Sample records for harvest solar project

  1. Sun Harvest Solar Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpenSumpter,Sun City SolarSolar

  2. Enabling Long-Lived Sensor Networks Through Solar Energy Harvesting

    E-Print Network [OSTI]

    Jason Hsu; Sadaf Zahedi; Jonathan Friedman; Aman Kansal; Vijay Raghunathan; Mani Srivastava

    2005-01-01T23:59:59.000Z

    Sensor Networks through Solar Energy Harvesting Jason Hsu,Heliomote A integrated solar energy harvesting and storageYellow bar represent solar energy received locally Solar

  3. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems

    E-Print Network [OSTI]

    Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

    2005-01-01T23:59:59.000Z

    sensor node using our solar energy harvesting module. VI. CDesign Considerations for Solar Energy Harvesting Wirelessfactors. For example, solar energy supply is highly time

  4. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems

    E-Print Network [OSTI]

    Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

    2005-01-01T23:59:59.000Z

    sensor node using our solar energy harvesting module. VI. Care not speci?c to solar energy harvesting, but representin the design of a solar energy harvesting module and their

  5. Solar cells incorporating light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC); Meyer, Gerald J. (Baltimore, MD)

    2002-01-01T23:59:59.000Z

    A solar cell incorporates a light harvesting array that comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2 ; and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  6. Solar cells incorporating light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S.; Meyer, Gerald J.

    2003-07-22T23:59:59.000Z

    A solar cell incorporates a light harvesting array that comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: ##EQU1## wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2 ; and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  7. Nanowire Solar Energy Harvesting - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvesting Los Alamos National Laboratory

  8. INTERNAL PROJECT INFORMATION NOTE 10/08 Title: CCF Harvesting Method Development: Harvester Head

    E-Print Network [OSTI]

    INTERNAL PROJECT INFORMATION NOTE 10/08 Title: CCF Harvesting Method Development: Harvester Head PROJECT INFORMATION NOTE 10/08 Ref 1200A/56/07 CCF Harvesting Method Development: Harvester Head Visibility SUMMARY The use of Continuous Cover Forestry (CCF) can lead to situations where a dense

  9. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01T23:59:59.000Z

    for harvesting solar energy by Anna Monro Zaniewski Amaterials for harvesting solar energy Copyright 2012 by Annafor harvesting solar energy by Anna Monro Zaniewski Doctor

  10. Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper)

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper) Pai H requiring battery replacement. This paper ex- amines technical issues with solar energy harvesting. First power point tracking, energy harvest- ing, solar panel, photovoltaic cell, supercapacitor, ultracapac

  11. Prison Solar Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Prison Solar Project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  12. Livingston Solar Canopy Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    ,000 high efficiency solar panels on canopy structures over two major surface parking areasLivingston Solar Canopy Project The Project: This project entails the installation of more than 40. In conjunction with the existing 1.4 megawatt solar energy facility on this campus, this project will generate

  13. Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes

    E-Print Network [OSTI]

    Carloni, Luca

    Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes Gerald harvesting and communications hardware, namely organic solar cells and ultra-wide-band impulse radio (UWB harvesting, organic solar cells, ultra-low-power com- munications, ultra-wideband impulse radio, energy

  14. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA...

    Office of Environmental Management (EM)

    Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan Guarantee to Mojave Solar, LLC for the Abengoa Mojave Solar...

  15. Solar Dish Project

    SciTech Connect (OSTI)

    Robert F. Boehm

    2004-06-06T23:59:59.000Z

    (Original wording, now somewhat outdated.) The Nevada Solar Dish Project is designed to deploy at least 1 MW of dish-based, field validation power generation systems in a mini-power plant near Las Vegas, Nevada, as a transitional precursor to the full commercialization of the technology. This will occur over a period of about three years, from 2001 through 2004. The statement of work defines activities that the University of Nevada Las Vegas (UNLV) will provide by establishing a test site for two dish/Stirling systems on the UNLV campus and providing operation, test and training, and education in support of the project.

  16. Quantum Coaxial Cables for Solar Energy Harvesting

    SciTech Connect (OSTI)

    Zhang, Y.; Wang, L.-W.; Mascarenhas, A.

    2007-01-01T23:59:59.000Z

    Type II core-shell nanowires based on III-V and II-VI semiconductors are designed to provide the highly desirable but not readily available feature-efficient charge separation-and concurrently address the different material challenges specific for a few key renewable energy applications: including hydrogen generation via photoelectrochemical water splitting, dye-sensitized solar cells, and conventional solar cells. They also open up new avenues for studying novel physics and material sciences in reduced dimensionality of very unusual quasi-one-dimensional systems. A first-principles density function theory within the local density approximation (LDA) is used for the electronic structure calculation and a valence-force-field method for the structural relaxation, and empirical corrections to the LDA errors are applied.

  17. BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)

    E-Print Network [OSTI]

    BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project (Beacon) Sponsor: Beacon Solar, LLC (Beacon Solar), a Delaware limited liability company and wholly owned and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County

  18. Novel Methods for Harvesting Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,83 Federal Register

  19. RidgenoseSolarInterconnectionProject

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridgenose Solar Interconnection Project The Western Area Power Administration (Western), an agency of the Department of Energy (DOE), is preparing an environmental assessment (EA)...

  20. Organic Solar Cells with Graded Exciton-dissociation Interfaces.................................................................................................................EN.1 Luminescent Solar Concentrators for Energy-harvesting in Displays ........

    E-Print Network [OSTI]

    Reif, Rafael

    Energy Organic Solar Cells with Graded Exciton-dissociation Interfaces.................................................................................................................EN.1 Luminescent Solar Concentrators for Energy-harvesting in Displays ...................................................................................EN.3 Nano-engineered Organic Solar-energy-harvesting System

  1. Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft for

    E-Print Network [OSTI]

    Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft- This paper presents an energy-harvesting system consisting of amorphous-silicon (a-Si) solar cells and thin of the energy-harvesting system. The solar module consists of solar cells in series operating at an output

  2. Broadband enhancement of light harvesting in luminescent solar concentrator

    E-Print Network [OSTI]

    Xiao, Yun-Feng; Xiao, Lixin; Sun, Fang-Wen; Gong, Qihuang

    2010-01-01T23:59:59.000Z

    Luminescent solar concentrator (LSC) can absorb large-area incident sunlight, then emit luminescence with high quantum efficiency, which finally be collected by a small photovoltaic (PV) system. The light-harvesting area of the PV system is much smaller than that of the LSC system, potentially improving the efficiency and reducing the cost of solar cells. Here, based on Fermi-golden rule, we present a theoretical description of the luminescent process in nanoscale LSCs where the conventional ray-optics model is no longer applicable. As an example calculated with this new model, we demonstrate that a slot waveguide consisting of a nanometer-sized low-index slot region sandwiched by two high-index regions provides a broadband enhancement of light harvesting by the luminescent centers in the slot region. This is because the slot waveguide can (1) greatly enhance the spontaneous emission due to the Purcell effect, (2) dramatically increase the effective absorption cross-section of luminescent centers, and (3) str...

  3. Energy transfer in nanowire solar cells with photon-harvesting shells C. H. Peters,a

    E-Print Network [OSTI]

    McGehee, Michael

    Energy transfer in nanowire solar cells with photon-harvesting shells C. H. Peters,a A. R. Guichard; published online 23 June 2009 The concept of a nanowire solar cell with photon-harvesting shells are bonded to the surface of the SiNWs forming a thin shell. They absorb the low-energy photons

  4. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K.; Cuppett, D.; Dyer, D.

    2012-01-30T23:59:59.000Z

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ?ť system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  5. Solar Radiation Prediction and Energy Allocation for Energy Harvesting Base Stations

    E-Print Network [OSTI]

    Solar Radiation Prediction and Energy Allocation for Energy Harvesting Base Stations Yanan Bao@tsinghua.edu.cn Abstract--In this paper, we study how to use the solar radiation model to predict energy arrivals solar radiation is reviewed and summarized. We present two solar energy models for cloudless days

  6. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    E-Print Network [OSTI]

    McGehee, Michael

    Increased light harvesting in dye-sensitized solar cells with energy relay dyes Brian E. Hardin1 factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible pathway to develop more efficient dye-sensitized solar cells. D ye-sensitized solar cells (DSCs) work

  7. EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project...

    Office of Environmental Management (EM)

    in Nye County, NV Documents Available for Download February 11, 2011 EIS-0454: Final Environmental Impact Statement Tonopah Solar Energy Crescent Dunes Solar Energy Project...

  8. Long Island Solar Farm Project Overview

    E-Print Network [OSTI]

    Ohta, Shigemi

    Long Island Solar Farm #12;Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt. Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power and construct arrays ~ 2 years of output (88,000 MWh equivalent) Long Island Solar Farm #12;Other Pollutants

  9. Metal-black scattering centers to enhance light harvesting by thin-film solar cells

    E-Print Network [OSTI]

    Peale, Robert E.

    Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

  10. Project Profile: Helios: Understanding Solar Evolution through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analytics Project Profile: Helios: Understanding Solar Evolution through Text Analytics Logo of SRI International. SRI International, under the Solar Energy Evolution and Diffusion...

  11. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou areInnovationPriority |GoingSolar - *

  12. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems

    E-Print Network [OSTI]

    Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

    2005-01-01T23:59:59.000Z

    is supplied from the solar panel and only the remainder iscompo- nents, such as solar panels, and energy storageSolar World 4-4.0-100 solar panel. components from either

  13. EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, NV July 1, 2010 DOI-BLM-NV-S010-2010-0149-EA: Bureau of Land Management's Final Environmental Assessment Fotowatio Nevada Solar, LLC's APEX Solar Power Project in Clark...

  14. Application for CALS-CCE 2013 Summer Internship Title of project: The Wild Harvest Table

    E-Print Network [OSTI]

    Keinan, Alon

    Application for CALS-CCE 2013 Summer Internship Title of project: The Wild Harvest Table Worksite 5-10 sentences): The Wild Harvest Table project was jointly developed by Human Ecology Nutrition-Lever grants (Principle Investigators: Paul Curtis and Keith Tidball) to further explore wild game and fish

  15. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Riverside County, CA December 10, 2010 EIS-0449: Notice of Adoption of the Final Environmental Impact Statement Blythe Solar Power Project December 10, 2010 EIS-0449:...

  16. Light Trapping, Absorption and Solar Energy Harvesting by Artificial Materials

    SciTech Connect (OSTI)

    John, Sajeev [University of Toronto

    2014-08-15T23:59:59.000Z

    We provide designs of thin-film solar cells utilizing optimized photonic-crystal light-trapping and numerical simulations of their solar-to-electrical power conversion efficiencies.

  17. MDU Solar Energy Project Case Study

    Broader source: Energy.gov [DOE]

    Presentation covers the MDU Solar Energy Project Case Study and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  18. Energy Harvesting Communication Networks: Optimization and Demonstration

    E-Print Network [OSTI]

    Gesbert, David

    ) and the UK (Imperial College London). Index Terms--energy harvesting; energy packet net- works; Markov models harvesting devices. EH capability can scavenge ambient energy, such as vibrations, thermal gradients or solar1 Energy Harvesting Communication Networks: Optimization and Demonstration (The E-CROPS Project

  19. RidgenoseSolarInterconnectionProject

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to a request from Longview Solar, LLC, to interconnect their proposed Cliffrose Solar Energy Plant, located south of Kingman, Mohave County, Arizona to Westerns...

  20. Singlet exciton fission : applications to solar energy harvesting

    E-Print Network [OSTI]

    Thompson, Nicholas John

    2014-01-01T23:59:59.000Z

    Singlet exciton fission transforms a single molecular excited state into two excited states of half the energy. When used in solar cells it can double the photocurrent from high energy photons increasing the maximum ...

  1. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC); Chinnasamy, Muthiah (Raleigh, NC); Fan, Dazhong (Raleigh, NC)

    2009-12-15T23:59:59.000Z

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  2. Infrared Solar Energy Harvesting using Nano-Rectennas

    E-Print Network [OSTI]

    Sayed, Islam E Hashem

    2015-01-01T23:59:59.000Z

    Rectennas formed from nanodipole antennas terminated by plasmonic metal-insulator-metal (MIM) travelling wave transmission line rectifiers are developed for ambient thermal energy harvesting at 30 THz. The transmission lines are formed from two strips coupled either vertically or laterally. A systematic design approach is presented, that shows how different components can be integrated with each other with maximum radiation receiving nantenna efficiency, maximum coupling efficiency between nantenna and rectifier, and maximum MIM diode rectifier efficiency. The tunneling current of the rectifier is calculated using the transfer matrix method (TMM) and the nonequilibrium Green's function (NEGF). The figures of merit of the rectifier are analyzed, and the effect of the metals and insulator choices on these merits is investigated. A detailed parametric study of the coupled strips plasmonic transmission lines is presented and thoroughly discussed. The overall efficiencies of the proposed travelling wave rectennas ...

  3. EA-1935: To’Hajiilee Solar Project

    Broader source: Energy.gov [DOE]

    DOE has determined that providing federal funding to conduct development activities including final engineering and design for a proposed 30 megawatt solar electricity generation facility, would not constitute a major federal action significantly affecting the environment, and therefore, DOE has adopted the EA, titled “Final Environmental Assessment for the To’Hajiilee Solar Project” (DOI SWCA project No. 16715) that was completed by the Department of the Interior Bureau of Indian Affairs (BIA) which analyzed the environmental impacts related to the construction, operation and maintenance of a 30-megawatt solar power plant. A Finding of No Significant Impact (FONSI) was issued on May 31, 2011 by the BIA for the solar project. The solar project would be located on tribal lands 2.5 miles northwest of the intersection of Interstate 40 and Rio Puerco Road – about 20 miles west of Albuquerque, New Mexico.

  4. Solar Resource and Meteorological Assessment Project (SOLRMAP)

    SciTech Connect (OSTI)

    Wilcox, S.

    2008-10-29T23:59:59.000Z

    The purpose of this collaborative project between NREL and industry is: (1) provide high quality solar measurements in support of deploying Concentrating Solar Thermal projects; and (2) provide NREL with research-quality data sets for refining solar models and developing solar forecasting capabilities. The benefits of this project are: (1) lends NREL credibility to data sets used for economic analyses and commercial justification; (2) helps minimize costly mistakes in estimating capacity and economic return on investment; (3) helps maximize the development of projects for which adequate solar resources exist; (4) provides data to NREL for research to improve/validate models and explore RA innovations; and (5) helps maintain collaborative channels between NREL and industry.

  5. EA-1839: Cogentrix Solar Project near Alamosa, CO | Department...

    Office of Environmental Management (EM)

    9: Cogentrix Solar Project near Alamosa, CO EA-1839: Cogentrix Solar Project near Alamosa, CO April 28, 2011 EA-1839: Final Environmental Assessment and Finding of No Significant...

  6. Vehicle Technologies Office Merit Review 2014: EV Project: Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Project: Solar-Assisted Charging Demo Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo Presentation given by Oak Ridge National Laboratory...

  7. EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo...

    Office of Environmental Management (EM)

    8: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA Documents Available for Download...

  8. LA Rooftop Solar Project Goes Online in San Fernando Valley ...

    Broader source: Energy.gov (indexed) [DOE]

    LA Rooftop Solar Project Goes Online in San Fernando Valley LA Rooftop Solar Project Goes Online in San Fernando Valley June 26, 2013 - 4:52pm Addthis Installing a rooftop solar...

  9. Task Scheduling in an energy harvesting WSN for Structural Health Monitoring Project Progress Report

    E-Print Network [OSTI]

    Simunic, Tajana

    of system is the management and conservation of energy while maintaining the minimum level of QoS requiredTask Scheduling in an energy harvesting WSN for Structural Health Monitoring Project Progress sensor networks in advanced Structural health monitoring (SHM) systems has proliferated in the last few

  10. Dye alignment in luminescent solar concentrators: II. Horizontal alignment for energy harvesting in linear polarizers

    SciTech Connect (OSTI)

    Mulder, Carlijn L.; Reusswig, Phil D.; Beyler, A. P.; Kim, Heekyung; Rotschild, Carmel; Baldo, Marc

    2010-01-01T23:59:59.000Z

    We describe Linearly Polarized Luminescent Solar Concentrators (LP-LSCs) to replace conventional, purely absorptive, linear polarizers in energy harvesting applications. As a proof of concept, we align 3-(2-Benzothiazolyl)-N,N-diethylumbelliferylamine (Coumarin 6) and 4-dicyanomethyl-6-dimethylaminostiryl-4H-pyran (DCM) dye molecules linearly in the plane of the substrate using a polymerizable liquid crystal host. We show that up to 38% of the photons polarized on the long axis of the dye molecules can be coupled to the edge of the device for an LP-LSC based on Coumarin 6 with an order parameter of 0.52.

  11. Port of Galveston Solar Energy Project

    SciTech Connect (OSTI)

    Falcioni, Diane [Project Director, Port of Galveston; Cuclis, Alex [Project Manager, Houston Advanced Research Center; Freundlich, Alex [Principal Investigator, University of Houston

    2014-03-31T23:59:59.000Z

    This study on the performance characteristics of existing solar technologies in a maritime environment was funded by an award given to The Port of Galveston (POG) from the U.S. Department of Energy (DOE). The study includes research performed by The Center for Advanced Materials at the University of Houston (UH). The UH researchers examined how solar cell efficiencies and life spans can be improved by examining the performance of a variety of antireflective (AR) coatings mounted on the top of one of the POG’s Cruise Terminals. Supplemental supporting research was performed at the UH laboratories. An educational Kiosk was constructed with a 55” display screen providing information about solar energy, the research work UH performed at POG and real time data from the solar panels located on the roof of the Cruise Terminal. The Houston Advanced Research Center (HARC) managed the project.

  12. World's Largest Solar Energy Project Heads to Mojave | Department...

    Broader source: Energy.gov (indexed) [DOE]

    World's Largest Solar Energy Project Heads to Mojave World's Largest Solar Energy Project Heads to Mojave April 16, 2010 - 4:47pm Addthis A California company will harness the...

  13. Winning the Future: Grand Ronde Solar Projects Reduce Pollution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs October 20, 2014 - 5:00pm...

  14. Big Data Projects on Solar Technology Evolution and Diffusion...

    Energy Savers [EERE]

    Projects on Solar Technology Evolution and Diffusion: Kickoff Meeting Graphic showing a web of people with energy bolts connecting them. Through the SEEDS program, seven projects...

  15. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2011-02-11T23:59:59.000Z

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  16. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  17. Modular industrial solar retrofit project (MISR)

    SciTech Connect (OSTI)

    Alvis, R.L.

    1980-01-01T23:59:59.000Z

    The intent of this paper is to describe a major Department of Energy (DOE) thrust to bring line-focus solar thermal technology to commercial readiness. This effort is referred to as the MISR Project. The project is based upon the premise that thermal energy is the basic solar thermal system output and that low-temperature, fossil fuel applications are technically the first that should be retrofitted. Experience has shown that modularity in system design and construction offers potential for reducing engineering design costs, reduces manufacturing costs, reduces installation time and expense, and improves system operational reliability. The modular design effort will be sponsored by Sandia National Laboratories with industry doing the final designs. The operational credibility of the systems will be established by allowing selected industrial thermal energy users to purchase MISR systems from suppliers and operate them for two years. Industries will be solicited by DOE/Albuquerque Operations Office to conduct these experiments on a cost sharing basis. The MISR system allowed in the experiments will have been previously qualified for the application. The project is divided into three development phases which represent three design and experiment cycles. The first cycle will use commercially available trough-type solar collectors and will incorporate 5 to 10 experiments of up to 5000 m/sup 2/ of collectors each. The project effort began in March 1980, and the first cycle is to be completed in 1985. Subsequent cycles will begin at 3-year intervals. The project is success oriented, and if the first cycle reaches commercial readiness, the project will be terminated. If not, a second, and possibly a third, development cycle will be conducted.

  18. Solar Projects Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro JumpProjects Services Jump to:

  19. Glass-Encapsulated Light Harvesters: More Efficient Dye-Sensitized Solar Cells by Deposition of Self-Aligned, Conformal, and Self-

    E-Print Network [OSTI]

    Glass-Encapsulated Light Harvesters: More Efficient Dye-Sensitized Solar Cells by Deposition Supporting Information ABSTRACT: A major loss mechanism in dye-sensitized solar cells (DSCs) is recombination% increase in relative efficiency versus control uncoated cells. Dye-sensitized solar cells (DSCs) have great

  20. Solar Total Energy Project final test report

    SciTech Connect (OSTI)

    Nelson, R.F.; Abney, L.O.; Towner, M.L. (Georgia Power Co., Shenandoah, GA (USA))

    1990-09-01T23:59:59.000Z

    The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

  1. EIS-0448: First Solar Desert Sunlight Project in Riverside County...

    Broader source: Energy.gov (indexed) [DOE]

    June 24, 2011 EIS-0448: Final Environmental Impact Statement Desert Sunlight Solar Farm Project, California June 24, 2011 EIS-0448: Notice of Adoption of an Environmental Impact...

