Sample records for hart downstream energy

  1. Sandia Energy - David B. Hart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB. Hart Home David B.

  2. A Hart Energy Publication When science crosses

    E-Print Network [OSTI]

    National Oceanography Centre, Southampton

    A Hart Energy Publication APRIL 2005 SeaQuest: When science crosses public/private boundaries support decisions GLOBAL EXPLORATION & PRODUCTION NEWS · TECHNOLOGY UPDATES · ANALYSIS SeaQuest: When ENGINEERING AWARDS #12;E&P | April 2005 SEA QUESTWHEN SCIENCE CROSSES PUBLIC/PRIVATE SECTOR BOUNDARIES, GOOD

  3. Hart Electric Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information HanergyHarney Electric Coop,Hart Electric

  4. Lake Hart, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois: EnergyFlorida: Energy ResourcesHart,

  5. Bret Harte, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro,Hampshire: EnergyBret Harte, California:

  6. Hart County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation HandbookOhio: EnergyWestOhio:Rhode

  7. Hart County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation HandbookOhio: EnergyWestOhio:RhodeKentucky:

  8. City of Hart Hydro, Michigan (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCityCity of Harrisonburg,City of

  9. Downstream-based Scheduling for Energy Conservation in Green EPONs

    E-Print Network [OSTI]

    Shihada, Basem

    1 Downstream-based Scheduling for Energy Conservation in Green EPONs Shen Chen, Ahmad R. Dhaini maximum energy conservation in green Ethernet passive optical networks (EPONs). While overlapping allocation scheme for energy conservation in green EPONs. Simulation results verify the proposed model

  10. On downstream hydraulic geometry and optimal energy expenditure: case study of the Ashley and Taieri Rivers

    E-Print Network [OSTI]

    Ramírez, Jorge A.

    On downstream hydraulic geometry and optimal energy expenditure: case study of the Ashley Abstract The downstream distribution of channel geometry and of the rate of energy expenditure per unit the network. We look at energy expenditure from two perspectives. (1) In the context of downstream hydraulic

  11. Dynamics and Equilibria Sergiu Hart

    E-Print Network [OSTI]

    Dynamics and Equilibria Sergiu Hart Presidential Address, GAMES 2008 (July 2008) Revised and Expanded (November 2009) Revised (2010, 2011, 2012, 2013) SERGIU HART c 2008 ­ p. #12;DYNAMICS.D. Dissertation, Princeton 1950 SERGIU HART c 2008 ­ p. #12;Dynamics SERGIU HART c 2008 ­ p. #12;Dynamics FACT

  12. Energy Efficient GPS Sensing with Cloud Offloading Jie Liu, Bodhi Priyantha, Ted Hart

    E-Print Network [OSTI]

    Hunt, Galen

    , the unit is equipped with a 540-gram (1.2 pound) solar cell array and a 287-gram (0.6 pound) 2A-h lithium, although becoming increasingly ubiquitous and lower in cost, is processing-intensive and energy

  13. Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnection

    SciTech Connect (OSTI)

    Lapenta, Giovanni [Departement Wiskunde, KU Leuven, Universiteit Leuven (Belgium)] [Departement Wiskunde, KU Leuven, Universiteit Leuven (Belgium); Goldman, Martin; Newman, David [University of Colorado, Colorado 80309 (United States)] [University of Colorado, Colorado 80309 (United States); Markidis, Stefano [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden); Divin, Andrey [Swedish Institute of Space Physics, Uppsala (Sweden)] [Swedish Institute of Space Physics, Uppsala (Sweden)

    2014-05-15T23:59:59.000Z

    The electromagnetic energy equation is analyzed term by term in a 3D simulation of kinetic reconnection previously reported by Vapirev et al. [J. Geophys. Res.: Space Phys. 118, 1435 (2013)]. The evolution presents the usual 2D-like topological structures caused by an initial perturbation independent of the third dimension. However, downstream of the reconnection site, where the jetting plasma encounters the yet unperturbed pre-existing plasma, a downstream front is formed and made unstable by the strong density gradient and the unfavorable local acceleration field. The energy exchange between plasma and fields is most intense at the instability, reaching several pW/m{sup 3}, alternating between load (energy going from fields to particles) and generator (energy going from particles to fields) regions. Energy exchange is instead purely that of a load at the reconnection site itself in a region focused around the x-line and elongated along the separatrix surfaces. Poynting fluxes are generated at all energy exchange regions and travel away from the reconnection site transporting an energy signal of the order of about S?10{sup ?3}W/m{sup 2}.

  14. ,The Honorable Donald Hart

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal' TO: J. c.

  15. Neutrino Factory Downstream Systems

    E-Print Network [OSTI]

    Zisman, Michael S.

    2010-01-01T23:59:59.000Z

    Neutrino Factory Downstream Systems Michael S. Zisman*Factory accelerator systems downstream from the target andthe Neutrino Factory systems downstream of the target and

  16. Energy watchers IV. Energy, economics and environment: Imperatives realities, and balance and Pacific Basin Demand and downstream activities: Is Middle East supply the answer

    SciTech Connect (OSTI)

    El Mallakh, D.H. (ed.)

    1993-01-01T23:59:59.000Z

    Since 1974, the International Research Center for Energy and Economic Development (ICEED) has been holding annual international energy conferences that seek to bring together the public and private sectors from the United States and overseas in order to facilitate the exchange of views and information. The nineteenth annual international energy sessions on [open quotes]Energy, Economics, and Environment: Imperatives, Realities, and Balance,[close quotes] opened April 21, 1992. The goal was to look at the complex linkage between energy and the environment that cannot be decoupled in the near to medium future. The thirteenth annual international area conference, held from April 23-24, 1992, reflected appreciation and acknowledgement of the primacy of the Arabian/Persian Gulf in international energy trade. The area theme, [open quotes]Pacific Basin Demand and Downstream Activities: Is Middle East Supply the Answer ,[close quotes] was premised on the solidification of trade blocs globally and on these two regions which represent the major areas of growth in energy demand and petroleum supply, respectively. Issues addressed in the papers presented included the impact on the world oil sector of these demand and supply zones in the direction of upstream and downstream investment, the approaches and instruments that may be initiated or honed in terms of joint ventures and supply arrangements in the 1990s, and the possibility that the former USSR will become an energy land bridge between the Pacific Basin and Europe.

  17. accelerated radiotherapy hart: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Sergiu Hart ERC) Mathematics Websites Summary: : participation in international conference Application: 1) Cover letter, including a brief description Stipend: 9,900 NIS...

  18. Growth Forms George W. Hart

    E-Print Network [OSTI]

    -looking geometric sculpture which can be built on 3D printing machines. It relates to well-known techniques of L) and geometric (3D) output. Every step along the way determines a triangulated manifold boundary that can into the space that the single cell formerly occupied. Their geometry is then determined by a spring energy

  19. Sandia National Laboratories: drastically simplify downstream...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drastically simplify downstream sugarlignin recovery process One-Pot-to-Prep Biomass for Biofuels On September 10, 2013, in Biofuels, Biomass, Energy, Facilities, JBEI, News, News...

  20. Neutrino Factory Downstream Systems

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2009-12-23T23:59:59.000Z

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  1. Rubber Bandzzles: Three Mathematical Puzzle-Art Challenges George Hart

    E-Print Network [OSTI]

    Rubber Bandzzles: Three Mathematical Puzzle-Art Challenges George Hart Museum of Mathematics office supplies. Should there be rubber bands lying about on the conference table of your next dreary replicating it hundreds of times over the years. As Fig. 1 indicates, The Worm is a single rubber band very

  2. DOWNSTREAM MOVEMENT OF SALMON IDS

    E-Print Network [OSTI]

    DOWNSTREAM MOVEMENT OF SALMON IDS AT BONNEVILLE DAM Marine Biological Laboratory APR 1 7 1958 WOODS Washington, D. C January 1958 #12;ABSTRACT At Bonneville Deun most downstream-migrant salmonlds were ca TABLES 1. Hourly catches of downstream-migrant seLLmonids in 1952. Each hour represents the suomation

  3. Lynden Archer > Marjorie L. Hart Chair

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back Love Yourphotophysics

  4. Downstream hydraulic geometry relations: 2. Calibration and testing

    E-Print Network [OSTI]

    Singh, Vijay P.; Yang, Chih Ted; Deng, Zhi-Qiang

    2003-12-04T23:59:59.000Z

    Downstream hydraulic geometry relations: 2. Calibration and testing Vijay P. Singh Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana, USA Chih Ted Yang 1 Department of Civil Engineering, Colorado...; KEYWORDS: dynamic equilibrium, hydraulic geometry, maximum entropy, minimum energy dissipation, regime equations, stream power Citation: Singh, V. P., C. T. Yang, and Z.-Q. Deng, Downstream hydraulic geometry relations: 2. Calibration and testing, Water...

  5. Downstream Competition, Foreclosure, and Vertical Integration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Downstream Competition, Foreclosure, and Vertical Integration Gilles Chemla ¤ July 8, 2002 and Management Strategy 12, 2 (2003) 261-289." #12;Downstream Competition, Forclosure, and Vertical Integration Abstract This paper analyzes the impact of competition among downstream ¯rms on an upstream ¯rm's payo

  6. UPSTREAM AND DOWNSTREAM INFLUENCE ON STBLI UNSTEADINESS Upstream and Downstream Influence on the Unsteadiness

    E-Print Network [OSTI]

    Martín, Pino

    UPSTREAM AND DOWNSTREAM INFLUENCE ON STBLI UNSTEADINESS 1 Upstream and Downstream Influence between the incoming flow and the shock motions, as well as the downstream flow and the shock unsteadiness correlate with downstream shock motion. Pirozzoli & Grasso [14] analyzed DNS data of a reflected shock

  7. The study of downstream targets and other characteristics of NTT

    E-Print Network [OSTI]

    Fung, Michelle W.

    2009-01-01T23:59:59.000Z

    SAN DIEGO The Study of Downstream Targets and OtherOF THE THESIS The Study of Downstream Targets and Othera number of putative downstream targets of NTT, including

  8. Fractal Volume Compression Wayne O. Cochran John C. Hart Patrick J. Flynn

    E-Print Network [OSTI]

    Fractal Volume Compression Wayne O. Cochran John C. Hart Patrick J. Flynn School of Electrical@eecs.wsu.edu October 18, 1995 Abstract This research is the rst application of fractal compression to volumetric data. The various components of the fractal image compression method extend simply and di- rectly to the volumetric

  9. Interactive Material Replacement in Photographs Steve Zelinka Hui Fang Michael Garland John C. Hart

    E-Print Network [OSTI]

    Garland, Michael

    Interactive Material Replacement in Photographs Steve Zelinka Hui Fang Michael Garland John C. Hart Department of Computer Science University of Illinois at Urbana­Champaign Figure 1: Replaced materials replacement has wide application through- out the entertainment industry, particularly for post- production

  10. Juvenile Salmonid SurvivalJuvenile Salmonid Survival Downstream of theDownstream of the

    E-Print Network [OSTI]

    Juvenile Salmonid SurvivalJuvenile Salmonid Survival Downstream of theDownstream of the Federal as fish move downstream Reach Release-BO N 1BO N 1-K alam aK alam a-O ak PtO ak Pt-3-Tree 3-Tree decreases downstreamrate decreases downstream Reach Release-BO N 1 BO N 1-O ak Pt O ak Pt-3-Tree 3-Tree

  11. Supply chain practices in the petroleum downstream

    E-Print Network [OSTI]

    Santos Manzano, Fidel

    2005-01-01T23:59:59.000Z

    This thesis studies current supply chain practices in the petroleum downstream industry, using ExxonMobil as a case study. Based on the analysis of the literature and the interaction with industry experts, this work describes ...

  12. SPECTRAL PICTURES OF AB AND BA Robin Harte, Young Ok Kim and Woo Young Lee

    E-Print Network [OSTI]

    Lee, Woo Young

    ;2 ROBIN HARTE, YOUNG OK KIM AND WOO YOUNG LEE If A B(X), write (A), left (A), right (A), ess(A), left ess (A), and right ess (A) for the spectrum, the left spectrum, the right spectrum, the essential(X), a hole in ess(A) is a bounded component of C \\ ess(A) and a pseudohole in ess(A) is a component of ess

  13. The iPhone Goes Downstream: Mandatory Universal Distribution?

    E-Print Network [OSTI]

    Karp, Larry; Perloff, Jeffrey

    2011-01-01T23:59:59.000Z

    Paper 1125 The iPhone Goes Downstream: mandatory universalauthor(s). The iPhone Goes Downstream: Mandatory UniversaliPhones using a single downstream vendor prompted calls for

  14. TUDE DES DFAUTS PONCTUELS DANS LE NIOBIUM R. PICHON, F. VANONI, P. BICHON, G. de KEATING-HART, P. MOSER

    E-Print Network [OSTI]

    Boyer, Edmond

    427 ÉTUDE DES DÉFAUTS PONCTUELS DANS LE NIOBIUM R. PICHON, F. VANONI, P. BICHON, G. de KEATING-HART, P. MOSER C. E. N. G., 38, Grenoble Résumé. 2014 Un niobium de très haute pureté a été élaboré par °K et par des analyses par activation (Rumb/R4°K=2 000 ; 0 1 ppm, C 1 ppm .Ce niobium a été irradié

  15. Title: The recollision model in ultra-short light fields Prof. H.W. van der Hart Description

    E-Print Network [OSTI]

    Paxton, Anthony T.

    advances in laser technology have enabled scientists to create ultra-short light pulses with a durationTitle: The recollision model in ultra-short light fields Prof. H.W. van der Hart Description Recent of the current questions in attosecond physics is the question of how ultra-short light pulses can be shaped

  16. COOPERATIVE GAME THEORY SOLUTION IN AN UPSTREAM-DOWNSTREAM RELATIONSHIP

    E-Print Network [OSTI]

    COOPERATIVE GAME THEORY SOLUTION IN AN UPSTREAM-DOWNSTREAM RELATIONSHIP By Ezio Marchi Paula Andrea THEORY SOLUTION IN AN UPSTREAM-DOWNSTREAM RELATIONSHIP MARCHI, Ezio Instituto de Matemática Aplicada San; and second, an economic element, where we reconsider the upstream-downstream relationship under a cooperative

  17. The Nonlinear Downstream Development of Baroclinic Instability Joseph Pedlosky

    E-Print Network [OSTI]

    Pedlosky, Joseph

    The Nonlinear Downstream Development of Baroclinic Instability Joseph Pedlosky Woods Hole The downstream development in both space and time of baroclinic instability is studied in a nonlinear channel as a conceptual model for the development of fluctuations in currents like the Gulf Stream and Kuroshio downstream

  18. The iPhone Goes Downstream: Mandatory Universal Distribution

    E-Print Network [OSTI]

    Silver, Whendee

    The iPhone Goes Downstream: Mandatory Universal Distribution Larry S. Karp Jeffrey M. Perloff February 2010 Abstract Apple's decision to market iPhones using a single downstream vendor has prompted vendors. We show that an upstream monopoly might want to use one or more downstream vendors, and society

  19. The iPhone Goes Downstream: Mandatory Universal Distribution

    E-Print Network [OSTI]

    Karp, Larry S.

    The iPhone Goes Downstream: Mandatory Universal Distribution Larry S. Karp Jeffrey M. Perloff December 2011 Abstract Apple's original decision to market iPhones using a single downstream vendor prompted calls for mandatory universal distribution (MUD), whereby all downstream vendors would sell the i

  20. DOWNSTREAM MOVEMENT OF LAMPREYS AND FISHES IN THE

    E-Print Network [OSTI]

    387 DOWNSTREAM MOVEMENT OF LAMPREYS AND FISHES IN THE CARP LAKE RIVER, MICHIGAN SPECIAL SCIENTIFIC, Commissioner Bureau of Conrunercial Fisheries, Donald L. McKernaui, Director DOWNSTREAM MOVEMENT OF LAMPREYS in the traps. #12;CONTENTS Page Introduction 1 Downstream movement of lampreys 1 Length and weight of migrant

  1. Integrating Future Communication Technologies for the Downstream Component of

    E-Print Network [OSTI]

    Gesbert, David

    Integrating Future Communication Technologies for the Downstream Component of Public Warning an alert system in case of coastal tsunami due to underwater landslides. Its downstream component combines of the alerting global system. This paper presents the RATCOM architecture, focusing mainly on its downstream

  2. The Impact of the Central Asian Mountains on Downstream Storminess and Monsoon Onset

    E-Print Network [OSTI]

    Park, Hyo Seok

    2010-01-01T23:59:59.000Z

    of the upstream BCC on downstream storminess 2.5. Stationarylevel cyclonic motions downstream of the Tibetan Plateau.Chang, E. K. N. , 1993: Downstream development of baroclinic

  3. Time-Dependent Traffic Flow Features at a Freeway Bottleneck Downstream of a Merge

    E-Print Network [OSTI]

    Bertini, Robert Lawrence

    1999-01-01T23:59:59.000Z

    74 Upstream and downstream N-curves, Queen Elizabethconditions upstream and downstream of a freeway bottleneckfreely between those two downstream stations. Conversely,

  4. Reduction in downstream test utilization following introduction of coronary computed tomography in a cardiology practice

    E-Print Network [OSTI]

    Karlsberg, Ronald P.; Budoff, Matthew J.; Thomson, Louise E.; Friedman, John D.; Berman, Daniel S.

