National Library of Energy BETA

Sample records for harvest solar project

  1. Photon Enhanced Thermionic Emission for Solar Energy Harvesting...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Thermionic Emission for Solar Energy Harvesting Final Report to the Global Climate and Energy Project Citation Details In-Document Search Title: Photon Enhanced...

  2. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems

    E-Print Network [OSTI]

    Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

    2005-01-01

    sensor node using our solar energy harvesting module. VI. Csensor networks using solar energy harvesting. II. R ELATEDities are now feasible, solar energy harvesting through

  3. Enabling Long-Lived Sensor Networks Through Solar Energy Harvesting

    E-Print Network [OSTI]

    Jason Hsu; Sadaf Zahedi; Jonathan Friedman; Aman Kansal; Vijay Raghunathan; Mani Srivastava

    2005-01-01

    Sensor Networks through Solar Energy Harvesting Jason Hsu,Heliomote A integrated solar energy harvesting and storageYellow bar represent solar energy received locally Solar

  4. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems

    E-Print Network [OSTI]

    Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

    2005-01-01

    which arise in the design of solar energy harvesting,IPSN), April 2005. Design Considerations for Solar Energythat are involved in the design of a solar energy harvesting

  5. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems

    E-Print Network [OSTI]

    Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

    2005-01-01

    sensor node using our solar energy harvesting module. VI. CDesign Considerations for Solar Energy Harvesting Wirelessfactors. For example, solar energy supply is highly time

  6. Solar/Electromagnetic Energy Harvesting and Wireless

    E-Print Network [OSTI]

    Tentzeris, Manos

    INVITED P A P E R Solar/Electromagnetic Energy Harvesting and Wireless Power Transmission This paper reviews numerous existing efforts and solutions in the field of solar and electromagnetic energy of solar/electromagnetic energy harvest- ing and wireless power transmission. More specifically, the paper

  7. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems

    E-Print Network [OSTI]

    Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

    2005-01-01

    M. Srivastava, “Energy aware wireless microsensor networks”,for Solar Energy Harvesting Wireless Embedded Systems Vijaydesign of solar energy harvesting, wireless embedded systems

  8. Solar cells incorporating light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S.; Meyer, Gerald J.

    2003-07-22

    A solar cell incorporates a light harvesting array that comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: ##EQU1## wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2 ; and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  9. Solar cells incorporating light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC); Meyer, Gerald J. (Baltimore, MD)

    2002-01-01

    A solar cell incorporates a light harvesting array that comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2 ; and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  10. Harvest Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL SolarGateMingyangHangtian Longyuan

  11. Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper)

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper) Pai H requiring battery replacement. This paper ex- amines technical issues with solar energy harvesting. First power point tracking, energy harvest- ing, solar panel, photovoltaic cell, supercapacitor, ultracapac

  12. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  13. Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes

    E-Print Network [OSTI]

    Carloni, Luca

    Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes Gerald their communications and networking parameters to the available environmental energy harvested by the organic solar harvesting, organic solar cells, ultra-low-power com- munications, ultra-wideband impulse radio, energy

  14. Efficient light harvesting in multiple-device stacked structure for polymer solar cells

    E-Print Network [OSTI]

    Efficient light harvesting in multiple-device stacked structure for polymer solar cells Vishal structure of polymer solar cells for efficient light harvesting. Two polymer photovoltaic cells are stacked harvesting has been demonstrated for organic solar cells uti- lizing tandem structure.11,12 However

  15. Nanowire Solar Energy Harvesting - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic Solar Photovoltaic Find More

  16. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449:...

  17. Quantum Coaxial Cables for Solar Energy Harvesting

    SciTech Connect (OSTI)

    Zhang, Y.; Wang, L.-W.; Mascarenhas, A.

    2007-01-01

    Type II core-shell nanowires based on III-V and II-VI semiconductors are designed to provide the highly desirable but not readily available feature-efficient charge separation-and concurrently address the different material challenges specific for a few key renewable energy applications: including hydrogen generation via photoelectrochemical water splitting, dye-sensitized solar cells, and conventional solar cells. They also open up new avenues for studying novel physics and material sciences in reduced dimensionality of very unusual quasi-one-dimensional systems. A first-principles density function theory within the local density approximation (LDA) is used for the electronic structure calculation and a valence-force-field method for the structural relaxation, and empirical corrections to the LDA errors are applied.

  18. BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)

    E-Print Network [OSTI]

    BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County;BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Licensing: The Beacon project would have a nominal

  19. Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies

    E-Print Network [OSTI]

    Wang, Zhong L.

    Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies Yingchun Wu1 KEYWORDS hybrid energy cell, wind energy, solar energy, triboelectric nanogenerators, electrochemical cells ABSTRACT We report a hybrid energy cell that can simultaneously or individually harvest wind, solar

  20. Organic Solar Cells with Graded Exciton-dissociation Interfaces.................................................................................................................EN.1 Luminescent Solar Concentrators for Energy-harvesting in Displays ........

    E-Print Network [OSTI]

    Reif, Rafael

    Energy Organic Solar Cells with Graded Exciton-dissociation Interfaces.................................................................................................................EN.1 Luminescent Solar Concentrators for Energy-harvesting in Displays ...................................................................................EN.3 Nano-engineered Organic Solar-energy-harvesting System

  1. Broadband enhancement of light harvesting in luminescent solar concentrator

    E-Print Network [OSTI]

    Xiao, Yun-Feng; Xiao, Lixin; Sun, Fang-Wen; Gong, Qihuang

    2010-01-01

    Luminescent solar concentrator (LSC) can absorb large-area incident sunlight, then emit luminescence with high quantum efficiency, which finally be collected by a small photovoltaic (PV) system. The light-harvesting area of the PV system is much smaller than that of the LSC system, potentially improving the efficiency and reducing the cost of solar cells. Here, based on Fermi-golden rule, we present a theoretical description of the luminescent process in nanoscale LSCs where the conventional ray-optics model is no longer applicable. As an example calculated with this new model, we demonstrate that a slot waveguide consisting of a nanometer-sized low-index slot region sandwiched by two high-index regions provides a broadband enhancement of light harvesting by the luminescent centers in the slot region. This is because the slot waveguide can (1) greatly enhance the spontaneous emission due to the Purcell effect, (2) dramatically increase the effective absorption cross-section of luminescent centers, and (3) str...

  2. EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project...

    Office of Environmental Management (EM)

    84: Fotowatio Nevada Solar, LLC's Apex Solar Power Project in Clark County, NV EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project in Clark County, NV July 1, 2010...

  3. EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV Documents...

  4. Sun Harvest Solar Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for the EntireOpenSumpter,Energy Group LLC Jump

  5. Energy transfer in nanowire solar cells with photon-harvesting shells C. H. Peters,a

    E-Print Network [OSTI]

    McGehee, Michael

    Energy transfer in nanowire solar cells with photon-harvesting shells C. H. Peters,a A. R. Guichard; published online 23 June 2009 The concept of a nanowire solar cell with photon-harvesting shells are bonded to the surface of the SiNWs forming a thin shell. They absorb the low-energy photons

  6. PROJECT PROFILE: Vermont Energy Investment Corporation (Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Energy Investment Corporation (Solar Market Pathways) PROJECT PROFILE: Vermont Energy Investment Corporation (Solar Market Pathways) Title: Vermont Solar Development Plan...

  7. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K.; Cuppett, D.; Dyer, D.

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ?ť system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  8. Photon-Electron Harvesting in Thin-Film Flexible Solar Cells

    E-Print Network [OSTI]

    Wu, Shin-Tson

    ) Dr. Debashis Chanda's Group Cost effective and high efficiency solar cells are important in orderPhoton-Electron Harvesting in Thin-Film Flexible Solar Cells Javaneh Boroumand (12:00 PM ­ 12:30 PM-crystalline silicon (c- Si) remained number one material of choice for harnessing solar energy due to natural

  9. Metal-black scattering centers to enhance light harvesting by thin-film solar cells

    E-Print Network [OSTI]

    Peale, Robert E.

    Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

  10. Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells Nicholas P of solar energy conversion be- cause they use thin films of photoactive material and can be manufactured and photocurrent in flexible organic solar cells. We demonstrate that this enhancement is attributed to a broadband

  11. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems

    E-Print Network [OSTI]

    Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

    2005-01-01

    CVS repository, Networked and Embedded Systems Lab, UCLA. (Mani Srivastava Networked and Embedded Systems Lab (NESL)harvesting, wireless embedded systems and presents the

  12. Shared Solar Projects Powering Households Throughout America...

    Broader source: Energy.gov (indexed) [DOE]

    Shared solar projects allow consumers to take advantage of solar energys myriad benefits, even though the system is not located on the consumers own rooftop. | Photo...

  13. Light Trapping, Absorption and Solar Energy Harvesting by Artificial...

    Office of Scientific and Technical Information (OSTI)

    Org: USDOE Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY light-trapping, photonic crystals, high-efficiency thin-film solar cells Word Cloud...

  14. Singlet exciton fission : applications to solar energy harvesting

    E-Print Network [OSTI]

    Thompson, Nicholas John

    2014-01-01

    Singlet exciton fission transforms a single molecular excited state into two excited states of half the energy. When used in solar cells it can double the photocurrent from high energy photons increasing the maximum ...

  15. Infrared Solar Energy Harvesting using Nano-Rectennas

    E-Print Network [OSTI]

    Sayed, Islam E Hashem

    2015-01-01

    Rectennas formed from nanodipole antennas terminated by plasmonic metal-insulator-metal (MIM) travelling wave transmission line rectifiers are developed for ambient thermal energy harvesting at 30 THz. The transmission lines are formed from two strips coupled either vertically or laterally. A systematic design approach is presented, that shows how different components can be integrated with each other with maximum radiation receiving nantenna efficiency, maximum coupling efficiency between nantenna and rectifier, and maximum MIM diode rectifier efficiency. The tunneling current of the rectifier is calculated using the transfer matrix method (TMM) and the nonequilibrium Green's function (NEGF). The figures of merit of the rectifier are analyzed, and the effect of the metals and insulator choices on these merits is investigated. A detailed parametric study of the coupled strips plasmonic transmission lines is presented and thoroughly discussed. The overall efficiencies of the proposed travelling wave rectennas ...

  16. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC); Chinnasamy, Muthiah (Raleigh, NC); Fan, Dazhong (Raleigh, NC)

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  17. Long Island Solar Farm Project Overview

    E-Print Network [OSTI]

    Ohta, Shigemi

    . Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power: Long Island Power Authority (LIPA) purchases 100 percent of the LISF project output Destination to the annual usage of ~ 4,500 homes LISF Power Purchase Agreement (PPA) Term with LIPA: 20 years Estimated

  18. EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo...

    Office of Environmental Management (EM)

    8: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA Documents Available for Download...

  19. Task Scheduling in an energy harvesting WSN for Structural Health Monitoring Project Progress Report

    E-Print Network [OSTI]

    Simunic, Tajana

    of system is the management and conservation of energy while maintaining the minimum level of QoS requiredTask Scheduling in an energy harvesting WSN for Structural Health Monitoring Project Progress sensor networks in advanced Structural health monitoring (SHM) systems has proliferated in the last few

  20. Project Profile: Brayton Solar Power Conversion System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Conversion System Project Profile: Brayton Solar Power Conversion System Brayton Energy logo Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the...

  1. PROJECT PROFILE: California Center for Sustainable Energy (Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Center for Sustainable Energy (Solar Market Pathways) PROJECT PROFILE: California Center for Sustainable Energy (Solar Market Pathways) Title: Virtual Net Metering...

  2. EECBG Success Story: Solar Projects Provide Energy to County...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Projects Provide Energy to County Fairgrounds September 23, 2010 - 1:01pm Addthis Solar panels have been installed at a shelter facility near Ulster County Fairgrounds. |...

  3. Project Profile: High-Temperature Solar Selective Coating Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Selective Coating Development for Power Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers Sandia National...

  4. El Dorado Solar Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc Jump to: navigation,Solar Project Solar Power

  5. Port of Galveston Solar Energy Project

    SciTech Connect (OSTI)

    Falcioni, Diane; Cuclis, Alex; Freundlich, Alex

    2014-03-31

    This study on the performance characteristics of existing solar technologies in a maritime environment was funded by an award given to The Port of Galveston (POG) from the U.S. Department of Energy (DOE). The study includes research performed by The Center for Advanced Materials at the University of Houston (UH). The UH researchers examined how solar cell efficiencies and life spans can be improved by examining the performance of a variety of antireflective (AR) coatings mounted on the top of one of the POG’s Cruise Terminals. Supplemental supporting research was performed at the UH laboratories. An educational Kiosk was constructed with a 55” display screen providing information about solar energy, the research work UH performed at POG and real time data from the solar panels located on the roof of the Cruise Terminal. The Houston Advanced Research Center (HARC) managed the project.

  6. SES Solar Two Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan:Roxbury,RushS.K EnterpriseTwo Project Solar Power

  7. Winning the Future: Grand Ronde Solar Projects Reduce Pollution...

    Office of Environmental Management (EM)

    Grand Ronde Solar Projects Reduce Pollution, Cut Costs Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs October 20, 2014 - 5:00pm Addthis PV panels...

  8. EIS-0455: Genesis Solar Energy Project in Riverside County, CA...

    Office of Environmental Management (EM)

    5: Genesis Solar Energy Project in Riverside County, CA EIS-0455: Genesis Solar Energy Project in Riverside County, CA December 17, 2010 EIS-0455: Notice of Adoption of an...

  9. EIS-0439: Rice Solar Energy Project in Riverside County, CA ...

    Office of Environmental Management (EM)

    9: Rice Solar Energy Project in Riverside County, CA EIS-0439: Rice Solar Energy Project in Riverside County, CA March 29, 2010 EIS-0439: Notice of Intent to Prepare an...

  10. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2011-02-11

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  11. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  12. Solar Total Energy Project final test report

    SciTech Connect (OSTI)

    Nelson, R.F.; Abney, L.O.; Towner, M.L. (Georgia Power Co., Shenandoah, GA (USA))

    1990-09-01

    The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

  13. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect (OSTI)

    Hess, J.R

    2005-01-31

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) An efficient combine-based threshing system for separating the internodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  14. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect (OSTI)

    N /A

    2004-09-30

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. They investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) an efficient combine-based threshing system for separating the intermodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  15. Vehicle Technologies Office Merit Review 2014: EV Project: Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the EV project: solar-assisted charging demo....

  16. Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility.

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer chemistry. In particular, we focus on dye-sensitized solar cells (DSSCs)1 , organic photovoltaics2

  17. Brookhaven National Laboratory LIPA Solar RFP and Proposed BP Project

    E-Print Network [OSTI]

    Homes, Christopher C.

    ;14 http://www.lipasolarrfp.org/ #12;15 Potential Solar Photovoltaic Generating Project Site Hosts who wish respondent's financial responsibility or suitability or fitness to install Solar Photovoltaic Generating a total of 50MW of power produced by solar photovoltaics..." · LIPA to purchase the energy output for up

  18. EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

  19. SOLAR ENERGY HARVESTINGSOLAR ENERGY HARVESTING P. BASSET1, Y. LEPRINCE-WANG3, K. N. NGUYEN1, D. ABI-SAAB1, E. RICHALOT2, F. MARTY1, D.

    E-Print Network [OSTI]

    Baudoin, Genevičve

    SOLAR ENERGY HARVESTINGSOLAR ENERGY HARVESTING P. BASSET1, Y. LEPRINCE-WANG3, K. N. NGUYEN1, D. ABI & Results Study the energy harvesting of the micro/nanostructured materials under solar radiation Light solar cell adding n type nanoparticles. High p-n junction interface due to the nano 3D structure. Multi

  20. EA-1989: Cliffrose Solar Energy Interconnection Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) is preparing an EA that will assess the potential environmental impacts of interconnecting the proposed Cliffrose Solar Energy Project in Mohave County, Arizona, to Western’s transmission system at the existing Griffith Substation. Additional information is available at http://www.wapa.gov/dsw/environment/CliffroseSolarEnergyProject.html.

  1. Collective behavior of semiconductor nanoparticles for use in solar energy harvesting

    E-Print Network [OSTI]

    Shcherbatyuk, Georgiy

    2012-01-01

    and W. Greubel, "Solar Energy Conversion with. FluorescentSolar Concentrators with Near-Infrared 7.1 Introduction Theoretically, the energy conversion

  2. A Guide to Community Solar: Utility, Private and Non-Profit Project Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    A Guide to Community Solar: Utility, Private and Non-Profit Project Development provides information on various community solar project models, state policies that support community solar projects, and tax policies and incentives.

  3. Solar Instructor Series A PROJECT BY

    E-Print Network [OSTI]

    Authori es Having Jurisdic on Inspectors, Code Officials Workshops under the Solar Instructor Series: 1 9. NEC ® 2011 Code Updates PV 10. Integra ng Solar into Exis ng Curricula 11. How to Land Your

  4. PROJECT PROFILE: Midwest Renewable Energy Association (Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    emerging solar PV market. This region currently has only 3% of the nation's installed solar capacity but is experiencing the fastest growth rate of any region in the US. In an...

  5. DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...

    Energy Savers [EERE]

    Announces 27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces 27 Million to Reduce Costs of Solar Energy Projects,...

  6. SEP Success Story: Harvesting the Sun at the West Tennessee Solar...

    Broader source: Energy.gov (indexed) [DOE]

    Big Changes to Boost Clean Energy Economy The roof of the justice center where a solar panel array will be installed to power a solar thermal water-heating system | Photo courtesy...

  7. EECBG Success Story: Solar LED Light Pilot Project Illuminates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Light Pilot Project Illuminates the Way in Alabama This is one of the 100 decorative solar-powered LED lights that replaced natural gas-powered streetlights in the city of...

  8. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect (OSTI)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  9. Urban Options Solar Greenhouse Demonstration Project. Final report

    SciTech Connect (OSTI)

    Cipparone, L.

    1980-10-15

    The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

  10. Project Profile: Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but at a lower cost.

  11. Solar Panel and Induction Lighting Project

    SciTech Connect (OSTI)

    Gresek, Michael

    2014-01-21

    Installation of solar and energy saving lighting technologies at municipal facilities to: Produce and conserve electricity for these facilities; saving money and the environment; lead by example; educate the public on conservation and renewable technologies.

  12. Operational results of National Solar Demonstration Projects

    SciTech Connect (OSTI)

    Waite, E.V.

    1981-01-01

    Included in the National Solar Demonstration Program are examples of earth-sheltered, passive solar designs. The data obtained from these sites presents an interesting look at what is both technically and economically feasible. Data from four demonstration sites that are members of the National Solar Data Network are utilized to present an economic and technical analyses of a group of four sites. Three of these sites are earth sheltered residential structures, the fourth is a commercial passive structure. This sample of four demonstration sites is not intended to provide a statistical representation of passive earth sheltered structures, but rather, an example of the type of information available through the National Solar Data Program and how this information may be utilized.

  13. Project Profile: Flexible Assembly Solar Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BrightSource Energy logo BrightSource Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and deploying an automated collector-assembly...