  2. EIS-0455: Genesis Solar Energy Project in Riverside County, CA...

    Broader source: Energy.gov (indexed) [DOE]

    7, 2010 EIS-0455: Notice of Adoption of an Environmental Impact Statement Genesis Solar Energy Project, Riverside County, CA August 27, 2010 EIS-0455: Final Environmental Impact...

  3. EIS-0439: Rice Solar Energy Project in Riverside County, CA ...

    Office of Environmental Management (EM)

    Riverside County, CA October 22, 2010 EIS-0439: EPA Notice of Availability of the Draft Environmental Impact Statement Rice Solar Energy Project, Riverside County, California...

  4. EA-1989: Cliffrose Solar Energy Interconnection Project, Mohave...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area Power Administration (Western) is preparing an EA that will assess the potential environmental impacts of interconnecting the proposed Cliffrose Solar Energy Project in...

  5. Collective behavior of semiconductor nanoparticles for use in solar energy harvesting

    E-Print Network [OSTI]

    Shcherbatyuk, Georgiy

    2012-01-01T23:59:59.000Z

    and B. P. Wittmershaus, Solar Energy 83, 566 (2009). [33].in luminescence for solar energy utilization,” Opt. Mater.and W. Greubel, "Solar Energy Conversion with. Fluorescent

  6. EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona

    Broader source: Energy.gov [DOE]

    Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

  7. Brookhaven National Laboratory LIPA Solar RFP and Proposed BP Project

    E-Print Network [OSTI]

    Homes, Christopher C.

    a total of 50MW of power produced by solar photovoltaics..." · LIPA to purchase the energy output for upBrookhaven National Laboratory LIPA Solar RFP and Proposed BP Project Presentation to Community · Siting the Nation's largest photovoltaic solar array at a DOE site underscores our commitment

  8. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect (OSTI)

    Hess, J.R

    2005-01-31T23:59:59.000Z

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) An efficient combine-based threshing system for separating the internodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  9. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect (OSTI)

    N /A

    2004-09-30T23:59:59.000Z

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. They investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) an efficient combine-based threshing system for separating the intermodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  10. EIS-0448: Department of Energy Loan Guarantee to First Solar for the Proposed Desert Sunlight Solar Farm Project, California

    Broader source: Energy.gov [DOE]

    First Solar Desert Sunlight Solar Farm (DSSF) Project, proposes to develop a 550-megawatt photovoltaic solar project and proposes to facilitate the construction and operation of the Red Bluff Substation, California Desert Conservation Area (CDCA) Plan, Riverside County, California.

  11. SOLAR ENERGY HARVESTINGSOLAR ENERGY HARVESTING P. BASSET1, Y. LEPRINCE-WANG3, K. N. NGUYEN1, D. ABI-SAAB1, E. RICHALOT2, F. MARTY1, D.

    E-Print Network [OSTI]

    Baudoin, Genevičve

    SOLAR ENERGY HARVESTINGSOLAR ENERGY HARVESTING P. BASSET1, Y. LEPRINCE-WANG3, K. N. NGUYEN1, D. ABI & Results Study the energy harvesting of the micro/nanostructured materials under solar radiation Light solar cell adding n type nanoparticles. High p-n junction interface due to the nano 3D structure. Multi

  12. Solar Instructor Series A PROJECT BY

    E-Print Network [OSTI]

    Authori es Having Jurisdic on Inspectors, Code Officials Workshops under the Solar Instructor Series: 1 9. NEC ® 2011 Code Updates PV 10. Integra ng Solar into Exis ng Curricula 11. How to Land Your

  13. DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...

    Broader source: Energy.gov (indexed) [DOE]

    7 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces 27 Million to Reduce Costs of Solar Energy Projects, Streamline...

  14. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy Lab. Chart by Daniel Wood. View...

  15. RECIPIENT:Crystal Solar U.S. DEPARTMENT OF ENERGY EERE PROJECT...

    Broader source: Energy.gov (indexed) [DOE]

    Crystal Solar U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION Page I of3 STATE: CA PROJECT TITLE : Technology development for high efficiency solar...

  16. Collective behavior of semiconductor nanoparticles for use in solar energy harvesting

    E-Print Network [OSTI]

    Shcherbatyuk, Georgiy

    2012-01-01T23:59:59.000Z

    used it requires solar tracking and due to the limitationstracking mechanisms, further reducing operating costs for solartracking, robustness and cost of production. An alternate method of concentrating solar

  17. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect (OSTI)

    None,

    1981-09-01T23:59:59.000Z

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  18. Solar Schools Assessment and Implementation Project: Financing...

    Broader source: Energy.gov (indexed) [DOE]

    the annual solar resource data for different latitudes. 5 To maximize the annual energy production at a location of 40 north latitude, the optimal tilt varies from 30...

  19. Project Profile: Polyaromatic Naphthalene Derivatives as Solar...

    Energy Savers [EERE]

    an ARRA CSP Award, is addressing the need for heat transfer fluids (HTFs) for solar power generation that are stable to temperatures approaching 600C, have good thermal...

  20. Urban Options Solar Greenhouse Demonstration Project. Final report

    SciTech Connect (OSTI)

    Cipparone, L.

    1980-10-15T23:59:59.000Z

    The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

  1. Procuring and Implementing Solar Projects on Public Buildings: How to Avoid Common Pitfalls

    Broader source: Energy.gov [DOE]

    Procuring and Implementing Solar Projects on Public Buildings: How to Avoid Common Pitfalls Webinar.

  2. Solar Radiation Resource Assessment Project. Program overview of fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The mission of the Solar Radiation Resource Assessment Project is to provide essential information about the solar radiation resource to users and planners of solar technologies so that they can make informed and timely decisions concerning applications of those technologies. The project team accomplishes this by producing and disseminating relevant and reliable information about solar radiation. Topics include: Variability of solar radiation, measurements of solar radiation, spectral distribution of solar radiation, and assessment of the solar resource. FY 1993 accomplishments are detailed.

  3. Solar Panel and Induction Lighting Project

    SciTech Connect (OSTI)

    Gresek, Michael

    2014-01-21T23:59:59.000Z

    Installation of solar and energy saving lighting technologies at municipal facilities to: • Produce and conserve electricity for these facilities • Saving money and the environment • Lead by example • Educate the public on conservation and renewable technologies.

  4. Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2010-11-03T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  5. Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  6. NREL Solar Radiation Resource Assessment Project: Status and outlook

    SciTech Connect (OSTI)

    Renne, D.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.; Riordan, C.; Hammond, E.; Ismailidis, T.

    1993-06-01T23:59:59.000Z

    This annual report summaries the activities and accomplishments of the Solar Radiation Resource Assessment Project during fiscal year 1992 (1 October to 30 September 1992). Managed by the Analytic Studies Division of the National Renewable Energy Laboratory, this project is the major activity of the US Department of Energy's Resource Assessment Program.

  7. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect (OSTI)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01T23:59:59.000Z

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  8. Highly-Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting

    E-Print Network [OSTI]

    Wang, Hao; Mitchell, Arnan; Rosengarten, Gary; Phelan, Patrick; Wang, Liping

    2014-01-01T23:59:59.000Z

    In this work, a metamaterial selective solar absorber made of nanostructured titanium gratings deposited on an ultrathin MgF2 spacer and a tungsten ground film is proposed and experimentally demonstrated. Normal absorptance of the fabricated solar absorber is characterized to be higher than 90% in the UV, visible and, near infrared (IR) regime, while the mid-IR emittance is around 20%. The high broadband absorption in the solar spectrum is realized by the excitation of surface plasmon and magnetic polariton resonances, while the low mid-IR emittance is due to the highly reflective nature of the metallic components. Further directional and polarized reflectance measurements show wide-angle and polarization-insensitive high absorption within solar spectrum. Temperature-dependent spectroscopic characterization indicates that the optical properties barely change at elevated temperatures up to 350{\\deg}C. The solar-to-heat conversion efficiency with the fabricated metamaterial solar absorber is predicted to be 78%...

  9. SES Solar Three Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLand FocusSCSENDECO2 JumpSolar Three

  10. EIS-0439: Rice Solar Energy Project, Riverside County, California

    Broader source: Energy.gov [DOE]

    This environmental review was prepared by DOE’s Western Area Power Administration with the Department of the Interior’s Bureau of Land Management (BLM) as a cooperating agency. This EIS evaluates the environmental impacts of the Rice Solar Energy Project, a 150-megawatt solar concentrating electric powerplant proposed to be constructed on private land in the Sonoran Desert. DOE’s Western Area Power Administration actions under this proposal include building and operating a new substation to interconnect the solar project to Western’s transmission system. DOE may also use this EIS as part of its decision whether to issue a Federal loan guarantee to support the proposal. BLM’s actions under this proposal includes amending California Desert Conservation Area Plan to designate a new corridor for a 161-kV transmission line, which would facilitate the development of solar energy on private lands.

  11. NCTCOG Solar Ready II Project: Clean Air Through Energy Efficiency 

    E-Print Network [OSTI]

    Clark,L.

    2014-01-01T23:59:59.000Z

    for connecting solar power to the electric grid, and increasing access to financing, teams will clear a path for rapid expansion of solar energy and serve as models for other communities across the nation. 4 ESL-KT-14-11-12 CATEE 2014: Clean Air Through...Clean Air Through Energy Efficiency November 20, 2014 NCTCOG Solar Ready II Project Lori Clark Principal Air Quality Planner ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy Sun...

  12. Guide to Community Solar: Utility, Private, and Non-Profit Project Development (Fact Sheet)

    SciTech Connect (OSTI)

    Ruckman, K.

    2011-03-01T23:59:59.000Z

    This fact sheet provides an overview of the DOE Solar America Communities report Guide to Community Solar: Utility, Private, and Non-profit Project Development.

  13. Harvesting the Sun at the West Tennessee Solar Farm | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson YearHarvesting the Sun at the

  14. Simplifying Solar Project Financing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle|SecurityDepartmentShawn Wang AboutSimplifying Solar

  15. Solar Forecast Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,SmartEnergyEnergy Resource LibrarySolar

  16. Arkansas Students Get Their Hands Dirty in Solar Panel Project

    Broader source: Energy.gov [DOE]

    Wallie Shaw remembers where he got the idea to do a hands-on solar panel project for his Jobs for America’s Graduates (JAG) students, a school-to-work transition program focused on helping at-risk youth graduate from high school.

  17. 1D Modeling of Solar Cells ELEN E9501 Course Project

    E-Print Network [OSTI]

    Lavaei, Javad

    1D Modeling of Solar Cells ELEN E9501 Course Project Columbia University Department of Electrical.............................................................................................................8 4.3 Simulation Results of the Solar Cell Model......................................................................................................13 #12;2 ILLUSTRATIONS Figure 1. IV Characteristic of the solar cell

  18. Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi

    E-Print Network [OSTI]

    Johnson, Eric E.

    environment for El Salvador · Create partnerships with leading U.S. solar industry companies · SelectTitle: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi solar resource, studying different technology options, anticipating performance, and evaluating

  19. NREL Solar Radiation Resource Assessment Project: Status and outlook

    SciTech Connect (OSTI)

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01T23:59:59.000Z

    This report summarizes the activities and accomplishments of NREL's Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961--1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities have been measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93% of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952--1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU's), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL's Solar Radiation Research Laboratory. 17 refs.

  20. EA-1840: California Valley Solar Ranch Project in San Luis Obispo...

    Office of Environmental Management (EM)

    Valley Solar Ranch Project in San Luis Obispo County, CA August 3, 2011 EA-1840: Final Environmental Assessment California Valley Solar Ranch Project in San Luis Obispo and Kern...

  1. NREL: Concentrating Solar Power Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical andWhat IsThermal EnergyNewsProjects

  2. Procuring and Implementing Solar Projects on Public Buildings: How to Avoid Common Pitfalls (Text Version)

    Broader source: Energy.gov [DOE]

    Transcript of the webinar, "Procuring and Implementing Solar Projects on Public Buildings: How to Avoid Common Pitfalls."

  3. ENERGY-SPECIFIC SOLAR RADIATION DATA FROM MSG: CURRENT STATUS OF THE HELIOSAT-3 PROJECT

    E-Print Network [OSTI]

    Heinemann, Detlev

    ENERGY-SPECIFIC SOLAR RADIATION DATA FROM MSG: CURRENT STATUS OF THE HELIOSAT-3 PROJECT Marion Solar energy technologies such as photovoltaics, solar thermal power plants, passive solar heating and operating of solar energy systems and as basis data set for electricity load forecasting. Both long term

  4. NCTCOG Solar Ready II Project: Clean Air Through Energy Efficiency

    E-Print Network [OSTI]

    Clark,L.

    2014-01-01T23:59:59.000Z

    Clean Air Through Energy Efficiency November 20, 2014 NCTCOG Solar Ready II Project Lori Clark Principal Air Quality Planner ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy Sun...Shot Initiative Rooftop Solar Challenge 2 ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy (DOE) SunShot Initiative The U.S. Department of Energy SunShot Initiative is a collaborative national...

  5. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect (OSTI)

    Smith, Randall

    2014-07-03T23:59:59.000Z

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was renovated in 1998, but the existing roof had not been designed to carry a large load. Due to this fact, a complete roofing and structural analysis had to be performed to match the available roof loading to the existing and/or new solar PV technology, and BIPV was considered an excellent solution for this structure with the roof weight limitations. The solar BIPV system on the large roof area was estimated to provide about 25% of the total facility load with an average of 52,560 kWh per month. In order to accomplish the goals of the project, the following steps were performed: 1. SFPUC and consultants evaluated the structural capability of the facility roof, with recommendations for improvements necessary to accommodate the solar PV system and determine the suitable size of the system in kilowatts. The electrical room and switchgear were evaluated for any improvements necessary and to identify any constraints that might impede the installation of necessary inverters, transformers or meters. 2. Development of a design-build Request for Proposal (RFP) to identify the specifications for the solar PV system, and to include SFPUC technical specifications, equipment warranties and performance warranties. Due to potential labor issues in the local solar industry, SFPUC adjusted the terms of the RFP to more clearly define scope of work between electricians, roofers and laborers. 3. Design phase of project included electrical design drawings, calculations and other construction documents to support three submittals: 50% (preliminary design), 90% (detailed design) and 100% (Department of Building Inspection permit approved). 4. Installation of solar photovoltaic panels, completion of conduit and wiring work, connection of inverters, isolation switches, meters and Data Acquisition System by Contractor (Department of Public Works). 5. Commissioning of system, including all necessary tests to make the PV system fully functional and operational at its rated capacity of 100 kW (DC-STC). Following completion of these steps, the solar PV system was installed and fully integrated by la

  6. Harvesting the Sun at the West Tennessee Solar Farm | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning andDesign in EM Complex:SolarDeputy

  7. Agua Caliente Wind/Solar Project at Whitewater Ranch

    SciTech Connect (OSTI)

    Hooks, Todd; Stewart, Royce

    2014-12-16T23:59:59.000Z

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  8. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    SciTech Connect (OSTI)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01T23:59:59.000Z

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  9. Directory of Solar Energy Research Activities in the United States: First Edition, May 1980. [1220 projects

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    Information covering 1220, FY 1978 and FY 1979 solar energy research projects is included. In addition to the title and text of project summaries, the directory contains the following indexes: subject index, investigator index, performing organization index, and supporting organization index. This information was registered with the Smithsonian Science Information Exchange by Federal, State, and other supporting organizations. The project summaries are categorized in the following areas: biomass, ocean energy, wind energy,photovoltaics, photochemical energy conversion, photobiological energy conversion, solar heating and cooling, solar process heat, solar collectors and concentrators, solar thermal electric generation, and other solar energy conversion. (WHK)

  10. SEP Success Story: Harvesting the Sun at the West Tennessee Solar Farm |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergyDepartment ofNoneORDER NO. 3554Project |Department

  11. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    is the fraction of available solar power incident on theoutput per available solar power and characterizes theintegral of available solar power over the operational time

  12. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    Linear Fresnel Solar Plant……………………………………………………..20 Figure5 – Linear Fresnel Solar Plant parabolic concentrators (Bermejo, 2010, Solar absorption cooling plant in Seiville,

  13. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    High-temperature, Solar Collectors for Mass Production.by tracking type solar collectors and the power productionvi List of Symbols solar collector inlet aperture area (m

  14. Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts: Preprint

    SciTech Connect (OSTI)

    Kandt, A.

    2011-04-01T23:59:59.000Z

    The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity the DOE provides Technical Assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay area was selected for a 2009 DOE Solar American Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar PV projects in school districts across the country.

  15. Guide to Community Solar: Utility, Private, and Non-profit Project Development

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

  16. Project Profile: Low-Cost, Lightweight Solar Concentrators | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring Solar forProjectDepartment ofEnergy Cost,

  17. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    of a solar-thermal-assisted HVAC system, Energy andsolar thermal absorption cooling system with a cold store, Solar energy,solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design, Solar energy,

  18. EA-1797: Agua Caliente Solar Project in Yuma County, AZ | Department...

    Broader source: Energy.gov (indexed) [DOE]

    November 1, 2010 EA-1797: Final Environmental Assessment Loan Guarantee for the Agua Caliente Solar Project in Yuma County, Arizona November 24, 2010 EA-1797: Finding of No...

  19. EA-1826: AV Solar Ranch One Project in Los Angeles and Kern Counties...

    Broader source: Energy.gov (indexed) [DOE]

    August 1, 2011 EA-1826: Final Environmental Assessment AV Solar Ranch One Project, Los Angeles and Kern Counties, California August 2, 2011 EA-1826: Finding of No Significant...

  20. Community Renewable Energy Success Stories Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the webinar titled "Exploring How Municipal Utilities Fund Solar Energy Projects," originally presented on February 19, 2013.

  1. Solar-Powered Smart Wireless Camera Network for Outdoor Monitoring

    E-Print Network [OSTI]

    Abas, Kevin Mathys

    2015-01-01T23:59:59.000Z

    Solar-Powered Wireless Visual SensorProtocols . . . . . . . . . . . . . Solar HarvestingCard B MSP430 Firmware Source C Solar Harvesting Efficiency

  2. Solar Energy Collection and Management for Networked Infomechanical Systems (NIMS)

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    Networked Sensing Solar Energy Collection and Management forProposed Solution: Solar Energy Harvesting Why is Solarbeing recharged • Solar energy harvesting and storage allow

  3. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    Medium Temperature Non-Tracking Solar Thermal Concentrators.of a new type of non-tracking solar collector, the externalTemperature Non-Tracking Solar Thermal Concentrators” [23].

  4. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    Medium Temperature Non-Tracking Solar Thermal Concentrators.an outdoor LiBr/H2O solar thermal absorption cooling systemperformance of a solar-thermal-assisted HVAC system, Energy

  5. Project focus: Complete design of an interactive solar panel system to be situated on

    E-Print Network [OSTI]

    Project focus: · Complete design of an interactive solar panel system to be situated on top the effective area · Two types of solar cells: · 3 panel configurations: · Real-time power output data Si panels with 30.0o tilt c) 10 CdTe panels; 38.5o tilt · Solar insolation recorder, thermometer

  6. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    economic and environmental performance of a solar-thermal-Solar Cooling Current energy systems based on fossil fuels are largely responsible for the present humanitarian, environmental,

  7. Photovoltaics and Solar Energy: Science Projects in Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics and Solar Energy (Two Activities) Grades: 5-8 Topic: Solar Authors: Derek Nalley and Scott Pinegar Owner: National Renewable Energy Laboratory This educational...

  8. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    solar powered cooling system by producing a seamless output of cooling powersolar COP is the ratio of cooling output per available solar power

  9. Solar Schools Assessment and Implementation Project: Financing Options for Solar Installations on K-12 Schools

    SciTech Connect (OSTI)

    Coughlin, J.; Kandt, A.

    2011-10-01T23:59:59.000Z

    This report focuses on financial options developed specifically for renewable energy and energy efficiency projects in three California public school districts. Solar energy systems installed on public schools have a number of benefits that include utility bill savings, reductions in greenhouse gas emissions (GHGs) and other toxic air contaminants, job creation, demonstrating environmental leadership, and creating learning opportunities for students. In the 2011 economic environment, the ability to generate general-fund savings as a result of reducing utility bills has become a primary motivator for school districts trying to cut costs. To achieve meaningful savings, the size of the photovoltaic (PV) systems installed (both individually on any one school and collectively across a district) becomes much more important; larger systems are required to have a material impact on savings. Larger PV systems require a significant financial commitment and financing therefore becomes a critical element in the transaction. In simple terms, school districts can use two primary types of ownership models to obtain solar installations and cost savings across a school district. The PV installations can be financed and owned directly by the districts themselves. Alternatively, there are financing structures whereby another entity, such as a solar developer or its investors, actually own and operate the PV systems on behalf of the school district. This is commonly referred to as the 'third-party ownership model.' Both methods have advantages and disadvantages that should be weighed carefully.