    2010-01-01T23:59:59.000Z

    PAPER Reduction in downstream test utilization followingtesting, reduction of downstream SPECT MPI and TME as wellechocardiography Á Downstream utilization Á Cardiology

  5. Molecular Mechanism of Beta-Arrestin-dependent ERK activation Downstream of Protease-activated Receptor-2

    E-Print Network [OSTI]

    Min, Jungah

    2011-01-01T23:59:59.000Z

    mechanisms of two distinct downstream pathways of PAR-2 viaof the cofilin pathway downstream of protease-activatedand membrane protrusions downstream of protease-activated

  6. Novel Insights into the Downstream Pathways and Targets Controlled by Transcription Factors CREM in the Testis

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    proteins in spermatids: Downstream targets and implicationsNovel Insights into the Downstream Pathways and TargetsNovel Insights into the Downstream Pathways and Targets

  7. Rethinking Downstream Regulation: California's Opportunity to Engage Households in Reducing Greenhouse Gases

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    D. , et al. , Rethinking downstream regulation: California’sD. , et al. , Rethinking downstream regulation: California’slocate/enpol Rethinking downstream regulation: California’s

  8. Beta-arrestin inhibits CAMKKbeta-dependent AMPK activation downstream of protease-activated-receptor-2

    E-Print Network [OSTI]

    Wang, Ping; Jiang, Yong; Wang, Yinsheng; Shyy, John Y; DeFea, Kathryn A

    2010-01-01T23:59:59.000Z

    dependent AMPK activation downstream of protease-activated-of the cofilin pathway downstream of protease- activateddependent AMPK activation downstream of protease- activated-

  9. Measuring Outdoor Air Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    E-Print Network [OSTI]

    Fisk, William

    2008-01-01T23:59:59.000Z

    Sensors at Louvers and Downstream of Airflow StraightenersSensors at Louvers and Downstream of Airflow Straightenersprobes located in the duct downstream of the intake louver

  10. A report by Civic Enterprises and the National Peace Corps Association in partnership with Peter D. Hart Research Associates

    E-Print Network [OSTI]

    Fraden, Seth

    . Hart Research Associates By: John M. Bridgeland, Harris Wofford, Kevin F.F. Quigley, Jessica A. Milano PASSPORTS--ONE STAMPED AMERICAN,PASSPORTS--ONE STAMPED AMERICAN, T H E O T H E R H U M A N B E I N G . W E A R ET H E O T H E R H U M A N B E I N G . W E A R E MEMBERS OF THE SAME GREAT RACE, BUTMEMBERS

  11. Recent hydrocarbon developments in Latin America: Key issues in the downstream oil sector

    SciTech Connect (OSTI)

    Wu, K.; Pezeshki, S.

    1995-03-01T23:59:59.000Z

    This report discusses the following: (1) An overview of major issues in the downstream oil sector, including oil demand and product export availability, the changing product consumption pattern, and refineries being due for major investment; (2) Recent upstream developments in the oil and gas sector in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela; (3) Recent downstream developments in the oil and gas sector in Argentina, Chile, Colombia, Ecuador, Mexico, Peru, Cuba, and Venezuela; (4) Pipelines in Argentina, Bolivia, Brazil, Chile, and Mexico; and (5) Regional energy balance. 4 figs., 5 tabs.

  12. Downstream hydraulic geometry relations: 1. Theoretical development

    E-Print Network [OSTI]

    Singh, Vijay P.; Yang, Chih Ted; Deng, Z. Q.

    2003-12-04T23:59:59.000Z

    . Thus USP, denoted as P w , is expressed as P w ? VS ?3a? where V is the average flow velocity, and S is the energy slope. Stream power (SP) is the rate of energy dissipation due to water: SP ? QgS ?3b? where g is the weight density of water and Q... of flow and B as the width of flow, then the flow cross-sectional area A= Bh, the wetted perimeter P= B + 2h, and the hydraulic radius R = A/P = (Bh)/(B + 2h). If the channel is wide rectangular, then R ? h = depth of flow. The flow discharge in equation...

  13. Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping

    E-Print Network [OSTI]

    Stockem, A; Fonseca, R A; Silva, L O

    2014-01-01T23:59:59.000Z

    A new magnetic field generation mechanism in electrostatic shocks is found, which can produce fields with magnetic energy density as high as 0.01 of the kinetic energy density of the flows on time scales $ \\tilde \\, 10^4 \\, {\\omega}_{pe}^{-1}$. Electron trapping during the shock formation process creates a strong temperature anisotropy in the distribution function, giving rise to the pure Weibel instability. The generated magnetic field is well-confined to the downstream region of the electrostatic shock. The shock formation process is not modified and the features of the shock front responsible for ion acceleration, which are currently probed in laser-plasma laboratory experiments, are maintained. However, such a strong magnetic field determines the particle trajectories downstream and has the potential to modify the signatures of the collisionless shock.

  14. The Downstream Geomorphic Effects of Dams: A Comprehensive and Comparative Approach

    E-Print Network [OSTI]

    Minear, Justin Toby

    2010-01-01T23:59:59.000Z

    Framework for Interpreting Downstream Effects of Dams onF. and N. Shin, 2001. The downstream effects of dams on theG.P. and M.G. Wolman, 1984. Downstream Effects of Dams on

  15. Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation

    E-Print Network [OSTI]

    Ortega, Nathalie; Behonick, Danielle J; Colnot, Céline; Cooper, Douglas N W; Werb, Zena

    2005-01-01T23:59:59.000Z

    June 2005 Galectin-3 Is a Downstream Regulator of Matrixof MMP-9 that acts downstream to regulate hypertrophicsuggest that galectin-3 is a downstream regu- lator of MMP-9

  16. Quantitative Network Signal Combinations Downstream of TCR Activation Can Predict IL-2 Production Response1

    E-Print Network [OSTI]

    Quantitative Network Signal Combinations Downstream of TCR Activation Can Predict IL-2 Production of intense ongoing study, but understanding how the consequent downstream signaling networks integrate hypothesized that a quantitative combination of key downstream network signals across multiple pathways must

  17. Downstream genes of Pax6 revealed by comprehensive transcriptome profiling in the developing rat hindbrain

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    C: A screen for downstream effectors of Neurogenin2 in theNumayama-Tsuruta et al. : Downstream genes of Pax6 revealedARTICLE Open Access Downstream genes of Pax6 revealed by

  18. Managing the commons upstream and downstream: the need to adapt institutions

    E-Print Network [OSTI]

    Richner, Heinz

    Managing the commons upstream and downstream: the need to adapt institutions Traditional rules Common-pool resources (forest, water, pasture), managed in a complex upstream­ downstream constellation flexible boundaries around resources, which allow users upstream and downstream to be coordinated

  19. Steering in computational science: mesoscale modelling and J. CHIN{, J. HARTING{, S. JHA{, P. V. COVENEY{, A. R. PORTER{ and S. M. PICKLES{{

    E-Print Network [OSTI]

    Harting, Jens

    Steering in computational science: mesoscale modelling and simulation J. CHIN{, J. HARTING{, S. JHA steering for high performance computing applications. Lattice-Boltzmann mesoscale fluid simulations, there is currently considerable interest in mesoscale models. These models coarse grain most of the atomic

  20. Polypyrimidine Track-binding Protein Binding Downstream of Caspase-2 Alternative Exon 9 Represses Its Inclusion*

    E-Print Network [OSTI]

    Wu, Jane Y.

    Polypyrimidine Track-binding Protein Binding Downstream of Caspase-2 Alternative Exon 9 Represses (In100) located in the intron downstream of alternative exon 9. The upstream portion of this element downstream from the decoy 3 acceptor site. This downstream domain harbors several polypyrimidine track

  1. Innovative Applications of O.R. Master surgery scheduling with consideration of multiple downstream

    E-Print Network [OSTI]

    Boucherie, Richard J.

    Innovative Applications of O.R. Master surgery scheduling with consideration of multiple downstream on operating theater and operating staff, we enlarge the scope to downstream resources, such as the intensive for the downstream resources. We then discuss measures to define downstream costs resulting from the MSS and propose

  2. OGJ group weathered tough times upstream and downstream in 1991

    SciTech Connect (OSTI)

    Biggs, J.B.; Price, R.B.

    1992-05-25T23:59:59.000Z

    With an upstream sector hit by low oil and gas prices and downstream operations squeezed by weak petroleum demand, 1991, was a tough year for the group of 22 major integrated U.S. companies Oil and Gas Journal tracks. This paper reports that the brief respite caused by the oil price spike in second half 1990 ended abruptly early in first half 1991, and it turned into a year of buckling down for most companies. They shed non-core assets, implemented strategic restructuring moves, and reduced staff. Although low prices slowed overall drilling activity for the group, oil and gas production increased slightly, and most companies reported reserves gains. Recession in the U.S. and Europe depressed demand for the group's fined products enough to pinch downstream earnings even as buoyant Asia-Pacific demand helped jack up world product sales.

  3. Results from modeling and simulation of chemical downstream etch systems

    SciTech Connect (OSTI)

    Meeks, E.; Vosen, S.R.; Shon, J.W.; Larson, R.S.; Fox, C.A.; Buchenauer

    1996-05-01T23:59:59.000Z

    This report summarizes modeling work performed at Sandia in support of Chemical Downstream Etch (CDE) benchmark and tool development programs under a Cooperative Research and Development Agreement (CRADA) with SEMATECH. The Chemical Downstream Etch (CDE) Modeling Project supports SEMATECH Joint Development Projects (JDPs) with Matrix Integrated Systems, Applied Materials, and Astex Corporation in the development of new CDE reactors for wafer cleaning and stripping processes. These dry-etch reactors replace wet-etch steps in microelectronics fabrication, enabling compatibility with other process steps and reducing the use of hazardous chemicals. Models were developed at Sandia to simulate the gas flow, chemistry and transport in CDE reactors. These models address the essential components of the CDE system: a microwave source, a transport tube, a showerhead/gas inlet, and a downstream etch chamber. The models have been used in tandem to determine the evolution of reactive species throughout the system, and to make recommendations for process and tool optimization. A significant part of this task has been in the assembly of a reasonable set of chemical rate constants and species data necessary for successful use of the models. Often the kinetic parameters were uncertain or unknown. For this reason, a significant effort was placed on model validation to obtain industry confidence in the model predictions. Data for model validation were obtained from the Sandia Molecular Beam Mass Spectrometry (MBMS) experiments, from the literature, from the CDE Benchmark Project (also part of the Sandia/SEMATECH CRADA), and from the JDP partners. The validated models were used to evaluate process behavior as a function of microwave-source operating parameters, transport-tube geometry, system pressure, and downstream chamber geometry. In addition, quantitative correlations were developed between CDE tool performance and operation set points.

  4. Large-Scale Algal Cultivation, Harvesting and Downstream Processing Workshop

    Broader source: Energy.gov [DOE]

    ATP3 (Algae Testbed Public-Private Partnership) is hosting the Large-Scale Algal Cultivation, Harvesting and Downstream Processing Workshop on November 2–6, 2015, at the Arizona Center for Algae Technology and Innovation in Mesa, Arizona. Topics will include practical applications of growing and managing microalgal cultures at production scale (such as methods for handling cultures, screening strains for desirable characteristics, identifying and mitigating contaminants, scaling up cultures for outdoor growth, harvesting and processing technologies, and the analysis of lipids, proteins, and carbohydrates). Related training will include hands-on laboratory and field opportunities.

  5. Characterization and application of vortex flow adsorption for simplification of biochemical product downstream processing

    E-Print Network [OSTI]

    Ma, Junfen, 1972-

    2003-01-01T23:59:59.000Z

    One strategy to reduce costs in manufacturing a biochemical product is simplification of downstream processing. Biochemical product recovery often starts from fermentation broth or cell culture. In conventional downstream ...

  6. Using benthic infauna abundance and genetic markers in oysters as indicators of hypoxia downstream from a

    E-Print Network [OSTI]

    Vallino, Joseph J.

    Using benthic infauna abundance and genetic markers in oysters as indicators of hypoxia downstream on communities downstream from these systems has not been well assessed. This study sought to examine differences between regions downstream from a permeable reactive barrier and a control site at Waquoit Bay in three

  7. Ecosystem response to a salmon disturbance regime: Implications for downstream nutrient fluxes in aquatic systems

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Ecosystem response to a salmon disturbance regime: Implications for downstream nutrient fluxes the post-spawn period, downstream biofilm abundance exceeded pre-spawn values, indicating a near short spatial scales acts to retard the flushing of MDNs to downstream rearing lakes. The magnitude

  8. Interior Duct Wall Pressure Downstream of a Low-Speed Scott C. Morris

    E-Print Network [OSTI]

    Alonso, Juan J.

    Interior Duct Wall Pressure Downstream of a Low-Speed Rotor Scott C. Morris , David B. Stephens The region downstream of a ducted rotor has been experimentally investigated in terms of its wake the description of the flow field and wall pressure in the region downstream of the rotor. Measurements involving

  9. Feasibility Studies on a Downstream Injection System for Mu2e Calorimeter Calibration Guangyong Koha

    E-Print Network [OSTI]

    Gollin, George

    Feasibility Studies on a Downstream Injection System for Mu2e Calorimeter Calibration Electrons A calibration-electron injection system sited downstream of the calorimeters within the Mu2e detector solenoid directed along the beam axis), progressing downstream over the extent of the stopping target array.1

  10. Partial Crosstalk Precompensation in Downstream Raphael Cendrillon a,, George Ginis b

    E-Print Network [OSTI]

    Partial Crosstalk Precompensation in Downstream VDSL Raphael Cendrillon a,, George Ginis b , Marc than 52 Mbps in the downstream, to the mass consumer market. This is achieved by transmitting and is the primary limitation on performance in VDSL. In downstream transmission several crosstalk precompensation

  11. Downstream coarsening in headwater channels Chris J. Brummer and David R. Montgomery

    E-Print Network [OSTI]

    Montgomery, David R.

    Downstream coarsening in headwater channels Chris J. Brummer and David R. Montgomery Department drainage basins in western Washington document systematic downstream coarsening of median bed surface grain size (D50) and a subsequent shift to downstream fining at a drainage area of about 10 km2 . Analyses

  12. Plasma Sources Sci. Technol. 5 (1996) 173180. Printed in the UK Downstream physics of the helicon

    E-Print Network [OSTI]

    Chen, Francis F.

    1996-01-01T23:59:59.000Z

    Plasma Sources Sci. Technol. 5 (1996) 173­180. Printed in the UK Downstream physics of the helicon and that a dense, cool (Te downstream region. The density n and electron densities, it plays little role in the downstream evolution of the plasma. These results indicate

  13. Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development

    E-Print Network [OSTI]

    Capecchi, Mario R.

    Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear and heart in humans and mice; however, almost nothing is known about the molecular downstream targets regulated by Hox genes (Hueber and Lohmann, 2008). In this study, we set out to identify the downstream

  14. A Gene Necessary for Normal Male Courtship, yellow, Acts Downstream of fruitless in the

    E-Print Network [OSTI]

    Gruber, Jonathan

    A Gene Necessary for Normal Male Courtship, yellow, Acts Downstream of fruitless in the Drosophila- ship behavior, genes acting downstream of fru have not yet been identified. Here we demonstrate that the yellow (y) gene is genetically downstream of fru in the 3rd -instar larval brain. Yellow protein

  15. STEREO observations of upstream and downstream waves at low Mach number shocks

    E-Print Network [OSTI]

    California at Berkeley, University of

    STEREO observations of upstream and downstream waves at low Mach number shocks C. T. Russell,1 L. K; published 13 February 2009. [1] Early theories of upstream and downstream wave formation at laminar (low, propagating upstream along the shock normal. Downstream waves were attributed to nearly perpendicular shocks

  16. Downstream Hydraulic Geometry of Alluvial Channels Jong-Seok Lee, A.M.ASCE1

    E-Print Network [OSTI]

    Julien, Pierre Y.

    Downstream Hydraulic Geometry of Alluvial Channels Jong-Seok Lee, A.M.ASCE1 ; and Pierre Y. Julien. A larger database for the downstream hydraulic geometry of alluvial channels is examined through with meandering to braided planform geometry. The five parameters describing downstream hydraulic geometry are

  17. Downstream variations in the width of bedrock channels David R. Montgomery and Karen B. Gran

    E-Print Network [OSTI]

    Montgomery, David R.

    Downstream variations in the width of bedrock channels David R. Montgomery and Karen B. Gran the Mokelumne River show that bedrock channel width decreases substantially downstream at the contact between show systematic channel widening after flood flows and debris flow impacts. We conclude that downstream

  18. DOWNSTREAM CHANNEL CHANGES AFTER A SMALL DAM REMOVAL: USING AERIAL PHOTOS AND MEASUREMENT ERROR FOR CONTEXT;

    E-Print Network [OSTI]

    Tullos, Desiree

    DOWNSTREAM CHANNEL CHANGES AFTER A SMALL DAM REMOVAL: USING AERIAL PHOTOS AND MEASUREMENT ERROR to assess downstream channel changes associated with a small dam removal. The Brownsville Dam, a 2.1 m tall downstream from the dam and in an upstream control reach using aerial photos (1994­2008) and in the field

  19. SCOUR DOWNSTREAM OF GRADE-CONTROL By Noel E. Bormann1

    E-Print Network [OSTI]

    Julien, Pierre Y.