  14. Procuring and Implementing Solar Projects on Public Buildings: How to Avoid Common Pitfalls

    Broader source: Energy.gov [DOE]

    Procuring and Implementing Solar Projects on Public Buildings: How to Avoid Common Pitfalls Webinar.

  15. A Guide to Community Solar: Utility, Private, and Non-profit Project Development (Fact Sheet)

    SciTech Connect (OSTI)

    Solar Energy Technologies Program; NREL

    2011-03-23

    A publication that provides options, examples, and legal and financial considerations for community solar projects.

  16. Project Profile: Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of Technology(MIT), under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing concentrated solar thermoelectric generators (CSTEGs) for CSP systems. This innovative distributed solution contains no moving parts and converts heat directly into electricity. Thermal storage can be integrated into the system, creating a reliable and flexible source of electricity.

  17. Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-11-03

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  18. Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  19. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect (OSTI)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  20. Solar Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease |Records ManagementDepartmentFEOSH Goal:of EnergyDepartmentSolarSolar

  1. Solar Project Valuation Guide | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergySolar FlareSolar Phoenix

  2. Beacon Solar Energy Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWindInc Jump to:Baywood-Los Osos,Solar

  3. Sacramento Soleil Solar Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan:Roxbury,RushS.KSPARQLSackets Harbor,Soleil Solar

  4. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    4.2.1 Organic solar cellOrganic Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3.1 Organic solar cell materials . . . . .

  5. Guide to Community Solar: Utility, Private, and Non-Profit Project Development (Fact Sheet)

    SciTech Connect (OSTI)

    Ruckman, K.

    2011-03-01

    This fact sheet provides an overview of the DOE Solar America Communities report Guide to Community Solar: Utility, Private, and Non-profit Project Development.

  6. Arkansas Students Get Their Hands Dirty in Solar Panel Project

    Broader source: Energy.gov [DOE]

    Wallie Shaw remembers where he got the idea to do a hands-on solar panel project for his Jobs for America’s Graduates (JAG) students, a school-to-work transition program focused on helping at-risk youth graduate from high school.

  7. Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi

    E-Print Network [OSTI]

    Johnson, Eric E.

    Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi solar resource, studying different technology options, anticipating performance, and evaluating the economics of the solar power technologies. The NMSU team is evaluating the potential environmental impacts

  8. Solar Project Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergyCompany Limited SPC Jump to:sourceProject

  9. Agua Caliente Solar Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan1986) |WaterAgniProject Jump to:

  10. EA-1797: Agua Caliente Solar Project in Yuma County, AZ | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Agua Caliente Solar Project in Yuma County, AZ EA-1797: Agua Caliente Solar Project in Yuma County, AZ November 1, 2010 EA-1797: Final Environmental Assessment Loan Guarantee...

  11. Procuring and Implementing Solar Projects on Public Buildings: How to Avoid Common Pitfalls (Text Version)

    Broader source: Energy.gov [DOE]

    Transcript of the webinar, "Procuring and Implementing Solar Projects on Public Buildings: How to Avoid Common Pitfalls."

  12. Texas Solar Collaboration DOE Rooftop Solar Challenge City of Houston Project Summary

    SciTech Connect (OSTI)

    Ronk, Jennifer

    2013-02-14

    The City of Houston is committed to achieving a sustainable solar infrastructure. In 2008, Houston was named a United States Department of Energy (DOE) Solar America City. As a Solar America City, Houston teamed with the Houston Advanced Research Center (HARC), Sandia National Laboratory (Sandia), industry, and academia, to implement the Solar Houston Initiative and prepare the Solar Houston Plan. The Solar Houston initiative was focused on identifying and overcoming barriers associated with establishing a solar infrastructure that is incorporated into the City of Houston’s overall energy plan. A broad group of Houston area stakeholders, facilitated by HARC, came together to develop a comprehensive solar plan that went beyond technology to address barriers and establish demonstrations, public outreach, education programs and other activities. The plan included proposed scopes of work in four program areas: policies, solar integration, public outreach, and education. Through the support of the DOE SunShot Rooftop Solar Challenge (RSC) grant to the Texas Collaboration (San Antonio, Austin, and Hosuton), Houston has been able to implement several of the recommendations of the Solar Houston Plan. Specific recommendations that this project was able to support include; Working with the other Texas Solar America Cities (San Antonio and Austin), to harmonize permitting and inspection processes to simplify for installers and lower soft costs of installation; Participating in state level solar policy groups such as the Texas Renewable Energy Industries Association (TRIEA); Continued coordination with the local transmission and distribution utility (CenterPoint) and retail electric providers (REP); Identification of opportunities to improve permitting and interconnection; Providing training on PV systems to City inspectors; Educating the public by continuing outreach, training, and workshops, particularly using the the Green Building Resources Center; Evaluating methods of addressing financial barriers to residential solar; Maintaining www.solarhoustontx.org; and Continuing meetings with stakeholders to get ongoing feedback from the solar community on their needs. The following sections provide a brief summary of the activities completed under each of the nine tasks specifically related to the RSC grant. Reports and other backup information are included in the appendices.

  13. ENERGY-SPECIFIC SOLAR RADIATION DATA FROM MSG: CURRENT STATUS OF THE HELIOSAT-3 PROJECT

    E-Print Network [OSTI]

    Heinemann, Detlev

    ENERGY-SPECIFIC SOLAR RADIATION DATA FROM MSG: CURRENT STATUS OF THE HELIOSAT-3 PROJECT Marion Solar energy technologies such as photovoltaics, solar thermal power plants, passive solar heating and operating of solar energy systems and as basis data set for electricity load forecasting. Both long term

  14. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect (OSTI)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was renovated in 1998, but the existing roof had not been designed to carry a large load. Due to this fact, a complete roofing and structural analysis had to be performed to match the available roof loading to the existing and/or new solar PV technology, and BIPV was considered an excellent solution for this structure with the roof weight limitations. The solar BIPV system on the large roof area was estimated to provide about 25% of the total facility load with an average of 52,560 kWh per month. In order to accomplish the goals of the project, the following steps were performed: 1. SFPUC and consultants evaluated the structural capability of the facility roof, with recommendations for improvements necessary to accommodate the solar PV system and determine the suitable size of the system in kilowatts. The electrical room and switchgear were evaluated for any improvements necessary and to identify any constraints that might impede the installation of necessary inverters, transformers or meters. 2. Development of a design-build Request for Proposal (RFP) to identify the specifications for the solar PV system, and to include SFPUC technical specifications, equipment warranties and performance warranties. Due to potential labor issues in the local solar industry, SFPUC adjusted the terms of the RFP to more clearly define scope of work between electricians, roofers and laborers. 3. Design phase of project included electrical design drawings, calculations and other construction documents to support three submittals: 50% (preliminary design), 90% (detailed design) and 100% (Department of Building Inspection permit approved). 4. Installation of solar photovoltaic panels, completion of conduit and wiring work, connection of inverters, isolation switches, meters and Data Acquisition System by Contractor (Department of Public Works). 5. Commissioning of system, including all necessary tests to make the PV system fully functional and operational at its rated capacity of 100 kW (DC-STC). Following completion of these steps, the solar PV system was installed and fully integrated by la

  15. Agua Caliente Wind/Solar Project at Whitewater Ranch

    SciTech Connect (OSTI)

    Hooks, Todd; Stewart, Royce

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  16. Control design deficiencies in HUD solar demonstration projects

    SciTech Connect (OSTI)

    Freeborne, W.E.

    1985-01-01

    The Department of Housing and Urban Devlopment (HUD) residential solar heating and cooling demonstration program provided funding support for over 600 solar projects. These projects provide the largest single data base of solar heating and cooling experience now available. These data suggest that controls were problematic in many of the active and passive heating and domestic and domestic hot water systems in the program. This paper will assess the active system modes of operation and the control components as to their ability to perform as intended. A large number of systems in the demonstration program experienced control problems during testing, checkout, and operation (there were 238 reported control problems involving 192 systems). Frequently, trouble-shooting site visitors found control problems had disabled the whole system or caused a portion of the system to malfunction. The consequences are not as significant on the more carefully designed systems (i.e., the auxiliary still functions) but, on systems with inappropriately designed solar-auxiliary interfaces, the homeowners often were without adequate heat. The most common control problems involved excessive modes in system and, therefore, control design; errors in sensor set points, location, or installation; and poorly engineered or installed wiring to and from controller panels.

  17. PROJECT PROFILE: Stable Perovskite Solar Cells via Chemical Vapor Deposition

    Broader source: Energy.gov [DOE]

    This project is focused on novel approaches to remove risk related to the development of hybrid perovskite solar cells (HPSCs). Researchers will synthesize a new and chemically stable hybrid organic-inorganic perovskite that eliminates decomposition of the absorber layer upon exposure to water vapor, which is a chief obstacle to widespread use of HPSC technology. They will also demonstrate a unique and industrially-scalable chemical vapor deposition method without halides or iodine, which are the main contributors to perovskite degradation.

  18. Project Profile: The Solar Foundation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefineEnergy National SolarProject Profile: The

  19. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    SciTech Connect (OSTI)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  20. Directory of Solar Energy Research Activities in the United States: First Edition, May 1980. [1220 projects

    SciTech Connect (OSTI)

    1980-05-01

    Information covering 1220, FY 1978 and FY 1979 solar energy research projects is included. In addition to the title and text of project summaries, the directory contains the following indexes: subject index, investigator index, performing organization index, and supporting organization index. This information was registered with the Smithsonian Science Information Exchange by Federal, State, and other supporting organizations. The project summaries are categorized in the following areas: biomass, ocean energy, wind energy,photovoltaics, photochemical energy conversion, photobiological energy conversion, solar heating and cooling, solar process heat, solar collectors and concentrators, solar thermal electric generation, and other solar energy conversion. (WHK)

  1. The ESA ENVISOLAR project: Experience on the commercial use of Earth observation based solar

    E-Print Network [OSTI]

    Heinemann, Detlev

    products in the solar energy industries. Existing services for investment decision, plant management, load for solar energy industry needs, DLR has teamed up in the EOMD project ENVISOLAR with several subThe ESA ­ ENVISOLAR project: Experience on the commercial use of Earth observation based solar

  2. EXPLOITATION OF DISTRIBUTED SOLAR RADIATION DATABASES THROUGH A SMART NETWORK: THE PROJECT SODA

    E-Print Network [OSTI]

    Heinemann, Detlev

    ) Fraunhofer Institute for Solar Energy Systems (Germany) Abstract ­ The project SoDa answers the needs of raw data. 1. INTRODUCTION Information on solar radiation is a critical issue for the use of solar energy. Solar radiation is measured by ground networks of measuring stations, but well- controlled

  3. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    captured per available Efficiency solar power Cooling powercaptured per available Efficiency solar power Cooling powercollector efficiency ( ), and the solar COP ( ), thermal

  4. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    is the fraction of available solar power incident on theoutput per available solar power and characterizes theintegral of available solar power over the operational time

  5. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    Development of Low-cost, High-temperature, Solar Collectorssupply of robust, cost effective solar collectors producedchillers. A solar cooling system, however, will cost much

  6. The Green Fuel Project: The Solar / Biodiesel Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    solar energy efficiency energy transference shading Parabolic Trough Laws of Thermodynamics solar gain Entropy BTU, solar mass RESOURCES AND MATERIALS: Resources: BTU or Bust...

  7. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    High-temperature, Solar Collectors for Mass Production.by tracking type solar collectors and the power productionvi List of Symbols solar collector inlet aperture area (m

  8. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    since the 1970s. Solar thermal collectors are generallyin developing solar thermal collectors that can efficientlyfor the collector efficiency, thermal COP, and solar COP of

  9. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    High-temperature, Solar Collectors for Mass Production.vi List of Symbols solar collector inlet aperture area (mwell served by current solar collectors, even though there

  10. Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts: Preprint

    SciTech Connect (OSTI)

    Kandt, A.

    2011-04-01

    The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity the DOE provides Technical Assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay area was selected for a 2009 DOE Solar American Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar PV projects in school districts across the country.

  11. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    of a solar-thermal-assisted HVAC system, Energy andsolar thermal absorption cooling system with a cold store, Solar energy,solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design, Solar energy,

  12. A Guide to Community Solar: Utility, Private, and Non-profit Project Development

    SciTech Connect (OSTI)

    2011-01-25

    This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

  13. Guide to Community Solar: Utility, Private, and Non-profit Project Development

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

  14. Micro-scale piezoelectric vibration energy harvesting: from fixed-frequency to adaptable-frequency devices

    E-Print Network [OSTI]

    Miller, Lindsay Margaret

    2012-01-01

    harvest the light energy while solar thermal devices utilizesource of energy, especially where solar or thermal energy

  15. Solar-Powered Smart Wireless Camera Network for Outdoor Monitoring

    E-Print Network [OSTI]

    Abas, Kevin Mathys

    2015-01-01

    Firmware Source C Solar Harvesting Efficiency Explaineddrastic improvement in solar efficiency using a new form ofatoi(rx_day); C Solar Harvesting Efficiency Explained Figure

  16. Solar-Powered Smart Wireless Camera Network for Outdoor Monitoring

    E-Print Network [OSTI]

    Abas, Kevin Mathys

    2015-01-01

    Solar-Powered Wireless Visual SensorProtocols . . . . . . . . . . . . . Solar HarvestingCard B MSP430 Firmware Source C Solar Harvesting Efficiency

  17. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    solar cell e?ciency is calculated as: W ork E sun Given the total energy input of the sun, and equationEnergy balance equations were used to model the e?ciency of the solar

  18. Community Renewable Energy Success Stories Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the webinar titled "Exploring How Municipal Utilities Fund Solar Energy Projects," originally presented on February 19, 2013.

  19. Solar Projects to Reduce Non-Hardware Balance of System Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Seven projects are focused on creating tools and developing methods to reduce the cost of non-hardware components for installed solar energy systems and reducing market barriers. These projects...

  20. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    a solar-thermal-assisted HVAC system, Energy and Buildings,thermal absorption cooling system with a cold store, Solar energy,thermal cooling and heating system for a building: Experimental and model based performance analysis and design, Solar energy,

  1. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    Medium Temperature Non-Tracking Solar Thermal Concentrators.an outdoor LiBr/H2O solar thermal absorption cooling systemperformance of a solar-thermal-assisted HVAC system, Energy

  2. Project Profile: High-Flux Microchannel Solar Receiver | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-temperature solar receivers by applying microchannel heat-transfer technology to solar-receiver design. The extremely high heat-transfer rates afforded by microchannels...

  3. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    in the field of solar cooling, market penetration remainsa significant global market for solar thermal cooling due tosolar collectors, even though there exists a huge potential market

  4. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    solar and hybrid technologies represent a potential solutionon potential cost savings that will make solar coolingsolar collectors, even though there exists a huge potential

  5. Solar Schools Assessment and Implementation Project: Financing Options for Solar Installations on K-12 Schools

    SciTech Connect (OSTI)

    Coughlin, J.; Kandt, A.

    2011-10-01

    This report focuses on financial options developed specifically for renewable energy and energy efficiency projects in three California public school districts. Solar energy systems installed on public schools have a number of benefits that include utility bill savings, reductions in greenhouse gas emissions (GHGs) and other toxic air contaminants, job creation, demonstrating environmental leadership, and creating learning opportunities for students. In the 2011 economic environment, the ability to generate general-fund savings as a result of reducing utility bills has become a primary motivator for school districts trying to cut costs. To achieve meaningful savings, the size of the photovoltaic (PV) systems installed (both individually on any one school and collectively across a district) becomes much more important; larger systems are required to have a material impact on savings. Larger PV systems require a significant financial commitment and financing therefore becomes a critical element in the transaction. In simple terms, school districts can use two primary types of ownership models to obtain solar installations and cost savings across a school district. The PV installations can be financed and owned directly by the districts themselves. Alternatively, there are financing structures whereby another entity, such as a solar developer or its investors, actually own and operate the PV systems on behalf of the school district. This is commonly referred to as the 'third-party ownership model.' Both methods have advantages and disadvantages that should be weighed carefully.

  6. Project focus: Complete design of an interactive solar panel system to be situated on

    E-Print Network [OSTI]

    Sun, Yu

    Project focus: · Complete design of an interactive solar panel system to be situated on top the effective area · Two types of solar cells: · 3 panel configurations: · Real-time power output data Si panels with 30.0o tilt c) 10 CdTe panels; 38.5o tilt · Solar insolation recorder, thermometer

  7. Radiation Belt Activity Indices and Solar Proton Event Alarm on the CRATERRE Project Web Site

    E-Print Network [OSTI]

    Radiation Belt Activity Indices and Solar Proton Event Alarm on the CRATERRE Project Web Site D--Two Radiation Belt Activity Indices, based on electron flux measurement >300 keV and >1.6 MeV, and one Solar updated. Index Terms- CRATERRE project, Radiation belts activity, Space environment I. INTRODUCTION

  8. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-09-27

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  9. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  10. A Guide to Community Shared Solar: Utility, Private, and Non-Profit Project Development (Book)

    SciTech Connect (OSTI)

    Coughlin, J.; Grove, J.; Irvine, L.; Jacobs, J. F.; Johnson Phillips, S.; Sawyer, A.; Wiedman, J.

    2012-05-01

    This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

  11. Utility-Scale Solar 2012: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01

    Topaz (B) Genesis Solar Star Operating Costs (2012 $/MWh) (primarily to the declining cost of solar modules (and, to anot report operating costs for their solar projects on Form

  12. Utility-Scale Solar 2012: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01

    research-resources/major-solar-projects-list) on July 23,It’s Quite a Finale. ” Solar Industry, Volume 6, Number 7,FitchRatings. 2013. Solar Star Funding, LLC. Presale Report,

  13. Rainwater Harvesting 

    E-Print Network [OSTI]

    Crawford, Amanda

    2005-01-01

    stream_source_info Rainwater Harvesting.pdf.txt stream_content_type text/plain stream_size 5612 Content-Encoding ISO-8859-1 stream_name Rainwater Harvesting.pdf.txt Content-Type text/plain; charset=ISO-8859-1 tx H2O | pg.... 16 Rainwater HarvestingStory by Amanda Crawford Rainwater harvesting, a water collectionpractice used throughout the world for over 4,000 years, gives consumers access to an additional water source on their property. The collected rainwater...

  14. Micro-scale piezoelectric vibration energy harvesting: from fixed-frequency to adaptable-frequency devices

    E-Print Network [OSTI]

    Miller, Lindsay Margaret

    2012-01-01

    energy, especially where solar or thermal energy may not beSolar photovoltaic devices harvest the light energy while solar thermal

  15. What influence will future solar activity changes over the 21st century have on projected global near-surface

    E-Print Network [OSTI]

    Lockwood, Mike

    What influence will future solar activity changes over the 21st century have on projected global underestimate the response to solar variations, then there is a potential for a reduction in solar activity will future solar activity changes over the 21st century have on projected global near-surface temperature

  16. On Energy Harvesting Module for Scalable Cognitive Autonomous Nondestructive Sensing Network (SCANSn

    E-Print Network [OSTI]

    Ha, Dong S.

    energy harvesting from both solar and thermal sources to recharge the lithium-ion battery of the system. A solar panel and a Thermal Electric Generator (TEG) are used to harvest ambient energy and currents of the solar and thermal energy harvesters vary significantly, the energy harvesting module

  17. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    for conventionally produced multijunction cells, as variousfor nanorod based multijunction cells. Chapter 4 A one-stepGaInP/GaInAs/Ge multijunction solar cells. Applied Physics

  18. Project title: Natural ventilation, solar heating and integrated low-energy building design

    E-Print Network [OSTI]

    2009-07-10

    emissions targets. That is why the Cambridge-MIT Institute set up a project to design buildings that consume less energy. The Challenge Their work focuses on the design of energy efficient buildings that use natural ventilation processes, solar... Awards E-stack brings a breath of fresh air to UK schools HOME ABOUT US FUNDING OPPORTUNITIES PROJECTS EDUCATION NEWS EVENTS DOWNLOADS CONTACT US PROJECTS Natural Ventilation Solar Heating and Integrated Low-Energy Building Design SEARCH: Go Page 1...

