Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hazard Assessment of Chemical Air Contaminants Measured in Residences  

NLE Websites -- All DOE Office Websites (Extended Search)

Hazard Assessment of Chemical Air Contaminants Measured in Residences Hazard Assessment of Chemical Air Contaminants Measured in Residences Title Hazard Assessment of Chemical Air Contaminants Measured in Residences Publication Type Journal Article LBNL Report Number LBNL-3650E Year of Publication 2011 Authors Logue, Jennifer M., Thomas E. McKone, Max H. Sherman, and Brett C. Singer Journal Indoor Air Volume 21 Start Page 92 Issue 2 Pagination 92-109 Date Published 04/2011 Keywords resave Abstract Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants were representative of concentrations in residences in the United States. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants are identified as contaminants of concern for chronic health effects in a large fraction of homes. Nine pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on robustness of reported concentration data and fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3- butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM2.5. Activity-based emissions are shown to pose potential acute health hazards for PM2.5, formaldehyde, CO, chloroform, and NO2.

2

Hazard Assessment of Chemical Air Contaminants Measured in Residences  

SciTech Connect

Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

2010-05-10T23:59:59.000Z

3

Radiological hazards of alpha-contaminated waste  

SciTech Connect

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

4

Abatement of Air Pollution: Hazardous Air Pollutants (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe maximum allowable stack concentrations and hazard limiting values for the emission of hazardous air pollutants. The regulations also discuss sampling procedures for...

5

Air Resources: Prevention and Control of Air Contamination and Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Resources: Prevention and Control of Air Contamination and Air Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) < Back Eligibility Agricultural Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations establish emissions limits and permitting and operational

6

Air pollution control: Indoor hazards  

Science Journals Connector (OSTI)

... the need for further study of the health effects of indoor air pollution, ranging from radon emitted by building materials to the second-hand effects of cigarette smoke, and the ... overlooked in research on the health effects of environmental pollutants. In some cases,such as radon, the report says that there is an "urgent need" to study such health ...

David Dickson

1981-09-10T23:59:59.000Z

7

Rapid guide to hazardous air pollutants  

SciTech Connect

Concise and easy to use, this book brings together a wealth of hard-to-gather information in one compact pocket guide. It offers--in alphabetical order--detailed profiles of the 189 elements and compounds determined to be hazardous air pollutants by the 1990 Amendments of the Clean Air Act. The profile for each pollutant includes: fundamental identification data (CAS number, molecular formula, formula weight, synonyms); uses (primarily in the manufacture of chemicals and as a component in the manufacturing process); physical properties (such as boiling point, density, vapor pressures, color); chemical properties (such as air/water reactivity, reactivity with skin or metal, flash point, heat of combustion); health risks, including toxic exposure guidelines, toxicity data, and acute and chronic risks; hazard risks (the substance`s potential for accidents, fires, explosions, corrosion, and chemical incompatibility); exposure routes tracking the activities, environment, sources, and occupations that tend to lead to exposure; regulatory status, listing the primary laws and citations of regulated chemicals; and important additional information on symptoms, first aid, firefighting methods, protective equipment, and safe storage.

Beim, H.J.; Spero, J.; Theodore, L.

1998-12-31T23:59:59.000Z

8

OPEN AIR DEMOLITION OF FACILITIES HIGHLY CONTAMINATED WITH PLUTONIUM  

SciTech Connect

The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than ''hands on'' techniques.

LLOYD, E.R.

2007-05-31T23:59:59.000Z

9

Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction  

SciTech Connect

Disclosed is a method for separating a vaporous or gaseous contaminant from an air stream contaminated therewith. This method includes the steps of: (a) passing said contaminated air into a contact zone in which is disposed an aerogel material capable of selecting adsorbing said contaminant from air and therein contacting said contaminated air with an aerogel material; and (b) withdrawing from said zone, air depleted of said contaminant. For present purposes, "contaminant" means a material not naturally occurring in ambient air and/or a material naturally occurring in air but present at a concentration above that found in ambient air. Thus, the present invention scrubs (or treats) air for the purpose of returning it to its ambient composition. Also disclosed herein is a process for the photocatalytic destruction of contaminants from an air stream wherein the contaminated air stream is passed into a control cell or contact zone in which is disposed a photocatalytic aerogel and exposing said aerogel to ultraviolet (UV) radiation for photocatalytically destroying the adsorbed contaminant, and withdrawing from said cell an exhaust air stream depleted in said contaminant.

Attia, Yosry A. (221 Oakland Park Ave., Columbus, OH 43214)

2000-01-01T23:59:59.000Z

10

COMPREHENSIVE ASSESSMENT OF CONTAMINATED FLUVIAL SEDIMENTS EROSION RISK AND ECOLOGICAL HAZARD  

E-Print Network (OSTI)

COMPREHENSIVE ASSESSMENT OF CONTAMINATED FLUVIAL SEDIMENTS ­ EROSION RISK AND ECOLOGICAL HAZARD assessment of contaminated aquatic sediments has to consider both sediment hydraulics and ecology. Since layers of contaminated sediments are often buried under less polluted deposits, the risk of erosion

Cirpka, Olaf Arie

11

Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer  

E-Print Network (OSTI)

. Keywords: Indoor air quality; hazard analysis; residential; criteria pollutants; VOCs; air toxics Citation Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer.S. Dept. of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control through

12

Effect of System and Air Contaminants on PEMFC Performance and Durability (Presentation)  

SciTech Connect

This presentation summarizes Effect of System and Air Contaminants on PEMFC Performance and Durability.

Dinh, H.

2010-06-11T23:59:59.000Z

13

Subsurface Gasoline Contamination: An Indoor Air Quality Field Study  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Subsurface Gasoline Contamination: An Indoor Air Quality Field Study Schematic of soil-gas and contaminant transport into a slab-on-grade building at a former service station site. Three effects are illustrated that can contribute to reducing the amount of contaminant available for entry into the building: biodegradation by soil microorganisms; a layer of soil that limits diffusive movement of the contaminant; and wind-driven ventilation of the soil below the building. Not illustrated are the effects of ventilation on contaminant concentrations inside the building. The transport of soil-gas-borne contaminants into buildings has been documented as a significant source of human exposure to some pollutants indoors; one example is radon, which has received widespread public

14

Impacts of Contaminant Storage on Indoor Air Quality: Model Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Contaminant Storage on Indoor Air Impacts of Contaminant Storage on Indoor Air Quality: Model Development Max H. Sherman and Erin L. Hult Environmental Energy Technologies Division January 2013 In Press as Sherman, M.H., Hult, E.L. 2013. Impacts of contaminant storage on indoor air quality: Model development. Atmospheric Environment. LBNL-6114E 2 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

15

SUBJECT: Guidance on the Major Source Determination for Certain Hazardous Air FROM: John S. Seitz, Director  

E-Print Network (OSTI)

, and State and Local air pollution control agencies concerning the proper interpretation of the major source Pollutants FROM: John S. Seitz, Director Office of Air Quality Planning and Standards (MD-10) TO: Director for hazardous air pollutants (HAPs) as defined in Section 112(b) of the Clean Air Act Amendments of 1990

16

Hazard Assessment of Chemical Air Contaminants Measured in Residences  

E-Print Network (OSTI)

Collection Methods, Health Effects Institute, Mickely LelandMatter Species, Health Effects Institute:HEI 130 Pt 2

Logue, J.M.

2010-01-01T23:59:59.000Z

17

Hazard Assessment of Chemical Air Contaminants Measured in Residences  

E-Print Network (OSTI)

implications for indoor nitrogen dioxide concentrations."concentrations of indoor nitrogen dioxide in Hamburg (westand concentrations of indoor nitrogen dioxide in Barcelona,

Logue, J.M.

2010-01-01T23:59:59.000Z

18

Hazard Assessment of Chemical Air Contaminants Measured in Residences  

E-Print Network (OSTI)

defined a generally acceptable cancer risk level for HAPs.levels based on an acceptable level of risk. Thecalculate acceptable exposure concentration for cancer risk

Logue, J.M.

2010-01-01T23:59:59.000Z

19

Hazard Assessment of Chemical Air Contaminants Measured in Residences  

E-Print Network (OSTI)

Conference & Exhibition Healthy Buildings 2009, Syracuse, NYConference & Exhibition Healthy Buildings 2009, Syracuse, NYproceedings from the 2009 Healthy Building Conference held

Logue, J.M.

2010-01-01T23:59:59.000Z

20

Hospital ventilation standards and energy conservation: chemical contamination of hospital air. Final report  

SciTech Connect

In an era of increasing energy conservation consciousness, a critical reassessment of the validity of hospital ventilation and thermal standards is made. If current standards are found to be excessively conservative, major energy conservation measures could be undertaken by rebalancing and/or modification of current HVAC systems. To establish whether or not reducing ventilation rates would increase airborne chemical contamination to unacceptable levels, a field survey was conducted to develop an inventory and dosage estimates of hospital generated airborne chemical contaminants to which patients, staff, and visitors are exposed. The results of the study are presented. Emphasis is on patient exposure, but an examination of occupational exposure was also made. An in-depth assessment of the laboratory air environment is documented. Housekeeping products used in survey hospitals, hazardous properties of housekeeping chemicals and probable product composition are discussed in the appendices.

Rainer, D.; Michaelsen, G.S.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

1998 INEEL National Emission Standard for Hazardous Air Pollutants - Radionuclides  

SciTech Connect

Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1998. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1998, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

J. W. Tkachyk

1999-06-01T23:59:59.000Z

22

Impacts of contaminant storage on indoor air quality: Model development  

NLE Websites -- All DOE Office Websites (Extended Search)

of of contaminant storage on indoor air quality: Model development Max H. Sherman, Erin L. Hult * Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 90R3083, Berkeley, CA 94720-8133, USA h i g h l i g h t s < A lumped parameter model is applied to describe emission and storage buffering of contaminants. < Model is used to assess impact of ventilation on indoor formaldehyde exposure. < Observations of depletion of stored contaminants can be described by model. a r t i c l e i n f o Article history: Received 8 November 2012 Received in revised form 7 February 2013 Accepted 11 February 2013 Keywords: Buffering capacity Formaldehyde Moisture a b s t r a c t A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde

23

National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations (U.S. Environmental Protection Agency [EPA] and DOE, 1995). This method was approved by the EPA for use on the NNSS in 2001(EPA, 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2010, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1 percent to a maximum of 17 percent of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of that measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000032 mrem/yr, more than 300,000 times lower than the 10 mrem/yr limit.

NSTec Ecological and Environmental Monitoring

2011-06-30T23:59:59.000Z

24

National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2011  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan. Radionuclides from the Fukushima nuclear power plant were detected at the NNSS in March 2011 and are discussed further in Section III. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the EPA for use on the NNSS in 2001 and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2. For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2011, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1% to a maximum of 12.2% of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000024 mrem/yr, more than 400,000 times lower than the 10 mrem/yr limit.

NSTec Ecological and Environmental Monitoring

2012-06-19T23:59:59.000Z

25

National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2013  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitations to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2013, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from 0.2% to a maximum of 10.1% of the allowed NESHAP limit. Because the nearest member of the public resides about 9 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000011 mrem/yr, more than 900,000 times lower than the 10 mrem/yr limit.

Warren, R.

2014-06-04T23:59:59.000Z

26

Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2008  

SciTech Connect

The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to under-ground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by winds) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the North Las Vegas Facility (NLVF), an NTS support complex in the city of North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2008a) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from other man-made sources such as medical treatments. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration of each detected radionuclide at each of these locations is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2008a). At any one location, if multiple radionuclides are detected then compliance with NESHAP is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2008, the potential dose from radiological emissions to air, from both current and past NTS activities, at onsite compliance monitoring stations was a maximum of 1.9 mrem/yr; well below the 10 mrem/yr dose limit. Air sampling data collected at all six pseudo-critical receptor stations had average concentrations of radioactivity that were a fraction of the CL values listed in Table 2 in Appendix E of 40 CFR 61 (CFR, 2008a). Concentrations ranged from less than 1 percent to a maximum of 19 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS. Potential dose to the public from NLVF was also very low at 0.00006 mrem/yr; more than 160,000 times lower than the 10 mrem/yr limit.

Ronald Warren and Robert F. Grossman

2009-06-30T23:59:59.000Z

27

Urban Air Quality Management: Detecting and Improving Indoor Ambient Air Quality  

Science Journals Connector (OSTI)

Current air pollution management and air quality control are primarily focused on outdoor and ... which act as public spaces, contaminated indoor air could be public health hazards. In Singapore ... spend a subst...

T. L. Tan; Gissella B. Lebron

2011-01-01T23:59:59.000Z

28

OPERATIONAL LIMITATIONS FOR DEMOLITION OF A HIGHLY ALPHA CONTAMINATED BUILDING MODLES VERSUS MEASURED AIR & SURFACE ACTIVITY CONCENTRATIONS  

SciTech Connect

The demolition of a facility historically used for processing and handling transuranic materials is considered. Residual alpha emitting radionuclide contamination poses an exposure hazard if released to the local environment during the demolition. The process of planning for the demolition of this highly alpha contaminated building, 232-Z, included a predemolition modeling analysis of potential exposures. Estimated emission rates were used as input to an air dispersion model to estimate frequencies of occurrence of peak air and surface exposures. Postdemolition modeling was also conducted, based on the actual demolition schedule and conditions. The modeling results indicated that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. During the demolition of 232-Z, airborne radiation and surface contamination were monitored. The resultant non-detect monitoring results indicate a significant level of conservatism in the modeled results. This comparison supports the use of more realistic assumption in the estimating emission rates. The resultant reduction in modeled levels of potential exposures has significant implications in terms of the projected costs of demolition of such structures.

LLOYD, E.R.

2006-11-02T23:59:59.000Z

29

Recycling non-hazardous industrial wastes and petroleum contaminated soils into structural clay ceramics  

SciTech Connect

Cherokee Environmental Group (CEG)--a subsidiary of the Cherokee Sanford Group, Inc. (CSG)--has developed a system to beneficially reuse non-hazardous industrial wastes and petroleum contaminated soils into the recycling process of CSG`s structural clay ceramics manufacturing operation. The wastes and soils are processed, screened, and blended with brickmaking raw materials. The resulting material is formed and fired in such a way that the bricks still exceed American Society for Testing and Materials (ASTM) quality standards. Prior to usage, recycled materials are rigorously tested for ceramic compatibility and environmental compliance. Ceramic testing includes strength, shrinkage, and aesthetics. Environmental compliance is insured by testing for both organic and inorganic constituents. This recycling process has been fully permitted by all required state regulatory agencies in North Carolina, Maryland, and South Carolina where facilities are located. This inter-industrial synergy has eliminated landfill reliance and liability for many companies and property owners. The recycling volume of wastes and soils is high because CSG is one of the largest brick manufacturers in the nation. Together, CEG and CSG have eliminated more than 1 billion pounds of material from landfills by beneficially reusing the non-hazardous wastes.

MacRunnels, Z.D.; Miller, H.B. Jr. [Cherokee Environmental Group, Sanford, NC (United States)

1994-12-31T23:59:59.000Z

30

GRR/Section 15-OR-a - Air Contaminant Discharge Permit | Open Energy  

Open Energy Info (EERE)

5-OR-a - Air Contaminant Discharge Permit 5-OR-a - Air Contaminant Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-OR-a - Air Contaminant Discharge Permit 15ORAAirContaminantDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies ORS Chapter 468a OAR 340-209 OAR 340-216 340-216-0020 (Table 1) Triggers None specified Click "Edit With Form" above to add content 15ORAAirContaminantDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Oregon Department of Environmental Quality (DEQ) regulates air

31

National Emission Standards for Hazardous Air Pollutants Submittal - 1998  

SciTech Connect

The Nevada Test Site (NTS) is operated by the U.S. Department of Energy Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing, now limited to readiness activities and experiments in support of the national Stockpile Stewardship Management Program. It is located in Nye County, Nevada, with the southeast corner about 105 km (65 mi) northwest of Las Vegas, Nevada. The NTS covers about 3,500 km2 (1,350 mi2), an area larger than Rhode Island. Its size is about 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi)north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands. The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Surface waters are scarce on the NTS and there is great depth to slow-moving groundwater.

Stuart Black; Yvonne Townsend

1999-06-01T23:59:59.000Z

32

Science and policy in regulatory decision making: Getting the facts right about hazardous air pollutants  

SciTech Connect

Hazardous air pollutants are regulated under Title III of the 1990 Clean Air Act Amendments. The Amendments replace the risk-based approach mandated in the 1977 Amendments with a prescriptive, technology-based approach requiring that maximum achievable control technology (MACT) be applied to all major industrial sources of 189 hazardous air pollutants. The change reflects political, rather than scientific consensus that the public health benefits justify the costs. The choice is put into perspective by looking at the interface between science and policy that occurs as part of regular decisionmaking. Particular emphasis is given to examining the interrelationships among facts (science), judgments (science policy), and policy (values) in the context of the risk assessment paradigm. Science and policy are discussed in relation to Title III, contrasting the political consensus for action with the scientific uncertainty about risks and benefits. It is argued that a balanced research program is needed to get the facts right about hazardous air pollutants, including research to meet statutory requirements, to reduce uncertainties in risk assessment, and to address strategic issues. 51 refs., 10 figs.

Sexton, K. [Univ. of Minnesota, Minneapolis, MN (United States)

1995-09-01T23:59:59.000Z

33

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: CHEMICAL CONTAMINATION OF HOSPITAL AIR. FINAL REPORT.  

E-Print Network (OSTI)

LBL-10475 EEB-Hosp 79-6 HOSPITAL VENTILATION STANDARDS ANDCHH1ICAL CONTAMINATION OF HOSPITAL AIR na 1 Report DavidMinnesota 55455 TWIN CITIES HOSPITAL VEtHILATION STANDARDS

Rainer, David

2012-01-01T23:59:59.000Z

34

Bibliography of work on the photocatalytic removal of hazardous compounds from water and air  

SciTech Connect

This is a bibliography of information in the open literature on work that has been done to date on the photocatalytic oxidation of compounds, principally organic compounds. The goal of the listing is removing hazardous oompounds from water or air. It contains lists of substances and literature citations. The bibliography includes information obtained through the middle of 1993 and some selected references for the balance of that year.

Blake, D.M.

1994-05-01T23:59:59.000Z

35

National Emission Standards for Hazardous Air Pollutants—Calendar Year 2013 INL Report for Radionuclides (2014)  

SciTech Connect

This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, “Protection of the Environment,” Part 61, “National Emission Standards for Hazardous Air Pollutants,” Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.” The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

Mark Verdoorn; Tom Haney

2014-06-01T23:59:59.000Z

36

Effectiveness of Germicidal UV Radiation for Reducing Fungal Contamination within Air-Handling Units  

Science Journals Connector (OSTI)

...and air-conditioning (HVAC) systems and is a potential...been found growing on air filters, insulation, and cooling...bioaerosols or when the HVAC system itself is contaminated...maintained high-quality filters within HVAC systems as well as portable...

Estelle Levetin; Richard Shaughnessy; Christine A. Rogers; Robert Scheir

2001-08-01T23:59:59.000Z

37

Particulate air contamination in Puerto Rico: A student involvement project  

Science Journals Connector (OSTI)

The results of a 114?day study of the air pollution in Ponce Puerto Rico are presented. Techniques of instrument calibration and statistical analysis are also discussed. (AIP)

Richard R. Eckert

1979-01-01T23:59:59.000Z

38

Effect of System and Air Contaminants on PEMFC Performance and Durability  

NLE Websites -- All DOE Office Websites (Extended Search)

Dinh Dinh (PI) National Renewable Energy Laboratory October 1, 2009 Effect of System and Air Contaminants on PEMFC Performance and Durability This presentation does not contain any proprietary, confidential, or otherwise restricted information Objectives To assist the DOE Fuel Cell Technologies (FCT) Program in meeting cost, durability, and performance targets in the areas of fuel cell systems. The effort is focused on system-derived contaminants, but has a small component addressing "gaps" in the area of air contaminants. Premise System-derived contaminants can have negative effect on fuel cell performance. Current density (A/cm 2 ) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 g ( SHE ) Average cell voltage after air oxidation exposure Average cell voltage as measured in vehicle

39

Effect of System and Air Contaminants on PEMFC Performance and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pump Combustor? Radiator H 2 recirc pmp Coolant Loop Water Separator Cathode Loop Anode Loop Air Compressor 90 kWe Table 1. Typical "gas wetted" components used in a PEMFC...

40

Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air, Update Number 2 to October 1996  

SciTech Connect

The Solar Industrial Program has developed processes that destroy hazardous substances in or remove them from water and air. The processes of interest in this report are based on the application of heterogeneous photocatalysts, principally titanium dioxide or modifications thereof, but work on other heterogeneous catalysts is included in this compilation. This report continues bibliographies that were published in May, 1994, and October, 1995. The previous reports included 663 and 574 citations, respectively. This update contains an additional 518 references. These were published during the period from June 1995 to October 1996, or are references from prior years that were not included in the previous reports. The work generally focuses on removing hazardous contaminants from air or water to meet environmental or health regulations. This report also references work on properties of semiconductor photocatalysts and applications of photocatalytic chemistry in organic synthesis. This report follows the same organization as the previous publications. The first part provides citations for work done in a few broad categories that are generic to the process. Three tables provide references to work on specific substances. The first table lists organic compounds that are included in various lists of hazardous substances identified by the US Environmental Protection Agency (EPA). The second table lists compounds not included in those categories, but which have been treated in a photocatalytic process. The third table covers inorganic compounds that are on EPA lists of hazardous materials or that have been treated by a photocatalytic process. A short update on companies that are active in providing products or services based on photocatalytic processes is provided.

Blake, D.M.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Removal of ammonia from contaminated air in a biotrickling filter Denitrifying bioreactor combination system  

E-Print Network (OSTI)

, and loadings below 56 g m�3 h�1 resulted in essentially complete removal of ammonia. In addition, concenRemoval of ammonia from contaminated air in a biotrickling filter ­ Denitrifying bioreactor Nitrification Denitrification a b s t r a c t The removal of gaseous ammonia in a system consisting

42

Air is Still Contaminated 40 Years after the Michigan Chemical Plant Disaster in St. Louis, Michigan  

Science Journals Connector (OSTI)

In addition to the plant site itself, there are two other Superfund sites associated with the former Michigan Chemical site; these include the Velsicol Burn Pit (for some odd reason located on the Gratiot County Golf Course) and the Gratiot County Landfill. ... From 1956 until 1970, Velsicol used the burn pit to dispose of 7,500–11,400 L of hazardous waste including DDT. ... In 1982, Velsicol removed 52,000 m3 of soil from the burn pit and placed it under the clay cap on the plant site; nevertheless, contamination was still seen at the burn pit site in 2006. ...

Angela A. Peverly; Amina Salamova; Ronald A. Hites

2014-09-11T23:59:59.000Z

43

Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory  

SciTech Connect

Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

Eberhart, Craig

2010-08-01T23:59:59.000Z

44

Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-5507-2013 STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT Washington, D.C. 20585 Distribution Statement: A. Approved for public release; distribution is unlimited This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services,

45

Current Challenges in Air Sampling of Semivolatile Organic Contaminants: Sampling Artifacts and Their Influence on Data Comparability  

Science Journals Connector (OSTI)

Current Challenges in Air Sampling of Semivolatile Organic Contaminants: Sampling Artifacts and Their Influence on Data Comparability ... Unlike AAS, passive air samplers (PAS) do not need electricity; instead chemicals are trapped by diffusive uptake to a sorbent material. ... A big question when using PAS for SVOCs is their performance for particle-associated compounds. ...

Lisa Melymuk; Pernilla Bohlin; Ond?ej Sá?ka; Karla Pozo; Jana Klánová

2014-10-20T23:59:59.000Z

46

Volatile tritiated organic acids in stack effluents and in air surrounding contaminated materials  

SciTech Connect

A small fraction of the tritium released into the atmosphere from tritium-handling or solid waste storage facilities was shown to be in the form of volatile organic acids. The same compounds were also found, but at a much higher proportion, in the tritium evolved at room temperature from highly contaminated materials placed under air atmospheres. This might be due to the oxidation and labeling of hydrocarbon(s) by mechanisms that are presumably of a radiolytic nature. The new forms could have an impact on operational requirements and waste management strategies within a tritium facility and a fusion reactor hall. Further data are needed to assess the related doses.

Belot, Y.; Camus, H.; Marini, T.; Raviart, S. (Institut de Protection et de Surete Nucleaire (France))

1993-06-01T23:59:59.000Z

47

Evidence that bisphenol A (BPA) can be accurately measured without contamination in human serum and urine and that BPA causes numerous hazards from multiple routes of exposure  

Science Journals Connector (OSTI)

Abstract There is extensive evidence that bisphenol A (BPA) is related to a wide range of adverse health effects based on both human and experimental animal studies. However, a number of regulatory agencies have ignored all hazard findings. Reports of high levels of unconjugated (bioactive) serum BPA in dozens of human biomonitoring studies have also been rejected based on the prediction that the findings are due to assay contamination and that virtually all ingested BPA is rapidly converted to inactive metabolites. NIH and industry-sponsored round robin studies have demonstrated that serum BPA can be accurately assayed without contamination, while the FDA lab has acknowledged uncontrolled assay contamination. In reviewing the published BPA biomonitoring data, we find that assay contamination is, in fact, well controlled in most labs, and cannot be used as the basis for discounting evidence that significant and virtually continuous exposure to BPA must be occurring from multiple sources.

Frederick S. vom Saal; Wade V. Welshons

2014-01-01T23:59:59.000Z

48

(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)  

SciTech Connect

In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

Not Available

1991-10-01T23:59:59.000Z

49

Air Monitoring Leads to Discovery of New Contamination at Radioactive Waste Disposal Site (Area G) at LANL  

SciTech Connect

Air monitoring at Area G, the low-level radioactive waste disposal area at Los Alamos National Laboratory, revealed increased air concentrations of {sup 239}Pu and {sup 241}Am at one location along the north boundary. This air monitoring location is a couple of meters north of a dirt road used to access the easternmost part of Area G. Air concentrations of {sup 238}Pu were essentially unaffected, which was puzzling because the {sup 238}Pu and {sup 239}Pu are present in the local, slightly contaminated soils. Air concentrations of these radionuclides increased about a factor of ten in early 1995 and remained at those levels until the first quarter of 1996. During the spring of 1996 air concentrations again increased by a factor of about ten. No other radionuclides were elevated and no other Area G stations showed elevations of these radionuclides. After several formal meetings didn't provide an adequate cause for the elevations, a gamma survey was performed and showed a small area of significant contamination just south of the monitor location. We found in February, 1995, a trench for a water line had been dug within a meter of so of the air stations. Then, during early 1996, the dirt road was rerouted such that its new path was directly over the unknown contamination. It appears that the trenching brought contaminated material to the surface and caused the first rise in air concentrations and then the rerouting of the road over the contamination caused the second rise, during 1996. We also found that during 1976 and 1977 contaminated soils from the clean-up of an old processing facility had been spread over the filled pits in the vicinity of the air monitors. These soils were very low in 238Pu which explains why we saw very little {sup 238}Pu in the increased air concentrations. A layer of gravel and sand was spread over the contaminated area. Although air concentrations of {sup 239}Pu and {sup 241}Am dropped considerably, the y have not returned to pre-1995 levels.

