Sample records for haven ct open

  1. Haven, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformationHartsville, NewPennsylvania:Hauula,

  2. East Haven Windfarm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI)Coast Utilities prepare

  3. West Haven, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio:Wendel,Brooklyn,Covina,285°,Hampton Dunes,Haven,

  4. Fair Haven, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy JumpFACEnergyInformationFair Haven,

  5. City of Grand Haven, Michigan (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCityCity ofGrand Haven,

  6. Green Haven, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:EthanolHabits Jump to: navigation,Haven,

  7. North Beach Haven, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources JumpOklahoma: EnergyBaltimore, Ohio:Beach Haven, New

  8. North Haven, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy ResourcesGranby, Connecticut: Energy ResourcesHaven, New York:

  9. New Haven County, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR)Nevis EngineCity,New Hampshire:Haven County,

  10. New Haven, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR)Nevis EngineCity,New Hampshire:Haven

  11. New Haven, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR)Nevis EngineCity,New Hampshire:HavenVermont:

  12. Beach Haven, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy7384317°,Baywood,MayHaven, New

  13. Belle Haven, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCityStrategy |Oklahoma: EnergyBelleHaven,

  14. City of Haven, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformationHarmony, MinnesotaHaven, Kansas

  15. Final environment impact report supplement: Northeast corridor improvement project electrification: New Haven, CT to Boston, MA. Final report

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This document is a supplement to the final environmental impact report (FEIR) published in October 1994 on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electrification from New Haven, CT, to Boston, MA. The purpose of this supplement is to provide additional information relative to: the Roxbury Substation Alternative Analysis; an expanded discussion on mitigation of potential adverse impacts; draft Section 61 findings; the Memorandum of Understanding between Amtrak and the Massachusetts Bay Transportation Authority (MBTA) for Route 128 Station; Amtrak`s draft outreach program; and to address other Massachusetts Environmental Policy Act concerns.

  16. Final environmental impact statement/report. Volume 4. Comment letters and public hearing transcripts. Northeast corridor improvement project electrication: New Haven, CT to Boston, MA

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    This document is the final environmental impact statement and final environmental impact report (FEIS/R) on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. This document (Volume IV) reprints the comments received on the DEIS/R.

  17. Final environmental impact statement/report and 4(f) statement. Volume 1. Northeast corridor improvement project electrification: New Haven, CT to Boston, MA. Final report

    SciTech Connect (OSTI)

    NONE

    1994-10-31T23:59:59.000Z

    This document is the final environmental impact statement and final environmental impact report (FEIS/R) on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. This document (Volume I) is the main body of the FEIS/R and includes a 4(f) Statement on the proposed location of an electrification facility in the Great Swamp Wildlife Management Area.

  18. Record of decision: Final environmental impact statement/report and 4(f) statement. Northeast Corridor Improvement Project electrification, New Haven, CT to Boston, MA. Final report

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This record of decision (ROD) completes the environmental review by the Federal Administration (FRA) of the proposal by the National Railroad Passenger Corporation (Amtrak) to extend electric train operation from New Haven, CT, to Boston, MA. In this ROD, FRA approves Amtrak`s proposal subject to the inclusion into the project of a number of measures to eliminate or minimize potential adverse environmental impacts.

  19. Appendix to the final environmental impact report supplement. Northeast Corridor Improvement Project electrification, New Haven, CT to Boston, MA. Final report

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This document is an appendix to the final Environmental Impact Report Supplement, published on February 15, 1995, addressing the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. The purpose of this document is to discuss the selection of the Boston area electrical substation site and the relocation of a paralleling station in East Foxboro.

  20. Final environmental impact statement/report. Volume 2. Technical studies. Northeast corridor improvement project electrification: New Haven, CT to Boston, MA

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    This document is the final environmental impact statement and final environmental impact report (FEIS/R) on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. This document (Volume II) presents additional technical studies to supplement Volume III of the DEIS/R issued in October 1993 (PB94-111838).

  1. Final environmental impact statement/report. Volume 3. Response to comments on draft environmental impact statement/report. Northeast corridor improvement project electrification: New Haven CT to Boston, MA

    SciTech Connect (OSTI)

    NONE

    1994-10-31T23:59:59.000Z

    This document is the final environmental impact statement and final environmental impact report (FEIS/R) on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. This document (Volume III) of the FEIS/R presents summaries of comments received on the DEIS/R and responses to these comments.

  2. CT Offshore | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind-BrizaHKC WindCT Offshore Place:

  3. Northeast Corridor improvement project draft environmental impact statement/report for electrification of Northwest Corridor, New Haven, CT. to Boston, MA. Volume 3. Technical appendices. Final report, September 1992-September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The impacts of extending electrification on the National Railroad Passenger Corporation's (Amtrak) Northeast Corridor (NEC) from New Haven, Connecticut to Boston, Massachusetts are of direct concern to the Federal Railroad Administration (FRA). To improve rail service and increase ridership between New York and Boston, Amtrak proposes the electrification of the NEC main line between New Haven, CT and Boston, MA using an overhead 2 x 25,000 volt - 60 hertz power system. The volume Number III contains the detailed technical studies that were performed in order to identify and evaluate the environmental impacts of the proposed project. Some of these studies have been included entirely in the Draft Environmental Impact Statements-draft (DEIS/R) (Volume 1). The technical evaluations performed were based upon regulatory requirements as well as substantive issues raised by individuals and public agencies as part of the public participation program.

  4. Northeast corridor improvement project draft environmental impact statement/report for electrification of Northwest Corridor, New Haven, CT. To Boston, MA. Volume 1. Final report, September 1992-September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The impacts of extending electrification on the National Railroad Passenger Corporation's (Amtrak) Northeast Corridor (NEC) from New Haven, Connecticut to Boston, Massachusetts are of direct concern to the Federal Railroad Administration (FRA). To improve rail service and increase ridership between New York and Boston, Amtrak proposes the electrification of the NEC main line between New Haven, CT and Boston, MA using an overhead 2 X 25,000 volt - 60 hertz power system. This volume considers impacts on the Human and Natural Environment utilizing guidance as outlined in CFR Part 1500, Council on Environmental Quality, Regulations for Implementing the Procedural Requirements of NEPA as amended and the Massachusetts Environmental Policy Act (MEPA) regulations (301 CMR 11:00). Impacts analyzed include changes in the natural environment (air quality, noise and vibration, energy, electromagnetic fields, natural resources, hazardous materials and visual/aesthetics), changes in the social environment (land use and recreation, transportation and traffic), impacts on historic and archaeological sites, changes in transit service and patronage, associated changes in highway and airport congestion, capital costs, operating and maintenance costs, and financial implications. Impacts are identified both for the proposed construction period and for the long-term operation of the alternatives.

  5. Case Study - The Department of Veterans Affairs West Haven Campus...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department of Veterans Affairs West Haven Campus, VA Connecticut Health Care System Case Study - The Department of Veterans Affairs West Haven Campus, VA Connecticut Health...

  6. Case Study - The Department of Veterans Affairs West Haven Campus...

    Broader source: Energy.gov (indexed) [DOE]

    The West Haven (Connecticut) Campus of the Veterans Affairs Connecticut Health Care System was the first Veteran's Hospital to award a shared energy savings (SES) contract (now...

  7. YALE CLUB OF NEW HAVEN Graduate and Professional Students Scholarship

    E-Print Network [OSTI]

    Regional High School Notre Dame High School (West Haven) Common Ground High School Platt Vocational Tech Orville H. Platt High School H. C. Tech Wilcox Lyman Hall High School Sheehan M.T. High School #12;

  8. Terrorist Safe Havens: Towards an Understanding of What They Accomplish for Terrorist Organizations

    E-Print Network [OSTI]

    Jean-Baptiste, Ari

    2010-07-29T23:59:59.000Z

    How do safe havens help facilitate a militant terrorist organization's activities and operations? This study expects to find that safe havens do matter, that they provide safety, training, rest, etc. The researcher presumes ...

  9. Pushing Working Families into Poverty: Assessing the New Haven Plan to

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Pushing Working Families into Poverty: Assessing the New Haven Plan to Privatize the Public Schools, Amherst March 2011 #12;Pushing Working Families into Poverty: Assessing the New Haven Plan to Privatize Working Families into Poverty March 2011 Page 1 of 24 SUMMARY The City of New Haven is considering

  10. Lynn Haven, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: Energy Resources JumpNewOhio: Energy

  11. West Haven-Sylvan, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio:Wendel,Brooklyn,Covina,285°,Hampton

  12. City of South Haven, Michigan (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer,CityShelbina,City ofCityCity

  13. Grand Haven, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc,Grand

  14. South Haven, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix JapanCalifornia: Energy Resources

  15. North Haven, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy ResourcesGranby, Connecticut: Energy Resources

  16. Beach Haven West, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy7384317°,Baywood,May

  17. City of Moore Haven, Florida (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville,Livingston,CityCityCity of

  18. Borough of Schuylkill Haven, Pennsylvania (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins EnergiaMilltown, NewInformation

  19. Haven't we been here before

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    With news of new nonproliferation initiatives from US President Bill Clinton coinciding with the General Conference of the International Atomic Energy Agency, held in Vienna September 27 to October 1, delegates listened with interest to the US statement by Energy Secretary Hazel O'Leary to see if we were in for a rerun of the Carter era. As it happened, O'Leary - who had one unfortunate verbal slip with the [open quotes]Domestic,[close quotes] as opposed to Democratic, Peoples' Republic of Korea - did just manage to qualify all references to halting production of plutonium and highly enriched uranium with the words [open quotes]...for weapons purposes.[close quotes] Thus, the concerns in Europe and Japan that President Clinton might be about to enter into the current heated debate on reprocessing and recycle of plutonium from commercial power stations was partially allayed. There seems little doubt, however, that opposition groups in Europe will seize upon references to the difficulties of dealing with [open quotes]...unprecedented stocks of weapons grade nuclear materials,[close quotes] and plutonium in particular, for which, O'Leary said, [open quotes]...fully acceptable disposition technologies are not yet operational...[close quotes

  20. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    SciTech Connect (OSTI)

    Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Universit de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Lige (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB2450, B-3001 Leuven (Belgium)

    2014-01-15T23:59:59.000Z

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: We examine influence of the image resolution on ?CT-based morphological analysis. Surface properties influence accuracy of ?CT-based morphology of porous structures. Total porosity was the least sensitive to surface complexity and scan voxel size. The beam thickness analysis was overestimated by the surface roughness. Voxel size customization can significantly reduce a cost of the ?CT-based analysis.

  1. The Compass A Graduate Student Guide to Yale and New Haven

    E-Print Network [OSTI]

    The Compass A Graduate Student Guide to Yale and New Haven Presented by: The Graduate Student Assembly (GSA) 2012-2013 #12;2 The Compass An Introduction In recent years, the Elm City has undergone Student Guide to Yale and New Haven. Compiled by and written for graduate students,The Compass provides

  2. 6.13 Greenhouse Climates M Pagani, Yale University, New Haven, CT, USA

    E-Print Network [OSTI]

    ' and `icehouse' states (Fischer, 1981, 1982; Frakes et al., 1992) that was reflected in marine and terrestrial

  3. FILMS PROGRAM/NEW HAVEN September 22 26, 2010

    E-Print Network [OSTI]

    OF AUGUST) Miguel Gmes, 2008, Portugal, 147 min. 7:00 PM OPENING 6:00 PM OPENING FILM: AQUELE QUERIDO MES DE AGOSTO (OUR BELOVED MONTH, 06520 6:00 PM RICTUS Vctor Osuna Palomino, Mxico, 2009, 20 min

  4. DOE - Office of Legacy Management -- Bridgeport Brass Co - Havens

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NYBowen Lab - NJ 33Laboratory - CT

  5. You've leased your land, but haven't been paid! Now what?

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    the lessee 60 to 90 days to pay. (This allows them time to complete a title search.) If you were working the most sense. You entered into a contact. They haven't fulfilled their obligations, so now is the time outlining the problem and state the terms of the lease: they have 30 or 60 (typically) days to make payment

  6. CONFIRMATORY SURVEY OF THE DEFENSE LOGISTICS AGENCY, DEFENSE NATIONAL STOCKPILE CENTER NEW HAVEN DEPOT, NEW HAVEN, INDIANA

    SciTech Connect (OSTI)

    E.M. Harpenau

    2010-02-19T23:59:59.000Z

    The objectives of the radiological confirmatory survey were to collect adequate radiological data for use in evaluating the radiological condition of NHD land areas, warehouses, and support buildings. The data generated from the confirmatory survey activities were used to evaluate the results of the Final Status Survey Report (FSSR) submitted by Cabrera Services (Cabrera 2009). Cabrera has stated that all radioactive materials have been removed and that remediation of the open land areas and structure surfaces was complete, and that the NHD meets the criteria for unrestricted use.

  7. Water-wise bee garden plants for the Sacramento region Christine Casey, UC Davis Hagen-Dazs Honey Bee Haven

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Water-wise bee garden plants for the Sacramento region Christine Casey, UC Davis Häagen-Dazs Honey Bee Haven This is a suggested list of water Purple Manzanita Arctostaphylos spp. Heather (Ericaceae) December to April; varies

  8. Case Study- The Department of Veterans Affairs West Haven Campus, VA Connecticut Health Care System

    Broader source: Energy.gov [DOE]

    The West Haven (Connecticut) Campus of the Veterans Affairs Connecticut Health Care System was the first Veteran's Hospital to award a shared energy savings (SES) contract (now known as energy savings performance contracts). The project involves replacement of the lighting system, installation of a cooling system, maintenance of the new chiller equipment, and several smaller efforts. Up-front costs are being provided through a $3.9 million investment by the contractor, EUA Cogenex, about $400,000 in rebates from the local utilities for gas and electric service (Southern Connecticut Gas and United Illuminating Company, respectively), and guaranteed energy cost savings over the life of the contract. The Government's share of energy savings over the 16 year contract is expected to be $880,000.

  9. NETL CT Imaging Facility

    ScienceCinema (OSTI)

    None

    2014-05-21T23:59:59.000Z

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  10. NETL CT Imaging Facility

    SciTech Connect (OSTI)

    None

    2013-09-04T23:59:59.000Z

    NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

  11. Medical Imaging Computed Tomography (CT)

    E-Print Network [OSTI]

    Massey, Thomas N.

    Module 10 Medical Imaging X-rays Computed Tomography (CT) Positron Emission Tomography (PET Sources PET-TOF #12;Four Sources PET #12;Four Sources PET-TOF #12;PET Scan MRI CT scan #12;Endocrine Gland,000 pixels! #12;Modern Example of CT Scan with the addition of Surface Shading Standard CT With Surface

  12. CT Solar Loan

    Broader source: Energy.gov [DOE]

    The Clean Energy Finance and Investment Authority is offering a pilot loan program, CT Solar Loan, to provide homeowners with 15-year loans for solar PV equipment. The loans are administered...

  13. CT Solar Loan | Open Energy Information

    Open Energy Info (EERE)

    Applicable Sector Multi-Family Residential, Residential Eligible Technologies Photovoltaics Active Incentive Yes Implementing Sector StateTerritory Energy Category Renewable...

  14. Siemens Corporate Technology CT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbH Jump to: navigation,

  15. CT Investment Partners LLP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump to:ListCRED: A NewLLP Jump to:

  16. Category:Bridgeport, CT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jump Lease. Add.png Add aNDMedia

  17. CT NC0

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d! CT NC0 - i , ,.

  18. REVIEW Open Access Micro computed tomography for

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    REVIEW Open Access Micro computed tomography for vascular exploration Lyubomir Zagorchev1 studies. Micro Computed Tomography (micro-CT) has emerged in recent years as the preferred modality and suggestions aimed at making micro-CT more accurate, replicable, and robust. Introduction Micro Computed

  19. EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia

    Broader source: Energy.gov [DOE]

    DOE evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale carbon dioxide (C02l capture and storage (CCS) system at AEP's existing Mountaineer Power Plant and other AEP owned properties located near New Haven, West Virginia.

  20. DOE - Office of Legacy Management -- Seymour CT Site - CT 02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K Le BlondSanta SusanaSeymour CT Site - CT

  1. Comparison of CT, PET, and PET/CT for Staging of Patients with Indolent Non-Hodgkins Lymphoma

    E-Print Network [OSTI]

    Fueger, Barbara J.; Yeom, Kristen; Czernin, Johannes; Sayre, James W.; Phelps, Michael E.; Allen-Auerbach, Martin S.

    2009-01-01T23:59:59.000Z

    Differences between PET and CT were not significant forperformed significantly better than PET and CT in correctlyadditional information over PET and CT for the staging and

  2. Limited View Angle Iterative CT Reconstruction

    E-Print Network [OSTI]

    . Connelly, "CT Technologies," in Aspects of Explosives Detection, Elsevier 2009. Dual energy CT Z. Ying, R. Nam and C. R. Crawford, "Dual energy computed tomography for explosive detection," Journal of X

  3. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  4. "EMM Region","PC","IGCC","PC","Conv. CT","Adv. CT","Conv. CC...

    U.S. Energy Information Administration (EIA) Indexed Site

    "EMM Region","PC","IGCC","PC","Conv. CT","Adv. CT","Conv. CC","Adv. CC","Adv. CC wCCS","Fuel Cell","Nuclear","Biomass","MSW","On-shore Wind","Off-shore Wind","Solar...

  5. Northeast - NY NJ CT PA Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History View New PagesRiverNorthborough,Northeast

  6. Northeast - NY NJ CT PA Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy ResourcesGranby,Plains,Northampton, New York:Ohio:Northeast -

  7. BAIC CT T SK Holdings JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillas Jump to:nculosAzurRB9 EnergyBABAIC

  8. Siemens AG, CT, September 2001 CORPORATETECHNOLOGY

    E-Print Network [OSTI]

    s Siemens AG, CT, September 2001 CORPORATETECHNOLOGY Research and Technology at Siemens Transportation Power Information & Communications Health Automation & Control #12;2 Siemens AGResearch and Technology at Siemens CORPORATETECHNOLOGY CT / E 020 a - 02.01 Key Figures for 2000 Amounts in billions

  9. CT imaging of enhanced oil recovery experiments

    SciTech Connect (OSTI)

    Gall, B.L.

    1992-12-01T23:59:59.000Z

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a good'' surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  10. CT imaging of enhanced oil recovery experiments

    SciTech Connect (OSTI)

    Gall, B.L.

    1992-12-01T23:59:59.000Z

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a ``good`` surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  11. untitled

    Gasoline and Diesel Fuel Update (EIA)

    December 30, 2005 First Reserve Terminal Woodbridge, NJ 1,000 Williams Energy Services New Haven, CT 500 Motiva Enterprises LLC New Haven, CT 250 Motiva Enterprises LLC Providence,...

  12. untitled

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    November 4, 2005 First Reserve Terminal Woodbridge, NJ 1,000 Williams Energy Services New Haven, CT 500 Motiva Enterprises LLC New Haven, CT 250 Motiva Enterprises LLC Providence,...

  13. Myosin Isoform Determines the Conformational Dynamics and Cooperativity of Actin Filaments

    E-Print Network [OSTI]

    Thomas, David D.

    and Biochemistry, Yale University, New Haven, CT 06520, USA. E-mail addresses: ddt@ddt.biochem.umn.edu; enrique

  14. Friction Reduction for Microhole CT Drilling

    SciTech Connect (OSTI)

    Ken Newman; Patrick Kelleher; Edward Smalley

    2007-03-31T23:59:59.000Z

    The objective of this 24 month project focused on improving microhole coiled tubing drilling bottom hole assembly (BHA) reliability and performance, while reducing the drilling cost and complexity associated with inclined/horizontal well sections. This was to be accomplished by eliminating the need for a downhole drilling tractor or other downhole coiled tubing (CT) friction mitigation techniques when drilling long (>2,000 ft.) of inclined/horizontal wellbore. The technical solution to be developed and evaluated in this project was based on vibrating the coiled tubing at surface to reduce the friction along the length of the downhole CT drillstring. The Phase 1 objective of this project centered on determining the optimum surface-applied vibration system design for downhole CT friction mitigation. Design of the system would be based on numerical modeling and laboratory testing of the CT friction mitigation achieved with various types of surface-applied vibration. A numerical model was developed to predict how far downhole the surface-applied vibration would travel. A vibration test fixture, simulating microhole CT drilling in a horizontal wellbore, was constructed and used to refine and validate the numerical model. Numerous tests, with varying surface-applied vibration parameters were evaluated in the vibration test fixture. The data indicated that as long as the axial force on the CT was less than the helical buckling load, axial vibration of the CT was effective at mitigating friction. However, surface-applied vibration only provided a small amount of friction mitigation as the helical buckling load on the CT was reached or exceeded. Since it would be impractical to assume that routine field operations be conducted at less than the helical buckling load of the CT, it was determined that this technical approach did not warrant the additional cost and maintenance issues that would be associated with the surface vibration equipment. As such, the project was concluded following completion of Phase 1, and Phase 2 (design, fabrication, and testing of a prototype surface vibration system) was not pursued.

  15. Respiratory correlated cone beam CT

    SciTech Connect (OSTI)

    Sonke, Jan-Jakob; Zijp, Lambert; Remeijer, Peter; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2005-04-01T23:59:59.000Z

    A cone beam computed tomography (CBCT) scanner integrated with a linear accelerator is a powerful tool for image guided radiotherapy. Respiratory motion, however, induces artifacts in CBCT, while the respiratory correlated procedures, developed to reduce motion artifacts in axial and helical CT are not suitable for such CBCT scanners. We have developed an alternative respiratory correlated procedure for CBCT and evaluated its performance. This respiratory correlated CBCT procedure consists of retrospective sorting in projection space, yielding subsets of projections that each corresponds to a certain breathing phase. Subsequently, these subsets are reconstructed into a four-dimensional (4D) CBCT dataset. The breathing signal, required for respiratory correlation, was directly extracted from the 2D projection data, removing the need for an additional respiratory monitor system. Due to the reduced number of projections per phase, the contrast-to-noise ratio in a 4D scan reduced by a factor 2.6-3.7 compared to a 3D scan based on all projections. Projection data of a spherical phantom moving with a 3 and 5 s period with and without simulated breathing irregularities were acquired and reconstructed into 3D and 4D CBCT datasets. The positional deviations of the phantoms center of gravity between 4D CBCT and fluoroscopy were small: 0.13{+-}0.09 mm for the regular motion and 0.39{+-}0.24 mm for the irregular motion. Motion artifacts, clearly present in the 3D CBCT datasets, were substantially reduced in the 4D datasets, even in the presence of breathing irregularities, such that the shape of the moving structures could be identified more accurately. Moreover, the 4D CBCT dataset provided information on the 3D trajectory of the moving structures, absent in the 3D data. Considerable breathing irregularities, however, substantially reduces the image quality. Data presented for three different lung cancer patients were in line with the results obtained from the phantom study. In conclusion, we have successfully implemented a respiratory correlated CBCT procedure yielding a 4D dataset. With respiratory correlated CBCT on a linear accelerator, the mean position, trajectory, and shape of a moving tumor can be verified just prior to treatment. Such verification reduces respiration induced geometrical uncertainties, enabling safe delivery of 4D radiotherapy such as gated radiotherapy with small margins.

