an ongoing effort to make WMin/P2 part of the Site operating philosophy. In accordance with these policies, a hierarchical approach to environmental management has been adopted and is applied to all types of polluting and waste generating activities. Pollution prevention and waste minimization through source reduction are first priority in the Hanford WMin/P2 program, followed by environmentally safe recycling. Treatment to reduce the quantity, toxicity, and/or mobility will be considered only when prevention or recycling are not possible or practical. Environmentally safe disposal is the last option.

  16. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J Digital Seismic Hazard Products J.1 Appendix J Digital Seismic Hazard Products This appendix contains the digital data associated with the seismic hazard results presented in Chapter 10 for use in subsequent development of soil hazard curves for various facilities. These results include mean and fractile baserock hazard curves, mean and fractile baserock uniform hazard response spectra (UHRS), magnitude and distance deaggregation of the mean rock hazard, and deaggregation earthquake (DE)

  17. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    SciTech Connect (OSTI)

    A. Jeffrey Sondrup; Arthur S. Rood

    2014-11-01

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) for every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the National Emission Standards for Hazardous Air Pollutants maximum exposed individual location (i.e., Frenchman’s Cabin) was no more than 0.1 mrem yr–1 (i.e., 1% of the 10 mrem yr–1 standard). Detection frequencies were calculated separately for the onsite and offsite monitoring network. As expected, detection frequencies were generally less for the offsite sampling network compared to the onsite network. Overall, the monitoring network is very effective at detecting the potential releases of Cs-137 or Sr-90 from all sources/facilities using either the ESER or BEA MDAs. The network was less effective at detecting releases of Pu-239. Maximum detection frequencies for Pu-239 using ESER MDAs ranged from 27.4 to 100% for onsite samplers and 3 to 80% for offsite samplers. Using BEA MDAs, the maximum detection frequencies for Pu-239 ranged from 2.1 to 100% for onsite samplers and 0 to 5.9% for offsite samplers. The only release that was not detected by any of the samplers under any conditions was a release of Pu-239 from the Idaho Nuclear Technology and Engineering Center main stack (CPP-708). The methodology described in this report could be used to improve sampler placement and detection frequency, provided clear performance objectives are defined.

  18. Multi-Attribute Decision Theory methodology for pollution control measure analysis

    SciTech Connect (OSTI)

    Barrera Roldan, A.S.; Corona Juarez, A. ); Hardie, R.W.; Thayer, G.R. )

    1992-01-01

    A methodology based in Multi-Attribute Decision Theory was developed to prioritize air pollution control measures and strategies (a set of measures) for Mexico City Metropolitan Area (MCMA). We have developed a framework that takes into account economic, technical feasibility, environmental, social, political, and institutional factors to evaluate pollution mitigation measures and strategies utilizing a decision analysis process. In a series of meetings with a panel of experts in air pollution from different offices of the mexican government we have developed General and Specific criteria for a decision analysis tree. With these tools the measures or strategies can be graded and a figure of merit can be assigned to each of them, so they can be ranked. Two pollution mitigation measures were analyzed to test the methodology, the results are presented. This methodology was developed specifically for Mexico City, though the experience gained in this work can be used to develop similar methodologies for other metropolitan areas throughout the world.

  19. Multi-Attribute Decision Theory methodology for pollution control measure analysis

    SciTech Connect (OSTI)

    Barrera Roldan, A.S.; Corona Juarez, A.; Hardie, R.W.; Thayer, G.R.

    1992-12-31

    A methodology based in Multi-Attribute Decision Theory was developed to prioritize air pollution control measures and strategies (a set of measures) for Mexico City Metropolitan Area (MCMA). We have developed a framework that takes into account economic, technical feasibility, environmental, social, political, and institutional factors to evaluate pollution mitigation measures and strategies utilizing a decision analysis process. In a series of meetings with a panel of experts in air pollution from different offices of the mexican government we have developed General and Specific criteria for a decision analysis tree. With these tools the measures or strategies can be graded and a figure of merit can be assigned to each of them, so they can be ranked. Two pollution mitigation measures were analyzed to test the methodology, the results are presented. This methodology was developed specifically for Mexico City, though the experience gained in this work can be used to develop similar methodologies for other metropolitan areas throughout the world.

  20. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  1. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  2. Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1999

    SciTech Connect (OSTI)

    ROKKAN, D.J.

    2000-06-01

    This report documents radionuclide air emissions from the US. Department of Energy (DOE) Hanford Site in 1999 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR). Title 40, Protection of the Environment, Part 61. National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities'', and with the Washington Administrative Code (WAC) Chapter 246-247. Radiation Protection-Air Emissions. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from US. Department of Energy (DOE) facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1999 from Hanford Site point sources was 0.029 mrem (2.9 E-04 mSv), which is less than 0.3 percent of the federal standard. WAC 246-247 requires the reporting of radionuclide emissions from all Hanford Site sources, during routine as well as nonroutine operations. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations. The state further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. The EDE from diffuse and fugitive emissions at the Hanford Site in 1999 was 0.039 mrem (3.9 E-04 mSv) EDE. The total dose from point sources and from diffuse and fugitive sources of radionuclide emissions during all operating conditions in 1999 was 0.068 mrem (6.8 E-04 mSv) EDE, which is less than 0.7 percent of the state standard.

  3. Radioactive air emissions notice of construction 241-SY-101 crust growth near term mitigation

    SciTech Connect (OSTI)

    HOMAN, N.A.

    1999-04-12

    The following description and any attachments and references are provided to the Washington State Department of Health, Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with the Washington Administrative Code (WAC) 246-247, Radiation Protection - Air Emissions. The WAC 246-247-060, ''Applications, registration and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of the information listed in Appendix A.'' Appendix A (WAC 246-247-110), lists the requirements that must be addressed. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 mrem/year total effective dose equivalent to the hypothetical offsite maximally exposed individual, and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application will also constitute EPA acceptance of this 40 CFR 61.09(a)(1) notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided at a later date.

  4. Alternative Fuels Data Center: Pollutants and Health

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Pollutants and Health to someone by E-mail Share Alternative Fuels Data Center: Pollutants and Health on Facebook Tweet about Alternative Fuels Data Center: Pollutants and Health on Twitter Bookmark Alternative Fuels Data Center: Pollutants and Health on Google Bookmark Alternative Fuels Data Center: Pollutants and Health on Delicious Rank Alternative Fuels Data Center: Pollutants and Health

  5. DOE's Studies of Weekday/Weekend Ozone Pollution in Southern California |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Studies of Weekday/Weekend Ozone Pollution in Southern California DOE's Studies of Weekday/Weekend Ozone Pollution in Southern California 2002 DEER Conference Presentation: National Renewable Energy Laboratory PDF icon 2002_deer_lawson.pdf More Documents & Publications The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment Real-World Studies of Ambient Ozone Formation as a Function of NOx Reductions Â… Summary and Implications for Air Quality

  6. Guidance on Incorporating EPA's Pollution Prevention Strategy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incorporating EPA's Pollution Prevention Strategy into the Environmental Review Process Guidance on Incorporating EPA's Pollution Prevention Strategy into the Environmental Review ...

  7. Pollution Prevention - Environmental Impact Reduction Checklists...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pollution Prevention - Environmental Impact Reduction Checklists for NEPA309 Reviewers Pollution Prevention - Environmental Impact Reduction Checklists for NEPA309 Reviewers The ...

  8. Minnesota Pollution Control Agency | Open Energy Information

    Open Energy Info (EERE)

    Pollution Control Agency Jump to: navigation, search Name: Minnesota Pollution Control Agency Place: St. Paul, Minnesota Zip: 55155-4194 Product: Focused on reducing and preventing...

  9. Oregon General Industrial Water Pollution Control Facilities...

    Open Energy Info (EERE)

    General Industrial Water Pollution Control Facilities Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon General Industrial Water Pollution...