Kraig, D.H.; Conrad, R.C.

1999-06-08T23:59:59.000Z

50

Thoughts on Hazard Assessment (Oct)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hazard Assessment of Chemical Air Hazard Assessment of Chemical Air Contaminants Measured in Residences J.M. Logue, T.E. McKone, M. H. Sherman, B.C. Singer Environmental Energy Technologies Division June 2010 Funding was provided by the U.S. Dept. of Energy Building Technologies Program, Office of Energy Efficiency and Renewable Energy under DOE Contract No. DE-AC02-05CH11231; by the U.S. Dept. of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control through Interagency Agreement I-PHI-01070, and by the California Energy Commission through Contract 500-08-06. LBNL Report Number 3650-E 1 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States

51

Portable sensor for hazardous waste  

SciTech Connect

Objective was to develop a field-portable monitor for sensitive hazardous waste detection using active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence (active nitrogen is made in a dielectric-barrier discharge in nitrogen). It should provide rapid field screening of hazardous waste sites to map areas of greatest contamination. Results indicate that ANET is very sensitive for monitoring heavy metals (Hg, Se) and hydrocarbons; furthermore, chlorinated hydrocarbons can be distinguished from nonchlorinated ones. Sensitivity is at ppB levels for sampling in air. ANET appears ideal for on-line monitoring of toxic heavy metal levels at building sites, hazardous waste land fills, in combustor flues, and of chlorinated hydrocarbon levels at building sites and hazardous waste dumps.

Piper, L.G.

1994-12-31T23:59:59.000Z

52

Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals  

SciTech Connect

This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions).

Szpunar, C.B.

1992-09-01T23:59:59.000Z

53

Potential hazards of compressed air energy storage in depleted natural gas reservoirs.  

SciTech Connect

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

2011-09-01T23:59:59.000Z

54

Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals  

SciTech Connect

In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

2009-03-01T23:59:59.000Z

55

(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)  

SciTech Connect

This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

Not Available

1992-04-01T23:59:59.000Z

56

Distribution of hazardous air pollutant trace elements, total sulfur, and ash in coals from five Tertiary basins in the Rocky Mountain Region  

SciTech Connect

Arithmetic mean values of the contents of hazardous air pollutant (HAP) trace elements named in the 1990 Clean Air Act Amendments (antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium), ash, and total sulfur were statistically compared on a whole-coal basis for Paleocene coals from five Tertiary basins in the Rocky Mountain Region. The study of proximate and elemental analyses indicate a relationship between trace element contents and paleogeography.

Ellis, M.S.; Stricker, G.D.; Flores, R.M. [Geological Survey, Denver, CO (United States)

1994-12-31T23:59:59.000Z

57

Air Pollution Control Regulations: No. 7- Emission of Air Contaminants Detrimental to Person or Property (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

No person shall emit any contaminant which either alone or in connection with other emissions, by reason of their concentration or duration, may be injurious to human, plant or animal life, or...

58

Hazard Estimation of Two Emittents as Component Parts of the Data -Combination System “Existing Contamination Load — Soil- Ground Water”  

Science Journals Connector (OSTI)

After the expert survey of the Saar’s waste deposits -1984- the department Soil of the company ÖKOFEP has recorded by electronic data processing the data combinations of contamination load investigations, soil be...

R. Knop Dipl.-Ing.; K. T. Kirsch Dipl.-Geol.

1988-01-01T23:59:59.000Z

59

E-Print Network 3.0 - air contamination event Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications and Products Collection: Environmental Sciences and Ecology 2 The sediment resuspension event scours dissolved phase contaminants from the water column. As a...

60

E-Print Network 3.0 - air contamination due Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Validation of a Computational Fluid Dynamics Model for IAQ applications in Ice Rink Arenas Summary: dynamics (CFD) model has been used to predict the contaminant...

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Review of research results for the photocatalytic oxidation of hazardous wastes in air  

SciTech Connect

Laboratory experiments of gas-phase photocatalytic oxidation (PCO) at NREL have focused on measurements that can help commercialize this technology for treating gaseous air streams. This effort proceeds earlier NREL work and studies conducted elsewhere which demonstrated the general applicability of PCO. The more recent work has concentrated on: (1) the kinetics of the PCO process; (2) the formation and destruction of intermediates; and (3) possible enhancements to improve the destruction rates. The results from these studies will be used to help design large scale PCO equipment and they will be used to evaluate the economics of the PCO process. For trichloroethylene and ethanol, extensive studies of the rates of destruction have yielded kinetic parameters for the destruction of intermediates as well as the substrate. The kinetics of intermediates is essential for sizing a large scale reactor, as complete conversion to carbon dioxide is often desired. The kinetic data from these laboratory studies has been used for analyzing IT`s pilot PCO reactor and has been used to suggest modifications to this unit. For compounds that are more difficult to destroy (such as the components of BTEX), rate enhancement experiments have been conducted. These compounds represent a very large market for this technology and improvement of the rate of the process should make it competitive. Towards this goal, the enhancement of the destruction of BTEX components have been studied. Experiments have demonstrated that there is a significant increase in the rates of destruction of BTEX with the addition of ozone. Preliminary economic assessments have shown that PCO with ozone may be cost competitive. Future laboratory experiments of PCO will focus on refinements of what has been learned. Rate measurements will also be expanded to include other compounds representing significant markets for the PCO technology.

Nimlos, M.R.; Wolfrum, E.J.; Gratson, D.A.; Watt, A.S.; Jacoby, W.A.; Turchi, C.

1995-01-01T23:59:59.000Z

62

E-Print Network 3.0 - air contaminants combining Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering, Purdue University Collection: Engineering 9 Proceedings of Healthy Buildings 2009 Paper 680 Do forced air HVAC systems have a role in healthy homes? Summary:...

63

Copper contamination effects on hydrogen-air combustion under SCRAMJET (supersonic combustion ramjet) testing conditions  

SciTech Connect

Two forms of copper catalytic reactions (homogeneous and heterogeneous) in hydrogen flames were found in a literature survey. Hydrogen atoms in flames recombine into hydrogen molecules through catalytic reactions, and these reactions which affect the timing of the combustion process. Simulations of hydrogen flames with copper contamination were conducted by using a modified general chemical kinetics program (GCKP). Results show that reaction times of hydrogen flames are shortened by copper catalytic reactions, but ignition times are relatively insensitive to the reactions. The reduction of reaction time depends on the copper concentration, copper phase, particle size (if copper is in the condensed phase), and initial temperature and pressure. The higher the copper concentration of the smaller the particle, the larger the reduction in reaction time. For a supersonic hydrogen flame (Mach number = 4.4) contaminated with 200 ppm of gaseous copper species, the calculated reaction times are reduced by about 9%. Similar reductions in reaction time are also computed for heterogeneous copper contamination. Under scramjet testing conditions, the change of combustion timing appears to be tolerable (less than 5%) if the Mach number is lower than 3 or the copper contamination is less than 100 ppm. The higher rate the Mach number, the longer the reaction time and the larger the copper catalytic effects. 7 tabs., 8 figs., 34 refs.

Chang, S.L.; Lottes, S.A.; Berry, G.F.

1990-01-01T23:59:59.000Z

64

Hazardous air pollutants from the combustion of an emulsified heavy fuel oil in a firetube boiler. Final report, May-November 1995  

SciTech Connect

The report gives results of measuring emissions of hazardous air pollutants (HAPS) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose determining the impacts of the emulsifier on HAP emissions. The boiler flue gases were sampled and analyzed for both metal and organic HAPs, and the effects of the emulsification on criteria emissions such as carbon dioxide (CO), nitrogen oxides (NOx), and particulate matter (PM) were also measured.

Miller, C.A.

1996-02-01T23:59:59.000Z

65

Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants  

Science Journals Connector (OSTI)

This study investigated the removal of crude oil from soil using air sparging assisted stirred tank reactors. Two surfactants (rhamnolipid and sodium dodecyl sulfate, SDS) were tested and the effects of different parameters (i.e. temperature, surfactant concentrations, washing time, volume/mass ratio) were investigated under varying washing modes namely, stirring only, air sparging only and the combination of stirring and air sparging. The results showed that SDS removed more than 80% crude oil from non-weathered soil samples, whist rhamnolipid showed similar oil removal at the third and fourth levels of the parameters tested. The oil removal ability of the seawater prepared solutions were better than those of the distilled water solutions at the first and second levels of temperature and concentration of surfactant solutions. This approach of soil washing was noted to be effective in reducing the amount of oil in soil. Therefore we suggested that a field scale test be conducted to assess the efficiency of these surfactants.

Kingsley Urum; Turgay Pekdemir; David Ross; Steve Grigson

2005-01-01T23:59:59.000Z

66

Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report  

SciTech Connect

This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

NONE

1996-06-01T23:59:59.000Z

67

[Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 9, Removal action system design  

SciTech Connect

This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

Not Available

1992-04-01T23:59:59.000Z

68

Tank exhaust comparison with 40 CFR 61.93, Subpart H, and other referenced guidelines for Tank Farms National Emission Standards for Hazardous Air Pollutant (NESHAP) designated stacks  

SciTech Connect

The US Environmental Protection Agency (EPA) promulgated National Emission Standards other than Radon from US Department of Energy (DOE) Facilities (40 CFR 61, Subpart H) on December 15, 1989. The regulations specify procedures, equipment, and test methods that.are to be used to measure radionuclide emissions from exhaust stacks that are designated as National Emission Standards for Hazardous Air Pollutant (NESHAP) stacks. Designated NESHAP stacks are those that have the potential to cause any member of the public to receive an effective dose equivalent (EDE) greater than or equal to 0.1 mrem/year, assuming all emission controls were removed. Tank Farms currently has 33 exhaust stacks, 15 of which are designated NESHAP stacks. This document assesses the compliance status of the monitoring and sampling systems for the designated NESHAP stacks.

Bachand, D.D.; Crummel, G.M.

1994-07-01T23:59:59.000Z

69

Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers  

E-Print Network (OSTI)

Should Data Center Owners be Afraid of Air-side Economizerdata center contamination, gaseous contamination, air-side economizer,

Coles, Henry C.

2012-01-01T23:59:59.000Z

70

1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report  

SciTech Connect

Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

NONE

1998-06-01T23:59:59.000Z

71

Contamination analysis unit  

DOE Patents (OSTI)

The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

Gregg, Hugh R. (Livermore, CA); Meltzer, Michael P. (Livermore, CA)

1996-01-01T23:59:59.000Z

72

Contamination analysis unit  

DOE Patents (OSTI)

The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

Gregg, H.R.; Meltzer, M.P.

1996-05-28T23:59:59.000Z

73

[Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Sampling and analysis plan (SAP): Phase 1, Task 4, Field Investigation: Draft  

SciTech Connect

In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

Not Available

1991-10-01T23:59:59.000Z

74

A Prototype Radon Filter for Air A typical, recurring problem in low-background physics is the contamination of sensitive  

E-Print Network (OSTI)

is the contamination of sensitive surfaces of experimental apparata with the radioactive decay products of 222Rn . What since all its daughters are short-lived and decay away in a few days (see the 232Th radioactive chain.1: The 232Th natural radioactive chain. Diffusion of thoron (220Rn) and plate out of its daughters doesn

75

Disaggregating Data on Asian American and Pacific Islander Women to Provide New Insights on Potential Exposures to Hazardous Air Pollutants in California  

Science Journals Connector (OSTI)

...levels of pollutants, including air pollution (28-32 ). These observations...environmental exposures, particularly air pollution, for the AAPI population, taking...help guide efforts to cut toxic air pollution. NATA has modeled annual average...

Thu Quach; Ruiling Liu; David O. Nelson; Susan Hurley; Julie Von Behren; Andrew Hertz; and Peggy Reynolds

2014-11-01T23:59:59.000Z

76

Health Hazards in Indoor Air  

E-Print Network (OSTI)

Technologies for Green Buildings, Seoul, South Korea. ReportTechnologies for Green Buildings, Seoul, South Korea. ReportTechnologies for Green Buildings, Seoul, South Korea. Report

Logue, Jennifer M.

2012-01-01T23:59:59.000Z

77

Health Hazards in Indoor Air  

E-Print Network (OSTI)

Building Technologies Program,  Office  of  Energy  Efficiency Building Technologies Program, Office of Energy Efficiency

Logue, Jennifer M.

2012-01-01T23:59:59.000Z

78

Health Hazards in Indoor Air  

E-Print Network (OSTI)

defined a generally acceptable cancer risk level for HAPs.levels based on an acceptable level of risk. Thecalculate acceptable exposure concentration for cancer risk

Logue, Jennifer M.

2012-01-01T23:59:59.000Z

79

Implementation of the hazardous debris rule  

SciTech Connect

Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

Sailer, J.E.

1993-01-05T23:59:59.000Z

80

Electrical hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

E-Print Network 3.0 - apres contamination interne Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

hazardous contamination arising from use in hazardous circumstances... OF 2 Environmental Protection Division (EPD) CBU personnel decontaminate & sanitize APR and PAPR......

82

NREL: Hydrogen and Fuel Cells Research - Contaminants  

NLE Websites -- All DOE Office Websites (Extended Search)

to contaminants. At NREL, we are researching system-derived contaminants and hydrogen fuel quality. Air contaminants are of interest as well. NREL also participates in the U.S....

83

Ambient Air Quality Standards (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations set statewide ambient air quality standards for various contaminants. The state code follows the regulations set forth in the National Primary and Secondary Ambient Air Quality...

84

Hazards Survey and Hazards Assessments  

Directives, Delegations, and Requirements

This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

1997-08-21T23:59:59.000Z

85

New indicator approaches for effective urban air quality management  

Science Journals Connector (OSTI)

Measurements of urban air quality at monitoring stations in developed countries have frequently involved the criteria gaseous pollutants, particulates, hazardous air pollutants, perceived air quality and relev...

Peter J. Peterson; W. Peter Williams

1999-12-01T23:59:59.000Z

86

E-Print Network 3.0 - ambient air quality-a Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

EHHE; January 2006 7 Topics Air, Ambient (Outdoor) Air, Indoor Disasters Lead... pollutants in ambient air Hazardous or toxic substances released in ambient air Residence in...

87

E-Print Network 3.0 - ambient air monitoring Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

EHHE; January 2006 7 Topics Air, Ambient (Outdoor) Air, Indoor Disasters Lead... pollutants in ambient air Hazardous or toxic substances released in ambient air Residence in...

88

Public health assessment for Griffiss Air Force Base, Rome, Oneida County, New York, Region 2. Cerclis No. NY4571924451. Addendum. Final report  

SciTech Connect

The public health assessment addendum addresses the two public health issues identified at Griffiss Air Force Base by the Agency for Toxic Substances and Disease Registry (ATSDR): (1) exposures to contaminated fish from Three Mile and Six Mile Creeks, and (2) past exposures to contaminated groundwater through private wells off base. Frequent consumption of contaminated fish from Three Mile and Six Mile Creeks could pose a health problem. However, if NYSDOH fish consumption guidelines are followed, fish consumption should not present a public health hazard. ATSDR cannot evaluate exposures to contaminated groundwater through private well use prior to 1982 because there are no sampling data.

NONE

1996-09-09T23:59:59.000Z

89

Subsurface contaminants focus area  

SciTech Connect

The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

NONE

1996-08-01T23:59:59.000Z

90

Hazardous Materials Incident Response Procedure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure The purpose of this procedure is to provide guidance for developing an emergency response plan, as outlined in OSHA's 29 CFR 1910.120(q), for facility response. This model has been adopted and applied to work for response to transportation accidents involving radioactive material or other hazardous materials incidents Hazardous Materials Incident Response Procedure.docx More Documents & Publications Handling and Packaging a Potentially Radiologically Contaminated Patient Decontamination Dressdown at a Transportation Accident Involving Radioactive Material Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

91

Bioremediation of contaminated groundwater  

DOE Patents (OSTI)

An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

Hazen, Terry C. (Augusta, GA); Fliermans, Carl B. (Augusta, GA)

1995-01-01T23:59:59.000Z

92

Modeling for Airborne Contamination  

SciTech Connect

The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift walls. The gamma-ray scattering properties of concrete are sufficiently similar to those of the host rock and proposed insert material; use of concrete will have no significant impact on the conclusions. The information in this report is presented primarily for use in performing pre-closure radiological safety evaluations of radiological contaminants, but it may also be used to develop strategies for contaminant leak detection and monitoring in the MGR. Included in this report are the methods for determining the source terms and release fractions, and mathematical models and model parameters for contaminant transport and distribution within the repository. Various particle behavior mechanisms that affect the transport of contaminant are included. These particle behavior mechanisms include diffusion, settling, resuspension, agglomeration and other deposition mechanisms.

F.R. Faillace; Y. Yuan

2000-08-31T23:59:59.000Z

93

Bioremediation of contaminated groundwater  

DOE Patents (OSTI)

Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

94

Contaminant Sources  

Science Journals Connector (OSTI)

Contaminant sources include almost every component in the manufacturing process: people, materials, processing equipment, and manufacturing environments. People can generate contaminating particles, gases, conden...

Alvin Lieberman

1992-01-01T23:59:59.000Z

95

Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

96

Data Center Economizer Contamination and Humidity Study  

E-Print Network (OSTI)

Program Data Center Economizer Contamination and Humiditylevels for computers. Air economizer cycles, which bring insites to determine how economizers affect humidity control.

Shehabi, Arman

2010-01-01T23:59:59.000Z

97

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

species) control technology criteria pollutant air pollutantControl Cogen Urban Santa Maria Elevated Data sources: Emissions: 1999 National Emissions Inventory for Hazardous Air Pollutants (

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

98

Air Quality: Acronym List Department: Chemical and General Safety  

E-Print Network (OSTI)

hazard analysis AQPM air quality program manager ARP accidental release prevention ATCM air toxic control Standard NESHAPs National Emissions Standards for Hazardous Air Pollutants NOx oxides of nitrogen NPOC nonAir Quality: Acronym List Department: Chemical and General Safety Program: Air Quality Owner

Wechsler, Risa H.

99

Particulate Contaminant Descriptions and Definitions  

Science Journals Connector (OSTI)

Particulate contaminants can be either solid or liquid. Many of these materials were originally suspended in air or in a process fluid; others derive from nearby sources, such as activities of personnel working i...

Alvin Lieberman

1992-01-01T23:59:59.000Z

100

Containment and stabilization technologies for mixed hazardous and radioactive wastes  

SciTech Connect

A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications.

Buelt, J.L.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

In situ bioremediation of petrol contaminated groundwater  

E-Print Network (OSTI)

) Bacterial Diversity and Aerobic Biodegradation Potential in a BTEX-Contaminated Aquifer Water Air Soil21/11/08 1 In situ bioremediation of petrol contaminated groundwater Guido Miguel Delgadillo EVS and facts · Likelihood of contamination · Benefits of in situ bioremediation So... Ask not what groundwater

Blouin-Demers, Gabriel

102

Track 3: Exposure Hazards  

Energy.gov (U.S. Department of Energy (DOE))

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

103

HAZARD CATEGORIZATION OF ENVIRONMENTAL RESTORATION SITES AT HANFORD WASHINGTON  

SciTech Connect

Environmental restoration activities, defined here as work to identify and characterize contaminated sites and then contain, treat, remove or dispose of the contamination, now comprises a significant fraction of work in the DOE complex. As with any other DOE activity, a safety analysis must be in place prior to commencing restoration. The rigor and depth of this safety analysis is in part determined by the site's hazard category. This category in turn is determined by the facility's hazardous material inventory and the consequences of its release. Progressively more complicated safety analyses are needed as a facility's hazard category increases from radiological to hazard category three (significant local releases) to hazard category two (significant on-site releases). Thus, a facility's hazard category plays a crucial early role in helping to determine the level of effort devoted to analysis of the facility's individual hazards. Improper determination of the category can result in either an inadequate safety analysis in the case of underestimation of the hazard category, or an unnecessarily cumbersome analysis in the case of overestimation. Contaminated sites have been successfully categorized and safely restored or remediated at the former DOE production site at Hanford, Washington. This paper discusses various means used to categorize former plutonium production or support sites at Hanford. Both preliminary and final hazard categorization is discussed. The importance of the preliminary (initial) hazard categorization in guiding further DOE involvement and approval of the safety analyses is discussed. Compliance to DOE direction provided in ''Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports'', DOE-STD-1027-92, is discussed. DOE recently issued 10 CFR 830, Subpart B which codifies previous DOE safety analysis guidance and orders. The impact of 10 CFR 830, Subpart B on hazard categorization is also discussed.

BISHOP, G.E.

2001-05-01T23:59:59.000Z

104

Occurrence of Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Turkey and Broiler Barns and Contamination of Air and Soil Surfaces in Their Vicinity  

Science Journals Connector (OSTI)

...rainy or windy conditions (wind speed of 5 m/s), no air...in rural areas, contact of wildlife with the sampled ground surfaces...bacteria are carried by the wind and sediment on the ground...thus-far-unknown time. Changing wind directions over time are one...

A. Friese; J. Schulz; K. Zimmermann; B.-A. Tenhagen; A. Fetsch; J. Hartung; U. Rösler

2013-02-15T23:59:59.000Z

105

E-Print Network 3.0 - air toxic regulations Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

AQPM air quality program manager ARP accidental release prevention ATCM air toxic control... -volatile organic compound TAC toxic air contaminant TCA trichloroethane TCE...

106

Hazardous waste treatment and environmental remediation research  

SciTech Connect

Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

Not Available

1989-09-29T23:59:59.000Z

107

Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP  

SciTech Connect

In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

none,

1981-02-13T23:59:59.000Z

108

Hazard Analysis Database report  

SciTech Connect

This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J.

1997-08-12T23:59:59.000Z

109

Nat. Hazards Earth Syst. Sci., 6, 779802, 2006 www.nat-hazards-earth-syst-sci.net/6/779/2006/  

E-Print Network (OSTI)

-induced hazards that are representative for a whole class of hazards: Accidents due to nuclear power plants (NPP) or air traffic, and terrorism. For the analysis of accidents, risk is measured with respect to getting statistics leading to an expected value of risk. Terrorism risk is assessed by the attraction certain ele

Paris-Sud XI, Université de

110

Diminished Defenses In Children May Lead To Increased Susceptibility To Inflammatory Effects of Air Pollutants  

E-Print Network (OSTI)

on Environmental, Ambient air pollution: health hazards toJ. , Air pollution and children's health. Pediatrics, 2004.O.o.E.H.H.A. Air Pollution and Children's Health. Air

Lin, Erina May

2012-01-01T23:59:59.000Z

111

E-Print Network 3.0 - ambient air toxics Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Indicators Project; CDC, NCEH, EHHE; January 2006 7 Summary: pollutants in ambient air Hazardous or toxic substances released in ambient air Residence in non... Indicators...

112

E-Print Network 3.0 - air toxics exposure Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Indicators Project; CDC, NCEH, EHHE; January 2006 7 Summary: pollutants in ambient air Hazardous or toxic substances released in ambient air Residence in non... Indicators...

113

Experiment Hazard Class 7.2 - BSL - 2 Biohazards  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - BSL-2 Biohazards 2 - BSL-2 Biohazards Applicability This hazard classification applies to all experiments requiring Biosafety Level 2 (BSL-2) precautions. Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. Experiments involving human subjects/materials or living animals, even if not biohazardous, are included in this Hazard Class. Biosafety Level 2 is similar to Biosafety Level 1 and is suitable for work involving agents of moderate potential hazard to personnel and the environment. It differs from BSL-1 in that (1) laboratory personnel have specific training in handling pathogenic agents and are directed by competent scientists; (2) access to the laboratory is limited when work is being conducted; (3) extreme precautions are taken with contaminated sharp

114

Hazardous Materials and Controlled Hazardous Substances (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

A permit is required to own, establish, operate, or maintain a facility in the state of Maryland that transfers quantities of a single hazardous material in excess of 100,000 pounds at any time...

115

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in our homes and can result in serious injuries if not properly handled. Household items such as bleach can result in harmful chlorine gas or hydrochloric acid if carelessly used. Gasoline fumes from containers for lawnmowers or boats can result in major health hazards if inhaled. DOE Oak Ridge uses thousands of chemicals in its varied research and other operations. New chemicals are or can be created as a result of the research or other activities. DOE follows national safety requirements in storing and handling these chemicals to minimize the risk of injuries from its chemical usage. However, accidents can occur despite careful attention to proper handling and storage procedures.

116

Remote vacuum compaction of compressible hazardous waste  

DOE Patents (OSTI)

A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

117

Remote vacuum compaction of compressible hazardous waste  

DOE Patents (OSTI)

A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

1998-10-06T23:59:59.000Z

118

Radiation Hazards Program (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

119

POTENTIAL HEALTH HAZARDS OF RADIATION  

SciTech Connect

During World War II and the Cold War, the federal government developed and operated industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Some of these sites processed uranium and vanadium, and upon closure, left behind millions of cubic yards of mill tailings on the sites and throughout the nearby communities. The U.S. Department of Energy (DOE) administers the cleanup of these areas to minimize the risks to the public and environment from exposure to the tailings and the radon gas they produce.

none,

2009-05-19T23:59:59.000Z

120

Potential Carcinogenicity of Food Additives and Contaminants  

Science Journals Connector (OSTI)

...Carcinogenicity of Food Additives and Contaminants 1...as a result of the manufacturing process used; an example...Specifi cations of food additives are of immense significance...use of DES as a food additive for cattle. I am unable...occupational hazards from manufacturing these materials even...

Philippe Shubik

1975-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A study of air flow through saturated porous media and its applications to in-situ air sparging  

E-Print Network (OSTI)

The efficiency of an in situ air sparging system is controlled by the extent of contact between injected air and contaminated soil and pore fluid. Characterizing the mechanisms governing air propagation through saturated ...

Marulanda, Catalina, 1971-

2001-01-01T23:59:59.000Z

122

Kansas Air Quality Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

All new air contaminant emission sources or alterations to emission sources that are required to be reported shall be in compliance with all applicable emission control regulations at the time that...

123

Burning hazardous waste in cement kilns  

SciTech Connect

The cement manufacturing process is one of the oldest in the world, having been in practice for over 2000 years. It is also one of the most energy intensive, with up to 65 percent of the cost of the product attributable to energy consumption. In addition to high energy demand, the process conditions include extremely high temperatures. Cement clinker forms when the correct mixture of raw materials is heated to 2650/sup 0/ F. This requires combustion temperatures exceeding 3000/sup 0/ F. under oxidizing conditions. To accomplish this, gas temperatures above 2000/sup 0/ F. occur for several seconds (typically five seconds), which is much longer than residence times in permitted hazardous waste incinerators. These conditions are extremely favorable to the destruction of organic compounds and have led to extensive investigation into the potential for burning hazardous waste in cement kilns. Cement kilns consuming hazardous wastes have been tested for air emissions under various operating conditions. The substantial body of information on the emissions and handling of hazardous wastes from these studies has demonstrated that effective destruction of wastes can be accomplished with the added benefits of energy conservation and no significant change in air emissions.