    SCOUR DOWNSTREAM OF GRADE-CONTROL STRUCTURES By Noel E. Bormann1 and Pierre Y. Julien,2 Members, ASCE ABSTRACT: A theoretical investigation of local scour downstream of grade-control structures based, however, causes sig- nificant downstream local scour, which may undermine these structures. Structural

  20. DOWNSTREAM VDSL CHANNEL TRACKING USING LIMITED FEEDBACK FOR CROSSTALK PRECOMPENSATED SCHEMES

    E-Print Network [OSTI]

    van der Veen, Alle-Jan

    DOWNSTREAM VDSL CHANNEL TRACKING USING LIMITED FEEDBACK FOR CROSSTALK PRECOMPENSATED SCHEMES J, crosstalk becomes the main impairment in VDSL systems. For downstream communication, crosstalk precompensa or downstream bit rate needs to be used to help the estimation. In this paper, we design a new algorithm to try

  1. Physically based model of downstream fining in bedrock streams with lateral input

    E-Print Network [OSTI]

    Lajeunesse, Eric

    Click Here for Full Article Physically based model of downstream fining in bedrock streams not show a clear, monotonic pattern of size reduction in the downstream direction. Both abrasion and selective sorting may play important roles in generating downstream fining. The objective of this study

  2. DOWNSTREAM EFFECTS OF DIVERSION DAMS ON SEDIMENT AND HYDRAULIC CONDITIONS OF ROCKY MOUNTAIN STREAMS

    E-Print Network [OSTI]

    Poff, N. LeRoy

    DOWNSTREAM EFFECTS OF DIVERSION DAMS ON SEDIMENT AND HYDRAULIC CONDITIONS OF ROCKY MOUNTAIN STREAMS of downstream channels and lead to accumulation of fine sediments and habitat degradation. To investigate, we-sediment measures, and an intensive sampling scheme, this study found that channels downstream of diversions

  3. Flowfield and wall pressure characteristics downstream of a boundary layer suction device.

    E-Print Network [OSTI]

    Tinney, Charles E.

    Flowfield and wall pressure characteristics downstream of a boundary layer suction device. Meagan A-dimensional slit can significantly reduce the fluctuating wall pressure immediately downstream of the suction slit momentum regions of the flow with the wall at the downstream edge of the suction slit. The third region

  4. Active species downstream of an ArO surface-wave microwave discharge for biomedicine,

    E-Print Network [OSTI]

    Guerra, Vasco

    Active species downstream of an Ar­O 2 surface-wave microwave discharge for biomedicine, surface.1088/0963-0252/20/3/035006 Active species downstream of an Ar­O2 surface-wave microwave discharge for biomedicine, surface treatment in a 0.5 cm diameter tube at pressures between 1 and 12 mbar. The early afterglow that occurs downstream

  5. MHD turbulence in Saturn's magnetosheath downstream of a quasi parallel bow shock

    E-Print Network [OSTI]

    Richardson, John

    1 MHD turbulence in Saturn's magnetosheath downstream of a quasi parallel bow shock M. B. Bavassano of the MHD turbulence downstream of a quasi parallel shock is investigated using plasma and magnetic eld data. The characteristics of the waves observed in that region are compared with those of the waves present: (i) downstream

  6. ?ot8rh QI ahnloal Corporation In Hart IUnover, Ma86rohusett8,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal'.I Y. ,J,.-HansonDon

  7. A Vision System for Monitoring Intermodal Freight Trains Avinash Kumar, Narendra Ahuja, John M Hart

    E-Print Network [OSTI]

    Ahuja, Narendra

    of gaps between the loads of the IM train is esti- mated and is used to analyze the aerodynamic efficiency the most widespread and fastest growing portion of the North Amer- ican Freight Railroads. Their traffic between IM loads, thus resulting in high energy cost. This is a timely issue because of the fuel crisis

  8. Cosmic ray diffusive acceleration at shock waves with finite upstream and downstream escape boundaries

    E-Print Network [OSTI]

    M. Ostrowski; R. Schlickeiser

    1996-04-18T23:59:59.000Z

    In the present paper we discuss the modifications introduced into the first-order Fermi shock acceleration process due to a finite extent of diffusive regions near the shock or due to boundary conditions leading to an increased particle escape upstream and/or downstream the shock. In the considered simple example of the planar shock wave we idealize the escape phenomenon by imposing a particle escape boundary at some distance from the shock. Presence of such a boundary (or boundaries) leads to coupled steepening of the accelerated particle spectrum and decreasing of the acceleration time scale. It allows for a semi-quantitative evaluation and, in some specific cases, also for modelling of the observed steep particle spectra as a result of the first-order Fermi shock acceleration. We also note that the particles close to the upper energy cut-off are younger than the estimate based on the respective acceleration time scale. In Appendix A we present a new time-dependent solution for infinite diffusive regions near the shock allowing for different constant diffusion coefficients upstream and downstream the shock.

  9. Cosmic-Ray Acceleration at Ultrarelativistic Shock Waves: Effects of Downstream Short-Wave Turbulence

    E-Print Network [OSTI]

    Jacek Niemiec; Michal Ostrowski; Martin Pohl

    2006-03-14T23:59:59.000Z

    The present paper is the last of a series studying the first-order Fermi acceleration processes at relativistic shock waves with the method of Monte Carlo simulations applied to shocks propagating in realistically modeled turbulent magnetic fields. The model of the background magnetic field structure of Niemiec & Ostrowski (2004, 2006) has been augmented here by a large-amplitude short-wave downstream component, imitating that generated by plasma instabilities at the shock front. Following Niemiec & Ostrowski (2006), we have considered ultrarelativistic shocks with the mean magnetic field oriented both oblique and parallel to the shock normal. For both cases simulations have been performed for different choices of magnetic field perturbations, represented by various wave power spectra within a wide wavevector range. The results show that the introduction of the short-wave component downstream of the shock is not sufficient to produce power-law particle spectra with the "universal" spectral index 4.2. On the contrary, concave spectra with cutoffs are preferentially formed, the curvature and cutoff energy being dependent on the properties of turbulence. Our results suggest that the electromagnetic emission observed from astrophysical sites with relativistic jets, e.g. AGN and GRBs, is likely generated by particles accelerated in processes other than the widely invoked first-order Fermi mechanism.

  10. Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

    SciTech Connect (OSTI)

    Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Ruzic, David N. [Center for Plasma-Materials Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Yu, He [Center for Plasma-Materials Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-06-14T23:59:59.000Z

    Downstream plasma transport and ionization processes in a high-powered pulsed-plasma magnetron were studied. The temporal evolution and spatial distribution of electron density (n{sub e}) and temperature (T{sub e}) were characterized with a 3D scanning triple Langmuir probe. Plasma expanded from the racetrack region into the downstream region, where a high n{sub e} peak was formed some time into the pulse-off period. The expansion speed and directionality towards the substrate increased with a stronger magnetic field (B), largely as a consequence of a larger potential drop in the bulk plasma region during a relatively slower sheath formation. The fraction of Cu ions in the deposition flux was measured on the substrate using a gridded energy analyzer. It increased with higher pulse voltage. With increased B field from 200 to 800 Gauss above racetrack, n{sub e} increased but the Cu ion fraction decreased from 42% to 16%. A comprehensive model was built, including the diffusion of as-sputtered Cu flux, the Cu ionization in the entire plasma region using the mapped n{sub e} and T{sub e} data, and ion extraction efficiency based on the measured plasma potential (V{sub p}) distribution. The calculations matched the measurements and indicated the main causes of lower Cu ion fractions in stronger B fields to be the lower T{sub e} and inefficient ion extraction in a larger pre-sheath potential.

  11. Brewer, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro,Hampshire: EnergyBret Harte,Brewer,

  12. Functional dissection of homeodomain transcription factors HoxA9 and Meis1 in myeloid leukemia : their epigenetic regulation and their downstream targets

    E-Print Network [OSTI]

    Wang, Gang

    2006-01-01T23:59:59.000Z

    inhibitors for the downstream mediator proteins such as FLT3regulation and their downstream targets A dissertationthe leukemia-associated downstream target genes underlines

  13. Quantification of the upstream-to-downstream influence in the Muskingum method and implications for speedup in parallel computations of river flow

    E-Print Network [OSTI]

    David, Cedric H; Yang, Zong-Liang; Famiglietti, James S

    2013-01-01T23:59:59.000Z

    of the upstream-to-downstream influence in the Muskingumsolved in an upstream-to-downstream manner which imposesof the upstream-to-downstream influence in the Muskingum

  14. Estimation of Human Energy Expenditure Using Inertial Sensors and Heart Rate Sensor

    E-Print Network [OSTI]

    Lu?trek, Mitja

    Estimation of Human Energy Expenditure Using Inertial Sensors and Heart Rate Sensor Bozidara, we tested a combination of thigh inertial sensor with hart rate monitor, usually worn by athletes and availability and ease of development. Average smart phone has a rather powerful processing unit. It comes

  15. Influence of Headwater Streams on Downstream Reaches in Forested Lee H. MacDonald and Drew Coe

    E-Print Network [OSTI]

    MacDonald, Lee

    Influence of Headwater Streams on Downstream Reaches in Forested Areas Lee H. MacDonald and Drew of the streamflow in downstream areas. Headwater streams also provide other important constituents to downstream, and fine particulate organic matter are more likely to be delivered to downstream reaches than coarse

  16. Downstream patterns of bed material grain size in a large, lowland alluvial river subject to low sediment supply

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Downstream patterns of bed material grain size in a large, lowland alluvial river subject to low. The data also show that tributaries have a minor impact on main stem downstream fining due to basin shape of downstream fining. Citation: Singer, M. B. (2008), Downstream patterns of bed material grain size in a large

  17. Sandia Energy - David Kelley

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB. Hart Home David

  18. Sandia Energy - David Maniaci

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB. Hart Home

  19. Sandia Energy - David Minster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB. Hart HomeMinster

  20. Sandia Energy - David Wilson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB. Hart

  1. Sandia Energy - Diana Bull

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB. HartDeveloping

  2. Assessment of Downstream Hazard Potential for Dam Failure in Rhode Island Primary Investigators

    E-Print Network [OSTI]

    Rhode Island, University of

    Assessment of Downstream Hazard Potential for Dam Failure in Rhode Island Primary Investigators Assessment of Downstream Hazard Potential for Dam Failure in Rhode Island Mayrai Gindy, University of Rhode.3 Hazard Classification of the Federal Emergency Management Agency .............. 11 2.4 General Dam Design

  3. Brf1 posttranscriptionally regulates pluripotency and differentiation responses downstream of Erk

    E-Print Network [OSTI]

    Elowitz, Michael

    Brf1 posttranscriptionally regulates pluripotency and differentiation responses downstream of Erk, operates downstream of FGF/Erk MAP kinase signaling to regulate pluripotency and cell fate decision making in mouse embryonic stem cells (mESCs). FGF/Erk MAP kinase signaling up-regulates Brf1, which disrupts

  4. Water Research 39 (2005) 33763384 Eutrophication downstream from small reservoirs in mountain

    E-Print Network [OSTI]

    Espigares, Tíscar

    Water Research 39 (2005) 3376­3384 Eutrophication downstream from small reservoirs in mountain experience eutrophication as a consequence of deep releases from dams. Field studies were conducted in four sources, causing eutrophication downstream. Nutrients would ultimately come from land/forest runoff

  5. Effect of Flow Pulses on Degradation Downstream of Hapcheon Dam, South Korea

    E-Print Network [OSTI]

    Julien, Pierre Y.

    Effect of Flow Pulses on Degradation Downstream of Hapcheon Dam, South Korea Young Ho Shin1 and Pierre Y. Julien, M.ASCE2 Abstract: The changes in channel geometry downstream of Hapcheon Dam, South sluice gate operations affect the 45-km reach of the Hwang River between the Hapcheon Reregulation Dam

  6. Double layer in an expanding plasma: Simultaneous upstream and downstream measurements

    SciTech Connect (OSTI)

    Byhring, H. S.; Fredriksen, A. [Institute of Science and Technology, University of Tromsoe, NO-9037 Tromsoe (Norway); Charles, C.; Boswell, R. W. [Space Plasma, Power and Propulsion Group, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2008-10-15T23:59:59.000Z

    Ion energy measurements were taken simultaneously using one retarding field energy analyzer placed at the open end of the plasma source, and one in the plasma diffusion region of an expanding low pressure argon plasma. An electric double layer was found, which is well separated from the region of high magnetic field and which is downstream of the maximum in the magnetic field gradient. An axially movable analyzer was used to determine the position of the double layer. It appears to be more closely connected to the rapid change in diameter from the source to the diffusion chamber, but still has a radial dimension close to that of the source diameter. These results suggest that the double layer forms, not as much as a result of a magnetic nozzle, but rather as a reaction to a dramatic change in boundary conditions. Still, a magnetic field of at least a few tens of Gauss in the double layer region is necessary for its spontaneous formation.

  7. Brevard County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro,Hampshire: EnergyBret Harte,

  8. U.S. Downstream Charge Capacity of Operable Petroleum Refineries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^602SWPACharge Capacity

  9. U.S. Downstream Processing of Fresh Feed Input

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^602SWPACharge

  10. Hartford Electric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information HanergyHarney Electric Coop,Hart

  11. The influence of return bends on the downstream pressure drop and condensation heat transfer in tubes

    E-Print Network [OSTI]

    Traviss, Donald P.

    1971-01-01T23:59:59.000Z

    The influence of return bends on the downstream pressure drop and heat transfer coefficient of condensing refrigerant R-12 was studied experimentally. Flow patterns in glass return bends of 1/2 to 1 in. radius and 0.315 ...

  12. Modelling downstream change in river flood power: a novel approach based on the UK Flood Estimation Handbook

    E-Print Network [OSTI]

    Birmingham, University of

    Modelling downstream change in river flood power: a novel approach based on the UK Flood Estimation" (McEwen, 1994: 359). Lawler (1992) recognised that little was known about the downstream change. It is suggested that downstream change in discharge is best represented as a power function in terms of channel

  13. Convective Snowbands Downstream of the Rocky Mountains in an Environment with Conditional, Dry Symmetric, and Inertial Instabilities

    E-Print Network [OSTI]

    Schumacher, Russ

    Convective Snowbands Downstream of the Rocky Mountains in an Environment with Conditional, Dry quickly equatorward. The bands occurred downstream of complex terrain on the anticyclonic-shear side banners downstream of mountains, and in association with frontogenetical ascent along two baroclinic zones

  14. Predictability of a Mediterranean Tropical-Like Storm Downstream of the Extratropical Transition of Hurricane Helene (2006)

    E-Print Network [OSTI]

    Chaboureau, Jean-Pierre

    2006-01-01T23:59:59.000Z

    Predictability of a Mediterranean Tropical-Like Storm Downstream of the Extratropical Transition downstream. The present study focuses on the predictability of a Mediterranean tropical-like storm (Medicane) on 26 September 2006 downstream of the ET of Hurricane Helene from 22 to 25 September. While

  15. 46th AIAA Aerospace Sciences Meeting and Exhibit, January 710, 2008/Reno, NV Upstream and downstream influence on the

    E-Print Network [OSTI]

    Martín, Pino

    and downstream influence on the unsteadiness of STBLI using DNS data in two configurations M. Pino Martin , S 08544 Statistical analysis of the upstream and downstream flow influence on shock unsteadiness in shock that the unsteadiness of the shock is dominated by the downstream flow. The same analysis applied to the reflected shock

  16. Interaction between a flexible filament and a downstream rigid body Fang-Bao Tian,1,2

    E-Print Network [OSTI]

    Luo, Haoxiang

    Interaction between a flexible filament and a downstream rigid body Fang-Bao Tian,1,2 Haoxiang Luo- action between rigid objects. In the situation that one rigid object is located in the downstream wake bodies in tandem arrangement, the downstream one suffers a drag increase and flaps with a larger

  17. Organometallic vapor-phase homoepitaxy of gallium arsenide assisted by a downstream hydrogen afterglow plasma in the growth region

    E-Print Network [OSTI]

    Collins, George J.

    Organometallic vapor-phase homoepitaxy of gallium arsenide assisted by a downstream hydrogen 1991; accepted for publication 3 April 1992) hz situ generated arsenic hydrides are reacted downstream with trimethylgallium (TMGa), both in the presence of and in the absence of a downstream hydrogen afterglow plasma. The

  18. Osteopontin is a downstream effector of the PI3-kinase pathway in melanomas that is inversely correlated with functional PTEN

    E-Print Network [OSTI]

    Ringnér, Markus

    Osteopontin is a downstream effector of the PI3-kinase pathway in melanomas that is inversely downstream of PI3K in melanoma and provides insight into how PTEN loss contributes to melanoma development upregulation, we sought to identify downstream components of this pathway that are upregulated when PTEN

  19. Catalytic Reforming Downstream Processing of Fresh Feed Input

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption The State

  20. The Roles of Akt1 and Akt2 Downstream of Src Family Kinases in the Migration and Invasion of Breast Cancer Cells

    E-Print Network [OSTI]

    Chiueh, Venice Calinisan

    2010-01-01T23:59:59.000Z

    Arf6 activation to the downstream  activation of Rac1.  invasion­associated factor downstream of Akt signaling.  Roles of Akt1 and Akt2 Downstream of Src Family Kinases in 

  1. An analysis of the induced flow downstream between oscillating wings in a wind tunnel

    E-Print Network [OSTI]

    Morgan, Barry Erwin

    1970-01-01T23:59:59.000Z

    AN ANALYSIS OF THE INDUCED FLOW DOWNSTREAM BETWEEN OSCILLATING WINGS IN A WIND TIMBAL A Thesis by BARRY ERWIN MORGAN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1970 Major Subject; Aerospace Engineering AN ANALYSIS OF THE INDUCED FLOW DOWNSTREAM BETWEEN OSCILLATING WINGS IN A WIND TUNNEL A Thesis by BARRY ERWIN MORGAN Approved as to style and content by: rman of Committee) (Hea of Depart ent...