  10. Hazardous waste cleanup: the preliminaries

    SciTech Connect (OSTI)

    Amos, K.

    1985-08-01

    This article describes the lengthiness and cost of the preliminary steps in a hazardous waste cleanup. The article describes the S-Area lawsuit, an area near Niagara Falls, New York which was an inactive chemical dump. Contaminated sludge was found at a nearby water treatment plant and was traced back to S-Area. In the past five years, S-Area negotiations have cost the U.S. Environmental Protection Agency two million dollars for advice on how work should proceed for the plant and the landfill. This lawsuit was one of the first in the U.S. against a chemical company for endangering the public through unsound waste disposal practices. Negotiation was selected instead of a trial for several reasons which are outlined. S-Area may serve as a model for other such settlements, as it provides for a flexible plan, open to consideration of alternate technologies that may be developed in the future. It contains a phased approach to both defining and evaluating existing problems, then suggesting remedies. It also requires monitoring for at least 35 years or until no danger remains.

  11. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

    1992-01-01

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  12. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  13. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-04-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  15. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-02-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  16. Saving energy and improving IAQ through application of advanced air cleaning technologies

    SciTech Connect (OSTI)

    Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

    2011-03-01

    In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

  17. Hazardous constituent source term. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-11-17

    The Department of Energy (DOE) has several facilities that either generate and/or store transuranic (TRU)-waste from weapons program research and production. Much of this waste also contains hazardous waste constituents as regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Toxicity characteristic metals in the waste principally include lead, occurring in leaded rubber gloves and shielding. Other RCRA metals may occur as contaminants in pyrochemical salt, soil, debris, and sludge and solidified liquids, as well as in equipment resulting from decontamination and decommissioning activities. Volatile organic compounds (VOCS) contaminate many waste forms as a residue adsorbed on surfaces or occur in sludge and solidified liquids. Due to the presence of these hazardous constituents, applicable disposal regulations include land disposal restrictions established by Hazardous and Solid Waste Amendments (HSWA). The DOE plans to dispose of TRU-mixed waste from the weapons program in the Waste Isolation Pilot Plant (WIPP) by demonstrating no-migration of hazardous constituents. This paper documents the current technical basis for methodologies proposed to develop a post-closure RCRA hazardous constituent source term. For the purposes of demonstrating no-migration, the hazardous constituent source term is defined as the quantities of hazardous constituents that are available for transport after repository closure. Development of the source term is only one of several activities that will be involved in the no-migration demonstration. The demonstration will also include uncertainty and sensitivity analyses of contaminant transport.

  18. Naval Air Warfare Center, Aircraft Division at Warminster Environmental Materials Program. Phase 1. Interim report, October 1989-May 1992

    SciTech Connect (OSTI)

    Spadafora, S.J.; Hegedus, C.R.; Clark, K.J.; Eng, A.T.; Pulley, D.F.

    1992-06-24

    With the recent increase in awareness about the environment, there is an expanding concern of the deleterious effects of current materials and processes. Federal, state and local environmental agencies such as the EPA, State Air Resource Boards and local Air Quality Management Districts (AQMD) have issued legislation that restrict or prohibit the use and disposal of hazardous materials. National and local laws like the Clean Air and Clean Water Acts, Resource Conservation and Recovery Act, and AQMD regulations are examples of rules that govern the handling and disposal of hazardous materials and waste. The Department of Defense (DoD), in support of this effort, has identified the major generators of hazardous materials and hazardous waste to be maintenance depots and operations, particularly cleaning, pretreating, plating, painting and paint removal processes. Reductions of waste in these areas has been targeted as a primary goal in the DOD. The Navy is committed to significantly reducing its current hazardous waste generation and is working to attain a near zero discharge of hazardous waste by the year 2000. In order to attain these goals, the Naval Air Warfare Center Aircraft Division at Warminster has organized and is carrying out a comprehensive program in cooperation with the Naval Air Systems Command, the Air Force and the Department of Energy that deal with the elimination or reduction of hazardous materials. .... Environmental materials, Organic coatings, Inorganic pretreatments, Paint removal techniques, Cleaners, CFC'S.

  19. Air quality implications associated with the selection of power plants in the Pacific Northwest

    SciTech Connect (OSTI)

    Baechler, M.C.; Glantz, C.S.; Edelmen, P.C.

    1993-11-01

    This assessment models emission inventories and pollutant emission rates for fossil fuel power plants. Ground-level air concentration of nitrogen oxides, sulfur dioxide and TSP are predicted. Pollutant deposition, non-acidic deposition, acidic deposition, ozone impacts, and visibility attenuation are considered. Human health effects, wildlife effects, effects on plants and crops, and residual environmental impacts are estimated from predicted emissions.

  20. Supplemental Environmental Projects Using Renewable Energy: A New Approach to Addressing Air Quality Violation Penalties

    SciTech Connect (OSTI)

    Sinclair, K.

    2001-08-09

    Supplemental environmental projects, or SEPs, are environmentally beneficial projects that offer pollution prevention, energy efficiency, green energy, and community-based programs that may include investment in cost-effective alternative energy technologies, such as wind energy. This fact sheet explains how SEPs can help companies mitigate all or part of penalties imposed as a result of air pollution violations.

  1. Weekend/Weekday Ozone Study in the South Coast Air Basin | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 2 DEER Conference Presentation: Desert Research Institute PDF icon 2002_deer_fujita.pdf More Documents & Publications The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. DOE's Studies of Weekday/Weekend Ozone Pollution in Southern California

  2. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 PDF icon Audit of Selected Hazardous Waste ...

  3. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  4. Hazards Control Department annual technology review, 1987

    SciTech Connect (OSTI)

    Griffith, R.V.; Anderson, K.J.

    1988-07-01

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  5. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

    1999-01-01

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  6. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  7. Implementation of the Clean Air Act, Title V operating permit program requirements for the U.S. DOE Oak Ridge Reservation facilities

    SciTech Connect (OSTI)

    Humphreys, M.P. [Dept. of Energy Oak Ridge Operations Office, TN (United States). Environmental Protection Div.

    1998-12-31

    Title V of the Clean Air Act (CAA) establishes a new permit program requiring major sources and sources subject to Title III (Hazardous Air Pollutants) to obtain a state operating permit. Historically, most states have issued operating permits for individual emission units. Under the Title V permit program, a single permit will be issued for all of the emission units at the facility much like the current National Pollutant Discharge Elimination System (NPDES) permit program. The permit will specify all reporting, monitoring, and record-keeping requirements for the facility. Sources required to obtain permits include (a) major sources that emit 100 tons per year or more of any criteria air contaminant, (b) any source subject to the HAP provisions of Title III, (c) any source subject to the acid rain provisions of Title IV, (d) any source subject to New Source Performance Standards, and (e) any source subject to new source review under the nonattainment or Prevention of Significant Deterioration provisions. The State of Tennessee Title V Operating Permit Program was approved by EPA on August 28, 1996. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title V Operating Permit Program. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the East Tennessee Technology Park (ETTP). The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the ETTP conducts a variety of research and development activities and is the home of a mixed waste incinerator. Each of the three DOE Facilities is considered a major source under Title V of the CAA.

  8. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOE Patents [OSTI]

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  9. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis

    Office of Environmental Management (EM)

    Committee (SSHAC) Level 1 Seismic Hazard Analysis | Department of Energy The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 Seismic Hazard Analysis The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 Seismic Hazard Analysis Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. PDF icon Seismic Hazard Definition: SSHAC Level 1 PSHA at MFC More Documents & Publications The INL Seismic Risk

  10. Hazard Communications Training Deadline Approaches | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazard Communications Training Deadline Approaches Hazard Communications Training Deadline Approaches November 1, 2013 - 8:45am Addthis Hazard Communications Training Deadline Approaches 10 CFR 851, Worker Safety and Health Program, requires all DOE Federal and contractor employees with hazardous chemicals in their workplaces to complete new Hazard Communication Standard Training. The major changes to the standard include hazard classification, labeling, Safety Data Sheets, information and

  11. Sandia Energy - Solar Glare Hazard Analysis Tool Available for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Available for Download Home Renewable Energy Energy News News & Events Photovoltaic Solar Solar Newsletter Solar Glare Hazard Analysis Tool...