Chadbourne, J.F.; Helmsteller, A.J.

1983-06-01T23:59:59.000Z

124

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Siting and Permitting Provider Department of Environmental Management Permits are required to construct, install, or modify any stationary source which has the potential to increase emissions of a listed toxic air contaminant by an amount greater than the minimum quantity for that contaminant. Minimum quantities are specified in Table III of these regulations. Permits will be granted based in part on the impact of the projected emissions of the stationary source on acceptable ambient levels

125

Climate Change, the Clean Air Act, and Industrial Pollution  

E-Print Network (OSTI)

and control strategies for criteria pollu- tants and hazardous air pollutantsair pollutants by ninety percent, despite the absence of an identified controlpollutant Controls? Some might acknowledge the continued air

Kaswan, Alice

2012-01-01T23:59:59.000Z

126

Hazard Class Category  

NLE Websites -- All DOE Office Websites (Extended Search)

single crystal. Maximum activity : 15000Bq - Doubly contained crystal in two sealed polyethylene envelopes. Check for no contamination of each envelope. - External envelope glued...

127

E-Print Network 3.0 - air quality management Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

problems. 12;... Learn More: www.arl.noaa.gov 17 A Breath of Fresh Air: Improving Air Quality Predictions... hazards. For example, air quality forecasters rely on HySPLIT...

128

Surveillance Guides - Hazards Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazards Control Hazards Control 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's programs and policy for establishing controls to mitigate hazards affecting the public, worker, and environment. 2.0 References 2.1 DOE 4330.4B Maintenance Management Program 2.2 48 CFR 1970.5204-2 Department of Energy Acquisition Regulations 3.0 Requirements Implemented This surveillance is conducted to verify implementation of DOE 450.4-1A Volume 2 Appendix E core expectation #3 (CE II-3). CE II-3: An integrated process has been established and is utilized to develop controls which mitigate the identified hazards present within a facility or activity. The set of controls ensure adequate protection of the public, worker, and the environment and are established as agreed upon by DOE.

129

CHSP: HAZARD CONTROLS  

NLE Websites -- All DOE Office Websites (Extended Search)

HYGIENE HYGIENE AND SAFETY PLAN CHSP SITE MAP HAZARD CONTROLS CONTROLS FOR HAZARDOUS MATERIALS arrow image WORK PRACTICE CONTROLS arrow image CHEMICAL STORAGE GUIDELINES DECOMISSIONING LAB AND SHOP SPACES SPECIFIC CONTROLS AND PROCEDURES arrow image EMERGENCY PROCEDURES AND EQUIPMENT arrow image APPENDICES arrow image FAQs QUESTIONS Search the CHSP: > Go spacer image EH&S Home PUB 3000 LBNL Home LBNL A-Z Index LBNL Search LBNL Phone Book Privacy & Security Notice spacer spacer image spacer image spacer image HAZARD CONTROLS This section discusses control procedures for limiting employee exposure to chemical hazards. Technical Areas Technical areas include laboratories, shops, workrooms, and similar areas where non-administrative activities are performed. For the purpose of the

130

Hazardous Waste Management (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

131

WEATHER HAZARDS Basic Climatology  

E-Print Network (OSTI)

) Wildfires (Jun 02) Recent Declared Disasters in Colorado No Map from FEMA provided #12;National WeatherWEATHER HAZARDS Basic Climatology Colorado Climate Center Funding provided by NOAA Sectoral

132

Automated Job Hazards Analysis  

Energy.gov (U.S. Department of Energy (DOE))

AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

133

State of Colorado Wildfire Hazard  

E-Print Network (OSTI)

State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 the May 2001 Report to the Governor, Colorado Wildland Urban Interface; Section 2 includes the Hazard the status of the Wildland Urban Interface in Colorado; the hazards that exist; mitigation measures

134

Hazardous Waste Disposal Sites (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

135

AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT  

SciTech Connect

One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease slightly if a more stable wind class is assumed, where very little vertical mixing occurs. It is recommended that previous reports which used fixed values for calculating the air dispersion coefficient be updated to reflect the new meteorological data, such as the WIPP Safety Analysis Report and the WIPP Emergency Preparedness Hazards Assessment. It is also recommended that uncertainty be incorporated into the calculations so that a more meaningful assessment of risk during accidents can be achieved.

Rucker, D.F.

2000-08-01T23:59:59.000Z

136

Chemical process hazards analysis  

SciTech Connect

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

137

Modelling and Hazard Analysis for Contaminated Sediments Using Stamp Model  

E-Print Network (OSTI)

to characterise the risks associated with Novosol®, an innovative remediation process. Risk analysis is carried-Antipolis Cedex, France karim.hardy@mines-paristech.fr Processes for remediation (removal of pollution

Boyer, Edmond

138

Air Conditioning  

Science Journals Connector (OSTI)

Air Conditioning ... CHEMISTS and engineers use air conditioning as a valuable tool in more than two hundred industries. ... Air conditioning is a tool with many facets. ...

MARGARET INGELS

1938-02-10T23:59:59.000Z

139

Consider multishaft compressors for hazardous applications  

SciTech Connect

API specifies two types of centrifugal compressors: single-shaft (inline) and integrally geared. The latter are mainly air compressors, and API 672, which specifies the design, manufacturing and testing of these compressors, recommends that they may be used for gas services other than air that are nonhazardous and non-toxic. These compressors offer high efficiency, high control range, lower mechanical losses, lower investment and extremely compact design. Advances in gear making technology and design make API 672 compressors highly competitive in certain applications. The single-shaft compressor is used for general refinery services, is governed by API 617, and applicable for air or gas. There is no restriction on the type of gas. Therefore, this compressor is universally applicable for any gas--hazardous or nonhazardous. A large variety of integrally-geared multishaft compressors are available with respect to the number of stages, type of gas, type of drive and pressure range. These compressors have enormous range in terms of volumetric flows, pressure ratios, allowable inlet and discharge pressures, and attainable drive speeds. API 672 compressors find large applications in process, plant and instrument air service, air separation plants, etc. Apart from air, the gases handled by API 672 compressors had been for other nonhazardous applications such as nitrogen, steam, etc. Contrary to API 672 stipulations, multishaft compressors have been used for along time in hazardous applications like refinery offgas, CH{sub 4}, oxygen, or mixtures of NH{sub 3} and CO{sub 2}, CO, HCN, etc., or even dry chlorine.

Roy, G.K. [Pt. Indo-Rama Synthetics, West Java (Indonesia)

1997-07-01T23:59:59.000Z

140

Urban and Regional Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

equipment equipment Urban and Regional Air Quality Research in this area is concerned with regional air quality issues such as: Controlling nitrogen oxides (NOx) and volatile organic compounds, to manage tropospheric ozone pollution. Hazardous air pollutants: using science to base standards on rigorously studied risks. Air quality and climate: how does climate influence air quality at a regional or local level? Current modeling practices often do not capture variations in pollutants such as ozone-they represent a limited sample of the diverse meteorology and human behavior that affect air pollution. Improved modeling of regional air quality will help understand variability, reveal patterns of behavior, and pollutant transport issues. Controlled experiments in lab and field can help validate improved models.

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Missouri Hazardous Waste Management Law (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

142

Contaminant-Generation Mechanisms  

Science Journals Connector (OSTI)

In the last chapter, the areas where contaminants are generated were discussed. Knowing the location of contaminant generation is helpful in controlling that contamination, but understanding the mechanisms is ...

Alvin Lieberman

1992-01-01T23:59:59.000Z

143

UNDERWATER COATINGS FOR CONTAMINATION CONTROL  

SciTech Connect

The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases.

Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

2004-02-01T23:59:59.000Z

144

Report Wildland Fire Area Hazard  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. How to report wildland fire hazard Use the following form to report any wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. Fill out this form as completely as possible so we can better assess the hazard. All submissions will be assessed as promptly as possible. For assistance with a non-emergency situation, contact the Operations Support Center at 667-6211. Name (optional): Hazard Type (check one): Wildlife Sighting (check box if animal poses serious threat) Trails (access/egress)

145

Versatile, automated sample preparation and detection of contaminants and biological materials  

E-Print Network (OSTI)

Contamination of food, water, medicine and ingestible household products is a public health hazard that episodically causes outbreaks worldwide. Existing laboratory methods are often expensive, require a laboratory environment ...

Hoehl, Melanie Margarete

2013-01-01T23:59:59.000Z

146

New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy Production, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Air traffic controllers, motorists, and Sandia National Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a Web-based tool that complies with new federal guidelines requiring quantified assessments of glare from proposed solar installations.

147

Addressing Kitchen Contaminants for Healthy, Low-Energy Homes  

E-Print Network (OSTI)

pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants Development, Office of Healthy Homes and Lead Hazard Control through Interagency Agreement I-PHI-01070

148

Assessing inhalation exposure from airborne soil contaminants  

SciTech Connect

A method of estimation of inhalation exposure to airborne soil contaminants is presented. this method is derived from studies of airborne soil particles with radioactive tags. The concentration of contaminants in air (g/m{sup 3}) can be derived from the product of M, the suspended respirable dust mass concentration (g/m{sup 3}), S, the concentration of contaminant in the soil (g/g), and E{sub f}, an enhancement factor. Typical measurement methods and values of M, and E{sub f} are given along with highlights of experiences with this method.

Shinn, J.H.

1998-04-01T23:59:59.000Z

149

Identifying and modeling safety hazards  

SciTech Connect

The hazard model described in this paper is designed to accept data over the Internet from distributed databases. A hazard object template is used to ensure that all necessary descriptors are collected for each object. Three methods for combining the data are compared and contrasted. Three methods are used for handling the three types of interactions between the hazard objects.

DANIELS,JESSE; BAHILL,TERRY; WERNER,PAUL W.

2000-03-29T23:59:59.000Z

150

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network (OSTI)

Construction projects which impact existing building materials must include an environmental consultant air pollution control agency and the Department of Labor and Industries (L&I) at least ten (10) daysUNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Asbestos

Wilcock, William

151

Building Efficiency and Indoor Air Quality - You Can Have Both  

E-Print Network (OSTI)

with added or special filtration. This allows more air to be recirculated but has specific limitations. Filters can remove large particulates and some chemical contaminants by changing the filter media. However, a minimum amount of fresh air, approximately 20...

Kettler, G. J.

1998-01-01T23:59:59.000Z

152

Cold Weather Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Cold Weather Hazards June 2010 NSA_cwh_Rev10.doc 1 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Cold Weather Hazards Winter Conditions at the North Slope of Alaska The North Slope of Alaska is north of the Arctic Circle at latitudes ranging from 69 to 72 degrees. Barrow, the largest town on the North Slope (pop. 4500), is the site of a National Weather Service Station, which has been active for several decades, so the climatology of the Alaska arctic coastal region as represented by Barrow is relatively well known. The North Slope is covered with ice and snow typically eight months of the year (October-May). During part of November, all of December, and most of January, the sun does not come above the horizon; this

153

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

154

System to control contamination during retrieval of buried TRU waste  

DOE Patents (OSTI)

A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

Menkhaus, Daniel E. (Idaho Falls, ID); Loomis, Guy G. (Idaho Falls, ID); Mullen, Carlan K. (Idaho Falls, ID); Scott, Donald W. (Idaho Falls, ID); Feldman, Edgar M. (Idaho Falls, ID); Meyer, Leroy C. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

155

UNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all students, staff, and  

E-Print Network (OSTI)

treatment of hazardous waste can also cause long-term environmental effects, such as contaminated ground by the Radiation Safety Officer. #12;Storage of Waste Each lab must decide on an appropriate location for wasteUNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all

Northern British Columbia, University of

156

E-Print Network 3.0 - amsterdam air disaster Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and the "human error" can cause technological disasters (such as air crashes, automobile... hazard and risk assessment" Abstract. Almost every natural disaster is...

157

E-Print Network 3.0 - air quality metrics Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

(annually) 2. Particulate matter (PM10) a. Health hazard b. Visibility air quality 3. Dioxins... . Greenhouse gas b. Heating agent c. 40 million metric tons of carbon emissions...

158

E-Print Network 3.0 - air pollution abatement Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution abatement Page: << < 1 2 3 4 5 > >> 1 UNIVERSITY OF WASHINGTON Hazardous...

159

Enhancing Railroad Hazardous Materials Transportation Safety...  

Office of Environmental Management (EM)

Enhancing Railroad Hazardous Materials Transportation Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials...

160

Department of Transportation Pipeline and Hazardous Materials...  

Office of Environmental Management (EM)

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration...

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ranking possible carcinogenic hazards  

Science Journals Connector (OSTI)

...18). Afla-toxin contaminates wheat, corn (perhaps the main source ofdietary aflatoxin...and Deasion Document for Grain and Grain Milling Fumigation Uses (8 February 1984...The 15-g raw mushroom is given as wet weight. The TD50 value based on the above...

BN Ames; R Magaw; LS Gold

1987-04-17T23:59:59.000Z

162

Atmospheric Environment 38 (2004) 28412865 Cleaning products and air fresheners  

E-Print Network (OSTI)

Atmospheric Environment 38 (2004) 2841­2865 Cleaning products and air fresheners: exposure of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals that can react with other air contaminants to yield potentially harmful secondary products

Short, Daniel

163

How to Extract Energy from Dirty Interior Air  

E-Print Network (OSTI)

Industry is often faced with the problem of reducing the level of contaminated air in its plants. The common method used is to exhaust the dirty air and replace it with outside air. This requires heating or cooling of the replacement air. Two basic...

Cheney, W. A.

1982-01-01T23:59:59.000Z

164

Understanding the Basics of Compressed Air Systems  

E-Print Network (OSTI)

, contaminated filters, conversion to electrically operated hoists, and the use of centrifugal fans or compressed air with pressure regulators to purge control cabinets. Finally, a review of compressor technologies with typical cfm, pressure ranges, and price...

Herron, D. J.

165

March 29, 2007 Mobile Source Air Toxics Analysis  

E-Print Network (OSTI)

, 6 were identified as significant contributors to national emissions of hazardous air pollutants EPA Mobile Source Air Toxics Rules March 2001 rule relied on existing control programs (Tier 2March 29, 2007 Mobile Source Air Toxics Analysis for FHWA Projects Jeff Houk FHWA Resource Center

Minnesota, University of

166

Literature Review of Air Pollution Control Biofilters and Biotrickling  

E-Print Network (OSTI)

Literature Review of Air Pollution Control Biofilters and Biotrickling Filters for Odor Emission Standards for Hazardous Air Pollutants and Title V permitting) as well as local and state for the treatment of complex odorous waste air containing hydrogen sulfide (H2S), organic reduced sulfur com- pounds

167

Compressed Air  

NLE Websites -- All DOE Office Websites (Extended Search)

BPA Utility Reimbursement Programs for Compressed Air Projects Customer Proposal Template Measurement & Verification Plan for Compressed Air CA 2006-15 A template for utilities to...

168

Air Pollution Control (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control (Oklahoma) Air Pollution Control (Oklahoma) Air Pollution Control (Oklahoma) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Oklahoma Program Type Environmental Regulations Provider Environmental Quality This chapter enumerates primary and secondary ambient air quality standards and the significant deterioration increments. Significant deterioration refers to an increase in ambient air pollution above a baseline plus a specific increment allowed for one of three classes of areas. It is required for potential sources of air contaminants to register with the

169

Identification of Process Hazards and Accident Scenarios for Site 300 B-Division Firing Areas, Lawrence Livermore National Laboratory  

SciTech Connect

This report describes a hazard and accident analysis conducted for Site 300 operations to support update of the ''Site 300 B-Division Firing Areas Safety Analysis Report'' (SAR) [LLNL 1997]. A significant change since the previous SAR is the construction and the new Contained Firing Facility (CFF). Therefore, this hazard and accident analysis focused on the hazards associated with bunker operations to ensure that the hazards at CFF are properly characterized in the updated SAR. Hazard tables were created to cover both the CFF and the existing bunkers with ''open air'' firing tables.

Lambert, H; Johnson, G

2001-05-04T23:59:59.000Z

170

Experiment Hazard Class 11 - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Hydrogen 1 - Hydrogen Applicability This hazard classification applies to all experiments and processes involving the use of gaseous hydrogen. This class includes work performed in the Experiment Hall Beamline Stations and any preparatory/setup/testing work performed in the LOM laboratories. Other hazard controls such as fire protection and life safety regulations may apply to experiments of this hazard class. A summary of controls for hydrogen use is available in the hydrogen summary document. Experiment Category Experiments involving previously reviewed hazard controls qualify for categorized as medium risk. Experiments involving new equipment or modified hazard control schemes are categorized as high risk. Experiment Hazard Control Verification Statements Engineered Controls - Applicable controls for storage and use of

171

Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska  

SciTech Connect

This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

Not Available

1994-10-01T23:59:59.000Z

172

Hazardous Substances Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Commissioner of the Department of Agriculture has the authority to promulgate regulations declaring specified substances to be hazardous and establishing labeling, transportation, storage, and...

173

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

174

Surfactant screening of diesel-contaminated soil  

SciTech Connect

At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which twenty-one surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site. 18 refs., 16 figs., 1 tab.

Peters, R.W.; Montemagno, C.D.; Shem, L. (Argonne National Lab., IL (USA)); Lewis, B.A. (Northwestern Univ., Evanston, IL (USA). Dept. of Civil Engineering)

1990-01-01T23:59:59.000Z

175

Emerging electromembrane technologies in hazardous management  

SciTech Connect

A new generalized index of ecological estimation of different technological process is suggested. It is the number of salt equivalents which contaminate environment when a production unit is making. The quantity of salt equivalent have been calculated not only as necessary amount for the technological process by itself, but as amount of energy and different materials for an entire technology. The estimation of different methods of water treatment is shown. The electrodialysis is the most ecological method of water desalination in comparison with others. This conclusion was spreaded on other electromembrane technologies in hazardous management. Such as: (1) Brackish water desalination, (2) Acid rain prevention, (3) Recuperation of pure heavy metals from rinse galvanic water.

Grebenyuk, V.D. [Institute of Colloid and Water Chemistry, Kiev (Ukraine); Grebenyuk, O.V. [Dega Enterprises of NY, Inc., Flushing, NY (United States)

1995-12-31T23:59:59.000Z

176

Hazards below Ground  

Science Journals Connector (OSTI)

... of lung cancer among uranium miners is continued exposure to the radioactive decay products of radon-22. These are polonium-218, lead-214, bismuth-214 and polonium-214. It ... lead-214, bismuth-214 and polonium-214. It is known that some of the radon daughters contained in the air breathed by miners are retained in the respiratory system. ...

1967-10-14T23:59:59.000Z

177

air_water.cdr  

Office of Legacy Management (LM)

12/2011 12/2011 Air Monitoring Groundwater Monitoring Surface Water Monitoring A continuously operating air monitoring network was in place from 1986 through 2000 for the Weldon Spring Site Remedial Action Project (WSSRAP) to measure levels of gamma radiation, radioactive dust particles, radon gas, and asbestos. With remediation of contaminated materials essentially complete and measurements indistinguishable from background, the U.S. Department of Energy (DOE) ceased perimeter and offsite air monitoring as of December 31, 2000. Groundwater has been routinely monitored at the site since 1986. Separate groundwater monitoring programs were established for the Chemical Plant and Quarry sites because of geographic separation and differences in the hydrogeologic features that influence

178

Recirculation of Factory Heat and Air to Reduce Energy Consumption  

E-Print Network (OSTI)

-makeup ventilation systems. First we must distinguish between gaseous and particulate contaminants in order to select appropriate types of air cleaning equipment. Next the physical (and chemical) char acteristics of those specific contaminants must be considered... particles. (Note that most gases and vapors are colorless and invisible ?...suspended particulates are almost the only visible air con taminants .) Because the chemical vapor pressure of the nuisance contaminants which create visibly polluted factory...

Thiel, G. R.

1983-01-01T23:59:59.000Z

179

Contamination Control Overview  

Science Journals Connector (OSTI)

Many high-technology products currently manufactured are affected adversely if contamination is deposited in or on the product during manufacture or use. Contamination can be defined as any condition, material, p...

Alvin Lieberman

1992-01-01T23:59:59.000Z

180

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Underwater Coatings for Contamination Control  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included 1) Test Area North (TAN-607) with epoxy painted concrete walls; 2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; 3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and 4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55oF to 80oF dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: · Be easy to apply · Adhere well to the four surfaces of interest · Not change or have a negative impact on water chemistry or clarity · Not be hazardous in final applied form · Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected to be applied by divers after scrubbing loose contamination off the basin walls and floors using a ship hull scrubber and vacuuming up the sludge. A special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pool with no airborne contamination problems.

Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

2004-02-01T23:59:59.000Z

182

REPORT NO. 8 radiation hazards  

E-Print Network (OSTI)

REPORT NO. 8 REVISED guidance for the control of radiation hazards in uranium mining SEPTEMBER 1967 OF RADIATION HAZARDS IN URANIUM MINING SEPTEMBER 1967 Staff Report of the FEDERAL RADIATION COUNCIL #12;FEDERAL...... .... .._ _.... Section I. Introduction. . . Section II. The Radiation Environment AssociatedWith Uranium Mining. Section

183

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network (OSTI)

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

Sheridan, Jennifer

184

Original article Contamination of pigs by nose-to-nose contact  

E-Print Network (OSTI)

Original article Contamination of pigs by nose-to-nose contact or airborne transmission 2001; accepted 21 June 2001) Abstract ­ The aim of this study is to assess the risk of contamination-inoculated "contact" pigs (n = 4), the third room had pigs (n = 8) receiving potentially contaminated air from

Boyer, Edmond

185

ASD Facility Hazard Analysis Document - Building 400-EAA  

NLE Websites -- All DOE Office Websites (Extended Search)

-EAA -EAA Equipment Hazards Engineered Controls Electrical Safety Training References Electrical Safety Procedures Mechanical Safety Training References Mechanical Safety Procedures Radiological, Environmental & Chemical Training References Radiological, Environmental & Chemical Procedures Additional Safety Tool References Blue Oven Temperature to 600° F voltage 208 VAC Signage 1 NA 6, 7 Physical Agents Training NA NA NA A ASD108/400 Compressed Air Line 65-130 PSI Regulator Pressure relief NA NA 6, 7 ESH119 NA NA A ASD108/400 Various Shop Tools (lathe, drill press, grinder, belt sander, shears, hand tools) Eye hazard Pinch points Abrasive Rotating machinery 120 VAC Hydraulic pressure Guarding Anti-restart devices 1 NA 6, 7 NA NA NA A ASD108/400 Water Flow Test Stand Pressure Slip hazard NA

186

Potential Health Hazards of Radiation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation More Documents &...

187

Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

What We Monitor & Why » What We Monitor & Why » Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. April 12, 2012 Real-time data monitoring for particulate matter An air monitoring field team member tests one of LANL's tapered element oscillating microbalance samplers, which collects real-time particulate matter data. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email LANL monitors air quality 24 hours a day, 365 days a year. Why we monitor air LANL monitors many different pathways in order to assess their impact on workers, the public, animals, and plants. We monitor the air around the Laboratory to ensure our operations are not affecting the air of nearby

188

Pre-Feasibility Analysis of Pellet Manufacturing on the Former Loring Air Force Base Site. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. This site, in Limestone, Maine -- formerly the location of the Loring Air Force Base but now owned by the Aroostook Band of Micmac -- was selected for the potential to produce heating pellets from woody feedstock. Biomass was chosen as the renewable energy resource to evaluate based on abundant woody-biomass resources available in the area. NREL also evaluates potential savings from converting existing Micmac property from oil-fired heating to pellet heating.

Hunsberger, R.; Mosey, G.

2014-04-01T23:59:59.000Z

189

Health-hazard evaluation report HETA 89-270-2080, Harrisburg Steam Generation Facility, Harrisburg, Pennsylvania  

SciTech Connect

In response to a request from the City of Harrisburg, Pennsylvania, a health hazard evaluation was conducted at the Harrisburg Steam Generation Facility (HSGF)(SIC-4953) concerning possible exposure to fly ash, combustion products and asbestos (1332214). The facility was a waste to energy site where municipal refuse was incinerated at approximately 1400 degrees-F. The steam generated was either sold directly or converted to electricity via an on site turbine. Employees used hard hats, safety shoes and glasses, work clothes and single use disposable dust and mist respirators. There was a potential for exposure to fly ash for employees working in the boiler and basement areas. Total particulate exposures ranged from 5 to llmg/m3 for laborers. The concentration of lead (7439921) exceeded the standards set by OSHA permissible exposure level of 0.05mg/kg in three of the personal breathing zone air samples. Amosite (12172735) and chrysotile (12001295) asbestos were identified in bulk samples of insulation and asbestos taken from a settled dust sample in the boiler area. Surface wipe samples indicated the possibility of hand to mouth contact with fly ash, particularly in the break and locker rooms. The author concludes that there is a need for reducing worker exposure to fly ash particulate. The author recommends engineering and work practice controls to reduce particulate exposures, increased cleaning and maintenance activities; and further evaluation of asbestos contamination at the facility.

Seitz, T.A.

1990-11-01T23:59:59.000Z

190

QUANTIFYING THE POTENTIAL IMPACTS OF ATMS ON AIR QUALITY Bruce Hellinga  

E-Print Network (OSTI)

to implement traffic control strategies that satisfy legislated air quality standards. Unfortunately of the pollutants is modelled. In this way, the air quality estimates are sensitive to the implemented traffic); and more than 50% of the hazardous air pollutants [1]. Many of the air pollutants emitted by motor vehicles

Hellinga, Bruce

191

Health assessment for Griffiss Air Force Base NPL (National Priorities List) site, Rome, Oneida County, New York, Region 2. CERCLIS No. NY4571924451. Final report  

SciTech Connect

The Griffiss Air Force Base National Priorities List Site is located near the City of Rome, New York. Most of these sites have not been sufficiently investigated at this time for a complete determination of their possible health effects. Residential wells south of Griffiss Air Force Base are contaminated with volatile organic compounds: trichloroethene and 1,1,2,2-tetrachloroethane. The measured concentrations of trichloroethene and 1,1,2,2-tetrachloroethane, to date, are below levels of concern. The site is of potential public health concern because of the risk to human health that could result from possible future exposure to hazardous substances at levels that may result in adverse health effects over time.