  19. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    performance analysis and design, Solar energy, 84, pp. 166-Design and Development of Low-cost, High-temperature, Solarthesis, the design and performance of a solar cooling system

  20. Project Profile: Next-Generation Solar Collectors for CSP

    Broader source: Energy.gov [DOE]

    3M Company, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing high-reflectivity films and high-rigidity structures that can replace current solar collectors that use heavy glass mirrors. Solar collectors represent the most expensive component of a CSP system.

  1. Utility-Scale Solar 2012: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01

    installed since 2007 in both DC and AC terms. Because solar project capacityinstalled project costs or prices – i.e. , the traditional realm of solar economics analyses – but also operating costs, capacityinstalled project costs or prices – i.e. , the traditional realm of solar economics analyses – but also operating costs, capacity

  2. Light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC)

    2002-01-01

    A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  3. Transmission Completion Time Minimization in an Energy Harvesting System

    E-Print Network [OSTI]

    Ulukus, Sennur

    nature. The nodes may harvest energy through solar cells, vibration absorption devices, water millsTransmission Completion Time Minimization in an Energy Harvesting System Jing Yang Sennur Ulukus-user energy harvesting wireless communication system. In this system, both the data packets and the harvested

  4. EA-1878: U.S. Department of Energy Loan Guarantee to Southwestern Solar Power, LLC for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of a proposal to provide a DOE loan guarantee to Solar Power, LLC, for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona. NOTE: EA has been cancelled.

  5. Optimal Energy Management Policies for Energy Harvesting Sensor Nodes

    E-Print Network [OSTI]

    Sharma, Vinod

    .e., the data queue stays stable for the largest possible data rate. Next we obtain energy management policies by energy harvesting techniques ([11], [12]). Common energy harvesting devices are solar cells, wind turbines and piezo-electric cells, which extract energy from the environment. Among these, solar harvesting

  6. Solar Resource & Meteorological Assessment Project (SOLRMAP): Sun Spot Two; Swink, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  7. Solar Resource & Meteorological Assessment Project (SOLRMAP): Sun Spot Two; Swink, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-11-10

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  8. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2010-04-26

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  9. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-03-16

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  10. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-07-13

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  11. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2009-07-22

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  12. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2010-07-14

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  13. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  14. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  15. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  16. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  17. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  18. World’s Largest Solar Energy Project Heads to Mojave

    Broader source: Energy.gov [DOE]

    A California company will harness the Mojave Desert sunshine to create the world’s largest solar energy system by the end of 2013.

  19. Project Profile: Next-Generation Thermionic Solar Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the SLAC National Accelerator Laboratory, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is designing and testing an...

  20. Securities Law Issues Relating to Community Solar Projects

    Broader source: Energy.gov [DOE]

    The law firm Stoel Rives has analyzed the issues related to Securities Law and Community Solar both in the context of Washington state law and federal law.

  1. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  2. Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

    SciTech Connect (OSTI)

    Martin, P.M.; Affinito, J.D.; Gross, M.E.; Bennett, W.D.

    1995-03-01

    The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  3. Project Profile: A Small-Particle Solar Receiver for High-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-temperature solar receiver in the multi-megawatt range that can drive a gas turbine to generate low-cost electricity. The goals of this project are to:...

  4. EA-1840: California Valley Solar Ranch Project in San Luis Obispo...

    Broader source: Energy.gov (indexed) [DOE]

    August 3, 2011 EA-1840: Final Environmental Assessment California Valley Solar Ranch Project in San Luis Obispo and Kern Counties, California August 3, 2011 EA-1840: Finding of No...

  5. 1D Modeling of Solar Cells ELEN E9501 Course Project

    E-Print Network [OSTI]

    Lavaei, Javad

    1D Modeling of Solar Cells ELEN E9501 Course Project Columbia University Department of Electrical ............................................................................................................................6 4.1 One-dimensional Drift Diffusion Model for P-N Diodes.............................................................................................................8 4.3 Simulation Results of the Solar Cell Model

  6. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    SciTech Connect (OSTI)

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  7. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    SciTech Connect (OSTI)

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  8. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    SciTech Connect (OSTI)

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  9. Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project

    E-Print Network [OSTI]

    Wang, Yuqing

    Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project Landmark purchasing agreement (PPA) with SolarCity to provide renewable solar energy to the Hawai`i Institute this one make solar both logical and affordable." Power purchase agreements for renewable energy

  10. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    The calculated sun power is the product of total collectorcrossing the sun (see Fig. 19), and a solar collector whichcollectors (parabolic trough, linear Fresnel, power tower) generally require a tracking mechanism to concentrate a large number of suns

  11. EECBG Success Story: Solar LED Light Pilot Project Illuminates...

    Broader source: Energy.gov (indexed) [DOE]

    courtesy of Lionel Green, Sand Mountain Reporter. A strip of new solar-powered light emitting-diode (LED) streetlights in Boaz, Alabama were installed with grant funds from the...

  12. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    SciTech Connect (OSTI)

    Elmer, John; Butherus, Michael; Barr, Deborah L.

    2013-07-01

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result of the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether a solar PV project is feasible on the new sites. (authors)

  13. Model Solar Guidelines: A Resource for North Carolina Homeowners Associations to Facilitate Solar Projects

    Broader source: Energy.gov [DOE]

    As North Carolina's residential solar market grows, more homeowners associations are facing uncertainties about how to deal with solar installations in their communities. As part of an effort between the State Energy Program, NC Department of Environment and Natural Resources, and members of the U.S. Department of Energy's SunShot Solar Outreach Partnership (The Solar Foundation and the NC Clean Energy Technology Center), two new resources have been developed to help North Carolina homeowners associations (HOAs) and their architectural review committees work through these issues. The first is a short brochure detailing the benefits of solar energy, with particular emphasis on benefits to HOAs and homeowners, as well as the role that HOAs can play in facilities solar installations in their communities. The second is Model HOA solar design guidelines, developed specifically for North Carolina communities, which allow for solar installations to occur in a way that balances a homeowner's ability to install a solar energy system and legitimate community concerns about these systems.

  14. The Standardisation and Sequencing of Solar Eclipse Images for the Eclipse Megamovie Project

    E-Print Network [OSTI]

    Krista, Larisza

    2015-01-01

    We present a new tool, the Solar Eclipse Image Standardisation and Sequencing (SEISS), developed to process multi-source total solar eclipse images by adjusting them to the same standard of size, resolution, and orientation. Furthermore, by analysing the eclipse images we can determine the relative time between the observations and order them to create a movie of the observed total solar eclipse sequence. We successfully processed images taken at the 14 November 2012 total solar eclipse that occurred in Queensland, Australia, and created a short eclipse proto-movie. The SEISS tool was developed for the Eclipse Megamovie Project (EMP: https://www.eclipsemegamovie.org), with the goal of processing thousands of images taken by the public during solar eclipse events. EMP is a collaboration among multiple institutes aiming to engage and advance the public interest in solar eclipses and the science of the Sun-Earth connection.

  15. NCTCOG Solar Ready II Project: Clean Air Through Energy Efficiency 

    E-Print Network [OSTI]

    Clark,L.

    2014-01-01

    an sa s Id ah o K an sa s M is si ss ip p i W yo m in g O kl ah o m a N eb ra sk a A la sk a N o rt h D ak o ta So u th D ak o ta M e ga w at ts Installed Capacity (MW) 2013 2% of US Capacity Source: U.S. Solar Market Trends 2013 8 ESL-KT-14... Installed Capacity 9 ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Plano Solar Advocates - Solarize Plano 2013-2014 Results Measure Target Actual 2013 Total Initial Enrollment 20 200+ Contracts Signed...

  16. InGaAsP/InP intrastep quantum wells for enhanced solar energy conversion

    E-Print Network [OSTI]

    Chen, Winnie Victoria

    2012-01-01

    tandem solar cells,” Solar Energy Materials & Solar Cells,Quantum Wells for Enhanced Solar Energy Conversion by Winnieimproving efficiency of solar energy harvesting devices and

  17. Funding Solar Projects at Federal Agencies: Mechanisms and Selection Criteria (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Implementing solar energy projects at federal facilities is a process. The project planning phase of the process includes determining goals, building a team, determining site feasibility and selecting the appropriate project funding tool. This fact sheet gives practical guidance to assist decision-makers with understanding and selecting the funding tool that would best address their site goals. Because project funding tools are complex, federal agencies should seek project assistance before making final decisions. High capital requirements combined with limits on federal agency energy contracts create challenges for funding solar projects. Solar developers typically require long-term contracts (15-20) years to spread out the initial investment and to enable payments similar to conventional utility bill payments. In the private sector, 20-year contracts have been developed, vetted, and accepted, but the General Services Administration (GSA) contract authority (federal acquisition regulation [FAR] part 41) typically limits contract terms to 10 years. Payments on shorter-term contracts make solar economically unattractive compared with conventional generation. However, in several instances, the federal sector has utilized innovative funding tools that allow long-term contracts or has created a project package that is economically attractive within a shorter contract term.

  18. Solar Schools Assessment and Implementation Project: Financing Options on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipmentSolar PV in New York City?Solar

  19. Solar Energy Educational Material, Activities and Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performedValley | SystemSolarSolar Energy

  20. Big Data Projects on Solar Technology Evolution and Diffusion...

    Energy Savers [EERE]

    This one-day meeting included presentations from each of the SEEDS teams on the motivation, background, objectives, and potential outcomes for each project. See the detailed...

  1. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  2. Project Profile: Polyaromatic Naphthalene Derivatives as Solar Heat Transfer Fluids

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oak Ridge National Laboratory, under an ARRA CSP Award, is addressing the need for heat transfer fluids (HTFs) for solar power generation that are stable to temperatures approaching 600°C, have good thermal characteristics, and do not react with the vessels in which they are contained.

  3. PS2013 Satellite Workshop on Photosynthetic Light?Harvesting...

    Office of Scientific and Technical Information (OSTI)

    through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic...

  4. Scientists produce transparent, light-harvesting material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light-harvesting material The material could be used in development of transparent solar panels. November 3, 2010 Los Alamos National Laboratory sits on top of a once-remote...

  5. EIS-0440: Quartzsite Solar Energy Project, La Paz County, AZ

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of interconnecting a proposed 100-megawatt concentrating solar power plant to Western’s Bouse-Kofa 161-kilovolt transmission line. The proposal includes amending the Bureau of Land Management Resource Management Plan. Cooperating agencies in the preparation of this EIS are Bureau of Land Management (Yuma Field Office ), U.S. Army Corps of Engineers, U.S. Army Garrison (Yuma Proving Grounds), Arizona Game and Fish Department, and the Arizona Department of Environmental Quality.

  6. Project Profile: National Solar Thermal Test Facility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefineEnergy National Solar Thermal Test

  7. Project Profile: Solar Power Tower Improvements with the Potential to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefineEnergy National Solar ThermalReduce Costs

  8. PROJECT PROFILE: Cook County Department of Environmental Control (Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - . . - -INLEnvironment (Solar MarketMarket

  9. PROJECT PROFILE: Council of Independent Colleges in Virginia (Solar Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - . . - -INLEnvironment (Solar

  10. PROJECT PROFILE: Ecolibrium3 (Solar Market Pathways) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - . . - -INLEnvironmentEcolibrium3 (Solar

  11. Implementing Solar Projects on Federal Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContractingManagementSuccess, CompanyImplementing Solar

  12. PROJECT PROFILE: Cogenra Solar, Inc. (SUNPATH 2) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateau TrainingeTrack,1PPPOCogenra Solar, Inc.

  13. Concentrating Solar Power: Advanced Projects Offering Low LCOE...

    Broader source: Energy.gov (indexed) [DOE]

    foam infiltrated with a phase change material (PCM). The project will extend the graphite foamPCM LHTES system to make it compatible with supercritical CO2 power cycle...

  14. PROJECT PROFILE: Silicon-Based Tandem Solar Cells

    Broader source: Energy.gov [DOE]

    The project will demonstrate bonded gallium indium phosphide (GaInP) on silicon tandem cells, evaluate the advantages and disadvantages of this method of forming higher-efficiency tandem cells, and compare two- and three-terminal device configurations.

  15. Project Profile: Helios: Understanding Solar Evolution through Text

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Develops Student-Stakeholders ProjectBaseload CSP Plants |Analytics |

  16. Project Profile: Low-Cost, Lightweight Solar Concentrators | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |Project Management ProjectEnergy Low-Cost,

  17. Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP solar energy system that takes advantage of an existing electrical generator for its power block and transmission interconnection.

  18. Solar Loan Week: Conditional Loan for Arizona Solar Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipment CertificationSolar HotSolar

  19. 1980 annual report of the Coolidge Solar Irrigation Project

    SciTech Connect (OSTI)

    Torkelson, L.; Larson, D. L.

    1981-02-01

    The Coolidge Solar Irrigation Facility at Coolidge, Arizona, consists of a 2136.8-m/sup 2/ (23,000-ft/sup 2/) line-focus parabolic trough collector subsystem, a 113.55-m/sup 3/ (30,000-gallon) thermal storage subsystem, and a 150-kW/sub e/ (142.2-Btu/s) organic Rankine cycle power generation unit. The performance of the facility and its operational and maintenance requirements are reported. The period from the the facility's initial operation in October 1979 to 31 August 1980 is covered.

  20. Ground Breaking of Blythe Solar Power Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMat

  1. Solar Project to Spark Students' Studies, School's Savings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipment CertificationSolarSoftPolicySBof

  2. Black River Farm Solar Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility JumpII Jump to:BitworksFarm Solar

  3. Harvesting Kinetic Energy with Switched-Inductor DCDC Converters

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    energy in motion may not compete with solar power but, in contrast to indoor lighting and thermal sources- power piezoelectric and electrostatic kinetic-harvesting sources. I. HARVESTING KINETIC ENERGY temperature gradients, the fundamental source from which the device draws energy [3]. Harvesting the kinetic

  4. Transmission Completion Time Minimization in an Energy Harvesting System

    E-Print Network [OSTI]

    Ulukus, Sennur

    arrivals. I. INTRODUCTION In this work, we consider networks where nodes are able to harvest energy from nature. The nodes may harvest energy through solar cells, vibration absorption devices, water millsTransmission Completion Time Minimization in an Energy Harvesting System Jing Yang Sennur Ulukus

  5. Information Capacity of an Energy Harvesting Sensor Node

    E-Print Network [OSTI]

    Viswanath, Pramod

    to electrical energy. Common energy harvesting devices are solar cells, wind turbines and piezo-electric cellsInformation Capacity of an Energy Harvesting Sensor Node R Rajesh, Vinod Sharma and Pramod Viswanath Abstract Energy harvesting sensor nodes are gaining popularity due to their ability to improve

  6. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  7. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    SciTech Connect (OSTI)

    Mathur, A K

    1983-09-01

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  8. Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells

    E-Print Network [OSTI]

    Dang, Xiangnan

    In photovoltaic devices, light harvesting (LH) and carrier collection have opposite relations with the thickness of the photoactive layer, which imposes a fundamental compromise for the power conversion efficiency (PCE). ...

  9. Dr. Mae Jemison is the principal for the 100 Year Starship Project, which envisions human travel beyond our solar system

    E-Print Network [OSTI]

    Collins, Gary S.

    , such as projects using satellite technology for healthcare delivery in West Africa and solar dish Stirling enginesDr. Mae Jemison is the principal for the 100 Year Starship Project, which envisions human travel beyond our solar system to another star within the next 100 years. Her leadership and vision provide

  10. EA-1876: Pennsylvania State Energy Program’s Conergy Navy Yard Solar Project, Philadelphia, Pennsylvania

    Broader source: Energy.gov [DOE]

    Conergy Projects, Inc. (Conergy) proposes to construct and operate a 1.251 megawatt (MW) solar photovoltaic (PV) facility at the former Navy Yard site in south Philadelphia in Pennsylvania’s Philadelphia County to provide up to 1,596 MW hours of electricity per year, feeding directly into the distribution grid.

  11. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01

    power source from inherent intermittent solar PV power.B. Solar PV Electricity Forecasting Fig. 1. Charging stationForecasting Power Output of Solar Photovoltaic System Using

  12. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie M.; Macknick, Jordan

    2013-07-01

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  13. Amargosa Farm Road Solar Energy Project Solar Power Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDateSA JumpSolar PV Jump

  14. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    SciTech Connect (OSTI)

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  15. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01

    fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

  16. Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  17. Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2012-11-03

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  18. Rainwater Harvesting Program Evaluation

    E-Print Network [OSTI]

    and collect rainwater and divert to landscape areas that need extra water Install a rainwater harvesting system Install a rainwater harvesting system to water landscape Install a rainwater harvesting systemRainwater Harvesting Program Evaluation Your views on the quality and effectiveness of Extension

  19. Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions

    SciTech Connect (OSTI)

    Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

    2013-04-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

  20. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    the harvesting potential of our solar cell and suggests thedye sensitized solar cell and the potential they can serveSchottky solar cells has demonstrated the potential of these

  1. Implementing Solar Photovoltaic Projects on Historic Buildings and in Historic Districts

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Walker, A.