  16. Comparison of CT and MR-CT Fusion for Prostate Post-Implant Dosimetry

    SciTech Connect (OSTI)

    Maletz, Kristina L. [Department of Radiation Oncology, St. Luke's-Roosevelt Hospital Center, Beth Israel Medical Center, Continuum Health Partners, New York, NY (Israel); Columbia University College of Physicians and Surgeons, New York, NY (United States); Ennis, Ronald D., E-mail: REnnis@chpnet.org [Department of Radiation Oncology, St. Luke's-Roosevelt Hospital Center, Beth Israel Medical Center, Continuum Health Partners, New York, NY (Israel); Ostenson, Jason; Pevsner, Alexander [Department of Radiation Oncology, St. Luke's-Roosevelt Hospital Center, Beth Israel Medical Center, Continuum Health Partners, New York, NY (Israel); Kagen, Alexander [Department of Radiology, Beth Israel Medical Center, St. Luke's-Roosevelt Hospital, Continuum Health Partners, New York, NY (Israel); Wernick, Iddo [Department of Radiation Oncology, St. Luke's-Roosevelt Hospital Center, Beth Israel Medical Center, Continuum Health Partners, New York, NY (Israel)

    2012-04-01T23:59:59.000Z

    Purpose: The use of T2 MR for postimplant dosimetry (PID) after prostate brachytherapy allows more anatomically accurate and precise contouring but does not readily permit seed identification. We developed a reproducible technique for performing MR-CT fusion and compared the resulting dosimetry to standard CT-based PID. Methods and Materials: CT and T1-weighted MR images for 45 patients were fused and aligned based on seed distribution. The T2-weighted MR image was then fused to the aligned T1. Reproducibility of the fusion technique was tested by inter- and intraobserver variability for 13 patients. Dosimetry was computed for the prostate as a whole and for the prostate divided into anterior and posterior sectors of the base, mid-prostate, and apex. Results: Inter- and intraobserver variability for the fusion technique showed less than 1% variation in D90. MR-CT fusion D90 and CT D90 were nearly equivalent for the whole prostate, but differed depending on the identification of superior extent of the base (p = 0.007) and on MR/CT prostate volume ratio (p = 0.03). Sector analysis showed a decrease in MR-CT fusion D90 in the anterior base (ratio 0.93 {+-}0.25, p < 0.05) and an increase in MR-CT fusion D90 in the apex (p < 0.05). The volume of extraprostatic tissue encompassed by the V100 is greater on MR than CT. Factors associated with this difference are the MR/CT volume ratio (p < 0.001) and the difference in identification of the inferior extent of the apex (p = 0.03). Conclusions: We developed a reproducible MR-CT fusion technique that allows MR-based dosimetry. Comparing the resulting postimplant dosimetry with standard CT dosimetry shows several differences, including adequacy of coverage of the base and conformity of the dosimetry around the apex. Given the advantage of MR-based tissue definition, further study of MR-based dosimetry is warranted.

  17. abdominal multislice ct: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    planning. It includes an abdominal computer tomography (CT) image Leow, Wee Kheng 17 CT-PET Landmark-based Lung Registration Using a Dynamic Breathing Model S. Chambon1 Physics...

  18. abdominal ct images: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods establish microCT imaging as a useful tool for comparative Metscher, Brian 31 CT-PET Landmark-based Lung Registration Using a Dynamic Breathing Model S. Chambon1 Physics...

  19. abdominal ct findings: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    planning. It includes an abdominal computer tomography (CT) image Leow, Wee Kheng 11 CT-PET Landmark-based Lung Registration Using a Dynamic Breathing Model S. Chambon1 Physics...

  20. Anatomic measurement accuracy: CT parameters and 3D rendering effects

    E-Print Network [OSTI]

    Vorperian, Houri K.

    Anatomic measurement accuracy: CT parameters and 3D rendering effects Brian J Whyms a, E Michael of Neuroscience #12;INTRODUCTION Measurements from 3D-CT rendering are used in research and clinical management-CT rendering techniques on measurements #12;METHODS Scanned: 3 human mandibles a phantom object Phantom

  1. OPEN HONE

    Energy Science and Technology Software Center (OSTI)

    003040IBMPC00 The Open Host Network Packet Process Correlator for Windows http://www.github.com/HoneProject/

  2. Comparison of CT, PET, and PET/CT for Staging of Patients with Indolent Non-Hodgkins Lymphoma

    E-Print Network [OSTI]

    Fueger, Barbara J.; Yeom, Kristen; Czernin, Johannes; Sayre, James W.; Phelps, Michael E.; Allen-Auerbach, Martin S.

    2009-01-01T23:59:59.000Z

    B. J. Fueger et al. : PET/CT for indolent lymphoma Table 2.Performance for detection of nodal disease Sensitivity PETCT PET/CT pG0.001 vs PET, CT Specificity pG0.001 vs PET

  3. February 11, 2014: The Main Event -Senior Scheduling (Class Meeting) 2:30 to 5:00 PM in the HRC Auditorium February 12, 2014: If you haven't already started, you should go into OASIS and peruse course descriptions in the Fourth-Year Course Catalog in det

    E-Print Network [OSTI]

    Auditorium February 12, 2014: If you haven't already started, you should go into OASIS and peruse course may begin creating your "Lottery Selections List" by entering OASIS. Once you have completed) on Friday, March 7. OASIS will move to the scheduling mode at Noon and you will no longer have access

  4. February 8, 2012: If you haven't already started, you should go into OASIS at: https://oasis.acad.mcw.edu and begin perusing the course descriptions in the Course Catalog. You should have contacted your clinical advisor to begin a conversation regarding y

    E-Print Network [OSTI]

    February 8, 2012: If you haven't already started, you should go into OASIS at: https://oasis may begin creating your "Lottery Selections List" by entering OASIS. Once you have completed) on Friday, March 9. OASIS will move to the scheduling mode at Noon and you will no longer have access

  5. February 13, 2013: If you haven't already started, you should go into OASIS at: https://oasis.acad.mcw.edu and begin perusing the course descriptions in the Course Catalog. You should have contacted your clinical advisor to begin a conversation regarding

    E-Print Network [OSTI]

    February 13, 2013: If you haven't already started, you should go into OASIS at: https://oasis may begin creating your "Lottery Selections List" by entering OASIS. Once you have completed) on Friday, March 8. OASIS will move to the scheduling mode at Noon and you will no longer have access

  6. Open Recreation Open Recreation Policy

    E-Print Network [OSTI]

    Amin, S. Massoud

    43 Open Recreation Open Recreation Policy These policies apply to all University Recreation scheduled for their chosen activity at that time. The Open Recreation Policy has been revised to read due to violations of policies or inappropriate behavior, i.e.: fighting, using abusive language, etc

  7. Complications in CT-guided Procedures: Do We Really Need Postinterventional CT Control Scans?

    SciTech Connect (OSTI)

    Nattenmller, Johanna, E-mail: johanna.nattenmueller@med.uni-heidelberg.de; Filsinger, Matthias, E-mail: Matthias_filsinger@web.de; Bryant, Mark, E-mail: mark.bryant@med.uni-heidelberg.de; Stiller, Wolfram, E-mail: Wolfram.Stiller@med.uni-heidelberg.de; Radeleff, Boris, E-mail: boris.radeleff@med.uni-heidelberg.de; Grenacher, Lars, E-mail: lars.grenacher@med.uni-heidelberg.de; Kauczor, Hans-Ullrich, E-mail: hu.kauczor@med.uni-heidelberg.de; Hosch, Waldemar, E-mail: waldemar.hosch@urz.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany)

    2013-06-19T23:59:59.000Z

    PurposeThe aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans.MethodsRetrospective analysis of 1,067 CT-guided diagnostic biopsies (n=476) and therapeutic drainages (n=591) in thoracic (n=37), abdominal (n=866), and musculoskeletal (ms) (n=164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only.ResultsThe complication rate was 2.5% in all procedures (n=27), 4.4% in diagnostic punctures, and 1.0% in drainages; 13.5% in thoracic, 2.0% in abdominal, and 3.0% in musculoskeletal procedures. There was only 1 major complication (0.1%). Pneumothorax (n=14) was most frequent, followed by bleeding (n=9), paresthesia (n=2), material damage (n=1), and bone fissure (n=1). Postinterventional control acquisitions were performed in 65.7% (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n=4) and/or visible in peri-interventional controls (n=21).ConclusionComplications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.

  8. Renal infarction: CT diagnosis and correlation between CT findings and etiologies

    SciTech Connect (OSTI)

    Wong, W.S.; Moss, A.A.; Federle, M.P.; Cochran, S.T.; London, S.S.

    1984-01-01T23:59:59.000Z

    The CT scans and the clinical records of 12 patients who had renal infarction were reviewed. The renal infarcts were classified as either focal or global. The CT findings were correlated with the etiologies of renal infarction. Embolism was the most common cause of renal infarcts that were multifocal with involvement of both kidneys. Trauma caused a unilateral global type of infract. A case of sickle cell anemia presented with multiple ''slit-like'' focal infarcts and enlarged kidneys. Forty-seven per cent of infarcts demonstrated the cortical rim sign, 11% were acapsular fluid collection, and 6% had an abnormally thickened renal fascia.

  9. Evaluation of the potential utility of flat panel CT for quantifying relative contrast enhancement

    SciTech Connect (OSTI)

    Jones, A. Kyle; Mahvash, Armeen [Department of Imaging Physics, Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Interventional Radiology, Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2012-07-15T23:59:59.000Z

    Purpose: Certain directed oncologic therapies seek to take advantage of the fact that tumors are typically more susceptible to directed therapeutic agents than normal tissue owing to their extensive networks of poorly formed, leaky vasculature. If differences between the vascularity of normal and tumor tissues could be quantified, patients could be selected for or excluded from directed treatments on the basis of this difference. However, angiographic imaging techniques such as digital subtraction angiography (DSA) yield two-dimensional data that may be inadequate for this task. As a first step, the authors evaluated the feasibility of using a commercial implementation of flat panel computed tomography (FPCT) to quantify differences in enhancement of a simulated tumor compared with normal tissue based on differences in CT number measured in precontrast and postcontrast scans. Methods: To evaluate the FPCT scanner studied, the authors scanned several phantoms containing simulated normal and tumor tissues. In the first experiment, the authors used an anthropomorphic phantom containing inclusions representing normal, tumor, and bone tissue to evaluate the constancy of CT numbers in scans repeated at clinically relevant intervals of 1 and 3 min. The authors then scanned gelatin phantoms containing dilutions of iodinated contrast to evaluate the accuracy of relative contrast enhancement measurements for a clinical FPCT system. Data were analyzed using widely available software. Results: CT numbers measured in identical locations were constant over both scan intervals evaluated. Measured relative contrast enhancement values were accurate compared with known relative contrast enhancement values. Care must be taken to avoid artifacts in reconstructed images when placing regions of interest. Conclusions: Despite its limitations, FPCT in the interventional laboratory can be used to quantify relative contrast enhancement in phantoms. This is accomplished by measuring CT number in simulated tumor and normal tissue on precontrast and postcontrast scans. This information opens the door for refinement of technique in an effort to use such a technique to plan directed therapies.

  10. aneurysm ct evaluation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    die Magnetresonanztomographie und die Positronen-Emissionstomographie ( CT, MRT, PET) sind heute, neben der Ultraschalltechnik, die wichtigsten nicht-invasiven bildgebenden...

  11. aided ct image: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging X-rays Computed Tomography (CT) Positron Emission Tomography (PET 12;LSO-APD Array Schematic 12;Time-of-Flight PET 12;Energy Spectrum with lutetium...

  12. Segmentation of artifacts and anatomy in CT metal artifact reduction

    E-Print Network [OSTI]

    Karimi, Seemeen; Cosman, Pamela; Wald, Christoph; Martz, Harry

    2012-01-01T23:59:59.000Z

    Maximum- likelihood dual-energy tomographic imageartifact reduction by dual energy CT using monoenergetictive reconstruction of dual energy data 21 has the potential

  13. CT. L-2 United States Government

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d! CT NC0 - i ,

  14. SU-E-J-113: The Influence of Optimizing Pediatric CT Simulator Protocols On the Treatment Dose Calculation in Radiotherapy

    SciTech Connect (OSTI)

    Zhang, Y; Zhang, J; Hu, Q; Tie, J; Wu, H [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital ' Institute, Beijing (China); Deng, J [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To investigate the possibility of applying optimized scanning protocols for pediatric CT simulation by quantifying the dosimetric inaccuracy introduced by using a fixed HU to density conversion. Methods: The images of a CIRS electron density reference phantom (Model 062) were acquired by a Siemens CT simulator (Sensation Open) using the following settings of tube voltage and beam current: 120 kV/190mA (the reference protocol used to calibrate CT for our treatment planning system (TPS)); Fixed 190mA combined with all available kV: 80, 100, and 140; fixed 120 kV and various current from 37 to 444 mA (scanner extremes) with interval of 30 mA. To avoid the HU uncertainty of point sampling in the various inserts of known electron densities, the mean CT numbers of the central cylindrical volume were calculated using DICOMan software. The doses per 100 MU to the reference point (SAD=100cm, Depth=10cm, Field=10X10cm, 6MV photon beam) in a virtual cubic phantom (30X30X30cm) were calculated using Eclipse TPS (calculation model: AcurosXB-11031) by assigning the CT numbers to HU of typical materials acquired by various protocols. Results: For the inserts of densities less than muscle, CT number fluctuations of all protocols were within the tolerance of 10 HU as accepted by AAPM-TG66. For more condensed materials, fixed kV yielded stable HU with any mA combination where largest disparities were found in 1750mg/cc insert: HU{sub reference}=1801(106.6cGy), HU{sub minimum}=1799 (106.6cGy, error{sub dose}=0.00%), HU{sub maximum}=1815 (106.8cGy, error{sub dose}=0.19%). Yet greater disagreements were observed with increasing density when kV was modified: HU{sub minimum}=1646 (104.5cGy, error{sub dose}=- 1.97%), HU{sub maximum}=2487 (116.4cGy, error{sub dose}=9.19%) in 1750mg/cc insert. Conclusion: Without affecting treatment dose calculation, personalized mA optimization of CT simulator can be conducted by fixing kV for a better cost-effectiveness of imaging dose and quality especially for children. Unless recalibrated, kV should be constant for all anatomical sites if diagnostic CT scanner is used as a simulator. This work was partially supported by Capital Medical Development Scientific Research Fund of China.

  15. Sclerosing angiomatoid nodular transformation of the spleen: CT, MR, PET, and 99mTc-sulfur colloid SPECT CT findings with gross and histopathological correlation

    E-Print Network [OSTI]

    Thacker, Curtis; Korn, Ronald; Millstine, John; Harvin, Howard; Lier Ribbink, Jeffrey A.; Gotway, Michael B.

    2010-01-01T23:59:59.000Z

    computed tomography-CT (FDG-PET CT) survey which revealed aof the spleen: CT, MR, PET, and 99m Tc-sulfur colloid SPECTT2, no enhancement US CT MR FDG-PET N/A uptake N/A N/A N/A

  16. Automated movement correction for dynamic PET/CT images: Evaluation with phantom and patient data

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    co- registration between PET and CT and for between frameco-registration between PET and CT, the PET images with ACregistration between PET and CT. Figure 3 shows that small

  17. Radioimmuntherapie3 Radioimmundiagnostik (Immuno-PET/CT)3

    E-Print Network [OSTI]

    Gollisch, Tim

    Radioimmuntherapie3 Radioimmundiagnostik (Immuno-PET/CT)3 Entzndungsdiagnostik mit [18F]FDG3 of Inflammatory Diseases with [18F]FDG3 Characterisation of Multinodular Toxic Goiter3 Radioactive tracers onkologischer Therapiekonzepte Radioimmunotherapy3 Radioimmunodiagnostics (Immuno-PET/CT)3 Diagnosis

  18. 2012 Open Enrollment 2012 Changes2012 Changes

    E-Print Network [OSTI]

    Oklahoma, University of

    Deductible $35 copay for MRI, CT, EEG & PET imaging $100 copay for MRI, CT, EEG & PET imaging All other

  19. Multi-energy CT Based on a Prior Rank, Intensity and Sparsity Model (PRISM)

    E-Print Network [OSTI]

    Soatto, Stefano

    -color, as a natural extension of dual energy CT [1], the future of CT will be multi-energy, generating much richer

  20. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and Evaluation |quasicrystals65Open Issues Open

  1. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data Winners from theOpen

  2. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data Winners"Unable to open

  3. Low-Dose Dual-Energy CT for PET Attenuation Correction with Statistical Sinogram Restoration

    E-Print Network [OSTI]

    Fessler, Jeffrey A.

    1 Low-Dose Dual-Energy CT for PET Attenuation Correction with Statistical Sinogram Restoration. of Michigan & Univ. of Washington Outline Introduction - PET/CT background - CT-based attenuation correction for PET Conventional sinogram decomposition in DE-CT Statistically motivated sinogram restoration in DE

  4. Dynamic Bowtie for Fan-beam CT

    E-Print Network [OSTI]

    Liu, Fenglin; Cong, Wenxiang; Hsieh, Scott; Pelc, Norbert

    2013-01-01T23:59:59.000Z

    A bowtie is a filter used to shape an x-ray beam and equalize its flux reaching different detector channels. For development of spectral CT with energy-discriminative photon-counting (EDPC) detectors, here we propose and evaluate a dynamic bowtie for performance optimization based on a patient model or a scout scan. Our dynamic bowtie modifies an x-ray beam intensity profile by mechanical rotation and adaptive adjustment of the x-ray source flux. First, a mathematical model for dynamic bowtie filtering is established for an elliptical section in fan-beam geometry, and the contour of the optimal bowtie is derived. Then, numerical simulation is performed to compare the performance of the dynamic bowtie in the cases of an ideal phantom and a realistic cross-section relative to the counterparts without any bowtie and with a fixed bowtie respectively. Our dynamic bowtie can equalize the expected numbers of photons in the case of an ideal phantom. In practical cases, our dynamic bowtie can effectively reduce the dy...

  5. TLD assessment of mouse dosimetry during microCT imaging

    SciTech Connect (OSTI)

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J. [Harry S. Truman Memorial VA Hospital, Columbia, Missouri 65201 (United States) and Department of Radiology, University of Missouri, Columbia, Missouri 65201 (United States); Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65201 (United States); Nuclear Science and Engineering Institute, University of Missouri, Columbia, Missouri 65201 (United States); Department of Radiology, University of Missouri, Columbia, Missouri 65201 (United States); Harry S. Truman Memorial VA Hospital, Columbia, Missouri 65201 (United States) and Departments of Internal Medicine, Chemistry, and the Nuclear Science and Engineering Institute, University of Missouri, Columbia, Missouri 65201 (United States)

    2008-09-15T23:59:59.000Z

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm{sup 3} CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0{+-}5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0{+-}6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0{+-}4.0 mGy and 97.0{+-}5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0{+-}5.0 mGy. The author's results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality.

  6. Open University

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Michel Pentz est ne en Afrique du Sud et venu au Cern en 1957 comme physicien et prsident de l'associaion du personnel. Il est galement fondateur du mouvement Antiapartheid de Genve et a particip la fondation de l'Open University en Grande-Bretagne. Il nous parle des contextes pdagogiques, culturels et nationaux dans lesquels la mthode peut s'appliquer.

  7. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data Winners from

  8. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data Winners

  9. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data

  10. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen DataResolved: Reports

  11. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen DataResolved:

  12. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen DataResolved:runtime

  13. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    SciTech Connect (OSTI)

    Rodriguez, A. [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 (United States); Ranallo, F. N. [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 (United States); Judy, P. F. [Brigham and Womens Hospital, Boston, Massachusetts 02115 (United States); Gierada, D. S. [Department of Radiology, Washington University, St. Louis, Missouri 63110 (United States); Fain, S. B., E-mail: sfain@wisc.edu [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 (United States); Department of Biomedical Engineering,University of Wisconsin School of Engineering, Madison, Wisconsin 53706 (United States)

    2014-11-01T23:59:59.000Z

    Purpose: To determine the impact of constrained reconstruction techniques on quantitative CT (qCT) of the lung parenchyma and airways for low x-ray radiation dose. Methods: Measurement of small airways with qCT remains a challenge, especially for low x-ray dose protocols. Images of the COPDGene quality assurance phantom (CTP698, The Phantom Laboratory, Salem, NY) were obtained using a GE discovery CT750 HD scanner for helical scans at x-ray radiation dose-equivalents ranging from 1 to 4.12 mSv (12100 mA s currenttime product). Other parameters were 40 mm collimation, 0.984 pitch, 0.5 s rotation, and 0.625 mm thickness. The phantom was sandwiched between 7.5 cm thick water attenuating phantoms for a total length of 20 cm to better simulate the scatter conditions of patient scans. Image data sets were reconstructed using STANDARD (STD), DETAIL, BONE, and EDGE algorithms for filtered back projection (FBP), 100% adaptive statistical iterative reconstruction (ASIR), and Veo reconstructions. Reduced (half) display field of view (DFOV) was used to increase sampling across airway phantom structures. Inner diameter (ID), wall area percent (WA%), and wall thickness (WT) measurements of eight airway mimicking tubes in the phantom, including a 2.5 mm ID (42.6 WA%, 0.4 mm WT), 3 mm ID (49.0 WA%, 0.6 mm WT), and 6 mm ID (49.0 WA%, 1.2 mm WT) were performed with Airway Inspector (Surgical Planning Laboratory, Brigham and Womens Hospital, Boston, MA) using the phase congruency edge detection method. The average of individual measures at five central slices of the phantom was taken to reduce measurement error. Results: WA% measures were greatly overestimated while IDs were underestimated for the smaller airways, especially for reconstructions at full DFOV (36 cm) using the STD kernel, due to poor sampling and spatial resolution (0.7 mm pixel size). Despite low radiation dose, the ID of the 6 mm ID airway was consistently measured accurately for all methods other than STD FBP. Veo reconstructions showed slight improvement over STD FBP reconstructions (4%9% increase in accuracy). The most improved ID and WA% measures were for the smaller airways, especially for low dose scans reconstructed at half DFOV (18 cm) with the EDGE algorithm in combination with 100% ASIR to mitigate noise. Using the BONE + ASIR at half BONE technique, measures improved by a factor of 2 over STD FBP even at a quarter of the x-ray dose. Conclusions: The flexibility of ASIR in combination with higher frequency algorithms, such as BONE, provided the greatest accuracy for conventional and low x-ray dose relative to FBP. Veo provided more modest improvement in qCT measures, likely due to its compatibility only with the smoother STD kernel.

  14. SU-E-I-82: Improving CT Image Quality for Radiation Therapy Using Iterative Reconstruction Algorithms and Slightly Increasing Imaging Doses

    SciTech Connect (OSTI)

    Noid, G; Chen, G; Tai, A; Li, X [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-01T23:59:59.000Z

    Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. For CT in radiation therapy (RT), slightly increasing imaging dose to improve IQ may be justified if it can substantially enhance structure delineation. The purpose of this study is to investigate and to quantify the IQ enhancement as a result of increasing imaging doses and using IR algorithms. Methods: CT images were acquired for phantoms, built to evaluate IQ metrics including spatial resolution, contrast and noise, with a variety of imaging protocols using a CT scanner (Definition AS Open, Siemens) installed inside a Linac room. Representative patients were scanned once the protocols were optimized. Both phantom and patient scans were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and the Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared. Results: IR techniques are demonstrated to preserve spatial resolution as measured by the point spread function and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is doubled by adopting the highest SAFIRE strength. As expected, increasing imaging dose reduces noise for both SAFIRE and FBP reconstructions. The contrast to noise increases from 3 to 5 by increasing the dose by a factor of 4. Similar IQ improvement was observed on the CTs for selected patients with pancreas and prostrate cancers. Conclusion: The IR techniques produce a measurable enhancement to CT IQ by reducing the noise. Increasing imaging dose further reduces noise independent of the IR techniques. The improved CT enables more accurate delineation of tumors and/or organs at risk during RT planning and delivery guidance.

