Harmonized Emissions Analysis Tool (HEAT) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information Hanergy HoldingsHansatronicHarmonized
harmonic analysis and geometry
Faculty listing for "harmonic analysis and geometry". vCard of Nicola Garofalo Garofalo, Nicola [bio] [homepage] Adjunct Professor of Mathematics
Bachelard, R.; Chubar, O.; Mercere, P.; Idir, M.; Couprie, M.E.; Lambert, G.; Zeitoun, Ph.; Kimura, H.; Ohashi, H.; Higashiya, A.; Yabashi, M.; Nagasono, M.; Hara, T. and Ishikawa, T.
2011-06-08T23:59:59.000Z
The single-shot spatial characteristics of the vacuum ultraviolet self-amplified spontaneous emission of a free electron laser (FEL) is measured at different stages of amplification up to saturation with a Hartmann wavefront sensor. We show that the fundamental radiation at 61.5 nm tends towards a single-mode behavior as getting closer to saturation. The measurements are found in good agreement with simulations and theory. A near diffraction limited wavefront was measured. The analysis of Fresnel diffraction through the Hartmann wavefront sensor hole array also provides some further insight for the evaluation of the FEL transverse coherence, of high importance for various applications.
Warner, E. S.; Heath, G. A.
2012-04-01T23:59:59.000Z
A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.
P. Danielewicz
2007-07-03T23:59:59.000Z
Shapes of relative emission sources can be accessed by expanding shapes of correlations at low relative velocities in pair center of mass in Cartesian harmonics. Coefficients of expansion for correlations are related to the respective coefficients of expansion for the sources through one dimensional integral transforms involving properties of pair relative wavefunctions. The methodology is illustrated with analyses of NA49 and PHENIX correlation data.
Abstract Harmonic Analysis on Spacetime
Kahar El-Hussein
2014-04-06T23:59:59.000Z
In this paper, we consider the Poincare group (space time). In mathematics, the Poincar\\'e group of spacetime, named after Henri Poincar\\'e, is the group of isometries of Minkowski spacetime, introduced by Hermann Minkowski. It is a non-abelian Lie group with ten generators. Spacetime, in physical science, single concept that recognizes the union of space and time, posited by Albert Einstein in the theories of relativity. One of the interesting problems for Mathematicians and Physicists is. Can we do the Fourier analysis on space time. The purpose of this paper is to define the Fourier transform the Poincar\\'e group, and then we establish the Plancherel theorem for spacetime
Heath, G.
2012-06-01T23:59:59.000Z
This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.
Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, R. J.; Venteris, E. R.; Wang, M. Q.
2012-06-01T23:59:59.000Z
The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced.
Harmonic Analysis Errors in Calculating Dipole,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
to reduce the harmonic field calculation errors. A conformal transfor- mation of a multipole magnet into a dipole reduces these errors. Dipole Magnet Calculations A triangular...
Burkhardt, J. J.; Heath, G.; Cohen, E.
2012-04-01T23:59:59.000Z
In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.
An explanation for experimental observations of harmonic cyclotron emission induced by fast ions
Chen, K.R.; Horton, W.; Van Dam, J.W.
1993-09-01T23:59:59.000Z
An explanation, supported by numerical simulations and analytical theory, is given for the harmonic cyclotron emission induced by fast ions in tokamak plasmas - particular, for the emission observed at low harmonics in deuterium-deuterium md deuterium-tritium experiments in the Joint European Tokamak. We show that the first proton harmonic is one of the highest spectral peaks whereas the first alpha is weak. We also compare the relative spectral amplitudes of different harmonics. Our results axe consistent with the experimental observations. The simulations verify that the instabilities are caused by a weak relativistic mass effect. Simulation that a nonuniform magnetic field leads to no appreciable change in the growth and saturation amplitude of the waves.
Linear harmonic analysis of Stirling engine thermodynamics
Chen, N.C.J.; Griffin, F.P.; West, C.D.
1984-08-01T23:59:59.000Z
The analysis involves linearization of the pressure waveform and represents each term in the conservation equations by a truncated Fourier series, including enthalpy flux discontinuity. Second-Law analysis is presented of four important loss mechanisms that result from adiabatic cylinders, transient heat transfer in semiadiabatic cylinders, pressure drop through the heat exchangers, and gas leakage from the compression space. The four loss mechanisms, all leading to efficiency reduction below the Carnot level, are characterized by irreversible thermodynamic processes that occur when heat is transferred across a finite temperature difference; when gases at two different temperatures are mixed; or when there is a mass flow through a pressure difference. The allocation of each individual loss mechanism is derived precisely in terms of entropy production but evaluated by use of pressure, temperature, and mass oscillations calculated from the linear harmonic approximation. When the theory is applied to an engine of Sunpower's RE-1000 dimensions, it reveals clearly that the adiabatic loss (due to temperature fluctuations in the cylinders) consists of two components: gas mixing and heat transfer across a temperature difference. The theory further shows that the adiabatic effect is more important than the transient heat transfer loss if the gas-to-cylinder heat transfer rate is small (i.e., nearly adiabatic conditions); the reverse is true for intermediate heat transfer rates; and both losses vanish at very high heat transfer rates. In addition, entropy analyses of pressure drop and mass leakage for isothermal cylinders shed some light on coupling between the different individual loss mechanisms.
Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.
2012-04-01T23:59:59.000Z
This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.
Harmonic analysis on a galois field and its subfields
A. Vourdas
2006-10-17T23:59:59.000Z
Complex functions $\\chi (m)$ where $m$ belongs to a Galois field $GF(p^ \\ell)$, are considered. Fourier transforms, displacements in the $GF(p^ \\ell) \\times GF(p^ \\ell)$ phase space and symplectic $Sp(2,GF(p^ \\ell))$ transforms of these functions are studied. It is shown that the formalism inherits many features from the theory of Galois fields. For example, Frobenius transformations are defined which leave fixed all functions $h(n)$ where $n$ belongs to a subfield $GF(p^ d)$ of the $GF(p^ \\ell)$. The relationship between harmonic analysis (or quantum mechanics) on $GF(p^ \\ell)$ and harmonic analysis on its subfields, is studied.
Heath, G.; O'Donoughue, P.; Whitaker, M.
2012-12-01T23:59:59.000Z
This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.
HHFW (High Harmonic Fast Wave) Eddy Current Analysis for Antenna
Princeton Plasma Physics Laboratory
1 NSTX HHFW (High Harmonic Fast Wave) Eddy Current Analysis for Antenna NSTX-CALC-24-03-01 June 1 performed.) The model was first built for NSTX to verify the eddy current effect on antenna during plasma force of the induced eddy current in the components. The force data was transferred to the structural
-okfl ^ ORNL/CON-172 Linear Harmonic Analysis of Free-
Oak Ridge National Laboratory
Stirling Engines N. C. J. Chen F. P. Griffin OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. #12;ORNL/CON-172 Engineering Technology Division* LINEAR HARMONIC ANALYSIS OF FREE-PISTON STIRLING/dynamic problem that is associated with a free-piston Stirling engine (FPSE). The governing equations
Harmonic analysis of the Ha velocity field of NGC 4254
Laurent Chemin; Olivier Hernandez; Chantal Balkowski; Claude Carignan; Philippe Amram
2005-12-20T23:59:59.000Z
The ionized gas kinematics of the Virgo Cluster galaxy NGC 4254 (Messier 99) is analyzed by an harmonic decomposition of the velocity field into Fourier coefficients. The aims of this study are to measure the kinematical asymmetries of Virgo cluster galaxies and to connect them to the environment. The analysis reveals significant $m=1,2,4$ terms which origins are discussed.
Harmonic analysis of climatological sea surface salinity Tim P. Boyer and Sydney Levitus
Harmonic analysis of climatological sea surface salinity Tim P. Boyer and Sydney Levitus Ocean: Boyer, T. P., and S. Levitus, Harmonic analysis of climatological sea surface salinity, J. Geophys. Res
Mesoscale harmonic analysis of homogenous dislocation nucleation
Asad Hasan; Craig E. Maloney
2012-05-08T23:59:59.000Z
We perform atomistic computer simulations to study the mechanism of homogeneous dislocation nucleation in two dimensional (2D) hexagonal crystalline films during indentation with a circular nanoindenter. The nucleation process is governed by the vanishing of the energy associated with a single normal mode. This critical mode is largely confined to a single plane of adjacent atoms. For fixed film thickness, L, the spatial extent, \\xi, of the critical mode grows with indenter radius, R. For fixed R/L, the spatial extent \\xi, grows roughly as \\xi ~ L^0.4. We, furthermore, perform a mesoscale analysis to determine the lowest energy normal mode for mesoscale regions of varying radius, r_{meso}, centered on the critical mode's core. The energy, \\lambda_{meso}, of the lowest normal mode in the meso-region decays very rapidly with r_{meso} and \\lambda_{meso} ~= 0 for r_{meso} >~ \\xi. The lowest normal mode shows a spatial extent, \\xi_{meso}, which has a sublinear power-law increase with r_{meso} for r_{meso} mesoscale analysis gives good estimates for the energy and spatial extent of the critical mode \\emph{only} for r_{meso} >~ 1.5 \\xi. In this sense homogeneous dislocation nucleation should be understood as a quasi-local phenomenon.
Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization
Dolan, S. L.; Heath, G. A.
2012-04-01T23:59:59.000Z
A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.
Harmonic Analysis of a Three-Phase Diode Bridge Rectifier based on Sampled-Data Model
Lehn, Peter W.
Harmonic Analysis of a Three-Phase Diode Bridge Rectifier based on Sampled-Data Model K. L. Lian. As demonstrated in the paper, the proposed method analytically evaluates harmonics, and obtains exact switching is to incorporate it into a harmonic power flow program to yield improved accuracy. Index Terms-- Diode Bridge
A three-phase converter model for harmonic analysis of HVDC systems
Xu, W.; Drakos, J.E.; Mansour, Y.; Chang, A. (B.C. Hydro, Burnaby, British Columbia (Canada))
1994-07-01T23:59:59.000Z
An equivalent circuit model is presented to model bridge converters for three-phase HVDC harmonic power flow analysis. The validity and accuracy of the model are verified by comparing simulation results against field test results. The model is interfaced with a multiphase harmonic load flow program to investigate the generation of non-characteristic harmonics from HVDC links and the flow of HVDC harmonics in a real system.
Kung, Andy
Numerical Analysis of Fifth-Harmonic Conversion of Low-Power Pulsed Nd:YAG Laser with Resonance of Second Harmonic Lien-Bee CHANG1Ã? , S. C. WANG1 and A. H. KUNG1;2 1 Institute of Electro March 13, 2003) A model for the fifth-harmonic generation of pulsed IR lasers involving an external ring
Heath, G. A.; Burkhardt, J. J.
2011-09-01T23:59:59.000Z
In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.
Analysis and Design of New Harmonic Mitigation Approaches
Aeloiza Matus, Eddy 1972-
2012-11-01T23:59:59.000Z
-pulse rectifiers are based on the principle of harmonic cancellation through phase shifting and are the preferred solution to eliminate harmonics in high power converters in large motor drives, electro-winning rectifiers and HVDC transmission systems [23...-voltage systems can have up to 2.0% THD where the cause is an HVDC terminal that will attenuate by the time it is tapped for user. Individual Harmonic Order (Odd Harmonics) Isc / IL <11 11 ? h"? 17 17 ? h"? 23 23 ? h"? 35 h"? 35 TDD <20 * 4.0 2...
NUMERICAL ANALYSIS OF A FINITE ELEMENT SCHEME FOR THE APPROXIMATION OF HARMONIC MAPS INTO SURFACES
Bartels, Soeren
NUMERICAL ANALYSIS OF A FINITE ELEMENT SCHEME FOR THE APPROXIMATION OF HARMONIC MAPS INTO SURFACES Geometric partial differential equations and their analysis as well as numerical simulation have recently
Emissions Trading: A Feasible Analysis for UBC
Emissions Trading: A Feasible Analysis for UBC Vivian Hoffman, J Chisholm I. Introduction The GVRD environmental objectives are achieved. Emissions reduction credit trading (or emissions trading) is an example Valley (LFV). Section III describes the market-based instruments of emissions trading and facility
Theoretical analysis of high-order harmonic generation from a coherent superposition of states
Milosevic, Dejan B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, Berlin, 12489 (Germany)
2006-02-15T23:59:59.000Z
A quantum theory of high-order harmonic generation by a strong laser field in the presence of more bound states is formulated. The obtained numerical and analytical results for a two-state hydrogenlike atom model show that the harmonic spectrum consists of two parts: a usual single-state harmonic spectrum of odd harmonics having the energies (2k+1){omega} and a resonant part with the peaks around the excitation energy {delta}{omega}. The energy of the harmonics in the resonant part of the spectrum is equal to {delta}{omega}{+-}{omega}, {delta}{omega}{+-}3{omega}, .... For energies higher than the excitation energy, the resonant part forms a plateau, followed by a cutoff. The emission rate of the harmonics in this resonant plateau is many orders of magnitude higher than that of the harmonics generated in the presence of the ground state alone. The influence of the depletion of the initial states, as well as of the pulse shape and intensity, is analyzed.