  12. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  13. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there were no actual or potential hazards to human health or the environment due to exposure to hazardous waste or waste constituents. Further assessment of actual or...

  14. New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a free Web-based tool that can quickly calculate potential visual hazards from proposed solar installations. ...

  15. Hawaii HEPCRA Hazardous Chemical Storage and Tier II Reporting...

    Open Energy Info (EERE)

    HEPCRA Hazardous Chemical Storage and Tier II Reporting Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii HEPCRA Hazardous Chemical...

  16. Review of Natural Phenomena Hazards (NPH) Requirements Currently...

    Office of Environmental Management (EM)

    Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) Review of Natural Phenomena Hazards (NPH)...

  17. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  18. Assessment of Health Hazards of Repeated Inhalation of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with ...

  19. Draft STD-1027 Supplemental Directive (Alternate Hazard Categorization...

    Office of Environmental Management (EM)

    STD-1027 Supplemental Directive (Alternate Hazard Categorization) Methodology Patrick Cahalane NNSA NA-00-10 Revised Hazard Category 2 value for tritium (water) Revised value based...

  20. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis...

    Office of Environmental Management (EM)

    SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East...

  1. October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday...

    Office of Environmental Management (EM)

    Seismic Hazard Analysis for Nuclear Facilities at the Hanford Site, Eastern Washington, USA Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook A Probabilistic Approach to...

  2. Utah Department of Environmental Quality Hazardous Waste Permits...

    Open Energy Info (EERE)

    Hazardous Waste Permits Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Hazardous Waste Permits...

  3. Hawaii DOH Hazardous Waste Section Webpage | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Section Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii DOH Hazardous Waste Section Webpage Abstract This webpage...

  4. Title 40 CFR 260: Hazardous Waste Management System: General...

    Open Energy Info (EERE)

    : Hazardous Waste Management System: General Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR 260: Hazardous...

  5. Hawaii Department of Health Solid and Hazardous Waste Branch...

    Open Energy Info (EERE)

    and Hazardous Waste Branch Jump to: navigation, search Name: Hawaii Department of Health Solid and Hazardous Waste Branch Address: 919 Ala Moana Boulevard 212 Place: Honolulu,...

  6. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOE Patents [OSTI]

    Wilson, Kirk A. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN); Judkins, Roddie R. (Knoxville, TN)

    1998-01-01

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.

  7. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    Richard C. Logan

    2002-03-28

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

  8. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    J. L. Kubicek

    2001-09-07

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

  9. Mr. John E. Kieling, Chief Hazardous ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John E. Kieling, Chief Hazardous Was te Bureau Depa rtment of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad , New Mexico 88221 NOV 0 5 2013 New Mexico Environment...

  10. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  11. Hazard index for underground toxic material

    SciTech Connect (OSTI)

    Smith, C.F.; Cohen, J.J.; McKone, T.E.

    1980-06-01

    To adequately define the problem of waste management, quantitative measures of hazard must be used. This study reviews past work in the area of hazard indices and proposes a geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking-water levels; a persistence factor to characterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter-lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.

  12. Supplemental Hazard Analysis and Risk Assessment - Hydrotreater

    SciTech Connect (OSTI)

    Lowry, Peter P.; Wagner, Katie A.

    2015-04-01

    A supplemental hazard analysis was conducted and quantitative risk assessment performed in response to an independent review comment received by the Pacific Northwest National Laboratory (PNNL) from the U.S. Department of Energy Pacific Northwest Field Office (PNSO) against the Hydrotreater/Distillation Column Hazard Analysis Report issued in April 2013. The supplemental analysis used the hazardous conditions documented by the previous April 2013 report as a basis. The conditions were screened and grouped for the purpose of identifying whether additional prudent, practical hazard controls could be identified, using a quantitative risk evaluation to assess the adequacy of the controls and establish a lower level of concern for the likelihood of potential serious accidents. Calculations were performed to support conclusions where necessary.

  13. Design characteristics for facilities which process hazardous particulate

    SciTech Connect (OSTI)

    Abeln, S.P.; Creek, K.; Salisbury, S.

    1998-12-01

    Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

  14. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    SciTech Connect (OSTI)

    Daniel P. Connell

    2009-01-12

    The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, and HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  15. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  16. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.; Garvin, L.J.

    1997-07-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  17. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  18. Primary zone air proportioner

    DOE Patents [OSTI]

    Cleary, Edward N. G. (San Diego, CA)

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  19. Hazard perception and the economic impact of internment on residential land values

    SciTech Connect (OSTI)

    Merz, J.F.

    1983-04-01

    The potential for large scale natural and man-made hazards exists in the form of hurricanes, earthquakes, volcanoes, floods, dams, accidents involving poisonous, explosive or radioactive materials, and severe pollution or waste disposal mishaps. Regions prone to natural hazards and areas located proximally to technological hazards may be subject to economic losses from low probability-high consequence events. Economic costs may be incurred in: evacuation and relocation of inhabitants; personal, industrial, agricultural, and tax revenue losses; decontamination; property damage or loss of value; and temporary or prolonged internment of land. The value of land in an area subjected to a low probability-high consequence event may decrease, reflecting, a fortiori, a reluctance to continue living in the area or to repopulate a region which had required internment. The future value of such land may be described as a function of location, time, interdiction period (if applicable), and variables reflecting the magnitude of the perceived hazard. This paper presents a study of these variables and proposes a model for land value estimation. As an example, the application of the model to the Love Canal area in Niagara Falls, New York is presented.

  20. NEPA and the Clean Air Act: Complementary approaches to maintaining air quality

    SciTech Connect (OSTI)

    Miller, R.L.; McCold, L.N.

    1991-01-01

    The National Environmental Policy Act (NEPA) of 1969 was established to prevent or eliminate damage to the environmental and biosphere from federal actions and stimulate the public health and welfare. An intertwined focus of NEPA has been to create and maintain conditions under which people and nature can exist in productive harmony. Meanwhile, the Clean Air Act (CAA) and amendments are the basis for regulating emission of air pollutants and otherwise maintaining or enhancing air quality to protect public health and welfare throughout the United States. Because the CAA is to comprehensive, a frequently asked question concerns the usefulness of NEPA from an air quality perspective: What can NEPA accomplish for federal actions that is not already accomplished by the CAA This paper contends that NEPA plays an important role in identifying and informing federal decision-makers of potential air quality impacts of federal actions. NEPA encompasses a broader scope and provides an independent analysis of CAA requirements for federal actions. NEPA ensures that spectrum of potential environmental effects is examined, rather than air quality alone. In some cases, NEPA analyses involve evaluating trade-offs of beneficial and adverse effects among different environmental media, such as air emissions vs solid waste. NEPA air quality analyses sometimes encompass potential concerns that are beyond those required for compliance with the CAA. Also, the environmental consequences of alternative actions are assessed to assist federal decision-makers in selecting a preferred alternative. Finally, proposed federal programs are evaluated under NEPA for their potential effects. 8 refs.

  1. An evaluation of the effectiveness of lead paint hazard reduction when conducted by homeowners and landlords

    SciTech Connect (OSTI)

    Etre, L.A.; Reynolds, S.J.; Burmeister, L.F.; Whitten, P.S.; Gergely, R.