    2011-01-01

    Despite a global recession, the number of photovoltaic (PV) installations in the United States grew 30% from 2008 to 2009. A number of trends point toward continued growth of new PV installations. The efficiency of solar panels is increasing, while installation costs are going down. At the same time, federal, state, and local regulations are requiring that greater amounts of energy must come from renewable sources. Incentives for solar power technology implementation are being created and regulatory barriers removed. Corporations and governments are focusing on solar power to demonstrate leadership in environmental sustainability and resource conservation. Architects and builders are including PV arrays as a way to meet green building standards and property owners are seeking PV as a way to reduce their utility bills, as well as their carbon footprints. This publication focuses on the implementation of PV systems on historic properties. Many private property owners, as well as local, state, and national government entities, are seeking guidance on how best to integrate solar PV installations on historic buildings. Historic preservationists maintain that preserving, reusing, and maintaining historic structures is a key sustainable design strategy while also recognizing the importance of accommodating renewable energy technologies where they are appropriate. In some cases, however, conflicts have arisen over the installation of PV panels on historic properties. Addressing these conflicts and providing guidance regarding solutions and best practices is an important step toward resolving or eliminating barriers. Historic properties and districts in the United States provide tangible connections to the nation's past. Thousands of buildings, sites, districts, structures, and objects have been recognized for their historic and architectural significance. Local, state, and national designations of historic properties provide recognition, protection, and incentives that help to preserve those properties for future generations. At the national level, the National Register of Historic Places includes more than 86,000 listings, which encompass a total of more than 1.6 million historic resources. State registers of historic places also provide recognition and protection for historic sites and districts. Locally, more than 2,400 communities have established historic preservation ordinances. Typically implemented through zoning overlays, these local land use regulations manage changes to hundreds of thousands of historic properties. Over a period of 2 years (2007 and 2008) the U.S. Department of Energy (DOE) designated 25 major U.S. cities as Solar America Cities. DOE provided financial and technical assistance to help the cities develop comprehensive approaches to accelerate the adoption of solar energy technologies. The Solar America Cities partnerships represent the foundation of DOE's larger Solar America Communities program. As a part of this program, DOE identified the implementation of solar projects on historic properties and in historic districts as one area to address. A workshop titled 'Implementing Solar Projects on Historic Buildings and in Historic Districts' was held in Denver, Colorado, in June of 2010. Participants included representatives from the solar industry as well as historic preservationists from nonprofit organizations and government agencies at the local, state, and national levels. The workshop provided an opportunity to gain a common understanding of solar technologies and historic preservation procedures and priorities. The workshop participants also discussed some of the challenges involved in locating PV systems on historic properties and identified potential solutions. This publication is based on the discussions that occurred at this workshop and the recommendations that were developed by participants. Ideas expressed by participants in the workshop, and included in this document, do not necessarily reflect the opinion of any government council, agency, or entity.

  2. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  3. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    SciTech Connect (OSTI)

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  4. Nellis Air Force Base solar array provides model for renewable projects

    Broader source: Energy.gov [DOE]

    A public-private partnership has helped one Air Force base reduce its energy costs and convert to 25 percent renewable energy. Nellis Air Force Base, just north of Las Vegas, took a big step in 2007 when it installed a 14.2-megawatt, 70,000-panel photovoltaic solar array that reduced carbon dioxide emissions by 24,000 tons a year. Built partly on a landfill, the field of solar panels takes advantage of two resources plentiful in Nevada: sunshine and empty land. At its unveiling in December of 2007, the Nellis array was the largest solar panel installation in North America. The project was originally expected to produce about 30,000 megawatt-hours of electricity per year, but Steven Dumont, Air Combat Command Energy Manager, says it’s actually producing closer to 32,000 megawatt-hours, which is about 8 percent above expectations. Despite this success, Dumont said he nearly didn’t pursue the project.

  5. Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

  6. A scaled gradient projection method for the X-ray imaging of solar flares

    E-Print Network [OSTI]

    Bonettini, S

    2013-01-01

    In this paper we present a new optimization algorithm for the reconstruction of X-ray images of solar flares by means of the data collected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The imaging concept of the satellite is based of rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade a greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of a scaled gradient projection method for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function, by means of a discrepancy principle accounting for the Poisson nature of the noise affecting th...

  7. Implementing Solar PV Projects on Historic Buildings and in Historic Districts

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Walker, A.; Buddenborg, J; Lindberg, J.

    2011-09-01

    Many municipalities, particularly in older communities of the United States, have a large amount of historic buildings and districts. In addition to preserving these historic assets, many municipalities have goals or legislative requirements to procure a certain amount of energy from renewable sources and to become more efficient in their energy use; often, these requirements do not exempt historic buildings. This paper details findings from a workshop held in Denver, Colorado, in June 2010 that brought together stakeholders from both the solar and historic preservation industries. Based on these findings, this paper identifies challenges and recommends solutions for developing solar photovoltaic (PV) projects on historic buildings and in historic districts in such a way as to not affect the characteristics that make a building eligible for historic status.

  8. Ultrahigh Efficiency Multiband Solar Cells Final Report for Director's Innovation Initiative Project DII-2005-1221

    E-Print Network [OSTI]

    Ager III, Joel W.; Walukiewicz, W.; Yu, Kin Man

    2006-01-01

    Assessment of Multijunction Solar Cell Performance inS. Igari, and W. Warta, “Solar Cell Efficiency Tables (C. , “Assessment of Multijunction Solar Cell Performance in

  9. Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.

    SciTech Connect (OSTI)

    Prezhdo, Oleg V.

    2012-03-22

    Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, we clarified the controversies and provided a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. We also summarized our recent findings about the photoinduced electron dynamics at the chromophore-semiconductor interfaces from a time-domain ab initio perspective. The interface provides the foundation for a new, promising type of solar cell and presents a fundamentally important case study for several fields, including photo-, electro- and analytical chemistries, molecular electronics, and photography. Further, the interface offers a classic example of an interaction between an organic molecular species and an inorganic bulk material. Scientists employ different concepts and terminologies to describe molecular and solid states of matter, and these differences make it difficult to describe the interface with a single model. At the basic atomistic level of description, however, this challenge can be largely overcome. Recent advances in non-adiabatic molecular dynamics and time-domain density functional theory have created a unique opportunity for simulating the ultrafast, photoinduced processes on a computer very similar to the way that they occur in nature. These state-of-the-art theoretical tools offered a comprehensive picture of a variety of electron transfer processes that occur at the interface, including electron injection from the chromophore to the semiconductor, electron relaxation and delocalization inside the semiconductor, back-transfer of the electron to the chromophore and to the electrolyte, and regeneration of the neutral chromophore by the electrolyte. The ab initio time-domain modeling is particularly valuable for understanding these dynamic features of the ultrafast electron transfer processes, which cannot be represented by a simple rate description. We demonstrated using symmetry adapted cluster theory with configuration interaction (SAC-CI) that charging of small PbSe nanocrystals (NCs) greatly modifies their electronic states and optical excitations. Conduction and valence band transitions that are not available in neutral NCs dominate

  10. Energy Harvesting by Sweeping Voltage-Escalated Charging of a Reconfigurable Supercapacitor Array

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    to portable solar chargers for cell phones. Several recent features distinguish embedded-grade, microCap can harvest energy efficiently under low and high solar irradiation conditions, achieve shorter ("harvesters") have been receiv- ing growing attention in recent years, from grid-tied roof-top solar arrays

  11. Capacity of Fading Gaussian Channel with an Energy Harvesting Sensor Node

    E-Print Network [OSTI]

    Sharma, Vinod

    ) and converts them to electrical energy. Common energy harvesting devices are solar cells, wind turbines and piezo-electric cells, which extract energy from the environment. Among these, harvesting solar energy be such that the energy cannot be generated at all times (e.g., a solar cell). Furthermore the rate of generation

  12. WEB HARVESTING Wolfgang Gatterbauer

    E-Print Network [OSTI]

    Gatterbauer, Wolfgang

    WEB HARVESTING Wolfgang Gatterbauer Computer Science and Engineering University of Washington, USA SYNONYMS web data extraction, web information extraction, web mining DEFINITION Web harvesting describes the process of gathering and integrating data from var- ious heterogeneous web sources. Necessary input

  13. Probabilistic Data Collection Protocols for Energy Harvesting Sensor Networks

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Probabilistic Data Collection Protocols for Energy Harvesting Sensor Networks Masaya Yoshida ambient energy sources include solar, vibration, heat and wind. However, sensor nodes powered by energy protocols for power-efficient data collection have been proposed [1][2]. Recently, energy harvesting has

  14. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01

    harvesting Microelectromechanical systems (MEMS) are smallMEMS Vibration Energy Harvesting Devices With Passive Resonance Frequency Adaptation Capability,” Microelectromechanical

  15. Harvesting the Sun's Energy Through Heat as Well as Light | U...

    Office of Science (SC) Website

    new approach to harvesting solar energy, developed by MIT researchers, could improve efficiency by using sunlight to heat a high-temperature material whose infrared radiation would...

  16. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01

    DSCs. Organic Polymer Photovoltaics Solar cells made fromThe harvesting of solar energy using photovoltaics has theOrganic photovoltaics (OPVs), dye sensitized solar cells (

  17. AmbiMax: Autonomous Energy Harvesting Platform for Multi-Supply Wireless Sensor Nodes

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    AmbiMax: Autonomous Energy Harvesting Platform for Multi-Supply Wireless Sensor Nodes Chulsung Park and a supercapacitor based energy storage system for wireless sensor nodes (WSN). Previous WSNs attempt to harvest of multiple energy harvesting sources including solar, wind, thermal, and vibration, each with a different

  18. Ultrahigh Efficiency Multiband Solar Cells Final Report for Director's Innovation Initiative Project DII-2005-1221

    E-Print Network [OSTI]

    Ager III, Joel W.; Walukiewicz, W.; Yu, Kin Man

    2006-01-01

    Igari, and W. Warta, “Solar Cell Efficiency Tables (VersionGreen et al. , “Solar cell efficiency tables (version 25),”this design are used in high-efficiency solar panels used on

  19. Ultrahigh Efficiency Multiband Solar Cells Final Report for Director's Innovation Initiative Project DII-2005-1221

    E-Print Network [OSTI]

    Ager III, Joel W.; Walukiewicz, W.; Yu, Kin Man

    2006-01-01

    W. Warta, “Solar Cell Efficiency Tables (Version 21),” Prog.Marti. , “Increasing the Efficiency of Ideal Solar Cells byP. Corkish, “Limiting efficiency of a multi-band solar cell

  20. Ultrahigh Efficiency Multiband Solar Cells Final Report for Director's Innovation Initiative Project DII-2005-1221

    E-Print Network [OSTI]

    Ager III, Joel W.; Walukiewicz, W.; Yu, Kin Man

    2006-01-01

    resistant than multijunction cells for this reason, althoughsolar cells. Like a multijunction cell, multiband solarAssessment of Multijunction Solar Cell Performance in

  1. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 5. Science Applications, Incorporated system requirements definition

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report sets forth the system requirements for a Solar Controlled-Environment Agriculture System (SCEAS) Project. In the report a conceptual baseline system description for an engineering test facility is given. This baseline system employs a fluid roof/roof filter in combination with a large storage tank and a ground water heat exchanger in order to provide cooling and heating as needed. Desalination is accomplished by pretreatment followed by reverse osmosis. Energy is provided by means of photovoltaics and wind machines in conjunction with storage batteries. Site and climatic data needed in the design process are given. System performance specifications and integrated system design criteria are set forth. Detailed subsystem design criteria are presented and appropriate references documented.

  2. Array automated assembly task low cost silicon solar array project. Phase 2. Final report

    SciTech Connect (OSTI)

    Olson, Clayton

    1980-12-01

    The initial contract was a Phase II Process Development for a process sequence, but with concentration on two particular process steps: laserscribing and spray-on junction formation. The add-on portion of the contract was to further develop these tasks, to incorporate spray-on of AR Coating and aluminum and to study the application of microwave energy to solar cell fabrication. The overall process cost projection is 97.918 cents/Wp. The major contributor to this excess cost is the module encapsulation materials cost. During the span of this contract the study of microwave application to solar cell fabrication produced the ability to apply this technique to any requirement of 600/sup 0/C or less. Above this temperature, non-uniformity caused the processing to be unreliable. The process sequence is described in detail, and a SAMICS cost analysis for each valid process step studied is presented. A temporary catalog for expense items is included, and engineering specifications for the process steps are given. (WHK)

  3. SEP Success Story: Solar Field Powers Historic Garden Holiday...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the University of Tennessee at the official opening of the West Tennessee Solar Farm. | Energy Department photo. SEP Success Story: Harvesting the Sun at the West Tennessee Solar...

  4. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    SciTech Connect (OSTI)

    Mendelsohn, M.; Kreycik, C.

    2012-04-01

    Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

  5. Utility-Scale Solar 2013: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Office of Energy Efficiency and Renewable Energy (EERE)

    Other than the SEGS I-IX parabolic trough projects built in the 1980s, virtually no large-scale or "utility-scale" solar projects existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in 2013 and is expected to continue for at least the next few years.

  6. Utility-based Time and Power Allocation on an Energy Harvesting Downlink: The Optimal

    E-Print Network [OSTI]

    Uysal-Biyikoglu, Elif

    advances in the areas of solar, piezoelectric and thermal energy har- vesting, enable systems harvest energy through solar cells, vibration absorption devices, thermoelectric generators, wind power of wireless communication networks. However, this renewable energy supply feature also calls for specific

  7. Interpreting Deer Harvest Records. 

    E-Print Network [OSTI]

    Guynn, Dwight E.

    1984-01-01

    Agricultural Extension Service Zerle L. Carpenter. Director College Station B-1486 People Helping People Interpreting Deer Harvest Records LIB ARY Dwight f. Guynn* JUN 11 1985 Deer harvest records are extremely important to proper deer herd man... to collect from deer harvests are: ages, weights, body conditions and measurements of antler size. The data should be grouped according to age categories and ana lyzed separately for bucks and does . This pub lication describes types of calculations...

  8. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01

    eliminate the charging station peak power demand for EVcan lower the station’s peak power demand and reduce thefor a workplace charging station, solar PV power cannot be

  9. EIS-0449: Department of Energy Loan Guarantee to Solar Millennium for the Proposed Blythe Solar Power Project, California

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement addresses the possible United States Bureau of Land Management approval of an amendment to the California Desert Conservation Area Plan (CDCA Plan) to allow for solar energy and of a right?of?way grant to lease land managed by the BLM for construction, operation and decommissioning of a solar electricity generation facility. The Agency Preferred Alternative covers approximately 7,025 acres (ac), managed by the BLM, and would generate 1000 megawatts (MW) of electricity annually.

  10. Utility-Scale Solar 2012: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01

    The 5.04 MW AC Hatch Solar Center in New Mexico was built inMexico recently estimated (based on a review of 216 solarsolar projects in the West region (defined here to include Arizona, California, Colorado, Nevada, New Mexico,

  11. A review of cermet-based spectrally selective solar absorbers

    E-Print Network [OSTI]

    Cao, Feng

    Spectrally selective solar absorbers harvest solar energy in the form of heat. Solar absorbers using cermet-based coatings demonstrate a high absorptance of the solar spectrum and a low emittance in the infrared (IR) regime. ...

  12. Solar-Driven Microbial Photoelectrochemical System for Energy Conversion

    E-Print Network [OSTI]

    Wang, Hanyu

    2015-01-01

    solar light. Coupling of the renewable solar energy with the3 The DSSC harvests renewable solar energy and provides theprovided by a renewable energy source such as solar light,

  13. A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

  14. Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory's Solar Resource and Meteorological Assessment Project

    SciTech Connect (OSTI)

    Wilcox, S. M.; McCormack, P.

    2011-01-01

    Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station down-time and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (1) includes guidelines for operating a solar measure-ment station. This paper describes a suite of automated and semi-automated routines based on the best practices hand-book as developed for the National Renewable Energy La-boratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require imme-diate attention. Although the handbook is targeted for con-centrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

  15. Efficient Topology Design in Time-Evolving and Energy-Harvesting Wireless Sensor Networks

    E-Print Network [OSTI]

    Wang, Yu

    ] (lower). (b) Solar irradiance data at a site in Oak Ridge National Laboratory from July 1 to July 7, 2012. Data is obtained via [7]. solar cell would be near zero at night. Therefore, in energy- harvesting WSNs-harvesting WSN where the time-evolving topology and dynamic energy cost are known a priori or can be predicted

  16. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    demonstration,” Solar Energy Materials and Solar Cells, vol.spectroscopy,” Solar energy materials and solar cells, vol.materials[2]. Multifunctional composite structure can be applied onto building windows to harvest solar energy

  17. Low-Cost Solar-Array Project. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and price commensurate with the production goals of the LSA project for solar-cell modules. As part of the overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This work, completed under Phases I and II of the contract, provided a firm base for the Phase III Program (initiated in April 1979) aimed at establishing the practicality of the process by pursuing the following specific objectives: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform support research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the production of semiconductor-grade silicon in a facility capable of producing 1000 MT/yr. This process for preparing semiconductor-grade silicon in the EPSDU from metallurgical-grade (M-G) silicon is based on a well-integrated arrangement of purification steps that provides a cost-effective process system. The three basic steps entail converting M-G silicon to trichlorosilane, redistributing the trichlorosilane to produce silane, and thermally decomposing the silane to form amorphous silicon powder. The powder is then melted and the molten silicon is cast to polycrystalline for subsequent use in fabricating solar cells. Progress is reported in detail. (WHK)

  18. Prediction and Management in Energy Harvested Wireless Sensor Nodes

    E-Print Network [OSTI]

    Simunic, Tajana

    present a fast, efficient and reliable solar prediction algorithm, namely, Weather-Conditioned Moving-Conditioned Moving Average (WCMA), a novel accurate yet very low overhead, solar energy prediction algorithm basedPrediction and Management in Energy Harvested Wireless Sensor Nodes Joaqu´in Recas Piorno, Carlo

  19. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01

    Puers, “Harvesting Energy from Vibrations by a Micromachinedsignal processing using vibration-based power generation,”electromagnetic generator for vibration energy harvesting,”

  20. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01

    radio waves, and mechanical vibrations can also beintended to harvest mechanical vibrations by converting thethe harvesting of mechanical vibrations as addressed by this

  1. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 4. Saudi Engineering Solar Energy Applications System Design Study

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)

  2. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    SciTech Connect (OSTI)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  3. IEEE SENSORS JOURNAL, SELECTED PAPER FROM IEEE SENSORS 2012 CONFERENCE SPECIAL ISSUE, JULY 2013 1 Ambient-RF-Energy-Harvesting Sensor Device with

    E-Print Network [OSTI]

    Tentzeris, Manos

    , Wireless Sensor Networks I. INTRODUCTION Energy harvesting devices such as solar panels, piezoelectric in applications related to low-power Wireless Sensor Networks (WSNs) [1], [2], [3]. Energy harvesting can harvesting, which can produce only a small amount of energy; however, it is more stable than solar and wind

  4. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  5. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  6. Rainwater Harvesting in Texas 

    E-Print Network [OSTI]

    Kniffen, Billy

    2008-07-14

    sanitizing device such as an ultraviolet light to provide high quality water for drinking and cooking. Nonpo- table uses for the home include commodes and clothes washers. In Texas, rainwater harvesting has been encouraged through the elimination...

  7. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  8. Time-Switching Energy Harvesting in Relay Networks Saman Atapattu, Hai Jiang, Jamie Evans, and Chintha Tellambura

    E-Print Network [OSTI]

    Tellambura, Chintha

    : source and relay nodes harvest energy from external sources such as solar, wind, or electromechanical-powered wireless devices, e.g., in sensor networks, in its vicinity to utilize the harvested energy [10], [12Time-Switching Energy Harvesting in Relay Networks Saman Atapattu, Hai Jiang, Jamie Evans

  9. Solar Projects on the Rise for New Mexico's Picuris and Zia Pueblos |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideoSolar Decathlon 2015:Solar PowerSolar

  10. Procuring and Implementing Solar Projects on Public Buildings: How to Avoid Common Pitfalls

    Broader source: Energy.gov [DOE]

    This webinar covered good practices for photovoltaic and solar water heating request for proposal processes, pitfalls, and helpful tools and resources to support procurement and implementation.