  10. Radiation Belt Activity Indices and Solar Proton Event Alarm on the CRATERRE Project Web Site

    E-Print Network [OSTI]

    Radiation Belt Activity Indices and Solar Proton Event Alarm on the CRATERRE Project Web Site D--Two Radiation Belt Activity Indices, based on electron flux measurement >300 keV and >1.6 MeV, and one Solar updated. Index Terms- CRATERRE project, Radiation belts activity, Space environment I. INTRODUCTION

  11. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01T23:59:59.000Z

    output” means the power output of the solar cell with theof a solar cell is de?ned by [46]: max power output sunlightsolar cell for various values of an applied voltage. This is equivalent to measuring the power output

  12. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2010-09-27T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  13. Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  14. A Guide to Community Shared Solar: Utility, Private, and Non-Profit Project Development (Book)

    SciTech Connect (OSTI)

    Coughlin, J.; Grove, J.; Irvine, L.; Jacobs, J. F.; Johnson Phillips, S.; Sawyer, A.; Wiedman, J.

    2012-05-01T23:59:59.000Z

    This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

  15. artery harvest increase: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shepherd, John 9 Increased light harvesting in dye-sensitized solar cells with energy relay dyes Materials Science Websites Summary: factors. However, dye-sensitized solar...

  16. EA-1796: Loan Guarantee to Sempra Generation for Construction of the Mesquite Solar Energy Project, Mariacopa County, Arizona

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed Mesquite Solar Energy Project.

  17. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    solution in the near future. Solar cooling has long been afor future systems. 1.1 Motivation for Solar Cooling Currentcooling team are listed here with the hopes of providing valuable information for building a better system in the future.

  18. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    cooling system was designed, constructed, and tested by the UC Solar group at the UC Merced Castle Research

  19. Micro-scale piezoelectric vibration energy harvesting: from fixed-frequency to adaptable-frequency devices

    E-Print Network [OSTI]

    Miller, Lindsay Margaret

    2012-01-01T23:59:59.000Z

    energy, especially where solar or thermal energy may not beSolar photovoltaic devices harvest the light energy while solar thermal

  20. EA-1878: U.S. Department of Energy Loan Guarantee to Southwestern Solar Power, LLC for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a DOE loan guarantee to Solar Power, LLC, for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona. NOTE: EA has been cancelled.

  1. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    SciTech Connect (OSTI)

    Stoffel, T.; Andreas, A.

    2010-04-26T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  2. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2010-07-14T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  3. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2009-07-22T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  4. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2010-07-13T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  5. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2010-03-16T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  6. Solar Resource & Meteorological Assessment Project (SOLRMAP): Sun Spot Two; Swink, Colorado (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2010-11-10T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  7. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  8. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  9. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  10. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  11. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  12. Solar Resource & Meteorological Assessment Project (SOLRMAP): Sun Spot Two; Swink, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  13. Project Profile: Solar, Install, Mount, Production, Labor, Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    integration research that are in progress. SunShot Home About Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Competitive...

  14. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  15. Securities Law Issues Relating to Community Solar Projects

    Broader source: Energy.gov [DOE]

    The law firm Stoel Rives has analyzed the issues related to Securities Law and Community Solar both in the context of Washington state law and federal law.

  16. Project Profile: A Small-Particle Solar Receiver for High-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-temperature solar receiver in the multi-megawatt range that can drive a gas turbine to generate low-cost electricity. The goals of this project are to:...

  17. NASA/FPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center

    Broader source: Energy.gov [DOE]

    Presentation covers the NASA/FPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting in...

  18. Searching for extra-solar planets using the PIRATE telescope Third Year Project: May 2009

    E-Print Network [OSTI]

    Kolb, Ulrich

    Searching for extra-solar planets using the PIRATE telescope Third Year Project: May 2009 Samantha Rolfe Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH with PIRATE. Table of contents Acknowledgements 1 1. Introduction 1 1.1 The history of extra-solar planets 1 1

  19. Transmission Completion Time Minimization in an Energy Harvesting System

    E-Print Network [OSTI]

    Ulukus, Sennur

    nature. The nodes may harvest energy through solar cells, vibration absorption devices, water millsTransmission Completion Time Minimization in an Energy Harvesting System Jing Yang Sennur Ulukus-user energy harvesting wireless communication system. In this system, both the data packets and the harvested

  20. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  1. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  2. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  3. Light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC)

    2002-01-01T23:59:59.000Z

    A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  4. Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project

    E-Print Network [OSTI]

    Wang, Yuqing

    Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project Landmark purchasing agreement (PPA) with SolarCity to provide renewable solar energy to the Hawai`i Institute this one make solar both logical and affordable." Power purchase agreements for renewable energy

  5. Solar Project to Spark Students' Studies, School's Savings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2 SolarSolarEnergySolarSB 2 1Xof

  6. Solar Schools Assessment and Implementation Project: Financing Options on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2 SolarSolarEnergySolarSBSolar

  7. EECBG Success Story: Solar LED Light Pilot Project Illuminates...

    Energy Savers [EERE]

    courtesy of Lionel Green, Sand Mountain Reporter. A strip of new solar-powered light emitting-diode (LED) streetlights in Boaz, Alabama were installed with grant funds from the...

  8. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    SciTech Connect (OSTI)

    Elmer, John; Butherus, Michael [S.M. Stoller Corporation (United States)] [S.M. Stoller Corporation (United States); Barr, Deborah L. [U.S. Department of Energy Office of Legacy Management (United States)] [U.S. Department of Energy Office of Legacy Management (United States)

    2013-07-01T23:59:59.000Z

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result of the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether a solar PV project is feasible on the new sites. (authors)

  9. NREL Solar Radiation Resource Assessment Project: Status and outlook. Annual progress report, FY 1992

    SciTech Connect (OSTI)

    Renne, D.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.; Riordan, C.; Hammond, E.; Ismailidis, T.

    1993-06-01T23:59:59.000Z

    This annual report summaries the activities and accomplishments of the Solar Radiation Resource Assessment Project during fiscal year 1992 (1 October to 30 September 1992). Managed by the Analytic Studies Division of the National Renewable Energy Laboratory, this project is the major activity of the US Department of Energy`s Resource Assessment Program.

  10. Dr. Mae Jemison is the principal for the 100 Year Starship Project, which envisions human travel beyond our solar system

    E-Print Network [OSTI]

    Collins, Gary S.

    , such as projects using satellite technology for healthcare delivery in West Africa and solar dish Stirling engines beyond our solar system to another star within the next 100 years. Her leadership and vision provide

  11. InGaAsP/InP intrastep quantum wells for enhanced solar energy conversion

    E-Print Network [OSTI]

    Chen, Winnie Victoria

    2012-01-01T23:59:59.000Z

    tandem solar cells,” Solar Energy Materials & Solar Cells,Quantum Wells for Enhanced Solar Energy Conversion by Winnieimproving efficiency of solar energy harvesting devices and

  12. Funding Solar Projects at Federal Agencies: Mechanisms and Selection Criteria (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    Implementing solar energy projects at federal facilities is a process. The project planning phase of the process includes determining goals, building a team, determining site feasibility and selecting the appropriate project funding tool. This fact sheet gives practical guidance to assist decision-makers with understanding and selecting the funding tool that would best address their site goals. Because project funding tools are complex, federal agencies should seek project assistance before making final decisions. High capital requirements combined with limits on federal agency energy contracts create challenges for funding solar projects. Solar developers typically require long-term contracts (15-20) years to spread out the initial investment and to enable payments similar to conventional utility bill payments. In the private sector, 20-year contracts have been developed, vetted, and accepted, but the General Services Administration (GSA) contract authority (federal acquisition regulation [FAR] part 41) typically limits contract terms to 10 years. Payments on shorter-term contracts make solar economically unattractive compared with conventional generation. However, in several instances, the federal sector has utilized innovative funding tools that allow long-term contracts or has created a project package that is economically attractive within a shorter contract term.

  13. SolarPaces International CSP Project Information | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sroWiki PageSolarPaces International

  14. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01T23:59:59.000Z

    solar insolation and the solar panel characteristics. Theinsolation on the assigned solar panel for a clear sky wassolar insolation on the solar panel varies with the change

  15. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    for future systems. 1.1 Motivation for Solar Cooling Currentcooling team are listed here with the hopes of providing valuable information for building a better system in the future.cooling seasons, we have faced a number of obstacles and identified certain system design aspects that can be improved for future

  16. Maximizing photosynthetic productivity and solar conversion efficiency in microalgae by minimizing the light-harvesting chlorophyll antenna size of the photosystems

    SciTech Connect (OSTI)

    Melis, A.; Neidhardt, J.; Benemann, J.R. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology

    1998-08-01T23:59:59.000Z

    The solar conversion efficiency and productivity of photosynthesis in light-acclimated Dunaliella salina (green algae) were analyzed. Cells were grown under continuous low-light (LL; 100 {micro}mol photons/m{sup 2} s) or high-light (HL; 2,000 {micro}mol photons/m{sup 2} s) conditions. HL-grown cells exhibited signs of chronic photoinhibition, i.e., a lower pigment content, a highly truncated chlorophyll (Chl) antenna size for the photosystems, and accumulation of photodamaged photosystem-II (PSII) reaction centers in the chloroplast thylakoids. In spite of these deficiencies, high-light-grown cells showed photosynthetic productivity (300 mmol O{sub 2}/(mol Chl) s) that was {approximately} 3 times greater than that of the normally pigmented LL-grown cells ({approximately} 100 mmol O{sub 2}/(mol Chl) s). Recovery from photoinhibition in the HL-grown cells, induced in the absence of a light-harvesting Chl antenna size enlargement, increased photosynthetic productivity further to {approximately} 650 mmol O{sub 2}/(mol Chl) s. It is shown that, under moderate to high light conditions, D. salina with a highly truncated Chl antenna size will display superior photosynthetic productivity, solar conversion efficiency and H{sub 2} production when compared to the normally pigmented control cells. Estimates of H{sub 2} production in mass culture suggest an average of 200 L H{sub 2}/m{sup 2} d for the cells with the truncated Chl antenna, and less than 50 L H{sub 2}/m{sup 2} d for the normally pigmented cells.

  17. DOE passive solar commercial buildings program: project summaries

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The 23 projects participating in this program comprise a wide range of building types including offices, retail establishments, educational facilities, public service facilities, community and visitor centers, and private specialized-use facilities, located throughout the United States. Summary data and drawings are presented for each project. (MHR)

  18. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    directly from the sun because harvesting solar energy using photovoltaic technologiesEnergy Research and Development Division FINAL PROJECT REPORT REPORT ON ROUTE TO SCALEUP OF POLYMER Energy Commission Prepared by: California Solar Energy Collaborative(CSEC) University of California Davis

  19. EIS-0440: Quartzsite Solar Energy Project, La Paz County, AZ

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of interconnecting a proposed 100-megawatt concentrating solar power plant to Western’s Bouse-Kofa 161-kilovolt transmission line. The proposal includes amending the Bureau of Land Management Resource Management Plan. Cooperating agencies in the preparation of this EIS are Bureau of Land Management (Yuma Field Office ), U.S. Army Corps of Engineers, U.S. Army Garrison (Yuma Proving Grounds), Arizona Game and Fish Department, and the Arizona Department of Environmental Quality.

  20. Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project

    Broader source: Energy.gov [DOE]

    The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP solar energy system that takes advantage of an existing electrical generator for its power block and transmission interconnection.

  1. Department of Energy Offers Support for Arizona Solar Project | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4 VolumeAgua Caliente Solar Projecttheof

  2. Project Profile: Novel Thermal Storage Technologies for Concentrating Solar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy TEES logoSolar Power | Department

  3. Project Profile: Polyaromatic Naphthalene Derivatives as Solar Heat

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy TEES logoSolar Power |Transfer

  4. Project Profile: Scattering Solar Thermal Concentrators | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy TEES logoSolar Power

  5. Project Profile: Solar Power Tower Improvements with the Potential to

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy TEES logoSolar PowerBostonModule

  6. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01T23:59:59.000Z

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  7. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    SciTech Connect (OSTI)

    Mathur, A K

    1983-09-01T23:59:59.000Z

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  8. Scientists produce transparent, light-harvesting material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light-harvesting material The material could be used in development of transparent solar panels. November 3, 2010 Los Alamos National Laboratory sits on top of a once-remote...

  9. EA-1876: Pennsylvania State Energy Program’s Conergy Navy Yard Solar Project, Philadelphia, Pennsylvania

    Broader source: Energy.gov [DOE]

    Conergy Projects, Inc. (Conergy) proposes to construct and operate a 1.251 megawatt (MW) solar photovoltaic (PV) facility at the former Navy Yard site in south Philadelphia in Pennsylvania’s Philadelphia County to provide up to 1,596 MW hours of electricity per year, feeding directly into the distribution grid.

  10. Community Shared Solar: Utility,Private,andNonpro tProjectDevelopment

    E-Print Network [OSTI]

    Laboratory by Northwest Sustainable Energy for Economic Development, Keyes and Fox, Stoel Rives, Clean Energy Collective; Marc Romito, Tucson Electric Power; Ellen Lamiman, Energy Solutions GRAPHICA Guide to Community Shared Solar: Utility,Private,andNonpro tProjectDevelopment #12

  11. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie M.; Macknick, Jordan [National Renewable Energy Laboratory Golden, CO] [National Renewable Energy Laboratory Golden, CO

    2013-07-01T23:59:59.000Z

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  12. NREL Solar Radiation Resource Assessment Project: Status and outlook. FY 1991 annual progress report

    SciTech Connect (OSTI)

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01T23:59:59.000Z

    This report summarizes the activities and accomplishments of NREL`s Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961--1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities have been measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93% of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952--1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU`s), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL`s Solar Radiation Research Laboratory. 17 refs.

  13. Large resource development projects as markets for passive solar technologies. Final report

    SciTech Connect (OSTI)

    Roze-Benson, R V

    1980-12-01T23:59:59.000Z

    A basic premise of this study is that large resource development projects provide a major market opportunity for passive solar manufactured buildings. The primary objectives of the work are to document selected resource development projects and identify their potential housing needs and development schedules, to contact resource industry representatives and assess some of the processes and motivations behind their involvement in housing decisions, and to provide passive solar manufactured buildings producers with results of these steps as early initial market intelligence. The intent is to identify not only the industries, location of their planned projects, and their likely worker housing needs, but also the individuals involved in making housing-related decisions. The 56 identified projects are located within 18 states and cover 11 types of resources. The report documents individual projects, provides protections of total worker-related housing needs, and presents overviews of resource development company involvement in the new construction market. In addition, the report profiles three organizations that expressed a strong interest in implementing the use of low-cost passive solar manufactured buildings in resource-development-related activities.

  14. The Green Fuel Project: The Solar / Biodiesel Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentTheEnergy TheClean The FutureProjectsGreen

  15. Amargosa Farm Road Solar Energy Project Solar Power Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAgua Caliente SolarAlteno AG

  16. Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells

    E-Print Network [OSTI]

    Dang, Xiangnan

    In photovoltaic devices, light harvesting (LH) and carrier collection have opposite relations with the thickness of the photoactive layer, which imposes a fundamental compromise for the power conversion efficiency (PCE). ...

  17. Prediction and Management in Energy Harvested Wireless Sensor Nodes

    E-Print Network [OSTI]

    Simunic, Tajana

    : tajana@ucsd.edu Abstract--Solar panels are frequently used in wireless sensor nodes because they can with rechargeable energy storage (e.g. batteries and super capacitors). Many different types of energy harvesting as energy storage units and a solar panel for energy harvesting. Shimmer evaluates the health of a large

  18. Harvest Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUKHydrogenGuascorHamidjojo

  19. Rainwater Harvesting

    E-Print Network [OSTI]

    Crawford, Amanda

    2005-01-01T23:59:59.000Z

    and used on-site. Distribution systems channel the captured rainwater to holding areas. The roof of a building or home is one common- ly used catchment. The bigger the roof, the larger the volume of water collected. Gravity then naturally directs... rainwater harvesting system, Texans can easily get through the dry periods of the year without the need for additional water. Each year, irrigation accounts for 30 percent to 50 percent of Texas urban water use, averaging 20 gallons of water per square...

  20. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    SciTech Connect (OSTI)

    None

    1983-11-15T23:59:59.000Z

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  1. Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2012-11-03T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  2. Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  3. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01T23:59:59.000Z

    fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

  4. Information Capacity of Energy Harvesting Sensor Nodes

    E-Print Network [OSTI]

    Sharma, Vinod

    energy. Harvesting solar energy through photo- voltaic effect seems to have emerged as a technology device may be such that the energy cannot be generated at all times (e.g., a solar cell). Furthermore powers the sensor node and when sufficient energy This work is partially supported by a grant from ANRC

  5. Rigollier C., Wald L., 1999. The HelioClim Project: from satellite images to solar radiation maps. In Proceedings of the ISES Solar World Congress 1999, Jerusalem, Israel, July 4-9, 1999, volume I, pp 427-431.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Rigollier C., Wald L., 1999. The HelioClim Project: from satellite images to solar radiation maps-431. THE HELIOCLIM PROJECT: FROM SATELLITE IMAGES TO SOLAR RADIATION MAPS C. Rigollier, L. Wald Ecole des Mines de such a climatological database of solar radiation, images of the visible channel of the series of Meteosat

  6. Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions

    SciTech Connect (OSTI)

    Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

    2013-04-01T23:59:59.000Z

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

  7. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  8. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  9. Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

  10. Implementing Solar PV Projects on Historic Buildings and in Historic Districts

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Walker, A.; Buddenborg, J; Lindberg, J.

    2011-09-01T23:59:59.000Z

    Many municipalities, particularly in older communities of the United States, have a large amount of historic buildings and districts. In addition to preserving these historic assets, many municipalities have goals or legislative requirements to procure a certain amount of energy from renewable sources and to become more efficient in their energy use; often, these requirements do not exempt historic buildings. This paper details findings from a workshop held in Denver, Colorado, in June 2010 that brought together stakeholders from both the solar and historic preservation industries. Based on these findings, this paper identifies challenges and recommends solutions for developing solar photovoltaic (PV) projects on historic buildings and in historic districts in such a way as to not affect the characteristics that make a building eligible for historic status.

  11. Ultrahigh Efficiency Multiband Solar Cells Final Report for Director's Innovation Initiative Project DII-2005-1221

    E-Print Network [OSTI]

    Ager III, Joel W.; Walukiewicz, W.; Yu, Kin Man

    2006-01-01T23:59:59.000Z

    of Multijunction Solar Cell Performance in RadiationIgari, and W. Warta, “Solar Cell Efficiency Tables (Versionof Multijunction Solar Cell Performance in Radiation

  12. Rainwater Harvesting Program Evaluation

    E-Print Network [OSTI]

    and collect rainwater and divert to landscape areas that need extra water Install a rainwater harvesting system Install a rainwater harvesting system to water landscape Install a rainwater harvesting systemRainwater Harvesting Program Evaluation Your views on the quality and effectiveness of Extension

  13. FEDSOL: economic optimization guide for solar federal buildings projects. Model-simulation

    SciTech Connect (OSTI)

    Powell, J.W.; Rodgers, R.C. Jr.; Barnes, K.A.

    1981-01-01T23:59:59.000Z

    The FEDSOL program determines the economically optimal size of a solar energy system for a user-specified building, location, system type, and set of economic conditions; it conducts numerous breakeven and sensitivity analyses; and it calculates measures of economic performance as required under the Federal Rules. The economic model in the program is linked with the SLR (Solar Load Ratio) design method developed at Los Alamos National Laboratory to predict the performance of active systems. The economics portion of the program can, however, be used apart from the SLR method, with performance data provided by the user. An environmental data file for 243 U.S. cities is included in the program. Highly user oriented, the FEDSOL program is intended as a design and sizing tool for use by architects, engineers, and facilities managers in developing plans for Federal solar energy projects...Software Description: The program is written in the BASIC programming language for implementation on a CYBER 170/720 computer using the NOS Level 531 operating system. 47K bytes of core storage are required to operate the model.

  14. On Energy Harvesting Module for Scalable Cognitive Autonomous Nondestructive Sensing Network (SCANSn

    E-Print Network [OSTI]

    Ha, Dong S.

    of the solar panel, the TEG continues to supply power to the battery charger. Since the output voltages for the TEG due to substantially lower power compared with the solar panel. The system design and measured that the SCANSn system can be powered by the energy harvested from solar and thermal. Keywords: energy harvesting

  15. Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.

    SciTech Connect (OSTI)

    Prezhdo, Oleg V.