    1999-08-01

    This research project was conducted in collaboration with the Iowa Department of Public Health to evaluate whether property owners who follow recommended procedures for lead-based paint removal/repair can do the work safely and effectively. This study included 29 homes where a lead-based paint hazard had been identified and lead-based paint was removed or repaired (hazard reduction). Exposure evaluation included pre-project surface dust wipe sampling, air monitoring during lead-based paint removal, post-project surface dust wipe sampling, and pre- and post-project blood samples from adult study participants. The comparison of surface dust wipe samples taken before and after lead paint hazard reduction was used to evaluate the effectiveness of lead paint hazard reduction. The lead loadings on window sill surfaces in the work area were significantly lower after completion of the project, and the lead-based paint removal did not contaminate the adjoining living area. The proportion of homes with surface dust lead loading exceeding Department of Housing and Urban Development (HUD) clearance standard was 73% pre-project and 38% post-project. Personal airborne exposures during lead removal activities reinforce the need to respiratory protection and good hygiene. There was no difference in adult pre-/post-blood levels, indicating that participants die remove lead in a safe manner with respect to their own exposures. The results indicate that hazard reduction can be done effectively when recommended procedures for the removal of lead-based paint are followed.

  2. An Innovative Reactor Technology to Improve Indoor Air Quality

    SciTech Connect (OSTI)

    Rempel, Jane

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  3. Oxy-fuel combustion with integrated pollution control

    DOE Patents [OSTI]

    Patrick, Brian R. (Chicago, IL); Ochs, Thomas Lilburn (Albany, OR); Summers, Cathy Ann (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul Chandler (Independence, OR)

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  4. Superfund at work: Hazardous waste cleanup efforts nationwide, Winter 1994 (Seymour recycling site profile, Seymour, Indiana)

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    Leaking barrels of chemicals reacted and erupted into spontaneous fires and explosions at the Seymour Recycling Corporation in the 1970s. The poorly managed and overburdened hazardous waste storage and incineration facility polluted soil and ground water with solvents, acids, and heavy metals. With help from the Indiana Department of Environmental Management (IDEM) and the City of Seymour, cooperative efforts lead to an effective remediation of the site including: an immediate removal of drums, tanks and soil; a comprehensive ground water treatment system and extension of the municipal water supply to affected residents; and use of two innovative technologies, bioremediation and soil vapor extraction.

  5. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  6. DOE Natural Phenomena Hazards (NPH) Workshop- Opening Remarks & Agenda

    Broader source: Energy.gov [DOE]

    DOE Natural Phenomena Hazards (NPH) Workshop - Opening Remarks & Agenda October 25-26, 2011 Germantown, MD

  7. Potential Health Hazards of Radiation | Department of Energy

    Energy Savers [EERE]

    Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation PDF icon Potential Health Hazards of Radiation More Documents & Publications Radioactive Materials Emergencies Course Presentation DOE-HDBK-1130-2008 DOE-HDBK-1130-2008

  8. Corrosion detector apparatus for universal assessment of pollution in data centers

    DOE Patents [OSTI]

    Hamann, Hendrik F.; Klein, Levente I.

    2015-08-18

    A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.

  9. Geographical distribution of benzene in air in northwestern Italy and personal exposure

    SciTech Connect (OSTI)

    Gilli, G.; Scursatone, E.; Bono, R.

    1996-12-01

    Benzene is a solvent strictly related to some industrial activities and to automotive emissions. After the reduction in lead content of fuel gasoline, and the consequent decrease in octane number, an increase in benzene and other aromatic hydrocarbons in gasoline occurred. Therefore, an increase in the concentration of these chemicals in the air as primary pollutants and as precursors of photochemical smog could occur in the future. The objectives of this study were to describe the benzene air pollution at three sites in northwestern Italy throughout 1991 and 1994; to examine the relationship between benzene air pollution in indoor, outdoor, and personal air as measured by a group of nonsmoking university students; and to determine the influence of environmental tobacco smoke on the level of benzene exposure in indoor air environments. The results indicate a direct relationship between population density and levels of contamination; an indoor/outdoor ratio of benzene air pollution higher than 1 during day and night; a similar level of personal and indoor air contamination; and a direct relationship between levels of personal exposure to benzene and intensity of exposure to tobacco smoke. Human exposure to airborne benzene has been found to depend principally on indoor air contamination not only in the home but also in many other confined environments. 29 refs., 2 figs., 6 tabs.

  10. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect (OSTI)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  11. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  12. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect (OSTI)

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  13. Determining the Right Air Quality for Your Compressed Air System |

    Office of Environmental Management (EM)

    Department of Energy Determining the Right Air Quality for Your Compressed Air System Determining the Right Air Quality for Your Compressed Air System This tip sheet outlines the main factors for determining the right air quality for compressed air systems. COMPRESSED AIR TIP SHEET #5 PDF icon Determining the Right Air Quality for Your Compressed Air System (August 2004) More Documents & Publications Effect of Intake on Compressor Performance Improving Compressed Air System Performance:

  14. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis |

    Office of Environmental Management (EM)

    Department of Energy Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by B&W Technical Services, Pantex and Pro2Serve October, 2011 PDF icon Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis More Documents & Publications DOE-STD-1020-2012 DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE

  15. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2006-07-31

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  16. Role of surface characteristics in urban meteorology and air quality

    SciTech Connect (OSTI)

    Sailor, D.J.

    1993-08-01

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data-base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4{degree}C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  17. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  18. East Germany struggles to clean its air and water

    SciTech Connect (OSTI)

    Cherfas, J.

    1990-04-20

    East Germans are working hard on a strategy to improve their polluted environment. Industrial plants are largely responsible for this pollution. A shroud of haze veils the suburbs of East Berlin. Far to the south the giant power plants around Leipzig pour more dust and sulfur dioxide into the air than in any other country in Europe. More than 90% of the country's electricity comes from brown coal, accompanied by prodigious quantities of dust and sulfur dioxide: almost 6 million tones of sulfur dioxide and more than 2 million tones of dust in 1988. East Germany enjoys some of the cheapest energy in the world, and the world's third highest energy consumption per capita, behind the United States, and Canada. Naturally, is also suffers air quality and health problems. The country is trying to cut down on consumption and clean up on generation. Actually, water quality is the number one priority, which unlike air is in very short supply.

  19. Metal chelate process to remove pollutants from fluids

    DOE Patents [OSTI]

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  20. Remote possibly hazardous content container sampling device

    DOE Patents [OSTI]

    Volz, David L. (59 La Paloma, Los Alamos, NM 87544)

    1998-01-01

    The present invention relates to an apparatus capable of sampling enclosed containers, where the contents of the container is unknown. The invention includes a compressed air device capable of supplying air pressure, device for controlling the amount of air pressure applied, a pneumatic valve, a sampling device having a hollow, sampling insertion needle suspended therein and device to communicate fluid flow between the container and a containment vessel, pump or direct reading instrument.

  1. Oil Pollution Act | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Oil Pollution ActLegal Abstract The Oil Pollution Act (OPA) of 1990 streamlined and...

  2. NPS Pollution Control Program | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NPS Pollution Control ProgramLegal Abstract Policy for Implementation and Enforcement of the NPS Pollution...

  3. Pollution prevention opportunity assessment for the SNL/California waste management facilities

    SciTech Connect (OSTI)

    Braye, S.; Phillips, N.M.

    1995-01-01

    SNL/California`s waste management facilities, Bldgs. 961 and 962-2, generate a secondary stream of hazardous and radioactive waste. This waste stream is generated mainly during the processing and handling of hazardous, radioactive, and mixed wastes (primary waste stream), which are generated by the laboratories, and when cleaning up spills. The secondary waste stream begins with the removal of a generator`s hazardous, radioactive, and mixed waste from specified collection areas. The waste stream ends when the containers of processed waste are loaded for shipment off-site. The total amount of secondary hazardous waste generated in the waste management facilities from January 1993 to July 1994 was 1,160.6 kg. The total amount of secondary radioactive waste generated during the same period was 1,528.8 kg (with an activity of 0.070 mCi). Mixed waste usually is not generated in the secondary waste stream. This pollution prevention opportunity assessment (PPOA) was conducted using the graded approach methodology developed by the Department of Energy (DOE) PPOA task group. The original method was modified to accommodate the needs of Sandia`s site-specific processes. The options generated for potential hazardous waste minimization, cost savings, and environmental health and safety were the result of a waste minimization team effort. The results of the team efforts are summarized.