  2. Hartford Steam Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information HanergyHarney Electric Coop,HartHartford

  3. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia

    E-Print Network [OSTI]

    Liu, Xiaole Shirley

    pathogene- sis of human T-cell acute lymphoblastic leukemia (T-ALL); however, oncogenic transcriptional expression leads to T-cell acute lymphoblastic leukemia (T-ALL). TAL1 is expressed by the leukemic cellsNEOPLASIA Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic

  4. DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN

    E-Print Network [OSTI]

    DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN: DEVELOPMENT Prepared for the Northwest Power Planning Council October 1997 97-15 #12;Published October 1997 by the Northwest Power Planning Council 851 SW 6th Avenue, Suite 1100 Portland, Oregon 97204 503-222-5161 Toll Free

  5. Effect of downstream feedback on the achievable performance of feedback control loops for serial processes

    E-Print Network [OSTI]

    Duffy, Ken

    ]. For control design purposes, the common approach is to use linear models obtained around a certain operationEffect of downstream feedback on the achievable performance of feedback control loops for serial-- This paper deals with feedback control of serial processes, that is, processes formed by the series

  6. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models

    E-Print Network [OSTI]

    . Such models lack the capacity to simulate the hydrodynamics and water quality processes of larger waterCoupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins B. Debele & R. Srinivasan

  7. Downstream hydrologic and geomorphic effects of large dams on American rivers

    E-Print Network [OSTI]

    Downstream hydrologic and geomorphic effects of large dams on American rivers William L. Graf including more than 75,000 dams. One hundred thirty-seven of the very large dams, each storing 1.2 km3 (106 effects of these very large dams emerge from an analysis of the stream gage records of 72 river reaches

  8. A mass-balance framework for quantifying downstream changes in fluvial architecture

    E-Print Network [OSTI]

    Paola, Chris

    A mass-balance framework for quantifying downstream changes in fluvial architecture NIKKI STRONG models that emphasize the three-dimensionality of alluvial architecture. New data are pre- sented from control on architecture, rather than subsidence per se. A simple coordinate transformation is proposed

  9. Optimizing turbine withdrawal from a tropical reservoir for improved water quality in downstream wetlands

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Optimizing turbine withdrawal from a tropical reservoir for improved water quality in downstream using Itezhi-Tezhi Reservoir (Zambia) as a model system aims at defining optimized turbine withdrawal. The water depth of turbine withdrawals was varied in a set of simulations to optimize outflow water quality

  10. A Scalable Approach for Reliable Downstream Data Delivery in Wireless Sensor Networks

    E-Print Network [OSTI]

    Sivakumar, Raghupathy

    based simulations, we evaluate the proposed framework. Categories and Subject Descriptors C.2 the spe- cific application the sensor network is used for. Consider a security application where imageA Scalable Approach for Reliable Downstream Data Delivery in Wireless Sensor Networks Seung

  11. July 24, 2009, Visiting Speakers Program - The Next Generation of (Safety) Regulation for HRO's by Christopher Hart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |Julian Wong About10 CFRofRegulating

  12. Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications

    SciTech Connect (OSTI)

    Lupoi, Jason [Ames Laboratory

    2012-08-27T23:59:59.000Z

    This dissertation focuses on techniques for (1) increasing ethanol yields from saccharification and fermentation of cellulose using immobilized cellulase, and (2) the characterization and classification of lignocellulosic feedstocks, and quantification of useful parameters such as the syringyl/guaiacyl (S/G) lignin monomer content using 1064 nm dispersive multichannel Raman spectroscopy and chemometrics.

  13. Assessment of Mosquitofish (Gambusia affinis) Downstream of Domestic Wastewater Effluents in the Bayous of Harris County

    E-Print Network [OSTI]

    Watkins, Crystal

    2012-02-14T23:59:59.000Z

    in toxicology studies with responses ranging from changes in gonad gene expression downstream of a WWTP {Garcia-Reyero, 2008 #126} to feminization of males expose to EE2 {Kidd, 2007 #53}. Studies with mosquitofish have found a reduction of the male sex organ... #158}. Physical, morphological, and histological biomarkers such as lesions and abnormalities of gonads and other body parts are also useful in studying toxicological effects of chemicals on fish. Angus {, 2005 #31} found that male western...

  14. Sandia Energy - Developing a Fast-Running Turbine Wake Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB. HartDeveloping a

  15. Sandia Energy - Direct Measurement of Key Molecule Will Increase Accuracy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB. HartDevelopingof

  16. Numerical and experimental study on the effects of elbows upon the flow downstream

    E-Print Network [OSTI]

    Tung, Karine

    1998-01-01T23:59:59.000Z

    /m' p ?, = 13579. 04 Kg/m CHAPTER I INTRODUCTION The presence of one or two elbows in a piping system is known to have an effect on the axial velocity profile and the amount of swirl present downstream of the elbows. As most flowmeters... (using a three-hole Pitot probe) where natural gas with a density of 20. 7 kg/m' and viscosity of 1. 1E ' kg/m s was flowing at a bulk average velocity of 19. 9 m/s through the 20. 3 cm diameter piping systems described above. The effect of these pipe...

  17. Hart Crane's attitude toward technology

    E-Print Network [OSTI]

    Abbott, Craig Stephens

    1966-01-01T23:59:59.000Z

    T~tGB & 8 LZ'll3 Zlh 'HL'fQ AB UZI sIA&J "'' 'j "~l. &d 7 '* , - . ;-, , =:; '. ::. ";, : ~gb&egii' M":Vie. , i"xi~ gate, :-~Jv~@i-'. ~f'. ihe, ", ;:?;"', ' T~'i. , :, " jhow, L'u'~. 'iei~ t 6p . &'::. " : "-wd~kgl";~ilfilk'im%~ yE. the... j, '~QQL+~ s' I" I i ($1'Iti l 2: $ -I tM) s' 3s 2 I. iossi '@Nb ', 1 ?2" CS JC' Eg)SQ" S . PQBS& low "7 s sl ~ z!s tEI in such "n scceptzchch and thct this less oz faith results in zI Jisinte zeta' poaKI. AccorJirv to zE)ese critics, uznno 1...

  18. Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates

    SciTech Connect (OSTI)

    Southworth, George R [ORNL; Greeley Jr, Mark Stephen [ORNL; Peterson, Mark J [ORNL; Lowe, Kenneth Alan [ORNL; Ketelle, Richard H [ORNL; Floyd, Stephanie B [ORNL

    2010-02-01T23:59:59.000Z

    East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in sediments by more than 2000-fold) in the 1980s, mercury concentrations in EFPC fish exceeded those in fish from regional reference sites by only a little more than 10-fold. This apparent low bioavailability of mercury in EFPC, coupled with a downstream pattern of mercury in fish in which mercury decreased in proportion to dilution of the upstream source, lead to the assumption that mercury in fish would respond to decreased inputs of dissolved mercury to the stream's headwaters. However, during the past two decades when mercury inputs were decreasing, mercury concentrations in fish in Lower EFPC (LEFPC) downstream of Y-12 increased while those in Upper EFPC (UEFPC) decreased. The key assumption of the ongoing cleanup efforts, and concentration goal for waterborne mercury were both called into question by the long-term monitoring data. The large inventory of mercury within the watershed downstream presents a concern that the successful treatment of sources in the headwaters may not be sufficient to reduce mercury bioaccumulation within the system to desired levels. The relative importance of headwater versus floodplain mercury sources in contributing to mercury bioaccumulation in EFPC is unknown. A mercury transport study conducted by the Tennessee Valley Authority (TVA) in 1984 estimated that floodplain sources contributed about 80% of the total annual mercury export from the EFPC system (ORTF 1985). Most of the floodplain inputs were associated with wet weather, high flow events, while much of the headwater flux occurred under baseflow conditions. Thus, day-to-day exposure of biota to waterborne mercury was assumed to be primarily determined by the Y-12 source. The objective of this study was to evaluate the results of recent studies and monitoring within the EFPC drainage with a focus on discerning the magnitude of floodplain mercury sources and how long these sources might continue to contaminate the system after headwater sources are eliminated or greatly reduced.

  19. In vivo filtering of in vitro MyoD target data: An approach for identification of biologically relevant novel downstream targets of

    E-Print Network [OSTI]

    Golbeck, Jennifer

    relevant novel downstream targets of transcription factors. Po Zhao1 , Jinwook Seo2 , Zuyi Wang3 , Yue Wang of downstream targets of MyoD, where a published set of candidate targets from a well-controlled in vitro a downstream target promoter motif, called the "E-box", that share the consensus sequence of CANNTG. Most basic

  20. Cumulative watershed effects (CWEs) result from the overlapping effects of management activities in time or space. The routing and downstream accumulation of sediment from

    E-Print Network [OSTI]

    MacDonald, Lee

    activities in time or space. The routing and downstream accumulation of sediment from forest management in the amount of sediment transport along a downstream gradient, and the interbasin variability in annual issues are particularly important in terms of the downstream delivery of sediment and the reliability

  1. Stationary Solutions of the NavierStokes Equations in a HalfPlane DownStream of an Object: Universality of the Wake

    E-Print Network [OSTI]

    Stationary Solutions of the Navier­Stokes Equations in a Half­Plane Down­Stream of an Object in the down--stream direction, the leading order deviation from the constant flow is universal, i--Stokes equations can be interpreted as a dynamical system, the down--stream direction playing the role of time

  2. Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River

    E-Print Network [OSTI]

    García-Berthou, Emili

    Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long that the highest biological impact attributable to mercury pollution occurred downstream of the discharge site mercury (THg) and methylmercury (MeHg) at the discharge site and downstream points. Multiple

  3. Efficient Initiation of HIV-1 Reverse Transcription in Vitro REQUIREMENT FOR RNA SEQUENCES DOWNSTREAM OF THE PRIMER BINDING SITE ABROGATED BY

    E-Print Network [OSTI]

    Levin, Judith G.

    DOWNSTREAM OF THE PRIMER BINDING SITE ABROGATED BY NUCLEOCAPSID PROTEIN-DEPENDENT PRIMER of viral RNA. Here, we have investigated whether sequences downstream of the PBS play a role in promoting bases downstream of the PBS when tRNA3 Lys or an 18-nt RNA complementary to the PBS (R18), but not an 18

  4. Protease-Activated Receptor-2 in the Intestinal Epithelium & Differential Effects of Beta Arrestins on the Internalization, Desensitization & ERK 1/2 Activation Downstream of Protease-Activated Receptor-2

    E-Print Network [OSTI]

    Lau, Chang Shun

    2010-01-01T23:59:59.000Z

    of the cofilin pathway downstream of protease- activatedand E R K 1/2 activation downstream of protease activatedand E R K 1/2 activation downstream of Protease Activated

  5. Contaminant monitoring of biota downstream of a radioactive liquid waste treatment facility, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Bennett, K.D.; Biggs, J.R.; Fresquez, P.R. [Los Alamos National Lab., NM (United States). Environment, Safety, and Health Div.

    1996-12-31T23:59:59.000Z

    Small mammals, plants, and sediments were sampled at one upstream location (Site 1) and two downstream locations (Site 2 and Site 3) from the National Pollution Discharge Elimination System (NPDES) outfall {number_sign}051-051 in Mortandad Canyon, Los Alamos National Laboratory, Los Alamos, New Mexico. The purpose of the sampling was to identify radionuclides potentially present, to quantitatively estimate and compare the amount of radionuclide uptake at specific locations (Site 2 and Site 3) within Mortandad Canyon to an upstream site (Site 1), and to identify the primary mode (inhalation/ingestion or surface contact) of contamination to small mammals. Three composite samples of at least five animals per sample were collected at each site. The pelt was separated from the carcass of each animal and both were analyzed independently. In addition, three composite samples were also collected for plants and sediments at each site. Samples were analyzed for americium ({sup 241}Am), strontium ({sup 90}Sr), plutonium ({sup 238}Pu and {sup 239}Pu), and total uranium (U). With the exception of total U, all mean radionuclide concentrations in small mammal carcasses and sediments were significantly higher at Site 2 than Site 1 or Site 3. No differences were detected in the mean radionuclide concentration of plant samples between sites. However, some radionuclide concentrations found at all three sites were higher than regional background. No differences were found between mean carcass radionuclide concentrations and mean pelt radionuclide concentrations, indicating that the two primary modes of contamination may be equally occurring.

  6. Channel bed slope effect on the height of gravity waves produced by a sudden downstream discharge stoppage

    E-Print Network [OSTI]

    Porté-Agel, Fernando

    of Hydraulic Engineering. Submitted November 3, 2008; accepted October 14, 2009; posted ahead of print November Engineers #12;Introduction In relatively small hydraulic power plant structures (run-off river without pond to the turbine at the downstream end. Changes in the operation of the turbine produce changes in discharge

  7. EVOLVING EXPECTATIONS OF DAM REMOVAL OUTCOMES: DOWNSTREAM GEOMORPHIC EFFECTS FOLLOWING REMOVAL OF A SMALL, GRAVEL-FILLED DAM1

    E-Print Network [OSTI]

    Tullos, Desiree

    EVOLVING EXPECTATIONS OF DAM REMOVAL OUTCOMES: DOWNSTREAM GEOMORPHIC EFFECTS FOLLOWING REMOVAL OF A SMALL, GRAVEL-FILLED DAM1 Kelly Kibler, Desiree Tullos, and Mathias Kondolf 2 ABSTRACT: Dam removal is a promising river restoration technique, particularly for the vast number of rivers impounded by small dams

  8. Downstream asymptotics in exterior domains: from stationary wakes to time periodic flows

    E-Print Network [OSTI]

    G. van Baalen

    2004-11-04T23:59:59.000Z

    We consider the time-dependent Navier-Stokes equations in a half-space with boundary data on the line $(x,y)=(x_0,y)$ assumed to be time-periodic (or stationary) with a fixed asymptotic velocity ${\\bf u}_{\\infty}=(1,0)$ at infinity. We show that there exist (locally) unique solutions for all data satisfying a compatibility condition in a certain class of fuctions. Furthermore, we prove that asymptotically the vorticity decompose itself in a dominant stationary part on the parabolic scale $y\\sim\\sqrt{x}$ and corrections of order $x^{-{3/2}+\\epsilon}$, while the velocity field decompose itself in a dominant stationary part in form of an explicit multiscale expansion on the scales $y\\sim\\sqrt{x}$ and $y\\sim x$ and corrections decaying at least like $x^{-{9/8}+\\epsilon}$. The asymptotic fields are made of linear combinations of universal functions with coefficients depending mildly on the boundary data. The asymptotic expansion for the component parallel to ${\\bf u}_{\\infty}$ contains `non-trivial' terms in the parabolic scale with amplitude $\\ln(x)x^{-1}$ and $x^{-1}$. To first order, our results also imply that time-periodic wakes behave like stationary ones as $x\\to\\infty$. The class of functions used is `natural' in the sense that `Physically Reasonable' (in the sense of Finn & Smith) stationary solutions of the N.-S. equations around an obstacle are covered if the half-space is choosen sufficiently far downstream. The coefficients appearing in the asymptotics may then be linearly related to the net force acting on the obstacle. To our knowledge, it is the first time that estimates uncovering the $\\ln(x)x^{-1}$ correction are proved in this setting.

  9. Downstream Fish Passage through Hydropower One of the most widespread environmental constraints to the development of hydropower in the U.S.

    E-Print Network [OSTI]

    Downstream Fish Passage through Hydropower Turbines Background One of the most widespread environmental constraints to the development of hydropower in the U.S. is the provision of adequate fish passage at projects. Mortality of downstream migrating fish, particularly as a result of passing through hydropower

  10. The electron distribution function downstream of the solar-wind termination shock: Where are the hot electrons?

    E-Print Network [OSTI]

    Fahr, Hans J; Verscharen, Daniel

    2015-01-01T23:59:59.000Z

    In the majority of the literature on plasma shock waves until now, electrons have played the role of "ghost particles," since they contribute to mass- and momentum flows only negligibly and have been treated as taking care of the electric plasma neutrality. In some more recent papers, however, electrons play a new important role in the shock dynamics and thermodynamics, especially at the solar-wind termination shock. They react on the shock electric field in a very specific way, leading to suprathermal non-equilibrium distributions of the downstream electrons that can be represented by a kappa distribution function. In this article, we discuss why these anticipated hot electron population has not been seen by the plasma detectors of the Voyager spacecraft downstream of the solar-wind termination shock. We show that hot non-equilibrium electrons induce a strong negative electric charge-up of any spacecraft cruising through this downstream plasma environment. This charge reduces electron fluxes at the spacecraf...

  11. ,"U.S. Downstream Processing of Fresh Feed Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice

  12. ,"Catalytic Reforming Downstream Processing of Fresh Feed Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry NaturalCrudePlant

  13. ,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGrossDistillateReserves+Charge

  14. ,"U.S. Downstream Processing of Fresh Feed Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to End Users, Total Refiner SalesConventional

  15. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect (OSTI)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01T23:59:59.000Z

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  16. Mercury in Fish Collected Upstream and Downstream of Los Alamos National Laboratory, New Mexico: 1991--2004.