  11. Ultrahigh Efficiency Multiband Solar Cells Final Report for Director's Innovation Initiative Project DII-2005-1221

    E-Print Network [OSTI]

    Ager III, Joel W.; Walukiewicz, W.; Yu, Kin Man

    2006-01-01

    triple junction (3J) cells under maximum concentration [2,3] and cells of this design are used in high-efficiency solar

  12. NREL: News - NREL Takes First In-Depth Look at Solar Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NREL) has gathered and analyzed data for more than 30,000 solar photovoltaic (PV) installations across the United States to better understand how interconnection...

  13. February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar was held February 19, 2013, and provided information on Concord Light, the municipal electric utility serving Concord, Massachusetts, and their solar photovoltaic (PV) rebate program....

  14. EA-1840: Department of Energy Loan Guarantee for the SunPower, Systems California Valley Solar Ranch Project in San Luis Obispo County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with the California Valley Solar Ranch (CVSR) project, a...

  15. High Efficiency Solar Power via Separated Photo and Voltaic Pathways

    SciTech Connect (OSTI)

    Michael J. Naughton

    2009-02-17

    This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10˘/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

  16. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation to the Implementation of Rainwater Harvesting and Filtration System

    E-Print Network [OSTI]

    to the Implementation of Rainwater Harvesting and Filtration System in the New Student Union Building (SUB) at UBC Shuyi of a project/report". #12;AN INVESTIGATION TO THE IMPLEMENTATION OF RAINWATER HARVESTING AND FILTRATION SYSTEM and flushing toilets. This project starts by outlining the components of rainwater harvesting (RWH) system

  17. Utah Solar Outlook March 2010

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  18. Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory?s Solar Resource and Meteorological Assessment Project: Preprint

    SciTech Connect (OSTI)

    Wilcox, S. M.; McCormack, P.

    2011-04-01

    Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station downtime and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data includes guidelines for operating a solar measurement station. This paper describes a suite of automated and semi-automated routines based on the best practices handbook as developed for the National Renewable Energy Laboratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require immediate attention. Although the handbook is targeted for concentrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

  19. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dots R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to...

  20. The Young Solar Analogs Project: I. Spectroscopic and Photometric Methods and Multi-year Timescale Spectroscopic Results

    E-Print Network [OSTI]

    Gray, R O; Corbally, C J; Briley, M M; Lambert, R A; Fuller, V A; Newsome, I M; Seeds, M F; Kahvaz, Y

    2015-01-01

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300 - 1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson $S$ chromospheric activity index ($S_{\\rm MW}$), and describe the method we use to transform our instrumental indices to $S_{\\rm MW}$ without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum -- the G-band, the Ca I resonance line, and the Hydrogen-$\\gamma$ line -- with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our "Superstar technique" for differential ph...

  1. Rainwater Harvesting in San Francisco Schools

    E-Print Network [OSTI]

    Bintliff, Jacob M.

    2011-01-01

    and planned rain- water harvesting (RWH) systems areadopted the Rain- water Harvesting Guidelines in ear- lywater management education was matched with a de- SFUSD Rainwater Harvesting

  2. Dielectric Elastomers for Actuation and Energy Harvesting

    E-Print Network [OSTI]

    Brochu, Paul

    2012-01-01

    during testing. Right: Simple energy harvesting circuit. S1during testing. Right: Simple energy harvesting circuit. S1Capacitive energy harvesting results and (right) schematic

  3. Mechanical Harvesting of Corn. 

    E-Print Network [OSTI]

    Sorenson, J. W. (Jerome Wallace); Smith, H. P. (Harris Pearson)

    1948-01-01

    , the field results of this study can be divided intc, three parts: (I) plant characteristics prior to harvest, (2) machine performance and (3) effect of machine on the corn ears. Review of Literature According to Shedd (7), a few corn picking machines... and yields are shown as shelled corn. Preharvest Plant Data Manufacturers of corn harvesting machinery have found tha: corn growers of the Southwest prefer a machine that snaps the ears from the stalks without removing the husks. They have nlw Figure 7...

  4. Novel Methods for Harvesting Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications64NewsroomNontoxic quantumNotTheTwo natural

  5. Fabrication and Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Yengel, Emre

    2010-01-01

    W-function. Solar Energy Materials and Solar Cells. 2005;86(materials and structures to this energy harvesting problem using organic solarsolar cells - Towards 10 % energy-conversion efficiency. Advanced Materials.

  6. Project Profile: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The Department of Energy's SunShot Initiative made an award to Colorado School of Mines (CSM) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

  7. Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The Department of Energy’s SunShot Initiative awarded Southern Research Institute (SRI) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

  8. Modeling the solar thermal receiver for the CSPonD Project

    E-Print Network [OSTI]

    Rees, Jennifer A. (Jennifer Anne)

    2011-01-01

    The objective was to create an accurate steady state thermal model of a molten salt receiver prototype with a horizontal divider plate in the molten salt for Concentrated Solar Power on Demand (CSPonD). The purpose of the ...

  9. Digital Book Showcases Washington Wind Project

    Broader source: Energy.gov [DOE]

    "The New American Farm" chronicles the stages of the Windy Flats/Windy Point project, from prospecting to harvest.

  10. Design principles of natural light harvesting as revealed by single molecule spectroscopy

    E-Print Network [OSTI]

    Krüger, Tjaart P J

    2015-01-01

    Biology offers a boundless source of adaptation, innovation, and inspiration. A wide range of photosynthetic organisms exist that are capable of harvesting solar light in an exceptionally efficient way, using abundant and low-cost materials. These natural light-harvesting complexes consist of proteins that strongly bind a high density of chromophores to capture solar photons and rapidly transfer the excitation energy to the photochemical reaction centre. The amount of harvested light is also delicately tuned to the level of solar radiation to maintain a constant energy throughput at the reaction centre and avoid the accumulation of the products of charge separation. In this Review, recent developments in the understanding of light harvesting by plants will be discussed, based on results obtained from single molecule spectroscopy studies. Three design principles of the main light-harvesting antenna of plants will be highlighted: (a) fine, photoactive control over the intrinsic protein disorder to efficiently u...

  11. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01

    management IC for energy-scavenged Wireless Sensor Nodes,”of ambient RF energy harvesting wireless sensor networks,”a source of harvested energy for wireless sensor nodes [4][

  12. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01

    efficiency wind-flow energy harvester using micro turbine,”and large wind turbines convert the kinetic energy of wind

  13. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01

    Journal of Microelectromechanical Systems, vol. 18, no. 2,Capability,” Microelectromechanical Systems, Journal of,Harvesting,” Microelectromechanical Systems, Journal of, no.

  14. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01

    Prism,” Journal of Microelectromechanical Systems, vol. 18,Capability,” Microelectromechanical Systems, Journal of,Energy Harvesting,” Microelectromechanical Systems, Journal

  15. Energy and task management in energy harvesting wireless sensor networks for structural health monitoring

    E-Print Network [OSTI]

    Steck, Jamie Bradley

    2009-01-01

    energy harvesting, the priorities, Figure 5.2: Solar Panel Data:data collected from SHiMmer’s solar panel and supercapacitor are used as input for the energyenergy pro?le. Speci?cally, days 4-9 of the solar panel data

  16. An aero-elastic flutter based electromagnetic energy harvester with wind speed augmenting funnel

    E-Print Network [OSTI]

    Stanford University

    area as demands for renewable energy sources increase. Energy harvesting systems refer to devices-scale renewable energy generating systems such as wind turbines, thermal generators, and solar panels, energy source for energy harvesters because of its potential capacity for generating electrical power. Flutter

  17. Demonstration of Energy-Neutral Operation on a WSN Testbed Using Vibration Energy Harvesting

    E-Print Network [OSTI]

    Uysal-Biyikoglu, Elif

    , accelerometers, magnetometers, etc. A WSN node refers to the integrated unit combining a processor, wireless for harvesting are generally from radio-frequency (RF) power conversion, solar energy conversion and vibration-to-electrical energy conversion The RF harvester is used in [7] to increase primary battery lifetime of the ultra

  18. Optimal Sleep-Wake Policies for an Energy Harvesting Sensor Node

    E-Print Network [OSTI]

    Sharma, Vinod

    devices are solar cells, wind turbines and piezo-electric cells, which extract energy from the environmentOptimal Sleep-Wake Policies for an Energy Harvesting Sensor Node Vinay Joseph, Vinod Sharma with an energy harvesting source. In any slot, the sensor node is in one of two modes: Wake or Sleep

  19. Queuing Theoretic and Information Theoretic Capacity of Energy Harvesting Sensor Nodes

    E-Print Network [OSTI]

    Sharma, Vinod

    devices are solar cells, wind turbines and piezo-electric cells, which extract energy from the environmentQueuing Theoretic and Information Theoretic Capacity of Energy Harvesting Sensor Nodes Vinod Sharma, DRDO Bangalore, India Email: rajesh81r@gmail.com Abstract--Energy harvesting sensor networks provide

  20. Joint Power Control, Scheduling and Routing for Multihop Energy Harvesting Sensor Networks

    E-Print Network [OSTI]

    Sharma, Vinod

    , wind turbines and piezo- electric cells, which extract energy from the environment. Among these, solarJoint Power Control, Scheduling and Routing for Multihop Energy Harvesting Sensor Networks Vinay study wireless multihop energy harvesting sensor net- works employed for random field estimation

  1. Adapting Task Utility in Externally Triggered Energy Harvesting Wireless Sensing Systems

    E-Print Network [OSTI]

    Simunic, Tajana

    Adapting Task Utility in Externally Triggered Energy Harvesting Wireless Sensing Systems Jamie tajana@ucsd.edu Abstract--Energy harvesting sensor nodes eliminate the need for post-deployment physical the utility of their tasks to accommodate the energy availability. For example, on sunny days, a solar

  2. Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware. Final report

    SciTech Connect (OSTI)

    None

    1980-07-01

    This document is the Final Report of the Solar Energy System located at the Wilmington, Swim School, New Castle, Delaware. This active solar system is composed of 2,700 square feet of Revere liquid flat plate collectors piped to a 2,800 gallon concrete storage tank located below ground near the building. A micro-computer based control system selects the optimal applications of the stored energy among space, domestic water and pool alternatives. The controlled logic is planned for serving the heat loads in the following order: space heat-new addition, domestic water-entire facility, and pool heating-entire facility. A modified trombe wall passive operation the active system will bypass the areas being served passively. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution.

  3. DOE Funds 15 New Projects to Develop Solar Power Storage and...

    Energy Savers [EERE]

    projects: Advanced Heat Transfer Fluids Research and Development Symyx - Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids (Sunnyvale, Calif.) Symyx will...

  4. Harvesting Clean Energy How California Can Deploy Large-Scale Renewable

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Harvesting Clean Energy How California Can Deploy Large-Scale Renewable Energy Projects Harvesting Clean Energy: How California Can Deploy Large-Scale Renewable Energy Projects on Appropriate acres of impaired lands in the Westlands Water District in the Central Valley may soon have

  5. Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners

    SciTech Connect (OSTI)

    Kollins, K.; Speer, B.; Cory, K.

    2009-11-01

    Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

  6. Project Profile: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles

    Broader source: Energy.gov [DOE]

    San Diego State University (SDSU), under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is demonstrating a new receiver design that uses air as the heat-transfer fluid. The university's innovative small-particle heat-exchange receiver (SPHER) uses carbon particles to enhance performance and achieve higher thermal efficiency.

  7. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01

    photovoltaic cells. While solar thermal energy production iselectrical energy on a large scale. Solar thermal processes

  8. Sifting Through the Airwaves: Efficient and Scalable Multiband RF Harvesting

    E-Print Network [OSTI]

    Washington at Seattle, University of

    option. Compared to solar power, ambient RF has the advantage of being available at night starved of its energy source the device must cease to operate, limiting the application space mostly wideband harvesting can capture energy across a large swath of spectrum, it typically results in very low

  9. Energy Harvesting for Structural Health Monitoring Sensor Gyuhae Park1

    E-Print Network [OSTI]

    Simunic, Tajana

    for large-scale alternative energy generation using wind turbines and solar cells is mature technologyEnergy Harvesting for Structural Health Monitoring Sensor Networks Gyuhae Park1 , Tajana Rosing2 of California, San Diego La Jolla, CA 92093-0701 ABSTRACT This paper reviews the development of energy

  10. Rainwater Harvesting: Landscape Methods 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

    2008-05-30

    urban flooding, and erodes 2 the banks of rivers and streams. Urban runoff also carries many pollutants, including sediments, fer- tilizers, pesticides and fecal coliform bacteria into streams and rivers. Harvesting Methods Rainwater capture.... A soil storage and infiltration sys- tem decreases the volume of runoff, contains po- tential pollutants and increases the amount of water entering the ground to recharge our groundwater systems. A soil storage and infiltration system can be in...

  11. Solar Market Pathways

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of...

  12. EIS-0454: Department of Energy Loan Guarantee to Tonopah Solar Energy, LLC, for the Proposed Crescent Dunes Solar Energy Project, Nevada

    Office of Energy Efficiency and Renewable Energy (EERE)

    Tonopah Solar Energy, LLC applied to the BLM for a 7,680-acre right-of-way (ROW) on public lands to construct a concentrated solar thermal power plant facility approximately 13 miles northwest of...

  13. Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the EV project:...

  14. Solar-Powered Smart Wireless Camera Network for Outdoor Monitoring

    E-Print Network [OSTI]

    Abas, Kevin Mathys

    2015-01-01

    2 Related Work Wireless Smart Cameras . . . . . .Solar-Harvesting Wireless Smart Camera Research System Forof the 1st Workshop on Distributed Smart Cameras, 2006. [51

  15. Solution-Processed Solar Cells using Colloidal Quantum Dots ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sargent001000 Abstract: Solution-processed photovoltaics offer a cost-effective path to harvesting the abundant resource that is solar energy. The organic and polymer...

  16. Development of sustainable harvest strategies for cellulose-based biofuels: The effect of intensity and season of harvest on cellulosic feedstock and

    E-Print Network [OSTI]

    Development of sustainable harvest strategies for cellulose-based biofuels: The effect of intensity Station. #12;v Abstract Development of sustainable harvest strategies for cellulose-based biofuels nesting and cellulosic biofuel production. The objectives of this project were to- (1) determine

  17. Solar LED Light Pilot Project Illuminates the Way in Alabama | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergySolar Flare Activity Closelyof

  18. High Penetration Solar Deployment Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  19. Broad Band Photon Harvesting Biomolecules for Photovoltaics

    E-Print Network [OSTI]

    P. Meredith; B. J. Powell; J. Riesz; R. Vogel; D. Blake; I. Kartini; G. Will; S. Subianto

    2004-06-04

    We discuss the key principles of artificial photosynthesis for photovoltaic energy conversion. We demonstrate these principles by examining the operation of the so-called "dye sensitized solar cell" (DSSC) - a photoelectrochemical device which simulates the charge separation process across a nano-structured membrane that is characteristic of natural systems. These type of devices have great potential to challenge silicon semiconductor technology in the low cost, medium efficiency segment of the PV market. Ruthenium charge transfer complexes are currently used as the photon harvesting components in DSSCs. They produce a relatively broad band UV and visible response, but have long term stability problems and are expensive to manufacture. We suggest that a class of biological macromolecules called the melanins may be suitable replacements for the ruthenium complexes. They have strong, broad band absorption, are chemically and photochemically very stable, can be cheaply and easily synthesized, and are also bio-available and bio-compatible. We demonstrate a melanin-based regenerative solar cell, and discuss the key properties that are necessary for an effective broad band photon harvesting system.

  20. Connectable solar air collectors Solar Energy Centre Denmark

    E-Print Network [OSTI]

    Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Sřren Řstergaard Jensen Miroslav Bosanac Solar Energy Centre for renewable energy of the Danish Energy Agency. The project group behind the project was: Solar Energy Centre

  1. Solar Technology Validation Project - Hualapai Valley Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-02

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-07-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  2. Solar Technology Validation Project - Southwest Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-08

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  3. Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL IN PRACTICERENEWABLE ENERGY PROJECTS| Department of

  4. Harvesting Machine Census 1999 & 2001

    E-Print Network [OSTI]

    1 Harvesting Machine Census 1999 & 2001 231 Corstorphine Road Edinburgh EH12 7AT www.forestry.gov.uk FCTN001 SUMMARY This Technical Note contains information on the 1999 and 2001 harvesting machine machines, converted forwarders, etc., account for the remaining machines. In the 2001 census, 65

  5. From rainwater harvesting to agrohortiforestry

    E-Print Network [OSTI]

    Zeng, Ning

    From rainwater harvesting to agrohortiforestry BAIF Institute for Rural Development- Karnataka;#12;#12;#12;#12;#12;#12;#12;#12;#12;Rainwater Club, Bangalore #12;#12;#12;· BAIF Development Research Foundation · An NGO working in 8 states-proofing of agriculture · 14 lakh trees. · More than 20 crore lits. of water harvested. · >165 lakh in the PO. · > 15 lakh

  6. Rainwater Harvesting in San Francisco Schools

    E-Print Network [OSTI]

    Bintliff, Jacob M.

    2011-01-01

    et al. Applied Rainwater Harvesting Education: An AustralianNatasha et al. Rainwater Harvesting for Non-Potable Use inPorter, Dana et al. Rainwater Harvesting. American Rainwater

  7. Solar Policy Environment: Pittsburgh

    Broader source: Energy.gov [DOE]

    In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

  8. DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigerators | Department DOE1Projects For Up to $67.6

  9. San Carlos Apache Tribe Set to Break Ground on New Solar Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData Dashboard RutlandSTEAB's PrioritiesFuel CellFlip|Data

  10. Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.ProjectsLeaders |3 0 0 N S TEnergyDepartment|

  11. Convergent synthesis of multiporphyrin light-harvesting rods

    DOE Patents [OSTI]

    Lindsey, Jonathan S.; Loewe, Robert S.

    2003-08-05

    The present invention provides a convergent method for the synthesis of light harvesting rods. The rods are oligomers of the formula A.sup.1 (A.sup.b+1).sub.b, wherein b is at least 1, A.sup.1 through A.sup.b+1 are covalently coupled rod segments, and each rod segment A.sup.1 through A.sup.1+b comprises a compound of the formula X.sup.1 (X.sup.m+1).sub.m wherein m is at least 1 and X.sup.1 through X.sup.m+1 are covalently coupled porphyrinic macrocycles. Light harvesting arrays and solar cells containing such light harvesting rods are also described, along with intermediates useful in such methods and rods produced by such methods.