  4. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    SciTech Connect (OSTI)

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

  5. Sandia National Laboratories: Pollution Prevention: Regulatory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    buildings and procurement contracts that integrate sustainability into their operations. ... Pollution Prevention Act Department of Energy Strategic Sustainability Performance Plan ...

  6. Radionuclide Air Emissions Report for the Hanford Site Calendar year 1998

    SciTech Connect (OSTI)

    DIEDIKER, L.P.

    1999-06-15

    This report documents radionuclide air emissions from the Hanford Site in I998 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (40 CFR SI), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities,'' and with the Washington Administrative Code Chapter 246-247, Radiation Protection--Air Emissions. The federal regulations in 40 CFR 61, Subpart H; require the measurement and reporting of radionuclides emitted from Department of Energy facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1998 from Hanford Site point sources was 1.3 E-02 mrem (1.3 E-04 mSv), which is 0.13 percent of the federal standard. Chapter 246-247 of the Washington Administrative Code (WAC) requires the reporting of radionuclide emissions from all Department of Energy Hanford Site sources. The state has adopted into these regulations the 40 CFR 61 standard of 10 mrem/yr EDE. The EDE to the MEI attributable to diffuse and fugitive radionuclide air emissions from the Hanford Site in 1998 was 2.5 E-02 mrem (2.5 E-04 mSv). This dose added to the dose from point sources gives a total for all sources of 3.8 E-02 mrem/yr (3.8 E-04 mSv) EDE, which is 0.38 percent of the 10 mrem/yr standard. An unplanned release on August 26, 1998, in the 300 Area of the Hanford Site resulted in a potential dose of 4.1 E-02 mrem to a hypothetical individual at the nearest point of public access to that area. This hypothetical individual was not the MEI since the wind direction on the day of the release was away from the MEI residence. The potential dose from the unplanned event was similar in magnitude to that from routine releases during 1998. Were the release from this unplanned event combined with routine releases, the total dose would be less than 1 percent ofthe 10 mrem/yr standard.

  7. Robots, systems, and methods for hazard evaluation and visualization

    DOE Patents [OSTI]

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  8. Metal pollution of river Msimbazi, Tanzania

    SciTech Connect (OSTI)

    Ak'habuhaya, J.; Lodenius, M. )

    1988-01-01

    The Misimbazi River in Dar es Salaam is polluted with industrial, urban and agricultural waste waters. A preliminary investigation on the extent of metal pollution (Hg, Cr, Cu, Zn, Fe, Ni, Cd, Mn, Al) was made from samples of sediments and biological indicators. The metal concentrations were in general low, but some of our results indicated industrial pollution.

  9. Pollution Prevention - Environmental Impact Reduction Checklists for

    Energy Savers [EERE]

    NEPA/309 Reviewers | Department of Energy Pollution Prevention - Environmental Impact Reduction Checklists for NEPA/309 Reviewers Pollution Prevention - Environmental Impact Reduction Checklists for NEPA/309 Reviewers The environmental review process under the National Environmental Policy Act (NEPA) provides a valuable opportunity for Federal agency NEPA/309 reviewers to incorporate pollution prevention and environmental impact reduction into actions (or projects). This Environmental

  10. Hazardous and Radioactive Mixed Waste Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  11. Preliminary Hazards Analysis Plasma Hearth Process

    SciTech Connect (OSTI)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P.

    1993-11-01

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

  12. Laboratory flammability studies of mixtures of hydrogen, nitrous oxide, and air

    SciTech Connect (OSTI)

    Cashdollar, K L; Hertzberg, M; Zlochower, I A; Lucci, C E; Green, G M; Thomas, R A

    1992-06-26

    At the request of the Department of Energy and the Westinghouse Hanford Company, the Bureau of Mines has investigated the flammability of mixtures of hydrogen, nitrous oxide, and air. This work is relevant to the possible hazards of flammable gas generation from nuclear waste tanks at Hanford, WA. The tests were performed in a 120-L spherical chamber under both quiescent and turbulent conditions using both electric spark and pyrotechnic ignition sources. The data reported here for binary mixtures of hydrogen in air generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results clarify to a greater extent the complications associated with buoyancy, turbulence, and selective diffusion. The data reported here for ternary mixtures of hydrogen and nitrous oxide in air indicate that small additions of nitrous oxide (relative to the amount of air) have little effect, but that higher concentrations of nitrous oxide (relative to air) significantly increase the explosion hazard.

  13. Simple Interactive Models for better air quality (SIM-air) |...

    Open Energy Info (EERE)

    Interactive Models for better air quality (SIM-air) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simple Interactive Models (SIM-air) AgencyCompany Organization:...

  14. Waste processing and pollution in the chemical and petrochemical industries. January 1984-October 1991 (Citations from the NTIS Data Base). Rept. for Jan 84-Oct 91

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 151 citations with title list and subject index.)

  15. Waste processing and pollution in the chemical and petrochemical industries. March 1983-March 1990 (A Bibliography from the NTIS data base). Report for March 1983-March 1990

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    This bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials-recovery studies, and standards for specific industries. Sources, site-hazard evaluations, and the toxicity of specific chemicals are also discussed. (This updated bibliography contains 68 citations, 13 of which are new entries to the previous edition.)

  16. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Example Application of Approach 3 to Develop Soil Hazard Curves Hanford Site-Wide Probabilistic Seismic Hazard Analysis 2014 Appendix K - Example Application of Approach 3 to Develop Soil Hazard Curves The seismic hazard results presented in Chapter 10.0 represent the hazard at the baserock horizon defined to be at the top of the Wanapum basalts, which is encountered at depths of between 332 and 446 m at the hazard calculation Sites A-E. As discussed in Section 10.5, the recommended approach

  17. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Revision 1) Example Application of Approach 3 to Develop Soil Hazard Curves Hanford Site-Wide Probabilistic Seismic Hazard Analysis 2014 K.1 Appendix K - Example Application of Approach 3 to Develop Soil Hazard Curves The seismic hazard results presented in Chapter 10.0 represent the hazard at the baserock horizon defined to be at the top of the Wanapum basalts, which is encountered at depths of between 332 and 446 m at the hazard calculation Sites A-E. As discussed in Section 10.5, the

  18. Minimize Compressed Air Leaks

    Broader source: Energy.gov [DOE]

    This tip sheet outlines a strategy for compressed air leak detection and provides a formula for cost savings calculations.

  19. Greenidge Multi-Pollutant Control Project

    SciTech Connect (OSTI)