    SciTech Connect (OSTI)

    P.R. Fresquez

    2004-10-15T23:59:59.000Z

    Small amounts of mercury (Hg) may exist in some canyon drainage systems within Los Alamos National Laboratory lands as a result of past discharges of untreated effluents. This paper reports on the concentrations of Hg in muscle (fillets) of various types of fish species collected downstream of LANL's influence from 1991 through 2004. The mean Hg concentration in fish from Cochiti reservoir (0.22 {micro}g/g wet weight), which is located downstream of LANL, was similar to fish collected from a reservoir upstream of LANL (Abiquiu) (0.26 {micro}g/g wet weight). Mercury concentrations in fish collected from both reservoirs exhibited significantly (Abiquiu = p < 0.05 and Cochiti = p < 0.10) decreasing trends over time. Predator fish like the northern pike (Esox lucius) contained significantly higher concentrations of Hg (0.39 {micro}g/g wet weight) than bottom-feeding fish like the white sucker (Catostomus commersoni) (0.10 {micro}g/g wet weight).

  17. From upstream to downstream: Megatrends and latest developments in Latin America`s hydrocarbons sector

    SciTech Connect (OSTI)

    Wu, Kang; Pezeshki, S.; McMahon, J.

    1995-08-01T23:59:59.000Z

    In recent years, Latin America`s hydrocarbons sector has been characterized by reorganization, revitalization, regional cooperation, environmental awakening, and steady expansion. The pattern of these changes, which appear to be the megatrends of the region`s hydrocarbons sector development, will continue during the rest of the 1990s. To further study the current situation and future prospects of Latin America`s hydrocarbons sector, we critically summarize in this short article the key issues in the region`s oil and gas development. These megatrends in Latin America`s hydrocarbons sector development will impact not only the future energy demand and supply in the region, but also global oil flows in the North American market and across the Pacific Ocean. Each country is individually discussed; pipelines to be constructed are discussed also.

  18. Perspective: Towards environmentally acceptable criteria for downstream fish passage through mini hydro and irrigation infrastructure in the Lower Mekong River Basin

    SciTech Connect (OSTI)

    Baumgartner, Lee J.; Deng, Zhiqun; Thorncraft, Garry; Boys, Craig A.; Brown, Richard S.; Singhanouvong, Douangkham; Phonekhampeng, Oudom

    2014-02-26T23:59:59.000Z

    Tropical rivers have high annual discharges optimal for hydropower and irrigation development. The Mekong River is one of the largest tropical river systems, supporting a unique mega-diverse fish community. Fish are an important commodity in the Mekong, contributing a large proportion of calcium, protein, and essential nutrients to the diet of the local people and providing a critical source of income for rural households. Many of these fish migrate not only upstream and downstream within main-channel habitats but also laterally into highly productive floodplain habitat to both feed and spawn. Most work to date has focused on providing for upstream fish passage, but downstream movement is an equally important process to protect. Expansion of hydropower and irrigation weirs can disrupt downstream migrations and it is important to ensure that passage through regulators or mini hydro systems is not harmful or fatal. Many new infrastructure projects (<6?m head) are proposed for the thousands of tributary streams throughout the Lower Mekong Basin and it is important that designs incorporate the best available science to protect downstream migrants. Recent advances in technology have provided new techniques which could be applied to Mekong fish species to obtain design criteria that can facilitate safe downstream passage. Obtaining and applying this knowledge to new infrastructure projects is essential in order to produce outcomes that are more favorable to local ecosystems and fisheries.

  19. Interview of Keith Hart, part two

    E-Print Network [OSTI]

    Hart, Keith

    2009-05-05T23:59:59.000Z

    years; in the course of this the World Wide Web was invented and began to be disseminated and I realized that I had got onto this revolution at the wrong end, through print publication, before mastering the potential of online dissemination... is reworking text; now because of word processing, if I am going to write an essay I start by accumulating everything that I have written on the subject, and make a file of maybe fifty pages and then start using that as a resource; I very rarely now write...

  20. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    SciTech Connect (OSTI)

    KETUSKY, EDWARD

    2005-10-31T23:59:59.000Z

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

  1. The role of a dambo in the hydrology of a catchment and the river network downstream Hydrology and Earth System Sciences, 7(3), 339357 (2003) EGU

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The role of a dambo in the hydrology of a catchment and the river network downstream 339 Hydrology and Earth System Sciences, 7(3), 339357 (2003) © EGU The role of a dambo in the hydrology of a catchment and Southern Africa. Owing to their importance in local agriculture and as a water resource, the hydrology

  2. Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01T23:59:59.000Z

    total cooling capacity, sensible heat ratio, and supply airair economizer cooling hours, but the supply fan energy willsupply fan has a draw-through configuration (downstream of the DX cooling

  3. 1 Managed by UT-Battelle for the Department of Energy

    E-Print Network [OSTI]

    1 Managed by UT-Battelle for the Department of Energy Streams are effective nitrate filters removal efficiency and increased exports to downstream systems. #12;2 Managed by UT-Battelle

  4. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergy /newsroom/_assets/images/energy-icon.png Energy

  5. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment Openings

  6. Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...) "..

  7. Photovoltaics: Helping Power Our Clean Energy Future

    E-Print Network [OSTI]

    Firestone, Jeremy

    Photovoltaics: Helping Power Our Clean Energy Future Dick Swanson #12;Safe Harbor Statement Certain of efficiency ­ Improved efficiency leverages entire value chain 2. Reduce manufacturing cost at all points: 50% by 2012 10 $/Watt 2006 Downstream Panel Cell Silicon Efficiency 2012 25% 5 % 5 % 10% 15% Target

  8. Evaluation of the Biological Effects of the Northwest Power Conservation Council's Mainstem Amendment on the Fisheries Upstream and Downstream of Libby Dam, Montana, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Sylvester, Ryan; Stephens, Brian; Tohtz, Joel [Montana Fish, Wildlife & Parks

    2009-04-03T23:59:59.000Z

    A new project began in 2005 to monitor the biological and physical effects of improved operations of Hungry Horse and Libby Dams, Montana, called for by the Northwest Power and Conservation Council (NPCC) Mainstem Amendment. This operating strategy was designed to benefit resident fish impacted by hydropower and flood control operations. Under the new operating guidelines, July through September reservoir drafts will be limited to 10 feet from full pool during the highest 80% of water supply years and 20 feet from full pool during the lowest 20% of water supply (drought) years. Limits were also established on how rapidly discharge from the dams can be increased or decreased depending on the season. The NPCC also directed the federal agencies that operate Libby and Hungry Horse Dams to implement a new flood control strategy (VARQ) and directed Montana Fish, Wildlife & Parks to evaluate biological responses to this operating strategy. The Mainstem Amendment operating strategy has not been fully implemented at the Montana dams as of June 2008 but the strategy will be implemented in 2009. This report highlights the monitoring methods used to monitor the effects of the Mainstem Amendment operations on fishes, habitat, and aquatic invertebrates upstream and downstream of Libby Dam. We also present initial assessments of data and the effects of various operating strategies on physical and biological components of the systems upstream and downstream of Libby Dam. Annual electrofishing surveys in the Kootenai River and selected tributaries, along with gill net surveys in the reservoir, are being used to quantify the impacts of dam operations on fish populations upstream and downstream of Libby Dam. Scales and otoliths are being used to determine the age structure and growth of focal species. Annual population estimates and tagging experiments provide estimates of survival and growth in the mainstem Kootenai River and selected tributaries. Radio telemetry will be used to validate an existing Instream Flow Incremental Methodology (IFIM) model developed for the Kootenai River and will also be used to assess the effect of changes in discharge on fish movements and habitat use downstream of Libby Dam. Passive integrated transponder (PIT) tags will be injected into rainbow, bull, and cutthroat trout throughout the mainstem Kootenai River and selected tributaries to provide information on growth, survival, and migration patterns in relation to abiotic and biotic variables. Model simulations (RIVBIO) are used to calculate the effects of dam operations on the wetted perimeter and benthic biomass in the Kootenai River below Libby Dam. Additional models (IFIM) will also be used to evaluate the impacts of dam operations on the amount of available habitat for different life stages of rainbow and bull trout in the Kootenai River.

  9. ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM RecoveryManagement'sJuneAprilEMS U.S.

  10. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwoJaniceEnerG2Energetics of Hydrogen .M

  11. MA-m & Downstream Coil I.R. with B(z) = 1.5 T at 4.2 m, 4.5 m & 5 m Bob Weggel Magnet Optimization Research Engineering (M.O.R.E.), LLC Nov. 22, 2013

    E-Print Network [OSTI]

    McDonald, Kirk

    MA-m & Downstream Coil I.R. with B(z) = 1.5 T at 4.2 m, 4.5 m & 5 m Bob Weggel Magnet Optimization, the optimization program adjusts the inner radius of the downstream coil, in order that the ramp bottom out. It uses (182+400) = 582 MA-m of conductor; the inner radius of its downstream coil is 94 cm. To increase L

  12. ash flow temperature: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    load has been... Hart, M. N.; Bond, S. K. 1980-01-01 120 Temperature-Gated Thermal Rectifier for Active Heat Flow Control Kedar Hippalgaonkar,, Renewable Energy...

  13. and Innovation RESEARCH AND INNOVATION AT RUTGERS

    E-Print Network [OSTI]

    ................................................................................................................................... p.10 Energy Storage Research Group; Coast to Coast on a Single Tank ............................................................................................ p.15 Dr. Ron Hart: A "Wild" Search for the Switches in Stem Cells

  14. Ion distribution dynamics near the Earth's bow shock: rst measurements with the 2D ion energy spectrometer CORALL on

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of supra- thermal ion populations upstream and downstream from the bow shock do not depend on the solarIon distribution dynamics near the Earth's bow shock: ®rst measurements with the 2D ion energy the Earth's bow shock is studied on the basis of quasi-3D measurements of ion energy spectra in the range

  15. Turbulence Investigation and Reproduction for Assisting Downstream Migrating Juvenile Salmonids, Part II of II; Effects of Induced Turbulence on Behavior of Juvenile Salmon, 2001-2005 Final Report.

    SciTech Connect (OSTI)

    Perry, Russell W.; Farley, M. Jared; Hansen, Gabriel S. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2005-07-01T23:59:59.000Z

    Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide fish into one of two channels in the raceway, and subsequently cause them to pass disproportionately over the weir where turbulent cues were aimed (guidance experiment). Last, we measured and mapped water velocity and turbulence during the experiments to understand water movement patterns and the spatial distribution of turbulence in the raceways.

  16. Scheme for Low Energy Beam Transport with a non-neutralized section

    E-Print Network [OSTI]

    Shemyakin, A

    2015-01-01T23:59:59.000Z

    A typical Low Energy Beam Transport (LEBT) design relies on dynamics with nearly complete beam space charge neutralization over the entire length of the LEBT. This paper argues that, for a beam with modest perveance and uniform current density distribution when generated at the source, a downstream portion of the LEBT can be un-neutralized without significant emittance growth.

  17. Wake models are used to improve predictions of Annual Energy Production (AEP) of wind farms.

    E-Print Network [OSTI]

    Daraio, Chiara

    ·Wake models are used to improve predictions of Annual Energy Production (AEP) of wind farms. ·Wake measurements in the ETHZ facility compare well with measurements at the Horns Rev offshore wind farm models take account of the effects of wakes on downstream wind turbines. ·Wake models used in the wind

  18. Plasma characteristics of single- and dual-electrode ion source systems utilized in low-energy ion extraction

    SciTech Connect (OSTI)

    Vasquez, M. R., E-mail: mrvasquez@upd.edu.ph [Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101 (Philippines); Tokumura, S.; Kasuya, T.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)] [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2014-02-15T23:59:59.000Z

    Discharge characteristics in the upstream as well as in the downstream regions of a 50-eV positive ion beam were measured along the beam axis. Single- and dual-electrode configurations made of 0.1-mm diameter tungsten wires were tested. By varying the upstream discharge parameters, the shape of the sheath edge around the extractors, which can either be “planar” or “cylindrical,” can be controlled. The sheath eventually affected the simultaneous extraction of ions and neutralizing electrons. The dual-electrode configuration at the lower discharge current, revealed a homogeneous discharge downstream. At this condition, the edge of the sheath can be inferred to be “planar” which allowed the uniform extraction and propagation of low-energy ions at longer distances. The dual-electrode configuration was capable of transmitting low-energy ions up to 70 mm downstream.

  19. Performance profiles of major energy producers 1996

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This publication examines developments in the operations of the major US e energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area. In 1996, 24 companies filed Form EIA-28. The analysis and data presented in this report represents the operations of the Financial Reporting System companies in the context of their worldwide operations and in the context of the major energy markets which they serve. Both energy and nonenergy developments of these companies are analyzed. Although the focus is on developments in 1996, important trends prior to that time are also featured. Sections address energy markets in 1996; key financial developments; oil and gas exploration, development, and production; downstream petroleum in 1996; coal and alternative energy; and foreign direct investment in US energy. 30 figs., 104 tabs.

  20. Conserving Energy in Blast Freezers Using Variable Frequency Drives

    E-Print Network [OSTI]

    Kolbe, E.; Ling, Q.; Wheeler, G.

    2004-01-01T23:59:59.000Z

    University Portland Greg Wheeler Director Industrial Assessment Center ABSTRACT A stationary blast freezer processing 22 -lb cartons of sardines in 19,000 pound lots was modified to improve efficiency and to conserve energy. Baffles... of Portland showed readings to agree within 1%. The procedure for measuring velocity profiles was to position the operator in the blast-cell with doors closed, downstream of the pack, prior to opening the refrigeration valve. We thus assumed...

  1. New Models of Public Ownership in Energy

    E-Print Network [OSTI]

    Haney, Aoife Brophy; Pollitt, Michael G.

    These included rural electric cooperatives in the US or customer owned utilities in Denmark. Nowadays, as we shall demonstrate, public involvement in ownership (in the sense of residual control rights, following Hart and Moore, 1990) takes many different... history of public ownership of the power sector in many countries was driven by the perceived inability of the private market to finance the large investment requirements of the sector during the electrification period (Millward, 2010). Third...

  2. Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios

    E-Print Network [OSTI]

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01T23:59:59.000Z

    century than their downstream and low-energy counterparts.sustain- able than their downstream and low-energy coun-

  3. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  4. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  5. Downstream hydraulic geometry relations: 1. Theoretical development 

    E-Print Network [OSTI]

    Singh, Vijay P.; Yang, Chih Ted; Deng, Z. Q.

    2003-12-04T23:59:59.000Z

    ), (19a), (21a), (4a) and (22) for gravel and alluvial rivers: B ? C BS Q 6 51?w?r?? ?32a? for gravel rivers B ? C BS Q 13 12 1?w?r?? ?32b? for sandy rivers h ? C hS Q 18r 25 1?Jr?r?? ?33a? for gravel rivers h ? C hS Q 13r 20 1?Jr?r?? ?33b? for sandy... rivers V ? C VS Q 3 25 C0 7 3 ? 6wJ wJ?J?w C0 4 1?w?r C1 ?34a? for gravel rivers V ? C VS Q 1 5 C0 7 4 ? 13wJ 4 wJ?J?w?? C0 13 61?w?r?? C1 ?34b? for sandy rivers n ? C nS Q C06wJ 5 wJ?J?w?? ?35a? for gravel rivers n ? C nS Q C013wJ 12 wJ?J?w?? ?35b...

  6. Pulse energy measurement at the SXR instrument

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; et al

    2015-05-01T23:59:59.000Z

    A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of datamore »normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.« less

  7. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

  8. Effective market transformation from energy centers

    SciTech Connect (OSTI)

    Chace, J.; Fountain, M.; Hydelman, M.; Grundon, T.; Benton, C.C.

    1998-07-01T23:59:59.000Z

    In this decade, several energy centers, such as PG and E's Pacific Energy Center in San Francisco have played a particularly interesting role in educating building professionals and utility customers about energy-efficient design and technologies. Energy centers' upstream and mid-market efforts have evolved as practical, effective, and less expensive adjuncts or alternatives to promoting energy efficiency through downstream financial incentives. The centers' roles fit especially well in the context of a nascent deregulated gas and electric marketplace and its multiple market actors. Although California's centers differ in focus and objectives, they serve the common function of technology transfer and provide access to reliable information that balances the opportunism, and even recidivism, the evolving energy marketplace may create. Energy centers can be well-positioned to influence the flow of information among actors in an inherently chaotic, yet rich, building market. In this market, research institutions will continue to evolve new energy-efficient technologies; manufacturers will continue to search for new applications for their products; ESCO's will search for new energy efficiency services to promote; building design professionals will continue to have a pronounced effect on the market penetration of new technologies by adopting (or not adopting) energy-efficient products and practices. Equally important, end-users will continue to want unbiased information about energy-efficiency. This paper summarizes six year's experience with an energy center centered on a public good/energy conservation mission strategically targeted to building professionals. This approach facilitates and rationalizes the movement of information among market actors to transform the marketplace and accelerate implementation of energy efficiency.

  9. The pursuit of missing information in negotiation

    E-Print Network [OSTI]

    Young, Maia J; Bauman, Christopher W; Chen, Ning; Bastardi, Anthony

    2012-01-01T23:59:59.000Z

    Hart, H. , Kohl,]. , & Saari, D. (1974). Compliance withoutPliner, Hart, Kohl, & Saari, 1974; Snyder & Cunningham,

  10. Performance profiles of major energy producers, 1997

    SciTech Connect (OSTI)

    NONE

    1999-01-01T23:59:59.000Z

    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to the FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.