  15. Dose uncertainty due to computed tomography ,,CT... slice thickness in CT-based high dose rate brachytherapy of the prostate cancer

    E-Print Network [OSTI]

    Pouliot, Jean

    Dose uncertainty due to computed tomography ,,CT... slice thickness in CT-based high dose rate in Medicine. DOI: 10.1118/1.1785454 Key words: high dose rate brachytherapy, computed tomography, prostate at risk OARs by providing three-dimensional 3D anatomical information from computed tomography CT

  16. Open Energy Information Systems (OpenEIS) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Open Energy Information Systems (OpenEIS) Open Energy Information Systems (OpenEIS) Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Project Partners: --...

  17. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and Evaluation |quasicrystals65 (9/12)JeffersonOpen

  18. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data Winners fromFIXED] JGI data

  19. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data Winners fromFIXED] JGI

  20. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data Winners fromFIXED]

  1. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data Winners fromFIXED]Segfaults

  2. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data Winners"Unable to

  3. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data Winners"Unable

  4. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen Data Winners"UnableResolved:

  5. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen DataResolved: Reports of Hanging

  6. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen DataResolved: Reports of

  7. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen DataResolved: Reports ofUnable to

  8. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen DataResolved: Reports ofUnable

  9. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen DataResolved: Reports"error

  10. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen DataResolved:runtime error

  11. Open Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen DataResolved:runtime errorRunning

  12. School Leaders Sense-making and Use of Equity-related Data to Disrupt Patterns of Inequality

    E-Print Network [OSTI]

    Chikwe, Moses

    2013-01-01T23:59:59.000Z

    track: How schools structure inequality. New Haven, CT: YaleChallenging or reproducing inequality? Teachers CollegeC. S. , et al. (1996). Inequality by design: Cracking the

  13. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images

    SciTech Connect (OSTI)

    Won Kim, Chang [Interdisciplinary Program of Bioengineering Major Seoul National University College of Engineering, San 56-1, Silim-dong, Gwanak-gu, Seoul 152-742, South Korea and Institute of Radiation Medicine, Seoul National University College of Medicine, 28, Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of)] [Interdisciplinary Program of Bioengineering Major Seoul National University College of Engineering, San 56-1, Silim-dong, Gwanak-gu, Seoul 152-742, South Korea and Institute of Radiation Medicine, Seoul National University College of Medicine, 28, Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Kim, Jong Hyo, E-mail: kimjhyo@snu.ac.kr [Department of Radiology, Institute of Radiation Medicine, Seoul National University College of Medicine, 28, Yongon-dong, Chongno-gu, Seoul, 110-744 (Korea, Republic of); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi-do, 443-270 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 443-270 (Korea, Republic of)

    2014-01-15T23:59:59.000Z

    Purpose: Reducing the patient dose while maintaining the diagnostic image quality during CT exams is the subject of a growing number of studies, in which simulations of reduced-dose CT with patient data have been used as an effective technique when exploring the potential of various dose reduction techniques. Difficulties in accessing raw sinogram data, however, have restricted the use of this technique to a limited number of institutions. Here, we present a novel reduced-dose CT simulation technique which provides realistic low-dose images without the requirement of raw sinogram data. Methods: Two key characteristics of CT systems, the noise equivalent quanta (NEQ) and the algorithmic modulation transfer function (MTF), were measured for various combinations of object attenuation and tube currents by analyzing the noise power spectrum (NPS) of CT images obtained with a set of phantoms. Those measurements were used to develop a comprehensive CT noise model covering the reduced x-ray photon flux, object attenuation, system noise, and bow-tie filter, which was then employed to generate a simulated noise sinogram for the reduced-dose condition with the use of a synthetic sinogram generated from a reference CT image. The simulated noise sinogram was filtered with the algorithmic MTF and back-projected to create a noise CT image, which was then added to the reference CT image, finally providing a simulated reduced-dose CT image. The simulation performance was evaluated in terms of the degree of NPS similarity, the noise magnitude, the bow-tie filter effect, and the streak noise pattern at photon starvation sites with the set of phantom images. Results: The simulation results showed good agreement with actual low-dose CT images in terms of their visual appearance and in a quantitative evaluation test. The magnitude and shape of the NPS curves of the simulated low-dose images agreed well with those of real low-dose images, showing discrepancies of less than +/?3.2% in terms of the noise power at the peak height and +/?1.2% in terms of the spatial frequency at the peak height. The magnitudes of the noise measured for 12 different combinations the phantom size, tube current, and reconstruction kernel for the simulated and real low-dose images were very similar, with differences of 0.1 to 4.7%. Thep value for a statistical testing of the difference in the noise magnitude ranged from 0.99 to 0.11, showing that there was no difference statistically between the noise magnitudes of the real and simulated low-dose images using our method. The strength and pattern of the streak noise in an anthropomorphic phantom was also consistent with expectations. Conclusions: A novel reduced-dose CT simulation technique was developed which uses only CT images while not requiring raw sinogram data. Our method can provide realistic simulation results under reduced-dose conditions both in terms of the noise magnitude and the textual appearance. This technique has the potential to promote clinical research for patient dose reductions.

  14. Harvey Haven: BPA's patron saint of safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecoveryG - SSCWhy

  15. Molecular imaging in oncology: the acceptance of PET/CT and the emergence of MR/PET imaging

    E-Print Network [OSTI]

    Schiepers, Christiaan; Dahlbom, Magnus

    2011-01-01T23:59:59.000Z

    CTComputed tomography . PETPositron Emission Tomography .body imaging with MRI or PET/CT: the future for single-Sollitto RA et al (2009) 18F-FDG PET/CT of transitional cell

  16. Unusual association of alveolar rhabdomyosarcoma with pancreatic metastasis: emerging role of PET-CT in tumor staging

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Christie R, Daw NC et al ( 2005) PET/CT in the evaluation ofComparative study of FDG PET/CT and conventional imaging inet al (2009) Diagnostic value of PET/CT for the staging and

  17. Estimated cumulative radiation dose from PET/CT in children with malignancies: reply to Gelfand et al

    E-Print Network [OSTI]

    Chawla, Soni C.; Boechat, M. Ines; McNitt-Gray, Michael

    2010-01-01T23:59:59.000Z

    radiation dose from PET/CT in children with malignancies.radiation dose from PET/CT in children with malig- nancies:radiation dose from PET/CT in children with malignancies:

  18. Molecular imaging in oncology: the acceptance of PET/CT and the emergence of MR/PET imaging

    E-Print Network [OSTI]

    Schiepers, Christiaan; Dahlbom, Magnus

    2011-01-01T23:59:59.000Z

    only [2] to combining PET and CT [3] and PET and MRI [4].varies widely between PET and CT, e.g. arms up or down,body imaging with MRI or PET/CT: the future for single-

  19. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    N, Feig SA (2007) PET/CT in the evaluating pediatriccan be used for both PET and CT studies. The ALARA principleMB, Christie R, Daw NC (2005) PET/CT in the evaluation of

  20. Unusual association of alveolar rhabdomyosarcoma with pancreatic metastasis: emerging role of PET-CT in tumor staging

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    The combination of PET and CT provided a mean effective doseChristie R, Daw NC et al ( 2005) PET/CT in the evaluation ofComparative study of FDG PET/CT and conventional imaging in

  1. Automatic CT simulation optimization for radiation therapy: A general strategy

    SciTech Connect (OSTI)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States)] [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Yu, Lifeng [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)] [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States)] [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)] [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-15T23:59:59.000Z

    Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube potentials for patient sizes of 38, 43, 48, 53, and 58 cm were 120, 140, 140, 140, and 140 kVp, respectively, and the corresponding minimum CTDIvol for achieving the optimal image quality index 4.4 were 9.8, 32.2, 100.9, 241.4, and 274.1 mGy, respectively. For patients with lateral sizes of 4358 cm, 120-kVp scan protocols yielded up to 165% greater radiation dose relative to 140-kVp protocols, and 140-kVp protocols always yielded a greater image quality index compared to the same dose-level 120-kVp protocols. The trace of target and organ dosimetry coverage and the ? passing rates of seven IMRT dose distribution pairs indicated the feasibility of the proposed image quality index for the predication strategy. Conclusions: A general strategy to predict the optimal CT simulation protocols in a flexible and quantitative way was developed that takes into account patient size, treatment planning task, and radiation dose. The experimental study indicated that the optimal CT simulation protocol and the corresponding radiation dose varied significantly for different patient sizes, contouring accuracy, and radiation treatment planning tasks.

  2. Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography

    E-Print Network [OSTI]

    Barbu, Adrian

    Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography Le Lu1-Cecal Valve (ICV) detection in both clean and tagged 3D CT colonography scans. Our final ICV detection system

  3. American Ref-Fuel of SE CT Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo, Idaho:ReligiousHempstead

  4. CT Poison Control Center 2014 Video Contest Rules

    E-Print Network [OSTI]

    Kim, Duck O.

    CT Poison Control Center 2014 Video Contest Rules To Enter: 1) Record and upload a video to your an immediate family member who is an employee of the Connecticut Poison Control Center. Video Requirements: DO NOT HANDLE, INGEST OR USE ANY ACTUAL POISONOUS OR HAZARDOUSSUBSTANCES. IF YOU HAVE QUESTIONS ABOUT

  5. Pulmonary fissure segmentation on CT Jingbin Wang a

    E-Print Network [OSTI]

    Betke, Margrit

    between the lobes in the lungs. Its segmentation is of clinical interest as it facilitates the assessment of lung disease on a lobar level. This paper describes a new approach for segmenting the major fissures in both lungs on thin-section computed tomography (CT). An image transformation called ``ridge map

  6. Status and Promise CT's and Magnetized Target Fusion

    E-Print Network [OSTI]

    . Hill (LLNL) #12;CT's: Spheromaks & Field Reversed Configurations At LLNL, the SSPX experiment is investigating spheromak formation, sustainment, and confinement issues. (Hill, Mclean, Wood, Ryutov). At UC-Davis, formation and acceleration of spheromaks. (Hwang) At the U of Washington, field reversed configuration

  7. Collapsibility of Lung Volume by Paired Inspiratory and Expiratory CT

    E-Print Network [OSTI]

    Collapsibility of Lung Volume by Paired Inspiratory and Expiratory CT Scans: Correlations with Lung Function and Mean Lung Density Tsuneo Yamashiro, MD, Shin Matsuoka, MD, PhD, Brian J. Bartholmai, MD, Rau: To evaluate the relationship between measurements of lung volume (LV) on inspiratory/expiratory computed

  8. Thoracic CT-PET Registration Using a 3D Breathing Model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Thoracic CT-PET Registration Using a 3D Breathing Model Antonio Moreno1 , Sylvie Chambon1 , Anand P Orlando, USA Abstract. In the context of thoracic CT-PET volume registration, we present a novel method applications. We consider Computed Tomography (CT) and Positron Emission Tomography (PET) in thoracic regions

  9. Measurements from 3D-CT renderings are used in research and clinical management

    E-Print Network [OSTI]

    Vorperian, Houri K.

    Measurements from 3D-CT renderings are used in research and clinical management: Characterization for the prism]) RENDERING TECHNIQUES USED in ANALYZE 10.0: - Volume Render - (2) Volumes of Interest 1) VOI-Auto & 2) VOI-Manual TOTAL 3D-CT MODELS: 3 mandibles X 18 CT series X 3 rendering techniques = 162 mandible

  10. Automated Tumour Delineation Using Joint PET/CT Information Vaclav Potesil 1,2

    E-Print Network [OSTI]

    Huang, Xiaolei

    Automated Tumour Delineation Using Joint PET/CT Information Vaclav Potesil 1,2 , Xiaolei Huang 1 for automated delineation of tumor boundaries in whole-body PET/CT by jointly using information from both PET. Keywords: Tumor delineation, PET-CT, segmentation, radiation therapy planning 1. INTRODUCTION

  11. Augmenting CT Cardiac Roadmaps with Segmented Streaming Qi Duan a,b

    E-Print Network [OSTI]

    Augmenting CT Cardiac Roadmaps with Segmented Streaming Ultrasound Qi Duan a,b , Guy Shechter Static X-ray computed tomography (CT) volumes are often used as anatomic roadmaps during catheter. Augmenting these static CT roadmaps with segmented myocardial borders extracted from live ultrasound (US

  12. Soft Classification with Gaussian Mixture Model for Clinical Dual-Energy CT Reconstructions

    E-Print Network [OSTI]

    1 Soft Classification with Gaussian Mixture Model for Clinical Dual-Energy CT Reconstructions, and Ken D. Sauer, Member, IEEE Abstract--We study the distribution of the clinical dual-energy CT (DECT material separation. Index Terms--Computed tomography (CT), dual energy, sta- tistical method, Gaussian

  13. The New Oncology: Cost-effectiveness and Matchless Impactof PET-CT in Cancer Management CME

    E-Print Network [OSTI]

    Jadvar, Hossein

    The New Oncology: Cost-effectiveness and Matchless Impactof PET-CT in Cancer Management CME Author in integrating cost-effective FDG-PET and PET-CT fusion techniques into their clinical armamentarium to refine the clinical impact and cost-effectiveness of advanced imaging studies such as FDG-PET scanning and PET-CT

  14. Automatic Lung Nodule Detection from Chest CT Data Using Geometrical Features: Initial Results

    E-Print Network [OSTI]

    Whelan, Paul F.

    Automatic Lung Nodule Detection from Chest CT Data Using Geometrical Features: Initial Results for automatic lung nodule detection from Chest CT data is proposed. The proposed system includes the methods of lung segmentation and nodule detection from CT data. The algorithm for lung segmentation consists

  15. Robust Segmentation of Challenging Lungs in CT using Multi-Stage Learning

    E-Print Network [OSTI]

    Robust Segmentation of Challenging Lungs in CT using Multi-Stage Learning and Level Set.Kevin Zhou1 Abstract Automatic segmentation of lung tissue in thoracic CT scans is useful for diagnosis and treatment planning of pulmonary diseases. Unlike healthy lung tissue that is easily identifiable in CT scans

  16. Combining a Breathing Model and Tumor-Specific Rigidity Constraints for Registration of CT-PET Thoracic

    E-Print Network [OSTI]

    Chambon, Sylvie

    Combining a Breathing Model and Tumor-Specific Rigidity Constraints for Registration of CT-PET modalities, namely Computerized Tomography (CT) and Positron Emission Tomography (PET). While recent technical advancements in combined CT/PET scanners provide 3D CT and PET data of the thoracic region

  17. anthropometry bia ct: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    over kransslagaderverkalking, emfyseem (more) Xie, Xueqian 2013-01-01 25 Etablering av PETCT i Norge. Open Access Theses and Dissertations Summary: ??Establishment of PETCT in...

  18. In-patient to isocenter KERMA ratios in CT

    SciTech Connect (OSTI)

    Huda, Walter; Ogden, Kent M.; Lavallee, Robert L.; Roskopf, Marsha L.; Scalzetti, Ernest M. [Department of Radiology and Radiological Science, Medical University of South Carolina (MUSC), 96 Jonathan Lucas Street (MSC 323), Charleston, South Carolina 29425-3230 (United States); Department of Radiology, SUNY Upstate Medical University, 750 E Adams Street, Syracuse, New York 13210 (United States)

    2011-10-15T23:59:59.000Z

    Purpose: To estimate in-patient KERMA for specific organs in computed tomography (CT) scanning using ratios to isocenter free-in-air KERMA obtained using a Rando phantom.Method: A CT scan of an anthropomorphic phantom results in an air KERMA K at a selected phantom location and air kerma K{sub CT} at the CT scanner isocenter when the scan is repeated in the absence of the phantom. The authors define the KERMA ratio (R{sub K}) as K/ K{sub CT}, which were experimentally determined in a Male Rando Phantom using lithium fluoride chips (TLD-100). R{sub K} values were obtained for a total of 400 individual point locations, as well as for 25 individual organs of interest in CT dosimetry. CT examinations of Rando were performed on a GE LightSpeed Ultra scanner operated at 80 kV, 120 kV, and 140 kV, as well as a Siemens Sensation 16 operated at 120 kV. Results: At 120 kV, median R{sub K} values for the GE and Siemens scanners were 0.60 and 0.64, respectively. The 10th percentile R{sub K} values ranged from 0.34 at 80 kV to 0.54 at 140 kV, and the 90th percentile R{sub K} values ranged from 0.64 at 80 kV to 0.78 at 140 kV. The average R{sub K} for the 25 Rando organs at 120 kV was 0.61 {+-} 0.08. Average R{sub K} values in the head, chest, and abdomen showed little variation. Relative to R{sub K} values in the head, chest, and abdomen obtained at 120 kV, R{sub K} values were about 12% lower in the pelvis and about 58% higher in the cervical spine region. Average R{sub K} values were about 6% higher on the Siemens Sensation 16 scanner than the GE LightSpeed Ultra. Reducing the x-ray tube voltage from 120 kV to 80 kV resulted in an average reduction in R{sub K} value of 34%, whereas increasing the x-ray tube voltage to 140 kV increased the average R{sub K} value by 9%. Conclusions: In-patient to isocenter relative KERMA values in Rando phantom can be used to estimate organ doses in similar sized adults undergoing CT examinations from easily measured air KERMA values at the isocenter (free in air). Conversion from in-patient air KERMA values to tissue dose would require the use of energy-appropriate conversion factors.

  19. Utilizing a simple CT dosimetry phantom for the comprehension of the operational characteristics of CT AEC systems

    SciTech Connect (OSTI)

    Tsalafoutas, Ioannis A. [Medical Physics Department, Anticancer-Oncology Hospital of Athens Agios Savvas, 171 Alexandras Avenue, 115 22 Athens (Greece)] [Medical Physics Department, Anticancer-Oncology Hospital of Athens Agios Savvas, 171 Alexandras Avenue, 115 22 Athens (Greece); Varsamidis, Athanasios; Thalassinou, Stella; Efstathopoulos, Efstathios P. [Second Department of Radiology, Medical School, University of Athens, University General Hospital, Attikon, Rimini 1, 124 62 Athens (Greece)] [Second Department of Radiology, Medical School, University of Athens, University General Hospital, Attikon, Rimini 1, 124 62 Athens (Greece)

    2013-11-15T23:59:59.000Z

    Purpose: To investigate the utility of the nested polymethylacrylate (PMMA) phantom (which is available in many CT facilities for CTDI measurements), as a tool for the presentation and comparison of the ways that two different CT automatic exposure control (AEC) systems respond to a phantom when various scan parameters and AEC protocols are modified.Methods: By offsetting the two phantom's components (the head phantom and the body ring) half-way along their longitudinal axis, a phantom with three sections of different x-ray attenuation was created. Scan projection radiographs (SPRs) and helical scans of the three-section phantom were performed on a Toshiba Aquilion 64 and a Philips Brilliance 64 CT scanners, with different scan parameter selections [scan direction, pitch factor, slice thickness, and reconstruction interval (ST/RI), AEC protocol, and tube potential used for the SPRs]. The dose length product (DLP) values of each scan were recorded and the tube current (mA) values of the reconstructed CT images were plotted against the respective Z-axis positions on the phantom. Furthermore, measurements of the noise levels at the center of each phantom section were performed to assess the impact of mA modulation on image quality.Results: The mA modulation patterns of the two CT scanners were very dissimilar. The mA variations were more pronounced for Aquilion 64, where changes in any of the aforementioned scan parameters affected both the mA modulations curves and DLP values. However, the noise levels were affected only by changes in pitch, ST/RI, and AEC protocol selections. For Brilliance 64, changes in pitch affected the mA modulation curves but not the DLP values, whereas only AEC protocol and SPR tube potential selection variations affected both the mA modulation curves and DLP values. The noise levels increased for smaller ST/RI, larger weight category AEC protocol, and larger SPR tube potential selection.Conclusions: The nested PMMA dosimetry phantom can be effectively utilized for the comprehension of CT AEC systems performance and the way that different scan conditions affect the mA modulation patterns, DLP values, and image noise. However, in depth analysis of the reasons why these two systems exhibited such different behaviors in response to the same phantom requires further investigation which is beyond the scope of this study.

  20. Upright cone beam CT imaging using the onboard imager

    SciTech Connect (OSTI)

    Fave, Xenia, E-mail: xjfave@mdanderson.org; Martin, Rachael [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)] [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Yang, Jinzhong; Balter, Peter; Court, Laurence [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Carvalho, Luis [Varian Medical Systems, Zug 6303 (Switzerland)] [Varian Medical Systems, Zug 6303 (Switzerland); Pan, Tinsu [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)] [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-06-15T23:59:59.000Z

    Purpose: Many patients could benefit from being treated in an upright position. The objectives of this study were to determine whether cone beam computed tomography (CBCT) could be used to acquire upright images for treatment planning and to demonstrate whether reconstruction of upright images maintained accurate geometry and Hounsfield units (HUs). Methods: A TrueBeam linac was programmed in developer mode to take upright CBCT images. The gantry head was positioned at 0, and the couch was rotated to 270. The x-ray source and detector arms were extended to their lateral positions. The x-ray source and gantry remained stationary as fluoroscopic projections were taken and the couch was rotated from 270 to 90. The x-ray tube current was normalized to deposit the same dose (measured using a calibrated Farmer ion chamber) as that received during a clinical helical CT scan to the center of a cylindrical, polyethylene phantom. To extend the field of view, two couch rotation scans were taken with the detector offset 15 cm superiorly and then 15 cm inferiorly. The images from these two scans were stitched together before reconstruction. Upright reconstructions were compared to reconstructions from simulation CT scans of the same phantoms. Two methods were investigated for correcting the HUs, including direct calibration and mapping the values from a simulation CT. Results: Overall geometry, spatial linearity, and high contrast resolution were maintained in upright reconstructions. Some artifacts were created and HU accuracy was compromised; however, these limitations could be removed by mapping the HUs from a simulation CT to the upright reconstruction for treatment planning. Conclusions: The feasibility of using the TrueBeam linac to take upright CBCT images was demonstrated. This technique is straightforward to implement and could be of enormous benefit to patients with thoracic tumors or those who find a supine position difficult to endure.

  1. Open Access Task Force Open Access to

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Libraries Initiative launched by National Science Foundation; Social Sciences Research Network (SSRN Library System rgmiller@pitt.edu #12;Open Access Task Force Open Access is... A family of copyright The only constraint on reproduction and distribution, and the only role for copyright in this domain

  2. Dedicated breast CT: Fibroglandular volume measurements in a diagnostic population

    SciTech Connect (OSTI)

    Vedantham, Srinivasan; Shi Linxi; Karellas, Andrew; O'Connell, Avice M. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York 14642 (United States)

    2012-12-15T23:59:59.000Z

    Purpose: To determine the mean and range of volumetric glandular fraction (VGF) of the breast in a diagnostic population using a high-resolution flat-panel cone-beam dedicated breast CT system. This information is important for Monte Carlo-based estimation of normalized glandular dose coefficients and for investigating the dependence of VGF on breast dimensions, race, and pathology. Methods: Image data from a clinical trial investigating the role of dedicated breast CT that enrolled 150 women were retrospectively analyzed to determine the VGF. The study was conducted in adherence to a protocol approved by the institutional human subjects review boards and written informed consent was obtained from all study participants. All participants in the study were assigned BI-RADS{sup Registered-Sign} 4 or 5 as per the American College of Radiology assessment categories after standard diagnostic work-up and underwent dedicated breast CT exam prior to biopsy. A Gaussian-kernel based fuzzy c-means algorithm was used to partition the breast CT images into adipose and fibroglandular tissue after segmenting the skin. Upon determination of the accuracy of the algorithm with a phantom, it was applied to 137 breast CT volumes from 136 women. VGF was determined for each breast and the mean and range were determined. Pathology results with classification as benign, malignant, and hyperplasia were available for 132 women, and were used to investigate if the distributions of VGF varied with pathology. Results: The algorithm was accurate to within {+-}1.9% in determining the volume of an irregular shaped phantom. The study mean ({+-} inter-breast SD) for the VGF was 0.172 {+-} 0.142 (range: 0.012-0.719). VGF was found to be negatively correlated with age, breast dimensions (chest-wall to nipple length, pectoralis to nipple length, and effective diameter at chest-wall), and total breast volume, and positively correlated with fibroglandular volume. Based on pathology, pairwise statistical analysis (Mann-Whitney test) indicated that at the 0.05 significance level, there was no significant difference in distributions of VGF without adjustment for age between malignant and nonmalignant breasts (p= 0.41). Pairwise comparisons of the distributions of VGF in increasing order of mammographic breast density indicated all comparisons were statistically significant (p < 0.002). Conclusions: This study used a different clinical prototype breast CT system than that in previous studies to image subjects from a different geographical region, and used a different algorithm for analysis of image data. The mean VGF estimated from this study is within the range reported in previous studies, indicating that the choice of 50% glandular weight fraction to represent an average breast for Monte Carlo-based estimation of normalized glandular dose coefficients in mammography needs revising. In the study, the distributions of VGF did not differ significantly with pathology.