Not Available

1988-06-09T23:59:59.000Z

192

ENVIRONMENTAL ASSESSMENT FOR HAZARDOUS WASTE STAGING FACILITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HAZARDOUS WASTE STAGING FACILITY HAZARDOUS WASTE STAGING FACILITY Project 39GF71024-GPDI21000000 . PANTEX PLANT AMARILLO, TEXAS DOE/EA-0688 JUNE 1993 MASTER DiSTRiBUTiON OF THIS DOCUMENT IS UNLIMITEI) ffrl TABLE OF CONTENTS Section Page 1.0 Need for Action 1 2.0 Description of Proposed Facility Action 3.0 Location of the Action 8 4.0 Alternatives to Proposed Action 9 4.1 No Action 9 4.2 Redesign and Modify Existing staging Facilities 9 4.3 Use Other Existing Space at Pantex Plant 9 4.4 Use Temporary Structures 9 4.5 Stage Waste at Other Sites 10 4.6 Stage Wastes Separately 10 5.0 Environmental Impacts of Proposed Action 10 5.1 Archeology 10 5.2 FloodplainlW etlands 10 5.3 Threatened and Endangered Species 10 5.4 Surrounding La,nd Use 11 5.5 Construction 11 5.6 Air Emissions 11

193

Method and apparatus for incinerating hazardous waste  

DOE Patents (OSTI)

An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

Korenberg, Jacob (York, PA)

1990-01-01T23:59:59.000Z

194

Process for removal of hazardous air pollutants from coal  

DOE Patents (OSTI)

An improved process for removing mercury and other trace elements from coal containing pyrite by forming a slurry of finely divided coal in a liquid solvent capable of forming ions or radicals having a tendency to react with constituents of pyrite or to attack the bond between pyrite and coal and/or to react with mercury to form mercury vapors, and heating the slurry in a closed container to a temperature of at least about 50.degree. C. to produce vapors of the solvent and withdrawing vapors including solvent and mercury-containing vapors from the closed container, then separating mercury from the vapors withdrawn.

Akers, David J. (Indiana, PA); Ekechukwu, Kenneth N. (Silver Spring, MD); Aluko, Mobolaji E. (Burtonsville, MD); Lebowitz, Howard E. (Mountain View, CA)

2000-01-01T23:59:59.000Z

195

In-situ remediation system and method for contaminated groundwater  

DOE Patents (OSTI)

A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like. 3 figs.

Corey, J.C.; Looney, B.B.; Kaback, D.S.

1989-05-23T23:59:59.000Z

196

I. Introduction The Martian atmosphere is the origin of many possible hazards to both humans and  

E-Print Network (OSTI)

and human occupation Electric fields in convective dust storm may exceed breakdown, leading to discharge, arcing, RF contamination. Discharge to ascending vehicle is potentially serious issue during take-off (e that triboelectric effects within dust storms can give rise to large electric fields which might prove hazardous

Withers, Paul

197

The influence of human physical activity and contaminated clothing type on particle resuspension  

Science Journals Connector (OSTI)

Abstract A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to “contaminate” the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event.

A. McDonagh; M.A. Byrne

2014-01-01T23:59:59.000Z

198

ARM - SGP Rural Driving Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Rural Driving Hazards Rural Driving Hazards SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on unpaved, dirt and gravel, roads. Visitors should be aware of the driving hazards this presents by taking the following precautions: Proceed cautiously: Many rural roads have unmarked and blind intersections. Slow down: Sanded and gravel raods can cause a vehicle to swerve. Maintain a safe following distance: During the dry season, vehicles

199

Surveillance Guides - Identification of Hazards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identification of Hazards Identification of Hazards 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs. Surveillance activities encompass maintenance and implementation of safety basis documentation (SARs, ISBs, BIOs, JCOs, HASPs etc) as well as activity level hazards identification via JHAs, AJHAs, JSAs etc.) 2.0 References 2.1 DOE 4330.4B Maintenance Management Program 2.2 48 CFR 1970 Department of Energy Acquisition Regulations 2.3 DOE O 5480.21, Unreviewed Safety Questions 2.4 DOE O 5480.23, Nuclear Safety Analysis Reports 3.0 Requirements Implemented This surveillance verifies implementation of guiding principle #5 and core value #2 as specified in 48 CFR 1970.5204-2 (b) (5) and (c) (2) respectively. Additionally, it verifies implementation of

200

LOG HAZARD REGRESSION Huiying Sun  

E-Print Network (OSTI)

LOG HAZARD REGRESSION by Huiying Sun Ph.D, Harbin Institute of Technology, Harbin, CHINA, 1991 .................................................................... .................................................................... .................................................................... .................................................................... THE UNIVERSITY OF BRITISH COLUMBIA September, 1999 c flHuiying Sun, 1999 #12; Abstract We propose using

Heckman, Nancy E.

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

control technology.1 46 sions from the list of regulated hazardous air pollutantsAir Act includes "only those pollutants subject to a statutory or regulatory provision that requires actual control

Hagan, Colin R.

2012-01-01T23:59:59.000Z

202

Active airborne contamination control using electrophoresis  

SciTech Connect

In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

Veatch, B.D.

1994-06-01T23:59:59.000Z

203

Surface and Volume Contamination  

Energy.gov (U.S. Department of Energy (DOE))

Will there be volume contamination/activation guides as well as updated contamination guides? The only guidance being developed for volumetric contamination is a Technical Standard for accelerator facilities. However, a revised version of ANSI N13.12-1999 is expected in the future and it will be assessed to determine its acceptability for use as a pre-approved authorized limit. It is noted that ANSI N13.12-1999 is only applicable to personal property not structures.

204

IMPACT OF REDUCED INFILTRATION AND VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network (OSTI)

Critical Analysis of Nitrogen Dioxide Air Quality Standards.contaminants-. ;--- ---- nitrogen dioxide from gas stoves,buildings: nitrogen dioxide (N02), formaldehyde (HCHO), and

Hollowell, Craig D.

2011-01-01T23:59:59.000Z

205

Bulletin No. 233 Ergonomic Hazards of the  

E-Print Network (OSTI)

July, 2004 Bulletin No. 233 Ergonomic Hazards of the Seated Posture Ergonomic Hazards of the Seated it is possible for these injuries to heal themselves when the ergonomic hazard is removed, cases do exist where;PAGE 2 ERGONOMIC HAZARDS of the SEATED POSTURE BULLETIN NO. 233 Ergonomic interventions to reduce

Martin, Jeff

206

Three-dimensional self-potential inversion for subsurface DNAPL contaminant detection at the Savannah River Site, South Carolina  

E-Print Network (OSTI)

as an electrochemical source for the SP signals measured in this investigation. A 3-D self-potential inversion algorithm a long-term groundwater hazard. Remediation of sites contaminated with these chemicals therefore remains an important issue today. The goal of this investigation is to characterize underground contaminant

Sailhac, Pascal

207

Hazardous Wastes Management (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

208

Air Emission Regulations for the Prevention, Abatement, and Control of Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Emission Regulations for the Prevention, Abatement, and Control Air Emission Regulations for the Prevention, Abatement, and Control of Air Contaminants (Mississippi) Air Emission Regulations for the Prevention, Abatement, and Control of Air Contaminants (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Air Emission Regulation for the Prevention, Abatement and Control of

209

Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers Title Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers Publication Type Report LBNL Report Number LBNL-4951E Year of Publication 2011 Authors Coles, Henry C., Tae Won Han, Phillip N. Price, Ashok J. Gadgil, and William F. Tschudi Date Published 03/2011 Abstract There is a concern that environmental-contamination caused corrosion may negatively affect Information Technology (IT) equipment reliability. Nineteen data centers in the United States and two in India were evaluated using Corrosion Classification Coupons (CCC) to assess environmental air quality as it may relate IT equipment reliability. The data centers were of two basic types: "closed" and outside-air cooled. A closed data center provides cool air to the IT equipment using air conditioning in which only a small percentage of the recirculation air is "make-up" air continuously supplied from outside to meet human health requirements. An outside-air cooled data center uses outside air directly as the primary source for IT equipment cooling. Corrosion measuring coupons containing copper and silver metal strips were placed in both "closed" and outside-air cooled data centers. The coupons were placed at each data center (closed and outside-air cooled types) with the location categorized into three groups:

210

In-Situ Containment and Extraction of Volatile Soil Contaminants  

DOE Patents (OSTI)

The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

Varvel, Mark Darrell

2005-12-27T23:59:59.000Z

211

Bioremediation of contaminated sediments  

SciTech Connect

Contaminants in bottom sediments have historically been considered to have minimal environmental impact because they are buried, sorbed or electrostatically bound to clay particles, or incorporated into humus. Physical and chemical conditions such as alkalinity, pH, and redox of the sediments also play a part in sequestering contaminants. As long as the sediments are undisturbed, the contaminants are considered stabilized and not an immediate environmental problem. Resuspension of bottom sediments makes contaminants more available for dispersal into the marine environment. Events that can cause resuspension include storm surges, construction activity, and dredging. During resuspension, sediment particles move from an anaerobic to aerobic environment, changing their redox characteristics, and allowing the indigenous aerobic bacteria to grow and utilize certain classes of contaminants as energy sources. The contaminants are also more available for use because the mixing energy imparted to the particles during resuspension enhances mass transfer, allowing contaminants to enter the aqueous phase more rapidly. The contaminants targeted in this research are polynuclear aromatic hydrocarbons (PAHs), a class of contaminant commonly found in bottom sediments near highly industrialized areas. PAH sources include fossil fuel combustion and petroleum spills. Previous research has shown that PAHs can be biodegraded. Size and structure, i.e., number and configuration of condensed rings, can affect compound disappearance. The focus of this research was to examine the relationship between resuspension and biodegradation of PAHs in lab scale slurry reactors. The rate and extent of contaminant release from the sediments into an uncontaminated water column was determined. Oxygen demand of initially anaerobic sediments were investigated. Then rate and extent of phenanthrene biodegradation was examined.

Hughes, J.B.; Jee, V.; Ward, C.H. [Rice Univ., Houston, TX (United States)

1995-10-01T23:59:59.000Z

212

Subsurface Fire Hazards Technical Report  

SciTech Connect

The results from this report are preliminary and cannot be used as input into documents supporting procurement, fabrication, or construction. This technical report identifies fire hazards and proposes their mitigation for the subsurface repository fire protection system. The proposed mitigation establishes the minimum level of fire protection to meet NRC regulations, DOE fire protection orders, that ensure fire containment, adequate life safety provisions, and minimize property loss. Equipment requiring automatic fire suppression systems is identified. The subsurface fire hazards that are identified can be adequately mitigated.

Logan, R.C.

1999-09-27T23:59:59.000Z

213

Air Pollution Control Fees (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Fees (Ohio) Air Pollution Control Fees (Ohio) Air Pollution Control Fees (Ohio) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Construction Municipal/Public Utility Local Government Rural Electric Cooperative Program Info State Ohio Program Type Environmental Regulations Fees Provider Ohio Environmental Protection Agency Facilities with a potential to emit any one regulated air pollutant of a quantity greater than or equal to 100 tons per year, or any one hazardous air pollutant (HAP) greater than or equal to 10 tons per year, or any combination of hazardous air pollutants greater than 25 tons per year, must submit, in a form and manner prescribed by the director, a fee emission report that quantifies the actual emission data for particulate matter,

214

Chapter 28 - Nanotechnology for Contaminated Subsurface Remediation: Possibilities and Challenges  

Science Journals Connector (OSTI)

Groundwater represents a significant source of potable and industrial process water throughout the world. With population growth the availability of this precise resource is becoming increasingly scarce. Historically, the subsurface was thought to act as a natural filter of wastes injected into the ground. The potential for these wastes to persist in the subsurface for decades, potentially contaminating drinking water sources was ignored. Not only do toxic compounds have significant detrimental impacts on the environment and human health, there are also economic and social costs associated with contaminated groundwater. Due to increased demands on groundwater resources and historical contamination there is a need to remediate contaminated groundwater to meet current and future demands. At many hazardous sites, however, current remediation technologies routinely defy attempts at satisfactory restoration. As a result new, innovative remediation technologies are required. Nanomaterials are receiving widespread interest in a variety of fields due to their unique, beneficial chemical, physical, and mechanical properties. They have recently been proposed to address a number of environmental problems including the remediation of the contaminated subsurface. A wide variety of nanoparticles, such as metallic (e.g., zero valent iron or bimetallic nanoparticles) and carbon based nanoparticles (e.g., C60 nanoparticles) have been investigated to assess their potential for contaminated site remediation. Studies suggest that nanoparticles have the ability to convert or sequester a wide variety of subsurface contaminants (e.g., chlorinated solvents and heavy metals). In addition they are more reactive than similar, larger sized, reactive materials. The majority of these studies have, however, been conducted at the batch scale. Considerable work is necessary prior to the application of nanotechnology for contaminated site remediation. One problem, for example, is the delivery of reactive nanometals to the contaminated source zone where they will react. This chapter will summarize the use of nanoparticles for contaminated site remediation and highlight some of the challenges that remain unresolved.

Denis M. O’Carroll

2014-01-01T23:59:59.000Z

215

Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1  

E-Print Network (OSTI)

Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1 Philip Demokritou, and the operation strategy of the ventilation system are significant contributing factors to the indoor air quality contamination levels in the arenas. Keywords: Air distribution, health, skating rink, indoor air quality, space

Chen, Qingyan "Yan"

216

Computer simulations and experimental measurements of air distributions in buildings: past, present, and future  

E-Print Network (OSTI)

1 Computer simulations and experimental measurements of air distributions in buildings: past, sustainable, and safe building, it is important to know the distributions of air velocity, air temperature, and liquid droplet contaminants. (hereafter referred as air distribution) in the building. Due to rapid

Chen, Qingyan "Yan"

217

Methods for Determination of Hydrocarbons in Air, Soil & Water  

Science Journals Connector (OSTI)

Many environmental investigations often demand a quick indication of the nature and levels of contamination in air, soil and water. A portable GC for on-site monitoring allows the user to fast screen compounds in...

Hans Ole Andersen

1997-01-01T23:59:59.000Z

218

Personnel and Contamination  

Science Journals Connector (OSTI)

Everyone concerned with contamination control dreams of the day when automation will remove the need for employees to actually handle the wafers. This wish arises from the fact that humans are such a major factor...

M. Kozicki; S. Hoenig; P. Robinson

1991-01-01T23:59:59.000Z

219

WHC fire hazards analysis policy  

SciTech Connect

The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

Evans, C.B.

1994-04-01T23:59:59.000Z

220

Air Pollution  

Science Journals Connector (OSTI)

Both natural processes and human activities contribute to air pollution, with the combustion of fossil fuels being the largest anthropogenic source of air pollutants. Adverse health effects (above all respiratory and cardiovascular complications), damage to crops, natural vegetation and materials, reduced visibility and changed radiation balance of the atmosphere are the major consequences of high concentrations of air pollutants. Technical fixes can sharply reduce emissions from large stationary sources and lower the rates of automotive emissions, but the rising number of vehicles and longer time spent on the road will call for more radical solutions to traffic-generated photochemical smog now present in all major urban areas.

V. Smil

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Stack Characterization System for Inspection of Contaminated Off-Gas Stacks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stack Characterization System for Inspection of Contaminated Stack Characterization System for Inspection of Contaminated Off-Gas Stacks Stack Characterization System for Inspection of Contaminated Off-Gas Stacks The stack characterization system (SCS) is a tele-operated remote system that collects samples and data to characterize the quantitative and qualitative levels of contamination inside off-gas stacks protecting workers from the physical, radiological and chemical hazards of deteriorating contaminated stacks. Stack Characterization System for Inspection of Contaminated Off-Gas Stacks More Documents & Publications Uranium Downblending and Disposition Project Technology Readiness Assessment Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - November 2013 EA-1488: Environmental Assessment for the U-233 Disposition, Medical

222

Stack Characterization System for Inspection of Contaminated Off-Gas Stacks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stack Characterization System for Inspection of Contaminated Stack Characterization System for Inspection of Contaminated Off-Gas Stacks Stack Characterization System for Inspection of Contaminated Off-Gas Stacks The stack characterization system (SCS) is a tele-operated remote system that collects samples and data to characterize the quantitative and qualitative levels of contamination inside off-gas stacks protecting workers from the physical, radiological and chemical hazards of deteriorating contaminated stacks. Stack Characterization System for Inspection of Contaminated Off-Gas Stacks More Documents & Publications Uranium Downblending and Disposition Project Technology Readiness Assessment EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge

223

Bos > AIR  

E-Print Network (OSTI)

The advent of air travel has produced a building typology completely new to the 20th century. The outdated planning of regions for airports render most existing airports as isolated, autonomous instances in the urban ...

Lee, Kevin Young

2014-01-01T23:59:59.000Z

224

Suggested Approaches for Probabilistic Flooding Hazard Assessment  

Energy.gov (U.S. Department of Energy (DOE))

Suggested Approaches for Probabilistic Flooding Hazard Assessment Ahmed “Jemie” Dababneh, Ph.D., P.E. and Jeffrey Oskamp, E.I.T. Presentation for U.S. Department of Energy Natural Phenomena Hazards Meeting October 22, 2014

225

Massachusetts Hazardous Waste Management Act (Massachusetts)  

Energy.gov (U.S. Department of Energy (DOE))

This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

226

ARSENIC UPTAKE BY TWO HYPERACCUMULATOR FERNS FROM FOUR ARSENIC CONTAMINATED SOILS  

E-Print Network (OSTI)

(Cai et al., 2002). Smelting and mining sites are often significant sources Water, Air, and Soil Pollution (2005) 168: 71­89 C Springer 2005 #12;72 A. O. FAYIGA AND L. Q. MA of arsenic contamination

Ma, Lena

227

Air Leakage and Air Transfer Between Garage and Living Space  

SciTech Connect

This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

Rudd, A.

2014-09-01T23:59:59.000Z

228

CONTROL OF HAZARDOUS ENERGY 12.A GENERAL  

E-Print Network (OSTI)

on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program by the contractor-managed HECP (e.g., QA's on construction sites, etc.), they shall comply with the contractor and implementation of these activities. Each shall inform the other of their HECPs and Hazardous Energy Control (HEC

US Army Corps of Engineers

229

General Air Permits (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Air Permits (Louisiana) General Air Permits (Louisiana) General Air Permits (Louisiana) < Back Eligibility Agricultural Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Environmental Quality Any source, including a temporary source, which emits or has the potential to emit any air contaminant requires an air permit. Facilities with potential emissions less than 5 tons per year of any regulated air pollutant do not need a permit. The Louisiana Department of Environmental Quality issues Title V General Permits. The permit is developed based on equipment types versus facility types, the general permits are not limited in their use to a specific industry or category. Title V permits combine

230

National Center for Environmental Health Division of Environmental Hazards and Health Effects  

E-Print Network (OSTI)

possible links between environmental problems like air pollution and chronic diseases like asthma part of CDC's Environmental Public Health Tracking Program since 2002. Massachusetts began building itsCS227358_A National Center for Environmental Health Division of Environmental Hazards and Health

231

OSHA List of Hazardous Chemicals  

NLE Websites -- All DOE Office Websites (Extended Search)

OSHA List of Hazardous Chemicals OSHA List of Hazardous Chemicals ACETALDEHYDE ACETAMIDE ACETIC ACID ACETIC ANHYDRIDE ACETONE ACETONItr ILE ACETYLAMINOFLUORENE, 2- ACETYLENE ACETYLENE DICHLORIDE ACETYLENE TETRABROMIDE ACETYLSALICYLIC ACID (ASPIRIN) ACROLEIN ACRYLAMIDE ACRYLIC ACID ACRYLONITRILE ACTINOMYCIN D ADRIAMYCIN AFLATOXINS ALDRIN ALLYL ALCOHOL ALLYL CHLORIDE ALLYL GLYCIDYL ETHER (AGE) ALLYL PROPYL DISULFIDE ALUMINA ALUMINUM, METAL DUST, AS AL ALUMINUM, PYRO POWDERS, AS AL ALUMINUM, SOLUBLE SALTS, AS AL ALUMINUM, WELDING FUMES, AS AL ALUMINUM, ALKYLS, NOT OTHERWISE CLASSIFIED, AS AL ALUMINUM OXIDE, AS AL AMINOANTHRAQUINONE (AAQ), AMINOAZOTOLUENE, O- AMINOBIPHENYL, 4- AMINOETHANOL, 2- AMINO-2-METHYLANTHRAQUINONE, 1- AMINO-5-(5-NITRO-2-FURYL)- -1, 3,4-THIADIADIAZOLE, 2- AMINOPYRIDINE, 2- AMINO-1,2,4-TRIAZOLE, 3-

232

Medical University of South Carolina Environmental Hazards Assessment Program. Deliverables: Volume 2, Annual report, July 1, 1993--June 30, 1994  

SciTech Connect

This reference is concerned with the Crossroads of Humanity workshop which is part of the Environmental Hazards Assessment Program at the Medical University of South Carolina. This workshop was held during the months of June and July 1994. Topics discussed include: Radioactive contamination, aging, medical ethics, and environmental risk analysis.

Not Available

1994-08-18T23:59:59.000Z

233

Indoor air pollution: a public health perspective  

Science Journals Connector (OSTI)

...systems to comply with new ASHRAE standard 62-1981 Provide for separation...ordinances, or performance standards to protect the public Provide...equipment, and performance of HVAC systems Table 4. Components...Recodification of air contaminant standards," Fed. Regist. 40, 23072...

JD Spengler; K Sexton

1983-07-01T23:59:59.000Z

234

Maintaining Indoor Air Quality During Construction and Renovation Projects  

E-Print Network (OSTI)

and pollutants that can impact the indoor air quality (IAQ) of a building. These contaminants may be transported communication efforts can successfully control pollutant levels, allay concerns, and maintain occupant comfort to nuisance dusts and odors from a construction site unacceptable. Indoor air pollutants are typically complex

Huang, Jianyu

235

Assessing homeland chemical hazards outside the military gates: industrial hazard threat assessments for department of defense installations  

Science Journals Connector (OSTI)

As part of comprehensive joint medical surveillance measures outlined by the Department of Defense, the US Army Center for Health Promotion and Preventive Medicine (USACHPPM) is beginning to assess environmental health threats to continental US military installations. A common theme in comprehensive joint medical surveillance, in support of Force Health Protection, is the identification and assessment of potential environmental health hazards, and the evaluation and documentation of actual exposures in both a continental US and outside a continental US setting. For the continental US assessments, the USACHPPM has utilized the US Environmental Protection Agency (EPA) database for risk management plans in accordance with Public Law 106-40, and the toxic release inventory database, in a state-of the art geographic information systems based program, termed the Consequence Assessment and Management Tool Set, or CATS, for assessing homeland industrial chemical hazards outside the military gates. As an example, the US EPA toxic release inventory and risk management plans databases are queried to determine the types and locations of industries surrounding a continental US military installation. Contaminants of concern are then ranked with respect to known toxicological and physical hazards, where they are then subject to applicable downwind hazard simulations using applicable meteorological and climatological data sets. The composite downwind hazard areas are mapped in relation to emergency response planning guidelines (ERPG), which were developed by the American Industrial Hygiene Association to assist emergency response personnel planning for catastrophic chemical releases. In addition, other geographic referenced data such as transportation routes, satellite imagery and population data are included in the operational, equipment, and morale risk assessment and management process. These techniques have been developed to assist military medical planners and operations personnel in determining the industrial hazards, vulnerability assessments and health risk assessments to continental United States military installations. These techniques and procedures support the Department of Defense Force Protection measures, which provides awareness of a terrorism threat, appropriate measures to prevent terrorist attacks and mitigate terrorism's effects in the event that preventive measures are ineffective.

Jeffrey S Kirkpatrick; Jacqueline M Howard; David A Reed

2002-01-01T23:59:59.000Z

236

Mercury contamination extraction  

DOE Patents (OSTI)

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

237

Subsurface Contamination Control  

SciTech Connect

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-11-16T23:59:59.000Z

238

Mission: Possible. Center of Excellence for Hazardous Materials Management  

SciTech Connect

The Center of Excellence for Hazardous Materials Management (CEHMM) was established in May 2004 as a nonprofit research organization. Its purpose is to develop a sustainable technical/scientific community located in Carlsbad, New Mexico, that interacts worldwide to find solutions to hazardous materials management issues. An important part of the mission is to achieve improved protection of worker safety, human health, and the environment. Carlsbad has a large technical community due to the presence of the Waste Isolation Pilot Plant (WIPP) and its many contractors and support organizations. These groups include the Carlsbad Environmental Monitoring and Research Center, Washington Group International, Los Alamos National Laboratory, and Sandia National Laboratories. These organizations form the basis of a unique knowledge community with strengths in many areas, such as geosciences, actinide chemistry, environmental monitoring, and waste transportation. CEHMM works cooperatively with these organizations and others to develop projects that will maintain this knowledge community beyond the projected closure date of WIPP. At present, there is an emphasis in bio-monitoring, air monitoring, hazardous materials educational programs, and endangered species remediation. CEHMM is also currently working with a group from the American Nuclear Society to help facilitate their conference scheduled for April 2006 in Carlsbad. CEHMM is growing rapidly and is looking forward to a diverse array of new projects. (authors)

Bartlett, W.T.; Prather-Stroud, W. [Center of Excellence for Hazardous Materials Management, 505 North Main Street, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

239

CPSC, EPA, CDC/ATSDR, HUD PRESS STATEMENT ON DRYWALL AIR SAMPLING The U.S. Consumer Product Safety Commission (CPSC), the U.S. Environmental Protection  

E-Print Network (OSTI)

, EPA, CDC/ATSDR, HUD PRESS STATEMENT ON DRYWALL AIR SAMPLING The U.S. Consumer Product Safety odors into the air and whether identified substances found in the air pose a safety or health hazard, in support of CPSC, EPA has performed limited air sampling and monitoring in six homes in Florida

240

Hazardous and Radioactive Mixed Waste  

Directives, Delegations, and Requirements

To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

1982-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Impacts of contaminant storage on indoor air quality: Model development  

E-Print Network (OSTI)

additional resistance between the storage material and theWhen resistance to transport between storage materials andthe resistance to transport across the storage material, the

Sherman, Max H.

2014-01-01T23:59:59.000Z

242

Relation of Radon to Non-active Air Contamination  

Science Journals Connector (OSTI)

... Identification of the activity as radon products was obtained by tracing the decay through periods longer than two hours, and ... transmitted to that of a clean filter paper by a photoelectric densitometer. Although variations in radon over this period were considerably less (under a 20 to 1 maximum) than instances ...