    2012-03-22T23:59:59.000Z

    Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, we clarified the controversies and provided a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. We also summarized our recent findings about the photoinduced electron dynamics at the chromophore-semiconductor interfaces from a time-domain ab initio perspective. The interface provides the foundation for a new, promising type of solar cell and presents a fundamentally important case study for several fields, including photo-, electro- and analytical chemistries, molecular electronics, and photography. Further, the interface offers a classic example of an interaction between an organic molecular species and an inorganic bulk material. Scientists employ different concepts and terminologies to describe molecular and solid states of matter, and these differences make it difficult to describe the interface with a single model. At the basic atomistic level of description, however, this challenge can be largely overcome. Recent advances in non-adiabatic molecular dynamics and time-domain density functional theory have created a unique opportunity for simulating the ultrafast, photoinduced processes on a computer very similar to the way that they occur in nature. These state-of-the-art theoretical tools offered a comprehensive picture of a variety of electron transfer processes that occur at the interface, including electron injection from the chromophore to the semiconductor, electron relaxation and delocalization inside the semiconductor, back-transfer of the electron to the chromophore and to the electrolyte, and regeneration of the neutral chromophore by the electrolyte. The ab initio time-domain modeling is particularly valuable for understanding these dynamic features of the ultrafast electron transfer processes, which cannot be represented by a simple rate description. We demonstrated using symmetry adapted cluster theory with configuration interaction (SAC-CI) that charging of small PbSe nanocrystals (NCs) greatly modifies their electronic states and optical excitations. Conduction and valence band transitions that are not available in neutral NCs dominate

  16. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    harvesting. With solar photovoltaic efficiencies approachingthat the photovoltaic solar cell efficiency plays a dominantEfficiency of Solar Powered Hydrogen Generation using Photovoltaic-

  17. Grafting Energy-Harvesting Leaves onto the Sensornet Tree

    E-Print Network [OSTI]

    Dutta, Prabal

    technologies ­ solar cells, simple capacitors, switching regulators, field-effect transistors, and lowGrafting Energy-Harvesting Leaves onto the Sensornet Tree Lohit Yerva , Bradford Campbell , Apoorva the problem of augmenting battery-powered sen- sornet trees with energy-harvesting leaf nodes. Our results

  18. kjkjkjkjkjkj kj Document Path: T:\\Projects\\CEC\\TLPP_Maps\\Statewide PP\\ARCGIS\\State OpPP_A_solar.mxdDate: 8/28/2012

    E-Print Network [OSTI]

    Rose at (916) 654-3902. California Solar Power Plants (Power Plants shown are Operational Only .1 mw and above) kj = Solar Power Plant #12;:\\Projects\\CEC\\TLPP_Maps\\Statewide PP\\ARCGIS\\State OpPP_A_solar.mxdDate: 8/28/2012 For further information or suggestions concerning

  19. WEB HARVESTING Wolfgang Gatterbauer

    E-Print Network [OSTI]

    Gatterbauer, Wolfgang

    WEB HARVESTING Wolfgang Gatterbauer Computer Science and Engineering University of Washington, USA SYNONYMS web data extraction, web information extraction, web mining DEFINITION Web harvesting describes the process of gathering and integrating data from var- ious heterogeneous web sources. Necessary input

  20. Harvest Aids in Sorghum

    E-Print Network [OSTI]

    Stichler, Charles; Livingston, Stephen

    2003-03-11T23:59:59.000Z

    Growers can obtain higher prices and increased profits for their grain sorghum by applying harvest aids, which are chemicals that bring the grain to a more uniform percentage of moisture at harvest. This publication explains what causes uneven...

  1. Rainwater Harvesting: Landscape Methods

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

    2008-05-30T23:59:59.000Z

    With the state's growing population and limited supply of groundwater and surface water, Texans must use water wisely. Rainwater harvesting is an approach that anyone can use to capture rainfall. This publication explains how rainwater harvesting...

  2. Rainwater Harvesting: Livestock

    E-Print Network [OSTI]

    Kniffen, Billy

    2007-05-24T23:59:59.000Z

    . For More Information Texas Cooperative Extension Bookstore http://tcebookstore.org Reference Guide for Texas Ranchers, B-6101 Rainwater Harvesting, B-6153 Harvesting Rainwater for Wildlife, B-6182 TCE Rainwater Website with on-line calculator http...

  3. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 5. Science Applications, Incorporated system requirements definition

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report sets forth the system requirements for a Solar Controlled-Environment Agriculture System (SCEAS) Project. In the report a conceptual baseline system description for an engineering test facility is given. This baseline system employs a fluid roof/roof filter in combination with a large storage tank and a ground water heat exchanger in order to provide cooling and heating as needed. Desalination is accomplished by pretreatment followed by reverse osmosis. Energy is provided by means of photovoltaics and wind machines in conjunction with storage batteries. Site and climatic data needed in the design process are given. System performance specifications and integrated system design criteria are set forth. Detailed subsystem design criteria are presented and appropriate references documented.

  4. Post-Harvest Marketing Alternatives

    E-Print Network [OSTI]

    McCorkle, Dean; Welch, Mark

    2009-02-04T23:59:59.000Z

    The marketing time frame for crops can be divided into three parts--pre-harvest, harvest and post-harvest. This publication focuses on the more common post-harvest marketing strategies using forward contracts, storage, futures contracts, options...

  5. Utility-Scale Solar 2013: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Broader source: Energy.gov [DOE]

    Other than the SEGS I-IX parabolic trough projects built in the 1980s, virtually no large-scale or "utility-scale" solar projects existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in 2013 and is expected to continue for at least the next few years.

  6. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    SciTech Connect (OSTI)

    Mendelsohn, M.; Kreycik, C.

    2012-04-01T23:59:59.000Z

    Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

  7. A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

  8. Integrated All-silicon Thin-film Power Electronics on Flexible Sheets For Ubiquitous Wireless Charging Stations based on Solar-energy Harvesting

    E-Print Network [OSTI]

    . The blocks overcome these challenges and generate AC power using a power inverter and control circuits, all the power inverter circuit. To generate an AC output current, the two solar modules (S1/2) are used maximizes the current, and all of the S1/2 current is delivered to the load, yielding high power-inverter

  9. Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory's Solar Resource and Meteorological Assessment Project

    SciTech Connect (OSTI)

    Wilcox, S. M.; McCormack, P.

    2011-01-01T23:59:59.000Z

    Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station down-time and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (1) includes guidelines for operating a solar measure-ment station. This paper describes a suite of automated and semi-automated routines based on the best practices hand-book as developed for the National Renewable Energy La-boratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require imme-diate attention. Although the handbook is targeted for con-centrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

  10. EIS-0449: Department of Energy Loan Guarantee to Solar Millennium for the Proposed Blythe Solar Power Project, California

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement addresses the possible United States Bureau of Land Management approval of an amendment to the California Desert Conservation Area Plan (CDCA Plan) to allow for solar energy and of a right?of?way grant to lease land managed by the BLM for construction, operation and decommissioning of a solar electricity generation facility. The Agency Preferred Alternative covers approximately 7,025 acres (ac), managed by the BLM, and would generate 1000 megawatts (MW) of electricity annually.

  11. 1 Project Summary The Mt. Wilson Solar Photographic Archive DIgitization Project (Mt. Wilson SPADIP) will make available

    E-Print Network [OSTI]

    Ulrich, Roger K.

    at UCLA and through other virtual solar observatory data archives as they are implemented. Raw images scientific output will come from the utilization of the data by the general scientific com- munity. Many in order to reconstruct an improved history of the solar output of energy. The analyses to be carried out

  12. Cotton Harvest-Aid Chemicals.

    E-Print Network [OSTI]

    Metzer, Robert B.; Supak, James

    1987-01-01T23:59:59.000Z

    of Application Managing Harvest-Aid Program Secondary Growth Insect Control Care of Equipment Safety with Chemicals Guide for Using Cotton Harvest Aids Defoliants Desiccants Mixtures Plant Regulators-Conditioners 3 3 4 4 4 4 5 5 6 7 7 COTTON... HARVEST-AID CHEMICALS Robert B. Metzer and James Supak* As the name implies, harvest-aid chemicals pre pare the cotton crop for harvest by reducing foliage and plant moisture that interfere with harvesting operations. Harvest-aid chemicals...

  13. City of Santa Monica- Building Permit Fee Waiver for Solar Projects

    Broader source: Energy.gov [DOE]

    In early 2002, the City of Santa Monica began waiving building permit fees for solar energy systems. In December 2008, after months of working with industry trainers, solar contractors and staff...

  14. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    SciTech Connect (OSTI)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30T23:59:59.000Z

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  15. Interpreting Deer Harvest Records.

    E-Print Network [OSTI]

    Guynn, Dwight E.

    1984-01-01T23:59:59.000Z

    I Texas A&M versity System Agricultural Extension Service Zerle L. Carpenter. Director College Station B-1486 People Helping People Interpreting Deer Harvest Records LIB ARY Dwight f. Guynn* JUN 11 1985 Deer harvest records... and adequacy of the har vest . The minimum data to collect from deer harvests are: ages, weights, body conditions and measurements of antler size. The data should be grouped according to age categories and ana lyzed separately for bucks and does . This pub...

  16. Mechanical Harvesting of Corn.

    E-Print Network [OSTI]

    Sorenson, J. W. (Jerome Wallace); Smith, H. P. (Harris Pearson)

    1948-01-01T23:59:59.000Z

    - - TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS, Director ' College Station, Texas BULLETIN 706 OCTOBER 1948 Mechanical Harvesting of Corn H. P. SMITH and J. W. SORENSON, JR. Department of Agricultural Engineering LlBRARY Atricaltr... of corn, from which they harvest about 77 million bushels valued at about 584 million. Most of the corn produced in Texas is harvested by hand. There were approximately 800 corn-picking machines of all types used in Texas in 1947. Texas farmers grow...

  17. Connectable solar air collectors Solar Energy Centre Denmark

    E-Print Network [OSTI]

    Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Sřren Řstergaard Jensen Miroslav Bosanac Solar Energy Centre within the project "Connectable solar air collector/PVT collector" (Sammenkoblelig luftsolfanger

  18. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  19. Rainwater Harvesting in Texas

    E-Print Network [OSTI]

    Kniffen, Billy

    2008-07-14T23:59:59.000Z

    As the population of Texas grows, so does the state's need for water. Rainwater harvesting is one way to keep up with the demand. Rainwater Harvesting in Texas gives residents information on how to collect rainwater for their own uses. 1 photo, 1...

  20. RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL

    E-Print Network [OSTI]

    Schutz, Stephen Richard

    2011-01-01T23:59:59.000Z

    solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating

  1. February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar was held February 19, 2013, and provided information on Concord Light, the municipal electric utility serving Concord, Massachusetts, and their solar photovoltaic (PV) rebate program....

  2. EA-1840: Department of Energy Loan Guarantee for the SunPower, Systems California Valley Solar Ranch Project in San Luis Obispo County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with the California Valley Solar Ranch (CVSR) project, a...

  3. Utah Solar Outlook March 2010

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  4. Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory?s Solar Resource and Meteorological Assessment Project: Preprint

    SciTech Connect (OSTI)

    Wilcox, S. M.; McCormack, P.

    2011-04-01T23:59:59.000Z

    Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station downtime and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data includes guidelines for operating a solar measurement station. This paper describes a suite of automated and semi-automated routines based on the best practices handbook as developed for the National Renewable Energy Laboratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require immediate attention. Although the handbook is targeted for concentrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

  5. High Efficiency Solar Power via Separated Photo and Voltaic Pathways

    SciTech Connect (OSTI)

    Michael J. Naughton

    2009-02-17T23:59:59.000Z

    This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10˘/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

  6. EIS-0455: Plan Amendment/Final Environmental Impact Statement for the Genesis Solar Energy Project, California

    Broader source: Energy.gov [DOE]

    The BLM’s purpose and need for the GSEP is to respond to Genesis Solar, LLC’s application under Title V of FLPMA (43 U.S.C. 1761) for a ROW grant to construct, operate, maintain and decommission a solar thermal facility on public lands in compliance with FLPMA, BLM ROW regulations, and other applicable Federal laws. The BLM will decide whether to approve, approve with modification, or deny issuance of a ROW grant to Genesis Solar, LLC for the proposed GSEP.

  7. Red Harvester Ants

    E-Print Network [OSTI]

    Drees, Bastiaan M.

    2006-04-24T23:59:59.000Z

    Red harvester ants are one of the more noticeable and larger ants in open areas in Texas. However, their populations are declining and this has affected an animal that preys upon the ants--the threatened Texas horned lizard....

  8. Lighting and Daylight Harvesting

    E-Print Network [OSTI]

    Bos, J.

    2011-01-01T23:59:59.000Z

    exposing us to the latest products and technologies. Daylight Harvesting A system of controlling the direction and the quantity of light both natural and artificial within a given space. This implies: Control of fenestration in terms of size..., transmission and direction. Control of reflected light within a space. Control of electric light in terms of delivery and amount Daylight harvesting systems are typically designed to maintain a minimum recommended light level. This light level...

  9. Modeling the solar thermal receiver for the CSPonD Project

    E-Print Network [OSTI]

    Rees, Jennifer A. (Jennifer Anne)

    2011-01-01T23:59:59.000Z

    The objective was to create an accurate steady state thermal model of a molten salt receiver prototype with a horizontal divider plate in the molten salt for Concentrated Solar Power on Demand (CSPonD). The purpose of the ...

  10. Solar radiation resource assessment

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  11. Digital Book Showcases Washington Wind Project

    Broader source: Energy.gov [DOE]

    "The New American Farm" chronicles the stages of the Windy Flats/Windy Point project, from prospecting to harvest.

  12. Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware. Final report

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This document is the Final Report of the Solar Energy System located at the Wilmington, Swim School, New Castle, Delaware. This active solar system is composed of 2,700 square feet of Revere liquid flat plate collectors piped to a 2,800 gallon concrete storage tank located below ground near the building. A micro-computer based control system selects the optimal applications of the stored energy among space, domestic water and pool alternatives. The controlled logic is planned for serving the heat loads in the following order: space heat-new addition, domestic water-entire facility, and pool heating-entire facility. A modified trombe wall passive operation the active system will bypass the areas being served passively. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution.

  13. FEDSOL: program user's manual and economic optimization guide for solar federal building projects. Final report

    SciTech Connect (OSTI)

    Powell, J.W.; Rodgers, R.C., Jr.

    1981-08-01T23:59:59.000Z

    A user's manual for the FEDSOL computer program is provided. The FEDSOL program determines the economically optimal size of a solar energy system for a user-specified building, location, system type, and set of economic conditions it conducts numerous breakeven and sensitivity analyses and it calculates measures of economic performance as required under the Federal Rules. The economic model in the program is linked with the SLR (solar load ratio) design method developed to predict the performance of active systems. The economics portion of the program can, however, be used apart from the SLR method, with performance data provided by the user.

  14. AmbiMax: Autonomous Energy Harvesting Platform for Multi-Supply Wireless Sensor Nodes

    E-Print Network [OSTI]

    Chou, Pai H.

    of multiple energy harvesting sources including solar, wind, thermal, and vibration, each with a different as the operating lifetime. Unfortunately, Fig. 1. Photo of AmbiMax Hardware with a Solar Panel, Wind Generator power efficiently. As a result, they must use a much larger solar panel than necessary to yield the same

  15. Rainwater Harvesting in San Francisco Schools

    E-Print Network [OSTI]

    Bintliff, Jacob M.

    2011-01-01T23:59:59.000Z

    and planned rain- water harvesting (RWH) systems areadopted the Rain- water Harvesting Guidelines in ear- lywater management education was matched with a de- SFUSD Rainwater Harvesting

  16. Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners

    SciTech Connect (OSTI)

    Kollins, K.; Speer, B.; Cory, K.

    2009-11-01T23:59:59.000Z

    Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

  17. Adapting Task Utility in Externally Triggered Energy Harvesting Wireless Sensing Systems

    E-Print Network [OSTI]

    Simunic, Tajana

    Adapting Task Utility in Externally Triggered Energy Harvesting Wireless Sensing Systems Jamie tajana@ucsd.edu Abstract--Energy harvesting sensor nodes eliminate the need for post-deployment physical the utility of their tasks to accommodate the energy availability. For example, on sunny days, a solar

  18. Optimal Sleep-Wake Policies for an Energy Harvesting Sensor Node

    E-Print Network [OSTI]

    Sharma, Vinod

    devices are solar cells, wind turbines and piezo-electric cells, which extract energy from the environmentOptimal Sleep-Wake Policies for an Energy Harvesting Sensor Node Vinay Joseph, Vinod Sharma with an energy harvesting source. In any slot, the sensor node is in one of two modes: Wake or Sleep

  19. INTRODUCTION Energy harvesting is the transformation of ambient energy present in

    E-Print Network [OSTI]

    Sóbester, András

    into electrical energy. This energy is derived from different external sources such as solar power, thermal energyINTRODUCTION Energy harvesting is the transformation of ambient energy present in the environment, wind energy, salinity gradient and kinetic energy. Harvesting energy from ambient vibration has

  20. Direct evidence of quantum transport in photosynthetic light-harvesting complexes

    E-Print Network [OSTI]

    Mukamel, Shaul

    Direct evidence of quantum transport in photosynthetic light-harvesting complexes Gitt demonstrating that quantum transport of energy occurs in biological systems. The observed population oscillation solar energy applications. energy transport photosynthesis quantum biology ultrafast phenomena

  1. EIS-0454: Department of Energy Loan Guarantee to Tonopah Solar Energy, LLC, for the Proposed Crescent Dunes Solar Energy Project, Nevada

    Broader source: Energy.gov [DOE]

    Tonopah Solar Energy, LLC applied to the BLM for a 7,680-acre right-of-way (ROW) on public lands to construct a concentrated solar thermal power plant facility approximately 13 miles northwest of...

  2. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01T23:59:59.000Z

    Journal of Microelectromechanical Systems, vol. 18, no. 2,Capability,” Microelectromechanical Systems, Journal of,Harvesting,” Microelectromechanical Systems, Journal of, no.

  3. Hay Harvesting Costs in Texas.

    E-Print Network [OSTI]

    Long, James T.; Taylor, Wayne D.; Berry, Todd W.

    1977-01-01T23:59:59.000Z

    ......... 10 COMPARING HAY HARVESTING ALTERNATIVES ................... 11 INVESTMENT DECISIONS CONCERNING MACHINERy ...... 13 ACKNOWLEDGMENTS .............. 15 James T. Long, Wayne D. Taylor and Todd W. Berry* INTRODUCTION Making profitable decisions... and lead to a less profitable and less Texas farmers and ranchers are confronted with methods of harvesting forage. Generally, graz is the cheapest harvest method. However, some ical hay harvesting and feeding is necessary Texas operations.' area...

  4. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01T23:59:59.000Z

    photovoltaic cells. While solar thermal energy production iselectrical energy on a large scale. Solar thermal processes

  5. SchroedterHomscheidt M., Betcke J., Breitkreuz H., Hammer A., Heinemann D., Petrack S., HolzerPopp T., Wald L., 2006. Energyspecific solar radiation data from MSG: The Heliosat3 project. In Proceedings of the 3rd

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    de Paris ABSTRACT Solar energy technologies such as photovoltaics, solar thermal power plants MSG RAO Workshop, Helsinki : Finland (2006)" #12;Figure 2. Hourly effective energy production (solidPopp T., Wald L., 2006. Energyspecific solar radiation data from MSG: The Heliosat3 project

  6. An Examination of Harvest Rates and Brood-Take Rates as

    E-Print Network [OSTI]

    An Examination of Harvest Rates and Brood-Take Rates as Management Strategies to Assist Recovery of Resource Management Project Number: 546 Title of Project: An Examination of Harvest Rates and Brood-Take Rates as Management Strategies to Assist Recovery of Cowichan River Chinook Salmon Examining Committee

  7. Harvesting Clean Energy How California Can Deploy Large-Scale Renewable

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Harvesting Clean Energy How California Can Deploy Large-Scale Renewable Energy Projects Harvesting Clean Energy: How California Can Deploy Large-Scale Renewable Energy Projects on Appropriate acres of impaired lands in the Westlands Water District in the Central Valley may soon have

  8. Energy Harvesting for Structural Health Monitoring Sensor Gyuhae Park1

    E-Print Network [OSTI]

    Simunic, Tajana

    for large-scale alternative energy generation using wind turbines and solar cells is mature technologyEnergy Harvesting for Structural Health Monitoring Sensor Networks Gyuhae Park1 , Tajana Rosing2 of California, San Diego La Jolla, CA 92093-0701 ABSTRACT This paper reviews the development of energy

  9. SEP Success Story: Solar Field Powers Historic Garden Holiday...

    Energy Savers [EERE]

    agencies and the University of Tennessee at the official opening of the West Tennessee Solar Farm. | Energy Department photo. SEP Success Story: Harvesting the Sun at the West...