  3. Embedded Library in WebCT: Pushing UCSD Library Resources to Faculty Courses

    E-Print Network [OSTI]

    Ho, SuHui

    2007-01-01T23:59:59.000Z

    keeper about pushing the library to department pages & webEmbedded Library in WebCT:Pushing UCSD Library Resources to Faculty Courses Presenter:

  4. A Fossilized Opal A To Opal C-T Transformation On The Northeast...

    Open Energy Info (EERE)

    Fossilized Opal A To Opal C-T Transformation On The Northeast Atlantic Margin- Support For A Significantly Elevated Palaeogeothermal Gradient During The Neogene? Jump to:...

  5. Towards local progression estimation of pulmonary emphysema using CT

    SciTech Connect (OSTI)

    Staring, M., E-mail: m.staring@lumc.nl; Bakker, M. E.; Shamonin, D. P.; Reiber, J. H. C.; Stoel, B. C. [Department of Radiology, Division of Image Processing, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands)] [Department of Radiology, Division of Image Processing, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Stolk, J. [Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands)] [Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands)

    2014-02-15T23:59:59.000Z

    Purpose: Whole lung densitometry on chest CT images is an accepted method for measuring tissue destruction in patients with pulmonary emphysema in clinical trials. Progression measurement is required for evaluation of change in health condition and the effect of drug treatment. Information about the location of emphysema progression within the lung may be important for the correct interpretation of drug efficacy, or for determining a treatment plan. The purpose of this study is therefore to develop and validate methods that enable the local measurement of lung density changes, which requires proper modeling of the effect of respiration on density. Methods: Four methods, all based on registration of baseline and follow-up chest CT scans, are compared. The first nave method subtracts registered images. The second employs the so-called dry sponge model, where volume correction is performed using the determinant of the Jacobian of the transformation. The third and the fourth introduce a novel adaptation of the dry sponge model that circumvents its constant-mass assumption, which is shown to be invalid. The latter two methods require a third CT scan at a different inspiration level to estimate the patient-specific density-volume slope, where one method employs a global and the other a local slope. The methods were validated on CT scans of a phantom mimicking the lung, where mass and volume could be controlled. In addition, validation was performed on data of 21 patients with pulmonary emphysema. Results: The image registration method was optimized leaving a registration error below half the slice increment (median 1.0 mm). The phantom study showed that the locally adapted slope model most accurately measured local progression. The systematic error in estimating progression, as measured on the phantom data, was below 2 gr/l for a 70 ml (6%) volume difference, and 5 gr/l for a 210 ml (19%) difference, if volume correction was applied. On the patient data an underlying linearity assumption relating lung volume change with density change was shown to hold (fitR{sup 2} = 0.94), and globalized versions of the local models are consistent with global results (R{sup 2} of 0.865 and 0.882 for the two adapted slope models, respectively). Conclusions: In conclusion, image matching and subsequent analysis of differences according to the proposed lung models (i) has good local registration accuracy on patient data, (ii) effectively eliminates a dependency on inspiration level at acquisition time, (iii) accurately predicts progression in phantom data, and (iv) is reasonably consistent with global results in patient data. It is therefore a potential future tool for assessing local emphysema progression in drug evaluation trials and in clinical practice.

  6. DOE - Office of Legacy Management -- New Canaan Site - CT 08

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CT 0-01Naturita36 SupplyCanaan Site -

  7. ankylosing spondylitis ct: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 21 Etablering av PETCT i Norge. Open Access Theses and Dissertations Summary: ??Establishment of PETCT in...

  8. acquired cholesteatomas ct: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr MarkbarryDr BardstownTrl PepperPikeRd Wynnsto Kamat, Vineet R. 23 Acquired Dyslexia in Japanese: Implications for Reading Theory . Open Access Theses and Dissertations...

  9. Simultaneous CT and SPECT tomography using CZT detectors

    DOE Patents [OSTI]

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Lubbock, TX); Simpson, Michael L. (Knoxville, TN); Britton, Jr., Charles L. (Alcoa, TN)

    2002-01-01T23:59:59.000Z

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  10. Open Burning (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Air Quality Bureau regulates the open burning rules established by the Environmental Improvement Board. These rules are established to protect public health...

  11. Job Openings at CEES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Openings at the Center for Electrical Energy Storage All CEES positions are currently filled. For more information about Postdoctoral Fellowship Programs at Argonne, please...

  12. LETTER OPEN doi:10.1038/nature13668

    E-Print Network [OSTI]

    94305, USA. 2 Program of Computational Biology and Bioinformatics, Yale University, New Haven commonalities in their biology, and this has helped to establish fly and worm as model organisms for human biology1,2 . Although studies of individual elements and factors have explored similarities in gene

  13. Effects of the difference in tube voltage of the CT scanner on dose calculation

    E-Print Network [OSTI]

    Rhee, Dong Joo; Moon, Young Min; Kim, Jung Ki; Jeong, Dong Hyeok

    2015-01-01T23:59:59.000Z

    Computed Tomography (CT) measures the attenuation coefficient of an object and converts the value assigned to each voxel into a CT number. In radiation therapy, CT number, which is directly proportional to the linear attenuation coefficient, is required to be converted to electron density for radiation dose calculation for cancer treatment. However, if various tube voltages were applied to take the patient CT image without applying the specific CT number to electron density conversion curve, the accuracy of dose calculation would be unassured. In this study, changes in CT numbers for different materials due to change in tube voltage were demonstrated and the dose calculation errors in percentage depth dose (PDD) and a clinical case were analyzed. The maximum dose difference in PDD from TPS dose calculation and Monte Carlo simulation were 1.3 % and 1.1 % respectively when applying the same CT number to electron density conversion curve to the 80 kVp and 140 kVp images. In the clinical case, the different CT nu...

  14. CT-PET Landmark-based Lung Registration Using a Dynamic Breathing Model S. Chambon1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CT-PET Landmark-based Lung Registration Using a Dynamic Breathing Model S. Chambon1 , A. Moreno1-based registration of CT (at two different instants of the breathing cycle, intermediate expirations) and PET images in order to simulate the instant in the breathing cycle most similar to the PET image and guarantee

  15. SPECIAL REPORTS AND REVIEWS Mass Screening With CT Colonography: Should the Radiation

    E-Print Network [OSTI]

    Brenner, David Jonathan

    SPECIAL REPORTS AND REVIEWS Mass Screening With CT Colonography: Should the Radiation Exposure is highly advantageous, it can be performed with lower radiation doses than almost any other CT examination market in the United States would soon be over 100 million people. Therefore, it is pertinent to consider

  16. Siemens AG, CT IC 4, H.-G. Zimmermann1 CORPORATETECHNOLOGY

    E-Print Network [OSTI]

    Schmidhuber, Juergen

    Siemens AG, CT IC 4, H.-G. Zimmermann1 CORPORATETECHNOLOGY System Identification & Forecasting with Advanced Neural Networks Principles, Techniques, Applications Hans Georg Zimmermann Siemens AG Email : Hans_Georg.Zimmermann@siemens.com Siemens AG, CT IC 4, H.-G. Zimmermann2 CORPORATETECHNOLOGY . . . . ! " i ii wxw 0 w1 wn xn x1 Distinct

  17. Bone Surface Reconstruction From CT/MR Images Using Fast Marching and Level Set Methods1)

    E-Print Network [OSTI]

    Chetverikov, Dmitry

    Bone Surface Reconstruction From CT/MR Images Using Fast Marching and Level Set Methods1) Istv surfaces reconstructed from MR volumes are shown. 1 Outline of the project One of our current projects steps of bone surface reconstruction from CT/MR slice images. 2 Main steps of reconstruction 2.1

  18. A Model-Based Iterative Algorithm for Dual-Energy X-Ray CT Reconstruction

    E-Print Network [OSTI]

    A Model-Based Iterative Algorithm for Dual-Energy X-Ray CT Reconstruction Ruoqiao Zhang, Jean, Senior Member, IEEE Abstract--Recent developments in dual-energy X-ray CT have shown a number of benefits the opportunity to reduce noise and artifacts in dual energy reconstructions. However, previous approaches

  19. Multi-Material Decomposition Using Statistical Image Reconstruction in X-Ray CT

    E-Print Network [OSTI]

    Fessler, Jeffrey A.

    and Jeffrey A. Fessler Abstract--Dual-energy (DE) CT scans provide two sets of measurements at two different-mean-square (RMS) errors. Index Terms--Computed tomography, dual energy, multi- material decomposition, statistical image reconstruction I. INTRODUCTION Dual-energy (DE) CT reconstruction methods typically re- construct

  20. Hemorrhage Slices Detection in Brain CT Images Ruizhe Liu, Chew Lim Tan, Tze Yun Leong

    E-Print Network [OSTI]

    Tan, Chew Lim

    Hemorrhage Slices Detection in Brain CT Images Ruizhe Liu, Chew Lim Tan, Tze Yun Leong Department) scans are widely used in today's diagnosis of head traumas. It is effective to disclose the bleeding Tomography (CT) scans are widely used in today's diagnosis of head traumas. It is effective to disclose

  1. AUTOMATIC HEART ISOLATION FOR CT CORONARY VISUALIZATION USING G. Funka-Lea1

    E-Print Network [OSTI]

    Boykov, Yuri

    AUTOMATIC HEART ISOLATION FOR CT CORONARY VISUALIZATION USING GRAPH-CUTS G. Funka-Lea1 , Y. Boykov3 isolate the outer surface of the entire heart in Computer Tomogra- phy (CT) cardiac scans. Isolating the entire heart allows the coronary vessels on the surface of the heart to be easily visu- alized despite

  2. Non-Destructive Whole Lung Assessment via Multi-scale Micro CT Imaging Combined with Stereology

    E-Print Network [OSTI]

    Wang, Ge

    Non-Destructive Whole Lung Assessment via Multi-scale Micro CT Imaging Combined with Stereology Tech, Virginia, USA Running head Non-Destructive Whole Lung Assessment via CT Contact Information Eric-hoffman@uiowa.edu Phone: 319-353-6213 Fax: 319-356-1503 #12;Abstract Estimating volume fractions of the lung parenchyma

  3. Location registration and recognition (LRR) for serial analysis of nodules in lung CT scans

    E-Print Network [OSTI]

    Location registration and recognition (LRR) for serial analysis of nodules in lung CT scans Michal t In the clinical workflow for lung cancer management, the comparison of nodules between CT scans from subsequent in investigating the condition of the lung. The algorithm uses a combination of feature extraction, indexing

  4. ROBUST SEGMENTATION OF LUNG TISSUE IN CHEST CT SCANNING Amal Farag, James Graham and Aly Farag

    E-Print Network [OSTI]

    Louisville, University of

    ROBUST SEGMENTATION OF LUNG TISSUE IN CHEST CT SCANNING Amal Farag, James Graham and Aly Farag.edu ABSTRACT This paper deals with segmentation of the lung tissues from low dose CT (LDCT) scans of the chest. Goal is correct segmentation as well as maintaining the details of the lung region in the chest cavity

  5. Automated segmentation of lungs with severe interstitial lung disease in CT

    E-Print Network [OSTI]

    Automated segmentation of lungs with severe interstitial lung disease in CT Jiahui Wang Department: Accurate segmentation of lungs with severe interstitial lung disease ILD in thoracic computed tomography CT developed in this study a texture analysis-based method for accurate segmentation of lungs with severe ILD

  6. CT-FIRE (V1.3 Beta2) User's Manual, LOCI @ UW-Madison CT-FIRE V1.3 Beta2 User's Manual (November 6 2014)

    E-Print Network [OSTI]

    Yavuz, Deniz

    CT-FIRE (V1.3 Beta2) User's Manual, LOCI @ UW-Madison 1 CT-FIRE V1.3 Beta2 User's Manual (November straightness. Using #12;CT-FIRE (V1.3 Beta2) User's Manual, LOCI @ UW-Madison 2 the advanced output control-processing. Major features of the versions Version 1.3 Beta2 (newest): The primary change in CT-FIRE V1.3 Beta2

  7. OpenXC | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThe community Energy ToolsOpenXC Home

  8. OpenBarter | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: Energy Resourcesen) OpenOpenBarter Jump

  9. Demystifying Open Access

    SciTech Connect (OSTI)

    Mele, Salvatore

    2007-05-14T23:59:59.000Z

    The tenets of Open Access are to grant anyone, anywhere and anytime free access to the results of scientific research. HEP spearheaded the Open Access dissemination of scientific results with the mass mailing of preprints in the pre-WWW era and with the launch of the arXiv preprint system at the dawn of the '90s. The HEP community is now ready for a further push to Open Access while retaining all the advantages of the peer-review system and, at the same time, bring the spiralling cost of journal subscriptions under control. I will present a possible plan for the conversion to Open Access of HEP peer-reviewed journals, through a consortium of HEP funding agencies, laboratories and libraries: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics). SCOAP3 will engage with scientific publishers towards building a sustainable model for Open Access publishing, which is as transparent as possible for HEP authors. The current system in which journals income comes from subscription fees is replaced with a scheme where SCOAP3 compensates publishers for the costs incurred to organise the peer-review service and give Open Access to the final version of articles. SCOAP3 will be funded by all countries active in HEP under a 'fair share' scenario, according to their production of HEP articles. In this talk I will present a short overview of the history of Open Access in HEP, the details of the SCOAP3 model and the outlook for its implementation.

  10. Pulmonary Vascular Tree Segmentation from Contrast-Enhanced CT Images

    E-Print Network [OSTI]

    Helmberger, M; Pienn, M; Balint, Z; Olschewski, A; Bischof, H

    2013-01-01T23:59:59.000Z

    We present a pulmonary vessel segmentation algorithm, which is fast, fully automatic and robust. It uses a coarse segmentation of the airway tree and a left and right lung labeled volume to restrict a vessel enhancement filter, based on an offset medialness function, to the lungs. We show the application of our algorithm on contrast-enhanced CT images, where we derive a clinical parameter to detect pulmonary hypertension (PH) in patients. Results on a dataset of 24 patients show that quantitative indices derived from the segmentation are applicable to distinguish patients with and without PH. Further work-in-progress results are shown on the VESSEL12 challenge dataset, which is composed of non-contrast-enhanced scans, where we range in the midfield of participating contestants.

  11. Monitoring internal organ motion with continuous wave radar in CT

    SciTech Connect (OSTI)

    Pfanner, Florian [Institute of Medical Physics, University of ErlangenNrnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Institute of Medical Physics, University of ErlangenNrnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Maier, Joscha [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Allmendinger, Thomas; Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Kachelrie, Marc [Institute of Medical Physics, University of ErlangenNrnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Institute of Medical Physics, University of ErlangenNrnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2013-09-15T23:59:59.000Z

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (?= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.

  12. Investigation of statistical iterative reconstruction for dedicated breast CT

    SciTech Connect (OSTI)

    Makeev, Andrey; Glick, Stephen J. [UMass Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655 (United States)] [UMass Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655 (United States)

    2013-08-15T23:59:59.000Z

    Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images were compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue.Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 ?m microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters.Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved performance (by a factor of greater than 10) compared to FBP. The hyperbolic prior was also observed to be superior to the TV norm. A few of the best-performing parameter pairs for the PML method also demonstrated superior performance for various radiation doses. In fact, using PML with certain parameter values results in better images, acquired using 2 mGy dose, than FBP-reconstructed images acquired using 6 mGy dose.Conclusions: A range of optimal free parameters for the PML algorithm with hyperbolic and TV norm-based potentials is presented for the microcalcification detection task, in dedicated breast CT. The reported values can be used as starting values of the free parameters, when SIR techniques are used for image reconstruction. Significant improvement in image quality can be achieved by using PML with optimal combination of parameters, as compared to FBP. Importantly, these results suggest improved detection of microcalcifications can be obtained by using PML with lower radiation dose to the patient, than using FBP with higher dose.

  13. Computational analysis of whole body CT documents a bone structure alteration in adult advanced chronic lymphocytic leukemia

    E-Print Network [OSTI]

    Piana, Michele

    progression. PET/CT images were analyzed using dedicated software, able to recognize an external 2-pixel bone ring whose Hounsfield coefficient served as cut off to recognize trabecular and compact bone. PET/CT of the disease. Keywords: Image Analysis, Bone Marrow, Skeletal Structure, ACLL, PET/CT #12;3 Introduction

  14. Measuring the whole bone marrow asset in humans by a computational approach to integrated PET/CT imaging.

    E-Print Network [OSTI]

    Piana, Michele

    ; 7 CNR-SPIN. Genova. Italy Running Head: PET/CT measurement of bone marrow volume AddressMeasuring the whole bone marrow asset in humans by a computational approach to integrated PET/CT to chemotherapy. Keywords: PET/CT; bone marrow imaging; image processing. #12;2 Introduction Bone marrow (BM

  15. Dual energy CT-based characterization of x-ray attenuation properties of breast equivalent material plates

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Dual energy CT-based characterization of x-ray attenuation properties of breast equivalent material of the same nominal breast density equivalence (+ 1.5 HU). In addition, dual energy CT provided mono equivalent material, breast density, attenuation properties, linear attenuation coefficients, dual energy CT

  16. Statistical analysis of Multi-Material Components using Dual Energy CT Christoph Heinzl, Johann Kastner, Torsten Moller, and Eduard Groller

    E-Print Network [OSTI]

    Statistical analysis of Multi-Material Components using Dual Energy CT Christoph Heinzl, Johann plastics-metal components. The presented work makes use of dual energy CT data acquisi- tion for artefact pipeline based on the dual ex- posure technique of dual energy CT. After prefilter- ing and multi

  17. Abstract-Proton Computed Tomography (CT) has important implications for both image-guided diagnosis and radiation

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Abstract- Proton Computed Tomography (CT) has important implications for both image-guided diagnosis and radiation therapy. For diagnosis, the fact that the patient dose committed by proton CT and contrast, may be exploited in dose-critical clinical settings. Proton CT is also the most appropriate

  18. for Proton CT R. P. Johnson, Member, IEEE, V. Bashkirov, V. Giacometti, R. F. Hurley, P. Piersimoni,

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    for Proton CT R. P. Johnson, Member, IEEE, V. Bashkirov, V. Giacometti, R. F. Hurley, P. Piersimoni beam test results with our pre-clinical (Phase-II) head scanner developed for proton computed tomography (pCT). After extensive preclinical testing, pCT will be employed in support of proton therapy

  19. T4DT: Processing 4D CT scans of the Lungs Robert Fowler Joe Warren Yin Zhang

    E-Print Network [OSTI]

    Warren, Joe

    T4DT: Processing 4D CT scans of the Lungs Robert Fowler Joe Warren Yin Zhang Rice University technology for processing time-varying CT scans (4D CT) of the lungs. In particular, we propose to develop these tools to quantitatively assess the effectiveness of current treatments for lung cancer. #12;T4DT

  20. SU-E-J-43: Deformed Planning CT as An Electron Density Substitute for Cone-Beam CT

    SciTech Connect (OSTI)

    Mishra, K [Cleveland State University, Cleveland, OH (United States); Godley, A [Cleveland Clinic, Cleveland, OH (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To confirm that deforming the planning CT to the daily Cone-Beam CTs (CBCT) can provide suitable electron density for adaptive planning. We quantify the dosimetric difference between plans calculated on deformed planning CTs (DPCT) and daily CT-on-rails images (CTOR). CTOR is used as a test of the method as CTOR already contains accurate electron density to compare against. Methods: Five prostate only IMRT patients, each with five CTOR images, were selected and re-planned on Panther (Prowess Inc.) with a uniform 5 mm PTV expansion, prescribed 78 Gy. The planning CT was deformed to match each CTOR using ABAS (Elekta Inc.). Contours were drawn on the CTOR, and copied to the DPCT. The original treatment plan was copied to both the CTOR and DPCT, keeping the center of the prostate as the isocenter. The plans were then calculated using the collapsed cone heterogeneous dose engine of Prowess and typical DVH planning parameters used to compare them. Results: Each DPCT was visually compared to its CTOR with no differences observed. The agreement of the copied CTOR contours with the DPCT anatomy further demonstrated the deformation accuracy. The plans calculated using CTOR and DPCT were compared. Over the 25 plan pairs, the average difference between them for prostate D100, D98 and D95 were 0.5%, 0.2%, and 0.2%; PTV D98, D95 and mean dose: 0.3%, 0.2% and 0.3%; bladder V70, V60 and mean dose: 1.1%, 0.7%, and 0.2%; and rectum mean dose: 0.3%. (D100 is the dose covering 100% of the target; V70 is the volume of the organ receiving 70 Gy). Conclusion: We observe negligible difference between the dose calculated on the DPCT and the CTOR, implying that deformed planning CTs are a suitable substitute for electron density. The method can now be applied to CBCTs. Research version of Panther provided by Prowess Inc. Research version of ABAS provided by Elekta Inc.

  1. Open Bibliography for Science, Technology, and Medicine

    E-Print Network [OSTI]

    Jones, Richard; MacGillivray, Mark; Murray-Rust, Peter; Pitman, Jim; Sefton, Peter; O'Steen, Ben; Waites, William

    2011-07-04T23:59:59.000Z

    The concept of Open Bibliography in science, technology and medicine (STM) is introduced as a combination of Open Source tools, Open specifications and Open bibliographic data. An Openly searchable and navigable network of bibliographic information...

  2. Open Energy Info (OpenEI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    The Open Energy Information (OpenEI.org) initiative is a free, open-source, knowledge-sharing platform. OpenEI was created to provide access to data, models, tools, and information that accelerate the transition to clean energy systems through informed decisions.

  3. OpenGL Lighting 13. OpenGL Lighting

    E-Print Network [OSTI]

    McDowell, Perry

    OpenGL Lighting 13. OpenGL Lighting Overview of Lighting in OpenGL In order for lighting to have an effect in OpenGL, two things are required: A light An object to be lit Lights can be set to any color determine how they reflect the light which hits them. The color(s) of an object is determined

  4. CtIP tetramer assembly is required for DNA-end resection and repair

    E-Print Network [OSTI]

    Davies, Owen R.; Forment, Josep V.; Sun, Meidai; Belotserkovskaya, Rimma; Coates, Julia; Galanty, Yaron; Demir, Mukerrem; Morton, Christopher; Rzechorzek, Neil; Jackson, Stephen P.; Pellegrini, Luca

    2015-01-05T23:59:59.000Z

    1 CtIP tetramer assembly is required for DNA-end resection and repair Owen R. Davies1,4*, Josep V. Forment1,2,3*, Meidai Sun1, Rimma Belotserkovskaya1,2, Julia Coates1,2, Yaron Galanty1,2, Mukerrem Demir1,2, Christopher Morton1... that a CtIP tetramer architecture is essential for effective DSB repair by homologous recombination. Keywords CtIP/RBBP8, double-strand DNA break repair, DNA-end resection, gene conversion, homologous recombination. 3...