C. D. THOMAS; M. K. GAINER; T. W. BALL

1955-04-23T23:59:59.000Z

243

Kirland Air Force Base wins Robot Rodeo  

NLE Websites -- All DOE Office Websites (Extended Search)

Kirland Air Force Base wins Robot Rodeo Kirland Air Force Base wins Robot Rodeo Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Kirland Air Force Base wins Robot Rodeo Hazardous devices teams test their maneuvering skills July 1, 2013 Students from Valarde Middle School won the video competition in the Best in Show and Middle School categories. They are shown here with sixth-grade teacher Jimmy Lara. During the Robot Rodeo, an unseen operator attempts to conduct reconnaissance and rescue injured personnel Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Kirland Air Force Base wins Robot Rodeo Police and public safety teams from as far away as New Jersey recently convened in Albuquerque to test their ability to remotely deploy robots

244

Air Pollution Control (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control (Michigan) Air Pollution Control (Michigan) Air Pollution Control (Michigan) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Michigan Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality This rule requires an annual report from a commercial, industrial, or governmental source of emission of an air contaminant if, in the judgment of the Department, information on the quantity and composition of an air

245

Management of Transuranic Contaminated Material  

Directives, Delegations, and Requirements

To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

1982-09-30T23:59:59.000Z

246

BNL | CFN: Transport of Hazardous Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation of Hazardous Materials and Nanomaterials Transportation of Hazardous Materials and Nanomaterials The following contains guidance for transporting materials to and from BNL and for on-site transfers. All staff and users must adhere to Laboratory guidelines when making plans to move materials either by commercial carrier or in rented or personal vehicles. BNL hazardous material transport guidelines apply for products that meet the definition of hazardous materials according to 49 CFR 171.8 and any nanomaterial that has known hazardous properties (toxic, flammable, reactive). BNL guidelines are also provided for all other nanomaterials even if they have not been identified as hazardous materials. Some materials may be transported in personal vehicles as per "Materials of Trade" (MOT) guidance. The regulations for transporting MOT are much

247

Hazardous Waste Management (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Transportation Utility Program Info State Arkansas Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7-202.) The Hazardous Waste Program is based off of the Federal Resource Conservation and Recovery Act set forth in 40 CFR parts 260-279. Due to the great similarity to the

248

Hazardous waste management in the Pacific basin  

SciTech Connect

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

249

Freeze Concentration Applied to Hazardous Waste Management  

E-Print Network (OSTI)

steps to remove or destroy the hazardous components prior to discharge. Incineration is widely used to destroy a broad range of these hazardous components. Its disposal efficiency is often used when defining the Best Available Technology for EPA... standards. However, high water content streams are expensive to incinerate since the incinerator must be designed to handle the feed volume even though the water in the feed is in itself harmless. Some hazardous components require operating temperatures...

Ruemekorf, R.

250

Computer Viruses and Other Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Viruses and Other Hazards Computer Viruses and Other Hazards Name: Paul Status: other Grade: 12+ Location: IL Country: USA Date: May 2, 2011 Question: What is a Computer Virus? What do viruses do? How do viruses Spread? How do I prevent a virus? What are Trojan Horse programs? Malware? Phishing? Replies: Paul From National Institute of Science and Technology Which is the US government office in charge of this problem and should be your reference for this subject At this URL: http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pdf Please find the following definitions from paragraph 5: 5.1.1 Virus: A virus is designed to self-replicate-make copies of itself-and distribute the copies to other files, programs, or computers. Viruses insert themselves into host programs and propagate when the infected program is executed, generally by user interaction (e.g., opening a file, running a program, clicking on a file attachment). Viruses have many purposes-some are designed to play annoying tricks, whereas others have destructive intent. Some viruses present themselves as jokes while performing secret destructive functions. There two major types of viruses are compiled viruses, which are executed by the operating system, and interpreted viruses, which are executed by an application.

251

Hazard of intermittent noise exposures  

Science Journals Connector (OSTI)

The chief shortcoming of the “equal energy” hypothesis—the notion that equal products of time and intensity provide equal hazard—is that the recuperative powers of the auditory system are essentially ignored. A single sustained stimulus is regarded as no more dangerous than an intermittent one of the same total energy. A two?year study of the effect of intermittency on the TTS produced in normal young adults by 6? or 8?h exposures to octave bands of noise whose center frequencies ranged from 250 to 4000 Hz indicates that even for the most hazardous noise (the 4000?Hz OB) cutting the cumulative exposure time in half by interjecting regular quiet periods will permit an increase in level of 5 dB for constant TTS at least up to about 100 dB SPL. At 1000 Hz the trading relation is 6–7 dB for halving time and at 250 Hz is even greater. Thus the 5?dBA?per?halving?time relation employed by the present OSHA standard is essentially correct for intermittent noise except perhaps above 100 to 105 dBA where the equal?energy hypothesis may be more appropriate for spectra with high?frequency dominance. A single 5?dBA “correction for intermittency” is an oversimplification. [Research supported by the National Institute for Occupational Safety and Health Public Health Service.

W. D. Ward

1974-01-01T23:59:59.000Z

252

Characterizing Air Toxics Exposure and Risk and Evaluating EPA Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing Air Toxics Exposure and Risk and Evaluating EPA Modeling Characterizing Air Toxics Exposure and Risk and Evaluating EPA Modeling Tools for Policy Making Speaker(s): Jennifer Logue Date: October 27, 2009 - 12:00pm Location: 90-3122 The Environmental Protection Agency (EPA) defines air toxics as pollutants that are known or suspected to cause serious health effects. Title III of the 1990 Clean Air Act established 189 chemicals as air toxics or hazardous air pollutants. Large uncertainties still exist regarding exposure, risks, and sources and there has been a heavy reliance on inventories and modeling to determine sources and risks. In January 2002, Carnegie Mellon University in collaboration with the Allegheny County Health Department (ACHD) embarked on a project to investigate air toxics in Allegheny County. This

253

Hazardous Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Environmental Management The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental Management is tasked regulating hazardous waste management facilities and practices. Provisions pertaining to permitting, site approval, construction, reporting, transportation, and remediation practices and fees are discussed in these

254

Louisiana Hazardous Waste Control Law (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

255

Oil and Hazardous Substance Discharge Preparedness (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

256

Hazardous Waste Management System-General (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

257

Identification of Hazards, 3/9/95  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs.  Surveillance activities encompass maintenance and implementation of safety...

258

Mission Support Alliance, LLC Volpentest Hazardous Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Organization (FERO) roles and responsibilities, training requirements and the conduct of operations. Each project is responsible for developing and maintaining EP Hazards...

259

Hazardous Material Packaging for Transport - Administrative Procedures  

Directives, Delegations, and Requirements

To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

1986-09-30T23:59:59.000Z

260

Fire hazards analysis of central waste complex  

SciTech Connect

This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

Irwin, R.M.

1996-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

262

Extremely Hazardous Substances Risk Management Act (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

263

Purifying contaminated water  

SciTech Connect

Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

Daughton, Christian G. (San Pablo, CA)

1983-01-01T23:59:59.000Z

264

Understanding Contamination; Twenty Years of Simulating Radiological Contamination  

SciTech Connect

A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

Emily Snyder; John Drake; Ryan James

2012-02-01T23:59:59.000Z

265

Health damages from air pollution in China Kira Matus a,1  

E-Print Network (OSTI)

Health damages from air pollution in China Kira Matus a,1 , Kyung-Min Nam b,1, *, Noelle E. Selin c in negative health outcomes, such as contaminated water and high levels of air pollution, also incur real of air pollution arising from its negative impact on human health (Nielsen and Ho, 2007). Most of them (e

266

Impacts of Mixing on Acceptable Indoor Air Quality in Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Mixing on Acceptable Indoor Air Quality in Homes Impacts of Mixing on Acceptable Indoor Air Quality in Homes Title Impacts of Mixing on Acceptable Indoor Air Quality in Homes Publication Type Journal Article LBNL Report Number LBNL-3048E Year of Publication 2010 Authors Sherman, Max H., and Iain S. Walker Journal HVAC & Research Journal Keywords air distribution, indoor air quality, mechanical ventilation, mixing, other, resave, residential ventilation, ventilation effectiveness Abstract Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing already, but that new, high-performance homes may require additional mixing. Also our results suggest that some differentiation should be made in policies and standards for systems that provide continuous exhaust, thereby reducing relative dose for occupants overall

267

Understanding Mechanisms of Radiological Contamination  

SciTech Connect

Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

Rick Demmer; John Drake; Ryan James, PhD

2014-03-01T23:59:59.000Z

268

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products  

E-Print Network (OSTI)

be damaged when corrosive chemicals are put down the drain. Burning hazardous wastes simply distributes themHousehold Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products containing toxic chemicals. These wastes CANNOT be disposed of in regular garbage. Any

de Lijser, Peter

269

Contaminant levels and source strengths in U.S. retail stores A pilot study  

NLE Websites -- All DOE Office Websites (Extended Search)

Contaminant levels and source strengths in U.S. retail stores A pilot study Contaminant levels and source strengths in U.S. retail stores A pilot study Title Contaminant levels and source strengths in U.S. retail stores A pilot study Publication Type Conference Paper Year of Publication 2012 Authors Chan, Wanyu R., Meera A. Sidheswaran, Douglas P. Sullivan, Sebastian Cohn, and William J. Fisk Conference Name Healthy Buildings 2012 - 10th International Conference Date Published 2012 Conference Location Brisbane Convention & Exhibition Centre, Brisbane, Queensland Keywords air-exchange rate, building ventilation, indoor-outdoor ratio, particles, vocs Abstract Retail stores have many sources of indoor air contaminants that can cause potential health and odor concerns. One way to control exposure to these contaminants is to provide adequate ventilation. This study aims to characterize the whole-building emission rates of contaminants in certain retail types. The pilot study included two grocery stores and three furniture stores in northern California. We measured simultaneously the building ventilation rates by SF6 decay and contaminant concentrations in each store for one to two days. Contaminants were measured at multiple indoor locations and at one outdoor location near the building. Formaldehyde, acetaldehyde, and acrolein are three compounds with concentrations above health guidelines in some stores. In several cases, indoor concentrations of certain VOCs and PM were higher indoors than outdoors, suggesting potential indoor sources. Our goal is to characterize the range of contaminant source strengths in 25 to 30 stores in California.

270

Lawn and Garden Tool Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Root Out Lawn and Garden Tool Hazards For many Americans, working outdoors on the lawn and in the garden is a great way to exercise and relax. However, safety experts warn that, if caution is not employed with lawn and garden tools, you could wind up spending more time indoors, starting with a trip to a hospital emergency room. "The most frequent injuries are from lawn mowers, which are unforgiving machines," cautions John Drengenberg, manager of Consumer Affairs for Underwriters Laboratories Inc., Northbrook, Ill., a not-for-profit product safety testing organization. "Statistics tell us that each year lawn mower accidents send close to 85,000 people to emergency rooms. But that's not all. Nearly 15,000 others need medical treatment for injuries from trimmers and other power garden

271

Filter for on-line air monitor unaffected by radon progeny and method of using same  

DOE Patents (OSTI)

An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.

Phillips, Terrance D. (Aiken, SC); Edwards, Howard D. (Augusta, GA)

1999-01-01T23:59:59.000Z

272

Why is Eastern Redcedar a Hazardous Fuel?  

E-Print Network (OSTI)

Why is Eastern Redcedar a Hazardous Fuel? Why is Eastern Redcedar a Hazardous Fuel? Homes built the destruction of fire-tolerant trees if a wildfire moves through the area. Creating fuel breaks (such ignite it. · When ERC grows in forests and wood- lands, it acts as a ladder fuel to allow fire to climb

Balasundaram, Balabhaskar "Baski"

273

Fire and explosion hazards of oil shale  

SciTech Connect

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

Not Available

1989-01-01T23:59:59.000Z

274

Energy and solid/hazardous waste  

SciTech Connect

This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

None

1981-12-01T23:59:59.000Z

275

THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT  

E-Print Network (OSTI)

THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT Offered by The College of Architecture and The Hazard Reduction and Recovery Center Texas A&M University #12;2 THE GRADUATE CERTIFICATE IN ENVIRONMENTAL..................................................................................3 C. Approved Courses in the College of Architecture .............................4 D. Approved

276

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) < Back Eligibility Commercial Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct, maintain, and/or operate a hazardous waste facility in a city or town is demonstrated, a local assessment committee will be established by that community. The

277

Transporting & Shipping Hazardous Materials at LBNL  

NLE Websites -- All DOE Office Websites (Extended Search)

EHSS EHSS Industrial Hygiene Group HazMat Transport/Shipping Home Biological & Infectious Substances Chemicals Compressed Gas Cryogens Dry Ice Engineered Nanomaterials Gasoline Lithium Betteries Radioactive Materials Waste: Hazardous, Biohazardous, Medical or Radioactive Mixed Hazardous Materials Personal/Rental Vehicles HazMat Transport/Shipping Transporting and shipping hazardous materials can be dangerous, but both activities can be done safely - much of it by the researchers themselves. Each of the items below is subject to some transportation or shipping restrictions. Click on the applicable hazardous material icon below to learn how you can safely (and legally) transport that hazardous material and to learn what laboratory resources are available to you for your shipping needs.

278

Uncertainties in Air Exchange using Continuous-Injection, Long-Term  

E-Print Network (OSTI)

pollutants from indoor sources as well as conditioning the air for occupant comfort. In many buildingsIn review 1 d Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer of Healthy Homes and Lead Hazard Control through Interagency Agreement I-PHI-01070; by the U.S. Environmental

279

Assesment and Prediction of Natural Hazards from Satellite Imagery  

E-Print Network (OSTI)

31(5) real-time assessments of natural hazards have beenAssessment and Prediction of Natural Hazards from Satellite459–470 Assessment and prediction of natural hazards from

Gillespie, Thomas; Chu, Jasmine; Frankenberg, Elizabeth; Thomas, Duncan

2007-01-01T23:59:59.000Z

280

Evaluation of air injection and extraction tests in a landfill site in Korea: implications for landfill management  

Science Journals Connector (OSTI)

Air extraction and injection were evaluated for extracting hazardous landfill gas and enhancing degradation of organic materials in a landfill in Korea. From the pilot and full ... pressure radius of influence wa...

J. Lee; C. Lee; K. Lee

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Adsorption and desorption of contaminants  

SciTech Connect

The microbial remediation of sites Contaminated with organics is well documented, however, there are some significant problems that remain to be solved in the areas of contaminants sorbed to soils and non-aqueous phase liquid (NAPL) contamination. Methods of in situ bioremediation techniques employ either the stimulation of indigenous populations by nutrient addition, or the addition of prepared bacterial cultures to the subsurface environment. Problems of contaminant sorption and NAPL`s are related in that both encompass reduced contaminant bioavailability. Non-aqueous phase liquids have been identified as a priority area for research in the In situ Program due to their presence at DOE sites and the lack of adequate technology to effectively treat this contamination. Bioremediation technologies developed as a result of this project are easily transferred to industry.

Palumbo, A.V.; Strong-Gunderson, J.M. [Oak Ridge National Lab., TN (United States); DeFlaun, M.; Ensley, B. [Envirogen, Inc., Lawrenceville, NJ (United States)

1994-02-01T23:59:59.000Z

282

Office of Radiation & Indoor Air EPA 402-R-05-009 Radiation Protection Division (6608J) August 2006  

E-Print Network (OSTI)

) Radiation Protection Division works to address hazards posed by technologically enhanced naturally occurringOffice of Radiation & Indoor Air EPA 402-R-05-009 Radiation Protection Division (6608J) August 2006 of potential radiological and chemical hazards. In order to help us identify where potential problems may occur

283

Activities of Pu and Am Isotopes and Isotopic Ratios in a Soil Contaminated by Weapons-Grade Plutonium  

Science Journals Connector (OSTI)

The Radiation Division of the Surveillance Directorate for the U.S. Air Force Institute for Environment, Safety and Occupational Health Risk Analysis collected soil samples at the BOMARC site in June, 2000. ... with a mean value of 0.19, which is close to the value reported from the BOMARC WGP contaminated soil (6) and the Rocky Flats WGP contaminated soil (27). ...

M. H. Lee; S. B. Clark

2005-06-28T23:59:59.000Z

284

Standards for Contamination Control Areas  

Science Journals Connector (OSTI)

The objective of standards and specifications used for contamination control is to establish controls and definitions that will allow satisfactory cleanroom construction and good product fabrication within cleanr...

Alvin Lieberman

1992-01-01T23:59:59.000Z

285

Can fracking contaminate drinking water?  

Science Journals Connector (OSTI)

Tiny cracks link deep shale gas reservoirs to shallow aquifers, but they may not be to blame for reports of contaminated drinking water

2012-01-01T23:59:59.000Z

286

Protections: Sediment Control = Contaminant Retention  

NLE Websites -- All DOE Office Websites (Extended Search)

Sediment Control Protections: Sediment Control Contaminant Retention LANL maintains hundreds of wells, stream sampling stations and stormwater control structures to protect...

287

Emission Standards for Contaminants (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations list emissions standards for various contaminants, and contain special requirements for anaerobic lagoons. These regulations also describe alternative emissions limits, which may...

288

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

289

PTS 13.1 Radioactive And Hazardous Material Transportation 4...  

Office of Environmental Management (EM)

PTS 13.1 Radioactive And Hazardous Material Transportation 41300 PTS 13.1 Radioactive And Hazardous Material Transportation 41300 The objective of this surveillance is to...

290

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network (OSTI)

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Fluorescent are hazardous waste, so take care to ensure the tubes remain intact during removal and storage. Fluorescent

Wilcock, William

291

Hazardous Waste Generator Treatment Permit by Rule | Open Energy...  

Open Energy Info (EERE)

the Hazardous Waste Generator Treatment by Rule. Authors Colorado Department of Public Health and Environment and Hazardous Materials and Waste Management Division Published...

292

Assessment of Health Hazards of Repeated Inhalation of Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

293

New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a free Web-based tool that can quickly calculate potential visual hazards from proposed solar...

294

October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday...  

Office of Environmental Management (EM)

Seismic Hazard Analysis For Nuclear Facilities At The Hanford Site, Eastern Washington, USA Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook A Probabilistic Approach to...

295

Texas Clean Air Act (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Clean Air Act (Texas) Texas Clean Air Act (Texas) Texas Clean Air Act (Texas) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Texas Program Type Environmental Regulations Provider Texas Commission on Environmental Quality This Act is designed to safeguard the state's air resources from pollution by requiring the control and abatement of air pollution and emissions of air contaminants, consistent with the protection of public health, general welfare, and physical property, including the esthetic enjoyment of air resources by the public and the maintenance of adequate visibility. The Act

296

Hazardous Waste Compliance Program Plan  

SciTech Connect

The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

Potter, G.L.; Holstein, K.A.

1994-05-01T23:59:59.000Z

297

Mobile machine hazardous working zone warning system  

DOE Patents (OSTI)

A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

Schiffbauer, W.H.; Ganoe, C.W.

1999-08-17T23:59:59.000Z

298

Mobile machine hazardous working zone warning system  

DOE Patents (OSTI)

A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

299

Hazards Control Department annual technology review, 1987  

SciTech Connect

This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

Griffith, R.V.; Anderson, K.J. (eds.)

1988-07-01T23:59:59.000Z

300

Metal-Air Batteries  

SciTech Connect

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Design characteristics for facilities which process hazardous particulate  

SciTech Connect

Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

Abeln, S.P.; Creek, K.; Salisbury, S.

1998-12-01T23:59:59.000Z

302

Tulane/Xavier University Hazardous Materials in Aquatic Environments of the Mississippi River Basin. Quarterly progress report, January 1, 1995--March 31, 1995  

SciTech Connect

This progress report covers activities for the period January 1 - March 31, 1995 on project concerning `Hazardous Materials in Aquatic Environments of the Mississippi River Basin.` The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants in aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl.

NONE

1995-05-01T23:59:59.000Z

303

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-01-01T23:59:59.000Z

304

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-12-31T23:59:59.000Z

305

Contamination and solid state welds.  

SciTech Connect

Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

Mills, Bernice E.

2007-05-01T23:59:59.000Z

306

Enhancing Railroad Hazardous Materials Transportation Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Railroad Hazardous g Railroad Hazardous g Materials Transportation Safety Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Kevin R. Blackwell Radioactive Materials Program Manager Radioactive Materials Program Manager H d M t i l Di i i H d M t i l Di i i Hazmat Hazardous Materials Division Hazardous Materials Division Federal Railroad Administration Federal Railroad Administration Presentation for the Presentation for the DOE NTSF Meeting DOE NTSF Meeting May 10 May 10- -12, 2011 12, 2011 Our Regulated Community * More than 550 l d railroads * 170,000 miles of track * 220,000 employees * 1.3 million railcars * 20,000 locomotives Hazmat * 3,500 chemical shippers * Roughly 2 Million Roughly 2 Million annual HM shipments HM-232E Introduction * Notice of Proposed Rulemaking d b * Issued December 21, 2006 * Interim Final Rule

307

All Hazard Awareness Employee Pocket Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Hazard Hazard Awareness Employee Pocket Guide produced by Emergency Services Program For emergencies dial x7911 911 from cell phones berkeley lab Lawrence Berkeley National Laboratory 2 Emergency Preparedness Response FOR EMERGENCY RESPONSE x7911 911 from cell phones Employee Pocket Guide 3 FOR EMERGENCY RESPONSE x7911 911 from cell phones Employee Emergency Response Expectations Before an emergency: * Accept personal responsibility for your own safety. * Prepare your personal/family emergency plan. * Review your Building Emergency Plan (BEP) or Emergency Response Guide. * Know the location of all your building's exits and Assembly Areas. * Know the specific hazards in your area and the response procedures for each hazard. * Understand how to report an emergency.

308

CONTROL of SUBSTANCES HAZARDOUS TO HEALTH (COSHH)  

E-Print Network (OSTI)

working practice and will encourage the evolution of a positive health and safety culture within the orgCONTROL of SUBSTANCES HAZARDOUS TO HEALTH (COSHH) Guidance Notes on Risk Assessment HEALTH & SAFETY............................................................................................................9 2.6. Safety Data Sheets (SDS

309

Hazards Control Department 1995 annual report  

SciTech Connect

This annual report of the Hazards Control Department activities in 1995 is part of the department`s efforts to foster a working environment at Lawrence Livermore National Laboratory (LLNL) where every person desire to work safely.

Campbell, G.W.

1996-09-19T23:59:59.000Z

310

Owning Hazard, A Tragedy Barbara Young Welke*  

E-Print Network (OSTI)

of Minnesota. This play is part of her ongoing research on the history of products liability. In addition in the ownership of hazard from the individuals who suffered injury, to the enterprises involved in manufacturing

Barrett, Jeffrey A.

311

Improving Tamper Detection for Hazardous Waste Security  

SciTech Connect

Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

2003-02-26T23:59:59.000Z

312

Lab optimizes burning of hazardous wastes  

Science Journals Connector (OSTI)

A new thermal destruction laboratory has gone into operation at Midwest Research Institute, Kansas City, Mo. The bench-scale facility, which can accommodate gram quantities of hazardous wastes in liquid, slurry, or solid forms, is used to determine ...

WARD WORTHY

1981-08-31T23:59:59.000Z

313

Probabilistic seismic hazard maps for Panama  

Science Journals Connector (OSTI)

Probabilistic seismic hazard maps in term of Modified Mercalli (MM) intensity are derived by applying the ‘Cornell-McGuire’ method to four earthquake source zones in Panama and adjacent areas. The maps contain es...

Aristoteles Vergara Muñoz

1991-01-01T23:59:59.000Z

314

Gis Technology in Mapping Landslide Hazard  

Science Journals Connector (OSTI)

In the recent years, the ever-increasing diffusion of GIS technology has facilitated the application of quantitative ... potential of such technological advancements, landslide hazard mapping remains a major, lar...

Alberto Carrara; Mauro Cardinali…

1995-01-01T23:59:59.000Z

315

Home insulation may increase radiation hazard  

Science Journals Connector (OSTI)

... pose a potential health hazard, by increasing exposure to low levels of the radioactive gas radon. ... .Radon-222 is produced as part of the decay chain of uranium-238. Both the ...

David Dickson

1978-11-30T23:59:59.000Z

316

Feasibility of Municipal Water Mains as Heat Sink for Residential Air-Conditioning  

E-Print Network (OSTI)

It has been proposed that municipal water mains be used as the heat sink or the heat source for air-conditioning or heating, respectively. This paper addresses the extent of thermal contamination associated with the use of municipal water...

Vliet, G. C.

1994-01-01T23:59:59.000Z

317

Novel mass spectrometry mutation screening for contaminant impact analysis. 1998 annual progress report  

SciTech Connect

'The objective is to develop innovative mass spectrometry technology to achieve fast mutation screening from contaminated area and to reveal the linkage between gene mutation and contaminants. In this program, the author will try innovative approaches to improve mass resolution and detection efficiency for large DNA ions. Allel specific polymerase chain reaction will be coupled with mass spectrometry for rapid DNA mutation detection. The ultimate goal is to lead to the risk analysis of hazardous wastes to be routinely assessed at DNA level at an affordable cost. This report is for the work after 7 months of a 3-year project.'

Chen, C.H.

1998-06-01T23:59:59.000Z

318

Guidance manual for health risk assessment of chemically contaminated seafood. Final report  

SciTech Connect

The report was written to assist in the evaluation and interpretation of the human health risks associated with chemical contaminate levels in seafood. High concentrations of toxic chemicals have been found in sediments and marine organisms in parts of Puget Sound. Since heavy consumption of contaminated seafood may pose a substantial human health risk, it's important that assessments of the risk associated with seafood consumption be conducted in a consistent, acceptable manner. The report provides an overview of risk assessment, and describes hazard identification, dose-response assessment, exposure assessment and risk characterization. Guidance is provided on presentation and interpretation of results.

Pastorok, R.A.

1986-06-01T23:59:59.000Z

319

Hazard Baseline Downgrade Effluent Treatment Facility  

SciTech Connect

This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility.

Blanchard, A.

1998-10-21T23:59:59.000Z

320

Cold Vacuum Drying Facility hazard analysis report  

SciTech Connect

This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

Krahn, D.E.

1998-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Air Pollution Control  

Science Journals Connector (OSTI)

Petroleum and chemical processes are responsible for many emissions both into the air. Most relevant emissions into the air are nitrous oxides (NOx), sulfur oxides ... compounds (VOC).The major cause of all air pollution

Alireza Bahadori

2014-01-01T23:59:59.000Z

322

Hickam Air Force Base  

Energy.gov (U.S. Department of Energy (DOE))

Hickam Air Force Base spans 2,850 acres in Honolulu, Hawaii. The military base is home to the 15th Airlift Wing, the Hawaii Air National Guard, and the Pacific Air Forces headquarters.

323

OLYMPIC AIR QUALITY QUESTIONABLE  

Science Journals Connector (OSTI)

OLYMPIC AIR QUALITY QUESTIONABLE ... Athletes GOING FOR GOLD worry about Beijing’s air ... Atmospheric chemists say the air quality during the Beijing Games literally rests on which direction the winds blow. ...

RACHEL PETKEWICH

2008-07-28T23:59:59.000Z

324

Air Quality and Pollution  

Science Journals Connector (OSTI)

Air quality refers to the physical, chemical, and biological characteristics of air, both in outside space and in enclosed ... other non?industrial working places, and residencies. Air pollution is the abnormal ...

Zoran Marmut

2008-01-01T23:59:59.000Z

325

Chemical hazard evaluation of material disposal area (MDA) B closure project  

SciTech Connect

TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

Laul, Jadish C [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

326

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect

Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

James T. Cobb, Jr.