  11. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    new Federal buildings which begin the planning process by 2020 to achieve zero net energy by 2030zero-net

  12. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    National Harbor #12;U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 2 #12 · Efficiencies can be 60% (electrical) and 85% (with CHP) · > 90% reduction in criteria pollutants U.S. Department of Energy #12;7 Market Transformation Government acquisitions could significantly reduce the cost

  13. Sandia Energy - Installation Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Energy Security Home Stationary Power Grid Modernization Resilient Electric Infrastructures Military Installation Energy Security Installation Energy SecurityTara...

  14. The B.E. Journal of Economic Analysis & Policy

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    would like to thank Oliver Hart, Martin Weitzman, Drew Fudenberg, Jerry Green, and William Hogan research fellowship, a Repsol YPF - Harvard Kennedy School Pre-Doctoral Fellowship in energy policy

  15. Why Delegate?: A Theory of Environmental Federalism

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    would like to thank Oliver Hart, Martin Weitzman, Drew Fudenberg, Jerry Green, and William Hogan Kennedy School Pre-Doctoral Fellowship in energy policy, and the Giannini Foundation for Agricultural

  16. MidAmerican's Walter Scott, Jr. Energy Center Unit 4 earns Power's highest honor

    SciTech Connect (OSTI)

    Peltier, R.

    2007-08-15T23:59:59.000Z

    MidAmerican Energy Co. and its project partners are convinced that supercritical coal-firing technology's inherently higher efficiency and lower CO{sub 2} emissions no longer come with a price: reduced reliability. Unit 4 of the Walter Scott, Jr. Energy Center (WSEC) entered into service in June 2006 doubling the capacity of the PRB-coal fuelled plant to 1,600 MW. This is the first major new supercritical plant in the US in more than 15 years. The design of the boiler and the air pollution control systems downstream are described and illustrated. Unit 4 won the 2007 Plant of the Year awarded by Power magazine. 11 figs.

  17. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems Permalink

  18. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &ClimateContactEnergyEnergy

  19. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems PermalinkEnergy Storage

  20. US energy industry financial developments, 1993 second quarter

    SciTech Connect (OSTI)

    Not Available

    1993-09-29T23:59:59.000Z

    US Energy Industry Financial Developments, 1993 Second Quarter provides information on the financial performance of energy companies during the most recent reporting period. The data are taken from public sources such as the Wall Street Journal, Energy Information Administration publications, corporate press releases, and other public sources. Based on information provided in 1993 second quarter financial disclosures, net income for 114 petroleum companies--including 19 majors--rose 33 percent between the second quarter of 1992 and the second quarter of 1993. Both upstream (oil and gas exploration, development and production) operations and downstream (petroleum refining, marketing, and transport) contributed to the improved financial Performance of petroleum companies consolidated operations. Rate-regulated industries also showed positive income growth between the second quarter of 1992 and the second quarter of 1993 due to higher natural gas prices and increased electricity consumption.

  1. US energy industry financial developments, 1993 first quarter

    SciTech Connect (OSTI)

    Not Available

    1993-06-25T23:59:59.000Z

    Net income for 259 energy companies-- including, 20 major US petroleum companies-- rose 38 percent between the first quarter of 1992 and the first quarter of 1993. An increased level of economic activity, along with colder weather, helped lift the demand for natural gas. crude oil, coal, and electricity. The sharp rise in the domestic price of natural gas at the wellhead relative to the year-ago quarter was the most significant development in US energy during the first quarter. As a consequence of higher natural gas prices, the upstream segment of the petroleum industry reported large gains in income, while downstream income rose due to higher refined product demand. Increased economic activity and higher weather-related natural gas demand also led to improvements in income for the rate-regulated energy segment. However, declining domestic oil production continued to restrain upstream petroleum industry earnings growth, despite a moderate rise in crude oil prices.

  2. Departments of Energy and Interior Award Nearly $17 Million for...

    Office of Environmental Management (EM)

    enhance environmental performance while increasing electricity generation, mitigating fish and habitat impacts and enhancing downstream water quality. Advanced Hydropower System...

  3. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    In the United States: > 200 fuel cell vehicles > 20 fuel cell buses ~ 60 fueling stations Production & Delivery biomass & solar). · Potential U.S. employment from fuel cell and hydrogen industries of up to 925,000 jobsEnergy Efficiency & Renewable Energy DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program

  4. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    None

    2014-05-27T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  5. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  6. Energy Policy

    Broader source: Energy.gov [DOE]

    The Energy Department is focusing on an all-of-the-above energy policy, investing in all sources of American energy.

  7. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home Stationary Power EnergyRenewable Energy

  8. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware HometdheinrWater/Energy

  9. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy CouncilEnergy Surety Home

  10. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia'sEventNotECWillie LukEnergy

  11. Sandia Energy - Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need to integrate renewable energy, improve energy efficiency, and allow consumers more control over their energy consumption. One of the challenges of renewable power generation...

  12. Department of Energy - Energy Sources

    Broader source: Energy.gov (indexed) [DOE]

    295 en Using Passive Solar Design to Save Money and Energy http:energy.govenergysaverarticlesusing-passive-solar-design-save-money-and-energy

  13. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    has launched the Energy Data Initiative (EDI). May 17, 2012 The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. |...

  14. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to Mainstream: The Growth of the Global Clean Energy Marketplace Analyzing the past, present and future of the global clean energy marketplace. January 17, 2013 The Energy...

  15. Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

  16. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Future On Monday, the Energy Information Administration (EIA) issued the Annual Energy Outlook 2012 Early Release. This preview report provides updated projections for U.S....

  17. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 13, 2013 Energy Analysis Energy analysis informs EERE decision-making by delivering analytical products in four main areas: Data Resources, Market Intelligence, Energy...

  18. Symmetry Energy

    E-Print Network [OSTI]

    P. Danielewicz

    2006-07-15T23:59:59.000Z

    Examination of symmetry energy is carried out on the basis of an elementary binding-energy formula. Constraints are obtained on the energy value at the normal nuclear density and on the density dependence of the energy at subnormal densities.

  19. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o

  20. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North American

  1. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H. KobosRandall

  2. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan AtcittyRenewablesAnalysis

  3. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan

  4. Sandia Energy » Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This author hasSandia StudentSandia

  5. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Blog Energy Blog RSS July 11, 2013 Climate Change: Effects on Our Energy A new report shows how a changing climate has impacted and may continue to affect our energy...

  6. Sandia Energy - Enabling Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Energy Efficiency Home Energy Research EFRCs Solid-State Lighting Science EFRC Enabling Energy Efficiency Enabling Energy EfficiencyTara Camacho-Lopez2015-03-26T16:33:50+0...

  7. Scottish Energy Research Academy Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Scottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies ­ Notes for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy · Solar energy · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisation

  8. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01T23:59:59.000Z

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  9. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied

  10. Sandia Energy - Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Home Climate & Earth

  11. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Hometdheinr Home About

  12. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive Committee

  13. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive CommitteeThe

  14. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive CommitteeTheCRF

  15. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive

  16. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executivegeochem Permalink

  17. Sandia Energy - Energy Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executivegeochem

  18. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council ExecutivegeochemStorage

  19. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbon Capture

  20. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbon

  1. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbonAssurance

  2. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems Department Awards

  3. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems Department

  4. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems DepartmentEC Permalink

  5. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems DepartmentEC

  6. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems

  7. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter for

  8. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter forComputational

  9. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter

  10. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North AmericanStudy Could

  11. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H. KobosRandall T.Release

  12. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia'sEventNotECWillie Luk

  13. Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from Implementing SAV with InCITeTM

    SciTech Connect (OSTI)

    Wray, Craig; Sherman, Max

    2010-03-01T23:59:59.000Z

    This project addressed two significant deficiencies in air-handling systems for large commercial building: duct leakage and duct static pressure reset. Both constitute significant energy reduction opportunities for these buildings. The overall project goal is to bridge the gaps in current duct performance modeling capabilities, and to expand our understanding of air-handling system performance in California large commercial buildings. The purpose of this project is to provide technical support for the implementation of a duct leakage modeling capability in EnergyPlus, to demonstrate the capabilities of the new model, and to carry out analyses of field measurements intended to demonstrate the energy saving potential of the SAV with InCITeTM duct static pressure reset (SPR) technology. A new duct leakage model has been successfully implemented in EnergyPlus, which will enable simulation users to assess the impacts of leakage on whole-building energy use and operation in a coupled manner. This feature also provides a foundation to support code change proposals and compliance analyses related to Title 24 where duct leakage is an issue. Our example simulations continue to show that leaky ducts substantially increase fan power: 10percent upstream and 10percent downstream leakage increases supply fan power 30percent on average compared to a tight duct system (2.5percent upstream and 2.5percent downstream leakage). Much of this increase is related to the upstream leakage rather than to the downstream leakage. This does not mean, however, that downstream leakage is unimportant. Our simulations also demonstrate that ceiling heat transfer is a significant effect that needs to be included when assessing the impacts of duct leakage in large commercial buildings. This is not particularly surprising, given that ?ceiling regain? issues have already been included in residential analyses as long as a decade ago (e.g., ASHRAE Standard 152); mainstream simulation programs that are used for large commercial building energy analyses have not had this capability until now. Our analyses of data that we collected during our 2005 tests of the SAV with InCITeTM duct static pressure reset technology show that this technology can substantially reduce fan power (in this case, by about 25 to 30percent). Tempering this assessment, however, is that cooling and heating coil loads were observed to increase or decrease significantly depending on the time window used. Their impact on cooling and heating plant power needs to be addressed in future studies; without translating the coil loads to plant equipment energy use, it is not possible to judge the net impact of this SPR technology on whole-building energy use. If all of the loads had decreased, such a step would not be as necessary.

  14. Gravitational energy

    E-Print Network [OSTI]

    Joseph Katz

    2005-10-20T23:59:59.000Z

    Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass+internal energies+kinetic energies+pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total "matter energy" for those observers. The total mass-energy minus the matter energy is the binding gravitational energy. Misner, Thorne and Wheeler evaluated the gravitational energy of a spherically symmetric static spacetime. Here we show how to calculate gravitational energy in any static and stationary spacetime for isolated sources with a set of observers at rest. The result of MTW is recovered and we find that electromagnetic and gravitational 3-covariant energy densities in conformastatic spacetimes are of opposite signs. Various examples suggest that gravitational energy is negative in spacetimes with special symmetries or when the energy-momentum tensor satisfies usual energy conditions.

  15. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  16. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    of $8- $10/gge for a 1,500 kg/day distributed natural gas and $10- $13/gge for a 1,500 kg: Addressing Energy Challenges US DOE 10/2010 #12;5 Technology Barriers* Economic& Institutional Barriers Fuel of fuel cells. Assisting the growth of early markets will help to overcome many barriers, including

  17. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Mountain States--without compromising interior space or performance #12;5 Fuel Cells -- Where are we today? Fuel Cells ­ $80/kW to be a "valid estimate": http://hydrogendoedev.nrel.gov/peer_reviews.html $43 $65 $34 $27

  18. ON GENERALIZED RIESZ POINTS Robin Harte, Woo Young Lee and Lance L. Littlejohn

    E-Print Network [OSTI]

    Lee, Woo Young

    spectrum ess(T) and the Weyl spectrum ess(T) of T BL(X, X) are defined by (0.1) ess(T) = { C : T - I is not Fredholm} and (0.2) ess(T) = { C : T - I is not Weyl}. If T BL(X, X) we shall write (0.3) left (T) = { C) ess(T) for the Riesz points of T

  19. ANOTHER NOTE ON WEYL'S THEOREM Robin Harte and Woo Young Lee

    E-Print Network [OSTI]

    Lee, Woo Young

    = 0 in C. The (Fredholm) essential spectrum ess(T), the Weyl spectrum ess(T) and the Browder spectrum comm ess (T) of T are defined by (0.1) ess(T) = { C : T - I is not Fredholm}, (0.2) ess(T) = { C : T - I is not Weyl} and (0.3) comm ess (T) = { C : T - I is not Browder} : evidently (0.4) ess(T) ess

  20. Sergiu HART Center for the Study of Rationality; Institute of Mathematics; Department of Economics

    E-Print Network [OSTI]

    Hart, Sergiu

    D. Articles 12. "Symmetric Solutions of Some Production Economies," International Journal of Game Theory 2 (1973), 53­62 13. "Values of Mixed Games," International Journal of Game Theory 2 (1973), 69. Books 1. Simple Adaptive Strategies: From Regret-Matching to Uncoupled Dynamics, World Scien- tific

  1. Accelerate Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Energy Productivity 2030 Over the next year, the U.S. Department of Energy, the Council on Competitiveness and the Alliance to Save Energy will join forces to undertake...

  2. Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

  3. ACCELERATE ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    will stimulate innovation, optimize domestic industry practices, support domestic energy production and bolster job creation. 1 Doubling energy productivity means powering more...

  4. Energy Conservation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for LANL. Meeting renewable energy goals Original investors in renewable energy Low flow turbine used for electricity generation Abiquiu Dam power station Inside the TA-03 Steam...

  5. Energy profiles of selected Latin American and Caribbean countries. Report series No. 2

    SciTech Connect (OSTI)

    Wu, K.

    1994-07-01T23:59:59.000Z

    Countries in this report include Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela. These ten countries are the most important oil and gas producers in the Latin American and the Caribbean region. In the following sections, the primary energy supply (oil, gas, coal, hydroelectricity, and nuclear power whenever they are applicable), primary energy consumption, downstream oil sector development, gas utilization are discussed for each of the ten countries. The report also presents our latest forecasts of petroleum product consumption in each country toward 2000, which form the basis of the outlook for regional energy production and consumption outlined in Report No 1. Since the bulk of primary energy supply and demand is hydrocarbons for many countries, brief descriptions of the important hydrocarbons policy issues are provided at the end of the each country sections.

  6. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Residential and Small Commercial CHP $4.9M Specialty Vehicles $10.8M $2.4M $3.4M Portable Power Backup Power $20.4M Auxiliary Power Residential and Small Commercial CHP $4.9M Specialty Vehicles $10.8M $2.4M $3 CHP & backup power) Auxiliary & Portable Power Transportation Total Market Energy Use Potential Size

  7. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon

  8. Scottish Energy Research Academy Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Scottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy Industry · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisation in buildings

  9. HLT Energies 2006 Inc formerly HLT Energies Inc Heliotech Energies...

    Open Energy Info (EERE)

    HLT Energies 2006 Inc formerly HLT Energies Inc Heliotech Energies Inc Canada Inc Jump to: navigation, search Name: HLT Energies 2006 Inc (formerly HLT Energies Inc, Heliotech...

  10. Energy Efficiency and Renewable Energy Postdoctoral Research...

    Office of Environmental Management (EM)

    Postdoctoral Research Awards Energy Efficiency and Renewable Energy Postdoctoral Research Awards Contacts Energy Efficiency and Renewable Energy Postdoctoral Research Awards...

  11. National Renewable Energy Laboratory's Energy Systems Integration...

    Energy Savers [EERE]

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  12. Renewable Energy & Energy Efficiency Projects: Loan Guarantee...

    Energy Savers [EERE]

    Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Plenary III: Project Finance...

  13. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    what the U.S. energy economy might look like in 2040? EIA just released the Annual Energy Outlook Reference Case, containing projections about the growth of energy production...

  14. Energy Exchange | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchange Energy Exchange Energy Exchange August 11-13, 2015, Phoenix Convention Center The 2015 Energy Exchange in Phoenix, Arizona, is being launched to provide two-and-a-half...

  15. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department's Energy 101 Course Framework is helping colleges and universities offer energy-related classes. August 19, 2013

  16. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    very hot temperatures. Here, the insulation is held over a flame. | Courtesy of Aspen Aerogels. Saving Energy and Money with Aerogel Insulation The Energy Department is investing...

  17. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Bush Administration. March 19, 2012 March Madness: Slam Dunk Energy Efficiency Keep in mind the importance of sparing the real madness by working toward a sustainable energy...

  18. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    means strengthening the economy while protecting the environment. This activity book for all ages promotes energy awareness, with facts on different types of energy and a...

  19. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    construction methods, and innovative technologies that drastically reduce energy consumption-while at the same time saving on energy bills. August 17, 2009 Please Stand By:...

  20. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    courtesy of Dennis Schroeder, NREL Living Comfortably: A Consumer's Guide to Home Energy Upgrades A four-step guide to making your home more comfortable, energy efficient and...

  1. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    taking advanced battery technologies from the lab to the marketplace. February 14, 2011 Home-energy display mobile phone application that shows how much energy an appliance is...

  2. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Rob Guglielmetti helped leverage daylighting (i.e. sun and sunlight) to help the National Renewable Energy Laboratory's (NREL) Research Support Facility meet its energy efficiency...

  3. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in the Rio Grande Valley on energy efficiency ideas for the home, recycling, energy production and consumption, wind and solar power and groundwater runoff. Texas...

  4. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    University (NAU), the top recruiter of Native American engineering students in their area. November 18, 2011 Energy Matters: Industrial Energy Efficiency On Wednesday,...

  5. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Resilient Communities The Energy Department continues to take actions to protect our energy infrastructure, adapt to climate change and build partnerships to make communities...

  6. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    October 17, 2012 Utilities demonstrating the latest Green Button features at the Energy Datapalooza on October 1st. | Photo by Sarah Gerrity Green Button Energy Data Access...