  5. Iterative image-domain decomposition for dual-energy CT

    SciTech Connect (OSTI)

    Niu, Tianye; Dong, Xue; Petrongolo, Michael; Zhu, Lei, E-mail: leizhu@gatech.edu [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)] [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-04-15T23:59:59.000Z

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.

  6. OpenDAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    only the subset of the data requested. Additionally the data may be processed on the server through GrADS expressions in the URL. Some examples are given below. OpenDAP for...

  7. Open cycle thermoacoustics

    SciTech Connect (OSTI)

    Reid, Robert Stowers

    2000-01-01T23:59:59.000Z

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  8. Temporal and spectral imaging with micro-CT

    SciTech Connect (OSTI)

    Johnston, Samuel M.; Johnson, G. Allan; Badea, Cristian T. [Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2012-08-15T23:59:59.000Z

    Purpose: Micro-CT is widely used for small animal imaging in preclinical studies of cardiopulmonary disease, but further development is needed to improve spatial resolution, temporal resolution, and material contrast. We present a technique for visualizing the changing distribution of iodine in the cardiac cycle with dual source micro-CT. Methods: The approach entails a retrospectively gated dual energy scan with optimized filters and voltages, and a series of computational operations to reconstruct the data. Projection interpolation and five-dimensional bilateral filtration (three spatial dimensions + time + energy) are used to reduce noise and artifacts associated with retrospective gating. We reconstruct separate volumes corresponding to different cardiac phases and apply a linear transformation to decompose these volumes into components representing concentrations of water and iodine. Since the resulting material images are still compromised by noise, we improve their quality in an iterative process that minimizes the discrepancy between the original acquired projections and the projections predicted by the reconstructed volumes. The values in the voxels of each of the reconstructed volumes represent the coefficients of linear combinations of basis functions over time and energy. We have implemented the reconstruction algorithm on a graphics processing unit (GPU) with CUDA. We tested the utility of the technique in simulations and applied the technique in an in vivo scan of a C57BL/6 mouse injected with blood pool contrast agent at a dose of 0.01 ml/g body weight. Postreconstruction, at each cardiac phase in the iodine images, we segmented the left ventricle and computed its volume. Using the maximum and minimum volumes in the left ventricle, we calculated the stroke volume, the ejection fraction, and the cardiac output. Results: Our proposed method produces five-dimensional volumetric images that distinguish different materials at different points in time, and can be used to segment regions containing iodinated blood and compute measures of cardiac function. Conclusions: We believe this combined spectral and temporal imaging technique will be useful for future studies of cardiopulmonary disease in small animals.

  9. Impact of tumor size and tracer uptake heterogeneity in F-FDG PET and CT NonSmall Cell Lung Cancer

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    heterogeneity on various PET uptake delineation approaches. Methods: 25 NSCLC cancer patients with 18F-FDG PET/CT increasingly used for staging Non-small Cell Lung Cancer (NSCLC) (1). In addition, the use of 18 F-FDG PET/CT F-FDG), associated with Computed Tomography (CT) since the development of PET/CT devices, has been

  10. RIS-M-2586 ELASTIC-PLASTIC FRACTURE MECHANICS ANALYSIS OF A CT-SPECIMEN

    E-Print Network [OSTI]

    RIS-M-2586 ELASTIC-PLASTIC FRACTURE MECHANICS ANALYSIS OF A CT-SPECIMEN - A TWO-DIMENSIONAL APPROACH Gunner C. Larsen Abstract. This report documents the results obtained from an elastic-plastic

  11. angiographic c-arm ct: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Christchurch Medical School) Summary The MARS-CT team has had great success over the past 6 months with support portfolio. This support underpins the research and development to...

  12. Low-Dose Spiral CT Scans for Early Lung Cancer Detection

    Broader source: Energy.gov [DOE]

    Low-dose spiral computed tomography (CT) scanning is a noninvasive medical imaging test that has been used for the early detection of lung cancer for over 16 years (Sone et al. 1998; Henschke et.al. 1999).

  13. Lung nodule detection in low-dose and high-resolution CT scans

    E-Print Network [OSTI]

    Delogu, P; Gori, I; Preite Martnez, A; Retico, A; Tata, A

    2006-01-01T23:59:59.000Z

    We are developing a computer-aided detection (CAD) system for the identification of small pulmonary nodules in screening CT scans. The main modules of our system, i.e. a dot-enhancement filter for nodule candidate selection and a neural classifier for false positive finding reduction, are described. The preliminary results obtained on the so-far collected database of lung CT are discussed.

  14. Semi-automatic delineation using weighted CT-MRI registered images for radiotherapy of nasopharyngeal cancer

    SciTech Connect (OSTI)

    Fitton, I. [European Georges Pompidou Hospital, Department of Radiology, 20 rue Leblanc, 75015, Paris (France); Cornelissen, S. A. P. [Image Sciences Institute, UMC, Department of Radiology, P.O. Box 85500, 3508 GA Utrecht (Netherlands); Duppen, J. C.; Rasch, C. R. N.; Herk, M. van [The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Radiotherapy, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Steenbakkers, R. J. H. M. [University Medical Center Groningen, Department of Radiation Oncology, Hanzeplein 1, 9713 GZ Groningen (Netherlands); Peeters, S. T. H. [UZ Gasthuisberg, Herestraat 49, 3000 Leuven, Belgique (Belgium); Hoebers, F. J. P. [Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO clinic), GROW School for Oncology and Development Biology Maastricht, 6229 ET Maastricht (Netherlands); Kaanders, J. H. A. M. [UMC St-Radboud, Department of Radiotherapy, Geert Grooteplein 32, 6525 GA Nijmegen (Netherlands); Nowak, P. J. C. M. [ERASMUS University Medical Center, Department of Radiation Oncology,Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2011-08-15T23:59:59.000Z

    Purpose: To develop a delineation tool that refines physician-drawn contours of the gross tumor volume (GTV) in nasopharynx cancer, using combined pixel value information from x-ray computed tomography (CT) and magnetic resonance imaging (MRI) during delineation. Methods: Operator-guided delineation assisted by a so-called ''snake'' algorithm was applied on weighted CT-MRI registered images. The physician delineates a rough tumor contour that is continuously adjusted by the snake algorithm using the underlying image characteristics. The algorithm was evaluated on five nasopharyngeal cancer patients. Different linear weightings CT and MRI were tested as input for the snake algorithm and compared according to contrast and tumor to noise ratio (TNR). The semi-automatic delineation was compared with manual contouring by seven experienced radiation oncologists. Results: A good compromise for TNR and contrast was obtained by weighing CT twice as strong as MRI. The new algorithm did not notably reduce interobserver variability, it did however, reduce the average delineation time by 6 min per case. Conclusions: The authors developed a user-driven tool for delineation and correction based a snake algorithm and registered weighted CT image and MRI. The algorithm adds morphological information from CT during the delineation on MRI and accelerates the delineation task.

  15. linked open data | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Home Rmckeel'slinked open data Home Jweers's picture

  16. About OpenEI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00About OpenEI Jump to: navigation, search

  17. OpenEI | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPowerKaitianOstsee Wind AG Jump to:OhioDataOpenEI

  18. OpenEI and Linked Open Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014Funds for CleanAbout Energy.govOpenEI and

  19. Widget:OpenEISearch | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJumpGoogleAreaMap JumpNOTITLE Jump to: navigation,OpenEISearch

  20. California Clean Tech Open | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump28 2013 NextCalifon,City,Open

  1. OpenEI:Contributing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Communitydesign TypeContributing Jump

  2. OpenEI:TODO | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEITODO Jump to: navigation, search This

  3. OpenEI:Verifiability | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEITODO Jump to: navigation, search

  4. OpenStudio | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEITODO Jump to: navigation,

  5. OpenEI Community - Open Data

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia Green Fuelsper Category

  6. OpenEI Community - OpenEI

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia Green Fuelsper CategoryPresidential Memorandum

  7. Lung Dose Calculation With SPECT/CT for {sup 90}Yittrium Radioembolization of Liver Cancer

    SciTech Connect (OSTI)

    Yu, Naichang, E-mail: yun@ccf.org [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States)] [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States); Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran [Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH (United States)] [Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH (United States); Levitin, Abraham; McLennan, Gordon; Spain, James [Department of Interventional Radiology, Cleveland Clinic, Cleveland, OH (United States)] [Department of Interventional Radiology, Cleveland Clinic, Cleveland, OH (United States); Xia, Ping; Wilkinson, Allan [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States)] [Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH (United States)

    2013-03-01T23:59:59.000Z

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ({sup 99m}Tc-MAA) single photon emission CT (SPECT)/CT for {sup 90}Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of {sup 99m}Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on {sup 99m}Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended.

  8. Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergyInformationOpenOpen

  9. Geserv | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell2008) | OpenSilver PeakGeserv Jump to:

  10. HCDNNJ | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy | Open Energy Sector:

  11. OpenMP Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and Evaluation |quasicrystals65Open OpenMP Home »

  12. OpenMP Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and Evaluation |quasicrystals65Open OpenMP Home

  13. Hanover | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy | OpenHalf HollowRoadsCounty

  14. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:ProjectPrograms | OpenVentures JumpHydrogen

  15. Refrigerators | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl., 2005) | Open EnergyOpen

  16. Akeida Capital Management | Open Energy Information

    Open Energy Info (EERE)

    Akeida Capital Management Jump to: navigation, search Name: Akeida Capital Management Place: New York, New York Zip: 10036 Region: Northeast - NY NJ CT PA Area Product: Financing...

  17. Quantales of open groupoids

    E-Print Network [OSTI]

    Protin, Clarence

    2008-01-01T23:59:59.000Z

    The correspondence between inverse semigroups and \\'{e}tale groupoids has been studied in the context of the correspondence between \\'{e}tale groupoids and inverse quantal frames. In this thesis this correspondence is extended to open groupoids, and the quantales associated to them supply the place of the inverse semigroups. We define quantal frames called \\emph{open quantal frames} such that if we add the \\emph{multiplicativity} condition we obtain the quantalic counterpart of open groupoids. Since this condition is difficult to check and counterexamples are not known, we give simpler conditions, called \\emph{$\\Gamma$-suitability} and \\emph{$j$-regularity}, for open quantal frames to yield groupoids. A wide class of topological groupoids captured by these quantales admit a simple characterisation: they have an ample enough collection of $G$-sets. $\\Gamma$-suitability guarantees that the set $\\Gamma(Q)$ of \\emph{local bisections} is an inverse semigroup. $J$-regularity causes both this semigroup to induce an ...

  18. Open Charm Production at RHIC

    E-Print Network [OSTI]

    Xin Dong

    2005-09-30T23:59:59.000Z

    Recent experimental measurements on open charm production in proton-proton, proton (deuteron)-nucleus and nucleus-nucleus collisions at RHIC are reviewed. A comparison with theoretical predictions is made. Some unsettled issues in open charm production call for precise measurements on directly reconstructed open charm hadrons.

  19. MRI-based treatment planning with pseudo CT generated through atlas registration

    SciTech Connect (OSTI)

    Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org; Merchant, Thomas E.; Hua, Chiaho [Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 (United States)] [Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 (United States); Li, Yimei; Li, Xingyu [Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 (United States)] [Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 (United States)

    2014-05-15T23:59:59.000Z

    Purpose: To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. Methods: A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. Results: The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.7870.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the percentage of volume receiving at least 95% of the prescription dose in the planning target volume differed from the original values by less than 2% of the prescription dose (root-mean-square, RMS < 1%). The PRGP scheme did not perform better than the arithmetic mean process with the same number of atlases. Increasing the number of atlases from 6 to 12 often resulted in improvements, but statistical significance was not always found. Conclusions: MRI-based treatment planning with pseudo CTs generated through atlas registration is feasible for pediatric brain tumor patients. The doses calculated from pseudo CTs agreed well with those from real CTs, showing dosimetric accuracy within 2% for the PTV when multiple atlases were used. The arithmetic mean process may be a reasonable choice over PRGP for the synthesis scheme considering performance and computational costs.

  20. OpenADR Open Source Toolkit: Developing Open Source Software for the Smart Grid

    E-Print Network [OSTI]

    McParland, Charles

    2012-01-01T23:59:59.000Z

    Status of NISTs EISA Smart Grid Efforts, Mar. 26, 2009,Open Source Software for the Smart Grid Charles McParlandOpen Source Software for the Smart Grid Charles McParland,

  1. Open Cluster Open Cluster Open Cluster A group of several thousand stars

    E-Print Network [OSTI]

    Bechtold, Jill

    Open Cluster Open Cluster Open Cluster A group of several thousand stars which formed within the same nebula. The Pleides, or Seven Sisters, are the most visible stars in this cluster in the Milky Way. Mass:10-10,000 SM StarPower Points: 11 A group of several thousand stars which formed within the same

  2. Brachial Plexus Injury from CT-Guided RF Ablation Under General Anesthesia

    SciTech Connect (OSTI)

    Shankar, Sridhar, E-mail: shankars@ummhc.org; Sonnenberg, Eric van; Silverman, Stuart G.; Tuncali, Kemal [Brigham and Women's Hospital, Department of Radiology (United States); Flanagan, Hugh L. [Brigham and Women's Hospital, Department of Anesthesia (United States); Whang, Edward E. [Brigham and Women's Hospital, Department of Surgery (United States)

    2005-06-15T23:59:59.000Z

    Brachial plexus injury in a patient under general anesthesia (GA) is not uncommon, despite careful positioning and, particularly, awareness of the possibility. The mechanism of injury is stretching and compression of the brachial plexus over a prolonged period. Positioning the patient within the computed tomography (CT) gantry for abdominal or chest procedures can simulate a surgical procedure, particularly when GA is used. The potential for brachial plexus injury is increased if the case is prolonged and the patient's arms are raised above the head to avoid CT image degradation from streak artifacts. We report a case of profound brachial plexus palsy following a CT-guided radiofrequency ablation procedure under GA. Fortunately, the patient recovered completely. We emphasize the mechanism of injury and detail measures to combat this problem, such that radiologists are aware of this potentially serious complication.

  3. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    SciTech Connect (OSTI)

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France)] [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France); Ranouil, Julien [Landauer Europe, 33 avenue du Gnral Leclerc, Fontenay-aux-Roses 92266 Cedex (France)] [Landauer Europe, 33 avenue du Gnral Leclerc, Fontenay-aux-Roses 92266 Cedex (France); Morgand, Loc; Raguin, Olivier [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France)] [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France); Walker, Paul [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)] [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France); Brunotte, Franois [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)] [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)

    2013-12-15T23:59:59.000Z

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 2.1 and 110.7 3.0 mGy for the rat-like phantom and between 169.3 4.6 and 203.6 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse-like phantom. OSLDs exhibited a reproducibility of 2.4% and good linearity was found between 60 and 450 mGy. The energy scaling factor was calculated to be between 1.80 0.16 and 1.86 0.16, depending on protocol used. In phantoms, mean doses to tissue over a whole-body CT examination were ranging from 186.4 7.6 to 234.9 7.1 mGy. In mice, mean doses to tissue in the mouse trunk (thorax, abdomen, pelvis, and flanks) were between 213.0 17.0 and 251.2 13.4 mGy. Skin doses (3 OSLDs) were much higher with average doses between 350.6 25.3 and 432.5 34.1 mGy. The dose delivered during a topogram was found to be below 10 mGy. Use of the multimouse bed of the system gave a significantly 20%40% lower dose per animal (p < 0.05).Conclusions: Absorbed doses in micro-CT were found to be relatively high. In micro-SPECT/CT imaging, the micro-CT unit is mainly used to produce a localization frame. As a result, users should pay attention to adjustable CT parameters so as to minimize the radiation dose and avoid any adverse radiation effects which may interfere with biological parameters studied.

  4. Comparison of MRI-based and CT/MRI fusion-based postimplant dosimetric analysis of prostate brachytherapy

    SciTech Connect (OSTI)

    Tanaka, Osamu [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan)]. E-mail: osa-mu@umin.ac.jp; Hayashi, Shinya [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan); Matsuo, Masayuki [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan); Sakurai, Kota [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan); Department of Urology, Gifu University School of Medicine, Gifu City (Japan); Nakano, Masahiro [Department of Urology, Gifu University School of Medicine, Gifu City (Japan); Maeda, Sunaho [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan); Kajita, Kimihiro R.T. [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan); Deguchi, Takashi [Department of Urology, Gifu University School of Medicine, Gifu City (Japan); Hoshi, Hiroaki [Department of Radiology, Gifu University School of Medicine, Gifu City (Japan)

    2006-10-01T23:59:59.000Z

    Purpose: The aim of this study was to compare the outcomes between magnetic resonance imaging (MRI)-based and computed tomography (CT)/MRI fusion-based postimplant dosimetry methods in permanent prostate brachytherapy. Methods and Materials: Between October 2004 and March 2006, a total of 52 consecutive patients with prostate cancer were treated by brachytherapy, and postimplant dosimetry was performed using CT/MRI fusion. The accuracy and reproducibility were prospectively compared between MRI-based dosimetry and CT/MRI fusion-based dosimetry based on the dose-volume histogram (DVH) related parameters as recommended by the American Brachytherapy Society. Results: The prostate volume was 15.97 {+-} 6.17 cc (mean {+-} SD) in MRI-based dosimetry, and 15.97 {+-} 6.02 cc in CT/MRI fusion-based dosimetry without statistical difference. The prostate V100 was 94.5% and 93.0% in MRI-based and CT/MRI fusion-based dosimetry, respectively, and the difference was statistically significant (p = 0.002). The prostate D90 was 119.4% and 114.4% in MRI-based and CT/MRI fusion-based dosimetry, respectively, and the difference was statistically significant (p = 0.004). Conclusion: Our current results suggested that, as with fusion images, MR images allowed accurate contouring of the organs, but they tended to overestimate the analysis of postimplant dosimetry in comparison to CT/MRI fusion images. Although this MRI-based dosimetric discrepancy was negligible, MRI-based dosimetry was acceptable and reproducible in comparison to CT-based dosimetry, because the difference between MRI-based and CT/MRI fusion-based results was smaller than that between CT-based and CT/MRI fusion-based results as previously reported.

  5. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    SciTech Connect (OSTI)

    Cai Weixing; Zhao Binghui; Conover, David; Liu Jiangkun; Ning Ruola [Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Radiology, Shanghai 6th People's Hospital, 600 Yishan Road, Xuhui, Shanghai (China); Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States) and Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States)

    2012-01-15T23:59:59.000Z

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

  6. Plasma opening switch

    DOE Patents [OSTI]

    Savage, Mark E. (Albuquerque, NM); Mendel, Jr., Clifford W. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A command triggered plasma opening switch assembly using an amplification stage. The assembly surrounds a coaxial transmission line and has a main plasma opening switch (POS) close to the load and a trigger POS upstream from the main POS. The trigger POS establishes two different current pathways through the assembly depended on whether it has received a trigger current pulse. The initial pathway has both POS's with plasma between their anodes and cathodes to form a short across the transmission line and isolating the load. The final current pathway is formed when the trigger POS receives a trigger current pulse which energizes its fast coil to push the conductive plasma out from between its anode and cathode, allowing the main transmission line current to pass to the fast coil of the main POS, thus pushing its plasma out the way so as to establish a direct current pathway to the load.

  7. Greenpar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | Open Energy

  8. Open-Source GIS

    SciTech Connect (OSTI)

    Vatsavai, Raju [ORNL; Burk, Thomas E [University of Minnesota; Lime, Steve [Minnesota Department of Natural Resources

    2012-01-01T23:59:59.000Z

    The components making up an Open Source GIS are explained in this chapter. A map server (Sect. 30.1) can broadly be defined as a software platform for dynamically generating spatially referenced digital map products. The University of Minnesota MapServer (UMN Map Server) is one such system. Its basic features are visualization, overlay, and query. Section 30.2 names and explains many of the geospatial open source libraries, such as GDAL and OGR. The other libraries are FDO, JTS, GEOS, JCS, MetaCRS, and GPSBabel. The application examples include derived GIS-software and data format conversions. Quantum GIS, its origin and its applications explained in detail in Sect. 30.3. The features include a rich GUI, attribute tables, vector symbols, labeling, editing functions, projections, georeferencing, GPS support, analysis, and Web Map Server functionality. Future developments will address mobile applications, 3-D, and multithreading. The origins of PostgreSQL are outlined and PostGIS discussed in detail in Sect. 30.4. It extends PostgreSQL by implementing the Simple Feature standard. Section 30.5 details the most important open source licenses such as the GPL, the LGPL, the MIT License, and the BSD License, as well as the role of the Creative Commons.

  9. Radiation dose reduction in medical CT through equally sloped tomography Benjamin P. Fahimian1,2,6

    E-Print Network [OSTI]

    Soatto, Stefano

    Council on Radiation Protection & Measurements10 , CT accounts for about 15% of the total radiological50Radiation dose reduction in medical CT through equally sloped tomography Benjamin P. Fahimian1 Department of Radiation Oncology, Stanford University, Stanford, CA 94305 3 Biomedical Physics

  10. A method for measuring joint kinematics designed for accurate registration of kinematic data to models constructed from CT data

    E-Print Network [OSTI]

    Fischer, Kenneth J.; Manson, T. T.; Pfaeffle, H. J.; Tomaino, M. M.; Woo, S. L-Y

    2001-03-01T23:59:59.000Z

    for position and 0.1 degrees for orientation for linkage digitization and better than +/- 0.2 mm and +/- 0.2 degrees for CT digitization. Surface models of the radius and ulna were constructed from CT data, as an example application. Kinematics of the bones...

  11. USPSTF Recommends Low-Dose CT Screening for Heavy Smoke Published on Cancer Network (http://www.cancernetwork.com)

    E-Print Network [OSTI]

    Serfling, Robert

    remains the leading cause of cancer death in the United States, and is the third most common of all radiography, and found an overall reduction in death from any cause in the CT group of 6.7% (95% CI, 1, lie largely in the high rates of false positives. A total of 96.4% of the positive low-dose CT results

  12. 2002 IEEE NSS/MIC pCT: Hartmut F.-W. Sadrozinski , SCIPP Towards Proton Computed Tomography

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    2002 IEEE NSS/MIC pCT: Hartmut F.-W. Sadrozinski , SCIPP SCIPPSCIPP Towards Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski, A. Seiden, D.C. Williams, L. Zhang Santa Radiography MC Study #12;2002 IEEE NSS/MIC pCT: Hartmut F.-W. Sadrozinski , SCIPP SCIPPSCIPP Computed

  13. Manifold Learning for 4D CT Reconstruction of the Lung Manfred Georg*, Richard Souvenir, Andrew Hope, Robert Pless*

    E-Print Network [OSTI]

    Pless, Robert

    Manifold Learning for 4D CT Reconstruction of the Lung Manfred Georg*, Richard Souvenir, Andrew, Canada Andrew.Hope@rmp.uhn.on.ca Abstract Computed Tomography is used to create models of lung dynamics because it provides high contrast images of lung tissue. Creating 4D CT models which capture dynamics

  14. Kathy Xinyi Zhong email: xinyi.zhong@yale.edu 68 High St. 263 Rosado Rd.

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    -Aggregation and Stabilization in Hydrate Systems Studied dispersant effects in stabilizing systems of agglomerating natural gas hydrates. (Summer 2010) Activities Sigma Psi Zeta Sorority, New Haven, CT (Spring 2010 ­ present) President

  15. THE AEROSPACE CORPORATION '

    Office of Legacy Management (LM)

    AZ o TVA, Muscle Shoals, AL o Dow Chemical Company, Walnut Creek, CA e Colorado School of Mines, Golden, CO o Havens Lab, Bridgeport Brass, Bridgeport, CT o General Chemical...