Analysis of second harmonic instability for the Chateauguay HVDC/SVC scheme
Hammad, A.E. (ABB Power Systems, 5401-Baden (CH))
1992-01-01T23:59:59.000Z
The Chateauguay HVDC back-to-back scheme with interconnections to the 765 kV transmission to U.S.A. and to Beauharnois generators can exhibit, under certain operating conditions, second harmonic resonance problems. This paper presents a thorough analysis of the problem using an eigenvalue and frequency domain approach. The analysis explains the mechanism of exciting the second harmonic instability by the presence of HVDC converters. The influence of changing the control parameters of the static VAR compensatory at the Chateauguay terminal is also studied. Finally, an assessment is made for the effectiveness of present countermeasure schemes, namely; the auxiliary dc stabilizing controls and the installation of second harmonic filters.
NREL: Energy Analysis - Life Cycle Assessment Harmonization Results...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Results and Findings Life Cycle Greenhouse Gas Emissions from Electricity Generation (Factsheet) Cover of the Life Cycle Greenhouse Gas Emissions from Electricity...
Analysis of higher harmonic contamination with a modified approach using a grating analyser
Gupta, Rajkumar, E-mail: rkg@rract.gov.in; Modi, Mohammed H.; Lodha, G. S. [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)] [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Kumar, M.; Chakera, J. A. [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)] [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)
2014-04-15T23:59:59.000Z
Soft x-ray spectra of the toroidal grating monochromator (TGM) at the reflectivity beamline of Indus-1 synchrotron source are analyzed for higher harmonic contribution. A diffraction grating of central line spacing 1200 l/mm is used to disperse the monochromatic beam received from TGM to quantify the harmonic contents in the 50–360 Å wavelength range. In order to calculate the harmonic contamination, conventionally the intensity of higher order peak is divided by first order peak intensity of the desired wavelength. This approach is found to give wrong estimate as first order peak itself is overlapped by higher order peaks. In the present study, a modified approach has been proposed to calculate harmonic contamination where the intensity contributions of overlapping orders have been removed from the first order diffraction peak of the desired wavelength. It is found that the order contamination in the TGM spectra is less than 15% in the wavelength range of 90–180 Å. The total harmonic contribution increases from 6%–60% in the wavelength range of 150–260 Å. The critical wavelength of Indus-1 is 61 Å hence the harmonic contamination below 90 Å is significantly low. The results obtained with modified approach match well with those obtained by quantitative analysis of multilayer reflectivity data. The obtained higher harmonics data are used to fit the transmission of aluminum edge filter in the 120–360 Å wavelength range.
Completion report harmonic analysis of electrical distribution systems
Tolbert, L.M.
1996-03-01T23:59:59.000Z
Harmonic currents have increased dramatically in electrical distribution systems in the last few years due to the growth in non-linear loads found in most electronic devices. Because electrical systems have been designed for linear voltage and current waveforms; (i.e. nearly sinusoidal), non-linear loads can cause serious problems such as overheating conductors or transformers, capacitor failures, inadvertent circuit breaker tripping, or malfunction of electronic equipment. The U.S. Army Center for Public Works has proposed a study to determine what devices are best for reducing or eliminating the effects of harmonics on power systems typical of those existing in their Command, Control, Communication and Intelligence (C3I) sites.
Analysis and Design of New Harmonic Mitigation Approaches
Aeloiza Matus, Eddy 1972-
2012-11-01T23:59:59.000Z
is proposed to reduce the HF circulating current and a zero-sequence control loop to mitigate the low frequency circulating current is also proposed [56]-[58]. 5 Power Quality Standards 1.2. IEEE 519-1981 [67] 1.2.1 In 1981... to determine whether or not the new converters were going to be a problem. It was impractical and not economical to mitigate the harmonics for each non-linear load. Therefore, the IEEE 519-1981 was designed to help these users with the application...
Layden, B.; Cairns, Iver H.; Robinson, P. A. [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Percival, D. J. [Defence Science and Technology Organisation, P.O. Box 1500, Edinburgh, South Australia 5111 (Australia)
2011-02-15T23:59:59.000Z
Three-wave interactions in plasmas are described, in the framework of kinetic theory, by the quadratic response tensor (QRT). The cold-plasma QRT is a common approximation for interactions between three fast waves. Here, the first-order thermal correction (FOTC) to the cold-plasma QRT is derived for interactions between three fast waves in a warm unmagnetized collisionless plasma, whose particles have an arbitrary isotropic distribution function. The FOTC to the cold-plasma QRT is shown to depend on the second moment of the distribution function, the phase speeds of the waves, and the interaction geometry. Previous calculations of the rate for second harmonic plasma emission (via Langmuir-wave coalescence) assume the cold-plasma QRT. The FOTC to the cold-plasma QRT is used here to calculate the FOTC to the second harmonic emission rate, and its importance is assessed in various physical situations. The FOTC significantly increases the rate when the ratio of the Langmuir phase speed to the electron thermal speed is less than about 3.
Bak, Claus Leth
Abstract--This paper presents the harmonic analysis of offshore wind farm (OWF) models with full will be discussed based on measurements from offshore wind farm. Index Terms--full-rating converters, harmonic analysis, offshore wind farm, wind turbine, validation with measurements I. INTRODUCTION HE tendency
Saut, Olivier
PROJET AURORA: COMPLEX AND HARMONIC ANALYSIS RELATED TO GENERATING SYSTEMS: PHASE SPACE LOCALIZATION PROPERTIES, SAMPLING AND APPLICATIONS The aim of the AURORA project CHARGE is to join the efforts holds: A f 2 | f, |2 B f . 1 #12;2 AURORA PROJECT CHARGE The first property is of essential
Analysis of crystallographic texture information by the hyperspherical harmonic expansion
Mason, Jeremy K. (Jeremy Kyle)
2009-01-01T23:59:59.000Z
The field of texture analysis is fundamentally concerned with measuring and analyzing the distribution of crystalline orientations in a given polycrystalline material. Traditionally, the orientation distribution function ...
Paris-Sud XI, Université de
/Simulink simulations. Key words: power system harmonics, power electronic, linear time periodic modeling, PWM, control1 POWER ELECTRONICS HARMONIC ANALYSIS BASED ON THE LINEAR TIME PERIODIC MODELING. APPLICATIONS in power electronic systems. The considered system is described by a set of differential equations, which
Dickmander, D.L.; Peterson, K.J.
1989-04-01T23:59:59.000Z
The harmonic analysis of the dc-side of an HVDC line transmission requires realistic models of the converters, the dc line, and other relevant equipment. These models must include all important paths for harmonic current, and appropriate sources of harmonic voltage generation. The classical converter modeling technique has been demonstrated to be insufficient in field measurements and analysis of the harmonic spectra found on recent HVDC line transmission. For this reason, a new model of the converter bridge which takes into account the major stray capacitances in the converter (the three-pulse model) has been developed, and is described in detail elsewhere. This paper presents comparisons between the classical and three-pulse calculations for the Intermountain Power Project (IPP) HVDC transmission. The calculation results from the three-pulse model agree favorably with the harmonics found in field measurements.
So, Hing-Cheung
SPEECH ENHANCEMENT IN CAR NOISE ENVIRONMENT BASED ON AN ANALYSIS- SYNTHESIS APPROACH USING HARMONIC Kong ABSTRACT This paper presents a speech enhancement method based on an analysis-synthesis framework analysis-synthesis based speech enhancement system, and give details in HNM modeling, parameter estimation
atomic emission analysis: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2014-08-13 113 Over-Allocation or Abatement? A Preliminary Analysis of the EU Emissions Trading Scheme Based on the 2005 Emissions Data MIT - DSpace Summary: This paper...
Campbell, W.H. (Geological Survey, Denver, CO (USA))
1990-12-01T23:59:59.000Z
Various methods for the spherical harmonic analysis of the quiet daily variation of geomagnetic fields (Sq) measured at the Earth's surface have been used to represent the separation of the external (source) and internal (induced) currents. The results of such methods differ because the modeling techniques often reflect differing special objectives of the researcher. One method utilizes the observed field measurements at all world locations determined at a specific instant of time. A second method uses only observations in one primary hemisphere, appropriately mirroring field values for the analysis in the opposite hemisphere. The third method, a variation of the second, uses field values in the opposite hemisphere that are mirrored from a primary region that is shifted in time by 6 months. A variation of these three methods utilizes only a longitude line of observatories and assumes that the 24 hours of Sq field variation represents a 360{degree} rotation of the analysis sphere. For the comparison, power spectral representation, global current patterns in different seasons, and deviations of model-computed field values from the surface observations were all evaluated. The power spectral study showed that the spherical harmonic analysis of Sq should be extended to order m = 6 and degree n = m + 17. The northern hemisphere current system seemed to be consistently stronger than the southern hemisphere system. Exclusion of the mid-latitude vortex polynomials with (n {minus} m) = 0 and 1 was shown to be a useful technique for exposing the unique polar cap current pattern S{sup p}{sub q}. The global method was generally best for modeling; however, the hemisphere mirroring methods with 6-month time shift were almost as good in their representation of the Sq fields. Different special regions of effective and poor modeling were identified for all three methods.
VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD
Frey, H. Christopher
VEHICLE EMISSIONS AND TRAFFIC MEASURES: EXPLORATORY ANALYSIS OF FIELD OBSERVATIONS AT SIGNALIZED between vehicle emissions and traffic control measures is an important step toward reducing the potential roadway design and traffic control, have the ability to reduce vehicle emissions. However, current vehicle
Harmonic analysis for the characterization and correction of geometric distortion in MRI
Tadic, Tony, E-mail: ttadic@gmail.com; Stanescu, Teodor [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto M5S 3E2 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto M5S 3E2 (Canada); Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7 (Canada)
2014-11-01T23:59:59.000Z
Purpose: Magnetic resonance imaging (MRI) is gaining widespread use in radiation therapy planning, patient setup verification, and real-time guidance of radiation delivery. Successful implementation of these technologies relies on the development of simple and efficient methods to characterize and monitor the geometric distortions arising due to system imperfections and gradient nonlinearities. To this end, the authors present the theory and validation of a novel harmonic approach to the quantification of system-related distortions in MRI. Methods: The theory of spatial encoding in MRI is applied to demonstrate that the 3D distortion vector field (DVF) is given by the solution of a second-order boundary value problem (BVP). This BVP is comprised of Laplace’s equation and a limited measurement of the distortion on the boundary of a specified region of interest (ROI). An analytical series expansion solving this BVP within a spherical ROI is obtained, and a statistical uncertainty analysis is performed to determine how random errors in the boundary measurements propagate to the ROI interior. This series expansion is then evaluated to obtain volumetric DVF mappings that are compared to reference data obtained on a 3 T full-body scanner. This validation is performed within two spheres of 20 cm diameter (one centered at the scanner origin and the other offset +3 cm along each of the transverse directions). Initially, a high-order mapping requiring measurements at 5810 boundary points is used. Then, after exploring the impact of the boundary sampling density and the effect of series truncation, a reduced-order mapping requiring measurements at 302 boundary points is evaluated. Results: The volumetric DVF mappings obtained from the harmonic analysis are in good agreement with the reference data. Following distortion correction using the high-order mapping, the authors estimate a reduction in the mean distortion magnitude from 0.86 to 0.42 mm and from 0.93 to 0.39 mm within the central and offset ROIs, respectively. In addition, the fraction of points with a distortion magnitude greater than 1 mm is reduced from 35.6% to 2.8% and from 40.4% to 1.5%, respectively. Similarly, following correction using the reduced-order mapping, the mean distortion magnitude reduces to 0.45–0.42 mm within the central and offset ROIs, and the fraction of points with a distortion magnitude greater than 1 mm is reduced to 2.8% and 1.5%, respectively. Conclusions: A novel harmonic approach to the characterization of system-related distortions in MRI is presented. This method permits a complete and accurate mapping of the DVF within a specified ROI using a limited measurement of the distortion on the ROI boundary. This technique eliminates the requirement to exhaustively sample the DVF at a dense 3D array of points, thereby permitting the design of simple, inexpensive phantoms that may incorporate additional modules for auxiliary quality assurance objectives.