2003-09-12T23:59:59.000Z

327

Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers  

SciTech Connect

There is a concern that environmental-contamination caused corrosion may negatively affect Information Technology (IT) equipment reliability. Nineteen data centers in the United States and two in India were evaluated using Corrosion Classification Coupons (CCC) to assess environmental air quality as it may relate IT equipment reliability. The data centers were of two basic types: closed and outside-air cooled. A closed data center provides cool air to the IT equipment using air conditioning in which only a small percent age of the recirculation air is make-up air continuously supplied from outside to meet human health requirements. An outside-air cooled data center uses outside air directly as the primary source for IT equipment cooling. Corrosion measuring coupons containing copper and silver metal strips were placed in both closed and outside-air cooled data centers. The coupons were placed at each data center (closed and outside-air cooled types) with the location categorized into three groups: (1) Outside - coupons sheltered, located near or at the supply air inlet, but located before any filtering, (2) Supply - starting just after initial air filtering continuing inside the plenums and ducts feeding the data center rooms, and (3) Inside located inside the data center rooms near the IT equipment. Each coupon was exposed for thirty days and then sent to a laboratory for a corrosion rate measurement analysis. The goal of this research was to investigate whether gaseous contamination is a concern for U.S. data center operators as it relates to the reliability of IT equipment. More specifically, should there be an increased concern if outside air for IT equipment cooling is used To begin to answer this question limited exploratory measurements of corrosion rates in operating data centers in various locations were undertaken. This study sought to answer the following questions: (1) What is the precision of the measurements (2) What are the approximate statistical distributions of copper and silver corrosion rates in the sampled data centers(3) To what extent are copper and silver corrosion measurements related (4) What is the relationship of corrosion rate measurements between outside-air cooled data centers compared to closed data centers (5) How do corrosivity measurements relate to IT equipment failure rates The data from our limited sample size suggests that most United States data center operators should not be concerned with environmental gaseous contamination causing high IT equipment failure rates even when using outside-air cooling. The research team recommends additional basic research on how environmental conditions, specifically gaseous contamination, affect electronic equipment reliability.

Coles, Henry C.; Han, Taewon; Price, Phillip N.; Gadgil, Ashok J.; Tschudi, William F.

2011-07-17T23:59:59.000Z

328

Decommissioning of the TA-42 plutonium contaminated incinerator facility  

SciTech Connect

During 1978, a plutonium (/sup 239/Pu) contaminated incinerator facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned. The project involved dismantling the facility and burying the debris at an on-site radioactive solid waste disposal/storage area. Contaminated soil from the 5000 m/sup 2/ area was also buried. The facility was constructed in 1951 to incinerate /sup 239/Pu contaminated wastes. It was later used as a decontamination facility. The major features included a 185-m/sup 2/ floor area control building, incinerator, cyclone dust collector, spray cooler, venturi scrubber, air filter bank, ash separator, and two 140 000-liter ash storage tanks. Six-hundred cubic meters of debris and 1200 m/sup 3/ of soil contaminated with less than 10 nCi /sup 239/Pu per gram of soil were buried at the Laboratory disposal area. Five cubic meters of /sup 239/Pu contaminated ash residues containing more than 10 nCi /sup 239/Pu per gram of waste were packaged and stored to meet the Department of Energy's 20-year retrievable storage criteria. The operation consumed 80 work days and 5800 manhours at a cost of $150 000. This report presents the details concerning decommissioning procedures, the health physics, the waste management, the environmental surveillance results, and a cost breakdown for the operation.

Harper, J.R.; Garde, R.

1981-11-01T23:59:59.000Z

329

Primary zone air proportioner  

DOE Patents (OSTI)

An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

Cleary, Edward N. G. (San Diego, CA)

1982-10-12T23:59:59.000Z

330

umces-safety@umces.edu Hazard Communication umces-  

E-Print Network (OSTI)

umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers, cabinets

Boynton, Walter R.

331

umces-safety@umces.edu Hazard Communication umces-  

E-Print Network (OSTI)

Communication umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers

Boynton, Walter R.

332

Rules and Regulations for Hazardous Waste Management (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

333

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management  

E-Print Network (OSTI)

or unwanted chemicals can become a big problem. Some common disposal practices not only threaten ground water but also may be illegal. Small, unusable amounts of these products often wind up spilled, buried, dumped, or flushed onto a property. Minimizing... rules require that environmentally protective conditions be met before some disposal practices are permit- ted. Other previously common disposal prac- tices are now illegal because of their potential risks to human health and the environment. This new...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

1997-08-29T23:59:59.000Z

334

Erace--an integrated system for treating organic-contaminated sites  

SciTech Connect

The U.S. Department of Energy`s (DOE) Pacific Northwest Laboratory (PNL) is developing a suite of electrical technologies for treating sites contaminated with hazardous organic compounds. These include: (1) Six-Phase Soil Heating (SPSH) to remove volatile and semi-volatile organic compounds from soils; (2) In Situ Corona (ISC) to decompose nonvolatile and bound organic contaminants in soils; (3) High-Energy Corona (HEC) to treat contaminated off-gases; and (4) Liquid Corona (LC) to treat contaminated liquids. These four technologies comprise ERACE (Electrical Remediation at Contaminated Environments), an integrated system for accomplishing site remediation with little or no secondary wastes produced that would require off-site treatment or disposal. Each ERACE technology can be employed individually as a stand-alone treatment process, or combined as a system for total site remediation. For example, an ERACE system for treating sites contaminated with volatile organics would integrate SPSH to remove the contaminants from the soil, LC to continuously treat an aqueous stream condensed out of the soil off-gas, and HEC to treat non-condensibles remaining in the off-gas, before atmospheric release.

Caley, S.M.; Heath, W.O.; Bergsman, T.M.; Gauglitz, P.A.; Pillay, C.; Moss, R.W.; Shah, R.R.; Goheen, S.C.; Camiaoni, D.M.

1994-11-01T23:59:59.000Z

335

Experiment Hazard Class 15.2 - USDA Soil Permit  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - USDA Regulated Soil 2 - USDA Regulated Soil Applicability This hazard classification applies to all experiments involving soils regulated by the United States Department of Agricultute (USDA). Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. Experiment Category Experiments involving this hazard class categorized as low risk experiments unless other hazard classes apply. Experiment Hazard Control Verification Statements Engineered Controls - None required. Procedural Controls - All work with regulated soils must be performed in compliance with the APS Protocols for Handling, Storage, and Disposal of Untreated Foreign Soil and Regulated Domestic Soil. The APS protocols state the requirements for handling, storage, shipment, and disposal of regulated

336

Treatment of Mercury Contaminated Oil from the Mound Site  

SciTech Connect

Over one thousand gallons of tritiated oil, at various contamination levels, are stored in the Main Hill Tritium Facility at the Miamisburg Environmental Management Project (MEMP), commonly referred to as Mound Site. This tritiated oil is to be characterized for hazardous materials and radioactive contamination. Most of the hazardous materials are expected to be in the form of heavy metals, i.e., mercury, silver, lead, chromium, etc, but transuranic materials and PCBs could also be in some oils. Waste oils, found to contain heavy metals as well as being radioactively contaminated, are considered as mixed wastes and are controlled by Resource Conservation and Recovery Act (RCRA) regulations. The SAMMS (Self-Assembled Mercaptan on Mesoporous Silica) technology was developed by the Pacific Northwest National Laboratory (PNNL) for removal and stabilization of RCRA metals (i.e., lead, mercury, cadmium, silver, etc.) and for removal of mercury from organic solvents. The SAMMS material is based on self-assembly of functionalized monolayers on mesoporous oxide surfaces. The unique mesoporous oxide supports provide a high surface area, thereby enhancing the metal-loading capacity. SAMMS material has high flexibility in that it binds with different forms of mercury, including metallic, inorganic, organic, charged, and neutral compounds. The material removes mercury from both organic wastes, such as pump oils, and from aqueous wastes. Mercury-loaded SAMMS not only passes TCLP tests, but also has good long-term durability as a waste form because: (1) the covalent binding between mercury and SAMMS has good resistance in ion-exchange, oxidation, and hydrolysis over a wide pH range and (2) the uniform and small pore size of the mesoporous silica prevents bacteria from solubilizing the bound mercury.

Klasson, KT

2000-11-09T23:59:59.000Z

337

Hazardous materials in aquatic environments of the Mississippi River Basin Project management. Technical quarterly progress report, April 1, 1996--June 30, 1996  

SciTech Connect

This quarterly report summarizes accomplishments for the Project examining hazardous materials in aquatic environments of the Mississippi River Basin. Among the many research areas summarized are the following: assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure; hazardous wastes in aquatic environment;ecological sentinels of aquatic contamination in the lower Mississippi River System; remediation of selected contaminants; rapid on-site immunassay for heavy metal contamination; molecular mechanisms of developmental toxicity induced by retinoids and retinoid-like molecules; resuseable synthetic membranes for the removal of aromatic and halogenated organic pollutants from waste water; Effects of steroid receptor activation in neurendocrine cell of the mammalian hypothalamus; modeling and assessment of environmental quality of louisiana bayous and swamps; enhancement of environmental education. The report also contains a summary of publications resulting from this project and an appendix with analytical core protocals and target compounds and metals.

McLachlan, J.; Ide, C.F.; O`Connor, S.

1996-08-01T23:59:59.000Z

338

Low-energy beta spectroscopy using pin diodes to monitor tritium surface contamination  

SciTech Connect

We show that tritium betas emitted from a surface can be counted using a pin photodiode as a solid state charged particle detector. Furthermore, we show that the range of tritium betas through air is sufficient to allow measurement of tritium on samples in air by this method. These two findings make possible a new method to survey tritium surface contamination which has advantages over existing methods. We have built and tested several prototype instruments which use this method to measure tritium surface contamination, including a compact portable unit. The design of these instruments and results from tests and calibrations are described. Potential applications of this new method to monitor tritium are discussed.

Wampler, W.R.; Doyle, B.L.

1994-06-01T23:59:59.000Z

339

Hanford Site air operating permit application  

SciTech Connect

The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

NONE

1995-05-01T23:59:59.000Z

340

Combustion aerosols formed during burning of radioactively contaminated materials: Experimental results  

SciTech Connect

Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases. Radioactive aerosols generated by fires were investigated in experiments in which combustible solids and liquids were contaminated with radioactive materials and burned. Uranium in powder and liquid form was used to contaminate five fuel types: polychloroprene, polystyrene, polymethylmethacrylate, cellulose, and a mixture of 30% tributylphosphate (TBP) in kerosene. Heat flux, oxygen concentration, air flow, contaminant concentration, and type of ignition were varied in the experiments. The highest release (7.1 wt %) came from burning TBP/kerosene over contaminated nitric acid. Burning cellulose contaminated with uranyl nitrate hexahydrate liquid gave the lowest release (0.01 wt %). Rate of release and particle size distribution of airborne radioactive particles were highly dependent on the type of fuel burned.

Halverson, M.A.; Ballinger, M.Y.; Dennis, G.W.

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gaseous, Chemical, and Other Contaminant Descriptions  

Science Journals Connector (OSTI)

Most contamination control technology considers generalized and often unidentified particulate material as the major contaminant, but there are many situations in which gases, chemical films, microbiological m...

Alvin Lieberman

1992-01-01T23:59:59.000Z

342

Handling and Packaging a Potentially Radiologically Contaminated...  

Office of Environmental Management (EM)

Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Medical ExaminerCoroner...

343

Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury  

SciTech Connect

The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with <260 ppm mercury--No specific treatment method is specified for hazardous wastes containing <260 ppm. However, RCRA regulations require that such wastes (other than RMERC residues) that exceed a TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA-regulated organic contaminants (other than incinerator residues), incineration or retorting (IMERC or RMERC) is the treatment standard. For wastes with mercury contaminant concentrations {ge}260 ppm that are inorganic, including incinerator and retort residues, RMERC is the treatment standard. Mercury hazardous waste contaminated with {ge}260 ppm mercury is the primary focus of this report.

Morris, M.I.

2002-02-06T23:59:59.000Z

344

CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)  

SciTech Connect

This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

2007-01-25T23:59:59.000Z

345

Data Center Economizer Contamination and Humidity Study  

SciTech Connect

Data centers require continuous air conditioning to address high internal heat loads (heat release from equipment) and maintain indoor temperatures within recommended operating levels for computers. Air economizer cycles, which bring in large amounts of outside air to cool internal loads when weather conditions are favorable, could save cooling energy. There is reluctance from many data center owners to use this common cooling technique, however, due to fear of introducing pollutants and potential loss of humidity control. Concerns about equipment failure from airborne pollutants lead to specifying as little outside air as permissible for human occupants. To investigate contamination levels, particle monitoring was conducted at 8 data centers in Northern California. Particle counters were placed at 3 to 4 different locations within and outside of each data center evaluated in this study. Humidity was also monitored at many of the sites to determine how economizers affect humidity control. Results from this study indicate that economizers do increase the outdoor concentration in data centers, but this concentration, when averaged annually, is still below current particle concentration limits. Study results are summarized below: (1) The average particle concentrations measured at each location, both outside and at the servers, are shown in Table 1. Measurements show low particle concentrations at all data centers without economizers, regardless of outdoor particle concentrations. Particle concentrations were typically an order of magnitude below both outside particle concentrations and recently published ASHRAE standards. (2) Economizer use caused sharp increases in particle concentrations when the economizer vents were open. The particle concentration in the data centers, however, quickly dropped back to pre-economizer levels when the vents closed. Since economizers only allow outside air part of the time, the annual average concentrations still met the ASHRAE standards. However, concentration were still above the levels measured in data centers that do not use economizers (3) Current filtration in data centers is minimal (ASHRAE 40%) since most air is typically recycled. When using economizers, modest improvements in filtration (ASHRAE 85%) can reduce particle concentrations to nearly match the level found in data centers that do not use economizers. The extra cost associated with improve filters was not determined in this study. (4) Humidity was consistent and within the ASHRAE recommended levels for all data centers without economizers. Results show that, while slightly less steady, humidity in data centers with economizers can also be controlled within the ASHRAE recommended levels. However, this control of humidity reduces energy savings by limiting the hours the economizer vents are open. (5) The potential energy savings from economizer use has been measured in one data center. When economizers were active, mechanical cooling power dropped by approximately 30%. Annual savings at this center is estimated within the range of 60-80 MWh/year, representing approximately a 5% savings off the mechanical energy load of the data center. Incoming temperatures and humidity at this data center were conservative relative to the ASHRAE acceptable temperature and humidity ranges. Greater savings may be available if higher temperature humidity levels in the data center area were permitted. The average particle concentrations measured at each of the eight data center locations are shown in Table 1. The data centers ranged in size from approximately 5,000 ft{sup 2} to 20,000 ft{sup 2}. The indoor concentrations and humidity in Table 1 represents measurements taken at the server rack. Temperature measurements at the server rack consistently fell between 65-70 F. The Findings section contains a discussion of the individual findings from each center. Data centers currently operate under very low contamination levels. Economizers can be expected to increase the particle concentration in data centers, but the increase appears to still be

Shehabi, Arman; Tschudi, William; Gadgil, Ashok

2007-03-06T23:59:59.000Z

346

HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN  

SciTech Connect

In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial to understanding how heavy metals move through wetlands environments. These data, coupled with plume characterization data, indicate that Bayou Trepagnier is a model system for understanding how wetlands populations of fish, amphibians, and plants respond to long-term hydrocarbon and metals contamination. The CBR has fifteen years of experience in developing model aquatic ecosystems for evaluating environmental problems relevant to DOE cleanup activities. Using biotechnology screens and biomarkers of exposure, this project supports other CBR research demonstrating that chemicals in the environment can signal/alter the development of species in aquatic ecosystems, and show detrimental impacts on community, population, and the ecosystem, including human health. CBR studies funded through this grant have resulted in private sector investments, international collaborations, development of new technologies, and substantial new knowledge concerning the effects of hazardous materials on human and ecosystem health. Through the CBR, Tulane and Xavier Universities partnered with DOE-EM to lay groundwork for an effective research agenda that has become part of the DOE long term stewardship science and technology program and institutional management of the DOE complex.

John A. McLachlan

2003-12-01T23:59:59.000Z

347

Natural Phenomena Hazards Modeling Project: Seismic Hazard Models for Department of Energy Sites  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the US. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. This report summarizes the final seismic hazard models and response spectra recommended for each site and the methodology used to develop these models. 15 references, 2 figures, 1 table.

Coats, D.W.; Murray, R.C.

1984-11-01T23:59:59.000Z

348

Air Pollution Spring 2010  

E-Print Network (OSTI)

and control. 6. Examine regional and global air pollution issues. Prerequisite: CHEM 113 and (MATH 261 or MATHATS 555 Air Pollution Spring 2010 T Th 11:00 ­ 12:15, NESB 101 Instructor: Prof. Sonia Kreidenweis an understanding of types and sources of air pollution. 2. Examine concentrations of air pollutants

349

Fire in a contaminated area  

SciTech Connect

This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Fire in Contaminated Area. The calculations needed to quantify the risk associated with this accident scenario are included within.

Ryan, G.W., Westinghouse Hanford

1996-08-02T23:59:59.000Z

350

Laboratory flammability studies of mixtures of hydrogen, nitrous oxide, and air  

SciTech Connect

At the request of the Department of Energy and the Westinghouse Hanford Company, the Bureau of Mines has investigated the flammability of mixtures of hydrogen, nitrous oxide, and air. This work is relevant to the possible hazards of flammable gas generation from nuclear waste tanks at Hanford, WA. The tests were performed in a 120-L spherical chamber under both quiescent and turbulent conditions using both electric spark and pyrotechnic ignition sources. The data reported here for binary mixtures of hydrogen in air generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results clarify to a greater extent the complications associated with buoyancy, turbulence, and selective diffusion. The data reported here for ternary mixtures of hydrogen and nitrous oxide in air indicate that small additions of nitrous oxide (relative to the amount of air) have little effect, but that higher concentrations of nitrous oxide (relative to air) significantly increase the explosion hazard.

Cashdollar, K L; Hertzberg, M; Zlochower, I A; Lucci, C E; Green, G M; Thomas, R A [Bureau of Mines, Pittsburgh, PA (United States). Pittsburgh Research Center

1992-06-26T23:59:59.000Z

351

Repository Subsurface Preliminary Fire Hazard Analysis  

SciTech Connect

This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

Richard C. Logan

2001-07-30T23:59:59.000Z

352

United States Air and Radiation EPA 402-R-97-006 Environmental Protection Agency (6601J) July 1997  

E-Print Network (OSTI)

/Office of Radiation and Indoor Air/Center for Remediation Technology and Tools (EPA/ORIA/CRTT) is to bring innovative for Remediation Technology and Tools Washington, DC #12;Disclaimer Although this document has been published remediation technologies for radioactive and hazardous mixed wastes to the Office of Air and Radiation

353

Systems engineering approach to environmental risk management: A case study of depleted uranium at test area C-64, Eglin Air Force Base, Florida. Master`s thesis  

SciTech Connect

Environmental restoration is an area of concern in an environmentally conscious world. Much effort is required to clean up the environment and promote environmentally sound methods for managing current land use. In light of the public consciousness with the latter topic, the United States Air Force must also take an active role in addressing these environmental issues with respect to current and future USAF base land use. This thesis uses the systems engineering technique to assess human health risks and to evaluate risk management options with respect to depleted uranium contamination in the sampled region of Test Area (TA) C-64 at Eglin Air Force Base (AFB). The research combines the disciplines of environmental data collection, DU soil concentration distribution modeling, ground water modeling, particle resuspension modeling, exposure assessment, health hazard assessment, and uncertainty analysis to characterize the test area. These disciplines are required to quantify current and future health risks, as well as to recommend cost effective ways to increase confidence in health risk assessment and remediation options.

Carter, C.M.; Fortmann, K.M.; Hill, S.W.; Latin, R.M.; Masterson, E.J.

1994-12-01T23:59:59.000Z

354

Implementing DOE guidance for hazards assessments at Rocky Flats Plant  

SciTech Connect

Hazards Assessments are performed for a variety of activities and facilities at Rocky Flats Plant. Prior to 1991, there was no guidance for performing Hazards Assessments. Each organization that performed Hazards Assessments used its own methodology with no attempt at standardization. In 1991, DOE published guidelines for the performance of Hazards Assessments for Emergency Planning (DOE-EPG-5500.1, ``Guidance for a Hazards Assessment Methodology``). Subsequently, in 1992, DOE published a standard for the performance of Hazards Assessments (DOE-STD-1027-92, ``Hazard Categorization and Accident Analysis, Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports``). Although these documents are a step in the direction of standardization, there remains a great deal of interpretation and subjective implementation in the performance of Hazards Assessments. Rocky Flats Plant has initiated efforts to develop a uniform and standard process to be used for Hazards Assessments.

Zimmerman, G.A.

1993-06-01T23:59:59.000Z

355

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

356

Method for testing earth samples for contamination by organic contaminants  

DOE Patents (OSTI)

Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants. 2 figs.

Schabron, J.F.

1996-10-01T23:59:59.000Z

357

Energy Crossroads: Ventilation, Infiltration & Indoor Air Quality |  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, Infiltration & Indoor Air Quality Ventilation, Infiltration & Indoor Air Quality Suggest a Listing Air Infiltration and Ventilation Centre (AIVC) The AIVC fulfills its objectives by providing a range of services and facilities which include: Information, Technical Analysis, Technical Interchange, and Coordination. American Conference of Governmental Industrial Hygienists (ACGIH) The ACGIH offers high quality technical publications and learning opportunities. Americlean Services Corp. (ASC) ASC is a certified SBA 8(a) engineering/consulting firm specializing in HVAC contamination detection, abatement, and monitoring. In addition to highly professional ductwork cleaning and HVAC cleaning services, ASC offers a wide range of other engineering/ consulting/ management services

358

Nuclear Operations Application to Environmental Restoration at Corrective Action Unit 547, Miscellaneous Contaminated Waste Sites, at the Nevada National Security Site  

SciTech Connect

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office has responsibility for environmental restoration at the Nevada National Security Site (formerly the Nevada Test Site). This includes remediation at locations where past testing activities have resulted in the release of plutonium to the environment. One of the current remediation efforts involves a site where an underground subcritical nuclear safety test was conducted in 1964. The underground test was vented through a steel pipe to the surface in a closed system where gas samples were obtained. The piping downstream of the gas-sampling apparatus was routed belowground to a location where it was allowed to vent into an existing radioactively contaminated borehole. The length of the pipe above the ground surface is approximately 200 meters. This pipe remained in place until remediation efforts began in 2007, at which time internal plutonium contamination was discovered. Following this discovery, an assessment was conducted to determine the quantity of plutonium present in the pipe. This site has been identified as Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites. The quantity of plutonium identified at CAU 547 exceeded the Hazard Category 3 threshold but was below the Hazard Category 2 threshold specified in DOE Standard DOE-STD-1027-92. This CAU, therefore, was initially categorized as a Hazard Category 3 environmental restoration site. A contaminated facility or site that is initially categorized as Hazard Category 3, however, may be downgraded to below Hazard Category 3 if it can be demonstrated through further analysis that the form of the material and the energy available for release support reducing the hazard category. This is an important consideration when performing hazard categorization of environmental restoration sites because energy sources available for release of material are generally fewer at an environmental restoration site than at an operating facility and environmental restoration activities may result in the complete removal of source material.

Kevin Cabble (NSO), Mark Krauss and Patrick Matthews (N-I)

2011-03-03T23:59:59.000Z

359

Hydrogel-Encapsulated Soil: A Tool to Measure Contaminant Attenuation In Situ  

Science Journals Connector (OSTI)

To illustrate how potential remedial techniques can be compared to natural attenuation, thermal stabilization of one soil increased the size of its long-term in situ retained fraction from 50% to 88% of the total uranium and increased the half-life of that long-term retained fraction from 990 to 40000 days. ... Although natural attenuation is being increasingly selected as a preferred alternative for remediation of many hazardous waste sites, the Committee on Intrinsic Remediation of the National Research Council (2) has warned, “... that rigorous protocols are needed to ensure that natural attenuation potential is analyzed properly, and that natural attenuation should be accepted as a formal remedy for contamination only when the processes are documented to be working and are sustainable.” ... To establish the potential of the hydrogel-encapsulation technique as a valid tool to study contaminant interactions with groundwater in situ, our investigation focused on several proof-of-principle objectives using uranium as a model contaminant. ...

Brian P. Spalding; Scott C. Brooks; David B. Watson

2010-03-15T23:59:59.000Z

360

Montana Hazardous Waste Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental Quality is authorized to enact regulations pertaining to all aspects of hazardous waste storage and disposal, and the Act addresses permitting requirements for disposal

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Applications of RESRAD family of computer codes to sites contaminated with radioactive residues.  

SciTech Connect

The RESIL4D family of computer codes was developed to provide a scientifically defensible answer to the question ''How clean is clean?'' and to provide useful tools for evaluating human health risk at sites contaminated with radioactive residues. The RESRAD codes include (1) RESRAD for soil contaminated with radionuclides; (2) RESRAD-BUILD for buildings contaminated with radionuclides; (3) RESRAD-CHEM for soil contaminated with hazardous chemicals; (4) RESRAD-BASELINE for baseline risk assessment with measured media concentrations of both radionuclides and chemicals; (5) RESRAD-ECORISK for ecological risk assessment; (6) RESRAD-RECYCLE for recycle and reuse of radiologically contaminated metals and equipment; and (7) RESRAD-OFFSITE for off-site receptor radiological dose assessment. Four of these seven codes (RESRAD, RESRAD-BUILD, RESRAD-RECYCLE, and RESRAD-OFFSITE) also have uncertainty analysis capabilities that allow the user to input distributions of parameters. RESRAD has been widely used in the United States and abroad and approved by many federal and state agencies. Experience has shown that the RESRAD codes are useful tools for evaluating sites contaminated with radioactive residues. The use of RESRAD codes has resulted in significant savings in cleanup cost. Analysis of 19 site-specific uranium guidelines is discussed in the paper.

Yu, C.; Kamboj, S.; Cheng, J.-J.; LePoire, D.; Gnanapragasam, E.; Zielen, A.; Williams, W. A.; Wallo, A.; Peterson, H.

1999-10-21T23:59:59.000Z

362

Appendix B: Wastes and Potential Hazards for  

E-Print Network (OSTI)

muds and other drilling wastes 01 05 05* oil-containing drilling muds and wastes M Oil-containing muds or their compounds and should be considered under the following hazards: H5 to H7, H10, H11, or H14. 01 05 drilling and wastes should be assessed on the basis of the concentration of oil present in the waste. Typically

Siddharthan, Advaith

363

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD  

E-Print Network (OSTI)

; Herrmann, 1981) and secondary oil recovery in western Colorado at the Rangely oil field (Gibbs et al. 1973COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah

Sheehan, Anne F.

364

Preliminary Hazards Analysis Plasma Hearth Process  

SciTech Connect

This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1993-11-01T23:59:59.000Z

365

Control Of Hazardous Energy Lockout/Tagout  

E-Print Network (OSTI)

Control Of Hazardous Energy Lockout/Tagout Millersville University - Office Of Environmental Health & Safety Scope & Application The Lockout/Tagout program applies to the control of energy during servicing of this program is to establish procedures for affixing appropriate lockout or tagout devices to energy

Hardy, Christopher R.