  10. High Penetration Solar Deployment Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  11. EIS-0439: Rice Solar Energy Project in Riverside County, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment ofStatement |StatementDraftEnergy 9: Rice Solar

  12. The World's Largest Solar Project Finds a Home in California | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive LiquidSavings for Specificof Energy

  13. NREL Takes First In-Depth Look at Solar Project Completion Timelines - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NREL Refines Method tofor Solar Deployment -

  14. Solar project description for Arno Kahn/Builders and Laborers Commonwealth single family residence Duluth, Minnesota

    SciTech Connect (OSTI)

    Moore, D

    1982-04-30T23:59:59.000Z

    The Arno Kahn/Builders and Laborers Commonwealth Site is a house in a Minnesota suburb. It combines a modified direct-gain sun space system with a thermal envelope. The living space is separated from the sun space by a three-story mass wall. Sunlight enters the three-story solarium and heats the mass wall which in turn heats the air. The warm air is then distributed through the thermal envelope. Manually operated shades provide night insulation for the south-facing windows, and roof overhangs and a turbine vent in the solarium roof prevent overheating. Domestic hot water is preheated in four tanks located behind the window of the basement sunroom. The concrete floor in the basement provides part of the heat storage. Wood burning stoves and electric baseboard heaters provide auxiliary heating. Five modes of operation are described: collector-to-storage, collector-to-space heating, storage-to-space heating, solarium cooling and domestic hot water preheating. The instrumentation for the National Solar Data Network is described. The solar energy portion of the construction costs is estimated to be $7000. (LEW)

  15. Solar Technology Validation Project - Southwest Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-08

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01T23:59:59.000Z

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  16. Solar Technology Validation Project - Hualapai Valley Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-02

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-07-01T23:59:59.000Z

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  17. Project title: Natural ventilation, solar heating and integrated low-energy building design

    E-Print Network [OSTI]

    2009-07-10T23:59:59.000Z

    greenhouse gas emissions from office buildings CMI E-Newsletter Issue 7 BP announces funding for CMI project on integrated low-energy building design No air conditioning, no sweat! Sustainable Building Design: Application Of Natural Ventilation Short... , such as China, where new buildings are being constructed at a rate far in excess of the level of development in developed countries, and where energy is relatively expensive. More Information For further information, please visit the Natural Ventilation...

  18. Solar Policy Environment: Pittsburgh

    Broader source: Energy.gov [DOE]

    In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

  19. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Partnership Projects On April 14, 2011, in National Solar Thermal Test Facility (NSTTF) The Tower at the National Solar Thermal Test Facility (NSTTF) offers a complete...

  20. 2007 Solar America Cities Awards

    SciTech Connect (OSTI)

    Not Available

    2007-06-01T23:59:59.000Z

    This factsheet gives an overview of the Solar America Cities Awards and the Solar America Initiative (SAI). A map of all SAI projects is also made available.

  1. Solar Projects to Reduce Non-Hardware Balance of System Costs | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouof Energy Projects to Reduce Non-Hardware

  2. OPVs and Solar Cells: The Basics | University of Texas Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OPVs AND SOLAR CELLS: THE BASICS Harvesting solar energy is a key endeavor for this century as we face ever-decreasing fossil fuel world reserves and ever-increasing environmental...

  3. Broad Band Photon Harvesting Biomolecules for Photovoltaics

    E-Print Network [OSTI]

    P. Meredith; B. J. Powell; J. Riesz; R. Vogel; D. Blake; I. Kartini; G. Will; S. Subianto

    2004-06-04T23:59:59.000Z

    We discuss the key principles of artificial photosynthesis for photovoltaic energy conversion. We demonstrate these principles by examining the operation of the so-called "dye sensitized solar cell" (DSSC) - a photoelectrochemical device which simulates the charge separation process across a nano-structured membrane that is characteristic of natural systems. These type of devices have great potential to challenge silicon semiconductor technology in the low cost, medium efficiency segment of the PV market. Ruthenium charge transfer complexes are currently used as the photon harvesting components in DSSCs. They produce a relatively broad band UV and visible response, but have long term stability problems and are expensive to manufacture. We suggest that a class of biological macromolecules called the melanins may be suitable replacements for the ruthenium complexes. They have strong, broad band absorption, are chemically and photochemically very stable, can be cheaply and easily synthesized, and are also bio-available and bio-compatible. We demonstrate a melanin-based regenerative solar cell, and discuss the key properties that are necessary for an effective broad band photon harvesting system.

  4. The Mechanical Harvesting of Cotton.

    E-Print Network [OSTI]

    Smith, H. P.; Killough, D. T.; Byrom, M. H.; Scoates, D.; Jones, D. L.

    1932-01-01T23:59:59.000Z

    Stripping Rolls 45 Efficiency of the Texas Station Cotton Harvester --_-_.__---.__--___-.------- 47 --loping Varieties of Cotton to Meet the Needs of Mechanical Har- ~esting 54 owledgments 58 nary 58 List of Patents on Cotton Harvesters ' 60 ,ing ant... patent on a mechanical cotton picker, was apparently taken out in the year 1850. The development of a successful mechanical cotton harvester has been slow, due not only to the mechanical problems en- countered in handling the fiber, but also...

  5. Energy Harvesting by Sweeping Voltage-Escalated Charging of a Reconfigurable Supercapacitor Array

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    ("harvesters") have been receiv- ing growing attention in recent years, from grid-tied roof-top solar arrays to portable solar chargers for cell phones. Several recent features distinguish embedded-grade, micro point tracking (MPPT), and the use of supercapacitors as a potential type of energy storage elements

  6. Real-Time Scheduling of Energy Harvesting Embedded Systems with Timed Automata

    E-Print Network [OSTI]

    Boyer, Edmond

    components, by an energy collector unit (e.g. a solar panel) and by an energy storage unit (a battery devices with solar panel or windmill etc. Despite their energy supply particularity, some of these systems to be switched off at some points in order to permit to recharge the energy storage unit. These harvesting

  7. Toward an Optimal Fixed-Priority Algorithm for Energy-Harvesting Real-Time Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , published in "RTAS 2013 WiP, United States (2013)" #12;solar panel or windmill etc. Despite of their energy- posed, in addition to classical embedded system components, by an energy har- vester unit (e.g. a solar panel) and an energy storage unit (e.g. a battery). These harvesting embedded systems are more and more

  8. The CAESAR project: Experimental and modeling investigations of methane reforming in a CAtalytically Enhanced Solar Absorption Receiver on a parabolic dish

    SciTech Connect (OSTI)

    Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D. [Sandia National Labs., Albuquerque, NM (US); Buck, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Stuttgart (DE). Inst. of Technical Thermodynamics

    1993-07-01T23:59:59.000Z

    A joint US/Federal Republic of Germany (FRG) project has successfully tested a unique solar-driven chemical reactor in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) experiment. The CAESAR test was a {open_quotes}proof-of-concept{close_quotes} demonstration of carbon-dioxide reforming of methane in a commercial-scale, solar, volumetric receiver/reactor on a parabolic dish concentrator. The CAESAR design; test facility and instrumentation; thermal and chemical tests; and analysis of test results are presented in detail. Numerical models for the absorber and the receiver are developed and predicted performance is compared with test data. Post test analyses to assess the structural condition of the absorber and the effectiveness of the rhodium catalyst are presented. Unresolved technical issues are identified and future development efforts are recommended.

  9. Contract to coordinate on-going documentation requirements associated with Title X legislation for DOE active-solar activities. Final project technical report

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    The objectives of this work were to ensure that Title X Active Solar Program reports complied with all guidance regarding length, format, coverage, tone, tables and schedules; provide necessary Conservation and Renewable Energy Office background and back-up material; follow this activity through to its completion in January 1982; assess information requirements associated with on-going documentation of Federal Buildings Program and its predecessors; establish a method for collecting, maintaining and utilizing appropriate program data specifically related to the preparation of report due in June 1982. Work on this project has generally remained on schedule and within budget. DOE-SAN has been instrumental in keeping us on track, by providing timely guidance as needed. Attached are recommendations and methods for documenting solar heat technologies research and the Title X sunset policy, planning, and evaluation long report for Active Solar Heating and Cooling Program.

  10. Solar Policy Environment: Houston

    Broader source: Energy.gov [DOE]

    The City of Houston is committed to achieving a sustainable solar infrastructure through strategic partnerships that address market barriers for solar energy through the Houston Solar Initiative. The initiative is dedicated to this long-term goal while focusing on near- and mid-term results that go beyond demonstration solar projects.

  11. Harvesting Machine Census 1999 & 2001

    E-Print Network [OSTI]

    1 Harvesting Machine Census 1999 & 2001 231 Corstorphine Road Edinburgh EH12 7AT www.forestry.gov.uk FCTN001 SUMMARY This Technical Note contains information on the 1999 and 2001 harvesting machine censuses. As 31% fewer returns were received in 2001 a meaningful comparison of numbers cannot be made

  12. Stump Harvesting: Interim Guidance on

    E-Print Network [OSTI]

    , including biomass for fossil fuel substitution. Forest harvesting residues are increasingly being used to supply biomass for heat and power generation in the UK and attention is now turning to the potentialStump Harvesting: Interim Guidance on Site Selection and Good Practice Forest Research, April 2009

  13. Hay Harvesting Costs $$$$$ in Texas.

    E-Print Network [OSTI]

    Long, James T.; Taylor, Wayne D.

    1972-01-01T23:59:59.000Z

    Hay is an important crop in Ta 1 Harvesting costs constitute the major5 pense of hay production in many M Mg and Wayne D . Taylor INTRODUCTION .................................................... 2 Fixed Costs or Ownership Costs... ............................................. 10 Totarl Cost .............................................................. 10 HAY HARVESTING ALTERNATIVES COMPARED ...................... 11 HOW TO MAKE WISE DECISIONS CONCERNING INVESTMENTS IN MACHINERY...

  14. (Melanin-Sensitized Solar Cell) : 696220016

    E-Print Network [OSTI]

    the majority dye-sensitized solar cell research all uses the Ruthenium-complex as a light harvester. Dye-sensitized solar cell, DSSC 1991GrätzelDSSC[1] DSSCGrätzel cellDSSC polypyridyl complexes (Melanin-Sensitized Solar Cell) : : : 696220016 #12; #12;#12; #12;I PLD

  15. Solar Policy Environment: Ann Arbor

    Broader source: Energy.gov [DOE]

    The goal for Ann Arbor’s Solar America Cities program is to utilize a wide range of community partners and resources to remove market barriers to the adoption of solar energy while simultaneously increasing consumer awareness and demand, and helping solar energy manufacturers and contractors to succeed. Expected outcomes include a Solar Plan for Ann Arbor, one or more large-scale photovoltaic demonstration projects, more small-scale solar hot water and photovoltaic demonstration projects, greater consumer awareness of solar options, a simpler permitting process for solar projects, and proof that solar energy works even in cloudy cities.

  16. UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless Identification Applications

    E-Print Network [OSTI]

    Tentzeris, Manos

    UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless nature of the circuit and providing operational autonomy by harvesting solar power without affecting, solar power harvesting. I. INTRODUCTION The increasing use of RFIDs and wireless sensor networks

  17. Design Considerations for a Universal Smart Energy Module for Energy Harvesting in Wireless

    E-Print Network [OSTI]

    Turau, Volker

    reliability. A single harvester like photovoltaic module can produce energy very unreliable for extended and improve reliability. To increase the power from the har- vester, maximum power point tracking (MPPT implementation. II. RELATED WORK Energy harvesters are used in several projects. Especially photovoltaic modules

  18. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acids—a fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acids—overriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASU’s approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  19. Harvesting a renewable resource under uncertainty

    E-Print Network [OSTI]

    Saphores, Jean-Daniel M

    2003-01-01T23:59:59.000Z

    Consider a valuable renewable resource whose biomass X2003. “Harvesting a renewable resource under uncertainty,”Harvesting a Renewable Resource under Uncertainty 1 (with

  20. Harvesting nanoscale thermal radiation using pyroelectric materials

    E-Print Network [OSTI]

    Fang, Jin; Frederich, Hugo; Pilon, Laurent

    2010-01-01T23:59:59.000Z

    materials for harvesting waste heat”. International Journala way to convert waste heat directly into electricity. Ita novel way to harvest waste heat by combining pyroelectric

  1. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    solar irradiation in Brazil, Solar Energy, 68, 91- 107, ISSNmaps for Brazil under SWERA project, Solar Energy, 81, 517-

  2. Solar Technology Validation Project - Solargen (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-06

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01T23:59:59.000Z

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  3. Solar Technology Validation Project - Iberdrola Renewables, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-08-298-3

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01T23:59:59.000Z

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  4. Solar Technology Validation Project - RES Americas: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-11

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01T23:59:59.000Z

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  5. Solar Technology Validation Project - USS Data, LLC: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-04

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01T23:59:59.000Z

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  6. Solar Technology Validation Project - Amonix, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-13

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01T23:59:59.000Z

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  7. Solar Technology Validation Project - Loyola Marymount University: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-03

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01T23:59:59.000Z

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  8. Voluntary Solar Resource Development Fund

    Broader source: Energy.gov [DOE]

    The fund will be used to provide loans for residential, commercial, or nonprofit solar energy projects. Qualifying solar energy projects cannot be acquired, installed or operating before July 1, ...

  9. Light-harvesting materials: Soft support for energy conversion

    SciTech Connect (OSTI)

    Stolley, Ryan M.; Helm, Monte L.

    2014-11-10T23:59:59.000Z

    To convert solar energy into viable fuel sources, coupling light-harvesting materials to catalysts is a critical challenge. Now, coupling between an organic supramolecular hydrogel and a non precious metal catalyst has been demonstrated to be effective for photocatalytic H2 production. Ryan M. Stolley and Monte L. Helm are at Pacific Northwest National Laboratory (PNNL), Richland, WA, USA 99352. PNNL is operated by Battelle for the US Department of Energy. e-mail: Monte.Helm@pnnl.gov

  10. Bi-Annual Scientific Report Jan. 2002 -Dec. 2003 Department of Solar Energy & Environmental Physics: highlight of research projects.

    E-Print Network [OSTI]

    Prigozhin, Leonid

    Bi-Annual Scientific Report Jan. 2002 - Dec. 2003 Department of Solar Energy & Environmental by the researchers of the Department of Solar Energy & Environmental Physics during the reported years provides a wide scope of environmental physics problems and their treatment calls for the application of a large

  11. SolarReserve, LLC (Crescent Dunes) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    SolarReserve's 110 MW solar power tower that concentrates solar energy to heat molten salt, converting that heat into electricity. This project is the first commercial...

  12. Piezoelectric MEMS for energy harvesting

    E-Print Network [OSTI]

    Kim, Sang-Gook

    Piezoelectric microelectromechanical systems (MEMS) have been proven to be an attractive technology for harvesting small magnitudes of energy from ambient vibrations. This technology promises to eliminate the need for ...

  13. Identifying and Evaluating Energy Cost Reduction Opportunities for Harvesters - The Community Food Network

    E-Print Network [OSTI]

    Miller, Aaron M.

    2011-05-20T23:59:59.000Z

    The purpose of this project is to identify and evaluate opportunities where energy costs can be reduced for Harvesters - The Community Food Network. This is accomplished by conducting an energy audit, analyzing the data collected during the audit...

  14. Blue oak stump sprouting evaluated after firewood harvest in northern Sacramento Valley

    E-Print Network [OSTI]

    Standiford, Richard B.; McCreary, Douglas D.; Barry, Sheila J; Forero, Larry C.

    2011-01-01T23:59:59.000Z

    TABLE 4. Inventory data for blue oak thinning project in8. Standiford RB. 1997. Growth of blue oak on California’s2008. Stump sprouting of blue oaks 19 years after harvest.

  15. A 1-mW vibration energy harvesting system for moth flight-control applications

    E-Print Network [OSTI]

    Chang, Samuel C

    2010-01-01T23:59:59.000Z

    This thesis focuses on the approach and methodologies required to build a 1-mW energy-harvesting system for moth flight control applications. The crepuscular hawk moth Manduca sexta is the chosen test subject. This project ...

  16. Role of pilot projects and public acceptance in developing wireless power transmission as an enabling technology for space solar power systems

    SciTech Connect (OSTI)

    Woodell, M.I. [Bivings Woodell, Inc., Washington, DC (United States)] [Bivings Woodell, Inc., Washington, DC (United States); Schupp, B.W. [Raytheon Electronic Systems, Marlborough, MA (United States)] [Raytheon Electronic Systems, Marlborough, MA (United States)

    1996-12-31T23:59:59.000Z

    In all system concepts for delivering space solar power to terrestrial power systems, wireless power transmission (WPT) is identified as a critical link in the technology chain. To realize the full potential of WPT as an enabling technology for the development of space power systems, the technology needs to (1) be demonstrated as a commercially viable, low risk technology, and (2) be shown to be acceptable to the public. If WPT`s full potential is to be realized, its initial applications must be carefully chosen and demonstrated through a series of pilot projects which will develop both the technology and its public acceptance. This paper examines the role of pilot projects and how they will play an increasingly important role in the development and acceptance of WPT as an enabling technology for space solar power systems. Recognizing that public acceptance is the ultimate determinant of the commercial success or failure of a technology, the paper then explores the role of public opinion in the commercialization process of space solar power systems utilizing WPT. A framework that begins to define the process required to realize the full commercial potential of wireless power transmission is established. 21 refs., 1 fig., 2 tabs.

  17. Flexible Assembly Solar Technology

    Broader source: Energy.gov (indexed) [DOE]

    Energy, Inc. All rights reserved. 3 About BrightSource Energy We develop and build solar thermal projects using our own central tower technology Headquartered in...

  18. Flexible Assembly Solar Technology

    Broader source: Energy.gov (indexed) [DOE]

    field and secured on steel pylons. PROJECT DESCRIPTION The research team is applying automation processes to the design of a Flexible Assembly Solar Technology (FAST). FAST is an...

  19. Comparison of Different Methods of Harvesting Cotton.

    E-Print Network [OSTI]

    Smith, H. P. (Harris Pearson)

    1946-01-01T23:59:59.000Z

    - - TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS, Director College Station. Texas BULLETIN NO. 683 OCTOBER, 1946 COMPARISON OF DIFFERENT METHODS OF HARVESTING COTTON Division of Agricultural Engineering . and Division of Agronomy... on the rougher methods of harvesting cotton, such as hand-snapping and machine harvesting both with the picker type and the stripper type mechanical harvesters. This n-as largely because the lint from the roughly harvested cottons contained more foreign...

  20. SmartSolar Site Report and Appendix- Sample

    Broader source: Energy.gov [DOE]

    This site report provides SmartSolar’s identified opportunities for energy efficiency and solar projects, guides on how to move forward with these projects, and supporting documents.

  1. Review paper: Toward highly efficient quantum-dot-and dye-sensitized solar cells

    E-Print Network [OSTI]

    Park, Byungwoo

    Review paper: Toward highly efficient quantum-dot- and dye-sensitized solar cells Hongsik Choi Interface control Light harvesting Tandem solar cell a b s t r a c t Dye- and quantum-dot-sensitized solar technologies of silicon-based solar cells should be resolved [7]. Dye-sensitized solar cells (DSSCs) have been

  2. Improving the Power Conversion Efficiency of Ultrathin Organic Solar Cells by Incorporating Plasmonic Effects of Spheroidal Metallic Nanoparticles

    E-Print Network [OSTI]

    Park, Namkyoo

    Improving the Power Conversion Efficiency of Ultrathin Organic Solar Cells by Incorporating be exploited to achieve efficient harvesting of solar energy. Notably, the incorporation of plasmonic effects can allow the light harvesting capability of a solar cell to be maintained even as the thickness

  3. Solar Water Heating Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL)...

  4. Solar Power Purchase Agreements | Department of Energy

    Office of Environmental Management (EM)

    NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency" Tool to Compare Solar Energy Program Financing Options Tucson's Solar Experience: Developing PV with RFPs...

  5. Natural Light Harvesting Systems: Unraveling the quantum puzzles

    E-Print Network [OSTI]

    A. Thilagam

    2014-11-23T23:59:59.000Z

    In natural light harvesting systems, the sequential quantum events of photon absorption by specialized biological antenna complexes, charge separation, exciton formation and energy transfer to localized reaction centers culminates in the conversion of solar to chemical energy. A notable feature in these processes is the exceptionally high efficiencies ($>$ 95\\%) at which excitation is transferred from the illuminated protein complex site to the reaction centers. The high speeds of excitation propagation within a system of interwoven biomolecular network structures, is yet to be replicated in artificial light harvesting complexes. A clue to unraveling the quantum puzzles of nature may lie in the observations of long lived coherences lasting several picoseconds in the electronic spectra of photosynthetic complexes which occurs even in noisy environmental baths. The exact nature of the association between the high energy propagation rates and strength of quantum coherences remains largely unsolved. This review presents recent developments in quantum theories, and links information-theoretic aspects with photosynthetic light-harvesting processes in biomolecular systems. There is examination of various attempts to pinpoint the processes that underpin coherence features arising from the light harvesting activities of biomolecular systems, with particular emphasis on the effects that factors such non-Markovianity, zeno mechanisms, teleportation, quantum predictability and the role of multipartite states have on the quantum dynamics of biomolecular systems. A discussion of how quantum thermodynamical principles and agent-based modeling and simulation approaches can improve our understanding of natural photosynthetic systems is included.