Iman Marvian; Robert W. Spekkens
2014-12-05T23:59:59.000Z
Finding the consequences of symmetry for open system quantum dynamics is a problem with broad applications, including describing thermal relaxation, deriving quantum limits on the performance of amplifiers, and exploring quantum metrology in the presence of noise. The symmetry of the dynamics may reflect a symmetry of the fundamental laws of nature, a symmetry of a low-energy effective theory, or it may describe a practical restriction such as the lack of a reference frame. In this paper, we apply some tools of harmonic analysis together with ideas from quantum information theory to this problem. The central idea is to study the decomposition of quantum operations---in particular, states, measurements and channels---into different modes, which we call modes of asymmetry. Under symmetric processing, a given mode of the input is mapped to the corresponding mode of the output, implying that one can only generate a given output if the input contains all of the necessary modes. By defining monotones that quantify the asymmetry in a particular mode, we also derive quantitative constraints on the resources of asymmetry that are required to simulate a given asymmetric operation. We present applications of our results for deriving bounds on the probability of success in nondeterministic state transitions, such as quantum amplification, and a simplified formalism for studying the degradation of quantum reference frames.
U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...
Broader source: Energy.gov (indexed) [DOE]
Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012 U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012 The report ranks...
U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis thumbenergyuselossemissionslg.gif How...
Mark W. Coffey
2008-12-09T23:59:59.000Z
We evaluate binomial series with harmonic number coefficients, providing recursion relations, integral representations, and several examples. The results are of interest to analytic number theory, the analysis of algorithms, and calculations of theoretical physics, as well as other applications.
Policy Analysis Changing Trends in Sulfur Emissions
Jacobson, Mark
global warming, but this warming effect could be partially offset by reductions in the emissions of black , A N D H I R O M A S A U E D A # Center for Global and Regional Environmental Research, The University,present,andfuturelevelsofsulfurdeposition and ambient levels of SO2 and sulfate aerosol is central to the evaluation of risks to ecosystems and human
Guo, Y.; Keller, J.; Parker, R. G.
2012-06-01T23:59:59.000Z
The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.
Skupin, Stefan
and Solid State Optics, Friedrich-Schiller-UniversitÃ¤t Jena, Max-Wien-Platz 1, 07743 Jena, Germany 3-wave mixing and cross-phase modulation. Third, the filamentation is accompanied by a conical emission plasma generation comes into play. Self-induced ionization then depletes the back of the pulse and keeps
Ellerman, A. Denny.
This paper provides an initial analysis of the European Union Emissions Trading Scheme (EU ETS) based on the installation-level data for verified emissions and allowance allocations in the first trading year. Those data, ...
Lueth, O.A.; Jattke, A.; Rentz, O.
1995-12-31T23:59:59.000Z
Results from energy-environment models, such as national emission reduction strategies and related costs, not only have an influence on national policy but are also used as a basis for international commitments with the objective of emission limitation. In recent years, there has been a great interest in a growing number of countries, for instance of ex-Yugoslavia or of the former Soviet Union, in models and methodologies that are internationally accepted. But, whereas the general methodologies can be transferred easily, modifications are necessary to take into account the specific situation of countries with economies in transition and small countries in particular. In this paper, improvements of the internationally accepted energy-emission model EFOM-ENV are described that make it possible to consider issues like a limited availability of hard currency and liquid capital as well as the uncertainty about the future economic development. For small countries, a mixed integer approach is pursued which permits to consider: (1) political trends, for instance striving for more independence from energy imports; (2) economical effects like economies of scale; and (3) technical aspects such as the impossibility of decreasing or increasing the capacity of an existing plant by any small quantity.
Rendusara, Dudi Abdullah
1995-01-01T23:59:59.000Z
ANALYSIS AND DESIGN OF SIX AND TWELVE PULSE DIODE RECTIFIER SYSTEMS UNDER VOLTAGE UNBALANCE/DISTORTION AND SOME NEW METHODS TO REDUCE INPUT CURRENT HARMONICS A Thesis by DUDI ABDULLAH RENDUSARA Submitted to the Office of Graduate Studies.../DISTORTION AND SOME NEW METHODS TO REDUCE INPUT CURRENT HARMONICS A Thesis by DUDI ABDULLAH RENDUSARA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved...
S. Zieba; J. Maslowski; A. Michalec; G. Michalek; A. Kulak
2007-01-15T23:59:59.000Z
Long-running measurements of the solar radio flux density at 810 MHz were processed. Based on the least-squares method and using modified periodograms and an iterative technique of fitting and subtracting sinusoids in the time domain, frequency, amplitude, and phase characteristics of any analyzed time series were obtained. Solar cycles 20, 21, and 22 and shorter segments around solar minima and maxima were examined separately. Also, dynamic studies with 405, 810, and 1620 day windows were undertaken. The harmonic representations obtained for all these time series indicate large differences among solar cycles and their segments. We show that the solar radio flux at 810 MHz violates the Gnevyshev-Ohl rule for the pair of cycles 22-23. Analyzing the period 1957-2004, the following spectral periods longer than 1350 days were detected: 10.6, 8.0, 28.0, 5.3, 55.0, 3.9, 6.0, 4.4, and 14.6 yr. For spectral periods between 270 and 1350 days the 11 yr cycle is not recognized. We think that these harmonics form ``impulses of activity'' or a quasi-biennial cycle defined in the Benevolenskaya model of the ``double magnetic cycle.'' The value of about 0.09 is proposed for the interaction parameter (between the low- and high-frequency components) of this model. We confirm the intermittent behavior of the periodicity near 155 days. Correlation coefficients between the radio emission at 810 MHz and sunspot numbers, as well as the radio emission at 2800 MHz calculated for 540 day intervals, depend on the solar cycle phase.
Spectral Components Analysis of Diffuse Emission Processes
Malyshev, Dmitry; /KIPAC, Menlo Park
2012-09-14T23:59:59.000Z
We develop a novel method to separate the components of a diffuse emission process based on an association with the energy spectra. Most of the existing methods use some information about the spatial distribution of components, e.g., closeness to an external template, independence of components etc., in order to separate them. In this paper we propose a method where one puts conditions on the spectra only. The advantages of our method are: 1) it is internal: the maps of the components are constructed as combinations of data in different energy bins, 2) the components may be correlated among each other, 3) the method is semi-blind: in many cases, it is sufficient to assume a functional form of the spectra and determine the parameters from a maximization of a likelihood function. As an example, we derive the CMB map and the foreground maps for seven yeas of WMAP data. In an Appendix, we present a generalization of the method, where one can also add a number of external templates.
Tilli, Andrea; Conficoni, Christian
2011-01-01T23:59:59.000Z
In this chapter some results related to Shunt Active Filters (SAFs) and obtained by the authors and some coauthors are reported. SAFs are complex power electronics equipments adopted to compensate for cur-rent harmonic pollution in electric mains, due to nonlinear loads. By using a proper "floating" capacitor as energy reservoir, the SAF purpose is to inject in the line grid currents canceling the polluting har-monics. Control algorithms play a key role for such devices and, in general, in many power electronics applications. Moreover, systems theory is crucial, since it is the mathematical tool that enables a deep understanding of the involved dynamics of such systems, allowing a correct dimensioning, beside an effective control. As a matter of facts, current injection objective can be straightforwardly formulated as an output tracking control problem. In this fashion, the structural and insidious marginally-stable internal/zero dynamics of SAFs can be immediately highlighted and characterized in terms of si...
Why are allowance prices so low? : an analysis of the SO2 emissions trading program
Ellerman, A. Denny
1996-01-01T23:59:59.000Z
This paper presents an analysis of the reduction in SO2 emissions by electric utilities between 1985 and 1993. We find that emissions have been reduced for reasons largely unrelated to the emission reduction mandate ...
High-order harmonic generation in the presence of a static electric field
Odzak, S. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Milosevic, D.B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)
2005-09-15T23:59:59.000Z
We consider high-order harmonic generation by a linearly polarized laser field and a parallel static electric field. We first develop a modified saddle-point method which enables a quantitative analysis of the harmonic spectra even in the presence of Coulomb singularities. We introduce a classification of the saddle-point solutions and show that, in the presence of a static electric field which breaks the inversion symmetry, an additional classification number has to be introduced and that the usual saddle-point approximation and the uniform approximation in the case of the coalescing saddle points have to be modified. The theory developed offers a simple and accurate explanation of the static-field-induced multiplateau structure of the harmonic spectra. The longer quantum orbits are responsible for a long extension of the harmonic plateau, while the larger initial electron velocities are the reason of lower harmonic emission rates.
Exact Analysis of the Adiabatic Invariants in Time-Dependent Harmonic Oscillator
Marko Robnik; Valery G. Romanovski
2005-06-16T23:59:59.000Z
The theory of adiabatic invariants has a long history and important applications in physics but is rarely rigorous. Here we treat exactly the general time-dependent 1-D harmonic oscillator, $\\ddot{q} + \\omega^2(t) q=0$ which cannot be solved in general. We follow the time-evolution of an initial ensemble of phase points with sharply defined energy $E_0$ and calculate rigorously the distribution of energy $E_1$ after time $T$, and all its moments, especially its average value $\\bar{E_1}$ and variance $\\mu^2$. Using our exact WKB-theory to all orders we get the exact result for the leading asymptotic behaviour of $\\mu^2$.
Kon, Mark
Review of Wavelet Theory and Harmonic Analysis in Applied Sciences, C.E. D'Atellis and E.M. Fernandez-Berdaguer, Ed. Mark A. Kon, Boston University Wavelet theory has had a far-reaching influence, not only on the theory of wavelets, but on their applications in almost every area of science which has
Bret, Antoine; Tahir, Naeem
2012-01-01T23:59:59.000Z
Cylindrical implosions driven by intense heavy ions beams should be instrumental in a near future to study High Energy Density Matter. By rotating the beam by means of a high frequency wobbler, it should be possible to deposit energy in the outer layers of a cylinder, compressing the material deposited in its core. The beam temporal profile should however generate an inevitable irradiation asymmetry likely to feed the Rayleigh-Taylor instability (RTI) during the implosion phase. In this paper, we compute the Fourier components of the target irradiation in order to make the junction with previous works on RTI performed in this setting. Implementing a 1D and 2D beam models, we find these components can be expressed exactly in terms of the Fourier transform of the temporal beam profile. If $T$ is the beam duration and $\\Omega$ its rotation frequency, "magic products" $\\Omega T$ can be identified which cancel the first harmonic of the deposited density, resulting in an improved irradiation symmetry.
A bottom-up analysis of including aviation within theEU's Emissions Trading Scheme
Watson, Andrew
A bottom-up analysis of including aviation within theEU's Emissions Trading Scheme Alice Bows-up analysis of including aviation within the EU's Emissions Trading Scheme Alice Bows & Kevin Anderson Tyndall's emissions trading scheme. Results indicate that unless the scheme adopts both an early baseline year
Bennett, Charles L. (Livermore, CA)
2009-10-20T23:59:59.000Z
A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.
Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions
Broader source: Energy.gov [DOE]
Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsQuantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG EmissionsJennifer B....
Carbon Permit Prices in the European Emissions Trading System: A Stochastic Analysis
Carbon Permit Prices in the European Emissions Trading System: A Stochastic Analysis By Wee Chiang, Technology and Policy Program 1 #12;Carbon Permit Prices in the European Emissions Trading System Abstract The Emission Trading Scheme (ETS) is a cornerstone for European efforts to reduce greenhouse gas
A Sectoral Prospective Analysis of CO2 Emissions in China, USA and France, 2010-2050
Boyer, Edmond
1 A Sectoral Prospective Analysis of CO2 Emissions in China, USA and France, 2010-2050 Pascal da mitigation targets for CO2 emissions, which reflect their own specific situations. In this article, scenarios for CO2 emissions up to 2050 are set up for three representative countries: the United States of America
Bennett, Charles L.; Sewall, Noel; Boroa, Carl
2014-08-19T23:59:59.000Z
An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.
Modeling aviation's global emissions, uncertainty analysis, and applications to policy
Lee, Joosung Joseph, 1974-
2005-01-01T23:59:59.000Z
(cont.) fuel burn results below 3000 ft. For emissions, the emissions indices were the most influential uncertainties for the variance in model outputs. By employing the model, this thesis examined three policy options for ...
An Analysis of the European Emission Trading Scheme
Reilly, John M.
An international emissions trading system is a featured instrument in the Kyoto Protocol to the Framework Convention on Climate Change, designed to reduce emissions of greenhouse gases among major industrial countries. The ...