    Daniel Connell

    2008-10-18

    The Greenidge Multi-Pollutant Control Project was conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electric generating units (EGUs). There are about 400 units in the United States with capacities of 50-300 MW that currently are not equipped with selective catalytic reduction (SCR), flue gas desulfurization (FGD), or mercury control systems. Many of these units, which collectively represent more than 55 GW of installed capacity, are difficult to retrofit for deep emission reductions because of space constraints and unfavorable economies of scale, making them increasingly vulnerable to retirement or fuel switching in the face of progressively more stringent environmental regulations. The Greenidge Project sought to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs by offering a combination of deep emission reductions, low capital costs, small space requirements, applicability to high-sulfur coals, mechanical simplicity, and operational flexibility. The multi-pollutant control system includes a NO{sub x}OUT CASCADE{reg_sign} hybrid selective non-catalytic reduction (SNCR)/in-duct SCR system for NO{sub x} control and a Turbosorp{reg_sign} circulating fluidized bed dry scrubbing system (with a new baghouse) for SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter control. Mercury removal is provided as a co-benefit of the in-duct SCR, dry scrubber, and baghouse, and by injection of activated carbon upstream of the scrubber, if required. The multi-pollutant control system was installed and tested on the 107-MW{sub e}, 1953-vintage AES Greenidge Unit 4 by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. About 44% of the funding for the project was provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and the remaining 56% was provided by AES Greenidge. Project goals included reducing high-load NO{sub x} emissions to {le} 0.10 lb/mmBtu; reducing SO{sub 2}, SO{sub 3}, HCl, and HF emissions by at least 95%; and reducing Hg emissions by at least 90% while the unit fired 2-4% sulfur eastern U.S. bituminous coal and co-fired up to 10% biomass. This report details the final results from the project. The multi-pollutant control system was constructed in 2006, with a total plant cost of $349/kW and a footprint of 0.4 acre - both substantially less than would have been required to retrofit AES Greenidge Unit 4 with a conventional SCR and wet scrubber. Start-up of the multi-pollutant control system was completed in March 2007, and the performance of the system was then evaluated over an approximately 18-month period of commercial operation. Guarantee tests conducted in March-June 2007 demonstrated attainment of all of the emission reduction goals listed above. Additional tests completed throughout the performance evaluation period showed 96% SO{sub 2} removal, 98% mercury removal (with no activated carbon injection), 95% SO{sub 3} removal, and 97% HCl removal during longer-term operation. Greater than 95% SO{sub 2} removal efficiency was observed even when the unit fired high-sulfur coals containing up to 4.8 lb SO{sub 2}/mmBtu. Particulate matter emissions were reduced by more than 98% relative to the emission rate observed prior to installation of the technology. The performance of the hybrid SNCR/SCR system was affected by problems with large particle ash, ammonia slip, and nonideal combustion characteristics, and high-load NO{sub x} emissions averaged 0.14 lb/mmBtu during long-term operation. Nevertheless, the system has reduced the unit's overall NO{sub x} emissions by 52% on a lb/mmBtu basis. The commercial viability of the multi-pollutant control system was demonstrated at AES Greenidge Unit 4. The system, which remains in service after the conclusion of the project, has enabled the unit to satisfy its permit requirements while continuing to operate profitably. As a result of the success at AES Greenidge Unit 4, three additional deployments of the Turbosorp{reg_sign} technology had been announced by the end of the project.

  20. Air quality VI details environmental progress

    SciTech Connect (OSTI)

    2007-12-31

    A report is given of the International Conference on Air Quality VI where key topics discussed were control of mercury, trace elements, sulphur trioxide and particulates. This year a separate track was added on greenhouse gas reduction, with panels on greenhouse gas policy and markets, CO{sub 2} capture and sequestration, and monitoring, mitigation and verification. In keynote remarks, NETL Director Carl Bauer noted that emissions have gone down since 1990 even though coal consumption has increased. The conference provided an overview of the state-of-the-science regarding key pollutants and CO{sub 2}, the corresponding regulatory environment, and the technology readiness of mitigation techniques. 1 photo.

  1. Mexico City air quality research initiative. Volume 2, Problem definition, background, and summary of prior research

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Air pollution in Mexico City has increased along with the growth of the city, the movement of its population, and the growth of employment created by industry. The main cause of pollution in the city is energy consumption. Therefore, it is necessary to take into account the city`s economic development and its prospects when considering the technological relationships between well-being and energy consumption. Air pollution in the city from dust and other particles suspended in the air is an old problem. However, pollution as we know it today began about 50 years ago with the growth of industry, transportation, and population. The level of well-being attained in Mexico City implies a high energy use that necessarily affects the valley`s natural air quality. However, the pollution has grown so fast that the City must act urgently on three fronts: first, following a comprehensive strategy, transform the economic foundation of the city with nonpolluting activities to replace the old industries, second, halt pollution growth through the development of better technologies; and third, use better fuels, emission controls, and protection of wooded areas.

  2. Beyond pollution prevention: Managing life-cycle costs

    SciTech Connect (OSTI)

    Cohan, D.; Gess, D. )

    1993-01-01

    Companies that purchases and use chemicals and materials in their everyday operation are finding that disposing of these products is becoming increasingly expensive. These disposal and liability costs have been the motivating factor behind recent efforts at pollution prevention. This paper suggests an alternative approach: considering the full life-cycle costs of chemicals and materials at the time purchase decisions are made. Life-cycle cost is the sum of all the costs that a product is expected to incur from the time of its purchase, during its use, until the disposal of any wastes or by-products and beyond as long as liabilities may remain. It represents the product's real cost to the company, and as such is a better basis for making cost-effective decisions. By using life-cycle costs to make decisions, companies can prevent uneconomical decisions on potentially hazardous materials and more effectively minimize overall costs. Life-cycle cost management can also help in the formulation of pollution prevention plans by identifying cost-effective waste-reduction alternatives. Although the concepts of life-cycle cost management are straightforward and intuitive, applying these concepts to real decisions may be challenging. This paper presents an overview of life-cycle cost management, discusses some of the challenges companies face applying this approach to real decisions, and provides solutions that meet these challenges.

  3. Annual report of waste generation and pollution prevention progress 1998

    SciTech Connect (OSTI)

    1999-09-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

  4. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOE Patents [OSTI]

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  5. Preliminary draft: comprehensive air-monitoring plan report

    SciTech Connect (OSTI)

    Not Available

    1980-02-15

    The topography of the CAMP Study Area, climate, and air pollution meteorology are described. The population analysis indicated limited growth during the next 10 years in the CAMP Study Area. Analysis of emission sources (current and projected) included a presentation of the types of emissions and their impact on the Study Area population (receptors). The general conclusion was drawn that of the non-condensible gases emitted, and considered pollutants, hydrogen sulfide was the only one for which monitoring would be recommended. Recommendations for type, placement, performance criteria, and the timing of establishment and terminating monitoring equipment were determined.

  6. Air Sparging Decision Tool

    Energy Science and Technology Software Center (OSTI)

    1996-06-10

    The Air Sparging Decision Tool is a computer decision aid to help environmental managers and field practitioners in evaluating the applicability of air sparging to a wide range of sites and for refining the operation of air sparging systems. The program provides tools for the practitioner to develop the conceptual design for an air sparging system suitable for the identified site. The Tool provides a model of the decision making process, not a detailed designmore » of air sparging systems. The Tool will quickly and cost effectively assist the practitioner in screening for applicability of the technology at a proposed site.« less

  7. Air exchange effectiveness in office buildings: Measurement techniques and results

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.

    1992-07-01

    We define two air exchange effectiveness parameters which indicate the extent of short circuiting, mixing, or displacement air flow in an entire building, the air diffusion effectiveness which indicates the air flow pattern locally, and the normalized local age of air. After describing two tracer gas procedures for measuring these parameters, we discuss assumptions inherent in the data analysis that are often violated in large office buildings. To obtain valuable data, careful selection of buildings for measurements and assessments to determine if operating conditions are reasonably consistent with the assumptions are necessary. Multiple factors, in addition to the air flow pattern in the occupied space, can affect measurement results, consequently, the interpretation of measurements is not straightforward. We summarize the results of measurements in several office buildings and in a research laboratory. Almost all measurements indicate that the extent of both short circuiting and displacement flow is small. A moderate amount of short circuiting is evident from a few measurements in rooms with heated supply air. Ages of air and their reciprocals (local ventilation rates) often vary substantially between rooms, probably because of room-to-room variation in the rate of air supply. For future research, we suggest assessments of measurement accuracy, development of measurement approaches that may be practically applied for a broader range of buildings, and a greater focus on pollutant removal efficiencies.

  8. Hazardous devices teams showcase skills at Robot Rodeo June 24...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Bomb squads compete in timed scenarios at Los...

  9. ORISE Resources: Hospital All-Hazards Self-Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partners with CDC to develop Hospital All-Hazards Self-Assessment to identify gaps in planning efforts The Hospital All-Hazards Self-Assessment, or HAH, is designed to help...

  10. Hazard categorization of 105-KE basin debris removal project

    SciTech Connect (OSTI)

    Meichle, R.H.