  6. Feasibility of using nanoporous materials in water harvesting

    E-Print Network [OSTI]

    Chow, Brian Justin

    2010-01-01T23:59:59.000Z

    Possible Role in Water Harvesting Experiment: AtmosphericNANOPOROUS MATERIALS IN WATER HARVESTING A thesis submittedNANOPOROUS MATERIALS IN WATER HARVESTING by Brian Justin

  7. A Magnetomechanical Thermal Energy Harvester With A Reversible Liquid Interface

    E-Print Network [OSTI]

    He, Hong

    2012-01-01T23:59:59.000Z

    and Mechanical Model of a Thermal Energy Harvesting Device”,M, and Ferrari V. , “Thermal energy harvesting throughand G. P. Carman, “Thermal energy harvesting device using

  8. Phase 2 of the array automated assembly task for the low cost silicon solar array project. Fifth quarterly report

    SciTech Connect (OSTI)

    Petersen, R.C.; Anderson, J.R.

    1980-01-01T23:59:59.000Z

    This program focuses attention on one key step of a proposed process sequence for mass production of inexpensive silicon solar arrays for terrestrial use. The process step of concern is the metallization of the solar cell. Solarex has proposed that the metallization be accomplished by a single electroless plating of nickel followed by a dip in molten solder, and Solarex manufactures solar cells using this procedure. ing, cleaning and annealing. Motorola has recommended a process which includes the electroless nickel plate and solder dip of the Solarex process, but which precedes these steps with a number of additional steps of palladium plating, cleaning and annealing. Motorola has claimed that these additional steps are necessary to assure proper ohmic contact with the silicon while at the same time avoiding excessive nickel penetration into the silicon. This program comprises a technical comparison of the Solarex and Motorola processes. Progress is reported.

  9. Sustainable Harvest for Food and Fuel

    SciTech Connect (OSTI)

    Grosshans, Raymond R.; Kostelnik, Kevin, M.; Jacobson, Jacob J.

    2007-04-01T23:59:59.000Z

    The DOE Biomass Program recently implemented the Biofuels Initiative, or 30x30 program, with the dual goal of reducing U.S. dependence on foreign oil by making cellulosic ethanol cost competitive with gasoline by 2012 and by replacing 30 percent of gasoline consumption with biofuels by 2030. Experience to date with increasing ethanol production suggests that it distorts agricultural markets and therefore raises concerns about the sustainability of the DOE 30 X 30 effort: Can the U.S. agricultural system produce sufficient feedstocks for biofuel production and meet the food price and availability expectations of American consumers without causing environmental degradation that would curtail the production of both food and fuel? Efforts are underway to develop computer-based modeling tools that address this concern and support the DOE 30 X 30 goals. Beyond technical agronomic and economic concerns, however, such models must account for the publics’ growing interest in sustainable agriculture and in the mitigation of predicted global climate change. This paper discusses ongoing work at the Center for Advanced Energy Studies that investigates the potential consequences and long-term sustainability of projected biomass harvests by identifying and incorporating “sustainable harvest indicators” in a computer modeling strategy.

  10. Sustainable Harvest for Food and Fuel

    SciTech Connect (OSTI)

    Raymond R. Grosshans; Kevin M. Kostelnik; Jacob J. Jacobson

    2007-12-01T23:59:59.000Z

    The DOE Biomass Program recently implemented the Biofuels Initiative, or 30x30 program, with the dual goal of reducing U.S. dependence on foreign oil by making cellulosic ethanol cost competitive with gasoline by 2012 and by replacing 30 percent of gasoline consumption with biofuels by 2030. Experience to date with increasing ethanol production suggests that it distorts agricultural markets and therefore raises concerns about the sustainability of the DOE 30x30 effort: Can the U.S. agricultural system produce sufficient feedstocks for biofuel production and meet the food price and availability expectations of American consumers without causing environmental degradation that would curtail the production of both food and fuel? Efforts are underway to develop computer-based modeling tools that address this concern and support the DOE 30x30 goals. Beyond technical agronomic and economic concerns, however, such models must account for the publics’ growing interest in sustainable agriculture and in the reduction of greenhouse gas emissions. This paper discusses ongoing work at the Center for Advanced Energy Studies that investigates the potential consequences and long-term sustainability of projected biomass harvests by identifying and incorporating “sustainable harvest indicators” in a computer modeling strategy.

  11. Phase 2 of the array automated assembly task for the low cost silicon solar array project. Final report

    SciTech Connect (OSTI)

    Petersen, R.C.

    1980-11-01T23:59:59.000Z

    Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process proposed by Motorola, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work has directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The Motorola process was compared with simple electroless nickel plating in a series of parallel experiments. Results are presented. (WHK)

  12. Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO{sub 4}:Eu{sup 3+} down-shifting nano-phosphor layer in organometal halide perovskite solar cells

    SciTech Connect (OSTI)

    Chander, Nikhil; Chandrasekhar, P. S.; Thouti, Eshwar; Swami, Sanjay Kumar; Dutta, Viresh; Komarala, Vamsi K. [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Khan, A. F., E-mail: khanafk@gmail.com [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Department of Electronics and Information Technology, Ministry of Communications and Information Technology, Government of India, New Delhi 110003 (India)

    2014-07-21T23:59:59.000Z

    We report a simple method to mitigate ultra-violet (UV) degradation in TiO{sub 2} based perovskite solar cells (PSC) using a transparent luminescent down-shifting (DS) YVO{sub 4}:Eu{sup 3+} nano-phosphor layer. The PSC coated with DS phosphor showed an improvement in stability under prolonged illumination retaining more than 50% of its initial efficiency, whereas PSC without the phosphor layer degraded to ?35% of its initial value. The phosphor layer also provided ?8.5% enhancement in photocurrent due to DS of incident UV photons into additional red photons. YVO{sub 4}:Eu{sup 3+} layer thus served a bi-functional role in PSC by reducing photo-degradation as well as enhancing energy conversion efficiency.

  13. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (1 of 7) 1400915wileyonlinelibrary.com New Light-Harvesting Materials Using Accurate

    E-Print Network [OSTI]

    Ceder, Gerbrand

    .com New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations Ivano E. Castelli] batteries,[2] carbon capture and storage,[3] photovoltaics,[4,5] dye sensitized solar cells,[6] and water, discussed in detail and used in previous works,[7,8] to find new light harvesting materials suit- able

  14. Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic (PV) project to supply power

    E-Print Network [OSTI]

    use of QECBs and clean renewable energy bonds (CREBs) in the country. This article outlines and renewable energy installations. With either QECBs or "new" CREBS,1 the Department of the Treasury provides both buildings in Woodland, California, for the 1 MW ground-mounted solar PV system. Energy Analysis

  15. Thermal Storage with Ice Harvesting Systems

    E-Print Network [OSTI]

    Knebel, D. E.

    1986-01-01T23:59:59.000Z

    Application of Harvesting Ice Storage Systems. Thermal storage systems are becoming widely accepted techniques for utility load management. This paper discusses the principles of ice harvesting equipment and their application to the multi...

  16. Assessment of rainwater harvesting in Northern Ghana

    E-Print Network [OSTI]

    Barnes, David Allen

    2009-01-01T23:59:59.000Z

    This study assesses the current state of rainwater harvesting in the Northern Region of Ghana and makes recommendations regarding if and how rainwater harvesting could be used to address Pure Home Water's goal of reaching ...

  17. Harvesting energy from non-ideal vibrations

    E-Print Network [OSTI]

    Chang, Samuel C

    2013-01-01T23:59:59.000Z

    Energy harvesting has drawn significant interest for its potential to power autonomous low-power applications. Vibration energy harvesting is particularly well suited to industrial condition sensing, environmental monitoring ...

  18. Ultra wide-bandwidth micro energy harvester

    E-Print Network [OSTI]

    Hajati, Arman

    2011-01-01T23:59:59.000Z

    An ultra wide-bandwidth resonating thin film PZT MEMS energy harvester has been designed, modeled, fabricated and tested. It harvests energy from parasitic ambient vibration at a wide range of amplitude and frequency via ...

  19. Harvest Your Retirement income options

    E-Print Network [OSTI]

    previous generations You're going to have a longer retirement (retire early, and live longer) YouHarvest Your Savings Retirement income options using your SFU Group LIF/RRIF #12;Agenda 1. Your retirement income needs 2. Where will your retirement money come from? 3. Retirement accounts and products 4

  20. Energy Harvesting Diamond Channel with Energy Cooperation

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Harvesting Diamond Channel with Energy Cooperation Berk Gurakan Sennur Ulukus Department@umd.edu Abstract--We consider the energy harvesting diamond channel, where the source and two relays harvest energy the option of wirelessly transferring some of its energy to the relays via energy cooperation. We find

  1. Energy Harvesting Communications with Continuous Energy Arrivals

    E-Print Network [OSTI]

    Yener, Aylin

    Energy Harvesting Communications with Continuous Energy Arrivals Burak Varan Kaya Tutuncuoglu Aylin--This work considers an energy harvesting transmit- ter that gathers a continuous flow of energy from intermittent sources, thus relaxing the modeling assumption of discrete amounts of harvested energy present

  2. City of Dubuque- Solar Thermal Licensing Requirement

    Broader source: Energy.gov [DOE]

    The City of Dubuque requires a Solar Thermal License in order for a person to install a solar thermal project on a home or business. The requirement does not apply to solar photovoltaics. The...

  3. Distance-Engineered Plasmon-Enhanced Light Harvesting in CdSe Quantum Dots

    E-Print Network [OSTI]

    Distance-Engineered Plasmon-Enhanced Light Harvesting in CdSe Quantum Dots Shengye Jin,,§, Erica De) is essential for the development of efficient QD-based solar energy conversion systems. In this study, plasmon as a function of interparticle (QD to Ag NP) distance. Up to 24-fold plasmonic enhancement of fluorescence from

  4. Queuing Theoretic and Information Theoretic Capacity of Energy Harvesting Sensor Nodes

    E-Print Network [OSTI]

    Sharma, Vinod

    goal in battery powered wireless sensor network (WSN). A battery has a fixed amount of energy (ignoring the recharging and leakage effects) and it goes dead once the energy is exhausted. Hence the network life time. Among these, harvesting solar energy through photo-voltaic effect seems to have emerged as a technology

  5. An aero-elastic flutter based electromagnetic energy harvester with wind speed augmenting funnel

    E-Print Network [OSTI]

    Stanford University

    An aero-elastic flutter based electromagnetic energy harvester with wind speed augmenting funnel been used to convert wind flow energy into mechanical vibration, which is then transformed-scale renewable energy generating systems such as wind turbines, thermal generators, and solar panels, energy

  6. Delay Bounded Rate and Power Control in Energy Harvesting Wireless Networks

    E-Print Network [OSTI]

    Rajan, Dinesh

    in environmentally powered wireless networks with bursty packet arrivals. Varying the size of the energy storage unit such as solar energy, mechanical energy and thermal energy have started finding use in wireless sensor networks, followed by an energy storage unit. The energy harvested by the front end is stored in the storage unit

  7. On the Cover: One route to harvesting the energy of the sun involves learning to mimic

    E-Print Network [OSTI]

    Wu, Zhigang

    #12;On the Cover: One route to harvesting the energy of the sun involves learning to mimic natural the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green, and atmospheric carbon dioxide. #12;BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION Report on the Basic Energy

  8. Energy Management and Task Scheduling of an Energy Harvesting, Structural Health Monitoring System

    E-Print Network [OSTI]

    Simunic, Tajana

    1 Energy Management and Task Scheduling of an Energy Harvesting, Structural Health Monitoring of a structure is referred to as Structural Health Monitoring (SHM). SHiMmer, a solar-powered wireless SHM system an energy management simulation that will prove to be important in SHiMmer's future. We test the three task

  9. Monitoring Quality Maximization through Fair Rate Allocation in Harvesting Sensor Networks

    E-Print Network [OSTI]

    Liang, Weifa

    Abstract--In this paper, we consider an energy harvesting sensor network where sensors are powered by reusable energy such as solar energy, wind energy, and so on, from their surroundings. We first formulate to energy budgets of sensors. Unlike the most existing work that formulated the similar problem as a linear

  10. PHYSICAL REVIEW B 85, 125424 (2012) Probing biological light-harvesting phenomena by optical cavities

    E-Print Network [OSTI]

    Saikin, Semion

    2012-01-01T23:59:59.000Z

    . INTRODUCTION Plants and some types of bacteria can efficiently process solar light by converting photonsPHYSICAL REVIEW B 85, 125424 (2012) Probing biological light-harvesting phenomena by optical Fiorentino, Italy 3 Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street

  11. 510 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 10, 2011 A Scalable Solar Antenna for Autonomous Integrated

    E-Print Network [OSTI]

    Tentzeris, Manos

    that can be integrated underneath a solar panel is presented. The topology alleviates the effect of solar--3-D RF modules, autonomous modules, omni- directional antenna, solar antenna, solar panel, wireless consumption of every individual node [11]. Currently, solar panels harvest the largest reported amount

  12. Phase 2 of the array automated assembly task for the Low Cost Silicon Solar Array Project. Seventh quarterly report

    SciTech Connect (OSTI)

    Petersen, R.C.

    1980-07-01T23:59:59.000Z

    Work during this quarter emphasized the evaluation of the Motorola metallization process, the major experimental task of the program. The Motorola process is a lengthy one, designed to assure reproducible metallization of solar cells, but it was found difficult to reproduce relative to a single step electroless nickel plating. It is also concluded, on the basis of experiments performed to date, that the product of the Motorola process is virtually identical to the product of a simple electroless nickel plating process.

  13. An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays

    E-Print Network [OSTI]

    Wang, Zhong L.

    An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 harvest and storage processes. This power pack incorporates a series-wound dye- sensitized solar cell, nanostructures have been widely used in energy harvesting devices, such as dye-sensitized solar cells (DSSCs

  14. Energy Department Announces Projects to Advance Cost-Effective...

    Office of Environmental Management (EM)

    Projects to Advance Cost-Effective Concentrating Solar Power Systems Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems May 21, 2014 -...

  15. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09T23:59:59.000Z

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  16. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 224 Altus Air Force Base Solar Technologies

    SciTech Connect (OSTI)

    Russo, Bryan J.

    2010-09-30T23:59:59.000Z

    The principal goal of this project was to evaluate altus Air Force Base for building integrated silicon or thin film module photovoltaic opportunities. This report documents PNNL's efforts and documents study conclusions.

  17. Bacteria TMDL Projects

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    of TMDL projects for water bodies where swimming or wading may be unsafe or harvesting of oysters is limited or prohibited due to high concentrations of bacteria. ? Atascosa River: A TMDL Project for Bacteria ? Buffalo andWhite Oak Bayous: A TMDL...

  18. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01T23:59:59.000Z

    principle behind photovoltaic cells. While solar thermalradiation is necessary, photovoltaic cells have been used onaxes, and possibly some small photovoltaic cells would fully

  19. CEC- New Solar Homes Partnership

    Broader source: Energy.gov [DOE]

    In January 2006, the California Public Utilities Commission (CPUC) adopted a program – the California Solar Initiative (CSI) – to provide more than $3 billion in incentives for solar projects with...

  20. Solar Trailer Group EGDSN 297 D

    E-Print Network [OSTI]

    Demirel, Melik C.

    Solar Trailer Group EGDSN 297 D Project Recap The objective of the Solar Trailer team was to design and implement a solar PV system for the ToolMaster Trailer HAZ-16 that is used by the Center for Sustainability was constructed. Finally in an all night effort to complete the project the racking and solar panels were

  1. Long Island Solar Farm

    SciTech Connect (OSTI)

    Anders, R.

    2013-05-01T23:59:59.000Z

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  2. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    as demand charges that solar customers cannot easily avoid,increases, future solar PV customers will likely facethere were 127,000 customer-side solar projects; totaling

  3. Harvesting RNA from 3-D Acinar Cultures 1) Aspirate the media from the wells for harvesting.

    E-Print Network [OSTI]

    Harvesting RNA from 3-D Acinar Cultures 1) Aspirate the media from the wells for harvesting. 2) Add for 15 minutes at room temperature with approximately 20 l DEPC water (for 4 wells of an 8 well chamber

  4. Harvest II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy | OpenHalfWindHartland WindHarvest II

  5. New Harvest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew Grid EnergyHarvest Jump to:

  6. UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni-

    E-Print Network [OSTI]

    Oregon, University of

    i UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni- toring Laboratory has been measuring incident solar radiation since 1975. Current support for this work comes from the Regional Solar Radiation Monitoring Project (RSRMP), a utility consortium project including the Bon

  7. Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header

    SciTech Connect (OSTI)

    Eisenbies, Mark [SUNY ESF; Volk, Timothy [SUNY ESF

    2014-10-03T23:59:59.000Z

    Demand for bioenergy sourced from woody biomass is projected to increase; however, the expansion and rapid deployment of short rotation woody crop systems in the United States has been constrained by high production costs and sluggish market acceptance due to problems with quality and consistency from first-generation harvesting systems. The objective of this study was to evaluate the effect of crop conditions on the performance of a single-pass, cut and chip harvester based on a standard New Holland FR-9000 series forage harvester with a dedicated 130FB short rotation coppice header, and the quality of chipped material. A time motion analysis was conducted to track the movement of machine and chipped material through the system for 153 separate loads over 10 days on a 54-ha harvest. Harvester performance was regulated by either ground conditions, or standing biomass on 153 loads. Material capacities increased linearly with standing biomass up to 40 Mgwet ha-1 and plateaued between 70 and 90 Mgwet hr-1. Moisture contents ranged from 39 to 51% with the majority of samples between 43 and 45%. Loads produced in freezing weather (average temperature over 10 hours preceding load production) had 4% more chips greater than 25.4 mm (P < 0.0119). Over 1.5 Mgdry ha-1 of potentially harvested material (6-9% of a load) was left on site, of which half was commercially undesirable meristematic pieces. The New Holland harvesting system is a reliable and predictable platform for harvesting material over a wide range of standing biomass; performance was consistent overall in 14 willow cultivars.

  8. Pre-Harvest Sprouting in Wheat

    E-Print Network [OSTI]

    Morgan, Gaylon

    2005-01-26T23:59:59.000Z

    This leaflet cautions producers about the problems associated with pre-harvest sprouting of wheat and how to recognize affected grains....

  9. The optimal harvesting problem with price uncertainty

    E-Print Network [OSTI]

    2011-07-01T23:59:59.000Z

    Jul 1, 2011 ... Abstract. In this paper we study the exploitation of a one species forest plan- ...... Optimal harvesting models in forest management – a survey.

  10. Apparatus and method for harvesting woody plantations

    DOE Patents [OSTI]

    Eggen, D.L.

    1988-11-15T23:59:59.000Z

    A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester. 8 figs.

  11. Apparatus and method for harvesting woody plantations

    DOE Patents [OSTI]

    Eggen, David L. (Rte. 1, Box 257, Moose Lake, MN 55767)

    1988-11-15T23:59:59.000Z

    A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester.

  12. Development of sustainable harvest strategies for cellulose-based biofuels: The effect of intensity and season of harvest on cellulosic feedstock and

    E-Print Network [OSTI]

    and Wildlife Foundation, "Budweiser Renewable Energy and Wildlife Conservation Prize," South Dakota Game, Fish) and by state and federal agencies. This project will examine how feedstock harvest will affect game bird, and Parks Federal Aid in Wildlife Restoration, and South Dakota State University Agricultural Experiment

  13. Solar Policy Environment: Seattle

    Broader source: Energy.gov [DOE]

    The objective of the Emerald City Solar Initiative is to overcome the barriers to widespread deployment of solar energy technology, dramatically increasing residential, commercial, City-owned, and community-scale solar energy use. The City has assembled a strong team of partners that have proven track records in the fields of public planning, renewable energy resource mapping, financial analysis, site analysis, education and outreach, policy analysis and advocacy, community organizing and renewable energy project development.

  14. Rainwater Harvesting: Guidance for Homeowners Although rainwater harvesting has been practiced for thousands of years,

    E-Print Network [OSTI]

    Hunt, William F.

    , vehicle washing, and plumbing, it is even possible for harvested rainwater to become the primary water a rooftop, and stores the water for later use. By using harvested rainwater for purposes that don't require of drinking water supplies. In some cases, a rainwater harvesting system can be used to wash cars or water

  15. Atrium House solar revitalization

    E-Print Network [OSTI]

    Malamuceanu, Dan Roland

    1984-01-01T23:59:59.000Z

    The idea behind the Atrium House Solar Revitalization project, may be briefly presented as: energy conserving, low rise, high density, related- to- the-sky residences. The proposed system consists of a reticulate grid - ...