  12. Monitoring Quality Maximization through Fair Rate Allocation in Harvesting Sensor Networks

    E-Print Network [OSTI]

    Liang, Weifa

    by reusable energy such as solar energy, wind energy, and so on, from their surroundings. We first formulate" for sensor networks is to harvest various energy from its surrounding environments such as solar energy, wind energy, electromagnetic waves energy, thermal energy, salinity gradients energy, vibration energy, and so

  13. Resource Management and Scheduling in WSNs Powered by Ambient Energy Harvesting

    E-Print Network [OSTI]

    Uysal-Biyikoglu, Elif

    periods of time, recently, employing energy harvesting (via ambient energy sources such as solar [2], vibrational [13], [18], wind [30] and thermal energy [29]) to replace/supplement batteries that power WSNs source of the ambient energy is the sun. Solar energy is becoming widely used, due to its high power

  14. Energy Harvesting by Sweeping Voltage-Escalated Charging of a Reconfigurable Supercapacitor Array

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    ("harvesters") have been receiv- ing growing attention in recent years, from grid-tied roof-top solar arrays to portable solar chargers for cell phones. Several recent features distinguish embedded-grade, micro point tracking (MPPT), and the use of supercapacitors as a potential type of energy storage elements

  15. Call Completion Probability in Heterogeneous Networks with Energy Harvesting Base Stations

    E-Print Network [OSTI]

    Durrani, Salman

    energy consumption model and using tools from stochastic geometry, we derive very tight upper and lower. INTRODUCTION Base stations that can harvest renewable energy sources, such as solar and wind, are being% of which are powered by solar energy [1] and Nokia-Siemens has built `green' (i.e., renewable energy

  16. NANO EXPRESS Open Access Effective harvesting, detection, and conversion of IR

    E-Print Network [OSTI]

    Mitin, Vladimir

    bandgaps [4]. In these devices, each p-n junction cell is designed to effectively harvest solar energy solar cell with five or more junctions, the ultimate photovoltaic efficiency may exceed 70%. How- ever, current technology enables only triple-junction cells (Ge-substrate junction-InGaAs-AlInGaP) with the maxi

  17. Harvesting Vehicle Exhaust with Zero Parasitics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harvesting Vehicle Exhaust with Zero Parasitics Thermal cycling pyroelectric generator is designed to harvest engine waste heat and electrify belt-driven components...

  18. Rainwater Harvesting in San Francisco Schools

    E-Print Network [OSTI]

    Bintliff, Jacob M.

    2011-01-01

    installed and planned rain- water harvesting (RWH) systemsFour of these schools have rain- water barrel systems. Asthe district adopted the Rain- water Harvesting Guidelines

  19. Energy Harvesting Optimization

    E-Print Network [OSTI]

    Lavaei, Javad

    -user is a set of sensors that can monitor and diagnose body statistics (heart rate, body are still kinetic, solar, wind, and heat. The technology, with regards to kinetic the mainspring and use internal magnet movements to power watch hands. Mechanical

  20. Mentors and Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ideas. Borovsky, Joe Mentor Joe Borovsky General Interests Magnetospheric physics, solar-wind physics, solar-windmagnetosphere coupling Suggested Project Topics Theory and...

  1. Utility-Scale Solar 2012: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01

    solar economics analyses – but also operating costs, capacity factors, and power purchase agreement (“solar power can be profitably sold through a long-term power purchase agreement (“Power Purchase Agreement (“PPA”) Prices The cost of installing, operating, and maintaining a utility-scale solar

  2. (Melanin-Sensitized Solar Cell) : 696220016

    E-Print Network [OSTI]

    platinum thin film for counter-electrode, uses solar simulator to measure efficiency at AM 1.5 (100 mW/cm2 (Melanin-Sensitized Solar Cell) : : : 696220016 #12; #12;#12; #12;I PLD the majority dye-sensitized solar cell research all uses the Ruthenium-complex as a light harvester

  3. Solar Market Pathways Website

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties.

  4. Light-harvesting materials: Soft support for energy conversion

    SciTech Connect (OSTI)

    Stolley, Ryan M.; Helm, Monte L.

    2014-11-10

    To convert solar energy into viable fuel sources, coupling light-harvesting materials to catalysts is a critical challenge. Now, coupling between an organic supramolecular hydrogel and a non precious metal catalyst has been demonstrated to be effective for photocatalytic H2 production. Ryan M. Stolley and Monte L. Helm are at Pacific Northwest National Laboratory (PNNL), Richland, WA, USA 99352. PNNL is operated by Battelle for the US Department of Energy. e-mail: Monte.Helm@pnnl.gov

  5. Piezoelectric MEMS for energy harvesting

    E-Print Network [OSTI]

    Kim, Sang-Gook

    Piezoelectric microelectromechanical systems (MEMS) have been proven to be an attractive technology for harvesting small magnitudes of energy from ambient vibrations. This technology promises to eliminate the need for ...

  6. Contract to coordinate on-going documentation requirements associated with Title X legislation for DOE active-solar activities. Final project technical report

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The objectives of this work were to ensure that Title X Active Solar Program reports complied with all guidance regarding length, format, coverage, tone, tables and schedules; provide necessary Conservation and Renewable Energy Office background and back-up material; follow this activity through to its completion in January 1982; assess information requirements associated with on-going documentation of Federal Buildings Program and its predecessors; establish a method for collecting, maintaining and utilizing appropriate program data specifically related to the preparation of report due in June 1982. Work on this project has generally remained on schedule and within budget. DOE-SAN has been instrumental in keeping us on track, by providing timely guidance as needed. Attached are recommendations and methods for documenting solar heat technologies research and the Title X sunset policy, planning, and evaluation long report for Active Solar Heating and Cooling Program.

  7. Solar Policy Environment: Houston

    Broader source: Energy.gov [DOE]

    The City of Houston is committed to achieving a sustainable solar infrastructure through strategic partnerships that address market barriers for solar energy through the Houston Solar Initiative. The initiative is dedicated to this long-term goal while focusing on near- and mid-term results that go beyond demonstration solar projects.

  8. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    None

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acids—a fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acids—overriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASU’s approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  9. Blue oak stump sprouting evaluated after firewood harvest in northern Sacramento Valley

    E-Print Network [OSTI]

    Standiford, Richard B.; McCreary, Douglas D.; Barry, Sheila J; Forero, Larry C.

    2011-01-01

    TABLE 4. Inventory data for blue oak thinning project in8. Standiford RB. 1997. Growth of blue oak on California’s2008. Stump sprouting of blue oaks 19 years after harvest.

  10. Identifying and Evaluating Energy Cost Reduction Opportunities for Harvesters - The Community Food Network

    E-Print Network [OSTI]

    Miller, Aaron M.

    2011-05-20

    The purpose of this project is to identify and evaluate opportunities where energy costs can be reduced for Harvesters - The Community Food Network. This is accomplished by conducting an energy audit, analyzing the data collected during the audit...

  11. National Solar Jobs Census 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Solar Foundation’s National Solar Jobs Census 2014 is the fifth annual update of current employment, trends, and projected growth in the U.S. solar industry. Data for Census 2014 is derived...

  12. Solar Policy Environment: Ann Arbor

    Broader source: Energy.gov [DOE]

    The goal for Ann Arbor’s Solar America Cities program is to utilize a wide range of community partners and resources to remove market barriers to the adoption of solar energy while simultaneously increasing consumer awareness and demand, and helping solar energy manufacturers and contractors to succeed. Expected outcomes include a Solar Plan for Ann Arbor, one or more large-scale photovoltaic demonstration projects, more small-scale solar hot water and photovoltaic demonstration projects, greater consumer awareness of solar options, a simpler permitting process for solar projects, and proof that solar energy works even in cloudy cities.

  13. Solar Utility Networks: Replicable Innovations in Solar Energy

    Broader source: Energy.gov [DOE]

    On October 2013, DOE announced nearly $7.8 million to fund eight projects under the Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) funding opportunity. These projects are...

  14. Alaska Solar Energy Workshop

    Broader source: Energy.gov [DOE]

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned about solar energy.

  15. Solar Technology Validation Project - Loyola Marymount University: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-03

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  16. Solar Technology Validation Project - USS Data, LLC: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-04

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  17. Solar Technology Validation Project - RES Americas: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-11

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  18. Solar Technology Validation Project - Iberdrola Renewables, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-08-298-3

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  19. Solar Technology Validation Project - Solargen (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-06

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  20. Solar Technology Validation Project - Amonix, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-13

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  1. Voluntary Solar Resource Development Fund

    Broader source: Energy.gov [DOE]

    The fund will be used to provide loans for residential, commercial, or nonprofit solar energy projects. Qualifying solar energy projects cannot be acquired, installed or operating before July 1, ...

  2. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    has been involved in funding solar energy research andwhich could impact funding of passive solar projects. E.excluded from funding, very few passive solar projects have

  3. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

    E-Print Network [OSTI]

    2011-01-01

    solar irradiation in Brazil, Solar Energy, 68, 91- 107, ISSNmaps for Brazil under SWERA project, Solar Energy, 81, 517-

  4. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience(Technical Report)

  5. Feasibility of using nanoporous materials in water harvesting

    E-Print Network [OSTI]

    Chow, Brian Justin

    2010-01-01

    Possible Role in Water Harvesting Experiment: AtmosphericNANOPOROUS MATERIALS IN WATER HARVESTING A thesis submittedNANOPOROUS MATERIALS IN WATER HARVESTING by Brian Justin

  6. Natural Light Harvesting Systems: Unraveling the quantum puzzles

    E-Print Network [OSTI]

    A. Thilagam

    2014-11-23

    In natural light harvesting systems, the sequential quantum events of photon absorption by specialized biological antenna complexes, charge separation, exciton formation and energy transfer to localized reaction centers culminates in the conversion of solar to chemical energy. A notable feature in these processes is the exceptionally high efficiencies ($>$ 95\\%) at which excitation is transferred from the illuminated protein complex site to the reaction centers. The high speeds of excitation propagation within a system of interwoven biomolecular network structures, is yet to be replicated in artificial light harvesting complexes. A clue to unraveling the quantum puzzles of nature may lie in the observations of long lived coherences lasting several picoseconds in the electronic spectra of photosynthetic complexes which occurs even in noisy environmental baths. The exact nature of the association between the high energy propagation rates and strength of quantum coherences remains largely unsolved. This review presents recent developments in quantum theories, and links information-theoretic aspects with photosynthetic light-harvesting processes in biomolecular systems. There is examination of various attempts to pinpoint the processes that underpin coherence features arising from the light harvesting activities of biomolecular systems, with particular emphasis on the effects that factors such non-Markovianity, zeno mechanisms, teleportation, quantum predictability and the role of multipartite states have on the quantum dynamics of biomolecular systems. A discussion of how quantum thermodynamical principles and agent-based modeling and simulation approaches can improve our understanding of natural photosynthetic systems is included.

  7. Sustainable Harvest for Food and Fuel

    SciTech Connect (OSTI)

    Grosshans, Raymond R.; Kostelnik, Kevin, M.; Jacobson, Jacob J.

    2007-04-01

    The DOE Biomass Program recently implemented the Biofuels Initiative, or 30x30 program, with the dual goal of reducing U.S. dependence on foreign oil by making cellulosic ethanol cost competitive with gasoline by 2012 and by replacing 30 percent of gasoline consumption with biofuels by 2030. Experience to date with increasing ethanol production suggests that it distorts agricultural markets and therefore raises concerns about the sustainability of the DOE 30 X 30 effort: Can the U.S. agricultural system produce sufficient feedstocks for biofuel production and meet the food price and availability expectations of American consumers without causing environmental degradation that would curtail the production of both food and fuel? Efforts are underway to develop computer-based modeling tools that address this concern and support the DOE 30 X 30 goals. Beyond technical agronomic and economic concerns, however, such models must account for the publics’ growing interest in sustainable agriculture and in the mitigation of predicted global climate change. This paper discusses ongoing work at the Center for Advanced Energy Studies that investigates the potential consequences and long-term sustainability of projected biomass harvests by identifying and incorporating “sustainable harvest indicators” in a computer modeling strategy.

  8. Sustainable Harvest for Food and Fuel

    SciTech Connect (OSTI)

    Raymond R. Grosshans; Kevin M. Kostelnik; Jacob J. Jacobson

    2007-12-01

    The DOE Biomass Program recently implemented the Biofuels Initiative, or 30x30 program, with the dual goal of reducing U.S. dependence on foreign oil by making cellulosic ethanol cost competitive with gasoline by 2012 and by replacing 30 percent of gasoline consumption with biofuels by 2030. Experience to date with increasing ethanol production suggests that it distorts agricultural markets and therefore raises concerns about the sustainability of the DOE 30x30 effort: Can the U.S. agricultural system produce sufficient feedstocks for biofuel production and meet the food price and availability expectations of American consumers without causing environmental degradation that would curtail the production of both food and fuel? Efforts are underway to develop computer-based modeling tools that address this concern and support the DOE 30x30 goals. Beyond technical agronomic and economic concerns, however, such models must account for the publics’ growing interest in sustainable agriculture and in the reduction of greenhouse gas emissions. This paper discusses ongoing work at the Center for Advanced Energy Studies that investigates the potential consequences and long-term sustainability of projected biomass harvests by identifying and incorporating “sustainable harvest indicators” in a computer modeling strategy.

  9. Lefvre M., Rigollier C., Cros S., Wald L., 2003, Toward a solar climatological database: the HelioClim project. In Proceedings of 22nd EARSeL Annual Symposium "Geoinformation for European-wide integration", 4-6 June 2002, Prague, Czech Republic. To-

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -228 Toward a solar climatological database: the HelioClim project M. Lefevre, C. Rigollier, S. Cros & L. Wald sensing, Meteosat, solar radiation, climatology ABSTRACT: The HelioClim project aims at producing temporal series of solar radiation maps at ground level over Europe, Africa and Atlantic Ocean from 1985 up to now

  10. Improving the Power Conversion Efficiency of Ultrathin Organic Solar Cells by Incorporating Plasmonic Effects of Spheroidal Metallic Nanoparticles

    E-Print Network [OSTI]

    Park, Namkyoo

    Improving the Power Conversion Efficiency of Ultrathin Organic Solar Cells by Incorporating be exploited to achieve efficient harvesting of solar energy. Notably, the incorporation of plasmonic effects can allow the light harvesting capability of a solar cell to be maintained even as the thickness

  11. Assessment of rainwater harvesting in Northern Ghana

    E-Print Network [OSTI]

    Barnes, David Allen

    2009-01-01

    This study assesses the current state of rainwater harvesting in the Northern Region of Ghana and makes recommendations regarding if and how rainwater harvesting could be used to address Pure Home Water's goal of reaching ...

  12. Thermal Storage with Ice Harvesting Systems 

    E-Print Network [OSTI]

    Knebel, D. E.

    1986-01-01

    Application of Harvesting Ice Storage Systems. Thermal storage systems are becoming widely accepted techniques for utility load management. This paper discusses the principles of ice harvesting equipment and their application to the multi...

  13. Harvesting energy from non-ideal vibrations

    E-Print Network [OSTI]

    Chang, Samuel C

    2013-01-01

    Energy harvesting has drawn significant interest for its potential to power autonomous low-power applications. Vibration energy harvesting is particularly well suited to industrial condition sensing, environmental monitoring ...

  14. Ultra wide-bandwidth micro energy harvester

    E-Print Network [OSTI]

    Hajati, Arman

    2011-01-01

    An ultra wide-bandwidth resonating thin film PZT MEMS energy harvester has been designed, modeled, fabricated and tested. It harvests energy from parasitic ambient vibration at a wide range of amplitude and frequency via ...

  15. New Hampshire Timber Harvesting Laws

    E-Print Network [OSTI]

    New Hampshire, University of

    Guide to New Hampshire Timber Harvesting Laws #12;ACKNOWLEDGMENTS This publication is an updated Hampshire Cooperative Extension 131 Main Street, Nesmith Hall Durham, New Hampshire 03824 http Hampshire Timberland Owners Association 54 Portsmouth Street Concord, New Hampshire 03301 www.nhtoa.org UNH

  16. Harvesting Energy from Wastewater Treatment

    E-Print Network [OSTI]

    Harvesting Energy from Wastewater Treatment Bruce Logan Penn State University #12;Energy Costs? 5 #12;Energy content of Wastewaters · Electricity "lost" to water and wastewater treatment= 0.6 quad wastewater (primary clarifier effluent) Arrows indicate wastewater addition P= 28 mW/m2 (PEM/Nafion) =146 m

  17. Ultrahigh Efficiency Multiband Solar Cells Final Report forDirector's Innovation Initiative Project DII-2005-1221

    SciTech Connect (OSTI)

    Ager III, Joel W.; Walukiewicz, W.; Yu, Kin Man

    2006-03-29

    The unique properties of the semiconductor ZnTeO were explored and developed to make multiband solar cells. Like a multijunction cell, multiband solar cells use different energy gaps to convert the majority of the solar spectrum to electrical current while minimizing losses due to heating. Unlike a multijunction cell, this is accomplished within a single material in a multiband cell. ZnTe{sub 1-x}O{sub x} films with x up to 2% were synthesized and shown to have the requisite unique band structure (2 conduction bands) for multiband function. Prototype solar cells based on an n-type ZnTe{sub 1-x}O{sub x} multiband top layer and a p-type ZnTe substrate were fabricated. Contacts to the cell and the series resistance of the substrate were identified as challenges for good electrical performance. Both photovoltage and small photocurrents were demonstrated under AMO illumination. A second semiconductor system, GaN{sub x}As{sub 1-y-x}P{sub y}, was shown to have multiband function. This alloy system may have the greatest potential to realize the promise of high efficiency multiband solar cells because of the relatively advanced technology base that exists for the manufacturing of III-V-alloy-based IC and opto-electronic devices (including multijunction solar cells).

  18. Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO{sub 4}:Eu{sup 3+} down-shifting nano-phosphor layer in organometal halide perovskite solar cells

    SciTech Connect (OSTI)

    Chander, Nikhil; Chandrasekhar, P. S.; Thouti, Eshwar; Swami, Sanjay Kumar; Dutta, Viresh; Komarala, Vamsi K.; Khan, A. F.

    2014-07-21

    We report a simple method to mitigate ultra-violet (UV) degradation in TiO{sub 2} based perovskite solar cells (PSC) using a transparent luminescent down-shifting (DS) YVO{sub 4}:Eu{sup 3+} nano-phosphor layer. The PSC coated with DS phosphor showed an improvement in stability under prolonged illumination retaining more than 50% of its initial efficiency, whereas PSC without the phosphor layer degraded to ?35% of its initial value. The phosphor layer also provided ?8.5% enhancement in photocurrent due to DS of incident UV photons into additional red photons. YVO{sub 4}:Eu{sup 3+} layer thus served a bi-functional role in PSC by reducing photo-degradation as well as enhancing energy conversion efficiency.

  19. SmartSolar Site Report and Appendix- Sample

    Broader source: Energy.gov [DOE]

    This site report provides SmartSolar’s identified opportunities for energy efficiency and solar projects, guides on how to move forward with these projects, and supporting documents.