  16. A Type System for Certified Binaries Zhong Shao Bratin Saha Valery Trifonov Nikolaos Papaspyrou

    E-Print Network [OSTI]

    Trifonov, Valery

    A Type System for Certified Binaries Zhong Shao Bratin Saha Valery Trifonov Nikolaos Papaspyrou Department of Computer Science, Yale University New Haven, CT 06520-8285, U.S.A. {shao, saha, trifonov

  17. Principled Scavenging Stefan Monnier Bratin Saha Zhong Shao

    E-Print Network [OSTI]

    Principled Scavenging Stefan Monnier Bratin Saha Zhong Shao Department of Computer Science Yale University New Haven, CT 06520-8285 {monnier, saha, shao}@cs.yale.edu YALEU/DCS/TR-1205 November 2000

  18. Fully Reflexive Intensional Type Analysis # Valery Trifonov Bratin Saha Zhong Shao

    E-Print Network [OSTI]

    Fully Reflexive Intensional Type Analysis # Valery Trifonov Bratin Saha Zhong Shao Department of Computer Science Yale University New Haven, CT 065208285 {trifonov, saha, shao}@cs.yale.edu ABSTRACT

  19. Fully Reflexive Intensional Type Analysis # Bratin Saha Valery Trifonov Zhong Shao

    E-Print Network [OSTI]

    Fully Reflexive Intensional Type Analysis # Bratin Saha Valery Trifonov Zhong Shao Department of Computer Science Yale University New Haven, CT 065208285 {saha,trifonov,shao}@cs.yale.edu Technical Report

  20. Fully Reflexive Intensional Type Analysis Bratin Saha Valery Trifonov Zhong Shao

    E-Print Network [OSTI]

    Fully Reflexive Intensional Type Analysis Bratin Saha Valery Trifonov Zhong Shao Department of Computer Science Yale University New Haven, CT 06520-8285 {saha,trifonov,shao}@cs.yale.edu Technical Report

  1. Principled Scavenging # Stefan Monnier Bratin Saha Zhong Shao

    E-Print Network [OSTI]

    Principled Scavenging # Stefan Monnier Bratin Saha Zhong Shao Department of Computer Science Yale University New Haven, CT 065208285 {monnier, saha, shao}@cs.yale.edu ABSTRACT Proofcarrying code and typed

  2. Principled Scavenging Stefan Monnier Bratin Saha Zhong Shao

    E-Print Network [OSTI]

    Principled Scavenging Stefan Monnier Bratin Saha Zhong Shao Department of Computer Science Yale University New Haven, CT 06520-8285 monnier, saha, shao @cs.yale.edu ABSTRACT Proof-carrying code

  3. To appear in: Proc. of 2nd Int. Conf. on AI Planning Systems Chicago, IL, June 1994

    E-Print Network [OSTI]

    McDermott, Drew V.

    , Boston, MA Improving Robot Plans During Their Execution \\Lambda Michael Beetz and Drew McDermott Yale University, Department of Computer Science P.O. Box 2158, Yale Station New Haven, CT 06520 beetz

  4. Declarative Goals in Reactive Plans \\Lambda Michael Beetz and Drew McDermott

    E-Print Network [OSTI]

    McDermott, Drew V.

    Declarative Goals in Reactive Plans \\Lambda Michael Beetz and Drew McDermott Yale University, Department of Computer Science P.O. Box 2158, Yale Station New Haven, CT 06520 beetz@cs.yale.edu, mcdermott

  5. Mutoru, Jane Wambui Curriculum Vitae

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    and multicomponent mixtures with carbon dioxide for applications in CO2 sequestration and enhanced oil recovery coefficients in mixtures of carbon dioxide, water, brine, and hydrocarbons Yale University, New Haven, CT Jan

  6. Does dual-energy CT of lower-extremity tendons incur penalties in patient radiation exposure or reduced multiplanar reconstruction image quality?

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    diagnostic value of dual-energy CT and MRI in the detectionusing dual-source dual-energy MDCT: Results of JAFROCfor dose reduction in dual energy hepatic CT using non-

  7. Multimodal Vessel Visualization of Mouse Aorta PET/CT Scans Timo Ropinski, Member, IEEE, Sven Hermann, Rainer Reich, Michael Schafers, and Klaus Hinrichs, Member, IEEE

    E-Print Network [OSTI]

    Hinrichs, Klaus

    Multimodal Vessel Visualization of Mouse Aorta PET/CT Scans Timo Ropinski, Member, IEEE, Sven present a visualization system for the visual analysis of PET/CT scans of aortic arches of mice

  8. Concurrent segmentation of the prostate on MRI and CT via linked statistical shape models for radiotherapy planning

    SciTech Connect (OSTI)

    Chowdhury, Najeeb; Toth, Robert; Chappelow, Jonathan; Kim, Sung; Motwani, Sabin; Punekar, Salman; Lin Haibo; Both, Stefan; Vapiwala, Neha; Hahn, Stephen; Madabhushi, Anant

    2012-04-15T23:59:59.000Z

    Purpose: Prostate gland segmentation is a critical step in prostate radiotherapy planning, where dose plans are typically formulated on CT. Pretreatment MRI is now beginning to be acquired at several medical centers. Delineation of the prostate on MRI is acknowledged as being significantly simpler to perform, compared to delineation on CT. In this work, the authors present a novel framework for building a linked statistical shape model (LSSM), a statistical shape model (SSM) that links the shape variation of a structure of interest (SOI) across multiple imaging modalities. This framework is particularly relevant in scenarios where accurate boundary delineations of the SOI on one of the modalities may not be readily available, or difficult to obtain, for training a SSM. In this work the authors apply the LSSM in the context of multimodal prostate segmentation for radiotherapy planning, where the prostate is concurrently segmented on MRI and CT. Methods: The framework comprises a number of logically connected steps. The first step utilizes multimodal registration of MRI and CT to map 2D boundary delineations of the prostate from MRI onto corresponding CT images, for a set of training studies. Hence, the scheme obviates the need for expert delineations of the gland on CT for explicitly constructing a SSM for prostate segmentation on CT. The delineations of the prostate gland on MRI and CT allows for 3D reconstruction of the prostate shape which facilitates the building of the LSSM. In order to perform concurrent prostate MRI and CT segmentation using the LSSM, the authors employ a region-based level set approach where the authors deform the evolving prostate boundary to simultaneously fit to MRI and CT images in which voxels are classified to be either part of the prostate or outside the prostate. The classification is facilitated by using a combination of MRI-CT probabilistic spatial atlases and a random forest classifier, driven by gradient and Haar features. Results: The authors acquire a total of 20 MRI-CT patient studies and use the leave-one-out strategy to train and evaluate four different LSSMs. First, a fusion-based LSSM (fLSSM) is built using expert ground truth delineations of the prostate on MRI alone, where the ground truth for the gland on CT is obtained via coregistration of the corresponding MRI and CT slices. The authors compare the fLSSM against another LSSM (xLSSM), where expert delineations of the gland on both MRI and CT are employed in the model building; xLSSM representing the idealized LSSM. The authors also compare the fLSSM against an exclusive CT-based SSM (ctSSM), built from expert delineations of the gland on CT alone. In addition, two LSSMs trained using trainee delineations (tLSSM) on CT are compared with the fLSSM. The results indicate that the xLSSM, tLSSMs, and the fLSSM perform equivalently, all of them out-performing the ctSSM. Conclusions: The fLSSM provides an accurate alternative to SSMs that require careful expert delineations of the SOI that may be difficult or laborious to obtain. Additionally, the fLSSM has the added benefit of providing concurrent segmentations of the SOI on multiple imaging modalities.

  9. Phragmites australis: Ecology and Management in Dr. Kirk J. Havens

    E-Print Network [OSTI]

    , Center for Coastal Resources Management Virginia Institute of Marine Science College of William & Mary Jefferson Found in peat cores 3,000 year old tidal marshes in Connecticut Identified in archaeological

  10. the Elm City A Guide to Getting Around New Haven

    E-Print Network [OSTI]

    /Nightlife . . . . . . . . . . . . . . . . . . . . . . . . . 11 Barber Shops/Salons/Dry Cleaners . . . . . . . . . . . . . . . . 12 Parks & Bistro 93 Whitney St . (203) 624-3373 Cask Republic 179 Crown Street (475) 238-8335 Cody's Diner 95 Water

  11. Veteran's Affairs Health Care System, West Haven, Connecticut | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE) |Departmentand Feasibility

  12. Clean Cities: Greater New Haven Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro CleanGeneseeGreater

  13. SU-E-J-86: Lobar Lung Function Quantification by PET Galligas and CT Ventilation Imaging in Lung Cancer Patients

    SciTech Connect (OSTI)

    Eslick, E; Kipritidis, J; Keall, P [University of Sydney, Camperdown, NSW (Australia); Bailey, D; Bailey, E [Royal North Shore Hospital, St. Leonards, NSW (Australia)

    2014-06-01T23:59:59.000Z

    Purpose: The purpose of this study was to quantify the lobar lung function using the novel PET Galligas ([68Ga]-carbon nanoparticle) ventilation imaging and the investigational CT ventilation imaging in lung cancer patients pre-treatment. Methods: We present results on our first three lung cancer patients (2 male, mean age 78 years) as part of an ongoing ethics approved study. For each patient a PET Galligas ventilation (PET-V) image and a pair of breath hold CT images (end-exhale and end-inhale tidal volumes) were acquired using a Siemens Biograph PET CT. CT-ventilation (CT-V) images were created from the pair of CT images using deformable image registration (DIR) algorithms and the Hounsfield Unit (HU) ventilation metric. A comparison of ventilation quantification from each modality was done on the lobar level and the voxel level. A Bland-Altman plot was used to assess the difference in mean percentage contribution of each lobe to the total lung function between the two modalities. For each patient, a voxel-wise Spearmans correlation was calculated for the whole lungs between the two modalities. Results: The Bland-Altman plot demonstrated strong agreement between PET-V and CT-V for assessment of lobar function (r=0.99, p<0.001; range mean difference: ?5.5 to 3.0). The correlation between PET-V and CT-V at the voxel level was moderate(r=0.60, p<0.001). Conclusion: This preliminary study on the three patients data sets demonstrated strong agreement between PET and CT ventilation imaging for the assessment of pre-treatment lung function at the lobar level. Agreement was only moderate at the level of voxel correlations. These results indicate that CT ventilation imaging has potential for assessing pre-treatment lobar lung function in lung cancer patients.

  14. Soft Tissue Visualization Using a Highly Efficient Megavoltage Cone Beam CT Imaging System

    E-Print Network [OSTI]

    Pouliot, Jean

    Soft Tissue Visualization Using a Highly Efficient Megavoltage Cone Beam CT Imaging System Farhad A developed an imaging system that is optimized for MV and can acquire Megavoltage CBCT images containing soft through the detector. #12;The ability of an x-ray imaging system to differentiate soft tissues is affected

  15. Lobe-based Estimating Ventilation and Perfusion from 3D CT scans of the Lungs

    E-Print Network [OSTI]

    Warren, Joe

    Lobe-based Estimating Ventilation and Perfusion from 3D CT scans of the Lungs Travis McPhail Joe are the ventilation (air flow) and perfusion (blood flow) in the patient's lungs. Given the flow of air and blood as possible. The current state of the art technology for assessing the ventilation in a patient's lungs

  16. CLASSIFICATION OF BIOMEDICAL HIGH-RESOLUTION MICRO-CT IMAGES FOR DIRECT VOLUME RENDERING

    E-Print Network [OSTI]

    López-Sánchez, Maite

    CLASSIFICATION OF BIOMEDICAL HIGH-RESOLUTION MICRO-CT IMAGES FOR DIRECT VOLUME RENDERING Maite L,cerquide,davidm,anna}@maia.ub.es ABSTRACT This paper introduces a machine learning approach into the process of direct volume rendering that generates the classification func- tion within the optical property function used for rendering. Briefly

  17. The feasibility of head motion tracking in helical CT: A step toward motion correction

    SciTech Connect (OSTI)

    Kim, Jung-Ha [Medical Radiation Sciences, University of Sydney, NSW 2141 (Australia); Nuyts, Johan [Department of Nuclear Medicine, Katholieke Universiteit, Leuven, Belgium and Medical Imaging Research Center, Katholieke Universiteit, Leuven (Belgium); Kuncic, Zdenka [School of Physics, University of Sydney, NSW 2006 (Australia); Fulton, Roger [Medical Radiation Sciences, University of Sydney, NSW 2141 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia); Department of Medical Physics, Westmead Hospital, Westmead, NSW 2145 (Australia)

    2013-04-15T23:59:59.000Z

    Purpose: To establish a practical and accurate motion tracking method for the development of rigid motion correction methods in helical x-ray computed tomography (CT). Methods: A commercially available optical motion tracking system provided 6 degrees of freedom pose measurements at 60 Hz. A 4 Multiplication-Sign 4 calibration matrix was determined to convert raw pose data acquired in tracker coordinates to a fixed CT coordinate system with origin at the isocenter of the scanner. Two calibration methods, absolute orientation (AO), and a new method based on image registration (IR), were compared by means of landmark analysis and correlation coefficient in phantom images coregistered using the derived motion transformations. Results: Transformations calculated using the IR-derived calibration matrix were found to be more accurate, with positional errors less than 0.5 mm (mean RMS), and highly correlated image voxel intensities. The AO-derived calibration matrix yielded larger mean RMS positional errors ( Asymptotically-Equal-To 1.0 mm), and poorer correlation coefficients. Conclusions: The authors have demonstrated the feasibility of accurate motion tracking for retrospective motion correction in helical CT. Their new IR-based calibration method based on image registration and function minimization was simpler to perform and delivered more accurate calibration matrices. This technique is a useful tool for future work on rigid motion correction in helical CT and potentially also other imaging modalities.

  18. Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706

    E-Print Network [OSTI]

    Schmittbuhl, Jean

    Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706 PARTICIPANT ORGANIZATION NAME: CNRS Synthetic 2nd year report Related with Work Package............ HYDRO-THERMAL FLOW in the influence of a realistic geometry of the fracture on its hydro-thermal response. Several studies have

  19. Interactive Separation of Segmented Bones in CT Volumes Using Graph Cut

    E-Print Network [OSTI]

    Ju, Tao

    mask customized to the shape of the bone, such as the femoral head. However, creat- ing masks for bones of different methodology have been reported for bone segmen- tation (see a recent survey in [1]). DueInteractive Separation of Segmented Bones in CT Volumes Using Graph Cut Lu Liu, David Raber, David

  20. DAWN: A JOURNEY TO THE BEGINNING OF THE SOLAR SYSTEM C.T. Russell(1)

    E-Print Network [OSTI]

    Zuber, Maria

    -ray/neutron spectrometer, a magnetometer and a gravity investigation. Dawn uses solar arrays to power its xenon ion engine solar panels roughly 21 m tip-to-tip, a 5 m magnetometer boom and three ion thrusters, one of whichDAWN: A JOURNEY TO THE BEGINNING OF THE SOLAR SYSTEM C.T. Russell(1) , A. Coradini(2) , W

  1. Lee, C-T A Laser Ablation Data Reduction 2006 LASER ABLATION ICP-MS: DATA

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    Lee, C-T A Laser Ablation Data Reduction 2006 1 LASER ABLATION ICP-MS: DATA REDUCTION Cin-Ty A. Lee 24 September 2006 Analysis and calculation of concentrations Laser ablation analyses are done in time by turning on the laser and ablating the sample, generating a time-dependent signal (Fig. 1). Measurements

  2. jCT: A Java Code Tomograph Markus Lumpe, Samiran Mahmud, and Olga Goloshchapova

    E-Print Network [OSTI]

    Lumpe, Markus

    jCT: A Java Code Tomograph Markus Lumpe, Samiran Mahmud, and Olga Goloshchapova Faculty,smahmud,ogoloshchapova}@swin.edu.au Abstract--We are concerned with analyzing software, in par- ticular, with its nature and how developer software engineering where measurement seeks to capture attributes affecting the product, process

  3. SCIPP 06/04 1 Prototype Tracking Studies for Proton CT

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    SCIPP 06/04 1 Prototype Tracking Studies for Proton CT Nate Blumenkrantz, Jason Feldt, Jason the feasibility of proton computed tomography, the most likely path (MLP) of protons inside an absorber resolution. The locations of 200 MeV protons were measured at three different absorber depth of PMMA (3.75, 6

  4. Development of a proton Computed Tomography (pCT) scanner at NIU

    E-Print Network [OSTI]

    Uzunyan, S A; Boi, S; Coutrakon, G; Dyshkant, A; Erdelyi, B; Gearhart, A; Hedin, D; Johnson, E; Krider, J; Zutshi, V; Ford, R; Fitzpatrick, T; Sellberg, G; Rauch, J E; Roman, M; Rubinov, P; Wilson, P; Lalwani, K; Naimuddin, M

    2013-01-01T23:59:59.000Z

    We describe the development of a proton Computed Tomography (pCT) scanner at Northern Illinois University (NIU) in collaboration with Fermilab and Delhi University. This paper provides an overview of major components of the scanner and a detailed description of the data acquisition system (DAQ).

  5. Development of a proton Computed Tomography (pCT) scanner at NIU

    E-Print Network [OSTI]

    S. A. Uzunyan; G. Blazey; S. Boi; G. Coutrakon; A. Dyshkant; B. Erdelyi; A. Gearhart; D. Hedin; E. Johnson; J. Krider; V. Zutshi; R. Ford; T. Fitzpatrick; G. Sellberg; J. E. Rauch; M. Roman; P. Rubinov; P. Wilson; K. Lalwani; M. Naimuddin

    2013-12-13T23:59:59.000Z

    We describe the development of a proton Computed Tomography (pCT) scanner at Northern Illinois University (NIU) in collaboration with Fermilab and Delhi University. This paper provides an overview of major components of the scanner and a detailed description of the data acquisition system (DAQ).

  6. Surface Extraction from Multi-Material Components for Metrology using Dual Energy CT

    E-Print Network [OSTI]

    materials (e.g., carbon-fibre-reinforced plas- tics) induce manufacturers to design new functionSurface Extraction from Multi-Material Components for Metrology using Dual Energy CT Christoph surface models of multi-material components using dual energy com- puted tomography (DECT

  7. Toxoplasma encephalitis in Haitian adults with acquired immunodeficiency syndrome: a clinical-pathologic-CT correlation

    SciTech Connect (OSTI)

    Post, M.J.D.; Chan, J.C.; Hensley, G.T.; Hoffman, T.A.; Moskowitz, L.B.; Lippmann, S.

    1983-05-01T23:59:59.000Z

    The clinical data, histologic findings, and computed tomographic (CT) abnormalities in eight adult Haitians with toxoplasma encephalitis were analyzed retrospectively. Diagnosis was established by identification of Toxoplasma gondii on autopsy in five and brain biopsy in three specimens and subsequently confirmed by the immunoperoxidase method. All these patiens, six of whom had been in the United States for 24 months or less, had severe idiopathic immunodeficiency syndrome. All were lymphopenic and six were on treatment for tuberculosis when the toxoplasma encephalitis developed. All patients were studied with CT when they developed an altered mental status and fever associated with seizures and/or focal neurologic deficits. Scans before treatment showed multiple intraparenchymal lesions in seven and a single lesion in the thalamus in one. Ring and/or nodular enhancement of the lesions was found in six and hypodense areas in two. Progressions of abnormalities occurred on serial studies. These CT findings that were best shown on axial and coronal thin-section double-dose contrast studies were useful but not diagnostically pathognomonic. In patients with similar clinical presentation CT is recommended to identify focal areas of involvement and to guide brain biopsy or excision so that prompt medical thereapy of this often lethal infection can be instituted.

  8. Multi-stage Learning for Robust Lung Segmentation in Challenging CT Volumes

    E-Print Network [OSTI]

    Multi-stage Learning for Robust Lung Segmentation in Challenging CT Volumes Michal Sofka1 , Jens Imaging, Siemens Healthcare, Oxford, UK Abstract. Simple algorithms for segmenting healthy lung parenchyma an ini- tialization of a statistical shape model of the lungs. The initialization first detects

  9. Technical Reports Ultra-low Dose Lung CT Perfusion Regularized by

    E-Print Network [OSTI]

    Virginia Tech

    Technical Reports Ultra-low Dose Lung CT Perfusion Regularized by a Previous Scan1 Hengyong Yu, Phregularized reconstruction (PSRR) method was proposed to reduce radiation dose and applied to lung perfusion studies. Normal and ultra-low-dose lung computed tomographic perfusion studies were compared in terms of the estimation

  10. A Framework for Automatic Segmentation of Lung Nodules from Low Dose Chest CT Scans

    E-Print Network [OSTI]

    Farag, Aly A.

    A Framework for Automatic Segmentation of Lung Nodules from Low Dose Chest CT Scans Ayman El-Baz1 the high accuracy of the proposed approach. 1 Introduction Because lung cancer is the most common cause 1, an initial LDCT slice is segmented with our algorithms introduced in [3] to isolate lung tissues

  11. Volume Estimation and Surgery Planning from Lung CT Images ANA ELISA FERREIRA SCHMIDT

    E-Print Network [OSTI]

    Volume Estimation and Surgery Planning from Lung CT Images ANA ELISA FERREIRA SCHMIDT 1 , PAULO to assist the planning of lung reduction surgeries, a technique that has been proposed for the treatment of certain illnesses. Doctors need to decide which portions of the lungs to remove to achieve a certain

  12. Automatic Lung Segmentation of Volumetric Low-Dose CT Scans Using Graph Cuts

    E-Print Network [OSTI]

    Farag, Aly A.

    Automatic Lung Segmentation of Volumetric Low-Dose CT Scans Using Graph Cuts Asem M. Ali and Aly A for unsupervised segmentation of the lung region from low dose computed tomography (LDCT) images. We follow distribution model. To better spec- ify region borders between lung and chest, each empirical distribution

  13. OASIS OpenDocument Essentials Using OASIS OpenDocument XML

    E-Print Network [OSTI]

    Prencipe, Giuseppe

    OASIS OpenDocument Essentials Using OASIS OpenDocument XML J. David Eisenberg Cover graphic provided by Peter Harlow #12;OASIS OpenDocument Essentials: Using OASIS OpenDocument XML by J. David

  14. Electrical Engineer- OPEN CONTINUOUS ANNOUNCEMENT

    Broader source: Energy.gov [DOE]

    This recruitment is an OPEN CONTINUOUS ANNOUNCEMENT (OCA) being utilized to fill current and future Electrical Engineer vacancies within BPA's Transmission Field Services organization. Positions...

  15. Department of Mathematics: Staff Openings

    E-Print Network [OSTI]

    There are no staff positions open at this time. Department of Mathematics, Purdue University 150 N. University Street, West Lafayette, IN 47907-2067

  16. Electronics Engineer- OPEN CONTINUOUS ANNOUNCEMENT

    Broader source: Energy.gov [DOE]

    This recruitment is an OPEN CONTINUOUS ANNOUNCEMENT (OCA) being utilized to fill current and future Electrical Engineer vacancies within BPA's Transmission Field Services organization. Positions...

  17. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance

    SciTech Connect (OSTI)

    Li, Ke; Tang, Jie [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States)] [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States)] [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States)

    2014-04-15T23:59:59.000Z

    Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup }, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a redder NPS with a lower mean frequency value. (3) The noise standard deviation (?) of MBIR and dose were found to be related through a power law of ????(dose){sup ??} with the component ? ? 0.25, which violated the classical ????(dose){sup ?0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared with FBP. (6) A composite image generated from two MBIR images acquired at two different dose levels (D1 and D2) demonstrated lower noise than that of an image acquired at a dose level of D1+D2. Conclusions: The noise characteristics of the MBIR method are significantly different from those of the FBP method. The well known tradeoff relationship between CT image noise and radiation dose has been modified by MBIR to establish a more gradual dependence of noise on dose. Additionally, some other CT noise properties that had been well understood based on the linear system theory have also been altered by MBIR. Clinical CT scan protocols that had been optimized based on the classical CT noise properties need to be carefully re-evaluated for systems equipped with MBIR in order to maximize the method's potential clinical benefits in dose reduction and/or in CT image quality improvement.