Heslin, J.S.; Hobbs, B.F. (Case Western Reserve Univ., Cleveland, OH (United States))
1991-08-01T23:59:59.000Z
A new approach for state- and utility-level analysis of the cost and regional economic impacts of strategies for reducing utility SO{sub 2} emissions is summarized and applied to Ohio. The methodology is based upon probabilistic production costing and economic input-output analysis. It is an improvement over previous approaches because it: accurately models random outages of generating units, must-run constraints on unit output, and the distribution of power demands; and runs quickly on a microcomputer and yet considers the entire range of potential control strategies from a systems perspective. The input-output analysis considers not only the economic effects of utility fuel use and capital investment, but also those of increased electric rates. Two distinct strategies are found to be most attractive for Ohio. The first, more flexible one, consists of emissions dispatching (ED) alone to meet short run emissions reduction targets. A 75 percent reduction can then be achieved by the turn of the century by combining ED and fuel switching (FS) with flue gas desulfurization, limestone injection multistage burners, and physical coal cleaning at selected plants. The second is a scrubber-based strategy which includes ED. By the year 2000, energy conservation becomes a cost effective component of these strategies. In order to minimize compliance costs, acid rain legislation which facilitates emissions trading and places regional tonnage limits on emissions is desirable.
CHBE 484: Term Report Greenhouse Gas Emissions Analysis
Wan Joyce Ying Torrio Louie April 18th 2008 #12;ii Summary: This report analyzes the CO2 emissions and 53.0 g/CO2 respectively. It is determined that the emissions for 2007 were 83646.07 tonnes CO2.01%) will increase the carbon emissions from 85962.15 tonnes CO2 to a total of 123796.74 tonnes CO2. Thus 95428
acoustic emission analysis: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...
Nabben, Reinhard
-harmonic eddy current model in two dimensions. The first criterion is the robustness with respect Expansions, Eddy- current model AMS subject classifications. 65N30, 35C20, 35J25, 41A60, 35B40, 78M30, 78M35 Introduction. For simulations of the eddy current problem with thin sheets by standard methods, like the finite
Im, P.; Haberl, J. S.; Culp, C.; Yazdani, B.
2008-07-18T23:59:59.000Z
In August 2004, the Environmental Protection Agency (EPA) issued guidance on quantifying the air emissions benefits from electric sector energy efficiency and renewable energy. Because there was no clear best strategy, the EPA’s guidance provided a...
Reports and Publications (EIA)
2013-01-01T23:59:59.000Z
This analysis supplements the Annual Energy Outlook 2013 alternative cases which imposed hypothetical carbon dioxide emission fees on fossil fuel consumers. It offers further cases that examine the impacts of fees placed only on the emissions from electric power facilities, impacts of returning potential revenues to consumers, and two cap-and-trade policies.
A Forward Looking Version of the MIT Emissions Prediction and Policy Analysis (EPPA) Model
Babiker, Mustafa M.H.
This paper documents a forward looking multi-regional general equilibrium model developed from the latest version of the recursive-dynamic MIT Emissions Prediction and Policy Analysis (EPPA) model. The model represents ...
Babiker, Mustafa H.M.; Reilly, John M.; Mayer, Monika.; Eckaus, Richard S.; Sue Wing, Ian.; Hyman, Robert C.
The Emissions Prediction and Policy Analysis (EPPA) model is a component of the MIT Integrated Earth Systems Model (IGSM). Here, we provide an overview of the model accessible to a broad audience and present the detailed ...
The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4
Paltsev, Sergey.
The Emissions Prediction and Policy Analysis (EPPA) model is the part of the MIT Integrated Global Systems Model (IGSM) that represents the human systems. EPPA is a recursive-dynamic multi-regional general equilibrium model ...
Analysis of Post-Kyoto CO2 Emissions Trading Using Marginal Abatement Curves A. Denny Ellerman the advantages of emissions trading. In this paper, the authors derive MACs from EPPA, the MIT Joint Program the benefits of emissions trading in achieving the emission reduction targets implied by the Kyoto Protocol
Transition to the Relativistic Regime in High Order Harmonic Generation
Tarasevitch, Alexander; Lobov, Konstantin; Wuensche, Clemens; Linde, Dietrich von der [Institut fuer Experimentelle Physik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)
2007-03-09T23:59:59.000Z
Experiments and computer simulations on the generation of high order harmonics from steep plasma gradients using intense femtosecond laser pulses are presented. Qualitative changes in the harmonic emission take place when the intensities are increased above 10{sup 19} W/cm{sup 2} and/or the plasma scale length is varied. Good agreement between experimental and calculated spectra makes it possible to clearly distinguish between nonrelativistic and relativistic mechanisms of harmonic generation.
Tchamran-Savehi, Abbas
1958-01-01T23:59:59.000Z
for their help and suggestions. Special thanks are extended to Professor R. P. Ward for his tieely advice during the course of the present wor'k. CONTENTS Preface Page PART I. ? GENERAL Introduction Graphical Nethod The Problem History of Harmonic... Analysers Nathematical Aspects of Harmonic Analysers PART II. ? A NEW ELECTRO-Ng CHANICAL HARNONIC ANALYZER Sumsmry Description of the New Harmonic Analyser Introducing the Harmonics Dismnsions of a Complex Wave Electrical Integrator 14 16 20 22...
Harmonization of Biodiesel Specifications
Alleman, T. L.
2008-02-01T23:59:59.000Z
Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.
Multivariate analysis of exhaust emissions from heavy-duty diesel fuels
Sjoegren, M.; Ulf, R.; Li, H.; Westerholm, R. [Stockholm Univ. (Sweden)
1996-01-01T23:59:59.000Z
Particulate and gaseous exhaust emission phases from running 10 diesel fuels on two makes of heavy-duty diesel engines were analyzed with respect to 63 chemical descriptors. Measurements for one of the fuels were also made in the presence of an exhaust aftertreatment device. The variables included 28 polycyclic aromatic compounds (PAC), regulated pollutants (CO, HC, NO{sub x}, particles), and 19 other organic and inorganic exhaust emission components. Principal components analysis (PCA) was applied for the statistical exploration of the obtained data. In addition, relationships between chemical (12 variables) and physical (12 variables) parameters of the fuels to the exhaust emissions were derived using partial least squares (PLS) regression. Both PCA and PLS models were derived for the engine makes separately. The PCA showed that the most descriptive exhaust emission factors from these diesel fuels included fluoranthene as a representative of PAC, the regulated pollutants, sulfates, methylated pyrenes, and monoaromatics. Exhaust emissions were significantly decreased in the presence of an exhaust aftertreatment device. Both engine makes exhibited similar patterns of exhaust emissions. Discrepancies were observed for the exhaust emissions of CO{sub 2} and oil-derived soluble organic fractions, owing to differences in engine design. The PLS analysis showed a good correlation of exhaust emission of the regulated pollutants and PAC with the contents of PAC in the fuels and the fuel aromaticity. 41 refs., 6 figs., 6 tabs.
Light duty vehicle full fuel cycle emissions analysis. Topical report, April 1993-April 1994
Darrow, K.G.
1994-04-01T23:59:59.000Z
The report provides a methodology for analyzing full fuel cycle emissions of alternative fuels for vehicles. Included in this analysis is an assessment of the following fuel cycles relevant to vehicle use: gasoline, reformulated gasoline, natural gas, liquefied petroleum gas, electric power (with onboard battery storage), ethanol, and methanol fuels. The analysis focuses on basic criteria pollutants (reactive organic gases, nitrous oxides, carbon monoxide, sulfurous oxides, and particulates less than 10 microns (PM10)). Emissions of greenhouse gases (carbon dioxide, methane, and nitrous oxide) are also defined. The analysis was conducted for two cases, United States and the State of California and two time frames, current and year 2000.
Wind LCA Harmonization (Fact Sheet), NREL (National Renewable Energy Laboratory)
Not Available
2013-06-01T23:59:59.000Z
NREL recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that provides more exact estimates of GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty. This involved a systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems in order to determine the causes of life cycle greenhouse gases (GHG) emissions and, where possible, reduce variability in GHG estimates.
High-harmonic generation in plasmas from relativistic laser-electron scattering
Umstadter, Donald
High-harmonic generation in plasmas from relativistic laser-electron scattering S. Banerjee, A. R Results are presented on the generation of high harmonics through the scattering of relativistic electrons to be the emission of even- order harmonics, linear dependence on the electron density, significant amount
Background and Reflections on the Life Cycle Assessment Harmonization Project
Heath, G. A.; Mann, M. K.
2012-04-01T23:59:59.000Z
Despite the ever-growing body of life cycle assessment (LCA) literature on electricity generation technologies, inconsistent methods and assumptions hamper comparison across studies and pooling of published results. Synthesis of the body of previous research is necessary to generate robust results to assess and compare environmental performance of different energy technologies for the benefit of policy makers, managers, investors, and citizens. With funding from the U.S. Department of Energy, the National Renewable Energy Laboratory initiated the LCA Harmonization Project in an effort to rigorously leverage the numerous individual studies to develop collective insights. The goals of this project were to: (1) understand the range of published results of LCAs of electricity generation technologies, (2) reduce the variability in published results that stem from inconsistent methods and assumptions, and (3) clarify the central tendency of published estimates to make the collective results of LCAs available to decision makers in the near term. The LCA Harmonization Project's initial focus was evaluating life cycle greenhouse gas (GHG) emissions from electricity generation technologies. Six articles from this first phase of the project are presented in a special supplemental issue of the Journal of Industrial Ecology on Meta-Analysis of LCA: coal (Whitaker et al. 2012), concentrating solar power (Burkhardt et al. 2012), crystalline silicon photovoltaics (PVs) (Hsu et al. 2012), thin-film PVs (Kim et al. 2012), nuclear (Warner and Heath 2012), and wind (Dolan and Heath 2012). Harmonization is a meta-analytical approach that addresses inconsistency in methods and assumptions of previously published life cycle impact estimates. It has been applied in a rigorous manner to estimates of life cycle GHG emissions from many categories of electricity generation technologies in articles that appear in this special supplemental supplemental issue, reducing the variability and clarifying the central tendency of those estimates in ways useful for decision makers and analysts. Each article took a slightly different approach, demonstrating the flexibility of the harmonization approach. Each article also discusses limitations of the current research, and the state of knowledge and of harmonization, pointing toward a path of extending and improving the meta-analysis of LCAs.
ASYMPTOTIC DISTRIBUTION OF ESTIMATES FOR A TIME-VARYING PARAMETER IN A HARMONIC MODEL
Irizarry, Rafael A.
ASYMPTOTIC DISTRIBUTION OF ESTIMATES FOR A TIME-VARYING PARAMETER IN A HARMONIC MODEL WITH MULTIPLE harmonic regression models are useful for cases where harmonic parameters appear to be time-varying. Least, harmonic regression, signal processing, sound analysis, time-varying parameters, weighted least squares
Harmonic Content of Strain-induced Potential Modulation in Unidirectional Lateral Superlattices
Katsumoto, Shingo
Harmonic Content of Strain-induced Potential Modulation in Unidirectional Lateral Superlattices from a Â¼ 92 to 184 nm. Fourier analysis reveals the second (and the third) harmonics along of corresponding harmonics in the profile of the potential modulation. The harmonics manifest themselves in CO
Im, P.; Haberl, J. S.; Culp, C.; Yazdani, B.
2008-07-18T23:59:59.000Z
; provide technical support and customized analysis for state and local agencies seeking to estimate the environmental benefits from clean energy policies and programs; and document how a user-friendly tool, based on e2Calc, can be used by clients to fulfill...
Henderson, Dennis; Mohktarian, Patricia
1996-01-01T23:59:59.000Z
Lagerberg B. (1992) Puget sound telecommuting demonstration:EMISSIONS: ANALYSIS OF THE PUGET SOUND DEMONSTRATION PROJECTthe travel diaries of the Puget Sound Project participants.
Daniel Schmidt; Cornelia Monzel; Timo Bihr; Rudolf Merkel; Udo Seifert; Kheya Sengupta; Ana-Sun?ana Smith
2014-03-28T23:59:59.000Z
The interaction of fluid membranes with a scaffold, which can be a planar surface or a more complex structure, is intrinsic to a number of systems - from artificial supported bilayers and vesicles to cellular membranes. In principle, these interactions can be either discrete and protein mediated, or continuous. In the latter case, they emerge from ubiquitous intrinsic surface interaction potentials as well as nature-designed steric contributions of the fluctuating membrane or from the polymers of the glycocalyx. Despite the fact that these nonspecific potentials are omnipresent, their description has been a major challenge from experimental and theoretical points of view. Here we show that a full understanding of the implications of the continuous interactions can be achieved only by expanding the standard superposition models commonly used to treat these types of systems, beyond the usual harmonic level of description. Supported by this expanded theoretical framework, we present three independent, yet mutually consistent, experimental approaches to measure the interaction potential strength and the membrane tension. Upon explicitly taking into account the nature of shot noise as well as of finite experimental resolution, excellent agreement with the augmented theory is obtained, which finally provides a coherent view of the behavior of the membrane in a vicinity of a scaffold.