  16. Solar Policy Environment: Berkeley

    Broader source: Energy.gov [DOE]

    The goals of this project are to (1) accelerate the adoption of solar technology at the local level by engaging the City, service providers, end users and regulators; (2) provide a model for other cities; and (3) promote solar technology among residents and local businesses.

  17. Scientific Motivation Project Overview

    E-Print Network [OSTI]

    van Dyk, David

    and Tracking of Solar Features David Stenning1 Vinay Kashyap2 Thomas Lee3 David van Dyk4 C. Alex Young5 1 Flight Center Stenning, David Automatic Classifying and Tracking of Solar Features #12;Scientific Classifying and Tracking of Solar Features #12;Scientific Motivation Project Overview Methodology Results

  18. Dye-Sensitized Solar Cells

    Broader source: Energy.gov [DOE]

    DOE supports research and development projects aimed at increasing the efficiency and lifetime of dye-sensitized solar cells (DSSCs). Below are a list of current projects, summary of the benefits,...

  19. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    E-Print Network [OSTI]

    Feldman, David

    2014-01-01T23:59:59.000Z

    global scope of most solar companies, analysts often projectSolar Market Insight Report: Q2 2012. ” Stifel, Nicolaus & Company,

  20. Solar Powered Classroom

    SciTech Connect (OSTI)

    none

    2013-06-13T23:59:59.000Z

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  1. Solar Powered Classroom

    ScienceCinema (OSTI)

    none

    2013-06-27T23:59:59.000Z

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  2. Increasing Community Access to Solar: Designing and Developing...

    Broader source: Energy.gov (indexed) [DOE]

    Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System Updated guide highlights project models, policies, and financing Community shared...

  3. Massachusetts Community Shared Solar Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Massachusetts community shared solar policy, and touches on key community shared solar models currently being utilized across the Commonwealth. Additionally, the webinar outlines key resources individuals and municipalities can use in order to pursue a community shared solar project.

  4. Community Solar Program Comparison Chart

    Broader source: Energy.gov [DOE]

    This chart is a supplement to the "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development," provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  5. The solar electric power outlook

    SciTech Connect (OSTI)

    Kemp, J.W.

    1995-12-31T23:59:59.000Z

    The outlook for solar electric power plants is discussed. The following topics are discussed: Amoco/Envon solar vision, multi-megawatt solar power projects, global carbon dioxide emission estimates, pollution and electric power generation, social costs of pollution economies of scale, thin-film power module, rooftop market strategy, regulatory issues regarding rooftop systems, and where do we go from here?

  6. Abengoa Solar, Inc. (Mojave Solar) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa...

  7. Methodology Water Harvesting Measurements with Biomimetic

    E-Print Network [OSTI]

    Barthelat, Francois

    Methodology Water Harvesting Measurements with Biomimetic Surfaces Zi Jun Wang and Prof. Anne parameters that affect the water harvesting efficiencies of different surfaces · Optimize the experimental Objectives Water is one of the most essential natural resources. The easy accessibility of water

  8. SOHO, the Solar and Heliospheric Observatory, is a project of international cooperation between ESA and NASA to study the Sun, from its deep core to the outer

    E-Print Network [OSTI]

    cooperation between ESA and NASA to study the Sun, from its deep core to the outer corona, and the solar wind and dynamics of the solar interior? · Why does the solar corona exist and how is it heated to the extremely

  9. Energy Exchange Nov 2001 The NEED Project PO Box 10101 Manassas, VA 20108 1-800-875-5029 INTERMEDIATE ACTIVITY: Solar Cooking

    E-Print Network [OSTI]

    Benitez-Nelson, Claudia

    Ă?8h INTERMEDIATE ACTIVITY: Solar Cooking GOAL: To build a solar hot dog cooker and test its ability 2. 6. Place the Solar Hot Dog Cooker into direct sunlight, positioning the flaps so of reflection. 7. Time how long it takes for your hot dog to cook. If it is a very cold day, consider how you

  10. International Conference on Water Harvesting, Storage and Conservation (WHSC-2009)

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    International Conference on Water ­ Harvesting, Storage and Conservation (WHSC-2009) 23rd ­ 25th International Conference on Water ­ Harvesting, Storage and Conservation (WHSC- 2009) was the first guidelines and implementing mechanisms for water harvesting, storage and conservation. The main objectives

  11. Harvesting Solar Energy for the Future | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3 HanfordHarry S. Truman

  12. Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations

    SciTech Connect (OSTI)

    None

    1983-01-01T23:59:59.000Z

    The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

  13. Solar Rights

    Broader source: Energy.gov [DOE]

    In June 2010, Louisiana enacted solar rights legislation (HB 751) that prohibits certain entities from unreasonably restricting a property owner from installing a solar collector. Solar collectors...

  14. Five Harvesting Technologies are Making Biofuels More Competitive...

    Energy Savers [EERE]

    Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

  15. Wave Energy Harvesting unmanned maritime vehicle, Concept and Applications

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Wave Energy Harvesting unmanned maritime vehicle, Concept and Applications Justin Manley Senior). By harvesting abundant natural energy Wave Gliders provide a persistent ocean presence to commercial scientific

  16. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...

    Energy Savers [EERE]

    ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

  17. alternative post harvest: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use harvested energy and test these both in simulation and experimentally on an energy harvesting sensor network, prototyped for this work. Aman Kansal; Jason Hsu; Sadaf...

  18. Five Harvesting Technologies are Making Biofuels More Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17, 2015...

  19. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh [Purdue] [Purdue

    2014-01-21T23:59:59.000Z

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  20. Harvesting Circuits for Miniaturized Photovoltaic Cells Rajiv Damodaran Prabha, Gabriel A. Rincn-Mora, and Suhwan Kim

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    Harvesting Circuits for Miniaturized Photovoltaic Cells Rajiv Damodaran Prabha, Gabriel A. Rincón is microscale photovoltaic (PV) cells only produce 1 and 100 µW/mm2 for artificial and solar lighting, so tiny photovoltaic (PV) cells constrains power to below 100 µW/mm2 , which parasitic components

  1. R[ CIPIENT:NREL U.S. DEPARThLFNT OF ENERGY EER E PROJECT MANAGEMENT...

    Broader source: Energy.gov (indexed) [DOE]

    NEPA DETlRMINATION Page 1 00 STATE: CO PROJECT TITLE: Regional Test Center Project: Solar Technology Acceleration Center (SolarTAC); NREL Tracking No. 12- 007 Funding...

  2. NASA/FPL Renewable Project Case Study: Space Coast Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NASAFPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center NASAFPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center...

  3. Innovation and Success in Solar Financing

    Broader source: Energy.gov [DOE]

    This webinar, "Innovation and Success in Solar Financing," was originally presented on July 10, 2013 as part of the DOE SunShot Initiative's Solar Action Webinar Series. After a brief presentation about the SunShot Initiative's overarching goals, three solar coordinators discuss their strategies for solving the financial challenges associated with their state- and local-level solar energy projects.

  4. Access to Solar: Designing and Developing a

    E-Print Network [OSTI]

    Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System Updated guide highlights project models, policies, and financing Community shared solar programs enable members of a neighborhood or community to pool resources and share the benefits of a single solar

  5. Maximum Power Transfer Tracking in a Solar USB Charger for Smartphones

    E-Print Network [OSTI]

    Pedram, Massoud

    chargers do not perform the maximum power point tracking [2], [3] of the solar panel. We excludeMaximum Power Transfer Tracking in a Solar USB Charger for Smartphones Abstract--Battery life poor capacity utilization during solar energy harvesting. In this paper, we propose and demonstrate

  6. On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar cells

    E-Print Network [OSTI]

    Ren, Kui

    -performance semiconductor-liquid junction solar cells. We propose in this work a macroscopic mathematical model, a sys- tem-liquid junction, solar cell simulation, naso-scale device modeling. 1 Introduction The mathematical modeling by the increasing need of simulation tools for designing efficient solar cells to harvest sunlight for clean energy

  7. Solar Policy Environment: Philadelphia

    Broader source: Energy.gov [DOE]

    The project will identify promising locations for photovoltaic installations and create a roadmap for commercial and residential system developers. The roadmap, published as the Solar Developers Guide to Philadelphia, will be used to promote and attract solar energy investment. Philadelphia’s long-term goal for solar energy is to fully utilize the potential of solar energy to safely, reliably, and cost-effectively displace the use of energy generated by fossil fuels. To achieve its solar energy goals, the City of Philadelphia must add large commercial scale (> 500 kW) solar installations to its ongoing efforts on the smaller scale (we note that a new 1 MW PV installation will be installed at the Philadelphia Navy Yard by the end of 2008).

  8. Soft Capacitors for Wave Energy Harvesting

    E-Print Network [OSTI]

    Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jřrgen Jřrgensen; Guggi Kofod

    2011-10-14T23:59:59.000Z

    Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.

  9. The Cleaning of Mechanically Harvested Cotton.

    E-Print Network [OSTI]

    Miller, H. F. (Herbert F.); Jones, D. L. (Don. L.); Smith, H. P. (Harris Pearson)

    1950-01-01T23:59:59.000Z

    The Cleaning of. Mechanically Harvested Cotton H. P. SMITH, D. L. JONES and H. F. MILLER, JR. 3lank Page in Original Bulletin] Preface For many years cotton growers in the High Plains area have found that cotton harvested late in the season... contained an excessive amount of foreign matter, and that the quality of the cotton was much lower than that of cotton harvested early in the season. This bulletin gives the results of a study conducted at Lubbock and College Station to determine...

  10. Harvesting Residuals-Economic Energy Link

    E-Print Network [OSTI]

    Owens, E. T.; Curtis, D. B.

    HARVESTING RESIDUALS-ECONOMIC ENERGY LINK E.T. Owens, R.P.F. Research and Productivity Council, Fredericton, N.B. D.B. Curtis, P.Eng. Dept. Forests, Mines and ABSTRACT A description of systems used in integrated harvesting of quality...-for-energy. economics INTRODUCTION The conventional wisdom in efficient harvesting Was to leave the non-merchantable and marginal trees because they had no economic value in the market place. Current technology and a change in the relative values of energy from...

  11. TSSWCB Bacteria-Related Projects

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    of TMDL projects for water bodies where swimming or wading may be unsafe or harvesting of oysters is limited or prohibited due to high concentrations of bacteria. ? Atascosa River: A TMDL Project for Bacteria ? Buffalo andWhite Oak Bayous: A TMDL...

  12. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  13. Photovoltaic concentrator technology development project. Sixth project integration meeting

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  14. Solar Technology Validation Project - Tri-State G&T: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-12

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01T23:59:59.000Z

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  15. Solar Technology Validation Project - Utah State Energy Program (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-09

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01T23:59:59.000Z

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  16. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    D EVELOPMENT I SSUES Solar Power in the Desert: Are the2 Most of the large-scale solar power projects utilize largethat will be affected by solar power facilities. There are

  17. Downhole vibration sensing by vibration energy harvesting

    E-Print Network [OSTI]

    Trimble, A. Zachary

    2007-01-01T23:59:59.000Z

    This thesis outlines the design of a prototype electromagnetic induction vibration energy harvesting device for use in a downhole environment. First order models of the necessary components for a generic vibration energy ...

  18. Reincarnation in the Ambiance: Devices and Networks with Energy Harvesting

    E-Print Network [OSTI]

    Kuzmanov, Georgi

    for improvement in battery technologies. An alternative is to harvest energy from the environment. An important of various types of energy harvesting techniques. We then provide some models used in energy harvesting1 Reincarnation in the Ambiance: Devices and Networks with Energy Harvesting R. Venkatesha Prasad

  19. Energy Harvesting Broadcast Channel with Inefficient Energy Storage

    E-Print Network [OSTI]

    Yener, Aylin

    Energy Harvesting Broadcast Channel with Inefficient Energy Storage Kaya Tutuncuoglu Aylin Yener with an energy harvesting transmitter equipped with an inefficient energy storage device. For this setting by the energy harvesting process. The convexity of the capacity region for the energy harvesting broadcast

  20. Design and Analysis of Micro-Solar Power Systems for Wireless Sensor Networks

    E-Print Network [OSTI]

    California at Berkeley, University of

    - ever, limitation of energy supply has constantly impeded the progress of WSN towards large scales and true autonomous operations. In recent years, energy harvesting, especially, solar energy harvesting has single-level energy storage and hardware-controlled battery charging. Whereas, Trio was designed

  1. Solar Instructor Training Network Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    These frequently asked questions (FAQs) relate to the solar instructor training network. This project was launched by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP or...

  2. Nellis Air Force Base solar array provides model for renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Nellis Air Force Base solar array provides model for renewable projects Nellis Air Force Base solar array provides model for renewable projects March 24, 2010 - 4:58pm Addthis The...

  3. Harvests, St. Hertha Kashevarof, Island Sentinel, Kayumitax Eco-office

    E-Print Network [OSTI]

    mortality i) weather conditions at the time of the harvest j) any other unusual conditions related harvested. Date of Harvest Rookery Weather Time of Harvest # of seals harvested 7-8-2013 North Wind: SW 8 Temp: 41 Start: 10:50am End: 11:20am 10 7-10-2013 Zapadni Wind: Calm Temp: 46 (fog) Start: 10:55am End

  4. SPPR Project Customer Comments Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DSW. The transfer capability provided by the project would allow delivery from a new solar generation facility to the Palo Verde Hub. Previous Meetings' Comments: Comments...

  5. Financing Non-Residential Photovoltaic Projects: Options and Implications

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    utilizes solar thermal trough technology (rather than PV),PV solar REC. The project features SunPower’s single-axis tracking technology,

  6. Project Profile: CSP Energy Storage Solutions - Multiple Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Solutions - Multiple Technologies Compared Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings,...

  7. Project Profile: Innovative Thermal Energy Storage for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

  8. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Energy Savers [EERE]

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

  9. Innovation and Success in Solar Permitting and Inspection

    Broader source: Energy.gov [DOE]

    This document summarizes several successful initiatives to streamline and standardize permitting requirements for local solar photovoltaic (PV) projects.

  10. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01T23:59:59.000Z

    ROAD BERKELEY, CALIFORNIA OBJECTIVE AND APPROACH The objective of this project is the development of absorption refrigeration systems for solar

  11. Engineering Project Solar-Boosted

    E-Print Network [OSTI]

    for the production of carbon neutral synthesis gas (H2 and CO). The produced syngas can in turn produce synthetic ...................................................................................13 2.1.2 The Slurry Bubble Column Reactor..................................................................................13 2.2 FT-Slurry Bubble Column Reactor Modelling

  12. Intagorn et al. Harvesting Geospatial Knowledge from Social Metadata Harvesting Geospatial Knowledge from Social

    E-Print Network [OSTI]

    Lerman, Kristina

    Intagorn et al. Harvesting Geospatial Knowledge from Social Metadata Harvesting Geospatial Institute lerman@isi.edu ABSTRACT Up-to-date geospatial information can help crisis management community of the social photo-sharing site Flickr to learn geospatial concepts and relations. Our method leverages

  13. Solar Energy of the North

    SciTech Connect (OSTI)

    Davis St. Peter Director of Faclities ( retired) Charles Bonin Vice President of Administration & Finance

    2012-01-12T23:59:59.000Z

    The concept of this project was to design a solar array that would not only provide electricity for the major classroom building of the campus but would also utilize that electricity to enhance the learning environment. It was also understood that the project would be a research and data gathering project.

  14. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  15. Solar Policy Environment: Madison

    Broader source: Energy.gov [DOE]

    The City of Madison’s Solar America Cities project, “MadiSUN”, will coordinate and galvanize substantial local and state resources to showcase how a U.S. Midwest city can dramatically increase the use of solar energy. Madison’s approach includes a comprehensive review of zoning and land use planning, streamlining the permitting processes, development of the local workforce, and assessment of city-owned buildings for solar PV and thermal applications. The City of Madison objective is to make Madison a green capital city and a national leader in energy efficiency and renewable energy.

  16. Project Profile: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells

    Broader source: Energy.gov [DOE]

    The Solexel-OC team is developing a BIPV roofing shingle product that includes low-profile solar modules and a unique attachment system that will be fastened directly to the roof and incorporates...

  17. NRG Solar (California Valley Solar Ranch) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) Location: San...

  18. Solar Easements

    Broader source: Energy.gov [DOE]

    Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

  19. White Paper to California Energy Commission on Assessment of Concentrated Solar Power David Barlev, Ruxandra Vidu, Pieter Stroeve

    E-Print Network [OSTI]

    Islam, M. Saif

    1 White Paper to California Energy Commission on Assessment of Concentrated Solar Power David Barlev, Ruxandra Vidu, Pieter Stroeve California Solar Energy Collaborative, University of California is put into the harvest and storage of solar energy for power generation. There are two mainstream

  20. On the modeling and simulation of of reaction-transfer dynamics in semiconductor-electrolyte solar cells

    E-Print Network [OSTI]

    -performance semiconductor-liquid junction solar cells. We propose in this work a macroscopic mathematical model, a sys- tem-liquid junction, solar cell simulation, naso-scale device modeling. 1 Introduction The mathematical modeling by the increasing need of simulation tools for designing efficient solar cells to harvest sunlight for clean energy

  1. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  2. Utility solar water heating workshops

    SciTech Connect (OSTI)

    Barrett, L.B. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

    1992-01-01T23:59:59.000Z

    The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

  3. Particulate residue separators for harvesting devices

    SciTech Connect (OSTI)

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29T23:59:59.000Z

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  4. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Appendix C - Appendix 0 - Solar Radiation Glossary. ConversSolar Data a. Solar Radiation. , , . , . . , , , , . , . . .

  5. Bridgeview Park facility solar retrofit

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The weatherization and insulation of a presently unheated frame park building and the installation of a Trombe wall on the south side of the structure for passive solar heating are planned. The major objectives of the project are to increase the exposure of local residents and visitors to passive solar technology and to demonstrate the applicability of passive solar technology to residential, commercial and recreational buildings. Some changes in the original plans are discussed. Five blueprints illustrate the planned improvements. (LEW)

  6. Community Shared Solar with Solarize

    Broader source: Energy.gov [DOE]

    An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

  7. Austin Energy's Residential Solar Rate

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was given by Leslie Libby of Austin Energy at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects.

  8. Fermi Guest Investigator Program Cycle 2 Project Final Report Albedo Polarimetry of Gamma-Ray Bursts and Solar Flares with GBM

    SciTech Connect (OSTI)

    Kippen, Richard Marc [Los Alamos National Laboratory

    2012-08-27T23:59:59.000Z

    Several key properties of GRBs remain poorly understood and are difficult or even impossible to infer with the information currently being collected. Polarization measurements will probe the precise nature of the central engine. For solar flares, high-energy polarization measurements are expected to be useful in determining the beaming (or directivity) of solar flare electrons - a quantity that may provide important clues about electron acceleration and transport. We propose to investigate the viability of using the Fermi Gamma-ray Burst Monitor (GBM) to measure the polarization of GRBs and solar flares using the albedo photon flux. This approach was previously developed for use with BATSE data. We will conduct a careful study of this technique using a modified version of the GRESS simulation tools developed by the GBM team.

  9. Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging

    E-Print Network [OSTI]

    Salvaggio, Carl

    Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging Abhijit Sarkar dynamic range CMOS video camera to integrate daylight harvesting and occupancy sensing functionalities by these sensors. The prototype involves three algorithms, daylight estimation, occupancy detection and lighting

  10. alfalfa haylage harvesting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    through. The CLNG can harvest the mechanical movement energy in a noncontact mode to generate electricity Wang, Zhong L. 418 MULTI-AXIS ALN-ON-SILICON VIBRATION ENERGY HARVESTER...

  11. An Investigation of Hydrological Aspects of Water Harvesting

    E-Print Network [OSTI]

    Wilke, O.; Runkles, J.; Wendt, C.

    Water harvesting is a potential source of water for arid and semiarid lands. The objectives of this study were to determine combinations of land surface treatments and land forming which result in efficient but inexpensive water harvesting...

  12. Tree Harvest in an Experimental Sand Ecosystem: Plant Effects on

    E-Print Network [OSTI]

    Vermont, University of

    Tree Harvest in an Experimental Sand Ecosystem: Plant Effects on Nutrient Dynamics and Solute control during this interval. During the 1st year after harvest, K concentrations tripled in shallow soil

  13. Dynamic analysis of an electrostatic energy harvesting system

    E-Print Network [OSTI]

    Niu, Feifei

    2013-01-01T23:59:59.000Z

    Traditional small-scale vibration energy harvesters have typically low efficiency of energy harvesting from low frequency vibrations. Several recent studies have indicated that introduction of nonlinearity can significantly ...