  18. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, J.P.; Emin, D.

    1983-12-21T23:59:59.000Z

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  19. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, John P. (Albuquerque, NM); Emin, David (Albuquerque, NM)

    1986-01-01T23:59:59.000Z

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  20. Geotermica | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Geotechnical Drilling

  1. Gonergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, search EquivalentGonergy Jump to:

  2. Gransolar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,II Wind Farm JumpReliable Power

  3. Gratiot | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,II Wind FarmGratiot County Jump

  4. Gridpoint | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:Information

  5. Groton | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:InformationGroton Jump to: navigation, search

  6. Aerojet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | Open Energy Information Sabin,AeroAerojet

  7. Eyeforenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace CenterEverlightOpenEyeforenergy Jump to:

  8. Warmroof | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpageWalthallFacility | Open Energy

  9. Saclima | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY Solutions JumpFacility | OpenSackets Harbor, New

  10. Saddlehorn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY Solutions JumpFacility | OpenSacketsSada BioSaddlehorn

  11. Sensox | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: Energy ResourcesOpenSenegal:

  12. Sensus | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: Energy ResourcesOpenSenegal:Sensus Jump

  13. FERSAR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy JumpFAC 04-08- FinalOpenFERSAR Jump to:

  14. Wattbot | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | Open EnergyWattbot Jump to:

  15. Wattpic | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | Open EnergyWattbot Jump

  16. Wattstopper | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | Open EnergyWattbot

  17. Waveenergyfyn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS

  18. ALDACOR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergySulfonate asAEEOpenOpenALD VacuumALDACOR Jump to:

  19. Akuacom | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008 | OpenOhio:

  20. Hawkeye | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |HatchetInformationHawkeye Jump to:

  1. Heliotricity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategyHayesHelio Micro UtilityHeliodynami

  2. Heliotronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategyHayesHelio MicroHeliotronics Jump to:

  3. Hidraulica | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy Resources Jump to:

  4. Hidroflot | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy Resources Jump to:Hidroflot Jump to:

  5. Hines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy ResourcesNew Jersey:County,Hilltop

  6. Honeywell | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonest Buildings JumpHoneywell

  7. Hoosac | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonestHoosac Jump to:

  8. Howard | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to:Would You

  9. IBACOS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:ProjectProgramsAlterationAl.,GRC JayIAIAIBACOS

  10. IMPLAN | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILab Incubator Pty Ltd JumpIMPLAN

  11. INDEX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILab Incubator Pty

  12. Icynene | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPoint Hot Springs

  13. Idealab | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdahoIdealab Jump to:

  14. Inbicon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR Jump to: navigation,

  15. Industrial | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida: EnergyStudyInducedTechnology

  16. Inerjy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida:Inerjy Jump to: navigation, search

  17. Ingenco | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida:Inerjy

  18. Inovus | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown,Innoferm GmbH Jump to:Energy

  19. Intevac | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac Jump to: navigation,

  20. Intrinergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac Jump to:Wind Farm

  1. Invener | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac JumpInvener Jump to:

  2. Invenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac JumpInvener Jump

  3. Ipswich | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind FarmIowa/Wind

  4. Optony | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEITODO Jump to:Optony Inc Jump to:Optony

  5. Petronas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformation USPerseus LLCPeru:| Open

  6. OpenStudio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil's Impact onDepartment ofStorageOpenMortar.io:

  7. Heliocentric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHasInformationHelioDynamics LtdHelioVolt

  8. Hyrban | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat of Long| Open EnergyLakeHyrban Jump

  9. Overspeed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York: EnergyOuachita ElectricOpen

  10. Infotility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogen Jump to:Infotility Jump to:

  11. Ingendesa | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogen Jump to:Infotility

  12. Ingeteam | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogen Jump

  13. Innovalight | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogenEnergyAgencyInnova SpA Jump

  14. Residential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal Field | Open

  15. Carbon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallawayCapara Energia S ACarbonWar Room Jump

  16. Growind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) |1978)New York:FacilityGrowind

  17. Grupovi | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004)Pevafersa Jump

  18. NIST | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) |Renewable Energy | OpenEnergyNewLLCNIST

  19. Natura | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy InformationNatsource Europe Ltd Jump

  20. Naturneo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy InformationNatsource EuropeNatureNaturneo Jump

  1. Navitas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy InformationNatsourceNavigant Home

  2. Nexeon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX LtdNew EnergyCity Data HomeNexamp Inc

  3. Nobesol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX LtdNewNingguoNiobrara ValleyNitolNobesol

  4. Nstar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest Rural PubNovaNMRE |

  5. Nuclear | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest Rural PubNovaNMRENuclear Power

  6. Nuclenor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest Rural PubNovaNMRENuclear

  7. OPDE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest RuralNujiraSolar Thermal

  8. OTTI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest RuralNujiraSolarORNLEnergyOSN

  9. Ocean | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdale ElectricOcean Flow

  10. Ohmsett | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdaleOdersun AGOhio

  11. Omniwatt | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia Green Fuels Jump to:Omniwatt Jump to:

  12. OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia Green Fuels JumpData+entrepreneur HomeAPIHome

  13. Other | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThesource HistoryOsramOther Definition

  14. Ownergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThesourceOverton Power District No

  15. Oxyol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThesourceOverton Power District

  16. PVDAQ | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to:PUD No 1 ofPV SolarPVA

  17. Padcon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to:PUD NoPage EditPacific

  18. Panosol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) JumpPalcan s JVCo

  19. Pelletbraz | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl River Valley ElPelamis

  20. Pemel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl River Valley ElPelamisPemel Jump

  1. Newbie | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania:Information296593°, -122.0402399°| OpenEI

  2. Microstaq | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickey HotVII, Cologne,

  3. Microturbines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickey HotVII, Cologne,Caldera, New Mexico |

  4. Stereoscopy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation GlassOpen Energy

  5. USFS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDBCOSO EGS PROJECT | OpenUSFS

  6. Coskata | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis AtSystems | OpenCorvallis,Coskata Jump to:

  7. Aquatera | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT), IndiaOpenAquate Solar Jump to:Aquatera

  8. Computerity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) | Open(Thompson,2006)air JumpComputerity

  9. Comverge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) | Open(Thompson,2006)air

  10. Coruscant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007) | OpenCity,

  11. Recurve | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,Open EnergyRecent content

  12. General | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta enOpenEnergyOrder No. 131-D

  13. Geoklock | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | Open Energy(Blackwell, Et Al., 2003) |

  14. Usivale | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools | OpenJAABotJoao JumpUniao eUsivale

  15. Conectiv | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Open EnergyInformationConductive PlaysConectiv Jump

  16. Growdiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformationMagneticsFeatured

  17. Hdom | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information HanergyHarneysource

  18. Heres | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy InformationHebeiProgram JumpHennecke GmbHHeres Jump

  19. Hidrotermica | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation Hess Retail Natural

  20. Hightex | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation Hess Retail NaturalHifluxHighline

  1. Hochtief | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation HessHirschmann Automation and

  2. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New Energy Development

  3. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New Energy DevelopmentList of Hydrogen Incentives

  4. Hydropoint | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New Energy DevelopmentList of Hydrogen

  5. IESA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New Energy DevelopmentListI SolCaribbeanEnergy,IESA

  6. INTA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New Energy DevelopmentListIIFCIINTA Jump to:

  7. Inenco | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua NewSmallholderEconomyIndustrias Morro Azul Jump

  8. Ingenium | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua NewSmallholderEconomyIndustriasDFID

  9. Ingenta | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua NewSmallholderEconomyIndustriasDFIDIngenta Jump to:

  10. Innopower | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner Mongolia Fengwei New EnergyInner

  11. Innovasol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner Mongolia Fengwei New EnergyInnerInnovasol Jump

  12. Inpressphoto | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner Mongolia Fengwei New

  13. Interacta | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner MongoliaIntegrysInteracta Jump to: navigation,

  14. Interconnection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner MongoliaIntegrysInteracta Jump

  15. Interlight | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner MongoliaIntegrysInteractaInterlight Jump to:

  16. Invall | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation source HistoryInternationalHydrogenInvall

  17. Invensil | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation source

  18. Inveravante | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation sourceInvensys Building System

  19. Isentropic | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation sourceInvensys BuildingIowaIrarareporting ?

  20. Bystronic | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information BurkinaButyl Fuel

  1. CACTUS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information BurkinaButyl FuelC T Jump to:CCACTUS

  2. CERTEL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information BurkinaButylCERTEL Jump to:

  3. CNAA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy InformationSeries Jump to:CMR Fuel CellsCNAA

  4. COOMISA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy InformationSeries Jump to:CMRCOMMUTER Model

  5. CU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy InformationSeries JumpCRESTCSP: PerspectivesCU

  6. CX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy InformationSeries JumpCRESTCSP:Categorical

  7. Cachool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy InformationSeriesCachool Jump to: navigation,

  8. Calpine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallaway Electric Cooperative JumpCalpine Jump to:

  9. Disa | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Energy Information At1986) |Disa Jump to:

  10. Dynapower | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open EnergyProjectDraper,NCNH) JumpLight Inc

  11. EA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open EnergyProjectDraper,NCNH)E ON

  12. ECOsponsible | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open EnergyProjectDraper,NCNH)EECOWAS Clean

  13. EIS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to: navigation, search Name:source History

  14. ENTECH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to: navigation, searchEMC3, llcENF

  15. EPA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to: navigation,Protection webpageEPA Jump

  16. ESKOM | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:

  17. Earthanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI) |RockEarthFirstEarthanol Jump

  18. Eclipse | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI)CoastSodaEcho 1-7 WindEclipse

  19. Ecoforest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI)CoastSodaEchoEcoSense

  20. Ecofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI)CoastSodaEchoEcoSenseEcofuel

  1. Ecotect | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcology & Environment,Ecotect Jump to:

  2. Eldis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcologyEl Dorado Hills,ElSegundo,ElbowEldis

  3. Electratech | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcologyEl

  4. Elk | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic ProfilingElgen Wave JumpRiverElk

  5. Enlarged longitudinal dose profiles in cone-beam CT and the need for modified dosimetry

    SciTech Connect (OSTI)

    Mori, Shinichiro; Endo, Masahiro; Nishizawa, Kanae; Tsunoo, Takanori; Aoyama, Takahiko; Fujiwara, Hideaki; Murase, Kenya [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); School of Health Sciences, Nagoya University, Nagoya 461-8673 (Japan); School of Allied Health Sciences, Faculty of Medicine, Osaka University, Osaka 565-0871 (Japan)

    2005-04-01T23:59:59.000Z

    In order to examine phantom length necessary to assess radiation dose delivered to patients in cone-beam CT with an enlarged beamwidth, we measured dose profiles in cylindrical phantoms of sufficient length using a prototype 256-slice CT-scanner developed at our institute. Dose profiles parallel to the rotation axis were measured at the central and peripheral positions in PMMA (polymethylmethacrylate) phantoms of 160 or 320 mm diameter and 900 mm length. For practical application, we joined unit cylinders (150 mm long) together to provide phantoms of 900 mm length. Dose profiles were measured with a pin photodiode sensor having a sensitive region of approximately 2.8x2.8 mm{sup 2} and 2.7 mm thickness. Beamwidths of the scanner were varied from 20 to 138 mm. Dose profile integrals (DPI) were calculated using the measured dose profiles for various beamwidths and integration ranges. For the body phantom (320-mm-diam phantom), 76% of the DPI was represented for a 20 mm beamwidth and 60% was represented for a 138 mm beamwidth if dose profiles were integrated over a 100 mm range, while more than 90% of the DPI was represented for beamwidths between 20 and 138 mm if integration was carried out over a 300 mm range. The phantom length and integration range for dosimetry of cone-beam CT needed to be more than 300 mm to represent more than 90% of the DPI for the body phantom with the beamwidth of more than 20 mm. Although we reached this conclusion using the prototype 256-slice CT-scanner, it may be applied to other multislice CT-scanners as well.

  6. Comparison of Fusion Imaging Using a Combined SPECT/CT System and Intra-arterial CT: Assessment of Drug Distribution by an Implantable Port System in Patients Undergoing Hepatic Arterial Infusion Chemotherapy

    SciTech Connect (OSTI)

    Ikeda, Osamu, E-mail: osamu-3643ik@do9.enjoy.ne.jp; Kusunoki, Shinichiroh; Nakaura, Takeshi; Shiraishi, Shinya; Kawanaka, Kouichi; Tomiguchi, Seiji; Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Department of Diagnostic Radiology (Japan); Takamori, Hiroshi; Chikamoto, Akira; Kanemitsu, Keiichiro [Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Gastroenterological Surgery (Japan)

    2006-06-15T23:59:59.000Z

    Hepatic arterial infusion (HAI) chemotherapy is effective for treating primary and metastatic carcinoma of the liver. We compared the perfusion patterns of HAI chemotherapy on intra-arterial port-catheter computed tomography (iapc-CT) and fused images obtained with a combined single-photon emission computed tomography/computed tomography (SPECT/CT) system. We studied 28 patients with primary or metastatic carcinoma of the liver who bore an implantable HAI port system. All underwent abdominal SPECT using Tc-99m-MAA (185 Mbq); the injection rate was 1 mL/min, identical to the chemotherapy infusion rate, and 0.5 mL/sec for iapc-CT. Delivery was through an implantable port. We compared the intrahepatic perfusion (IHP) and extrahepatic perfusion (EHP) patterns of HAI chemotherapy on iapc-CT images and fused images obtained with a combined SPECT/CT system. In 23 of 28 patients (82%), IHP patterns on iapc-CT images and fused images were identical. In 5 of the 28 patients (18%), IHP on fusion images was different from IHP on iapc-CT images. EHP was seen on fused images in 12 of the 28 patients (43%) and on iapc-CT images in 8 patients (29%). In 17 patients (61%), upper gastrointestinal endoscopy revealed gastroduodenal mucosal lesions. EHP was revealed on fused images in 10 of these patients; 9 of them manifested gastroduodenal toxicity at the time of subsequent HAI chemotherapy. Fusion imaging using the combined SPECT/CT system reflects the actual distribution of the infused anticancer agent. This information is valuable not only for monitoring adequate drug distribution but also for avoiding potential extrahepatic complications.

  7. Open Data, Open Source and Open Standards in chemistry: The Blue Obelisk five years on

    E-Print Network [OSTI]

    O'Boyle, Noel M; Guha, Rajarshi; Willighagen, Egon L; Adams, Samuel E; Alvarsson, Jonathan; Bradley, Jean-Claude; Filippov, Igor V; Hanson, Robert M; Hanwell, Marcus D; Hutchison, Geoffrey R; James, Craig A; Jeliazkova, Nina; Lang, Andrew SID; Langner, Karol M; Lonie, David C; Lowe, Daniel M; Pansanel, Jerome; Pavlov, Dmitry; Spjuth, Ola; Steinbeck, Christoph; Tenderholt, Adam L; Theisen, Kevin J; Murray-Rust, Peter

    2011-10-14T23:59:59.000Z

    be considered finished. After that point, the next logical step would be to start work on a standard for the SMARTS language, the extension to SMILES that specifies patterns that match chemical substructures. Open Data A considerable stumbling block... does it follow the industry consortium model. Rather it is a grassroots organisation, catalysed by an initial core of interested scientists, but with membership open to all who share one or more of the goals of the group: Open Data in Chemistry. One...

  8. ORIGINAL RESEARCH Open Access Acquisition setting optimization and quantitative

    E-Print Network [OSTI]

    Boyer, Edmond

    studies with the Inveon microPET-CT system Nadge Anizan1* , Thomas Carlier1 , Cecilia Hindorf1 was the Inveon PET/CT system dedicated to small animal imaging. Methods: The noise equivalent count rate [NECR. Keywords: small animal imaging, PET/CT, iodine-124, quantitative imaging Background Small animal imaging

  9. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration

    SciTech Connect (OSTI)

    Wolthaus, J. W. H.; Sonke, J.-J.; Herk, M. van; Damen, E. M. F. [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2008-09-15T23:59:59.000Z

    Purpose: lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. Methods and Materials: 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Results: Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods <0.5 mm for all directions) for the tumor region. From visual assessment, the registration was good for the clearly visible features (e.g., tumor and diaphragm). The shape of the tumor, with respect to that of the BH CT scan, was better represented by the MidP reconstructions than any of the 4D CT frames (including MidV; reduction of 'shape differences' was 66%). The MidP scans contained about one-third the noise of individual 4D CT scan frames. Conclusions: We implemented an accurate method to estimate the motion of structures in a 4D CT scan. Subsequently, a novel method to create a midposition CT scan (time-weighted average of the anatomy) for treatment planning with reduced noise and artifacts was introduced. Tumor shape and position in the MidP CT scan represents that of the BH CT scan better than MidV CT scan and, therefore, was found to be appropriate for treatment planning.

  10. Estimation of the weighted CTDI{sub {infinity}} for multislice CT examinations

    SciTech Connect (OSTI)

    Li Xinhua; Zhang Da; Liu, Bob [Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2012-02-15T23:59:59.000Z

    Purpose: The aim of this study was to examine the variations of CT dose index (CTDI) efficiencies, {epsilon}(CTDI{sub 100})=CTDI{sub 100}/CTDI{sub {infinity}}, with bowtie filters and CT scanner types. Methods: This was an extension of our previous study [Li, Zhang, and Liu, Phys. Med. Biol. 56, 5789-5803 (2011)]. A validated Monte Carlo program was used to calculate {epsilon}(CTDI{sub 100}) on a Siemens Somatom Definition scanner. The {epsilon}(CTDI{sub 100}) dependencies on tube voltages and beam widths were tested in previous studies. The influences of different bowtie filters and CT scanner types were examined in this work. The authors tested the variations of {epsilon}(CTDI{sub 100}) with bowtie filters on the Siemens Definition scanner. The authors also analyzed the published CTDI measurements of four independent studies on five scanners of four models from three manufacturers. Results: On the Siemens Definition scanner, the difference in {epsilon}(CTDI{sub W}) between using the head and body bowtie filters was 2.5% (maximum) in the CT scans of the 32-cm phantom, and 1.7% (maximum) in the CT scans of the 16-cm phantom. Compared with CTDI{sub W}, the weighted CTDI{sub {infinity}} increased by 30.5% (on average) in the 32-cm phantom, and by 20.0% (on average) in the 16-cm phantom. These results were approximately the same for 80-140 kV and 1-40 mm beam widths (4.2% maximum deviation). The differences in {epsilon}(CTDI{sub 100}) between the simulations and the direct measurements of four previous studies were 1.3%-5.0% at the center/periphery of the 16-cm/32-cm phantom (on average). Conclusions: Compared with CTDI{sub vol}, the equilibrium dose for large scan lengths is 30.5% higher in the 32-cm phantom, and is 20.0% higher in the 16-cm phantom. The relative increases are practically independent of tube voltages (80-140 kV), beam widths (up to 4 cm), and the CT scanners covered in this study.

  11. Correlation between human observer performance and model observer performance in differential phase contrast CT

    SciTech Connect (OSTI)

    Li, Ke; Garrett, John [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States)] [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States)] [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States)

    2013-11-15T23:59:59.000Z

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objects (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD curves tended to be steeper. The CHO generated the best quantitative agreement with human observers with its CD curve overlapping with that of human observer. Statistical equivalence between CHO and humans can be claimed within 11% of the human observer results, including both the disk and lesion detection experiments.Conclusions: The model observer method can be used to accurately represent human observer performance with the stochastic DPC-CT noise for SKE tasks with sizes ranging from 8 to 128 pixels. The incorporation of the anatomical noise remains to be studied.

  12. Registration Open for National Environmental Justice Advisory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Registration Open for National Environmental Justice Advisory Council (NEJAC) Public Meeting, September 11-12, 2013, Atlanta, Georgia Registration Open for National Environmental...

  13. OpenStudio: An Open Source Integrated Analysis Platform; Preprint

    SciTech Connect (OSTI)

    Guglielmetti, R.; Macumber, D.; Long, N.

    2011-12-01T23:59:59.000Z

    High-performance buildings require an integrated design approach for all systems to work together optimally; systems integration needs to be incorporated in the earliest stages of design for efforts to be cost and energy-use effective. Building designers need a full-featured software framework to support rigorous, multidisciplinary building simulation. An open source framework - the OpenStudio Software Development Kit (SDK) - is being developed to address this need. In this paper, we discuss the needs that drive OpenStudio's system architecture and goals, provide a development status report (the SDK is currently in alpha release), and present a brief case study that illustrates its utility and flexibility.

  14. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Community CentralOpenEI CommunityOpenEI

  15. Cholecystokinin-Assisted Hydrodissection of the Gallbladder Fossa during FDG PET/CT-guided Liver Ablation

    SciTech Connect (OSTI)

    Tewari, Sanjit O., E-mail: tewaris@mskcc.org [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States); Petre, Elena N., E-mail: petree@mskcc.org [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States); Osborne, Joseph, E-mail: osbornej@mskcc.org [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States)] [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States); Sofocleous, Constantinos T., E-mail: sofoclec@mskcc.org [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States)

    2013-12-15T23:59:59.000Z

    A 68-year-old female with colorectal cancer developed a metachronous isolated fluorodeoxyglucose-avid (FDG-avid) segment 5/6 gallbladder fossa hepatic lesion and was referred for percutaneous ablation. Pre-procedure computed tomography (CT) images demonstrated a distended gallbladder abutting the segment 5/6 hepatic metastasis. In order to perform ablation with clear margins and avoid direct puncture and aspiration of the gallbladder, cholecystokinin was administered intravenously to stimulate gallbladder contraction before hydrodissection. Subsequently, the lesion was ablated successfully with sufficient margins, of greater than 1.0 cm, using microwave with ultrasound and FDG PET/CT guidance. The patient tolerated the procedure very well and was discharged home the next day.

  16. Adaptive nonlocal means filtering based on local noise level for CT denoising

    SciTech Connect (OSTI)

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando, E-mail: manduca.armando@mayo.edu [Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 (United States)] [Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 (United States); Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H. [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)] [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2014-01-15T23:59:59.000Z

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the shape and peak frequency of the noise power spectrum better than commercial smoothing kernels, and indicate that the spatial resolution at low contrast levels is not significantly degraded. Both the subjective evaluation using the ACR phantom and the objective evaluation on a low-contrast detection task using a CHO model observer demonstrate an improvement on low-contrast performance. The GPU implementation can process and transfer 300 slice images within 5 min. On patient data, the adaptive NLM algorithm provides more effective denoising of CT data throughout a volume than standard NLM, and may allow significant lowering of radiation dose. After a two week pilot study of lower dose CT urography and CT enterography exams, both GI and GU radiology groups elected to proceed with permanent implementation of adaptive NLM in their GI and GU CT practices. Conclusions: This work describes and validates a computationally efficient technique for noise map estimation directly from CT images, and an adaptive NLM filtering based on this noise map, on phantom and patient data. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with clinical workflow. The adaptive NLM algorithm provides effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose.