  7. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A Livestream with our Latest Nobel Prize Winner Dr. Perlmutter presents, "Supernovae, Dark Energy and the Accelerating Universe: How the Energy Department Helped to Win (yet...

  8. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-DimensionalTransmission

  9. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWater Power PersonnelH2FIRSTWind

  10. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon CarbideAgency:UNM:Education

  11. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon CarbideAgency:UNM:EducationAssurance

  12. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration PermalinkClimate ChangeLicense

  13. Energy Sources: Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | DepartmentSource |  Why Hydrogen? * Fossil

  14. Energy Star

    E-Print Network [OSTI]

    Reihl, K.; Tullos, A.

    2012-01-01T23:59:59.000Z

    is a joint program of: ? U.S. Environmental Protection Agency (EPA) ? U.S. Department of Energy (DOE) ? Mission: ? ?Help us all save money and protect the environment through energy efficient products and practices.? ? History: ? 1992 ? Energy... Star Label introduced for energy-efficient products ? Expanded to include technical information & tools ? Website: www.energystar.gov ESL-KT-12-10-08 CATEE 2012: Clean Air Through Energy Efficiency Conference, Galveston, TX, October 9-11, 2012...

  15. Strategic Energy Planning | Department of Energy

    Office of Environmental Management (EM)

    Resources Energy Resource Library Strategic Energy Planning Strategic Energy Planning Below are resources for Tribes on strategic energy planning. Alaska Strategic Energy...

  16. Tribal Renewable Energy Foundational Course: Strategic Energy...

    Office of Environmental Management (EM)

    Strategic Energy Planning Tribal Renewable Energy Foundational Course: Strategic Energy Planning Watch the U.S. Department of Energy Office of Indian Energy foundational course...

  17. Tribal Renewable Energy Foundational Course: Assessing Energy...

    Office of Environmental Management (EM)

    Assessing Energy Needs and Resources Tribal Renewable Energy Foundational Course: Assessing Energy Needs and Resources Watch the U.S. Department of Energy Office of Indian Energy...

  18. CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

  19. Plasma parameters and electron energy distribution functions in a magnetically focused plasma

    SciTech Connect (OSTI)

    Samuell, C. M.; Blackwell, B. D.; Howard, J.; Corr, C. S. [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra (Australia)

    2013-03-15T23:59:59.000Z

    Spatially resolved measurements of ion density, electron temperature, floating potential, and the electron energy distribution function (EEDF) are presented for a magnetically focused plasma. The measurements identify a central plasma column displaying Maxwellian EEDFs at an electron temperature of about 5 eV indicating the presence of a significant fraction of electrons in the inelastic energy range (energies above 15 eV). It is observed that the EEDF remains Maxwellian along the axis of the discharge with an increase in density, at constant electron temperature, observed in the region of highest magnetic field strength. Both electron density and temperature decrease at the plasma radial edge. Electron temperature isotherms measured in the downstream region are found to coincide with the magnetic field lines.

  20. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.] [eds.

    1996-02-01T23:59:59.000Z

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  1. Hubble Energy

    E-Print Network [OSTI]

    Alasdair Macleod

    2004-03-25T23:59:59.000Z

    Light received from a cosmological source is redshifted with an apparent loss of energy, a problem first pointed out by Edwin Hubble in 1936. A new type of energy called Hubble Energy is introduced to restore the principle of energy conservation. The energy has no inertial or gravitational effect but retards radial motion in a manner consistent with the anomalous acceleration experienced by the Pioneer probes leaving the solar system. The energy is predicted to have important effects on the scale of galaxies, and some of these effects are qualitatively examined: for example, with Hubble Energy, flat rotation curves are found to be an inevitable consequence of spiral galaxy formation. The Hubble Energy is incorporated into the Friedmann Equation and shown to add a term similar to the cosmological term, with a magnitude of order 10^-35 s^-2.

  2. Energy deskbook

    SciTech Connect (OSTI)

    Glasstone, S.

    1983-01-01T23:59:59.000Z

    This book explains recent energy-related terms and principles. It defines and outlines over 400 topics. The subjects covered include: alcohol and diesel fuels; atomic, biomass, and fusion energy; desulfurization; electric vehicles; geothermal resources development; laser fusion; ocean thermal energy conversion; steam generation; wind energy conversion. Scientists, engineers, administrators, government officials, and conservationists will want this authoritative reference close at hand for the invaluable assistance it can provide in their work.

  3. Dark Energy

    E-Print Network [OSTI]

    Norbert Straumann

    2003-11-26T23:59:59.000Z

    After some remarks about the history and the mystery of the vacuum energy I shall review the current evidence for a cosmologically significant nearly homogeneous exotic energy density with negative pressure (`Dark Energy'). Special emphasis will be put on the recent polarization measurements by WMAP and their implications. I shall conclude by addressing the question: Do the current observations really imply the existence of a dominant dark energy component?

  4. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  5. Energy Efficiency and Energy Policy 

    E-Print Network [OSTI]

    Claridge, D.

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Energy Policy David E. Claridge, Director Energy Systems Laboratory November 19, 2014 ESL-KT-14-11-17 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 50 Years of Automobile Improvements ? 1960s...: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Impact of Auto/Truck Efficiency Increases ? Autos/light trucks used energy = Energy Imports in 2012 ? AUTO/TRUCK EFFICIENCY IMPROVEMENTS have CUT U.S. ENERGY IMPORTS IN HALF ESL...

  6. Energy Efficiency and Energy Policy

    E-Print Network [OSTI]

    Claridge, D.

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Energy Policy David E. Claridge, Director Energy Systems Laboratory November 19, 2014 ESL-KT-14-11-17 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 50 Years of Automobile Improvements ? 1960s...: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Impact of Auto/Truck Efficiency Increases ? Autos/light trucks used energy = Energy Imports in 2012 ? AUTO/TRUCK EFFICIENCY IMPROVEMENTS have CUT U.S. ENERGY IMPORTS IN HALF ESL...

  7. Nacel Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOcean Energy ThermalEnergy,Nacel Energy Jump to:

  8. Energy Matters: Our Energy Independence | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Matters: Our Energy Independence Energy Matters: Our Energy Independence Addthis Description In this installment of the livechat series "Energy Matters," Dr. Arun Majumdar takes...

  9. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01T23:59:59.000Z

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  10. Energy Policy ] (

    E-Print Network [OSTI]

    Jacobson, Arne

    of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity Arne of California, Berkeley, USA Abstract Energy services are fundamental determinants of the quality of life, however, to explore changes in individual, household, and national levels of energy consumption

  11. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Climate and Energy Secretary Moniz tells White House group that addressing the risks of climate change is the reason he returned to the Energy Department. May 24, 2013 The...

  12. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Blog Energy Blog RSS November 20, 2013 Electrical transmission lines cross a snow-covered field in Dallas Dam, Oregon. | Photo courtesy of the Energy Department Flickr page. The...

  13. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    page. August 28, 2012 Sinking a Pet's Teeth into Energy Saving Ernie's musings about pet ownership and its effects on a healthy and energy-efficient lifestyle. August 28, 2012...

  14. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to consumers is now home to Danville, Virg.'s first renewable energy project - a 154-panel solar energy system. November 3, 2010 Harnessing Sun, Wind and Lava for Islands'...

  15. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    May 30, 2012 Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Estimating the Cost and Energy Efficiency of a Solar Water Heater Could...

  16. Energy Blog | Department of Energy

    Office of Environmental Management (EM)

    see how many you can name in 60 seconds. July 6, 2015 Energy Department-supported "Azura" wave energy converter is installed at a U.S. Navy test site in Hawaii. | Photo courtesy of...

  17. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    even end up on energy.gov January 17, 2013 MBC Ventures' new product line provides daylight to building interiors and generates thermal energy that can be used to heat the...

  18. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    engines in a vehicle can be better than one. November 29, 2012 The 2011 Renewable Energy Data book contains facts and figures on the U.S. and global renewable energy industry....

  19. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    an Energy Efficiency Tax Credit? Share with us home improvements you have made for an energy efficiency tax credit? December 1, 2010 In Case You Missed It: Tuesday Talk with...

  20. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Schaefer recently had an energy audit done on his 80-year-old home and is saving money on energy bills by putting some of the auditor's recommendations to work. May 28, 2010...

  1. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2010 E-Shelters to Teach a Valuable Lesson on Energy Recovery Act funding is providing solar energy systems for more than 90 emergency shelters at Florida public schools. March...

  2. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 29, 2010 The EnergySmart Jobs program is a three-pronged approach to creating "green jobs" for Californians while also increasing energy efficiency at businesses around...

  3. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Regnier, low-energy building designer Seeking Greater Influence in the World of Low-Energy Buildings Cindy Regnier is making a difference. Read how here. July 23, 2010 METRO...

  4. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pump Need to heat your pool? Save energy and money with a smaller, more efficient pool pump that you operate less. May 29, 2012 Managing Swimming Pool Temperature for Energy...

  5. Internal energy relaxation in shock wave structure

    SciTech Connect (OSTI)

    Josyula, Eswar, E-mail: Eswar.Josyula@us.af.mil; Suchyta, Casimir J. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)] [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Boyd, Iain D. [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Vedula, Prakash [University of Oklahoma, Norman, Oklahoma 73019 (United States)] [University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2013-12-15T23:59:59.000Z

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

  6. Energy 101: Home Energy Assessment

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    A home energy checkup helps owners determine where their house is losing energy and money - and how such problems can be corrected to make the home more energy efficient. A professional technician - often called an energy auditor - can give your home a checkup. You can also do some of the steps yourself. Items shown here include checking for leaks, examining insulation, inspecting the furnace and ductwork, performing a blower door test and using an infrared camera.

  7. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPowerHighlights - Energy Research

  8. Energy Education BASS CONNECTIONS in ENERGY

    E-Print Network [OSTI]

    Ferrari, Silvia

    Energy Education BASS CONNECTIONS in ENERGY Leader: Prof. Richard Newell Duke University Energy Initiative Energy education at Duke capitalizes on the University's broader Energy Initiative, a university-wide interdisciplinary collaboration addressing today's pressing energy challenges related to the economy

  9. Renewable Energy Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Renewable Energy Technologies Renewable Energy Technologies State, local, and tribal governments can harness renewable energy technologies from natural sources-...

  10. Government Energy Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Project Funding Grants for Efficiency and Conservation Projects Incentives for Renewable Energy and Energy Efficient Improvements Renewable Energy Production Incentive...

  11. Energy Northwest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to:EnergEnergy 21EnergyEnergy

  12. Refex Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energy Product:AnatoliaRefex Energy Jump to:

  13. Renovalia Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energyInformationRenovalia Energy Jump

  14. AGL Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergySulfonate asAEEOpenOpen EnergyAGL Energy Jump to:

  15. IPE Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9MoatEnergyElectricityUSINGIPE Energy Jump

  16. Positive Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,Posey County, Indiana: EnergyPositive Energy

  17. Energy Spectrum | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:EconCompaniesMainEnergyEnergy

  18. Energy Star | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:EconCompaniesMainEnergyEnergyPublicStar

  19. Entero Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis JumpESLEnergyEnphase Energy IncEntero Energy

  20. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    6 6. Renewable Energy132 5. Renewable EnergyUnited States National Renewable Energy Laboratory, http://

  1. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01T23:59:59.000Z

    energy-efficiency measures Energy Management Programs and Systems Energy management programs Energy teams Energy monitoring

  2. Energy Efficient Mortgages | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Financing Financing Structures Energy Efficient Mortgages Energy Efficient Mortgages Energy efficient mortgages (EEMs) encourage energy efficiency by giving buyers a better...

  3. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  4. Rural Development Energy Audit & Renewable Energy Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rural Development Energy Audit & Renewable Energy Development Assistance Webinar Rural Development Energy Audit & Renewable Energy Development Assistance Webinar January 21, 2015...

  5. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project...

  6. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

  7. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Systems Analysis Home Transportation Energy Predictive Simulation of Engines Transportation Energy Systems Analysis Transportation Energy Systems AnalysisTara...

  8. Indian Energy News Archive | Department of Energy

    Office of Environmental Management (EM)

    1, 2015 Energy Department to Lead Workshop on Tribal Renewable Energy Development in Oklahoma Oklahoma tribal energy leaders have an opportunity to explore the tribal energy...

  9. Colorado: Energy Modeling Products Support Energy Efficiency...

    Energy Savers [EERE]

    Colorado: Energy Modeling Products Support Energy Efficiency Projects Colorado: Energy Modeling Products Support Energy Efficiency Projects May 1, 2014 - 11:04am Addthis Xcel...

  10. Tribal Energy Program | Department of Energy

    Office of Environmental Management (EM)

    Tribal Energy Program Tribal Energy Program The Tribal Energy Photo of a turbine installed at the Rosebud Sioux Reservation in South Dakota. Program promotes tribal energy...

  11. District Energy Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technologies District Energy Technologies District energy systems produce steam, hot water, or chilled water at a central plant. Then they pipe the energy to...

  12. #AskEnergySaver: Renewable Energy | Department of Energy

    Energy Savers [EERE]

    AskEnergySaver: Renewable Energy AskEnergySaver: Renewable Energy August 28, 2014 - 2:17pm Addthis If you've completed energy efficiency improvements and you're still looking for...

  13. Transporation Energy

    SciTech Connect (OSTI)

    Clifford Mirman; Promod Vohra

    2012-06-30T23:59:59.000Z

    This Transportation Energy Project is comprised of four unique tasks which work within the railroad industry to provide solutions in various areas of energy conservation. These tasks addressed: energy reducing yard related decision issues; alternate fuels; energy education, and energy storage for railroad applications. The NIU Engineering and Technology research team examined these areas and provided current solutions which can be used to both provide important reduction in energy usage and system efficiency in the given industry. This project also sought a mode in which rural and long-distance education could be provided. The information developed in each of the project tasks can be applied to all of the rail companies to assist in developing efficiencies.

  14. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable

  15. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable!

  16. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  17. Renewable Energy ] (

    E-Print Network [OSTI]

    Firestone, Jeremy

    pro or con, and others may wish to evaluate for themselves the size and market value of a wind regimeRenewable Energy ] (

  18. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  19. Energy Policy ] (

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    to the locational marginal prices of several pricing points in the New England, New York, and PJM electricityEnergy Policy ] (

  20. Energy Northwest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    corporate alternative minimum taxable income. See "TAX MATTERS" herein. 664,515,000 ENERGY NORTHWEST 155,390,000 Project 1 Electric Revenue Refunding Bonds, Series 2012-A...

  1. Energy Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches Energy Speeches RSS June 25, 2015Features »

  2. Energy data

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol JumpEnergy SystemSystems NetworkEnergy andData.gov

  3. ACCELERATE ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy ThisThistheSummaryACCELERATE ENERGY

  4. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavy DutyDistrictofEnergy SaverEnergy

  5. Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavy DutyDistrictofEnergy SaverEnergySciences

  6. Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavyDepartment of Energy Storage:Energy

  7. Videos | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Matters: Our Energy Independence EcoCAR Challenge: Finish Line EcoCAR Challenge Profile: Virginia Tech Energy 101: Daylighting Energy 101: Energy Efficient Data Centers...

  8. Energy 101: Geothermal Energy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCool Roofs Energy 101: Cool Roofs AddthisFuel

  9. Energy Information Administration - Energy Efficiency, energy consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSalesVehicleYear Jan FebOverview >savings

  10. Sandia Energy - Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems Permalink Gallery

  11. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower

  12. Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog2013 |WorkshopEnergyEnergyDeploymentEnergy

  13. Magma energy

    SciTech Connect (OSTI)

    Dunn, J.C.

    1987-01-01T23:59:59.000Z

    The thermal energy contained in magmatic systems represents a huge potential resource. In the US, useful energy contained in molten and partially-molten magma within the upper 10 km of the crust has been estimated at 5 to 50 x 10/sup 22/ J (50,000 to 500,000 Quads). The objective of the Magma Energy Extraction Program is to determine the engineering feasibility of locating, accessing, and utilizing magma as a viable energy resource. This program follows the DOE/OBES-funded Magma Energy Research Project that concluded scientific feasibility of the magma energy concept. A primary long-range goal of this program is to conduct an energy extraction experiment directly in a molten, crustal magma body. Critical to determining engineering feasibility are several key technology tasks: (1) Geophysics - to obtain detailed definition of potential magma targets, (2) Geochemistry/Materials - to characterize the magma environment and select compatible engineering materials, (3) Drilling - to develop drilling and completion techniques for entry into a magma body, and (4) Energy Extraction - to develop heat extraction technology.

  14. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    June 25, 2012 Thermographic Inspections Energy auditors may use thermography -- or infrared scanning -- to detect thermal defects and air leakage in building envelopes. June 25,...

  15. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    photovoltaic installation at the RiverCentre convention complex is unveiled in the heart of downtown St. Paul. | Photo courtesy of the Office of Energy Efficiency and...

  16. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    November 14, 2011 Tennessee-based IAC Helps Manufacturer Become More Energy Efficient Thanks to help from the Tennessee 3-Star Industrial Assessment Center, the FUJIFILM Hunt...

  17. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    August 15, 2012 America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state. Exploring the Wind...

  18. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    how one steel manufacturer is becoming more energy efficient. November 2, 2010 The 112-panel solar photovoltaic system at Parker River National Wildlife Refuge's visitor center...

  19. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Industrial Assessment Centers Train...

  20. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    feedstocks, and the energy content of the biomass makes it ideal for converting to sustainable fuel. June 11, 2010 Weatherization auditors and crews assist in making a...