  20. Renewable Energy Action Team-Generation Tracking For Renewable Projects Revised 6/17/13

    E-Print Network [OSTI]

    Solar PV 15 Antelope 1 Los Angeles Recurrent Energy 20 Solar PV 16 Antelope Solar Los Angeles Greenworks Barren Ridge Solar Kern EDF Renewable Energy 100 Solar PV 26 Beacon Solar Energy Project Kern Beacon Solar, LLC 250 Solar PV 27 Bear Creek Solar Project San Joaquin Ecos Energy , LLC 1.5 Solar PV 28

  1. Energy Harvesting Diamond Channel with Energy Cooperation

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Harvesting Diamond Channel with Energy Cooperation Berk Gurakan Sennur Ulukus Department@umd.edu Abstract--We consider the energy harvesting diamond channel, where the source and two relays harvest energy the option of wirelessly transferring some of its energy to the relays via energy cooperation. We find

  2. Energy Harvesting Communications with Continuous Energy Arrivals

    E-Print Network [OSTI]

    Yener, Aylin

    Energy Harvesting Communications with Continuous Energy Arrivals Burak Varan Kaya Tutuncuoglu Aylin--This work considers an energy harvesting transmit- ter that gathers a continuous flow of energy from intermittent sources, thus relaxing the modeling assumption of discrete amounts of harvested energy present

  3. Communicating with Energy Harvesting Transmitters and Receivers

    E-Print Network [OSTI]

    Yener, Aylin

    Communicating with Energy Harvesting Transmitters and Receivers Kaya Tutuncuoglu Aylin Yener a general framework for utility maximization of a wireless network with energy harvesting nodes. The focus is on applying this framework to the single-link problem with an energy harvesting transmitter and an energy

  4. Nanostructured photon management for high performance solar cells Jia Zhu, Zongfu Yu, Shanhui Fan, Yi Cui *

    E-Print Network [OSTI]

    Cui, Yi

    research efforts for renewable energy technologies. Solar cells, which harvest energy directly fromNanostructured photon management for high performance solar cells Jia Zhu, Zongfu Yu, Shanhui FanCullough Building 343, Stanford, CA 94305, USA Contents 1. Introduction

  5. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2015 R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to...

  6. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (1 of 7) 1400915wileyonlinelibrary.com New Light-Harvesting Materials Using Accurate

    E-Print Network [OSTI]

    Ceder, Gerbrand

    .com New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations Ivano E. Castelli] batteries,[2] carbon capture and storage,[3] photovoltaics,[4,5] dye sensitized solar cells,[6] and water, discussed in detail and used in previous works,[7,8] to find new light harvesting materials suit- able

  7. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  8. The photospheric solar oxygen project: IV. 3D-NLTE investigation of the 777 nm triplet lines

    E-Print Network [OSTI]

    Steffen, M; Caffau, E; Ludwig, H -G; Bonifacio, P; Cayrel, R; Ku?inskas, A; Livingston, W C

    2015-01-01

    The solar photospheric oxygen abundance is still widely debated. Adopting the solar chemical composition based on the "low" oxygen abundance, as determined with the use of three-dimensional (3D) hydrodynamical model atmospheres, results in a well-known mismatch between theoretical solar models and helioseismic measurements that is so far unresolved. We carry out an independent redetermination of the solar oxygen abundance by investigating the center-to-limb variation of the OI IR triplet lines at 777 nm in different sets of spectra with the help of detailed synthetic line profiles based on 3D hydrodynamical CO5BOLD model atmospheres and 3D non-LTE line formation calculations with NLTETD. The idea is to simultaneously derive the oxygen abundance,A(O), and the scaling factor SH that describes the cross-sections for inelastic collisions with neutral hydrogen relative the classical Drawin formula. The best fit of the center-to-limb variation of the triplet lines achieved with the CO5BOLD 3D solar model is clearly...

  9. In an effort to design a more low cost, highly efficient alternative to the traditional silicon solar cell, our

    E-Print Network [OSTI]

    In an effort to design a more low cost, highly efficient alternative to the traditional silicon solar cell, our research implements lead sulfide nanocrystals as light harvesters. Semiconducting

  10. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Broader source: Energy.gov (indexed) [DOE]

    targeted 'Solar Cogeneration' technologies to maximize energy generation & energy efficiency from the building's solar insolation resources. Project presents a novel, low-cost...

  11. Phase 2 of the array automated assembly task for the low cost silicon solar array project. Final report

    SciTech Connect (OSTI)

    Petersen, R.C.

    1980-11-01

    Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process proposed by Motorola, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work has directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The Motorola process was compared with simple electroless nickel plating in a series of parallel experiments. Results are presented. (WHK)

  12. Energy Harvesting Enabled Wireless Sensor Networks: Energy Model and Battery Dimensioning

    E-Print Network [OSTI]

    Politčcnica de Catalunya, Universitat

    - ferent natures, such as mechanical, thermal, solar, acoustic and electromagnetic (EM) energy [8Energy Harvesting Enabled Wireless Sensor Networks: Energy Model and Battery Dimensioning Raul to energy require- ments. The Self-Powered WSN approach aims to extend the sensor node life by means

  13. On the comparison of energy sources: feasibility of radio frequency and ambient light harvesting

    E-Print Network [OSTI]

    Korotkevich, Alexander O; Lavrova, Olga; Coutsias, Evangelos

    2015-01-01

    With growing interest in multi source energy harvesting including integrated microchips we propose a comparison of radio frequency (RF) and solar energy sources in a typical city. Harvesting devices for RF and solar energy will be competing for space of a compact micro or nano device as well as for orientation with respect to the energy source. This is why it is important to investigate importance of every source of energy and make a decision whether it will be worthwhile to include such harvesters. We considered theoretically possible irradiance by RF signal in different situations, typical for the modern urban environment and compared it with ambient solar energy sources available through the night, including moon light. Our estimations show that solar light energy dominates by far margin practically all the time, even during the night, if there is a full moon in the absence of clouds. At the same time, in the closed compartments or at the new moon RF harvesting can be beneficial as a source of "free" energ...

  14. On the Limits of Effective Hybrid Micro-Energy Harvesting on Mobile CRFID Sensors

    E-Print Network [OSTI]

    Ganesan, Deepak

    capacitor sizes and operating under varying condi- tions of mobility and solar energy harvesting. Our the read rate, and achieve 95% uptime in RAM retention mode despite long periods of low light. Categories and Subject Descriptors C.4 [Performance of Systems]: Measurement Techniques General Terms Design, Experiment

  15. Energy Management for Time-Critical Energy Harvesting Wireless Sensor Networks

    E-Print Network [OSTI]

    Aydin, Hakan

    this problem, we present a set of Harvesting Aware Speed Selection (HASS) algo- rithms. We use an epoch such as solar, wind or wa- ter flow, WSN nodes potentially have perpetual energy supply. However, given saving techniques, Dy- namic Voltage Scaling (DVS) [2] and Dynamic Modulation Scaling (DMS) [18]. The DVS

  16. Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial-

    E-Print Network [OSTI]

    Cao, Jianshu

    stages in the conversion of solar energy into chemical and other useful forms of energy for humanEfficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial- temporal correlations Jianlan Wu, Fan Liu, Young Shen, Jianshu Cao1 and Robert J

  17. On the Cover: One route to harvesting the energy of the sun involves learning to mimic

    E-Print Network [OSTI]

    Wu, Zhigang

    #12;On the Cover: One route to harvesting the energy of the sun involves learning to mimic natural the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green, and atmospheric carbon dioxide. #12;BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION Report on the Basic Energy

  18. Energy-Harvesting for Source-Channel Coding in Cyber-Physical Systems

    E-Print Network [OSTI]

    Zemen, Thomas

    -recognized to be energy consumption and storage, due to the difficulty to provide a continuous or sporadic energy source different forms of energy, such as solar, elastic or radio frequency, into electrical power. The regimeEnergy-Harvesting for Source-Channel Coding in Cyber-Physical Systems P. Castiglione FTW Wien

  19. SensEH: From Simulation to Deployment of Energy Harvesting Wireless Sensor Networks

    E-Print Network [OSTI]

    Picco, Gian Pietro

    SensEH: From Simulation to Deployment of Energy Harvesting Wireless Sensor Networks Riccardo Dall@fbk.eu Abstract--Energy autonomy and system lifetime are critical concerns in wireless sensor networks (WSNs problem. Indeed, in many cases the energy density--whether solar, wind, vibrational or thermal in nature

  20. Energy Management and Task Scheduling of an Energy Harvesting, Structural Health Monitoring System

    E-Print Network [OSTI]

    Simunic, Tajana

    of a structure is referred to as Structural Health Monitoring (SHM). SHiMmer, a solar-powered wireless SHM system for two tasks. General Terms Performance, Experimentation Keywords Energy harvesting, embedded systems Monitoring is a popular area of research in the fields of embedded systems and structural engineering

  1. Charging-free electrochemical system for harvesting low-grade thermal energy

    E-Print Network [OSTI]

    Cui, Yi

    Charging-free electrochemical system for harvesting low-grade thermal energy Yuan Yanga,1 , Seok processes, environment, solar-thermal, and geothermal en- ergy (1­3). It is generally difficult to convert Cuib,d,3 , and Gang Chena,3 a Department of Mechanical Engineering, Massachusetts Institute

  2. Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic (PV) project to supply power

    E-Print Network [OSTI]

    Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic Reinvestment and Recovery Act (ARRA) of 2009 extended QECB funding by $3.2 billion and provided $2.4 billion in funding for new CREBs. Note that CREBs have been fully allocated and are not currently available. While

  3. 510 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 10, 2011 A Scalable Solar Antenna for Autonomous Integrated

    E-Print Network [OSTI]

    Tentzeris, Manos

    that can be integrated underneath a solar panel is presented. The topology alleviates the effect of solar--3-D RF modules, autonomous modules, omni- directional antenna, solar antenna, solar panel, wireless consumption of every individual node [11]. Currently, solar panels harvest the largest reported amount

  4. Solar America Initiative (Across America Map)

    SciTech Connect (OSTI)

    Not Available

    2007-06-01

    This factsheet gives an overview of the Solar America Initiative (SAI) using a map to show locations of the Solar America Cities, Solar America Showcases and other market transformation and research and development projects.

  5. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 224 Altus Air Force Base Solar Technologies

    SciTech Connect (OSTI)

    Russo, Bryan J.

    2010-09-30

    The principal goal of this project was to evaluate altus Air Force Base for building integrated silicon or thin film module photovoltaic opportunities. This report documents PNNL's efforts and documents study conclusions.

  6. Post-Harvest Marketing Alternatives 

    E-Print Network [OSTI]

    McCorkle, Dean; Welch, Mark

    2009-02-04

    , the producer stands to lose two ways. First, the price received for the grain when it is sold is lower than it was at harvest. Second- ly, the producer must pay the storage costs. Advantages of storing grain Extends the marketing season? Can take advantage... of higher prices if ? they occur Can take advantage of strengthening ? basis if it occurs Disadvantages of storing grain Prices may not increase enough to ? cover storage costs Basis may weaken? Stored grain can lose quality? Producer is unprotected...

  7. Harvesting RNA from 3-D Acinar Cultures 1) Aspirate the media from the wells for harvesting.

    E-Print Network [OSTI]

    Harvesting RNA from 3-D Acinar Cultures 1) Aspirate the media from the wells for harvesting. 2) Add for 15 minutes at room temperature with approximately 20 l DEPC water (for 4 wells of an 8 well chamber

  8. 2011 Fur Seal Subsistence Harvest Report The Subsistence Harvest of Northern Fur Seals

    E-Print Network [OSTI]

    .................................................................................................................... 6 By-products and Waste seals harvested b) incidence of by-products and waste during the harvest process c) the occurrence debris and the number of seals disentangled g) evidence of oil contaminated seal pelts h) other types

  9. Apparatus and method for harvesting woody plantations

    DOE Patents [OSTI]

    Eggen, David L. (Rte. 1, Box 257, Moose Lake, MN 55767)

    1988-11-15

    A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester.

  10. Energy & Sustainable Chemistry: Light Harvesting & Biocatalysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Sustainable Chemistry: Light Harvesting & Biocatalysis November 30, 1999 at http:www.rle.mit.eduexcitonicswp-contentuploads201408Olsen-efrc-video-highlight-artf.chloro..m...

  11. Apparatus and method for harvesting woody plantations

    DOE Patents [OSTI]

    Eggen, D.L.

    1988-11-15

    A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester. 8 figs.

  12. June 30, 2015 Kevin Comer, Sr. Project Manager

    E-Print Network [OSTI]

    Pennycook, Steve

    June 30, 2015 Kevin Comer, Sr. Project Manager Tim Clark, Renewable Energy Specialist Antares Group collection · Introduce harvest data collection presentation 2 #12;Project Summary · 3 Year Development and Demonstration Project, Began Sept 2013 · Develop and demonstrate new and improved harvest and processing

  13. Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header

    SciTech Connect (OSTI)

    Eisenbies, Mark; Volk, Timothy

    2014-10-03

    Demand for bioenergy sourced from woody biomass is projected to increase; however, the expansion and rapid deployment of short rotation woody crop systems in the United States has been constrained by high production costs and sluggish market acceptance due to problems with quality and consistency from first-generation harvesting systems. The objective of this study was to evaluate the effect of crop conditions on the performance of a single-pass, cut and chip harvester based on a standard New Holland FR-9000 series forage harvester with a dedicated 130FB short rotation coppice header, and the quality of chipped material. A time motion analysis was conducted to track the movement of machine and chipped material through the system for 153 separate loads over 10 days on a 54-ha harvest. Harvester performance was regulated by either ground conditions, or standing biomass on 153 loads. Material capacities increased linearly with standing biomass up to 40 Mgwet ha-1 and plateaued between 70 and 90 Mgwet hr-1. Moisture contents ranged from 39 to 51% with the majority of samples between 43 and 45%. Loads produced in freezing weather (average temperature over 10 hours preceding load production) had 4% more chips greater than 25.4 mm (P < 0.0119). Over 1.5 Mgdry ha-1 of potentially harvested material (6-9% of a load) was left on site, of which half was commercially undesirable meristematic pieces. The New Holland harvesting system is a reliable and predictable platform for harvesting material over a wide range of standing biomass; performance was consistent overall in 14 willow cultivars.

  14. Solar Trailer Group EGDSN 297 D

    E-Print Network [OSTI]

    Demirel, Melik C.

    Solar Trailer Group EGDSN 297 D Project Recap The objective of the Solar Trailer team was to design and implement a solar PV system for the ToolMaster Trailer HAZ-16 that is used by the Center for Sustainability was constructed. Finally in an all night effort to complete the project the racking and solar panels were

  15. Scheduling in Energy Harvesting Networks Energy Cooperation in Energy Harvesting Networks

    E-Print Network [OSTI]

    Ulukus, Sennur

    12 Emax EmaxEmaxEmax E3E0 E2E1 · Second: Allow transfer of energy one by one to the right onlyScheduling in Energy Harvesting Networks and Energy Cooperation in Energy Harvesting Networks and Information Theory for Energy Harvesting Communications S¸ennur Ulukus¸ Department of ECE University

  16. Funding & Financing for Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Funding & Financing for Energy Projects A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. A concentrating solar power...

  17. Energy Department Announces Projects to Advance Cost-Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power...

  18. Energy Department Announces Projects to Advance Cost-Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar...

  19. Long Island Solar Farm

    SciTech Connect (OSTI)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  20. Funding Opportunity Announcement: Concentrating Solar Power:...

    Broader source: Energy.gov (indexed) [DOE]

    transformative projects targeting all components of a concentrating solar power (CSP) plant. Projects should seek to meet the targets set out in the SunShot Vision Study,...

  1. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01

    associated wi the DOE/New Mexico Solar Irrigation Project.Solar Total Energy lity Sandia Laboratories, Albuquerque. New Mexico,

  2. Enhanced Light Trapping and Power Conversion Efficiency in Ultrathin Plasmonic Organic Solar Cells: A Coupled Optical-Electrical

    E-Print Network [OSTI]

    Park, Namkyoo

    much attention for the more efficient harvesting of solar energy. Notably, even as the thickness acceptor materials have been envisioned as a promising next generation energy harvesting device dueEnhanced Light Trapping and Power Conversion Efficiency in Ultrathin Plasmonic Organic Solar Cells

  3. Methodology Water Harvesting Measurements with Biomimetic

    E-Print Network [OSTI]

    Barthelat, Francois

    Methodology Water Harvesting Measurements with Biomimetic Surfaces Zi Jun Wang and Prof. Anne parameters that affect the water harvesting efficiencies of different surfaces · Optimize the experimental Objectives Water is one of the most essential natural resources. The easy accessibility of water

  4. Energy Harvesting Wireless Communications-Part I

    E-Print Network [OSTI]

    Ulukus, Sennur

    #12;Motivation Energy efficient communication means something different than it did a decade ago-medical-devices-controlled-wireless-technology-nanotechnology/ (bottom) http://scitechdaily.com/smart-pills-will-track-patients-from-the-inside-out/ Energy Harvesting;Motivation New Wireless Network Design Challenge: A set of energy feasibility constraints based on harvests

  5. Information Capacity of Energy Harvesting Sensor Nodes

    E-Print Network [OSTI]

    Sharma, Vinod

    Information Capacity of Energy Harvesting Sensor Nodes R Rajesh CABS, DRDO Bangalore, India Email by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over an AWGN channel and show that the capacity achieving energy management policies are related

  6. Energy Cooperation in Energy Harvesting Wireless Communications

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Cooperation in Energy Harvesting Wireless Communications Berk Gurakan1 , Omur Ozel1 , Jing the broadcast nature of the wireless network. In this work, we anticipate an energy harvesting network where transfer a portion of its energy to the relay node as in Fig. 1 through a separate wireless energy transfer

  7. International Conference on Water Harvesting, Storage and Conservation (WHSC-2009)

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    International Conference on Water ­ Harvesting, Storage and Conservation (WHSC-2009) 23rd ­ 25th International Conference on Water ­ Harvesting, Storage and Conservation (WHSC- 2009) was the first guidelines and implementing mechanisms for water harvesting, storage and conservation. The main objectives

  8. Transmission Policies for Asymmetric Interference Channels with Energy Harvesting Nodes

    E-Print Network [OSTI]

    Yener, Aylin

    Transmission Policies for Asymmetric Interference Channels with Energy Harvesting Nodes Kaya power policies to maximize sum capacity in an energy harvesting setting. It is shown derive optimal power allocation policies for interference channels comprised of energy harvesting

  9. TECHNICAL REPORT A-82-1 SIMULATION FOR HARVESTING

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Research Program REPORT DATE February 1982 NUMBER OF PAGES SECURITY CLASS. (olthle report) Unclassified Unclassified SECURITY CLASSIFICATION OF THIS PAGE ("""" Dela Enlered) I #12;Unclassified SECURITY (grid). The harvesting subroutine directs the harvesting procedure. The harvester (Aqua-Trio Equipment

  10. SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    solar spectrum into eight intervals of roughly equal energy content, and onefor utilizing solar energy. One project involves thedetail one possible con- figuration for a solar power plant

  11. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01

    of new grid connected solar power projects”, available atare dropping rapidly, solar power is still more expensivepolitical support for solar power makes it diffi cult for

  12. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy...

    Broader source: Energy.gov (indexed) [DOE]

    rooftop solar systems. This project is part of the Department's larger effort to make solar energy more accessible and affordable, increase domestic solar deployment, and...