  17. City of Grand Island, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCityCity ofGrand Haven,City

  18. North Beach, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources JumpOklahoma: EnergyBaltimore, Ohio:Beach Haven,

  19. North Hornell, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy ResourcesGranby, Connecticut: Energy ResourcesHaven, New

  20. North Kensington, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy ResourcesGranby, Connecticut: Energy ResourcesHaven, New397°,

  1. North Lakeville, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy ResourcesGranby, Connecticut: Energy ResourcesHaven,

  2. Beach Minerals Company Pvt Ltd BMCPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy7384317°,Baywood,MayHaven,

  3. City of Hawarden, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformationHarmony, MinnesotaHaven,

  4. City of Healdsburg, California (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformationHarmony, MinnesotaHaven,City of

  5. City of Hecla, South Dakota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformationHarmony, MinnesotaHaven,City

  6. Transhepatic CT-Guided Radiofrequency Ablation of Adrenal Metastases from Hepatocellular Carcinoma

    SciTech Connect (OSTI)

    Kuehl, Hilmar, E-mail: hilmar.kuehl@uni-due.de; Stattaus, Joerg; Forsting, Michael; Antoch, Gerald [University Hospital Essen, University at Duisburg-Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology (Germany)

    2008-11-15T23:59:59.000Z

    The prognosis of patients with adrenal metastases from hepatocellular carcinoma (HCC) has been poor, and aggressive treatment of these tumors is mandatory to improve patients' survival. Since adrenalectomy may be difficult to perform after previous surgery of the right liver lobe, other approaches are required to treat the adrenal mass. This report aims at demonstrating the feasibility of CT-guided transhepatic radiofrequency ablation of right adrenal HCC metastases pretreated with chemoembolization in patients unable to undergo surgical resection.

  7. SU-E-T-93: Creation of Standardized APBI SAVI Cavities Using CT Registration

    SciTech Connect (OSTI)

    Dahl, R [Mayo Clinic, Rochester, MN (United States)

    2014-06-01T23:59:59.000Z

    Purpose: Develop a consistent and rapid method of generating the initial cavity structure for Accelerated Partial Breast Irradiation (APBI) using the SAVI applicator. Methods: Four SAVI (Cianna Medical) applicators (6-1 Mini, 6-1, 8-1, and 10-1) were scanned on a CT simulator. The applicators were scanned in air with the CT slices (0.625mm axial thickness) perpendicular to the long axis of the applicator. Following scanning the CT images were transferred to Eclipse (Varian Medical Systems) and contours of the cavity were drawn. The cavity proximal and distal locations were defined according to MD specification. The scans and contours were then re-imported into the CT virtual simulation workstation.At the time of patient planning the appropriate applicator scan is anonymized and imported into Eclipse. In Brachytherapy Planning two Marker points are placed, one at the distal band location (cavity start) and the second at a defined distance along the applicator (cavity end). The actual patient scan is then registered to the applicator scan. A three point match is used to quickly get the two scans in approximate alignment. Manually matching is then used to fine tune the alignment of the cavity contour and Marker points. Results: The standard applicator scans have shown to agree well with the applicators in the patient scans. The time taken to register the scans has shown to be less than generating the cavities using the standard methods of contouring on the axial slices or using the dose shaper with sources in the central channel. Conclusion: The registration of a standard applicator scan and contour has improved the consistency in the generation of the initial cavity (SAVI) structure. Planning structures used for dose calculation are created with that structure as a starting point so accuracy and consistency are important for dose evaluation and plan comparison.

  8. SU-E-I-43: Pediatric CT Dose and Image Quality Optimization

    SciTech Connect (OSTI)

    Stevens, G; Singh, R [GE Healthcare, Waukesha, WI (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To design an approach to optimize radiation dose and image quality for pediatric CT imaging, and to evaluate expected performance. Methods: A methodology was designed to quantify relative image quality as a function of CT image acquisition parameters. Image contrast and image noise were used to indicate expected conspicuity of objects, and a wide-cone system was used to minimize scan time for motion avoidance. A decision framework was designed to select acquisition parameters as a weighted combination of image quality and dose. Phantom tests were used to acquire images at multiple techniques to demonstrate expected contrast, noise and dose. Anthropomorphic phantoms with contrast inserts were imaged on a 160mm CT system with tube voltage capabilities as low as 70kVp. Previously acquired clinical images were used in conjunction with simulation tools to emulate images at different tube voltages and currents to assess human observer preferences. Results: Examination of image contrast, noise, dose and tube/generator capabilities indicates a clinical task and object-size dependent optimization. Phantom experiments confirm that system modeling can be used to achieve the desired image quality and noise performance. Observer studies indicate that clinical utilization of this optimization requires a modified approach to achieve the desired performance. Conclusion: This work indicates the potential to optimize radiation dose and image quality for pediatric CT imaging. In addition, the methodology can be used in an automated parameter selection feature that can suggest techniques given a limited number of user inputs. G Stevens and R Singh are employees of GE Healthcare.

  9. Open Science: Open source licenses in scientific research

    E-Print Network [OSTI]

    Guadamuz, Andres

    2006-01-01T23:59:59.000Z

    The article examines the validity of OSS (open source software) licenses for scientific, as opposed to creative works. It draws on examples of OSS licenses to consider their suitability for the scientific community and ...

  10. Retrocrural splanchnic nerve alchohol neurolysis with a CT-guided anterior transaortic approach

    SciTech Connect (OSTI)

    Fields, S. [Hadassah University Hospital, Jerusalem (Israel)] [Hadassah University Hospital, Jerusalem (Israel)

    1996-01-01T23:59:59.000Z

    Retrocrural splanchnic nerve alcohol neurolysis with a CT-guided anterior transonic approach, a new method for splanchnic block alleviation of chronic abdominal pain, is described. Ten patients with chronic abdominal pain requiring narcotic treatment, six with pancreatic carcinoma, one with gastric carcinoma, two with chronic pancreatitis, and one with pain of unknown etiology, were referred for splanchnic nerve neurolysis. With CT guidance, a 20 gauge needle was placed through the aorta into the retrocrural space at T11-T12, and 5-15 ml 96% alcohol was injected into the retrocrural space. Following the procedure, 6 of 10 patients were pain free, 2 patients had temporary pain relief, and 2 patients were without response. There were no significant complications. CT-guided anterior transaortic retrocrural splanchnic nerve alcohol neurolysis is technically feasible, easier to perform than the classic posterolateral approach, and may have less risk of complications. The success rate in this initial trial was reasonable and, therefore, this technique provides an additional method for the treatment of abdominal pain. 12 refs., 2 figs.

  11. CT-Guided Radiofrequency Ablation in Patients with Hepatic Metastases from Breast Cancer

    SciTech Connect (OSTI)

    Jakobs, Tobias F., E-mail: tobias.jakobs@med.uni-muenchen.de; Hoffmann, Ralf-Thorsten; Schrader, Angelika [Ludwig-Maximilians-University of Munich, Department of Radiology (Germany); Stemmler, Hans Joachim [Ludwig-Maximilians-University of Munich, Department of Internal Medicine III (Germany); Trumm, Christoph [Ludwig-Maximilians-University of Munich, Department of Radiology (Germany); Lubienski, Andreas [University of Schleswig-Holstein, Department of Radiology (Germany); Murthy, Ravi [The University of Texas M. D. Anderson Cancer Center, Division of Diagnostic Imaging (United States); Helmberger, Thomas K. [Klinikum Bogenhausen, Department of Radiology (Germany); Reiser, Maximilian F. [Ludwig-Maximilians-University of Munich, Department of Radiology (Germany)

    2009-01-15T23:59:59.000Z

    The purpose of this study was to evaluate technical success, technique effectiveness, and survival following radiofrequency ablation for breast cancer liver metastases and to determine prognostic factors. Forty-three patients with 111 breast cancer liver metastases underwent CT-guided percutaneous radiofrequency (RF) ablation. Technical success and technique effectiveness was evaluated by performing serial CT scans. We assessed the prognostic value of hormone receptor status, overexpression of human epidermal growth factor receptor 2 (HER2), and presence of extrahepatic tumor spread. Survival rates were calculated using the Kaplan-Meier method. Technical success was achieved in 107 metastases (96%). Primary technique effectiveness was 96%. During follow-up local tumor progression was observed in 15 metastases, representing a secondary technique effectiveness of 86.5%. The overall time to progression to the liver was 10.5 months. The estimated overall median survival was 58.6 months. There was no significant difference in terms of survival probability with respect to hormone receptor status, HER2 overexpression, and presence of isolated bone metastases. Survival was significantly lower among patients with extrahepatic disease, with the exception of skeletal metastases. We conclude that CT-guided RF ablation of liver metastases from breast cancer can be performed with a high degree of technical success and technique effectiveness, providing promising survival rates in patients with no visceral extrahepatic disease. Solitary bone metastases did not negatively affect survival probability after RF ablation.

  12. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179

    SciTech Connect (OSTI)

    Bissonnette, Jean-Pierre; Balter, Peter A.; Dong Lei; Langen, Katja M.; Lovelock, D. Michael; Miften, Moyed; Moseley, Douglas J.; Pouliot, Jean; Sonke, Jan-Jakob; Yoo, Sua [Task Group 179, Department of Radiation Physics, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Department of Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology, M. D. Anderson Cancer Center Orlando, Orlando, Florida 32806 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 (United States); Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Department of Radiation Physics, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Department of Radiation Oncology, UCSF Comprehensive Cancer Center, 1600 Divisadero St., Suite H 1031, San Francisco, California 94143-1708 (United States); Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Department of Radiation Oncology, Duke University, Durham, North Carolina 27710 (United States)

    2012-04-15T23:59:59.000Z

    Purpose: Commercial CT-based image-guided radiotherapy (IGRT) systems allow widespread management of geometric variations in patient setup and internal organ motion. This document provides consensus recommendations for quality assurance protocols that ensure patient safety and patient treatment fidelity for such systems. Methods: The AAPM TG-179 reviews clinical implementation and quality assurance aspects for commercially available CT-based IGRT, each with their unique capabilities and underlying physics. The systems described are kilovolt and megavolt cone-beam CT, fan-beam MVCT, and CT-on-rails. A summary of the literature describing current clinical usage is also provided. Results: This report proposes a generic quality assurance program for CT-based IGRT systems in an effort to provide a vendor-independent program for clinical users. Published data from long-term, repeated quality control tests form the basis of the proposed test frequencies and tolerances.Conclusion: A program for quality control of CT-based image-guidance systems has been produced, with focus on geometry, image quality, image dose, system operation, and safety. Agreement and clarification with respect to reports from the AAPM TG-101, TG-104, TG-142, and TG-148 has been addressed.

  13. Freehand Two-Step CT-Guided Brain Tumor Biopsy: A Fast and Effective Interventional Procedure in Selected Patients

    SciTech Connect (OSTI)

    Thanos, Loukas, E-mail: loutharad@yahoo.com; Mylona, Sofia; Galani, Panagiota; Kalioras, Vasilios; Pomoni, Maria; Batakis, Nikolaos ['Korgialeneio-Benakeio', Hellenic Red-Cross Hospital of Athens, Radiology Department (Greece)

    2006-04-15T23:59:59.000Z

    Purpose. To evaluate the efficacy and safety of CT-guided needle biopsy of brain lesions without a stereotactic device, and to determine the best possible indications for this technique. Methods. From February 2001 to February 2004, 20 patients (12 men, 8 women; age 61-82 years) underwent CT-guided brain lesion biopsy. The procedure started with a brain CT scan for lesion localization and for selection of the inlet for needle insertion. The patient was then transported to the operating room where cranioanatrisis was performed. Subsequently, the biopsy was performed under CT guidance using a 14G brain biopsy needle with a blind smooth end and lateral holes. At the end of the biopsy, the field was checked for possible complications with a CT scan. Results. Histopathologic results were: brain tumor in 16 patients (80%), inflammatory process in 3 (15%), and no conclusive diagnosis in 1 (5%). A repeat of the process was required in 2 patients. A minor complication of local hematoma was found in 1 patient (5%). There were no deaths or other serious complications.Conclusion. CT-guided biopsy is a reliable method for histopathologic diagnosis of brain lesions in selected cases. It is a simple, fast, effective, low-cost procedure with minimal complications, indicated especially for superficial and large tumors.

  14. Cairnhill Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind-BrizaHKC WindCT

  15. LOCH: Open Access Implementation Responsibility Matrix

    E-Print Network [OSTI]

    Krzak, Anna

    2015-02-05T23:59:59.000Z

    Draft Responsibility Matrix for College of Medicine and Veterinary Medicine for REF Open Access requirements implementation.

  16. Welcome - OpenEI Datasets

    Open Energy Info (EERE)

    Search for a topic or click on a statistic to dive into our datasets. This is a featured section Placeholder OpenEI Datasets statistics 1k datasets 2 organizations 0 related items...

  17. Essays in open economy macroeconomics

    E-Print Network [OSTI]

    Ghosh, Indradeep, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    This thesis is a collection of two essays on open economy macroeconomics. The first essay is on imperfect asset substitutability and current account dynamics. It is divided into four chapters. The first chapter in this ...

  18. energy company opens American branch

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    in clean-energy investment and delivering unique projects and innovative products and servicesenergy company opens American branch in West Sacramento Substainible energy for sustainable energy supply. Ecostream markets such things as solar roof panel installations and other long

  19. Open Ontology Repository Kenneth Baclawski

    E-Print Network [OSTI]

    Baclawski, Kenneth B.

    University Boston, Massachusetts 02115 USA +1.617.373.4631 kenb@ccs.neu.edu Todd Schneider Raytheon 7700 Arlington Blvd. Fairfax, VA, 22042 USA +1.703.204.6463 todd.schneider@raytheon.com ABSTRACT The Open

  20. Open seminar: Clinical Behaviour Change

    E-Print Network [OSTI]

    Zhao, Yuxiao

    Professor Susan Michie Centre for Outcomes Research and Effectiveness Department of Clinical, Educational Framework Professor Susan Michie Centre for Outcomes Research and Effectiveness Department of ClinicalOpen seminar: Clinical Behaviour Change Application of the Theoretical Domains Framework

  1. Closed/open string diagrammatics

    E-Print Network [OSTI]

    2006-06-28T23:59:59.000Z

    May 3, 2006 ... R.M. Kaufmann, R.C. Penner / Nuclear Physics B 748 [FS] (2006) 335379. In terms of open/closed theories beyond the topological level, many...

  2. OpenADR Open Source Toolkit: Developing Open Source Software for the Smart Grid

    SciTech Connect (OSTI)

    McParland, Charles

    2011-02-01T23:59:59.000Z

    Demand response (DR) is becoming an increasingly important part of power grid planning and operation. The advent of the Smart Grid, which mandates its use, further motivates selection and development of suitable software protocols to enable DR functionality. The OpenADR protocol has been developed and is being standardized to serve this goal. We believe that the development of a distributable, open source implementation of OpenADR will benefit this effort and motivate critical evaluation of its capabilities, by the wider community, for providing wide-scale DR services

  3. The effects of gantry tilt on breast dose and image noise in cardiac CT

    SciTech Connect (OSTI)

    Hoppe, Michael E.; Gandhi, Diksha; Schmidt, Taly Gilat [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States)] [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States); Stevens, Grant M. [GE Healthcare, Waukesha, Wisconsin 53188 (United States)] [GE Healthcare, Waukesha, Wisconsin 53188 (United States); Foley, W. Dennis [Department of Radiology, Medical College of Wisconsin, Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin 53226 (United States)] [Department of Radiology, Medical College of Wisconsin, Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin 53226 (United States)

    2013-12-15T23:59:59.000Z

    Purpose: This study investigated the effects of tilted-gantry acquisition on image noise and glandular breast dose in females during cardiac computed tomography (CT) scans. Reducing the dose to glandular breast tissue is important due to its high radiosensitivity and limited diagnostic significance in cardiac CT scans.Methods: Tilted-gantry acquisition was investigated through computer simulations and experimental measurements. Upon IRB approval, eight voxelized phantoms were constructed from previously acquired cardiac CT datasets. Monte Carlo simulations quantified the dose deposited in glandular breast tissue over a range of tilt angles. The effects of tilted-gantry acquisition on breast dose were measured on a clinical CT scanner (CT750HD, GE Healthcare) using an anthropomorphic phantom with MOSFET dosimeters in the breast regions. In both simulations and experiments, scans were performed at gantry tilt angles of 030, in 5 increments. The percent change in breast dose was calculated relative to the nontilted scan for all tilt angles. The percent change in noise standard deviation due to gantry tilt was calculated in all reconstructed simulated and experimental images.Results: Tilting the gantry reduced the breast dose in all simulated and experimental phantoms, with generally greater dose reduction at increased gantry tilts. For example, at 30 gantry tilt, the dosimeters located in the superior, middle, and inferior breast regions measured dose reductions of 74%, 61%, and 9%, respectively. The simulations estimated 0%30% total breast dose reduction across the eight phantoms and range of tilt angles. However, tilted-gantry acquisition also increased the noise standard deviation in the simulated phantoms by 2%50% due to increased pathlength through the iodine-filled heart. The experimental phantom, which did not contain iodine in the blood, demonstrated decreased breast dose and decreased noise at all gantry tilt angles.Conclusions: Tilting the gantry reduced the dose to the breast, while also increasing noise standard deviation. Overall, the noise increase outweighed the dose reduction for the eight voxelized phantoms, suggesting that tilted gantry acquisition may not be beneficial for reducing breast dose while maintaining image quality.

  4. Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain

    SciTech Connect (OSTI)

    Leng, Shuai; Yu, Lifeng; Zhang, Yi; McCollough, Cynthia H. [Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States)] [Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States); Carter, Rickey [Department of Biostatistics, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States)] [Department of Biostatistics, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States); Toledano, Alicia Y. [Biostatistics Consulting, LLC, 10606 Wheatley Street, Kensington, Maryland 20895 (United States)] [Biostatistics Consulting, LLC, 10606 Wheatley Street, Kensington, Maryland 20895 (United States)

    2013-08-15T23:59:59.000Z

    Purpose: The purpose of this study was to investigate the correlation between model observer and human observer performance in CT imaging for the task of lesion detection and localization when the lesion location is uncertain.Methods: Two cylindrical rods (3-mm and 5-mm diameters) were placed in a 35 26 cm torso-shaped water phantom to simulate lesions with ?15 HU contrast at 120 kV. The phantom was scanned 100 times on a 128-slice CT scanner at each of four dose levels (CTDIvol = 5.7, 11.4, 17.1, and 22.8 mGy). Regions of interest (ROIs) around each lesion were extracted to generate images with signal-present, with each ROI containing 128 128 pixels. Corresponding ROIs of signal-absent images were generated from images without lesion mimicking rods. The location of the lesion (rod) in each ROI was randomly distributed by moving the ROIs around each lesion. Human observer studies were performed by having three trained observers identify the presence or absence of lesions, indicating the lesion location in each image and scoring confidence for the detection task on a 6-point scale. The same image data were analyzed using a channelized Hotelling model observer (CHO) with Gabor channels. Internal noise was added to the decision variables for the model observer study. Area under the curve (AUC) of ROC and localization ROC (LROC) curves were calculated using a nonparametric approach. The Spearman's rank order correlation between the average performance of the human observers and the model observer performance was calculated for the AUC of both ROC and LROC curves for both the 3- and 5-mm diameter lesions.Results: In both ROC and LROC analyses, AUC values for the model observer agreed well with the average values across the three human observers. The Spearman's rank order correlation values for both ROC and LROC analyses for both the 3- and 5-mm diameter lesions were all 1.0, indicating perfect rank ordering agreement of the figures of merit (AUC) between the average performance of the human observers and the model observer performance.Conclusions: In CT imaging of different sizes of low-contrast lesions (?15 HU), the performance of CHO with Gabor channels was highly correlated with human observer performance for the detection and localization tasks with uncertain lesion location in CT imaging at four clinically relevant dose levels. This suggests the ability of Gabor CHO model observers to meaningfully assess CT image quality for the purpose of optimizing scan protocols and radiation dose levels in detection and localization tasks for low-contrast lesions.

  5. Open Subsystems of Conservative Systems

    E-Print Network [OSTI]

    Alexander Figotin; Stephen P. Shipman

    2006-01-12T23:59:59.000Z

    The subject under study is an open subsystem of a larger linear and conservative system and the way in which it is coupled to the rest of system. Examples are a model of crystalline solid as a lattice of coupled oscillators with a finite piece constituting the subsystem, and an open system such as the Helmholtz resonator as a subsystem of a larger conservative oscillatory system. Taking the view of an observer accessing only the open subsystem we ask, in particular, what information about the entire system can be reconstructed having such limited access. Based on the unique minimal conservative extension of an open subsystem, we construct a canonical decomposition of the conservative system describing, in particular, its parts coupled to and completely decoupled from the open subsystem. The coupled one together with the open system constitute the unique minimal conservative extension. Combining this with an analysis of the spectral multiplicity, we show, for the lattice model in particular, that only a very small part of all possible oscillatory motion of the entire crystal, described canonically by the minimal extension, is coupled to the finite subsystem.

  6. Correlation between internal fiducial tumor motion and external marker motion for liver tumors imaged with 4D-CT

    SciTech Connect (OSTI)

    Beddar, A. Sam [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)]. E-mail: abeddar@mdanderson.org; Kainz, Kristofer [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Briere, Tina Marie [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Tsunashima, Yoshikazu [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Pan Tinsu [Department of Diagnostic Imaging, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Prado, Karl [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gillin, Michael [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Krishnan, Sunil [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2007-02-01T23:59:59.000Z

    Purpose: We investigated the correlation between the motions of an external marker and internal fiducials implanted in the liver for 8 patients undergoing respiratory-based computed tomography (four-dimensional CT [4D-CT]) procedures. Methods and Materials: The internal fiducials were gold seeds, 3 mm in length and 1.2 mm in diameter. Four patients each had one implanted fiducial, and the other four had three implanted fiducials. The external marker was a plastic box, which is part of the Real-Time Position Management System (RPM) used to track the patient's respiration. Each patient received a standard helical CT scan followed by a time-correlated CT-image acquisition (4D-CT). The 4D-CT images were reconstructed in 10 separate phases covering the entire respiratory cycle. Results: The internal fiducial motion is predominant in the superior-inferior direction, with a range of 7.5-17.5 mm. The correlation between external respiration and internal fiducial motion is best during expiration. For 2 patients with their three fiducials separated by a maximum of 3.2 cm, the motions of the fiducials were well correlated, whereas for 2 patients with more widely spaced fiducials, there was less correlation. Conclusions: In general, there is a good correlation between internal fiducial motion imaged by 4D-CT and external marker motion. We have demonstrated that gating may be best performed at the end of the respiratory cycle. Special attention should be paid to gating for patients whose fiducials do not move in synchrony, because targeting on the correct respiratory amplitude alone would not guarantee that the entire tumor volume is within the treatment field.

  7. Open-PEOPLE D2.9--Development Open-PEOPLE

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Open-PEOPLE D2.9--Development Platform Page 1/16 Open-PEOPLE Open Power and Energy Optimization by the Open-PEOPLE project to its software developers. inria-00625996,version1-23Sep2011 #12;Open-PEOPLE D2....................................................................................................................16 inria-00625996,version1-23Sep2011 #12;Open-PEOPLE D2.9--Development Platform Page 3/16 1. Preface

  8. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Community Central Home > OpenEI

  9. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Community Central Home >OpenEI

  10. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Community Central Home >OpenEIOpenEI

  11. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Community Central HomechallengeOpenEI

  12. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Community CentralOpenEI Community

  13. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Community CentralOpenEI

  14. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Community CentralOpenEIOpenEI Community

  15. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Community CentralOpenEIOpenEI

  16. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Community CentralOpenEIOpenEIcomfort

  17. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI Communitydesign Type Term TitleOpenEI

  18. OpenEI:GeoTeam | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI CommunitydesignOpenEI:GeoTeam Jump to:

  19. OpenEI:Get Involved | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEI CommunitydesignOpenEI:GeoTeam Jump

  20. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia Green FuelsperCivicVersion 2 isOpenEI Community