    1996-01-25

    This supporting document provides the hazard categorization for 105-KE Basin Debris Removal Project activities planned in the K east Basin. All activities are categorized as less than Hazard Category 3.

  11. 6 CCR 1007-3: Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    CCR 1007-3: Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 6 CCR 1007-3: Hazardous WasteLegal Abstract...

  12. EPA Hazardous Waste TSDF Guide | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: EPA Hazardous Waste TSDF GuideLegal Abstract Guidance document prepared by the EPA for hazardous waste...

  13. Hazardous Waste Facility Permit Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Facility Permit Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Facility Permit Fact...

  14. RCRA Hazardous Waste Part A Permit Application: Instructions...

    Open Energy Info (EERE)

    Hazardous Waste Part A Permit Application: Instructions and Form (EPA Form 8700-23) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Hazardous Waste...

  15. ADEQ Managing Hazardous Waste Handbook | Open Energy Information

    Open Energy Info (EERE)

    Managing Hazardous Waste Handbook Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Managing Hazardous Waste HandbookLegal...

  16. NMED Hazardous Waste Bureau website | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Bureau website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NMED Hazardous Waste Bureau websiteLegal Abstract The...

  17. ADEQ Hazardous Waste Management website | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Management website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Hazardous Waste Management websiteLegal...

  18. Oregon DEQ Hazardous Waste Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    DEQ Hazardous Waste Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Oregon DEQ Hazardous Waste Fact...

  19. NMAC 20.4 Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    4 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.4 Hazardous WasteLegal Abstract Regulations...

  20. ARM 17-53 - Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    3 - Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-53 - Hazardous WasteLegal Abstract Sets forth...

  1. EPA Citizens Guide to Hazardous Waste Permitting Process | Open...

    Open Energy Info (EERE)

    Citizens Guide to Hazardous Waste Permitting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Citizens Guide to Hazardous Waste Permitting...

  2. A Probabilistic Approach to Site-Specific, Hazard-Consistent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vertical-to-Horizontal Spectral Ratio Model | Department of Energy Approach to Site-Specific, Hazard-Consistent Vertical-to-Horizontal Spectral Ratio Model A Probabilistic Approach to Site-Specific, Hazard-Consistent Vertical-to-Horizontal Spectral Ratio Model A Probabilistic Approach to Site-Specific, Hazard-Consistent Vertical-to-Horizontal Spectral Ratio Model Rizzo Associates Presented at U.S. DOE Natural Phenomena Hazards Meeting October 21, 2014 PDF icon A Probabilistic Approach to

  3. Upcoming Implementation Date for New Hazard Communication Standard |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Upcoming Implementation Date for New Hazard Communication Standard Upcoming Implementation Date for New Hazard Communication Standard May 1, 2015 - 10:30am Addthis The upcoming implementation date for the new Hazard Communication Standard requires all Federal and Contractor employees with hazardous chemicals in their workplace must be in compliance with all modified revisions of this final rule, except: The distributors shall not ship containers labeled by the chemical

  4. Protocol, High Hazard Nuclear Facility Project Oversight - November 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Hazard Nuclear Facility Project Oversight - November 2012 Protocol, High Hazard Nuclear Facility Project Oversight - November 2012 November 2012 Protocol for High Hazard Nuclear Facility Project Oversight This protocol establishes requirements and responsibilities for managing and conducting independent oversight of Department of Energy high-hazard nuclear facility projects by the Office of Health, Safety and Security's Office of Safety and Emergency Management

  5. Seismic & Natural Phenomena Hazards | Department of Energy

    Energy Savers [EERE]

    & Natural Phenomena Hazards Seismic & Natural Phenomena Hazards Seismic & Natural Phenomena Hazards As part of the CNS role supporting safe operation for DOE nuclear facilities, CNS sponsors efforts to improve nuclear facilities' ability to withstand natural phenomena hazards (NPH). Natural phenomena of primary concern are earthquakes, high winds, floods, extreme precipitation, and volcanic eruptions. We support site efforts to properly characterize NPH and ensure facilities are

  6. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  7. Natural Phenomena Hazards (NPH) Workshop | Department of Energy

    Office of Environmental Management (EM)

    Natural Phenomena Hazards (NPH) Workshop Natural Phenomena Hazards (NPH) Workshop The Energy Department Natural Phenomena Hazards (NPH) Workshop, sponsored by the Chief of Nuclear Safety and the Chief of Defense Nuclear Safety, was held October 25-26, 2011, in Germantown, Maryland. The workshop brought together approximately 80 experts involved in the characterization of, and mitigation against, natural hazards that can impact nuclear facilities. The workshop featured twenty presentations as

  8. Rapid deployable global sensing hazard alert system

    DOE Patents [OSTI]

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  9. Split driveshaft pump for hazardous fluids

    DOE Patents [OSTI]

    Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

    1995-01-01

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  10. Natural phenomena hazards site characterization criteria

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  11. Weather and the Transport of Hazardous Materials

    Office of Environmental Management (EM)

    FHWA R d W h M P FHWA R d W h M P FHWA Road Weather Management Program FHWA Road Weather Management Program " "Weather and the transport of Hazardous Materials" Ray Murphy Office of Technical Services Ray Murphy, Office of Technical Services U.S. DOT - Federal Highway Administration Breako t Session Using Technolog to Dispatch U.S. DOE National Transportation Stakeholder Forum Breakout Session: Using Technology to Dispatch and Monitor Shipments During Adverse Conditions

  12. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  13. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo Park Drive, Building 1 Santa Fe, NM 87502 Subject: Requesllo Invoke Dispute Resolution Related to Final Audit Report A-09 - 08 of the Idaho National Laboratory/Central Characterization Project Reference: Letter From Mr. James Bearzi to Dr. Dave Moody and Mr. Farok Sharif dated May 18, 2009 Dear Mr. Bearzi: This letter is

  14. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad , New Mexico 88221 October 12, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss, Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number NM4890139088 - TSDF Dear Mr. Bearzi: As required under Permit Condition IV.F.5.e, the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of the loss of

  15. Weather and the Transport of Hazardous Materials | Department of Energy

    Office of Environmental Management (EM)

    Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials PDF icon Weather and the Transport of Hazardous Materials More Documents & Publications Section 180(c) Ad Hoc Working Group Transportation Plan Ad Hoc Working Group EIS-0352: Record of Decision

  16. Hazards evaluation of plutonium metal opening and stabilization

    SciTech Connect (OSTI)

    JOHNSON, L.E.

    1999-08-31

    Hazards evaluation is the analysis of the significance of hazardous situations associated with an activity OK process. The HE used qualitative techniques of Hazard and Operability (HazOp) analysis and What-If analysis to identify those elements of handling and thermal stabilization processing that could lead to accidents.

  17. Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to

    Office of Environmental Management (EM)

    the Thomas Jefferson National Accelerator Facility (TJNAF) | Department of Energy Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) By:

  18. Preliminary hazards analysis for the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.J.

    1993-10-01

    This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

  19. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  20. Hazards assessment for the Waste Experimental Reduction Facility

    SciTech Connect (OSTI)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  1. Natural Phenomena Hazards Program Reports | Department of Energy

    Office of Environmental Management (EM)

    Program Reports Natural Phenomena Hazards Program Reports Listed below are some of the relevant Natural Phenomena Hazards (NPH) Program Publications. As material and research is completed the reports will be added below. Reports: NFSP-2015-TD01, Report on the Implementation of Periodic Natural Phenomena Hazards Assessment Reviews at Department of Energy Sites

  2. The global coastal hazards data base

    SciTech Connect (OSTI)

    Gornitz, V. . Goddard Inst. for Space Studies Columbia Univ., New York, NY ); White, T.W. )

    1989-01-01

    A rise of sea level between 0.5 and 1.5 m, caused by predicted climate warming in the next century, could jeopardize low-lying radioactive waste disposal sites near the coast, due to permanent and episodic inundation, increased shoreline retreat, and changes in the water table. The effects of global sea level rise on the shoreline will not be spatially uniform. Therefore, site selection will depend on assessment of these differential vulnerabilities, in order to avoid high-risk coasts. The coastal hazards data base described here could provide an appropriate framework. The coastal hazards data base integrates relevant topographic, geologic, geomorphologic, erosional and subsidence information in a Geographic Information System (GIS), to identify high-risk shorelines characterized by low coastal relief, an erodible substrate, present and past evidence of subsidence, extensive shoreline retreat, and high wave/tide energies. Data for seven variables relating to inundation and erosion hazards are incorporated into the ORNL ARC/INFO Geographic Information System (GIS). Data compilation has been completed for the US and is being extended to North America, and ultimately the world. A coastal vulnerability index (CVI) has been designed to flag high risk coastal segments. 17 refs., 2 figs., 2 tabs.