  13. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    on solar energy deployment and retail electricity rates, (c)for solar energy projects in restructured electricitySolar Energy Technologies Program) and the Office of Electricity

  14. Harvesting Solar Energy for the Future | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not findGeoscience/EnvironmentGlobalADDITIONALGrowingCenter

  15. Light Trapping, Absorption and Solar Energy Harvesting by Artificial

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle) | SciTech Connect Learning

  16. Light Trapping, Absorption and Solar Energy Harvesting by Artificial

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle) | SciTech Connect LearningMaterials (Technical

  17. Photon Enhanced Thermionic Emission for Solar Energy Harvesting Final

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide. V1.0.0.Report) |Article) |kinetics andCaCu 2 O

  18. Photon Enhanced Thermionic Emission for Solar Energy Harvesting Final

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide. V1.0.0.Report) |Article) |kinetics andCaCu 2

  19. PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics

    Broader source: Energy.gov [DOE]

    Low-cost III-V photovoltaics have the potential to lower the levelized cost of energy (LCOE) because III-V cells outperform silicon in terms of efficiency and annual energy harvesting efficiency. In this project, researchers will address both the high costs of III-V epitaxy and single crystal substrates. Hydride vapor phase epitaxy (HVPE) is the most promising inexpensive, rapid-growth technique for high efficiency, III-V materials. The continued development of high-throughput HVPE, will be coupled with novel epitaxial liftoff strategies to enable III-V solar cells that are cost-competitive under one-sun conditions.

  20. Harvests, St. Tracy Lekanof, Island Sentinel, Kayumixtax Eco-office

    E-Print Network [OSTI]

    .................................................................................................................... 4 By-products and Waste .............................................................................................................................. 5 Oil Contamination seals harvested b) incidence of by-products and waste during the harvest process c) the occurrence

  1. A Magnetomechanical Thermal Energy Harvester With A Reversible Liquid Interface

    E-Print Network [OSTI]

    He, Hong

    2012-01-01

    for Waste Heat Energy Harvesting and Thermal Conductanceand Mechanical Model of a Thermal Energy Harvesting Device”,to remove the excess thermal energy and prevent burning of

  2. Five Harvesting Technologies are Making Biofuels More Competitive...

    Energy Savers [EERE]

    Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

  3. A Magnetomechanical Thermal Energy Harvester With A Reversible Liquid Interface

    E-Print Network [OSTI]

    He, Hong

    2012-01-01

    1.1 Thermal energy harvester Wireless sensor networks (WSN)mechanisms for energy harvesting in wireless sensors involvecollect sufficient energy to power wireless sensors. Thermal

  4. Wave Energy Harvesting unmanned maritime vehicle, Concept and Applications

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Wave Energy Harvesting unmanned maritime vehicle, Concept and Applications Justin Manley Senior). By harvesting abundant natural energy Wave Gliders provide a persistent ocean presence to commercial scientific

  5. Solar Policy Environment: Seattle

    Broader source: Energy.gov [DOE]

    The objective of the Emerald City Solar Initiative is to overcome the barriers to widespread deployment of solar energy technology, dramatically increasing residential, commercial, City-owned, and community-scale solar energy use. The City has assembled a strong team of partners that have proven track records in the fields of public planning, renewable energy resource mapping, financial analysis, site analysis, education and outreach, policy analysis and advocacy, community organizing and renewable energy project development.

  6. UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni-

    E-Print Network [OSTI]

    Oregon, University of

    i UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni- toring Laboratory has been measuring incident solar radiation since 1975. Current support for this work comes from the Regional Solar Radiation Monitoring Project (RSRMP), a utility consortium project including the Bon

  7. Atrium House solar revitalization

    E-Print Network [OSTI]

    Malamuceanu, Dan Roland

    1984-01-01

    The idea behind the Atrium House Solar Revitalization project, may be briefly presented as: energy conserving, low rise, high density, related- to- the-sky residences. The proposed system consists of a reticulate grid - ...

  8. Alaska Solar Energy Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned...

  9. Solar Policy Environment: Berkeley

    Broader source: Energy.gov [DOE]

    The goals of this project are to (1) accelerate the adoption of solar technology at the local level by engaging the City, service providers, end users and regulators; (2) provide a model for other cities; and (3) promote solar technology among residents and local businesses.

  10. Your Community With Solar

    E-Print Network [OSTI]

    contractors and partners · Conducting community outreach and education · Pricing and financing projects. Also for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large- scale adoption of solar electricity across the United States. Reaching this goal will re

  11. Concentrating Solar Power Competitive Awards

    Broader source: Energy.gov [DOE]

    DOE funds concentrating solar power (CSP) research and development (R&D) projects through competitive solicitations, which are released for public response as financial opportunity announcements. The following projects represent recent and ongoing research efforts.

  12. Soft Capacitors for Wave Energy Harvesting

    E-Print Network [OSTI]

    Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jřrgen Jřrgensen; Guggi Kofod

    2011-10-14

    Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.

  13. Solar Powered Classroom

    ScienceCinema (OSTI)

    none

    2013-06-27

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  14. Solar Powered Classroom

    SciTech Connect (OSTI)

    2013-06-13

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  15. Rainwater for the future: Rainwater harvesting increases in popularity across the state 

    E-Print Network [OSTI]

    Orth, Melanie

    2011-01-01

    commercial rainwater harvesting project a?er his company?s building burned down. Magline Inc. is a small manufacturing resource lab that develops foliar fertilizers or liquid solutions that are sprayed directly onto leaves. When it came time to rebuild...

  16. Harvesting Circuits for Miniaturized Photovoltaic Cells Rajiv Damodaran Prabha, Gabriel A. Rincn-Mora, and Suhwan Kim

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    Harvesting Circuits for Miniaturized Photovoltaic Cells Rajiv Damodaran Prabha, Gabriel A. Rincón is microscale photovoltaic (PV) cells only produce 1 and 100 µW/mm2 for artificial and solar lighting, so tiny photovoltaic (PV) cells constrains power to below 100 µW/mm2 , which parasitic components

  17. THE JOURNAL OF CHEMICAL PHYSICS 137, 174111 (2012) Efficient energy transfer in light-harvesting systems: Quantum-classical

    E-Print Network [OSTI]

    Cao, Jianshu

    2012-01-01

    2012; published online 6 November 2012) Following the calculation of optimal energy transfer in thermal light-harvesting systems can help develop low-cost and highly efficient man-made solar energy apparatus#12;THE JOURNAL OF CHEMICAL PHYSICS 137, 174111 (2012) Efficient energy transfer in light

  18. Solar Panel Cleanerbot Robert Gabriel

    E-Print Network [OSTI]

    Solar Panel Cleanerbot Robert Gabriel Inquiry Statement: The Solar Panel Cleanerbot is an electrical engineering junior and senior design project. The objective is to build a robot that can clean the solar panels on the roof of Holmes Hall in order to maintain optimal efficiency. While it will first

  19. Community Solar Program Comparison Chart

    Broader source: Energy.gov [DOE]

    This chart is a supplement to the "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development," provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  20. Massachusetts Community Shared Solar Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Massachusetts community shared solar policy, and touches on key community shared solar models currently being utilized across the Commonwealth. Additionally, the webinar outlines key resources individuals and municipalities can use in order to pursue a community shared solar project.

  1. Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Electric Grid Integration - Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  2. NREL: State and Local Governments - Value of Solar: Program Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    their implications within different solar market types. The study assesses the current cost competitiveness of residential solar projects in each U.S. state, under several...

  3. Ultra-wide bandwidth piezoelectric energy harvesting

    E-Print Network [OSTI]

    Hajati, Arman

    Here, we present an ultra wide-bandwidth energy harvester by exploiting the nonlinear stiffness of a doubly clamped microelectromechanical systems (MEMSs) resonator. The stretching strain in a doubly clamped beam shows a ...

  4. Downhole vibration sensing by vibration energy harvesting

    E-Print Network [OSTI]

    Trimble, A. Zachary

    2007-01-01

    This thesis outlines the design of a prototype electromagnetic induction vibration energy harvesting device for use in a downhole environment. First order models of the necessary components for a generic vibration energy ...

  5. Harvesting Residuals-Economic Energy Link 

    E-Print Network [OSTI]

    Owens, E. T.; Curtis, D. B.

    1986-01-01

    A description of systems used in integrated harvesting of quality and unmerchantable trees is outlined for three areas in New Brunswick, Canada. The silvicultural benefits and the use of residues as an alternative to ...

  6. Solar Fundamentals Volume 1: Technology

    Broader source: Energy.gov [DOE]

    This report is one component of a multi-part series publication to assist in educating th'se seeking to become more familiar with the solar industry. This volume introduces solar technologies, explaining each technology’s applications, the components that make up a photovoltaic system, and how they can be used to optimize energy generation. This report explains solar insolation and how it impacts energy generation in illustrating where solar energy is a viable option. A final section highlights important considerations in solar project siting to maximize system production and avoid unexpected project development challenges.

  7. Energy Harvesting Broadcast Channel with Inefficient Energy Storage

    E-Print Network [OSTI]

    Yener, Aylin

    Energy Harvesting Broadcast Channel with Inefficient Energy Storage Kaya Tutuncuoglu Aylin Yener with an energy harvesting transmitter equipped with an inefficient energy storage device. For this setting by the energy harvesting process. The convexity of the capacity region for the energy harvesting broadcast

  8. An Energy Harvesting AWGN Channel with a Finite Battery

    E-Print Network [OSTI]

    O'Brien, James F.

    An Energy Harvesting AWGN Channel with a Finite Battery Varun Jog EECS, UC Berkeley Berkeley, CA: ananth@eecs.berkeley.edu Abstract--In energy harvesting communication systems, the transmitter is adapted to harvest energy per time slot. The harvested energy is either used right away or is stored in a battery

  9. Financing Non-Residential Photovoltaic Projects: Options and Implications

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    than PV), the 64 MW Nevada Solar One project also beganrespect to financing, one can consider a solar PPA from twoslower to catch on with solar projects. One early effort to

  10. Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations

    SciTech Connect (OSTI)

    1983-01-01

    The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

  11. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  12. Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News

    E-Print Network [OSTI]

    Lovley, Derek

    Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley of energy, the solar panels, can also harvest energy 100 times more effectively than plants. Other

  13. UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless Identification Applications

    E-Print Network [OSTI]

    Tentzeris, Manos

    UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless antenna using low cost flexible substrate materials is presented. Flexible amorphous silicon a-Si solar nature of the circuit and providing operational autonomy by harvesting solar power without affecting

  14. Light trapping design for low band-gap polymer solar cells

    E-Print Network [OSTI]

    John, Sajeev

    Light trapping design for low band-gap polymer solar cells Stephen Foster1,* and Sajeev John1,2 1 demonstrate numerically a 2-D nanostructured design for light trapping in a low band-gap polymer solar cell, "Light harvesting improvement of organic solar cells with self- enhanced active layer designs," Opt

  15. Solar Policy Environment: Philadelphia

    Broader source: Energy.gov [DOE]

    The project will identify promising locations for photovoltaic installations and create a roadmap for commercial and residential system developers. The roadmap, published as the Solar Developers Guide to Philadelphia, will be used to promote and attract solar energy investment. Philadelphia’s long-term goal for solar energy is to fully utilize the potential of solar energy to safely, reliably, and cost-effectively displace the use of energy generated by fossil fuels. To achieve its solar energy goals, the City of Philadelphia must add large commercial scale (> 500 kW) solar installations to its ongoing efforts on the smaller scale (we note that a new 1 MW PV installation will be installed at the Philadelphia Navy Yard by the end of 2008).

  16. Effect of pre-harvest and post-harvest conditions and treatments on plum fruit quality

    E-Print Network [OSTI]

    Crisosto, Carlos H.

    include heat treatment, ozone, polyamine and calcium treatments, as well as fumigationReview Effect of pre-harvest and post-harvest conditions and treatments on plum fruit quality G. A ethylene, which is a key ripening regulator, while treatments with 1-methylcyclopropene (1-MCP

  17. Design and Analysis of Micro-Solar Power Systems for Wireless

    E-Print Network [OSTI]

    California at Berkeley, University of

    Design and Analysis of Micro- Solar Power Systems for Wireless Sensor Networks Jaein Jeong UC Harvesting for WSN · Energy harvesting is need for large-scale long- term deployment. · Several designs made for different requirements, but little analysis is done for an ultimate design. 557 Trio node deployments

  18. Solar Technology Validation Project - Tri-State G&T: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-12

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  19. Solar Technology Validation Project - Utah State Energy Program (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-09

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  20. Apple Harvest Time! Determining when apples are ready to be harvested can be tricky. You need to know the variety of the apple and its approximate harvest

    E-Print Network [OSTI]

    New Hampshire, University of

    Apple Harvest Time! Determining when apples are ready to be harvested can be tricky. You need to know the variety of the apple and its approximate harvest date. These dates vary each year with fluctuations in blooming rates, degree days and rainfall. If you're growing your own apples, perhaps the best

  1. Project Profile: Regenerative Carbonate-Based Thermochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power Project Profile: Regenerative Carbonate-Based Thermochemical Energy...

  2. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  3. Past SunShot Incubator Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    Projects funded under the SunShot Initiative solar energy Incubator Program yielded technical breakthroughs and insights.

  4. SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978

    E-Print Network [OSTI]

    authors, Various

    2011-01-01

    The building 90 solar demonstration project is one of elevenfor utilizin\\l solar energy. One project, started this year,by LBL; one contractor is preparing a passive solar design

  5. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01

    D EVELOPMENT I SSUES Solar Power in the Desert: Are the2 Most of the large-scale solar power projects utilize largethat will be affected by solar power facilities. There are

  6. Analysis of a flapping foil system for energy harvesting at low Reynolds number

    E-Print Network [OSTI]

    Cho, Hunkee

    2011-01-01

    of energy harvesting capacity enhancement………………………….40of energy harvesting capacity enhancement…………………………56to enhance the energy harvesting capacity. xiv Chapter 1

  7. Energy and task management in energy harvesting wireless sensor networks for structural health monitoring

    E-Print Network [OSTI]

    Steck, Jamie Bradley

    2009-01-01

    applied to SHiMmer, a wireless, energy-harvesting structuralthesis dis- cusses a wireless, energy-harvesting sensingManagement in Energy Harvesting Wireless Sensor Networks for

  8. Energy and task management in energy harvesting wireless sensor networks for structural health monitoring

    E-Print Network [OSTI]

    Steck, Jamie Bradley

    2009-01-01

    work in energy harvesting and wireless sensor networks.Management in Energy Harvesting Wireless Sensor Networks forapplied to SHiMmer, a wireless, energy-harvesting structural

  9. Adams County- Energy from Community Solar Gardens

    Broader source: Energy.gov [DOE]

    When SunShare’s solar garden comes online, Adams County will be the first county in the nation to power its buildings with community solar energy. The county projects energy cost savings of $300,...

  10. Solar Instructor Training Network Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    These frequently asked questions (FAQs) relate to the solar instructor training network. This project was launched by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP or...

  11. The Mechanical Harvesting of Cotton. 

    E-Print Network [OSTI]

    Smith, H. P.; Killough, D. T.; Byrom, M. H.; Scoates, D.; Jones, D. L.

    1932-01-01

    - NO 1.831. Patented sept. 10. 1850 velop a mechanical cotton pick- er was made by S. S. Rembert and J. Prescott, of Memphis, Tennessee, September 10, 1850, when patent No. 7,631 in Sub- class 48* was issued to them. Their machine (Fig. 1... of the Haring Machine ing finxers (Fig. 6). The picker ng picking arm and fingers attarhed. arms project into the cotton plant from both sides (Fig. 7), and move backward at the same speed as the machine travels forward. The picking fingers radiate from...

  12. Particulate residue separators for harvesting devices

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  13. City of Boulder- Solar Sales and Use Tax Rebate

    Broader source: Energy.gov [DOE]

    Out of the sales and use taxes paid to the City of Boulder for solar projects, approximately 55% of revenues go to restricted funds. Within one year of the city’s final inspection, solar project ...

  14. Engineering Project Solar-Boosted

    E-Print Network [OSTI]

    and CO2 (Kruse 2009). Whereas Fischer-Tropsch reactor modelling is well established in the literature fuels and chemicals derived via the Fischer-Tropsch process (Dry 2002). Supercritical water gasification

  15. Innovation and Success in Solar Permitting and Inspection

    Broader source: Energy.gov [DOE]

    This document summarizes several successful initiatives to streamline and standardize permitting requirements for local solar photovoltaic (PV) projects.

  16. Dynamic analysis of an electrostatic energy harvesting system

    E-Print Network [OSTI]

    Niu, Feifei

    2013-01-01

    Traditional small-scale vibration energy harvesters have typically low efficiency of energy harvesting from low frequency vibrations. Several recent studies have indicated that introduction of nonlinearity can significantly ...

  17. Energy harvesting from wind-induced vibration of suspension bridges

    E-Print Network [OSTI]

    Shi, Miao, M. Eng. Massachusetts Institute of Technology

    2013-01-01

    Recently, an extensive amount of research has been focused on energy harvesting from structural vibration sources for wireless self-powered microsystem applications. One method of energy harvesting is using electromagnetic ...

  18. Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and

    E-Print Network [OSTI]

    Wang, Zhong L.

    -scale energy con- version, renewable and green energy, efficient energy transmission, energy stor- age, energy, and breathing. If efficiently harvested to its full potential, many of the modern energy requirements needed we present a hybrid energy scavenging device for potential in vivo applications. The hybrid device

  19. Thermal amplification of field-correlation harvesting

    E-Print Network [OSTI]

    Eric G. Brown

    2014-01-08

    We study the harvesting of quantum and classical correlations from a hot scalar field in a periodic cavity by a pair of spatially separated oscillator-detectors. Specifically, we utilize non-perturbative and exact (non-numerical) techniques to solve for the evolution of the detectors-field system and then we examine how the entanglement, Gaussian quantum discord, and mutual information obtained by the detectors change with the temperature of the field. While (as expected) the harvested entanglement rapidly decays to zero as temperature is increased, we find remarkably that both the mutual information and the discord can actually be increased by multiple orders of magnitude via increasing the temperature. We go on to explain this phenomenon by taking advantage of the translational invariance of the field and use this to make accurate predictions of the behavior of thermal amplification; by this we also introduce a new perspective on field-correlation harvesting that we feel is worthy of consideration in its own right. The thermal amplification of discord harvesting represents an exciting prospect for discord-based quantum computation, including its use in entanglement activation.

  20. Wireless Information Transfer with Opportunistic Energy Harvesting

    E-Print Network [OSTI]

    Liu, Liang; Chua, Kee-Chaing

    2012-01-01

    Energy harvesting is a promising solution to prolong the operation of energy-constrained wireless networks. In particular, scavenging energy from ambient radio signals, namely wireless energy harvesting (WEH), has recently drawn significant attention. In this paper, we consider a point-to-point wireless link over the flat-fading channel subject to the time-varying co-channel interference. It is assumed that the receiver has no fixed power supplies and thus needs to replenish energy via WEH from the unintended interference and/or the intended signal sent by the transmitter. We further assume a single-antenna receiver that can only decode information or harvest energy at any given time due to the practical circuit limitation. As a result, it is important to investigate when the receiver should switch between the two modes of information decoding (ID) and energy harvesting (EH), based on the instantaneous channel and interference conditions. In this paper, we derive the optimal mode switching rule at the receive...