366

Air quality investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility  

SciTech Connect

The air quality implications of the test and evaluation activities at the Sandia National Laboratories Sol se Mete Aerial Cable Facility are examined. All facets of the activity that affect air quality are considered. Air contaminants produced directly include exhaust products of rocket motors used to accelerate test articles, dust and gas from chemical explosives, and exhaust gases from electricity generators in the test arenas. Air contaminants produced indirectly include fugitive dust and exhaust contaminants from vehicles used to transport personnel and material to the test area, and effluents produced by equipment used to heat the project buildings. Both the ongoing program and the proposed changes in the program are considered. Using a reliable estimate of th maximum annual testing level, the quantities of contaminants released by project activities ar computed either from known characteristics of test items or from EPA-approved emission factors Atmospheric concentrations of air contaminants are predicted using EPA dispersion models. The predicted quantities and concentrations are evaluated in relation to Federal, New Mexico, an Bernalillo County air quality regulations and the human health and safety standards of the American Conference of Governmental Industrial Hygienists.

Gutman, W.M.; Silver, R.J. [New Mexico State Univ., Las Cruces, NM (United States). Physical Science Lab.

1994-12-01T23:59:59.000Z

367

Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents (OSTI)

The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

1997-11-14T23:59:59.000Z

368

Assessment of Natural Hazard Damage and Reconstruction: A Case Study from Band Aceh, Indonesia  

E-Print Network (OSTI)

Thomas. 2007. Assessment and prediction of natural hazardsAssessment of Natural Hazard Damage and Reconstruction: AWorking Paper Series Assessment of Natural Hazard Damage and

Gillespie, Thomas; Frankenberg, Elizabeth; Braughton, Matt; Cooke, Abigail M.; Armenta, Tiffany; Thomas, Duncan

2009-01-01T23:59:59.000Z

369

E-Print Network 3.0 - agency listed hazardous Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Listing of Hazardous Waste 40 CFR... Hazardous Waste Management Regulations 6 NYCRR 371 Identification and Listing of Hazardous Waste 6 NYCRR 372... Substance Bulk Storage...

370

Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment  

E-Print Network (OSTI)

of organohalogen contaminants (dioxins, PCB, PBDE andInvestigation into levels of dioxins, furans, PCBs and PBDEsfor risk assessment of dioxin-contaminated sites. Ambio 36:

Cowan-Ellsberry, Christina E.

2010-01-01T23:59:59.000Z

371

Healthy Air Act (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

The Maryland Healthy Air Act was developed with the purpose of bringing Maryland into attainment with the National Ambient Air Quality Standards (NAAQS) for ozone and fine particulate matter by the...

372

Air and Water Pollution  

Science Journals Connector (OSTI)

Air Pollution.... Many pollutants enter our bodies through the air we breathe at 13,000 l/day ... to quantitatively understand the basic environmental physics of pollution. This chapter covers the foll...

David Hafemeister

2014-01-01T23:59:59.000Z

373

Aesculap, Inc. Air Products  

E-Print Network (OSTI)

Aesculap, Inc. Air Products Air Products Foundation Alaric Compliance Services, LLC Alvin H. Butz & Herger, Inc. Sodexo Campus Services Sodexo Inc. and Affiliates Stupp Bros., Inc. Sugarbush Products, Inc

Napier, Terrence

374

Hazard Communications Training Deadline Approaches | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazard Communications Training Deadline Approaches Hazard Communications Training Deadline Approaches Hazard Communications Training Deadline Approaches November 1, 2013 - 8:45am Addthis Hazard Communications Training Deadline Approaches 10 CFR 851, Worker Safety and Health Program, requires all DOE Federal and contractor employees with hazardous chemicals in their workplaces to complete new Hazard Communication Standard Training. The major changes to the standard include hazard classification, labeling, Safety Data Sheets, information and training. In order to assist you with meeting this deadline, training materials can be found at: http://orise.orau.gov/ihos/hottopics/training.htm; or http://efcog.org/wg/esh_cslm/index.htm The Hazard Communication Standard can be found at: https://www.osha.gov/dsg/hazcom/ghs-final-rule.html

375

Hazardous devices teams showcase skills at Robot Rodeo June 24...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Bomb squads compete in timed scenarios at Los...

376

ORISE Resources: Hospital All-Hazards Self-Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

partners with CDC to develop Hospital All-Hazards Self-Assessment to identify gaps in planning efforts The Hospital All-Hazards Self-Assessment, or HAH, is designed to help...

377

ARM 17-53 - Hazardous Waste | Open Energy Information  

Open Energy Info (EERE)

Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-53 - Hazardous WasteLegal Abstract Sets forth rules...

378

EPA Citizens Guide to Hazardous Waste Permitting Process | Open...  

Open Energy Info (EERE)

Citizens Guide to Hazardous Waste Permitting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Citizens Guide to Hazardous Waste Permitting...

379

Hazardous Waste Facility Permit Fact Sheet | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Facility Permit Fact SheetLegal Abstract Hazardous Waste Facility Permit Fact Sheet,...

380

6 CCR 1007-3: Hazardous Waste | Open Energy Information  

Open Energy Info (EERE)

1007-3: Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 6 CCR 1007-3: Hazardous WasteLegal Abstract This...

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ADEQ Managing Hazardous Waste Handbook | Open Energy Information  

Open Energy Info (EERE)

Hazardous Waste Handbook Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Managing Hazardous Waste HandbookLegal Abstract...

382

EPA Hazardous Waste TSDF Guide | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: EPA Hazardous Waste TSDF GuideLegal Abstract Guidance document prepared by the EPA for hazardous waste...

383

EM Eliminates Potential Safety Hazard at SRS | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potential Safety Hazard at SRS EM Eliminates Potential Safety Hazard at SRS September 30, 2014 - 12:00pm Addthis Shown here is H-Canyon, where workers recently dissolved the last...

384

Evaluation of an air drilling cuttings containment system  

SciTech Connect

Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

Westmoreland, J.

1994-04-01T23:59:59.000Z

385

In response to a lively discussion on agri-cultural spraying at the 2008 AirTAP Fall  

E-Print Network (OSTI)

contaminated if a chemical leak or spill during mixing or loading occurs. Minnesota has specific guidelines- gested that AirTAP, MCOA, the Minnesota Department of Transportation, and the MAAA work together

Minnesota, University of

386

Demonstrating Online Monitoring of Air Pollutant Photodegradation in a 3D Printed Gas-Phase Photocatalysis Reactor  

Science Journals Connector (OSTI)

We present a demonstration of online monitoring of gas-phase photocatalytic reactions. A cotton cloth impregnated with commercial titanium dioxide nanoparticles is used as a photocatalytic filter to clean air contaminated with a model pollutant. A fan ...

Bozhidar I. Stefanov; Delphine Lebrun; Andreas Mattsson; Claes G. Granqvist; Lars Österlund

2014-11-21T23:59:59.000Z

387

Cleaning Contaminated Water at Fukushima  

SciTech Connect

Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

Rende, Dean; Nenoff, Tina

2013-11-21T23:59:59.000Z

388

JGI - Why Sequence Contaminated Groundwater?  

NLE Websites -- All DOE Office Websites (Extended Search)

Contaminated Groundwater? Contaminated Groundwater? Because the majority of microorganisms in nature have never been cultured, little is known about their genetic properties, biochemical functions, and metabolic characteristics. Although the sequence of the microbial community "genome" can now be determined with high-throughput sequencing technology, the complexity and magnitude of most microbial communities make meaningful data acquisition and interpretation difficult. Thus, the sequence determination of a groundwater microbial community with manageable diversity and complexity (~20 phylotypes) is a timely challenge. The samples for this project come from the Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Well FW-010. The overall objective is to provide a fundamental and comprehensive

389

Cleaning Contaminated Water at Fukushima  

ScienceCinema (OSTI)

Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

Rende, Dean; Nenoff, Tina

2014-02-26T23:59:59.000Z

390

Minimize Compressed Air Leaks  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet outlines a strategy for compressed air leak detection and provides a formula for cost savings calculations.

391

Application of release rate data to hazard load calculations  

Science Journals Connector (OSTI)

The author illustrates methods of applying heat, smoke and toxic gas release rate data to calculating fire hazard loading values.

Edwin E. Smith

1974-08-01T23:59:59.000Z

392

Revolution in Microbial Contamination Control ReliOxTM Corporation has licensed a patented chemical production technology from the University of  

E-Print Network (OSTI)

Revolution in Microbial Contamination Control ReliOxTM Corporation has licensed a patented chemical-fashioned way requires many hazardous chemicals such as concentrated acids and volatile, dangerous gases for generating Chlorine Dioxide with an innovative, compact, and simple- to-operate process platform. Reli

Jawitz, James W.

393

Air Products effective way  

E-Print Network (OSTI)

PE O A e s a b O T A O ENNST Overview Air Products effective way standard me Departm Shipping has recently y of shipping eans. Air Pro ontainer that es of this pro onduct mark eep accelera eep the cost tilize widely a earch and m m visited Air er needs wer model was cr m approache ms

Demirel, Melik C.

394

Waste management issues at US Air Force bases  

SciTech Connect

Air Force installations are industrial bases for projecting men and machinery around the globe. Supporting this mission typically requires large quantities of stockpiled potentially hazardous materials. Over the past several decades, spills, poor accounting, mis-handling, and lack of understanding have led to discharges of hazardous substances into the environment. The Installation Restoration Program (IRP) is a Department of Defense directed program aimed at remediating discharges of hazardous substances, POL (petroleum, oil, and lubricants), and solid waste disposal at defense installations. The IRP is broader in scope than even the US EPA Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and requires the Air Force managers to integrate their programs with a broad range of regulations (See Table 1 below). Managing the wastes generated by the remediation program is one of the unexpected problems the Air Force has faced in their remediation efforts. The traditional approach to remediating sites in the US has been to remove the material and place it in a secure landfill, or in the case of groundwater, to pump and treat the effluent. These technologies have proven to be very expensive and don`t really fix the problem. The waste is just moved from one place to another. Moreover, these policies ignore a fundamental technology available to today`s environmental managers: waste minimization.

Doesburg, J.M.

1992-05-01T23:59:59.000Z

395

Waste management issues at US Air Force bases  

SciTech Connect

Air Force installations are industrial bases for projecting men and machinery around the globe. Supporting this mission typically requires large quantities of stockpiled potentially hazardous materials. Over the past several decades, spills, poor accounting, mis-handling, and lack of understanding have led to discharges of hazardous substances into the environment. The Installation Restoration Program (IRP) is a Department of Defense directed program aimed at remediating discharges of hazardous substances, POL (petroleum, oil, and lubricants), and solid waste disposal at defense installations. The IRP is broader in scope than even the US EPA Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and requires the Air Force managers to integrate their programs with a broad range of regulations (See Table 1 below). Managing the wastes generated by the remediation program is one of the unexpected problems the Air Force has faced in their remediation efforts. The traditional approach to remediating sites in the US has been to remove the material and place it in a secure landfill, or in the case of groundwater, to pump and treat the effluent. These technologies have proven to be very expensive and don't really fix the problem. The waste is just moved from one place to another. Moreover, these policies ignore a fundamental technology available to today's environmental managers: waste minimization.

Doesburg, J.M.

1992-05-01T23:59:59.000Z

396

Mapping future hazards for south east London Dr Stephen Blenkinsop  

E-Print Network (OSTI)

) Vulnerability information Risk maps #12;Heat Outputs · 5km heat wave prediction grids. · 1km pro-rata disaggregated temperature & heat wave projection grids. · 1km relative heat wave hazard grid combining heat wave hazard (relative). · 200m heat wave risk grids combining relative heat wave hazard with predictions

Wirosoetisno, Djoko

397

Determining the Right Air Quality for Your Compressed Air System  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet outlines the main factors for determining the right air quality for compressed air systems.

398

Dust resuspension as a contaminant source and transport pathway  

SciTech Connect

Numerous environmental contaminants sorb to dust particles or exist as particles, including metals, hydrophobic organic compounds, asbestos, pollens, and microbial pathogens. Wind resuspension of dust and other particulate matter provides a dust source for the atmosphere and a contaminant transport pathway. Not only do these materials pose a risk to human health, but also, resuspended dust particles are believed to play a role in global climate change and chemical reactions in the atmosphere. The conditions under which contaminated sites are vulnerable to wind resuspension are not generally known, as the basic physics of the problem are poorly understood. Field data show tremendous variability. Conventional dust flux models assume that dust resuspension occurs only for high winds and then only temporarily, with a transient dust flux occurring only when the bed is first exposed to the high wind. The surface is then assumed to stabilize such that no further dust moves until the surface is disturbed or a higher wind occurs. Recent wind tunnel experiments demonstrate that surfaces yield continuous steady dust fluxes under steady wind conditions well beyond the initial high transient flux, even when no erosion is visible and the velocity is below the predicted threshold velocity for movement. This average steady-state dust flux increases with average wind speed. Ongoing work is investigating the influence of air relative humidity on these processes. Contaminant resuspension models capture trends only and fail to predict sporadic high flux events that may control doses. Successful modeling of contaminant resuspension will depend on development of better dust flux predictions. Risk analyses require better predictive modeling, necessitating a deeper understanding of the underlying phenomena.

Loosmore, G.A,; Hunt, J.R.

1999-07-01T23:59:59.000Z

399

GRR/Section 15-UT-a - Utah Air Permit Approval Order | Open Energy  

Open Energy Info (EERE)

5-UT-a - Utah Air Permit Approval Order 5-UT-a - Utah Air Permit Approval Order < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-UT-a - Utah Air Permit Approval Order 15UTAUtahAirPermitApprovalOrder.pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies UAC R307-300 UAC R307-400 Triggers None specified Click "Edit With Form" above to add content 15UTAUtahAirPermitApprovalOrder.pdf 15UTAUtahAirPermitApprovalOrder.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Utah Department of Environmental Quality Division of Air Quality (DEQ) issues permits for operations that emit contaminants into the air. Most new

400

Identifying Lawn and Garden Tool Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Root Out Lawn and Garden Tool Hazards Root Out Lawn and Garden Tool Hazards For many Americans, working outdoors on the lawn and in the garden is a great way to exercise and relax. However, safety experts warn that, if caution is not employed with lawn and garden tools, you could wind up spending more time indoors, starting with a trip to a hospital emergency room. "The most frequent injuries are from lawn mowers, which are unforgiving machines," cautions John Drengenberg, manager of Consumer Affairs for Underwriters Laboratories Inc., Northbrook, Ill., a not-for-profit product safety testing organization. "Statistics tell us that each year lawn mower accidents send close to 85,000 people to emergency rooms. But that's not all. Nearly 15,000 others need medical treatment for injuries from trimmers and other power garden

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Experiment Hazard Class 2 - Cryogenic Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - Cryogenic Systems 2 - Cryogenic Systems Applicability This hazard classification applies to all experiments involving the use of cryogenic systems. Experiment Hazard Control Verification Statements General requirements The use of detectors/alarms, warning signs, and adequate ventilation are recommended for areas where release of a cryogen can result in an oxygen-deficient atmosphere. Cryogenic systems and vessels are always insulated to reduce heat exchange and are labeled with the common name of the cryogen. Cryogenic systems are pressure protected and equipment are insptected and maintained. The use of flammable cryogens requires technical consultation. Initial consultation may be obtained from the divisional ESH Coordinator. A written emergency evacuation response plan must be available

402

Hazard Analysis Reports for Nuclear Explosive Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NA-STD-3016-2006 NA-STD-3016-2006 May 2006 DOE LIMITED STANDARD HAZARD ANALYSIS REPORTS FOR NUCLEAR EXPLOSIVE OPERATIONS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-NA-STD-3016-2006 iii FORWARD This Department of Energy (DOE)/National Nuclear Security Administration (NNSA) technical standard is approved for use by the Assistant Deputy Administrator for Military Application and Stockpile Operations (NA-12), and is available for use to prepare Nuclear Explosive Operation (NEO) Hazard Analysis Reports (HARs) as required by 10 CFR 830, "Nuclear Safety Management." This Standard is

403

Radioactivity in mushrooms: A health hazard?  

Science Journals Connector (OSTI)

Abstract Mushrooms are a complementary foodstuff and considered to be consumed locally. The demand for mushrooms has increased in recent years, and the mushroom trade is becoming global. Mushroom origin is frequently obscured from the consumer. Mushrooms are considered excellent bioindicators of environmental pollution. The accumulation of radionuclides by mushrooms, which are then consumed by humans or livestock, can pose a radiological hazard. Many studies have addressed the radionuclide content in mushrooms, almost exclusively the radiocaesium content. There is a significant lack of data about their content from some of the main producer countries. An exhaustive review was carried out in order to identify which radionuclide might constitute a health hazard, and the factors conditioning it. Regulatory values for the different radionuclides were used. The worldwide range for radiocaesium, 226Ra, 210Pb, and 210Po surpasses those values. Appropriate radiological protection requires that the content of those radionuclides in mushrooms should be monitored.

J. Guillén; A. Baeza

2014-01-01T23:59:59.000Z

404

Radionuclide air emissions report for the Hanford Site, calendar year 1992  

SciTech Connect

This report documents radionuclide air emissions from the Hanford Site in 1992 and the resulting effective dose equivalent to an member of the public. The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

Diediker, L.P.; Johnson, A.R. [Westinghouse Hanford Co., Richland, WA (United States); Rhoads, K.; Klages, D.L.; Soldat, J.K. [Pacific Northwest Lab., Richland, WA (United States); Rokkan, D.J. [Science Applications International Corp., Richland, WA (United States)

1993-06-01T23:59:59.000Z

405

Thin Air Breathing  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Air Breathing Thin Air Breathing Name: Amy Location: N/A Country: N/A Date: N/A Question: Why is it hard to breathe in thin air? What health dangers do mountain climbers face at high altitudes? Replies: Among the obvious dangers of losing ones footing, the oxygen available in the air is considerable less at higher altitudes. If I recall correctly, 21% of the atmosphere at standard temperature and pressure at sea level is composed of oxygen. This is less at higher altitudes. One can lose consciousness and even die in an oxygen deficient environment with changes from oxygen content to lower than 19.5%. This can unfortunate effect can occur within minutes. Dr. Myron The air is not really thin at high altitudes. The problem is that air pressure is lower. As altitude increases, air pressure decreases. In order for your lungs to fill with air, the air pressure in your lungs has to be less than the pressure of the air outside your lungs. Air moves from areas of higher pressure to lower pressure. As your diaphragm (the muscle that separates your chest cavity from your abdominal cavity) moves downward, the size of your chest cavity increases. This decreases the pressure in your chest and air flows in. When the diaphragm is up, it puts pressure on the chest cavity and the pressure in the lungs is greater than outside the lungs. Air flows out. This is an example of Boyle's Law. The movement of the diaphragm is controlled by the brainstem. Anyway-the reason that it is harder for some people to breathe at higher altitudes is that the air pressure differences aren't as great between the inside of the lungs and outside.

406

The HIT method: A hazard identification technique  

SciTech Connect

This report explains a technique for analyzing systems and operations to identify hazards and needed controls. The HIT method can be used both as a design tool and as a risk analysis tool. As a design tool, this method identifies requirements for design criteria. As part of a risk analysis effort, HIT identifies potential accident sequences that can become part of the safety analysis documentation. Within this report the HIT method is described in detail with emphasis on application of the technique.

Howard, H.H.; Faust, C.L.

1990-01-01T23:59:59.000Z

407

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOT/PHMSA DOT/PHMSA A ti iti Activities Michael Conroy U S Department of Transportation - 1 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety Radioactive Materials U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Overview * Harmonization with International Regulations * Update on Revisions to International Regulations * Recent Letters of Interpretation * Update on Rulemakings * PHMSA Information Resources - 2 - * PHMSA Information Resources 2 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration HM-230 Harmonized with 2000 Version of IAEA's 1996 Edition - 3 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

408

Hazardous Sites Cleanup Act (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Sites Cleanup Act (Pennsylvania) Hazardous Sites Cleanup Act (Pennsylvania) Hazardous Sites Cleanup Act (Pennsylvania) < Back Eligibility Agricultural Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Pennsylvania Program Type Environmental Regulations Grant Program Provider Department of Environmental Protection This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste treatment and disposal facilities in order to protect public health and safety, foster economic growth and protect the environment. Pennsylvania law establishes a fund to provide to the Department the

409

Hazardous Waste Management Act (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive regulatory program of hazardous waste management, and the South Dakota Department of Environment

410

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Siting of Industrial 1: Siting of Industrial Hazardous Waste Facilities (New York) Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Siting and Permitting Provider NY Department of Environmental Conservation These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used for the purpose of treating, storing, compacting, recycling, exchanging or disposing of industrial hazardous waste materials, including treatment, compacting,

411

Staged mold for encapsulating hazardous wastes  

DOE Patents (OSTI)

A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

1990-01-01T23:59:59.000Z

412

Handbook of industrial and hazardous wastes treatment. 2nd ed.  

SciTech Connect

This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis (eds.)

2004-06-15T23:59:59.000Z

413

Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process  

SciTech Connect

Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

Fix, N.J.

1995-03-01T23:59:59.000Z

414

Potential Carcinogenicity of Food Additives and Contaminants  

Science Journals Connector (OSTI)

...Carcinogenicity of Food Additives and Contaminants 1...RESEARCH VOL.35 Food Additives and Contaminants argument...substance that caused removal of the cranberries...consideration was given to the removal of Tween 60 as a food additive. The compound has...

Philippe Shubik

1975-11-01T23:59:59.000Z

415

Emerging chemical contaminants in water and wastewater  

Science Journals Connector (OSTI)

...contaminants in water and wastewater' compiled and edited by Michael...contaminants in water and wastewater Michael R. Templeton 1...activated sludge process in wastewater treatment, whereby the pollutants...the impact on agricultural recycling. Disinfection by-products...

2009-01-01T23:59:59.000Z

416

Remediation of Mercury and Industrial Contaminants  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

417

Reliability and Consistency of Surface Contamination Measurements  

SciTech Connect

Surface contamination evaluation is a tough problem since it is difficult to isolate the radiations emitted by the surface, especially in a highly irradiating atmosphere. In that case the only possibility is to evaluate smearable (removeable) contamination since ex-situ countings are possible. Unfortunately, according to our experience at CEA, these values are not consistent and thus non relevant. In this study, we show, using in-situ Fourier Transform Infra Red spectrometry on contaminated metal samples, that fixed contamination seems to be chemisorbed and removeable contamination seems to be physisorbed. The distribution between fixed and removeable contamination appears to be variable. Chemical equilibria and reversible ion exchange mechanisms are involved and are closely linked to environmental conditions such as humidity and temperature. Measurements of smearable contamination only give an indication of the state of these equilibria between fixed and removeable contamination at the time and in the environmental conditions the measurements were made.

Rouppert, F.; Rivoallan, A.; Largeron, C.

2002-02-26T23:59:59.000Z

418

Emerging contaminants and microorganisms into the environment  

E-Print Network (OSTI)

Workshop Emerging contaminants and microorganisms into the environment: contamination pathways Environmental Engineering Division Surname _____________________Name____________________ Job Environmental Engineering Division (SEED) Department of Civil Engineering University of Salerno Via Ponte don

Costagliola, Gennaro

419

Webinar: NREL's Fuel Cell Contaminant Database | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL's Fuel Cell Contaminant Database Webinar: NREL's Fuel Cell Contaminant Database Below is the text version of the webinar titled "NREL's Fuel Cell Contaminant Database,"...

420

Oklahoma Hazardous Waste Management Act (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) < Back Eligibility Agricultural Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility engaged in the operation of storing, treating or disposing of hazardous waste or storing recyclable materials. The Department shall not issue a permit for the treatment, disposal or temporary storage of any liquid hazardous waste in a

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CRAD, Packaging and Transfer of Hazardous Materials and Materials of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transfer of Hazardous Materials and Materials Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials

422

Experiment Hazard Class 10.2 - UV Light  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - Ultraviolet Light 2 - Ultraviolet Light Applicability This hazard classification applies to all experiments involving the use of ultraviolet radiation generating equipment.Ultraviolet light (UV) is non-ionizing radiation in the 180 to 400-nanometer wavelength region of the electromagnetic spectrum. Ultraviolet light poses hazards: Eyes hazards - inflammation, cataracts, retinal damage Skin hazards - sunburn, accelerate wrinkling, increased risk of skin cancer Invisible Possible ozone generation Experiment Category Experiments involving only experiment hazard class 10.2 qualify for medium risk. The addition of other hazard classes may require the experiment to be categorized as high risk and undergo additional reviews. Experiment Hazard Control Verification Statements Engineered Controls - Shield or contain UV as close to the source as

423

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 of 3) 3 of 3) RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH Student's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page TERMINAL OBJECTIVE............................................................................1 ENABLING OBJECTIVES...........................................................................1 I. RADIOLOGICAL CONTAMINATION................................................. 2 A. Comparison of Radiation and Radioactive Contamination ..................... 2 B. Types of Contamination.............................................................. 2

424

Implementation of the Clean Air Act, Title V operating permit program requirements for the U.S. DOE Oak Ridge Reservation facilities  

SciTech Connect

Title V of the Clean Air Act (CAA) establishes a new permit program requiring major sources and sources subject to Title III (Hazardous Air Pollutants) to obtain a state operating permit. Historically, most states have issued operating permits for individual emission units. Under the Title V permit program, a single permit will be issued for all of the emission units at the facility much like the current National Pollutant Discharge Elimination System (NPDES) permit program. The permit will specify all reporting, monitoring, and record-keeping requirements for the facility. Sources required to obtain permits include (a) major sources that emit 100 tons per year or more of any criteria air contaminant, (b) any source subject to the HAP provisions of Title III, (c) any source subject to the acid rain provisions of Title IV, (d) any source subject to New Source Performance Standards, and (e) any source subject to new source review under the nonattainment or Prevention of Significant Deterioration provisions. The State of Tennessee Title V Operating Permit Program was approved by EPA on August 28, 1996. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title V Operating Permit Program. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the East Tennessee Technology Park (ETTP). The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the ETTP conducts a variety of research and development activities and is the home of a mixed waste incinerator. Each of the three DOE Facilities is considered a major source under Title V of the CAA.

Humphreys, M.P. [Dept. of Energy Oak Ridge Operations Office, TN (United States). Environmental Protection Div.

1998-12-31T23:59:59.000Z

425

Federal operating permits program under Title V of the Clean Air Act. Final report  

SciTech Connect

;Table of Contents: Introduction; Transition Between Parts 70 and 71; Title V Obligations and Applicability; Synthetic Minors, Potential to Emit, and Transition Policy; Permit Application Step and Content; Flexible Permit Approaches; Hazardous Air Pollution Program Requirements for Title V; Information Sources; Appendix A. EPA Memoranda; and Appendix B. Seminar Overhead Transparencies.