  3. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  4. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  5. Seismic hazard analysis at Rocky Flats Plant

    SciTech Connect (OSTI)

    McGuire, R.K.

    1993-10-01

    A probabilistic seismic hazard analysis is being conducted for the DOE Rocky Flats Plant, Jefferson County, Colorado. This is part of the overall review of the seismic exposure to facilities being conducted by DOE. The study has four major elements. (1) The historical seismicity in Colorado is being reviewed and synthesized to estimate historical rates of earthquake activity in the region of the site. (2) The geologic and tectonic evidence in Colorado and along the Front Range is being reviewed to determine appropriate seismic zones, potentially active faults, and constraints on fault slip rates. (3) Earthquake ground motion equations are being derived based on seismological knowledge of the earth`s crust. Site specific soil amplification factors are also being developed using on-site shear wave velocity measurements. (4) The probability of exceedence of various seismic ground motion levels is being calculated based on the inputs developed on tectonic sources, faults, ground motion, and soil amplification. Deterministic ground motion estimates are also being made. This study is a state-of-the-art analysis of seismic hazard. It incorporates uncertainties in the major aspects governing seismic hazard, and has a documented basis founded on solid data interpretations for the ranges of inputs used. The results will be a valid basis on which to evaluate plant structures, equipment, and components for seismic effects.

  6. Evaluations in support of regulatory and research decisions by the U. S. Environmental Protection Agency for the control of toxic hazards from hazardous wastes, glyphosate, dalapon, and synthetic fuels

    SciTech Connect (OSTI)

    Scofield, R.

    1984-01-01

    This report includes toxicological and regulatory evaluations performed in support of U.S. EPA regulation of toxic materials and hazardous wastes. The first section of the report describes evaluations which support: (a) the regulation of small-volume generators of hazardous wastes, (b) the regulation of hazardous wastes from pesticide manufacturing, and (c) the disposal of the herbicide, silvex. The second section describes the environmental fate, transport, and effect of glyphosate and dalapon. The third section deals with synthetic fuels, including evaluations of synfuel-product toxicity, uncontrolled air emissions, and particular focus on the toxicity of products from several indirect coal liquefaction processes including methanol synthesis, Fischer-Tropsch, Mobil M-Gasoline, and Lurgi gasification technologies. Three direct coal liquefaction processes were examined for product toxicity and air emissions: Solvent Refined Coal (I and II) and the Exxon Donor Solvent Process. Also described in the third section is an evaluation of environmental and health hazards associated with the use of synthetic fuels from indirect coal liquefaction, direct coal liquefaction, and shale oil. Finally, the fourth section discusses some problems associated with performing, on a contractual basis, scientific and technical evaluations in support of U.S. EPA regulatory and research decisions.

  7. Baseline air quality study at Fermilab

    SciTech Connect (OSTI)

    Dave, M.J.; Charboneau, R.

    1980-10-01

    Air quality and meteorological data collected at Fermi National Accelerator Laboratory are presented. The data represent baseline values for the pre-construction phase of a proposed coal-gasification test facility. Air quality data were characterized through continuous monitoring of gaseous pollutants, collection of meteorological data, data acquisition and reduction, and collection and analysis of discrete atmospheric samples. Seven air quality parameters were monitored and recorded on a continuous real-time basis: sulfur dioxide, ozone, total hydrocarbons, nonreactive hydrocarbons, nitric oxide, nitrogen oxides, and carbon monoxide. A 20.9-m tower was erected near Argonne's mobile air monitoring laboratory, which was located immediately downwind of the proposed facility. The tower was instrumented at three levels to collect continuous meteorological data. Wind speed was monitored at three levels; wind direction, horizontal and vertical, at the top level; ambient temperature at the top level; and differential temperature between all three levels. All continuously-monitored parameters were digitized and recorded on magnetic tape. Appropriate software was prepared to reduce the data. Statistical summaries, grphical displays, and correlation studies also are presented.

  8. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  9. air_water.cdr

    Office of Legacy Management (LM)

    12/2011 Air Monitoring Groundwater Monitoring Surface Water Monitoring A continuously operating air monitoring network was in place from 1986 through 2000 for the Weldon Spring Site Remedial Action Project (WSSRAP) to measure levels of gamma radiation, radioactive dust particles, radon gas, and asbestos. With remediation of contaminated materials essentially complete and measurements indistinguishable from background, the U.S. Department of Energy (DOE) ceased perimeter and offsite air

  10. Pollution prevention cost savings potential

    SciTech Connect (OSTI)

    Celeste, J.

    1994-12-01

    The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

  11. Determining the Right Air Quality for Your Compressed Air System - Compressed Air Tip Sheet #5

    SciTech Connect (OSTI)

    2004-08-01

    BestPractices Program tip sheet discussing how to determine the right air quality for compressed air systems.

  12. Los Alamos wins 2008 Pollution Prevention awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Pollution Prevention awards Los Alamos wins 2008 Pollution Prevention awards Winner of two Best-in-Class Pollution Prevention awards and six Environmental Stewardship awards from the National Nuclear Security Administration. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  13. Personal continuous air monitor

    DOE Patents [OSTI]

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  14. Identification of chemical hazards for security risk analysis activities.

    SciTech Connect (OSTI)

    Jaeger, Calvin Dell

    2005-01-01

    The presentation outline of this paper is: (1) How identification of chemical hazards fits into a security risk analysis approach; (2) Techniques for target identification; and (3) Identification of chemical hazards by different organizations. The summary is: (1) There are a number of different methodologies used within the chemical industry which identify chemical hazards: (a) Some develop a manual listing of potential targets based on published lists of hazardous chemicals or chemicals of concern, 'expert opinion' or known hazards. (b) Others develop a prioritized list based on chemicals found at a facility and consequence analysis (offsite release affecting population, theft of material, product tampering). (2) Identification of chemical hazards should include not only intrinsic properties of the chemicals but also potential reactive chemical hazards and potential use for activities off-site.

  15. Site Discharge Pollution Prevention Plan (SDPPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SDPPP Individual Permit: Site Discharge Pollution Prevention Plan (SDPPP) The 2014 SDPPP update fully incorporates all changes made during the year and reflects changes projected...

  16. Alaska Local Ordinances Governing Nonpoint Source Pollution ...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Alaska Local Ordinances Governing Nonpoint Source Pollution Citation Alaska...

  17. Texas Railroad Commission - Pollution Discharge Regulations ...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Texas Railroad Commission - Pollution Discharge Regulations Citation...

  18. Jefferson Lab Stormwater Pollution Prevention Reminder | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stormwater Pollution Prevention Reminder Stormwater runoff occurs when rainfall or snowmelt flows over ground surfaces. Naturally vegetated ground surfaces often absorb the...

  19. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, Terry C. (Augusta, GA)

    1994-01-01

    A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  20. Montana Pollutant Discharge Elimination System (MPDES) Webpage...

    Open Energy Info (EERE)

    System (MPDES) Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Pollutant Discharge Elimination System (MPDES) Webpage Abstract Provides...