Hyperspherical harmonic formalism for tetraquarks
J. Vijande; N. Barnea; A. Valcarce
2006-10-11T23:59:59.000Z
We present a generalization of the hyperspherical harmonic formalism to study systems made of quarks and antiquarks of the same flavor. This generalization is based on the symmetrization of the $N-$body wave function with respect to the symmetric group using the Barnea and Novoselsky algorithm. Our analysis shows that four-quark systems with non-exotic $2^{++}$ quantum numbers may be bound independently of the quark mass. $0^{+-}$ and $1^{+-}$ states become attractive only for larger quarks masses.
Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook
Zheng, Nina; Zhou, Nan; Fridley, David
2010-09-01T23:59:59.000Z
The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.
Pipe-type cable ampacities in the presence of harmonics
Palmer, J.A.; Degeneff, R.C. (Rensselaer Polytechnic Inst., Troy, NY (United States)); McKernan, T.M.; Halleran, T.M. (Consolidated Edison Co. of NY, Inc., New York, NY (United States))
1993-10-01T23:59:59.000Z
This paper explores the effect of harmonics on HPFF pipe-type transmission cable ampacity. Industry currently calculates the current carrying capacity of underground cable based on the assumption of a purely sinusoidal 60k Hz. current. However, increasing levels of harmonics on power systems have raised concern about their effect on cable ampacities. The issue has already been addressed for distribution cables. This paper begins with a discussion of Neher and McGrath's classic equations and some recent revisions, and develops a closed form composite equations accurately reflecting the effect of harmonics. The effect of frequency on the loss ratio is shown and supported by comparison with measured data at 60 Hz. and a finite element analysis at a number of harmonic frequencies. The effect of specific harmonic scenarios is shown in light of the IEEE standard on harmonics. The results are used to develop a derating factor to compensate for current harmonics on transmission systems.
Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis
Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.
1998-09-01T23:59:59.000Z
This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.
Electrodynamic spherical harmonic
Andrey Novitsky
2008-03-28T23:59:59.000Z
Electrodynamic spherical harmonic is a second rank tensor in three-dimensional space. It allows to separate the radial and angle variables in vector solutions of Maxwell's equations. Using the orthonormalization for electrodynamic spherical harmonic, a boundary problem on a sphere can be easily solved.
ELECTRICAL SIMULATION METHODOLOGY DEDICATED TO EMC DIGITAL CIRCUITS EMISSIONS ANALYSIS ON PCB
Paris-Sud XI, Université de
ELECTRICAL SIMULATION METHODOLOGY DEDICATED TO EMC DIGITAL CIRCUITS EMISSIONS ANALYSIS ON PCB Jean band . In this context, we present a global modelling methodology for EMC considerations on Electronic Printed Circuit Board (PCB) and some applications for oriented EMC simulations. In a first time, we
Affordability analysis of lead emission controls for a smelter-refinery. Final report
Scherer, T.M.
1989-10-01T23:59:59.000Z
This document evaluates the affordability and economic impact of additional control measures deemed necessary for a smelter-refinery to meet the lead emission standard. The emphasis in the analysis is on the impact of control costs on the smelter-refinery's profitability. The analysis was performed using control-cost data from two different lead-smelter studies in conjunction with other existing industry data.
ccsd00003279, Modulation of Harmonic Emission Spectra
, Colchester CO4 3SQ, U.K. 2 ININ, A.P. 18-1027, M#19;exico 11801, D.F., Mexico Abstract. We report results
Controllable optical emission spectroscopy diagnostic system for analysis of process chemistries
Thamban, P. L. Stephan; Goeckner, M. J. [Department of Electrical Engineering, University of Texas at Dallas, Richardson, Texas 75083-0688 (United States); Hosch, Jimmy [Verity Instruments, Carrolton, Texas 75007-4887 (United States)
2010-01-15T23:59:59.000Z
Optical emission spectroscopy (OES) diagnostics have been employed for many years in plasma etch end point detection schemes. Unfortunately some newer process systems have much lower optical emission or limited optical access. To overcome such limitations, an OES diagnostic system making use of variable e-beam has been developed. That system is described and initial experimental results are presented. A strong correlation is observed between the optical emission intensity and e-beam current, a measurable electrical parameter. This correlation offers means to normalize optical signal and to be used as a feedback input to the electronics that control the plasma source. In addition there is a measurable response from the different lines due to energy of the electrons, indicating a new degree of freedom in the diagnostic that can be tapped for more precise analysis of end point.
Harmon, Marion
of realÂtime systems. Use of these architectural feaÂ tures can result in significant performance representing paths within the program. A timing analyzer uses the pipeline path analysis to estimate the worst may result in multicycle delays. Instruction or data memory references may not be found in cache
Fault Detection and Diagnostics for Non-Intrusive Monitoring Using Motor Harmonics
Orji, Uzoma A.
Harmonic analysis of motor current has been used to track the speed of motors for sensorless control. Algorithms exist that track the speed of a motor given a dedicated stator current measurement, for example. Harmonic ...
Ganeev, R. A. [Scientific Association Akadempribor, Academy of Sciences of Uzbekistan, Akademgorodok, Tashkent 100125 (Uzbekistan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Milosevic, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)
2008-07-15T23:59:59.000Z
We analyzed high-order harmonic generation from the plasma plumes prepared on the surfaces of complex targets. The studies of In-Ag targets showed that the characteristics of the high-order harmonics from the double-target plume were the same as those from the single-target plasmas. For the chromium-tellurium plasma, the enhancements of the 29th and 27th harmonics were obtained, thus indicating the appearance of the enhancement properties from both components of the double-target plasma. These comparative studies also showed higher enhancement of a single harmonic in the case of atomic plasma (Sb) with regard to the molecular one (InSb). The additional component can only decrease the enhancement factor of the medium, due to the change of the oscillator strength and spectral distribution of the transitions involved in the resonance enhancement of the specific harmonic order. The theoretical calculations have shown the enhancement of specific harmonics for the Sb, Te, and Cr plasmas in the double-target configurations.
Harmonic potential and hadron spectroscopy
Rafael Tumanyan
2009-05-28T23:59:59.000Z
The quark-gluon sea in the hadrons is considered as periodically correlated. Energy levels of Shrodinger equation with harmonic potential is used for describing of the spectrum of hadron masses. In the considered cases the effective potential operating on each particle of ensemble, under certain conditions becomes square-law on displacement from a equilibrium point. It can become an explanation of popularity of oscillator potential for the description of a spectrum of masses of elementary particles. The analysis shows that levels of periodic potential better agreed to the spectrum of hadron masses, than levels of other potentials used for an explanation of a spectrum of masses.
An Ning; Ren Huaijin [Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication Systems, Shanghai 200240 (China); Zheng Yuanlin [Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Key Laboratory for Laser Plasmas (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Deng Xuewei [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Chen Xianfeng [Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication Systems, Shanghai 200240 (China); Key Laboratory for Laser Plasmas (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)
2012-05-28T23:59:59.000Z
We propose a scheme for efficient Cherenkov high-order harmonic generation. Second to fifth order harmonic wave are observed in a single periodically poled ferroelectric crystal in our experiment. The noncollinear high-order harmonic generation is produced via enhanced Cherenkov second harmonic cascaded with successive multistep sum-frequency generation with simultaneously longitudinal phase-matching. The emission angle and power dependencies are analyzed in detail experimentally, which coincide with theoretical predictions.
Summers, Mark A. (Livermore, CA); Eimerl, David (Pleasanton, CA); Boyd, Robert D. (Livermore, CA)
1985-01-01T23:59:59.000Z
A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").
Summers, M.A.; Eimerl, D.; Boyd, R.D.
1982-06-10T23:59:59.000Z
A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).
Harmonic functions on Walsh's Brownian motion
Jehring, Kristin Elizabeth
2009-01-01T23:59:59.000Z
4.3 Harmonic Functions . . . . . . . . . . . . . . .Chapter 3 Harmonic Functions . . . . . . . . . . . . . . 3.1Markov Chains 4.3.2 Harmonic Functions for the Embedded
Harmonic resolution as a holographic quantum number
Bousso, Raphael
2009-01-01T23:59:59.000Z
LBNL- 57239 Harmonic resolution as a holographic quantumhep-th/0310223 UCB-PTH-03/26 Harmonic resolution as aquantum number, the harmonic resolution K. The Bekenstein
Over-allocation or abatement? : a preliminary analysis of the EU ETS based on the 2005 emission data
Ellerman, A. Denny
2006-01-01T23:59:59.000Z
This paper provides an initial analysis of the EU ETS based on the installation-level data for verified emissions and allowance allocations in the first trading year. Those data, released on May 15, 2006, and subsequent ...
Yazdani, Bahman; Culp, Charles; Haberl, Jeff; Baltazar, Juan-Carlos; Do, Sung Lok
2010-01-01T23:59:59.000Z
In August 2004, the USEPA issued guidance on quantifying the air emission benefits from electric sector energy efficiency and renewable energy. Because there was no clear best strategy, the EPA’s guidance provided a framework ...
MULKEY, C.H.
1999-07-06T23:59:59.000Z
This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.
Pierre-Marie Robitaille
2008-05-12T23:59:59.000Z
It has been advanced, on experimental (P.-M. Robitaille, IEEE Trans. Plasma Sci. 2003, v. 31(6), 1263-1267) and theoretical (P.M. Robitaille, Progr. Phys. 2006, v.2, 22-23) grounds, that blackbody radiation is not universal and remains closely linked to the emission of graphite and soot. In order to strengthen such claims, a conceptual analysis of the proofs for universality is presented. This treatment reveals that Gustav Robert Kirchhoff has not properly considered the combined effects of absorption, reflection, and the directional nature of emission in real materials. In one instance, this leads to an unintended movement away from thermal equilibrium within cavities. Using equilibrium arguments, it is demonstrated that the radiation within perfectly reflecting or arbitrary cavities does not necessarily correspond to that emitted by a blackbody.
Wu, Xueran; Jacob, Birgit
2015-01-01T23:59:59.000Z
The controllability of advection-diffusion systems, subject to uncertain initial values and emission rates, is estimated, given sparse and error affected observations of prognostic state variables. In predictive geophysical model systems, like atmospheric chemistry simulations, different parameter families influence the temporal evolution of the system.This renders initial-value-only optimisation by traditional data assimilation methods as insufficient. In this paper, a quantitative assessment method on validation of measurement configurations to optimize initial values and emission rates, and how to balance them, is introduced. In this theoretical approach, Kalman filter and smoother and their ensemble based versions are combined with a singular value decomposition, to evaluate the potential improvement associated with specific observational network configurations. Further, with the same singular vector analysis for the efficiency of observations, their sensitivity to model control can be identified by deter...
Cascaded Cerenkov third-harmonic generation in random quadratic media
Ayoub, Mousa; Roedig, Philip; Imbrock, Joerg; Denz, Cornelia [Institute of Applied Physics and Center for Nonlinear Science (CeNoS), Westfaelische Wilhelms-Universitaet Muenster, Corrensstrasse 2, 48149 Muenster (Germany)
2011-12-12T23:59:59.000Z
We investigate experimentally and theoretically the conical emission of Cerenkov-type third-harmonic generation in strontium barium niobate of random 2D-{chi}{sup (2)} distribution. The azimuthal intensity distribution is explained by the polarization properties of the fundamental and Cerenkov second-harmonic waves, depending on the cascaded origin of the generation process. Moreover, we show the role of the individual domain shape in an additional modulation on the conical emission, controlled by the electrical switching of the spontaneous polarization of the ferroelectric medium.
Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions
Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.
2006-04-01T23:59:59.000Z
United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.
Cox, S.; Benioff, R.
2011-05-01T23:59:59.000Z
The Coordinated Low Emissions Assistance Network (CLEAN) is a voluntary network of international practitioners supporting low-emission planning in developing countries. The network seeks to improve quality of support through sharing project information, tools, best practices and lessons, and by fostering harmonized assistance. CLEAN has developed an inventory to track and analyze international technical support and tools for low-carbon planning activities in developing countries. This paper presents a preliminary analysis of the inventory to help identify trends in assistance activities and tools available to support developing countries with low-emission planning.
Second Harmonic Generation From Surfaces
Botti, Silvana
Second Harmonic Generation From Surfaces Nicolas Tancogne-Dejean, ValÃ©rie VÃ©niard Condensed Matter/DSM European Theoretical Spectroscopy Facility #12;2 Outline Nonlinear optic and second harmonic generation;4 Second harmonic generation First nonlinear term Centrosymmetric material : (2) = 0 (3)First nonlinear
Analytic Continuation of Harmonic Sums
S. Albino
2009-03-06T23:59:59.000Z
We present a method for calculating any (nested) harmonic sum to arbitrary accuracy for all complex values of the argument. The method utilizes the relation between harmonic sums and (derivatives of) Hurwitz zeta functions, which allows a harmonic sum to be calculated as an expansion valid for large values of its argument. A program for implementing this method is also provided.
Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions
Potirakis, S. M. [Department of Electronics, Technological Education Institute (TEI) of Piraeus, 250 Thivon and P. Ralli, Aigaleo, Athens GR-12244 (Greece)] [Department of Electronics, Technological Education Institute (TEI) of Piraeus, 250 Thivon and P. Ralli, Aigaleo, Athens GR-12244 (Greece); Karadimitrakis, A. [Department of Physics, Section of Electronics, Computers, Telecommunications and Control, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece)] [Department of Physics, Section of Electronics, Computers, Telecommunications and Control, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece); Eftaxias, K. [Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece)] [Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece)
2013-06-15T23:59:59.000Z
Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Michael, J. Robert; Volkov, Anatoliy
2015-01-23T23:59:59.000Z
The widely used pseudoatom formalism [Stewart (1976). Acta Cryst. A32, 565–574; Hansen & Coppens (1978). Acta Cryst. A34, 909–921] in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the densitynormalized Cartesian spherical harmonic functions for up to l 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens [Acta Cryst. (1988), A44, 6–7]. It was shown that the analytical form for normalization coefficients is available primarily for l 4 [Hansen & Coppens, 1978; Paturlemore »& Coppens, 1988; Coppens (1992). International Tables for Crystallography, Vol. B, Reciprocal space, 1st ed., edited by U. Shmueli, ch. 1.2. Dordrecht: Kluwer Academic Publishers; Coppens (1997). X-ray Charge Densities and Chemical Bonding. New York: Oxford University Press]. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturle–Coppens (Paturle & Coppens, 1988) method in the Wolfram Mathematica software to derive the Cartesian spherical harmonics for l 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.« less
High-order harmonic transient grating spectroscopy of SF6 molecular vibrations Amelie Ferre1
Paris-Sud XI, Université de
High-order harmonic transient grating spectroscopy of SF6 molecular vibrations Am´elie Ferr´e1. Here we use this technique to investigate the high-order harmonic genera- tion from SF6 molecules emission generated between 14 to 26 eV is mainly sensitive to two among the three active Raman modes in SF6
An Analysis of PM and NOx Train Emissions in the Alameda Corridor, CA
Sangkapichai, Mana; Saphores, Jean-Daniel M; Ritchie, Stephen G.; You, Soyoung Iris; Lee, Gunwoo
2008-01-01T23:59:59.000Z
to trains (the modeling of truck emissions is addressed in aas well as emissions from drayage trucks, cargo handlingPM emissions from other sources such as drayage trucks that
Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook
Zheng, Nina
2010-01-01T23:59:59.000Z
2050 China Energy and CO2 Emissions Report, McKinsey & Co'sChina’s cumulative CO2 emissions given the global cumulativeBaseline LBNL CIS Total CO2 Emissions (Mt CO2) LBNL CIS with
Inverse medium scattering for three-dimensional time harmonic ...
2004-01-22T23:59:59.000Z
Jan 22, 2004 ... problem of time harmonic Maxwell equations in R3. ..... For a simple stability analysis, some relative random noise is added to the data, e.g., the.
Nonlinear harmonic generation and devices in doubly resonant Kerr cavities
Hashemi, Hila
We describe a theoretical analysis of the nonlinear dynamics of third-harmonic generation (??3?) via Kerr (?(3)) nonlinearities in a resonant cavity with resonances at both ? and 3?. Such a doubly resonant cavity greatly ...
Analysis of CO2 Emissions from Fossil Fuel in Korea: 19611994 Ki-Hong Choi
.......................................................................................................7 3.2 Energy Consumption and CO2 Emissions ................................................................8 3.2.1 Energy Consumption Pattern Appendix 3. Emission Coefficient of Electricity
Haya, Barbara
2010-01-01T23:59:59.000Z
DM. 2003. Does Emissions Trading Encourage Innovation?A. 2001. Multi-lateral emission trading: lessons from inter-International Emissions Trading Association. 2010. Response
Chemical Emissions of Residential Materials and Products: Review of Available Information Preliminary Analysis of U.S. Residential Air Leakage Database v.2011 thereof or the Regents of the University of California. #12;PRELIMINARY ANALYSIS OF U.S. RESIDENTIAL AIR
Harmonic measurements made on the upgraded New Zealand inter-island HVdc transmission system
Miller, A.J.V.; Dewe, M.B. (Univ. of Canterbury, Christchurch (New Zealand))
1994-07-01T23:59:59.000Z
This paper introduces the recent upgrade to the New Zealand inter-island HVdc transmission system. It then details the procedure of one of several tests conducted to measure harmonic levels created by the upgraded transmission system. Harmonic levels were measured using the CHART (Continuous Harmonic Analysis in Real-Time) harmonic monitoring instrumentation. The connection of CHART to the high voltage network and its configuration during the test is discussed. A sample of results gathered while monitoring are presented, including characteristic harmonics of the converter, and maximum voltage and current levels up to the 50th harmonic for each of the three a.c. phases. During the tests one of the two a.c. harmonic filters was switched out to observe its effect on harmonic levels. It was found that with both a.c. harmonic filters operating, most harmonic levels were lower than with only one filter operating. However some harmonic levels, namely the 4th harmonic, were larger with both filters operating. The paper is concluded with a discussion of the results and of the difficulties encountered in measuring harmonics of very low level.
Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)
2014-04-15T23:59:59.000Z
This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.
Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot
Feng Liubin [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190 (China); Institute of Atomic and Molecular Physics and Department of Physics, Sichuan University, Chengdu 610065 (China); Lu Xin; Liu Xiaolong; Li Yutong; Chen Liming; Ma Jinglong; Dong Quanli; Wang Weimin [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190 (China); Xi Tingting [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Sheng Zhengming; Zhang Jie [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190 (China); Key Laboratory for Laser Plasmas of the Ministry of Education of China and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); He Duanwei [Institute of Atomic and Molecular Physics and Department of Physics, Sichuan University, Chengdu 610065 (China)
2012-07-15T23:59:59.000Z
Third-harmonic emission from laser filament intercepted by plasma spot is studied by numerical simulations. Significant enhancement of the third-harmonic generation is obtained due to the disturbance of the additional plasma. The contribution of the pure plasma effect and the possible plasma-enhanced third-order susceptibility on the third-harmonic generation enhancement are compared. It is shown that the plasma induced cancellation of destructive interference [Y. Liu et al., Opt. Commun. 284, 4706 (2011)] of two-colored filament is the dominant mechanism of the enhancement of third-harmonic generation.
Sharon Falcone Miller; Bruce G. Miller [Pennsylvania State University, University Park, PA (United States). Energy Institute
2007-12-15T23:59:59.000Z
This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.
James H. Wilson, Jr.; Maureen A. Mullen; Andrew D. Bollman (and others) [E.H. Pechan & Associates, Inc., Springfield, VA (United States)
2008-05-15T23:59:59.000Z
This paper describes the analysis, methods, and results of the recently completed emission projections. There are several unique features of this analysis. One is the use of consistent economic assumptions from the Department of Energy's Annual Energy Outlook 2005 (AEO 2005) projections as the basis for estimating 2010 and 2020 emissions for all sectors. Another is the analysis of the different emissions paths for both with and without CAAA scenarios. Other features of this analysis include being the first EPA analysis that uses the 2002 National Emission Inventory files as the basis for making 48-state emission projections, incorporating control factor files from the Regional Planning Organizations (RPOs) that had completed emission projections at the time the analysis was performed, and modeling the emission benefits of the expected adoption of measures to meet the 8-hr ozone National Ambient Air Quality Standards (NAAQS), the Clean Air Visibility Rule, and the PM2.5 NAAQS. This analysis shows that the 1990 CAAA have produced significant reductions in criteria pollutant emissions since 1990 and that these emission reductions are expected to continue through 2020. CAAA provisions have reduced volatile organic compound (VOC) emissions by approximately 7 million t/yr by 2000, and are estimated to produce associated VOC emission reductions of 16.7 million t by 2020. Total oxides of nitrogen (NOx) emission reductions attributable to the CAAA are 5, 12, and 17 million t in 2000, 2010, and 2020, respectively. Sulfur dioxide (SO{sub 2}) emission benefits during the study period are dominated by electricity-generating unit (EGU) SO{sub 2} emission reductions. These EGU emission benefits go from 7.5 million t reduced in 2000 to 15 million t reduced in 2020. 16 refs., 6 figs., 13 tabs.
Braenzel, J.; Schnürer, M.; Steinke, S.; Priebe, G.; Sandner, W. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin (Germany)] [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin (Germany); Andreev, A. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin (Germany) [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin (Germany); Vavilov State Optical Institute, Birzhevaya line 4, 199034 St. Petersburg (Russian Federation); Platonov, K. [Vavilov State Optical Institute, Birzhevaya line 4, 199034 St. Petersburg (Russian Federation)] [Vavilov State Optical Institute, Birzhevaya line 4, 199034 St. Petersburg (Russian Federation)
2013-08-15T23:59:59.000Z
Theoretical and experimental investigations of the dynamics of a relativistically oscillating plasma slab reveal spectral line splitting in laser driven harmonic spectra, leading to double harmonic series. Both series are well characterized with harmonics arising by two fundamental frequencies. While a relativistic oscillation of the critical density drives the harmonic emission, the splitting is a result of an additional acceleration during the laser pulse duration. In comparison with the oscillatory movement, this acceleration is rather weak and can be described by a plasma shock wave driven by the pressure of light. We introduce particle in cell simulations and an analytical model explaining the harmonic line splitting. The derived analytical formula gives direct access between the splitting in the harmonic spectrum and the acceleration of the plasma surface.
Cheng, X.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Saar, S. H., E-mail: xincheng@nju.edu.cn, E-mail: jzhang7@gmu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2012-12-10T23:59:59.000Z
In this paper, we study the temperature and density properties of multiple structural components of coronal mass ejections (CMEs) using differential emission measure (DEM) analysis. The DEM analysis is based on the six-passband EUV observations of solar corona from the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. The structural components studied include the hot channel in the core region (presumably the magnetic flux rope of the CME), the bright loop-like leading front (LF), and coronal dimming in the wake of the CME. We find that the presumed flux rope has the highest average temperature (>8 MK) and density ({approx}1.0 Multiplication-Sign 10{sup 9} cm{sup -3}), resulting in an enhanced emission measure over a broad temperature range (3 {<=} T(MK) {<=} 20). On the other hand, the CME LF has a relatively cool temperature ({approx}2 MK) and a narrow temperature distribution similar to the pre-eruption coronal temperature (1 {<=} T(MK) {<=} 3). The density in the LF, however, is increased by 2%-32% compared with that of the pre-eruption corona, depending on the event and location. In coronal dimmings, the temperature is more broadly distributed (1 {<=} T(MK) {<=} 4), but the density decreases by {approx}35%-{approx}40%. These observational results show that: (1) CME core regions are significantly heated, presumably through magnetic reconnection; (2) CME LFs are a consequence of compression of ambient plasma caused by the expansion of the CME core region; and (3) the dimmings are largely caused by the plasma rarefaction associated with the eruption.
Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R
1982-09-01T23:59:59.000Z
Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.
S. C. Tiwari
2007-06-09T23:59:59.000Z
A generalized harmonic map equation is presented based on the proposed action functional in the Weyl space (PLA, 135, 315, 1989).
Carbon permit prices in the European emissions trading system : a stochastic analysis
See, Wee Chiang
2005-01-01T23:59:59.000Z
The Emission Trading Scheme (ETS) is a cornerstone for European efforts to reduce greenhouse gas emissions, and in its test phase will operate from 2005-2007. It is a cap-and-trade system where an aggregate cap on emissions ...
Direct and Market Effects of Enforcing Emissions Trading Programs: An Experimental Analysis
Murphy, James J.
March 2005 Direct and Market Effects of Enforcing Emissions Trading Programs: An Experimental Economics University of Massachusetts-Amherst Abstract Since firms in an emissions trading program for emissions trading programs. JEL Codes: C91, L51, Q58. Keywords: compliance, enforcement, experiments, permit
Agricultural Sector Analysis on Greenhouse Gas Emission Mitigation in the United States
Schneider, Uwe A.
2000-01-01T23:59:59.000Z
metric ton of carbon equivalent lead to a complex mixture of various mitigation strategies involving reduced iv fertilization, tillage, and irrigation; increased afforestation; and improved liquid manure management. In addition to net emission... ............................................................................... 81 4.3.4.1 Livestock Emissions .................................................................... 81 4.3.4.2 Emission Reductions From Livestock Production ...................... 83 4.3.4.2.1 Manure Handling...