  14. Energy harvesting from wind-induced vibration of suspension bridges

    E-Print Network [OSTI]

    Shi, Miao, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Recently, an extensive amount of research has been focused on energy harvesting from structural vibration sources for wireless self-powered microsystem applications. One method of energy harvesting is using electromagnetic ...

  15. Feasibility Study & Design of Brightfield Solar Farm

    SciTech Connect (OSTI)

    Law, Susan

    2014-09-28T23:59:59.000Z

    This Congressionally Directed Project originally provided funds to the Township of Lower Providence, Pennsylvania for the purpose of investigating the potential for a renewable energy generation facility to make beneficial reuse of a closed landfill located within the Township, known as Moyer Landfill. Early in the course of the project, it was determined through collaboration and discussion with DOE to alter the scope of the project to include a feasibility assessment of a landfill solar project, as well as to construct a demonstration solar project at the municipal facilities to provide an educational and community outreach opportunity for the Township to offer regarding solar photovoltaic (“PV”) electricity generation.

  16. Support for Cost Analyses on Solar-Driven High Temperature Thermochemi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    near-term (2015) and longer-term (2025) cost projections for eight solar thermochemical hydrogen production reaction cycles. Support for Cost Analyses on Solar-Driven High...

  17. Optimization of Energy Harvesting MISO Communication Channels

    E-Print Network [OSTI]

    Gesbert, David

    1 Optimization of Energy Harvesting MISO Communication Channels Rajeev Gangula, Student Member-to-point multiple-input single-output (MISO) communication system is con- sidered when both the transmitter (TX bound on the ergodic rate of MISO channel with beamforming and limited feedback. Feedback bit allocation

  18. Easy Gardening.....Harvesting and Handling Vegetables

    E-Print Network [OSTI]

    Cotner, Sam; Masabni, Joseph; Wagner, Al

    2009-05-29T23:59:59.000Z

    Easy Gardening Joseph Masabni, Assistant Professor and Extension Horticulturist, The Texas A&M University System HARVESTING ? HANDLING ? STORING VEGETABLES -1- T ohelpensurethatthevegetables yougrowandprepareareofhigh quality.... Acknowledgments Thispublicationwasrevisedfromearlierversionswrittenby SamCotner,ProfessorEmeritusandformerExtension Horticulturist,andAlWagner,formerProfessorand ExtensionHorticulturist. -6- Produced by AgriLife Communications, The Texas A&M System Extension...

  19. Functional Differential Equations in Sustainable Forest Harvesting

    E-Print Network [OSTI]

    García, Oscar

    regulation. The sustainability of harvesting a given constant volume in a simplified forest model is studied regulation model . . . . . . . . . . . . . . 17 5.2 A different discretization) Frederiksberg, Denmark Abstract This article deals with the dynamics of the volume control method in forest

  20. ENERGY HARVESTING UTILISING THE GYROSCOPIC EFFECT

    E-Print Network [OSTI]

    Sóbester, András

    ENERGY HARVESTING UTILISING THE GYROSCOPIC EFFECT N.C. Townsend nick@soton.ac.uk Fluid Structure Educational Trust, through the Lloyd's Register University Technology Centre FSI Away Day 2011 The Concept be applied to any moving object or vehicle to enable energy recovery. The rolling and pitching motions

  1. Harvest Your 1. Your retirement income needs

    E-Print Network [OSTI]

    Northern British Columbia, University of

    to live longer than previous generations You're going to have a longer retirement (retire early, and liveHarvest Your Savings #12;Agenda 1. Your retirement income needs 2. Where will your retirement money come from? 3. Retirement accounts and products 4. Sun Life Financial's retirement services #12;Income

  2. Harvested Wood Products -an Incentive for Deforestation?

    E-Print Network [OSTI]

    Fischlin, Andreas

    1 Harvested Wood Products - an Incentive for Deforestation? Andreas Fischlin1 Abstract Mitigation for deforestation is real. To curb the disadvantages of HWP, some debiting of non-sustainable forest management activities are implemented that provide true disincentives to deforestation, HWP may continue to create some

  3. CANADIAN PEAT HARVESTING AND THE ENVIRONMENT

    E-Print Network [OSTI]

    Laval, Université

    CANADIAN PEAT HARVESTING AND THE ENVIRONMENT SECOND EDITION ISSUES PAPER, No. 2001-1 PUBLISHED IN PARTNERSHIP WITH: North American Wetlands Conservation Council Committee Canadian Sphagnum Peat Moss Tourbe de and funding of: · Canadian Sphagnum Peat Moss Association · Canadian Wildlife Service, Environment Canada

  4. The Challenge Domestic solar panels produce electricity

    E-Print Network [OSTI]

    Crowther, Paul

    Sheffield Science Gateway. The Challenge Domestic solar panels produce electricity for homes materials to a wide range of optoelectronic devices, including solar panels. This project was one of 10 of renewable energy generated by solar panels. As a country with ambitious targets for renewable energy at both

  5. Frank Vignola Solar Radiation Monitoring Laboratory

    E-Print Network [OSTI]

    Oregon, University of

    , and company image was a higher priority than a solar system's installation cost and performance. As total solar projects that are now being submitted to banks, bonding companies, and eveFrank Vignola Solar Radiation Monitoring Laboratory 1274 ­ University of Oregon Eugene, OR 97403

  6. Optimal Power Control for Energy Harvesting Transmitters in an Interference Channel

    E-Print Network [OSTI]

    Yener, Aylin

    water- filling algorithm. A practical distributed algorithm requiring only local energy harvestingOptimal Power Control for Energy Harvesting Transmitters in an Interference Channel Kaya harvesting transmit- ters and two corresponding receivers are considered. Energy harvesting transmitters have

  7. Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Philadelphia, Pennsylvania: Solar in Action (Brochure),...

  8. Commons and Anticommons in a simple Renewable Resource Harvest Model

    E-Print Network [OSTI]

    Boschetti, Fabio

    Commons and Anticommons in a simple Renewable Resource Harvest Model June 20, 2007 M. Bredea a model where agents harvesting from a renewable resource can impose limita- tions on the harvesting that a fluctuation destabilizes the system into severe overexploitation. key words: renewable resources, commons

  9. Water harvest via dewing Myoung-Woon Moon,

    E-Print Network [OSTI]

    Kim, Ho-Young

    Water harvest via dewing Anna Lee, Myoung-Woon Moon, Hyuneui Lim,§ Wan-Doo Kim,§ and Ho-Young Kim 305-343, Korea ABSTRACT: Harvesting water from humid air via dewing can provide a viable solution the effects of wettability and geometry of the condensation substrate on the water harvest efficiency

  10. Optimal Energy-Bandwidth Allocation for Energy Harvesting Interference Networks

    E-Print Network [OSTI]

    Fisher, Kathleen

    Optimal Energy-Bandwidth Allocation for Energy Harvesting Interference Networks Zhe Wang, Vaneet@research.att.com Abstract--We develop optimal energy-bandwidth allocation algorithm for the energy harvesting transmitters in interference networks. We assume that both the channel gain and the harvested energy are known for K slots

  11. The Energy Harvesting Multiple Access Channel with Energy Storage Losses

    E-Print Network [OSTI]

    Yener, Aylin

    The Energy Harvesting Multiple Access Channel with Energy Storage Losses Kaya Tutuncuoglu and Aylin considers a Gaussian multiple access channel with two energy harvesting transmitters with lossy energy storage. The power allocation policy maximizing the average weighted sum rate given the energy harvesting

  12. Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

  13. Resource Management for Fading Wireless Channels with Energy Harvesting Nodes

    E-Print Network [OSTI]

    Ulukus, Sennur

    Resource Management for Fading Wireless Channels with Energy Harvesting Nodes Omur Ozel1 , Kaya of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals

  14. RETURN TO THE RIVER -2000 Chapter 9 Harvest Management343343

    E-Print Network [OSTI]

    RETURN TO THE RIVER - 2000 Chapter 9 Harvest Management343343 Return to Table of Contents Go to Next Chapter CHAPTER 9. HARVEST MANAGEMENT "The way in which the Chinook salmon runs have held up under purposes has occurred since time immemorial. Records of intensive commercial harvest dating from 1865

  15. UBC Social Ecological Economic Development Studies (SEEDS) Community Service Learning (CSL) Project

    E-Print Network [OSTI]

    ) Project Portable Shelving Units Student Report UBC Farm Work Flow CSL Project Nathan Baugh, Greg Emslie workspace in and around the Harvest Hut, the team determined construction of two portable shelving units of produce harvested every week. In addition, the shelving units need to provide effective vertical storage

  16. Silicon materials task of the low cost solar array project (Phase III). Effects of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 2: analysis of impurity behavior

    SciTech Connect (OSTI)

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

    1980-01-23T23:59:59.000Z

    The object of this phase of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study encompassed topics including thermochemical (gettering) treatments, base doping concentration, base doping type (n vs. p), grain boundary-impurity interaction, non-uniformity of impurity distribution, long term effects of impurities, as well as synergic and complexing phenomena. The program approach consists in: (1) the growth of doubly and multiply-doped silicon single crystals containing a baseline boron or phosphorus dopant and specific impurities which produce deep levels in the forbidden band gap; (2) assessment of these crystals by chemical, microstructural, electrical and solar cell tests; (3) correlation of the impurity type and concentration with crystal quality and device performance; and (4) delineation of the role of impurities and processing on subsequent silicon solar cell performance. The overall results reported are based on the assessment of nearly 200 silicon ingots. (WHK)

  17. Effect of pre-harvest calcium chloride applications on fruit calcium level and post-harvest anthracnose disease of papaya

    E-Print Network [OSTI]

    Biggs, Alan R.

    -harvest anthracnose disease of papaya Babak Madani a,*, Mahmud Tengku Muda Mohamed a,**, Alan R. Biggs c , Jugah Kadir

  18. EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project...

    Office of Environmental Management (EM)

    ARTisun Photovoltaic Manufacturing Project in Saginaw, MI February 1, 2010 EA-1827: Final Environmental Assessment Suniva Solar Project Site Community Development Block Grant in...

  19. Analysis & Projections - U.S. Energy Information Administration...

    U.S. Energy Information Administration (EIA) Indexed Site

    that project energy consumption for marketed energy sources plus distributed solar and geothermal energy. Both the RDM and CDM include projections of energy consumption by...

  20. """,,,,. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlilINATION RECIPIENT:University of Tennessee PROJECT TITLE : Rooftop Solar Challenge: Inducing PV Market...

  1. Energy Department Announces New University-Led Projects to Create...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University-Led Projects to Create More Efficient, Lower Cost Concentrating Solar Power Systems Energy Department Announces New University-Led Projects to Create More Efficient,...

  2. About Recreational Shellfish Harvesting in Southwest Florida In many northern coastal states it is common for individuals to harvest

    E-Print Network [OSTI]

    Watson, Craig A.

    designate an area for harvesting. Within a SHA, there are several water classifications. The public is only allowed to harvest shellfish from approved or conditionally approved waters. Before visiting a SHA) Shellfish harvesting can only occur in conditionally approved waters within the Ten Thousand Islands SHA

  3. Integrated Solar Thermochemical Reaction System

    Broader source: Energy.gov [DOE]

    This fact sheet describes an integrated solar thermochemical reaction system project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pacific Northwest National Laboratory, is working to develop and demonstrate a high-performance solar thermochemical reaction system in an end-to-end demonstration that produces electricity. A highly efficient solar thermochemical reaction system would allow for 24-hour operation without the need for storage technology, and reductions in total system costs while providing a relatively low-risk deployment option for CSP systems.

  4. Online National Solar Energy Directory and 2005 Solar Decathlon Product Directory. Final report

    SciTech Connect (OSTI)

    Hamm, Julia; Taylor, Mike

    2008-12-31T23:59:59.000Z

    The Solar Electric Power Association (SEPA), in partnership with the American Solar Energy Society, developed an online National Solar Energy Directory with clear, comprehensive information on suppliers and purchasing options. The site was originally located at FindSolar.com, but has recently been moved to Find-Solar.org. The original FindSolar.com domain name has been taken by the American Solar Energy Society (a partner in this project) and utilized for a similar but different project. This Find-Solar.org directory offers the rapidly growing base of potential solar customers a simple, straightforward destination to learn about their solar options. Members of the public are able to easily locate contractors in their geographic area and verify companiesâ?? qualifications with accurate third-party information. It allows consumers to obtain key information on the economics, incentives, desirability, and workings of a solar energy system, as well as competing quotes from different contractors and reviews from customers they have worked with previously. Find-Solar.org is a means of facilitating the growing public interest in solar power and overcoming a major barrier to widespread development of U.S. solar markets. In addition to the development of Find-Solar.org, SEPA developed a separate online product directory for the 2005 DOE Solar Decathlon to facilitate the communication of information about the energy efficiency and renewable energy products used in each university teamâ??s home.

  5. innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power

    E-Print Network [OSTI]

    innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power To fully harvest a database of potential wind power sites and detailed, time-dependent estimates of the power that would the nation's bountiful wind and solar resources, it is critical to know how much electrical power from

  6. Advanced Nanomaterials for High-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Chen, Junhong [University of Wisconsin-Milwaukee] [University of Wisconsin-Milwaukee

    2013-11-29T23:59:59.000Z

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these nanomaterials in solar cells (both as photoanodes and counter electrodes), gas sensors, and energy storage devices. This research is potentially transformative since the availability of affordable hybrid nanostructures and their fundamental properties will enable various innovative applications of the multifunctional hybrid nanostructures and thus will accelerate new discoveries and inventions in nanoscience and nanotechnology.

  7. Next-Generation Solar Collectors for CSP

    Broader source: Energy.gov [DOE]

    This fact sheet on Next-Generation Collectors for CSP highlights a solar energy program awarded through the 2012 SunShot Concentrating Solar Power R&D awards. The team is developing new solar collector base technologies for next-generation heliostats used in power tower systems. If successful, this project will result in a 50% reduction in solar field equipment cost and a 30% reduction in field installation cost compared to existing heliostat designs.

  8. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect (OSTI)

    Dr Stephan Bremner

    2010-07-21T23:59:59.000Z

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  9. Light-harvesting in bacteria exploits a critical interplay between transport and trapping dynamics

    E-Print Network [OSTI]

    Felipe Caycedo-Soler; Ferney J. Rodriguez; Luis Quiroga; Neil F. Johnson

    2010-03-11T23:59:59.000Z

    Light-harvesting bacteria Rhodospirillum Photometricum were recently found to adopt strikingly different architectures depending on illumination conditions. We present analytic and numerical calculations which explain this observation by quantifying a dynamical interplay between excitation transfer kinetics and reaction center cycling. High light-intensity membranes (HLIM) exploit dissipation as a photo-protective mechanism, thereby safeguarding a steady supply of chemical energy, while low light-intensity membranes (LLIM) efficiently process unused illumination intensity by channelling it to open reaction centers. More generally, our analysis elucidates and quantifies the trade-offs in natural network design for solar energy conversion.

  10. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ASSESSMENT OF PIEZOELECTRIC MATERIALS FOR ROADWAY ENERGY HARVESTING Cost of Energy and Demonstration Roadmap Prepared for: California Energy Commission Prepared by: DNV KEMA Energy & Sustainability JANUARY 2014 CEC5002013007

  11. Renewal of Collaborative Research: Economically viable Forest Harvesting Practices that Increase Carbon Sequestration

    SciTech Connect (OSTI)

    Dail, David Bryan [University of Maine

    2012-08-02T23:59:59.000Z

    This technical report covers a 3-year cooperative agreement between the University of Maine and the Northeastern Forest Experiment Station that focused on the characterization of forest stands and the assessment of forest carbon storage (see attached for detailed description of the project). The goal of this work was to compare estimates of forest C storage made via remeasurement of FIA-type plots with eddy flux measurements. In addition to relating whole ecosystem estimates of carbon storage to changes in aboveground biomass, we explored methodologies by partitioning growth estimates from periodic inventory measurements into annual estimates. In the final year, we remeasured plots that were subject to a shelterwood harvest over the winter of 2001-02 to assess the production of coarse woody debris by this harvest, to remeasure trees in a long-term stand first established by NASA, to carry out other field activities at Howland, and, to assess the importance of downed and decaying wood as well as standing dead trees to the C inputs to harvested and non harvested plots.

  12. The photospheric solar oxygen project: III. Investigation of the centre-to-limb variation of the 630nm [OI]-NiI blend

    E-Print Network [OSTI]

    Caffau, E; Steffen, M; Livingston, W; Bonifacio, P; Malherbe, J -M; Doerr, H -P; Schmidt, W

    2015-01-01T23:59:59.000Z

    The solar photospheric abundance of oxygen is still a matter of debate. For about ten years some determinations have favoured a low oxygen abundance which is at variance with the value inferred by helioseismology. Among the oxygen abundance indicators, the forbidden line at 630nm has often been considered the most reliable even though it is blended with a NiI line. In Papers I and Paper II of this series we reported a discrepancy in the oxygen abundance derived from the 630nm and the subordinate [OI] line at 636nm in dwarf stars, including the Sun. Here we analyse several, in part new, solar observations of the the centre-to-limb variation of the spectral region including the blend at 630nm in order to separate the individual contributions of oxygen and nickel. We analyse intensity spectra observed at different limb angles in comparison with line formation computations performed on a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. The oxygen abundances obtained from the forbidden line at differe...

  13. 1742 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--I: REGULAR PAPERS, VOL. 55, NO. 6, JULY 2008 An Adaptive System for Optimal Solar Energy

    E-Print Network [OSTI]

    Alippi, Cesare

    An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes Cesare Alippi, Fellow, with solar energy being the most inter- esting one in outdoor deployments due to its relatively high power transferring circuit for optimally conveying solar energy into rechargeable batteries even in not optimal

  14. Solar Rights

    Broader source: Energy.gov [DOE]

    Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

  15. Solar Technology Center

    SciTech Connect (OSTI)

    Boehm, Bob

    2011-04-27T23:59:59.000Z

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  16. Hidden symmetries enhance quantum transport in Light Harvesting systems

    E-Print Network [OSTI]

    Tobias Zech; Roberto Mulet; Thomas Wellens; Andreas Buchleitner

    2012-05-23T23:59:59.000Z

    For more than 50 years we have known that photosynthetic systems harvest solar energy with almost unit {\\it quantum efficiency}. However, recent experimental evidence of {\\it quantum coherence} during the excitonic energy transport in photosynthetic organisms challenges our understanding of this fundamental biological function. Currently, and despite numerous efforts, the causal connection between coherence and efficiency is still a matter of debate. We show, through the study of extensive simulations of quantum coherent transport on networks, that three dimensional structures characterized by centro-symmetric Hamiltonians are statistically more efficient than random arrangements. Moreover, we demonstrate that the experimental data available for the electronic Hamiltonians of the Fenna-Mathew-Olson (FMO) complex of sulfur bacteria and of the crypophyte PC645 complex of marine algae are consistent with this strong correlation of centro-symmetry with quantum efficiency. These results show that what appears to be geometrically disordered complexes may well exhibit a hidden symmetry which enhances the energy transport between chromophores. We are confident that our results will motivate research to explore the properties of nearly centro-symmetric Hamiltonians in more realistic environments, and to unveil the role of symmetries for quantum effects in biology. The unravelling of such symmetries may open novel perspectives and suggest new design principles in the development of artificial devices.

  17. Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials by

    E-Print Network [OSTI]

    Iglesia, Enrique

    ­2077). Given the proposed scales of PV adoption, the health and environmental impacts of PV technology shouldGreen Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials also be considered. This project would examine the proposed solar cell materials and designs and create

  18. 2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases for

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    technology such as concentrating solar power (CSP). PV project developers first need to identify photovoltaic (PV) or thermal solar. This paper focuses on PV but can surely be extended to thermal solar) for concentrated PV (CPV) technology. Once a site has been identified, the same developers along with engineering

  19. DOE SunShot Webinar: Solar for All- A Community Solar Webinar

    Broader source: Energy.gov [DOE]

    This DOE SunShot Outreach Partnership webinar, presented in partnership with ICLEI Local Governments for Sustainability USA, will focus on solar programs that are complimentary to ICLEI's Renewables Division as part of the DOE's SunShot Initiative. The webinar will feature the city of Beaverton, Oregon's Solar on Reservoirs project, and Tompkins County, New York's Solarize Program.

  20. Project: BELLA Bldg. #: 71

    E-Print Network [OSTI]

    TO CONSTRUCTION AS OF 10/4/2011 Current/Approved Projects Project: Solar Energy Research Center Bldg. #:TBD. #: TBD Affected Area: R1 Road & V Road (58) Dates: 8/2011 - 9/2013 6 Small Projects: A. B50 Electrical/1/2014 N3 (58) 42 11/1/2011 2/1/2014 M-1 (35) 12 10/1/2010 11/1/2011 B81 (21) 18 10/1/2010 11/1/2011 V Road