  1. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Laboratory recently developed a new smart occupancy sensor that adds optics to what had only been a motion detection before. The new sensor combines an...

  2. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    conserve energy and money. September 28, 2010 Secretary Steven Chu Visits Princeton Plasma Physics Laboratory Yesterday, Secretary Chu had the opportunity to visit the...

  3. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    questions on the behavior of gravity. November 19, 2010 Reforming The Government Hiring Process The Department of Energy explains efforts made to simplify the federal hiring...

  4. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administration Website The U.S. Energy Information Administration (EIA) is launching a beta website that encourages the public, researchers, analysts and others to test and...

  5. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Jocelyn AugustinoFEMA. Working Together to Recover and Rebuild After Hurricane Sandy Energy Department Secretary Steven Chu recounts his meeting with utility crews at the front...

  6. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Utilities, through ARRA workforce development funding. | Photo courtesy of Office of Electricity Delivery and Energy Reliability. Building Tomorrow's Smart Grid Workforce...

  7. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    manufacturing facility, which opened in October 2010. | Photo courtesy of Nordex USA. Photo of the Week: Fan-tastic Check out our favorite energy-related photos August...

  8. Energy Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy, a growing source of clean, renewable American power. October 17, 2014 Passive solar design uses carefully designed overhangs and reflective coatings on windows, exterior...

  9. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Texas Industries of the FutureDave Bray Manufacturing Plants Incorporate Energy Efficiency into Business Model Four Texas-based manufacturing plants are adopting robust...

  10. Sandia Energy - Distributed Energy Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    volatile than ever before, making frequency regulation, voltage regulation, and power balancing operations more strenuous for grid operators. A distributed energy storage unit...

  11. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Blues The Hornsby Bend Biosolids Management Plant in Austin, Texas in utilizing biogas generation to reduce energy costs and become self-sufficient. January 17, 2012...

  12. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    its final 90-day report on recommendations to reduce the environmental impacts from shale gas production to Energy Secretary Steven Chu. Earlier this year, President Obama...

  13. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administration, "Oil: Crude Oil and Petroleum Products Explained" and Annual Energy Outlook 2009 (Updated February 2010). The How's and Why's of Replacing the Whole...

  14. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    an ideal city for the Arizona Public Service (APS) to pilot a high concentration of solar photovoltaic energy systems. July 12, 2010 Sysco Deploys Hydrogen Powered Pallet Trucks...

  15. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    biogas from Orange County Sanitation District's wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Fueling the Next...

  16. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Japanese Atomic Energy Agency (JAEA) and National Nuclear Security Administration (NNSA). | Photo from the Office of Public Affairs, NNSA NNSA Meets with Japanese Scientists...

  17. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    conservation and sustainability manager, cited as a reason the city is forging ahead with energy retrofits and solar projects. July 19, 2010 North Community Police Substation...

  18. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    fuel cells for its hundreds-strong forklift fleet. January 7, 2010 Teaching Them to Fish ... for Energy Efficiency A nonprofit called The Fishing School, featured on "Extreme...

  19. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Recreation Department of North Lauderdale, Fla., is saving money and reducing its carbon footprint, thanks to the recent addition of two energy efficient "Smart Cars" to...

  20. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Thanksgiving dinner dishes. December 18, 2009 Geothermal energy to contribute to net-zero campus The Oregon Institute of Technology plans to become the first college campus...

  1. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    convert sunlight into electricity, and are easy to install and virtually maintenance free. July 29, 2012 Energy-efficient indoor and outdoor lighting design focuses on ways to...

  2. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    March 16, 2011 Disneyland's Dry Cleaning Gets an Energy Efficient Upgrade As the provider of laundry and dry cleaning services for Disneyland Resort's costumes and hospitality...

  3. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1, 2010 Energy Challenge Three: The Greenbelt Green Neighborhood Challenge This "Greener in Greenbelt" Green Neighborhood Challenge program strives to get local Greenbelt residents...

  4. Energy 101: Marine & Hydrokinetic Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities.

  5. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    February 7, 2011 Miles Below the Earth: The Next-Generation of Geothermal Energy Jumpstarting the geothermal industry across the United States. February 7, 2011 Modern Smart Grid...

  6. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    United Arab Emirates, for the next step in accelerating the global transition to clean energy technologies. April 5, 2011 "Smart Windows" seen at light and dark settings. |...

  7. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    fuel cell hydrogen energy station in Fountain Valley, California. | Photo courtesy of Air Products and Chemicals. Fuel Station of the Future- Innovative Approach to Fuel Cell...

  8. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    , 2012 Your Computer Would Like a Little Sleep, Too One woman considers energy efficient choices in purchasing a new computer, including hardware and active power management...

  9. Energy News | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmergingPartnership toCenterEnergy

  10. Energy Speeches | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches Energy Speeches RSS June 25, 2015 Deputy

  11. Madera Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECO AugerMaanGeorgia:Macy'sCounty,Energy Jump

  12. Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to:EnergEnergy 21Energy Financing

  13. Energy Insight | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to:EnergEnergy 21Energy

  14. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisiaFlorida:Forecast Energy Jump to:

  15. Forth Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForked Deer ElectricFortFortForth Energy

  16. Conserving Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment.AttachmentEnergy MUChicagoImporterEnergy

  17. Exolis Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy Jump to: navigation, search Logo:

  18. Vision Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:ShreniksourceVentowerVigor Renewables LtdEnergy

  19. AMG Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers'sAIRMaster+ SoftwareAMG Energy

  20. (Energy Efficiency) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeriesDepartmentSmall to Medium22(Energy Efficiency)

  1. Vertex Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:Isource HistoryVertex Energy

  2. Vinova Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVelaCalifornia: Energy Resources Jump

  3. Conexia Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar Power Basics (TheConcordiaConexia Energy Jump

  4. Connective Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar Power BasicsConnective Energy Jump to:

  5. Connexus Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar Power BasicsConnective Energy Jump

  6. Consumers Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergy Information Hallein, Austria)Consumers

  7. Water Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUMEWORKFORCENovember 5, 2014water energy

  8. Wind Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. DepartmentEnergyWilliam E.Much asPhoto

  9. Women @ Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S.Department ofWomen @ Energy OVERVIEW OF

  10. Plymouth Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S6665°, -96.1526985° Show MapEnergy Place:

  11. Colexon Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCieloClydeCogenerationColexon

  12. ENECO Energie | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy OffshoreDeveloper - Q &Energie Jump to: navigation,

  13. Montgomery Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVista CapitalMonterey,Ohio: EnergyEnergy

  14. New Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX LtdNew Energy Opportunities Inc Jump to:New

  15. Energy News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1EnergyofDepartmentEnergyDepartment ofEnergy |December 3,

  16. Energy News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1EnergyofDepartmentEnergyDepartment ofEnergy |December 3,0, 2014

  17. Energy News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1EnergyofDepartmentEnergyDepartment ofEnergy |December 3,0,

  18. Energy News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1EnergyofDepartmentEnergyDepartment ofEnergy |December 3,0,May

  19. Ecomed Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport,de Nantes Jump to:Ecomed Energy Jump to:

  20. Ergon Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMissionEquipmentEnergyErathErgoErgon

  1. Optimum Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio:Opower Social JumpOptimum Energy Jump to:

  2. Austin Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga Energy JumpTexas: Energy

  3. Best Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative Sources of Funding:Germany: EnergyBest

  4. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    total primary energy will be supplied by alternative energy by 2030 with the 2030 electricity supply

  5. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    SciTech Connect (OSTI)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17T23:59:59.000Z

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  6. Compact Muon Production and Collection Scheme for High-Energy Physics Experiments

    E-Print Network [OSTI]

    Stratakis, Diktys

    2015-01-01T23:59:59.000Z

    The relative immunity of muons to synchrotron radiation suggests that they might be used in place of electrons as probes in fundamental high-energy physics experiments. Muons are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. However, the large angle and energy dispersion of the initial beams as well as the short muon lifetime limits many potential applications. Here, we describe a fast method for manipulating the longitudinal and transverse phase-space of a divergent pion-muon beam to enable efficient capture and downstream transport with minimum losses. We also discuss the design of a handling system for the removal of unwanted secondary particles from the target region and thus reduce activation of the machine. The compact muon source we describe can be used for fundamental physics research in neutrino experiments.

  7. California Energy Commission STATE ENERGY PROGRAM

    E-Print Network [OSTI]

    Brook, Municipal and Commercial Building Targeted Measure Program Larry Rillera, Clean Energy BusinessCalifornia Energy Commission STATE ENERGY PROGRAM GUIDELINES FIFTH EDITION CALIFORNIA ENERGY;CALIFORNIA ENERGY COMMISSION Robert Weisenmiller Chairman James D. Boyd Vice Chair Commissioners: Karen

  8. Energy Efficiency & Renewable Energy (WFP) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency & Renewable Energy (WFP) Energy Efficiency & Renewable Energy (WFP) The purpose of the workforce Plan is to provide focus and direction to Human Resources (HR) strategy....

  9. PROPULSION AND ENERGY Terrestrial energy

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    , no electricity, no air conditioning, no transportation, no phones, no shops, and no food. More than 100- trial energy community is the question of why alternative energy sources, such as coal, solar, wind; growing con- cerns about the emissions of greenhouse gases and hazardous pollutants, including

  10. auxin-responsive transcriptome downstream: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based...

  11. aquatic biota downstream: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for optimizing bioaccumulation parameters (BAF and BSAF) in aquatic species, such as fish, whose exposure history. Keywords: Bioaccumulation factor Exposure range BSAF Sediments...

  12. Written Statement of Peggy Montana, Shell Downstream Quadrennial...

    Office of Environmental Management (EM)

    following facts bear this out: In 2013, the U.S. became the world's top producer of petroleum and natural gas, surpassing Russia and Saudi Arabia. This year, that...

  13. The iPhone Goes Downstream: Mandatory Universal Distribution?

    E-Print Network [OSTI]

    Karp, Larry; Perloff, Jeffrey

    2011-01-01T23:59:59.000Z

    ufacturers’ Choice of Distribution Policy under Successivemandatory universal distribution Larry Karp and JeffreyMandatory Universal Distribution ? Larry S. Karp † Jeffrey

  14. Fast and Easy Sample Dialysis When downstream quality matters,

    E-Print Network [OSTI]

    Lebendiker, Mario

    samples with convenience · No need to use a syringe to load or remove samples. Simply load your sampleL Milli-Q® water Conductivity standard curve using NaCl Protein recovery after 5 hours: 89% Volume

  15. Leveraging downstream data in the footwear/apparel industry

    E-Print Network [OSTI]

    Axline, Jeffrey Edward

    2007-01-01T23:59:59.000Z

    Retailers collect information regarding consumer purchases on a transactional basis. This data is not completely being leveraged by manufacturers in the footwear and apparel industry to increase on-shelf availability. ...

  16. Regulation of somatosensory cortex development downstream of glutamate 

    E-Print Network [OSTI]

    Petrie, Anne

    2009-01-01T23:59:59.000Z

    Development of the rodent somatosensory cortex is well characterised and involves activity-dependent mechanisms that occur during the first postnatal week. Glutamate is a key neurotransmitter responsible for signalling ...

  17. Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks

    SciTech Connect (OSTI)

    Robert J. Goldston

    2009-08-20T23:59:59.000Z

    The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

  18. U.S. Downstream Processing of Fresh Feed Input

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New England (PADD 1A)20,798 18,57820092009 2010

  19. State-of-the-art hydrogen sulfide control for geothermal energy systems: 1979

    SciTech Connect (OSTI)

    Stephens, F.B.; Hill, J.H.; Phelps, P.L. Jr.

    1980-03-01T23:59:59.000Z

    Existing state-of-the-art technologies for removal of hydrogen sulfide are discussed along with a comparative assessment of their efficiencies, reliabilities and costs. Other related topics include the characteristics of vapor-dominated and liquid-dominated resources, energy conversion systems, and the sources of hydrogen sulfide emissions. It is indicated that upstream control technologies are preferred over downsteam technologies primarily because upstream removal of hydrogen sulfide inherently controls all downstream emissions including steam-stacking. Two upstream processes for vapor-dominated resources appear promising; the copper sulfate (EIC) process, and the steam converter (Coury) process combined with an off-gas abatement system such as a Stretford unit. For liquid-dominated systems that produce steam, the process where the non-condensible gases are scrubbed with spent geothermal fluid appears to be promising. An efficient downstream technology is the Stretford process for non-condensible gas removal. In this case, partitioning in the surface condenser will determine the overall abatement efficiency. Recommendations for future environmental control technology programs are included.

  20. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmergingPartnershipBio-Inspired

  1. Fossil Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE HydrogenPlans |Formerof Fossil Energy

  2. The Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001 PowerofUse of U.S.i

  3. The Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success StoriesInvestigations andTheTheiNUCLEAR ENERGY

  4. (Energy Efficiency)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage#AskEnergySaver:Energy 'Tis the40.3

  5. (Energy Efficiency)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage#AskEnergySaver:Energy 'Tis

  6. (Energy Efficiency)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage#AskEnergySaver:Energy 'TisJoint Statement

  7. Energy blogs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy OffshoreDeveloper -NeoEnterprisesUnlimited Incage

  8. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable! Activities

  9. NUCLEAR ENERGY

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energyof Energy NREL:Education &NTSF NUCLEAR

  10. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavy Duty VehicleNuclearEnergy-Efficiency Sign In

  11. Energy Northwest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavy DutyDistrict |Consumption1EnergyMatters:In

  12. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavyDepartment of Energy Storage: The

  13. Nuclear Energy

    SciTech Connect (OSTI)

    Godfrey, Anderw

    2014-04-10T23:59:59.000Z

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  14. Fusion energy

    ScienceCinema (OSTI)

    Baylor, Larry

    2014-05-23T23:59:59.000Z

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  15. Energy Northwest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    103 of the Code. See "TAX MATTERS-SERIES 2012-E (TAXABLE) BONDS" herein. 782,655,000 ENERGY NORTHWEST 34,140,000 Columbia Generating Station Electric Revenue Bonds, Series...

  16. Nuclear Energy

    ScienceCinema (OSTI)

    Godfrey, Anderw

    2014-05-23T23:59:59.000Z

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  17. Fusion energy

    SciTech Connect (OSTI)

    Baylor, Larry

    2014-05-02T23:59:59.000Z

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  18. Smart Energy 

    E-Print Network [OSTI]

    Morrison, W.

    2012-01-01T23:59:59.000Z

    Smart Energy Presentation The future is best experienced at home. CATEE Conference October 10, 2012 ? 2012 Reliant Proprietary and Confidential Information 1 NRG - Strength in Numbers ? 2012 Reliant Proprietary and Confidential... Information + 2011 ranking by Fortune Magazine; *Since 2000 Reduced emissions by nearly ?* for a cleaner NRG 276 25K 5 50% 2M Place on Fortune 500 and S&P 500 Index company 5th largest in the energy sector+ 20M Generating more than 25,000 MW...

  19. Smart Energy

    E-Print Network [OSTI]

    Morrison, W.

    2012-01-01T23:59:59.000Z

    Email ? Web Portal ? Gadget ? Energy Monitor ? Mobile/Text Alerts ? Pricing Plans ? Payment Plans ? Solar Leasing ? Home Services 21 Convenience: Thermostats/Controllers ? 2012 Reliant Proprietary and Confidential Information ?WiFi / Zig...Bee ?WiFi ?Demand Response 3M Computime Thermostat with EcoFactor ?WiFi ?GPS Proximity Control Allure Energy ?WiFi ?Learning NEST Learning Thermostat Reliant e-Sense? Ideal Temp program with EcoFactor - an easy solution that lets you control...

  20. The Energy Efficiency and Renewable Energy Program

    E-Print Network [OSTI]

    The Energy Efficiency and Renewable Energy Program develops sustainable energy technologies is committed to expanding energy resource options and to improving efficiency in every element of energy production and use Energy Efficiency and Renewable Energy Program Research Focus Areas Nickel aluminide

  1. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    energy, geo-thermal energy, ocean thermal energy, wastedenergy, geothermal energy, ocean thermal energy, wasted heatthermal energy, geo/ocean-thermal energy, wasted heat in

  2. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01T23:59:59.000Z

    an energy management and energy audit; Chapter 8 Energyan energy management and energy audit; Chapter 8 Energyan energy management and energy audit; Chapter 8 Energy

  3. Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of Energy 3 BTOWebinar EnergyJuly 2012Basics Energy

  4. Energy Literacy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs,Energy Literacy Energy Literacy

  5. Energy Blog | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment

  6. Energy Economy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmergingPartnership to Drive

  7. Energy Efficiency | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmergingPartnership to

  8. Energy Saver | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmergingPartnershipBio-Inspired SolarSave

  9. Energy Sources | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease

  10. Luminant Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee,EnergyAlabama:Ludlow Falls,Luling,LumenLuminant

  11. Good Energies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, search EquivalentGonergyGood Energies

  12. APNA Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios in CenozoicACALADAAGAPNA Energy

  13. Alliant Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to: navigation,AlleghanyAlliance forRuralAlliant

  14. Boyue Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights,Boyne City, Michigan: Energy

  15. Energy Tomorrow | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublic Law of|Energy Technology and

  16. Energy 21 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to:EnergEnergy 21 Jump to: navigation, search

  17. Energy Events | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to:EnergEnergy 21

  18. Evolve Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace CenterEverlight ElectronicsEvolve Energy Jump

  19. Freedom Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForkedFranklinFreedomFreedom

  20. Winch Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: Energy Resources JumpWin WinWinch