Mohd, Shukri [Nondestructive Testing Group, Industrial Technology Division, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Holford, Karen M.; Pullin, Rhys [Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, CARDIFF CF24 3AA (United Kingdom)
2014-02-12T23:59:59.000Z
Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.
Harmonic Wavelet Transform and Image Approximation
Zhang, Zhihua; Saito, Naoki
2010-01-01T23:59:59.000Z
DOI 10.1007/s10851-010-0202-x Harmonic Wavelet Transform andwe approximate f by a harmonic function u such that thebanks. We call this the Harmonic Wavelet Transform (HWT).
HARMONIC FUNCTIONS FOR SEA-SURFACE TEMPERATURES AND SALINITIES, KOKO HEAD, OAHU, 1956-69, AND SEA-SURFACE TEMPERATURES, CHRISTMAS ISLAND, 1954-69 GUNTHER It SECKEL' AND MARIAN Y. Y. YONG' ABSTRACT Harmonic functions, with daily sampling, are on average 0.07Â° C. Harmonic analysis spanning the entire sampling duration shows
Schipper, L.; Ting, M.; Khrushch, M.; Unander, F.; Monahan, P.; Golove, W.
1996-08-01T23:59:59.000Z
There has been much attention drawn to plans for reductions or restraint in future C02 emissions, yet little analysis of the recent history of those emissions by end use or economic activity. Understanding the components of C02 emissions, particularly those related to combustion of fossil fuels, is important for judging the likely success of plans for dealing with future emissions. Knowing how fuel switching, changes in economic activity and its structure, or changes in energy-use efficiency affected emissions in the past, we can better judge both the realism of national proposals to restrain future emissions and the outcome as well. This study presents a first step in that analysis. The organization of this paper is as follows. We present a brief background and summarize previous work analyzing changes in energy use using the factorial method. We then describe our data sources and method. We then present a series of summary results, including a comparison of C02 emissions in 1991 by end use or sector. We show both aggregate change and change broken down by factor, highlighting briefly the main components of change. We then present detailed results, sector by sector. Next we highlight recent trends. Finally, we integrate our results, discussing -the most important factors driving change - evolution in economic structure, changes in energy intensities, and shifts in the fuel mix. We discuss briefly some of the likely causes of these changes - long- term technological changes, effects of rising incomes, the impact of overall changes in energy prices, as well as changes in the relative prices of energy forms.
Investigation of plasma diagnostics using a dual frequency harmonic technique
Kim, Dong-Hwan [Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Young-Do; Cho, Sung-Won; Kim, Yu-Sin; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, Seoul (Korea, Republic of)
2014-09-07T23:59:59.000Z
Plasma diagnostic methods using harmonic currents analysis of electrostatic probes were experimentally investigated to understand the differences in their measurement of the plasma parameters. When dual frequency voltage (?{sub 1},?{sub 2}) was applied to a probe, various harmonic currents (?{sub 1},?2?{sub 1},?{sub 2},?2?{sub 2},?{sub 2}±?{sub 1},?{sub 2}±2?{sub 1}) were generated due to the non-linearity of the probe sheath. The electron temperature can be obtained from the ratio of the two harmonics of the probe currents. According to the combinations of the two harmonics, the sensitivities in the measurement of the electron temperature differed, and this results in a difference of the electron temperature. From experiments and simulation, it is shown that this difference is caused by the systematic and random noise.
Sources of CO emissions in an HCCI engine: A numerical analysis
Bhave, Amit; Kraft, Markus [Department of Chemical Engineering, University of Cambridge, Cambridge CB2 3RA (United Kingdom); Montorsi, Luca [Department of Mechanical and Civil Engineering, University of Modena and Reggio Emilia, 41100 Modena (Italy); Mauss, Fabian [Division of Combustion Physics, Lund Institute of Technology, Box 118, S-22100 Lund (Sweden)
2006-02-01T23:59:59.000Z
Factors influencing a reliable prediction of CO emissions in a homogeneous charge compression ignition (HCCI) engine are investigated using an improved probability density function (PDF)-based engine cycle model. A previously validated PDF-based stochastic reactor model is utilized to identify critical sources of CO emissions numerically. The full cycle model includes detailed chemical kinetics, accounts for the inhomogeneities in temperature and composition, and has been demonstrated to provide sufficiently reliable predictions of the combustion and engine parameters and emissions.
Trace Gas Emissions Data from the Carbon Dioxide Information Analysis Center (CDIAC)
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Trace Gas Emissions are organized as Fossil-Fuel CO2 Emissions, Land-Use CO2 Emissions, Soil CO2 Emissions, and Methane.
Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle Analysis
Broader source: Energy.gov [DOE]
Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...
Spatial Analysis of Emissions Sources for HCCI Combustion at Low Loads Using a Multi-Zone Model
Aceves, S M; Flowers, D L; Espinosa-Loza, F; Martinez-Frias, J; Dec, J E; Sjoberg, M; Dibble, R W; Hessel, R P
2004-02-20T23:59:59.000Z
We have conducted a detailed numerical analysis of HCCI engine operation at low loads to investigate the sources of HC and CO emissions and the associated combustion inefficiencies. Engine performance and emissions are evaluated as fueling is reduced from typical HCCI conditions, with an equivalence ratio f = 0.26 to very low loads (f = 0.04). Calculations are conducted using a segregated multi-zone methodology and a detailed chemical kinetic mechanism for iso-octane with 859 chemical species. The computational results agree very well with recent experimental results. Pressure traces, heat release rates, burn duration, combustion efficiency and emissions of hydrocarbon, oxygenated hydrocarbon, and carbon monoxide are generally well predicted for the whole range of equivalence ratios. The computational model also shows where the pollutants originate within the combustion chamber, thereby explaining the changes in the HC and CO emissions as a function of equivalence ratio. The results of this paper contribute to the understanding of the high emission behavior of HCCI engines at low equivalence ratios and are important for characterizing this previously little explored, yet important range of operation.
Not Available
1986-10-01T23:59:59.000Z
Statistical analyses were performed on 4 years of fluoride emissions data from a primary aluminum reduction plant. These analyses were used to develop formulae and procedures for use by regulatory agencies in determining alternate sampling frequencies for secondary (roof monitor) emissions testing on a case-by-case basis. Monitoring procedures for ensuring compliance even with a reduced test frequency are also addressed.
Cui, Xiaojin [Department of Physical Electronics, Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)
2013-12-21T23:59:59.000Z
By using displacement current measurement (DCM) and electric-field-induced optical second-harmonic generation (EFISHG) measurement, we studied the carrier behavior in the indium-tin oxide (ITO)/Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE))/C60/Au(or Al) capacitors. Two DCM peaks appeared asymmetrically at around ?35.5?V and +30.0?V in the dark. Correspondingly, the EFISHG response from the C60 layer was observed, but the peak positions were different with respect to DCM ones. The results show that the spontaneous polarization of the ferroelectric P(VDF-TrFE) polymeric layer directly affects the electric field in the C60 layer, and thus governs the carrier motion in this layer. As a result, the C60 layer serves like an insulator in the dark, while electrons and holes are captured and released at the interface in response to the turn-over of spontaneous polarization of ferroelectric layer. On the other hand, under white light illumination, C60 layer serves like a conductor due to the increase of photogenerated mobile carriers, and these carriers dominate the carrier motions therein. Our findings here will be helpful for analyzing carrier behaviors in organic electronic devices using ferroelectric polymers.
On The Harmonic Oscillator Group
Raquel M. Lopez; Sergei K. Suslov; Jose M. Vega-Guzman
2011-12-04T23:59:59.000Z
We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. A six parameter family of the square integrable oscillator wave functions, which seems cannot be obtained by the standard separation of variables, is presented as an example. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.
Echo-Enabled Harmonic Generation
Stupakov, Gennady; /SLAC
2012-06-28T23:59:59.000Z
A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.
Analysis Of Exhaust Emission Of Internal Combustion Engine Using Biodiesel Blend
Suvendu Mohanty; Dr. Om Prakash; Reasearch Scholar
Abstract-The main purpose of this research is to study the effect of various blends of an environmental friendly alternative fuel such as biodiesel on the performance of diesel engine. In the Present investigation experimental work has been carried out to analyze the performance and exhaust emission characteristics of a single cylinder internal combustion engine fuelled with biodiesel blend at the different load. In this experiment the biodiesel which is use as a waste cooking oil (WCO) biodiesel.To investigation of the emission characteristics of the engine loads, which is supplied from the alternator. The experiment was carried out different load i.e. (NO LOAD, 100W 200W, 500W, 1000W, 1500W, 2000W, 2500W & 3000Watt) at engine speed 1500 rpm/min. A test was applied in which an engine was fuel with diesel and seven different blends of diesel. Biodiesel (B5, B10, B20, B40, B60, B80, B100) made from waste cooking oil and the results were analyzed.The emission of were measured carbon monoxide (CO), hydrocarbon carbon(HC), Oxides of nitrogen (NOX) and oxygen ().The experimental results will be compared with biodiesel blends and diesel. The biodiesel results of (WCO) in lower emission of hydro carbon (HC) and (CO) and increase emission of (NO2). This study showed that the results of exhaust emission of biodiesel blends were lower than the diesel fuel. Keyword- Biodiesel (WCO), diesel engine, gas analyzer, Exhaust emission. I.
Zhou, Nan
2011-01-01T23:59:59.000Z
Others* Air Conditioner Frozen Scenario Total CO2 EmissionsCO2 Emissions (million tonnes CO2)Improvement Scenario Total CO2 Emissions *Others include:
Morris, Jennifer F. (Jennifer Faye)
2013-01-01T23:59:59.000Z
The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty ...
Krezo, S.
Carbon pollution has become a sensitive topic across the globe in recent times. In Australia, incentive has been provided to industry in order to reduce carbon emissions in heavy polluting industries. The railway transportation ...
Analysis of post-Kyoto CO? emissions trading using marginal abatement curves
Ellerman, A. Denny.; Decaux, Annelène.
Marginal abatement curves (MACs) are often used heuristically to demonstrate the advantages of emissions trading. In this paper, the authors derive MACs from EPPA, the MIT Joint Program's computable general equilibrium ...
Morris, J.
The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty ...
Blitzer, Charles R.
1992-01-01T23:59:59.000Z
This paper is an assessment for a particular country, Egypt, of the economic effects, under various conditions, of carbon emission restrictions. Like other work, it is an exemplification of some of the economic possibilities. ...
Future Sulfur Dioxide Emissions
Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.
2005-12-01T23:59:59.000Z
The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.
Analysis of GeV-band gamma-ray emission from SNR RX J1713.7-3946
Federici, S; Telezhinsky, I; Wilhelm, A; Dwarkadas, V V
2015-01-01T23:59:59.000Z
RX J1713.7-3946 is the brightest shell-type Supernova remnant (SNR) of the TeV gamma-ray sky. Earlier Fermi-LAT results on low-energy gamma-ray emission suggested that, despite large uncertainties in the background determination, the spectrum is inconsistent with a hadronic origin. We update the GeV-band spectra using improved estimates for the diffuse galactic gamma-ray emission and more than doubled data volume. We further investigate the viability of hadronic emission models for RX J1713.7-3946. We produced a high-resolution map of the diffuse Galactic gamma-ray background corrected for HI self-absorption and used it in the analysis of more than 5~years worth of Fermi-LAT data. We used hydrodynamic scaling relations and a kinetic transport equation to calculate the acceleration and propagation of cosmic-rays in SNR. We then determined spectra of hadronic gamma-ray emission from RX J1713.7-3946, separately for the SNR interior and the cosmic-ray precursor region of the forward shock, and computed flux varia...
Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.
Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems
2009-03-31T23:59:59.000Z
Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.
Harmonic distortion correction in pipelined analog to digital converters
Panigada, Andrea
2009-01-01T23:59:59.000Z
Background Correction of Harmonic Distortion in PipelinedBackground Correction of Harmonic Distortion in PipelinedADC with 69dB SNDR Enabled by Digital Harmonic Distortion
UV Second-Harmonic Studies of Concentrated Aqueous Electrolyte Interfaces
Otten, Dale Edward
2010-01-01T23:59:59.000Z
Probed by UV Second Harmonic Generation, in Department ofby UV Second Harmonic Generation Spectroscopy," 114, 13746with Femtosecond Second Harmonic Generation Spectroscopy,"
Going Mobile: Emissions Trading Gets a Boost from Mobile Source Emission Reduction Credits
Goldschein, Perry S.