NONE

1996-08-01T23:59:59.000Z

426

Air-dropped sensor network for real-time high-fidelity volcano monitoring  

Science Journals Connector (OSTI)

This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations ... Keywords: design and deployment, sensor network

Wen-Zhan Song; Renjie Huang; Mingsen Xu; Andy Ma; Behrooz Shirazi; Richard LaHusen

2009-06-01T23:59:59.000Z

427

4-1 SITE ENVIRONMENTAL REPORT 2000 CHAPTER 4: AIR QUALITY  

E-Print Network (OSTI)

(from the National Emission Standards for Hazardous Air Pollutants or NESHAPs), DOE Order 5400.1 (1990. Figure 4-1 indicates the location of each of the monitored facilities, and Table 4-1 presents uranium, moderated and cooled by light water, and was operated intermittently at power levels up to 3 MW

Homes, Christopher C.

428

Review of soil contamination guidance  

SciTech Connect

A review of existing and proposed radioactive soil contamination standards and guidance was conducted for United Nuclear Corporation (UNC), Office of Surplus Facilities Management. Information was obtained from both government agencies and other sources during a literature survey. The more applicable standards were reviewed, evaluated, and summarized. Information pertaining to soil contamination for both facility operation and facility decommissioning was obtained from a variety of sources. These sources included: the Code of Federal Regulations, regulatory guides, the Federal Register, topical reports written by various government agencies, topical reports written by national laboratories, and publications from the American National Standards Institute (ANSI). It was difficult to directly compare the standards and guidance obtained from these sources since each was intended for a specific situation and different units or bases were used. However, most of the information reviewed was consistent with the philosophy of maintaining exposures at levels as low as reasonably achievable (ALARA).

Mueller, M.A.; Kennedy, W.E. Jr.; Soldat, J.K.

1981-08-01T23:59:59.000Z

429

Method and apparatus for using hazardous waste form non-hazardous aggregate  

SciTech Connect

This patent describes an apparatus for converting hazardous waste into non-hazardous, non-leaching aggregate, the apparatus. It comprises: a source of particulate solid materials, volatile gases and gaseous combustion by-products; oxidizing means comprising at least one refractory-lined, water-cooled, metal-walled vessel; means for introducing the particulate solid material, volatile gases and gaseous combustion by-products to the oxidizing means; means for inducing combustion in the oxidizing means, the heat of combustion forming molten slag and noncombustible fines from noncombustible material; means for accumulating the slag; means for introducing the noncombustible fines to the molten slag; means for removing the mixture from the apparatus; and means for cooling the mixture to form the non-hazardous, non-leaching aggregates.

Kent, J.M.; Robards, H.L. Jr.

1992-07-28T23:59:59.000Z

430

Natural hazards phenomena mitigation with respect to seismic hazards at the Environmental Restoration Disposal Facility  

SciTech Connect

This report provides information on the seismic hazard for design of the proposed Environmental Restoration Disposal Facility (ERDF), a facility designed for the disposal of wastes generated during the cleanup of Hanford Site aggregate areas. The preferred ERDF site is located south and east of 200 East and 200 West Areas. The Washington State Groundwater Protection Program (WAC 173-303-806 (4)(a)(xxi)) requires that the characteristics of local and regional hydrogeology be defined. A plan for that work has been developed (Weekes and Borghese 1993). In addition, WAC 173-303-282 provides regulatory guidance on siting a dangerous waste facility, and US Department of Energy (DOE) Order 5480.28 requires consideration of natural phenomena hazards mitigation for DOE sites and facilities. This report provides information to evaluate the ERDF site with respect to seismic hazard. The ERDF will be a Corrective Action Management Unit (CAMU) as defined by 40 CFR 260.10.

Reidel, S.P.

1994-01-06T23:59:59.000Z

431

Environmental Quality: Air (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Quality regulates air quality in Louisiana. The Department has an established a fee system for funding the monitoring, investigation and other activities required...

432

Air-Quality Regulations  

Science Journals Connector (OSTI)

n...Federal, state and/or local regulations constructed for the purpose of protecting air quality, e.g., low volatile organic compounds...

Jan W. Gooch

2011-01-01T23:59:59.000Z

433

Air-quality regulations  

Science Journals Connector (OSTI)

n....Federal, state and/or local regulations constructed for the purpose of protecting air quality, e.g., low volatile organic compounds...

2007-01-01T23:59:59.000Z

434

In situ removal of contamination from soil  

DOE Patents (OSTI)

A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

Lindgren, E.R.; Brady, P.V.

1997-10-14T23:59:59.000Z

435

Hydrates represent gas source, drilling hazard  

SciTech Connect

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

436

Animals as sentinels of environmental health hazards  

SciTech Connect

The Committee on Animals as Monitors of Environmental Hazards was formed when the Agency for Toxic Substance and Disease Registry requested that the National Academy of Sciences gather an NRC committee to review and evaluate the usefulness of animal epidemiologic studies for human risk assessment and recommend the types of data that should be collected. With specific questions in mind, the committee attempted to determine how animals could be used for ecological and human health risk determinations as well as to provide an early-warning system for risk assessment and management.

Glickman, L.T.; Fairbrother, A.; Guarino, A.M.; Bergman, H.L.; Buck, W.B.

1991-08-01T23:59:59.000Z

437

Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991  

SciTech Connect

Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL's emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications.

Williams, C.H. (Radian Corp., Austin, TX (United States)); Eberhart, C.F. (Los Alamos National Lab., NM (United States))

1992-01-01T23:59:59.000Z

438

Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991  

SciTech Connect

Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL`s emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications.

Williams, C.H. [Radian Corp., Austin, TX (United States); Eberhart, C.F. [Los Alamos National Lab., NM (United States)

1992-10-01T23:59:59.000Z

439

International MODIS and AIRS processing package: AIRS products and applications  

E-Print Network (OSTI)

International MODIS and AIRS processing package: AIRS products and applications Elisabeth Weisz presented and discussed in this paper demonstrate that the IMAPP AIRS retrieval product is rigorously parameters from the operational AIRS L2 product and data from other instruments. Keywords: AIRS, IMAPP

Li, Jun

440

Clean air act and National Ambient Air Quality Standards (NAAQS)  

E-Print Network (OSTI)

Clean air act and National Ambient Air Quality Standards (NAAQS) Ozone: Sources/Environmental Effects Particulates (PM): Sources/Environmental Effects #12;National Ambient Air Quality Standards (NAAQS) The Clean Air Act requires EPA to set National Ambient Air Quality Standards for pollutants considered

Weber, Rodney

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rapidly Equilibrating Micrometer Film Sampler for Priority Pollutants in Air  

Science Journals Connector (OSTI)

The results were used to calculate the average mass transfer coefficient (50.5 m/day) and generate contour maps that provide guidance in choosing an appropriate EVA sampler for a particular study based on film thickness, deployment time, and the log KOA of the anlayte. ... diffusion and was independent of wind velocity. ... The effect of outside wind speed on PUF disk sampling rates was evaluated by exposing polyurethane foam (PUF) disks to a PCB-contaminated air stream in a wind tunnel over air velocities 0-1.75 m/s. ...

Susan Genualdi; Tom Harner

2012-06-17T23:59:59.000Z

442

Compressed Air System Optimization  

E-Print Network (OSTI)

Several years ago I went to a gas station and noticed that my car's tires were low on air. I saw the gas station had an air compressor, but it cost a quarter to use the compressor. I paid my quarter and used the compressor. I realized...

Aegerter, R.

443

Recirculating electric air filter  

DOE Patents (OSTI)

An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

Bergman, W.

1985-01-09T23:59:59.000Z

444

Portable oven air circulator  

DOE Patents (OSTI)

A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

Jorgensen, Jorgen A. (Bloomington, MN); Nygren, Donald W. (Minneapolis, MN)

1983-01-01T23:59:59.000Z

445

Experiment Hazard Class 5.3 High Pressure Vessels  

NLE Websites -- All DOE Office Websites (Extended Search)

3 High Pressure Vessels 3 High Pressure Vessels Applicability This hazard classification applies to working with pressure vessels and systems. Other hazard classifications and associated controls may apply to experiments in this hazard class. Experiment Category Experiments involving previously reviewed hazard controls are catergorized as medium risk experiments. Experiments involving new equipment, processes or materials, or modified hazard control schemes are categorized as high risk experiments. Hazard Control Plan Verification Statements Engineered Controls - The establishment of applicable controls in accordance with the (American Society of Mechanical Engineers) ASME Boiler and Pressure Code, ASME B.31 Piping Code and applicable federal, state, and local codes. Verify vessel is stampled with ASME Code Symbol or allowable

446

Experiment Hazard Class 13.0 - High Voltage  

NLE Websites -- All DOE Office Websites (Extended Search)

3.0 - High Voltage 3.0 - High Voltage Applicability This hazard classification applies to all experiments involving the use of High Voltage Equipment. Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. The inspection of electric equipment is covered under the APS Policy For User Electric Equipment Inspections. NOTE: Unless required Argonne training has been completed, users are not authorized to perform electrical work. Experiment Category All Hazard Class 13 experiments are categorized as medium risk experiments. Experiment Hazard Control Verification Statements Engineered Controls - Determined by review and results of a DEEI inspection of the equipment. Procedural Controls - Determined by review and results of a DEEI

447

EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, 688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas SUMMARY This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant facility to stage wastes at the U.S. Department of Energy's Pantex Plant in Amarillo, Texas. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 29, 1993 EA-0688: Finding of No Significant Impact Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas January 29, 1993 EA-0688: Final Environmental Assessment Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

448

Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste Harmless Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste Harmless April 2, 2012 - 12:00pm Addthis Neil Smith puts a trained eye on the pressure and flow of a food-grade com¬pound being injected into an under¬ground plume of hazardous waste near the X-720 Maintenance Facility at the DOE Piketon Site. The sodium lactate compound promotes bacterial growth in the groundwater that turns hazardous waste into harmless end-products. Neil Smith puts a trained eye on the pressure and flow of a food-grade com¬pound being injected into an under¬ground plume of hazardous waste near the X-720 Maintenance Facility at the DOE Piketon Site. The sodium lactate compound promotes bacterial growth in the groundwater that turns

449

Meeting the Air Leakage  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting the Air Leakage Meeting the Air Leakage Requirements of the 2012 IECC The U.S. Department of Energy (DOE) recognizes the enormous potential that exists for improving the energy efficiency, safety and comfort of homes. The newest edition of the International Energy Conservation Code ® (IECC) (2012) sets the bar higher for energy efficiency, and new air sealing requirements are one of the key new provisions. This guide is a resource for understanding the new air leakage requirements in the 2012 IECC and suggestions on how these new measures can be met. It also provides information from Building America's Air Sealing Guide, Best Practices and case studies on homes that are currently meeting the provisions. The 2012 IECC and a few International Residential Code (IRC) requirements are referenced throughout the guide.

450

Fire hazard analysis for the fuel supply shutdown storage buildings  

SciTech Connect

The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

REMAIZE, J.A.

2000-09-27T23:59:59.000Z

451

Natural Phenomena Hazards (NPH) Meeting- October 2011  

Energy.gov (U.S. Department of Energy (DOE))

On October 25-26, 2011, the DOE Chief of Nuclear Safety (CNS) hosted a Natural Phenomena Hazards (NPH) working meeting in Germantown, Maryland. The meeting brought together approximately 80 experts involved in the characterization of, and mitigation against, natural hazards that can impact critical facilities. The meeting was valuable for sharing and discussing research in NPH analysis and mitigation, as well as best practices and lessons learned. Representatives from DOE Headquarters and site offices, four National Laboratories, the Defense Nuclear Facilities Safety Board, the U.S. Nuclear Regulatory Commission (NRC), and several DOE prime contractors and other private sector firms participated in the meeting. The meeting featured thirty five discussion topics over the two days. Presentation slides from most of these topics are available here, as well as papers on several topics from those speakers who chose to provide them. Questions about the NPH meeting can be directed to Dr. Steve McDuffie of the CNS staff at 509-373-6766, or stephen.mcduffie@rl.doe.gov.

452

Impact of haze and air pollution-related hazards on hospital admissions in Guangzhou, China  

Science Journals Connector (OSTI)

Guangzhou is a metropolitan in south China with unique pollutants and geographic location. Unlike those in western countries and the rest of China, the appearance of haze in Guangzhou is often (about 278 days per...

Zili Zhang; Jian Wang; Lianghua Chen…

2014-03-01T23:59:59.000Z

453

Los Alamos racquetball contamination incident  

SciTech Connect

Several employees of the Los Alamos Plutonium Facility were found to have low levels of radioactivity on their hands and clothing when they arrived for work one morning. The initial concern was that the stringent contamination or material controls at the facility had failed, and that one or more of the employees had either accidentally or intentionally removed plutonium from the Laboratory premises. Fortunately, however, an investigation revealed that the source of the radioactivity was radon daughters electrostatically collected upon the surface of the racquetball and transferred by physical contact to the employees during an early morning racquetball game. This paper describes the events leading to the discovery of this phenomenon. 1 figure.

McAtee, J.L.; Stafford, R.G.; Dowdy, E.J.; Prestwood, R.J.

1985-01-01T23:59:59.000Z

454

Air Handling Unit Supply Air Temperature Optimization During Economizer Cycles  

E-Print Network (OSTI)

Air Handling Unit Supply Air Temperature Optimization during Economizer Cycles Gang Wang, Zhan Wang, Ke Xu and Mingsheng Liu University of Nebraska – Lincoln Omaha, Nebraska, USA ABSTRACT Most air handling units (AHUs) in commercial...

Xu, K.; Liu, M.; Wang, G.; Wang, Z.

2007-01-01T23:59:59.000Z

455

Chapter 38 Hazardous Waste Permitting Process (Kentucky) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Hazardous Waste Permitting Process (Kentucky) 8 Hazardous Waste Permitting Process (Kentucky) Chapter 38 Hazardous Waste Permitting Process (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements for containers, tanks,

456

Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Standards Applicable to Generators of Hazardous Waste 2 Standards Applicable to Generators of Hazardous Waste (Kentucky) Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes procedures to establish the applicable general provisions for generators of hazardous waste. It also

457

Hazardous and Industrial Waste (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a facility. The statute also

458

Oil or Hazardous Spills Releases Law (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Georgia Program Type Environmental Regulations Safety and Operational Guidelines Provider Georgia Department of Natural Resources The Oil or Hazardous Spills Law requires notice to the Environmental

459

Hazardous Waste Transporter Permits (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide

460

Safety Analysis, Hazard and Risk Evaluations [Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Analysis, Hazard Safety Analysis, Hazard and Risk Evaluations Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Safety Analysis, Hazard and Risk Evaluations Bookmark and Share NE Division personnel had a key role in the creation of the FCF Final Safety Analysis Report (FSAR), FCF Technical Safety Requirements (TSR)

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Georgia Hazardous Waste Management Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management Act Hazardous Waste Management Act Georgia Hazardous Waste Management Act < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Hazardous Waste Management Act (HWMA) describes a

462

Nebraska Hazardous Waste Regulations (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Hazardous Waste Regulations (Nebraska) Nebraska Hazardous Waste Regulations (Nebraska) Nebraska Hazardous Waste Regulations (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal restrictions

463

DC Hazardous Waste Management (District of Columbia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces

464

Hazardous Waste Management (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Hazardous Waste Management (North Dakota) Hazardous Waste Management (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and treatment as

465

Thermal radiation hazards associated with marine LNG spills  

Science Journals Connector (OSTI)

Estimates of hazardous distances associated with a vapor cloud resulting from a major LNG ship accident have been based on predictions...

James H. Stannard Jr.

1977-02-01T23:59:59.000Z

466

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by B&W Technical Services, Pantex and Pro2Serve October, 2011

467

Approaches for Developing Uniform Hazard Spectra at Critical Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Approaches for Developing Uniform Hazard Spectra at Critical Facilities Andrew Maham, Tom Houston, Carl J. Costantino DOE NPH Meeting, Germantown, MD October 2014

468

South Carolina Hazardous Waste Management Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health and Environmental Control is authorized to promulgate rules and regulations to prevent exposure of persons, animals, or the environment to hazardous waste. The construction...

469

Sandia National Laboratories: Solar Glare Hazard Analysis Tool...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Honolulu Port Solar Glare Hazard Analysis Tool Available for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar...

470

EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program  

Energy.gov (U.S. Department of Energy (DOE))

The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

471

Dust: A major environmental hazard on the earth's moon  

SciTech Connect

On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

Heiken, G.; Vaniman, D.; Lehnert, B.

1990-01-01T23:59:59.000Z

472

Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...  

Energy Savers (EERE)

for NNSA's Los Alamos National Laboratory (LANL), located in Los Alamos, New Mexico. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at...

473

Chapter 31 Identification and Listing of Hazardous Waste (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

This administrative regulation establishes the general provisions necessary for identification and listing of a hazardous waste. The regulation also establishes the criteria for identifying the...

474

Title 40 CFR 261 Identification and Listing of Hazardous Waste...  

Open Energy Info (EERE)

Waste (2014). Retrieved from "http:en.openei.orgwindex.php?titleTitle40CFR261IdentificationandListingofHazardousWaste&oldid793417" Categories: References...

475

Sandia National Laboratories: Solar Glare Hazard Analysis Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia developed the Solar Glare Hazard Analysis Tool...

476

Program Review, Workplace Inspections, Hazards Analysis And Abatement  

Energy.gov (U.S. Department of Energy (DOE))

This document provides guidance information and suggested procedures for performing program review, workplace inspections, hazards analysis, and abatement, successfully at DOE Federal employee worksites.

477

Fees For Disposal Of Hazardous Waste Or Substances (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

478

Weather and the Transport of Hazardous Materials | Department...  

Office of Environmental Management (EM)

and the Transport of Hazardous Materials More Documents & Publications The Role of GIS in Decision Support Systems Section 180(c) Ad Hoc Working Group Transportation Plan Ad...

479

CRAD, Hazardous Waste Management - December 4, 2007 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2007 Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30) This Criteria Review and Approach Document (HSS CRAD...

480

EPA Hazardous Waste Generators Website | Open Energy Information  

Open Energy Info (EERE)

Generators Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Hazardous Waste Generators Website Abstract This webpage provides general...

Note: This page contains sample records for the topic "hazardous air contaminants" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...  

Open Energy Info (EERE)

evidence to suggest that particle aggregation is particularly successful in removing glass shards with high surface areasmass ratios. The primary atmospheric hazard of...

482

Consumer perspectives on household hazardous waste management in Japan  

Science Journals Connector (OSTI)

We give an overview of the management systems of household hazardous waste (HHW) in Japan and discuss the management systems and their...

Misuzu Asari; Shin-ichi Sakai

2011-02-01T23:59:59.000Z

483

Title 40 CFR 300 National Oil and Hazardous Substances Pollution...  

Open Energy Info (EERE)

National Oil and Hazardous Substances Pollution Contingency Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal...

484

Activation of Air and Utilities in the National Ignition Facility  

SciTech Connect

Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment within the NIF. Neutrons streaming outside the NIF Target Chamber will activate the air present inside the Target Bay and the Ar gas inside the laser tubes. Smaller levels of activity are also generated in the Switchyard air and in the Ar portion of the SY laser beam path. The impact of neutron activation of utilities located inside the Target Bay is analyzed for variety of shot types. The impact of activating TB utilities on dose received by maintenance personnel post-shot is analyzed. The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration. Flow of activated air from the Target Bay is controlled by the HVAC system. The amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. Activation of Switchyard air is negligible. Activation of Target Bay utilities result in a manageable dose rate environment post high yield (20 MJ) shots. The levels of activation generated in air and utilities during D-D and THD shots are small and do not impact work planning post shots.

Khater, H; Pohl, B; Brererton, S

2010-04-08T23:59:59.000Z

485

Health hazard evaluation report HETA 83-248-1515, Arco Philadelphia refinery, Philadelphia, Pennsylvania  

SciTech Connect

A bulk sample of fractionator residue was analyzed for polynuclear aromatic (PNA) compounds at the catalytic cracking unit of ARCO Philadelphia Refinery (SIC-2911), Philadelphia, Pennsylvania in May, 1983. The study was requested by the Atlantic Independent Union to determine if skin rashes and skin irritation occurring among refinery workers were caused by PNA in the fractionators. The authors conclude that a health hazard from exposure to chemicals at the cracking unit may exist. No specific chemical agent can be identified. Dust from the catalyst and oily residues that could contaminate workers shoes and clothing may have contributed to some of the dermatitis cases. Recommendations include laundering workers coveralls by dry cleaning to insure the removal of oily residues, providing workers with oil resistant or oil proof work boots, and repairing the ventilator in the sample preparation room adjacent to the block house.

Lewis, F.A.; Parrish, G.

1984-10-01T23:59:59.000Z

486

Air ejector augmented compressed air energy storage system  

DOE Patents (OSTI)

Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1980-01-01T23:59:59.000Z

487

Abatement of Air Pollution: Prohibition of Air Pollution (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

All air pollution not otherwise covered by these regulations is prohibited. Stationary sources which cause air pollution must be operated in accordance with all applicable emissions standards and...

488

Dispersion models and air quality data for population exposure assessment to air pollution  

Science Journals Connector (OSTI)

Evaluating the extent of exposure to chemicals in absence of continuous measurements of their concentration in air and direct measures of personal exposure is crucial for epidemiological studies. Dispersion models can be a useful tool for reproducing spatio-temporal distribution of contaminants emitted by a specific source. However, they cannot easily be applied to short-term epidemiological studies because they require precise information on daily emission scenarios for a long time, which are generally not available. The aim of this study was to better assess the exposure in the industrial area of Brindisi, which suffers from various critical epidemiological situations, by integrating air pollution concentration data, emissions and model simulations concerning a specific point source. The results suggest that in the absence of direct exposure data and detailed information on specific pollutants associated to an emission, population exposure may be better assessed by taking into account proxy pollutants and the wind (direction and speed) as a potential health effects modifier.

Cristina Mangia; Marco Cervino; Emilio Antonio Luca Gianicolo

2014-01-01T23:59:59.000Z

489

Situ treatment of contaminated groundwater  

DOE Patents (OSTI)

A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

2001-01-01T23:59:59.000Z

490

Air Pollution and Health Effects  

Science Journals Connector (OSTI)

The quality of the air we breathe is still a major concern to human health. Notwithstanding the air pollution mitigation efforts that have been pursued since ... be attributed to the effects of urban outdoor air

Ana Isabel Miranda; Joana Valente…

2014-01-01T23:59:59.000Z

491

Air Quality (Nova Scotia, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

Nova Scotia Environment is responsible for monitoring the air quality in the province, as well as administering fines and permits relating to air quality. The Air Quality Regulations state...

492

Global air quality and climate  

E-Print Network (OSTI)

CRITICAL REVIEW Global air quality and climatewz Arlene M.determine regional air quality and can alter climate.to-continental scale air quality. Reducing the O 3 precursor

2012-01-01T23:59:59.000Z

493

Air heating system  

DOE Patents (OSTI)

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

494

Decommissioning of TA-21-153, a /sup 227/Ac contaminated old filter building  

SciTech Connect

An exhaust air filter building contaminated with /sup 227/Ac was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1978. The building was constructed in the late 1940s to clean exhaust air from several buildings at TA-21, DP Site. It was in service until March 1970. The project involved preliminary decontamination, dismantling the building, and burying the debris at an on-site waste disposal/storage area. This report presents the details on the decommissioning procedures, health physics, waste management, environmental surveillance, and costs for the operation.

Harper, J.R.; Garde, R.

1981-11-01T23:59:59.000Z

495

Maintaining System Air Quality | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maintaining System Air Quality Maintaining System Air Quality This tip sheet discusses how to maintain air quality in compressed air systems through proper use of equipment....

496

Compressed Air Systems | Department of Energy  

Energy Savers (EERE)

Maintenance Strategies for Compressed Air Systems Remove Condensate with Minimal Air Loss Stabilizing System Pressure Compressed Air Training Compressed Air Systems Tools...

497

Compressed Air Storage Strategies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 Compressed Air Storage...

498

Multimedia contaminant environmental exposure assessment methodology as applied to Los Alamos, New Mexico  

SciTech Connect

The MCEA (Multimedia Contaminant Environmental Exposure Assessment) methodology assesses exposures to air, water, soil, and plants from contaminants released into the environment by simulating dominant mechanisms of contaminant migration and fate. The methodology encompasses five different pathways (i.e., atmospheric, terrestrial, overland, subsurface, and surface water) and combines them into a highly flexible tool. The flexibility of the MCEA methodology is demonstrated by encompassing two of the pathways (i.e., overland and surface water) into an effective tool for simulating the migration and fate of radionuclides released into the Los Alamos, New Mexico region. The study revealed that: (a) the /sup 239/Pu inventory in lower Los Alamos Canyon increased by approximately 1.1 times for the 50-y flood event; (b) the average contaminant /sup 239/Pu concentrations (i.e., weighted according to the depth of the respective bed layer) in lower Los Alamos Canyon for the 50-y flood event decreased by 5.4%; (c) approx. 27% of the total /sup 239/Pu contamination resuspended from the entire bed (based on the assumed cross sections) for the 50-y flood event originated from lower Pueblo Canyon; (d) an increase in the /sup 239/Pu contamination of the bed followed the general deposition patterns experienced by the sediment in Pueblo-lower Los Alamos Canyon; likewise, a decrease in the /sup 239/Pu contamination of the bed followed general sediment resuspension patterns in the canyon; (e) 55% of the /sup 239/Pu reaching the San Ildefonso Pueblo in lower Los Alamos Canyon originated from lower Los Alamos Canyon; and (f) 56% of the /sup 239/Pu contamination reaching the San Ildefonso Pueblo in lower Los Alamos Canyon was carried through towards the Rio Grande. 47 references, 41 figures, 29 tables.

Whelan, G.; Thompson, F.L.; Yabusaki, S.B.

1983-02-01T23:59:59.000Z

499

ASD Facility Hazard Analysis Document - Building 400  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Hazards Engineered Controls Electrical Safety Training References Electrical Safety Procedures Mechanical Safety Training References Mechanical Safety Procedures Radiological, Environmental & Chemical Training References Radiological, Environmental & Chemical Procedures Additional Safety Tool References DC Power Supplies DC voltages < 72 Volts DC currents < 450 Amps Lifting < 75 lbs Supplies mounted in NEMA enclosures Rack doors locked Power source signage 120/208 VAC covered Emergency stop buttons Flashing strobes LOTO 1,7 31020101-00025 3108-00006 310202-00089 3102-00064 2202-00006 Power Supplies Hot Work Permits 6, 7 NA NA NA A ASD108/400 Hi Power DC Power Supply DC voltages < 72 Volts DC currents < 2600 Amps AC voltages < 600 Volts Supplies built in NEMA enclosures

500

Mr. James Bearzi, Chief Hazardous Waste Bureau  

NLE Websites -- All DOE Office Websites (Extended Search)

Carlsbad Carlsbad , New Mexico 88221 October 12, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss, Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number NM4890139088 - TSDF Dear Mr. Bearzi: As required under Permit Condition IV.F.5.e, the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of the loss of two hydrogen and methane monitoring sampling lines. The sampling lines involved were in Panel 3 Rooms 7 and 6. These lines are identified as 7E (exhaust side) and 61 (inlet side). These line losses were previously reported to the NMED on September 2, 2010 and September 28, 2010, respectively.