1995-01-01T23:59:59.000Z
Going Mobile: Emissions Trading Gets a Boost From Mobilehave tested various emissions trading policies to supplementAn Analysis of EPA's Emissions Trading Program, 6 YALE J. ON
Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information
Jaramillo, Paulina
the well pad drilling site and the location for accommodation. The rig and auxiliary equipments for hydraulic fracturing process are trucked in trailers to the drilling site. Several wells on one multi-well 1. GHG Emissions Estimation for Production of Marcellus Shale Gas 1.1 Preparation of Well Pad
Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2
Reports and Publications (EIA)
2001-01-01T23:59:59.000Z
This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.
Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; Kuang, Xingya; Melin, Staffan; Yazdanpanah, Fahimeh; Sokhansanj, Shahab
2015-03-01T23:59:59.000Z
Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about more »20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO?, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO? is highest for switchgrass and CH? is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less
Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)
Not Available
2013-01-01T23:59:59.000Z
Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.
Texas Emissions and Energy Calculator (eCALC): Documentation of Analysis Methods, Report to the TCEQ
Haberl, J. S.; Gilman, D.; Culp, C.
2004-01-01T23:59:59.000Z
)....................................................................................... 90 Figure 51: Solar Photovoltaic Analysis Flowchart....................................................................................... 92 Figure 52: Solar Photovoltaic Analysis Flowchart (Figure 2: Renewable Energy Production...). .................. 95 Figure 53: Solar Photovoltaic Analysis Flowchart (Figure 3: Output from IMT)........................................ 95 Figure 54: Solar Photovoltaic Analysis Flowchart (Figure 4: Annual and Peak Day Energy Savings). ...... 95 Figure 55: Solar...
An analysis of SO sub 2 emission compliance under the 1990 Clean Air Act Amendments
Hanson, D.A.; Cilek, C.M.; Pandola, G.; Taxon, T.
1992-01-01T23:59:59.000Z
The effectiveness of SO{sub 2} emission allowance trading under Title 4 of the 1990 Amendments to the Clean Air Act (CAA) is of great interest due to the innovative nature of this market incentive approach. However, it may be a mistake to frame the compliance problem for a utility as a decision to trade or not. Trading of allowances should be the consequence, not the decision. The two meaningful decision variables for a utility are the control approaches chosen for its units and the amount of allowances to hold in its portfolio of assets for the future. The number allowances to be bought or sold (i.e. traded) is determined by the emission reduction and banking decisions. Our preferred approach is to think of the problem in terms of ABC's of the 1990 CAA Amendments: abatement strategy, banking, and cost competitiveness. The implications of the general principles presented in this paper on least cost emission reductions and emissions banking to hedge against risk are being simulated with version 2 of the ARGUS model representing the electric utility sector and regional coal supplies and transportation rates. A rational expectations forecast for allowances prices is being computed. The computed allowance price path has the property that demand for allowances by electric utilities for current use or for banking must equal the supply of allowances issued by the federal government or provided as forward market contracts in private market transactions involving non-utility speculators. From this rational expectations equilibrium forecast, uncertainties are being explored using sensitivity tests. Some of the key issues are the amount of scrubbing and when it is economical to install it, the amount of coal switching and how much low sulfur coal premiums will be bid up; and the amount of emission trading within utilities and among different utilities.
An analysis of SO{sub 2} emission compliance under the 1990 Clean Air Act Amendments
Hanson, D.A.; Cilek, C.M.; Pandola, G.; Taxon, T.
1992-07-01T23:59:59.000Z
The effectiveness of SO{sub 2} emission allowance trading under Title 4 of the 1990 Amendments to the Clean Air Act (CAA) is of great interest due to the innovative nature of this market incentive approach. However, it may be a mistake to frame the compliance problem for a utility as a decision to trade or not. Trading of allowances should be the consequence, not the decision. The two meaningful decision variables for a utility are the control approaches chosen for its units and the amount of allowances to hold in its portfolio of assets for the future. The number allowances to be bought or sold (i.e. traded) is determined by the emission reduction and banking decisions. Our preferred approach is to think of the problem in terms of ABC`s of the 1990 CAA Amendments: abatement strategy, banking, and cost competitiveness. The implications of the general principles presented in this paper on least cost emission reductions and emissions banking to hedge against risk are being simulated with version 2 of the ARGUS model representing the electric utility sector and regional coal supplies and transportation rates. A rational expectations forecast for allowances prices is being computed. The computed allowance price path has the property that demand for allowances by electric utilities for current use or for banking must equal the supply of allowances issued by the federal government or provided as forward market contracts in private market transactions involving non-utility speculators. From this rational expectations equilibrium forecast, uncertainties are being explored using sensitivity tests. Some of the key issues are the amount of scrubbing and when it is economical to install it, the amount of coal switching and how much low sulfur coal premiums will be bid up; and the amount of emission trading within utilities and among different utilities.
Harmonic algebraic curves and noncrossing partitions
Martin, Jeremy L.; Savitt, David; Singer, Ted
2007-02-01T23:59:59.000Z
Motivated by Gauss’s first proof of the fundamental Theorem of Algebra, we study the topology of harmonic algebraic curves. By the maximum principle, a harmonic curve has no bounded components; its topology is determined by the combinatorial data...
Harmonic pinnacles in the Discrete Gaussian model
Eyal Lubetzky; Fabio Martinelli; Allan Sly
2014-05-20T23:59:59.000Z
The 2D Discrete Gaussian model gives each height function $\\eta : \\mathbb{Z}^2\\to\\mathbb{Z}$ a probability proportional to $\\exp(-\\beta \\mathcal{H}(\\eta))$, where $\\beta$ is the inverse-temperature and $\\mathcal{H}(\\eta) = \\sum_{x\\sim y}(\\eta_x-\\eta_y)^2$ sums over nearest-neighbor bonds. We consider the model at large fixed $\\beta$, where it is flat unlike its continuous analog (the Gaussian Free Field). We first establish that the maximum height in an $L\\times L$ box with 0 boundary conditions concentrates on two integers $M,M+1$ with $M\\sim \\sqrt{(1/2\\pi\\beta)\\log L\\log\\log L}$. The key is a large deviation estimate for the height at the origin in $\\mathbb{Z}^2$, dominated by "harmonic pinnacles", integer approximations of a harmonic variational problem. Second, in this model conditioned on $\\eta\\geq 0$ (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels $H,H+1$ where $H\\sim M/\\sqrt{2}$. This in particular pins down the asymptotics, and corrects the order, in results of Bricmont, El-Mellouki and Fr\\"ohlich (1986), where it was argued that the maximum and the height of the surface above a floor are both of order $\\sqrt{\\log L}$. Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to $p$-harmonic analysis and alternating sign matrices.
Harmonic generation from indium-rich plasmas
Ganeev, R. A.; Kulagin, I. A. [Akadempribor Scientific Association, Academy of Sciences of Uzbekistan, Tashkent 700125 (Uzbekistan); Singhal, H.; Naik, P. A.; Arora, V.; Chakravarty, U.; Chakera, J. A.; Khan, R. A.; Raghuramaiah, M.; Gupta, P. D. [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Redkin, P. V. [Samarkand State University, Samarkand 703004 (Uzbekistan)
2006-12-15T23:59:59.000Z
An experimental study of high-order harmonic generation in In, InSb, InP, and InGaP plasmas using femtosecond laser radiation with variable chirp is presented. Intensity enhancement of the 13th and 21st harmonics compared to the neighboring harmonics by a factor of 200 and 10, respectively, is observed. It is shown that the harmonic spectrum from indium-containing plasma plumes can be considerably modified by controlling the chirp of the driving laser pulse.
Reduced Harmonic Representation of Partitions
Michalis Psimopoulos
2011-03-08T23:59:59.000Z
In the present article the reduced integral representation of partitions in terms of harmonic products has been derived first by using hypergeometry and the new concept of fractional sum and secondly by studying the Fourier series of the kernel function appearing in the integral representation. Using the method of induction, a generalization of the theory has also been obtained.
The Quantum Harmonic Oscillator C. David Sherrill
Sherrill, David
The Quantum Harmonic Oscillator C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology February 2002 1 Introduction The harmonic oscillator is extremely useful by coupled harmonic oscillators. The atoms are viewed as point masses which are connected by bonds which act
Quantitative Analysis of the Resolved X-ray Emission Line Profiles of O Stars
Cohen, David
are a small fraction of the wind mass Runacres & Owocki 2002, A&A, 381, 1015 #12;Statistics from a long rad-hydro to shock-heating and X-ray emission 1-D rad-hydro simulation of the LDI #12;A snapshot at a single time, 3201 #12;Another rad-hydro simulation, but plotted in Lagrangian coordinates. The shock-heated regions
Zhou, Nan
2010-01-01T23:59:59.000Z
2050 China Energy and CO2 Emissions Report (in Chinese) (the energy saving and CO2 emission reduction potential of9503 TWh, and annual CO2 emissions would be 16% lower than
Zhou, Nan
2010-01-01T23:59:59.000Z
energy saving and CO2 emission reduction potential of theTWh and annual CO2 emissions reduction would be 35% lowerwould result in a CO2 emissions reduction of over 9.1
Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare
T. Minoshima; T. Yokoyama; N. Mitani
2007-10-02T23:59:59.000Z
We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy ($\\gsim 100$ keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy ($\\lsim 100$ keV) HXRs. We interpret these observations in terms of an electron transport model called {\\TPP}. We numerically solved the spatially-homogeneous {\\FP} equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.
spherical harmonics for l < 20
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Michael, J. Robert [Middle Tennessee State University; Volkov, Anatoliy [Middle Tennessee State University
2015-01-23T23:59:59.000Z
The widely used pseudoatom formalism [Stewart (1976). Acta Cryst. A32, 565–574; Hansen & Coppens (1978). Acta Cryst. A34, 909–921] in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the densitynormalized Cartesian spherical harmonic functions for up to l 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens [Acta Cryst. (1988), A44, 6–7]. It was shown that the analytical form for normalization coefficients is available primarily for l 4 [Hansen & Coppens, 1978; Paturle & Coppens, 1988; Coppens (1992). International Tables for Crystallography, Vol. B, Reciprocal space, 1st ed., edited by U. Shmueli, ch. 1.2. Dordrecht: Kluwer Academic Publishers; Coppens (1997). X-ray Charge Densities and Chemical Bonding. New York: Oxford University Press]. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturle–Coppens (Paturle & Coppens, 1988) method in the Wolfram Mathematica software to derive the Cartesian spherical harmonics for l 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.
Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework
Lipman, Timothy E.
1999-01-01T23:59:59.000Z
the Analysis of High Power Battery Designs, Report for the201 Peak Power Battery261 Peak Power Battery
Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.
2010-06-14T23:59:59.000Z
Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav
Zhou, Nan
2011-01-01T23:59:59.000Z
GW coal-fired power plants, and annual CO 2 emissions wouldGW coal-fired power plants, and annual CO 2 emissions would
Williams, S.M. (Naval Postgraduate School, Monterey, CA (United States)); Brownfield, G.T. (Union Electric Co., St. Louis, MO (United States)); Duffus, J.W. (Univ. of Missouri, Columbia, MO (United States). Power Electronics Research Center)
1993-04-01T23:59:59.000Z
Power electronic loads are occupying an increasing fraction of the total load on distribution feeders. Coincidentally, there is a greater use of power factor correction capacitors on the distribution system. These two factors can present poor operating conditions in the form of high harmonic levels propagating through a distribution system. Electric utility engineers are facing an ever increasing number of situations which require the analysis of the propagation of harmonics on a distribution system. HARMFLO was developed by EPRI for use in the analysis of harmonics on a power system. However, for a typical analysis of a distribution system, data for some of the parameters required by HARMFLO are not available. Furthermore, exact load information is usually not available. Harmonic levels determined from field tests on a distribution system are compared to results of HARMFLO simulations to determine if this analysis tool can be expected to provide useful results despite the lack of exact information for load modeling and other system parameters.
Yazdani, B.; Culp, C.; Haberl, J.; Baltazar, J. C.; Do, S. L.
.edu/activities/ozonecapstone/noxcalculator.htm ESA?21 Yes 9 Residential?Calculator?&?Business?Calculator http://www.10percentchallenge.org/rezcalculator.php Earthlogic,?Inc. Yes 10 Climate?Change?Calculator? http://www.americanforests.org/resources/ccc/index.php ?AMERICAN?FORESTS Yes 11...,325 Elec.?Only?(Annual?10,979? kwh) 3.2 3.2?Emission?Reductions?Calculator Leonardo?Academy Texas 12000?kWh/Year N/A 10 10 17,208 The?value?in?SOx?section? represents?SO2 4 AirHead?Emissions?Calculator AirHead Result?is?aggregate?emissions 5 Carbon...
Limitations and improvements for harmonic generation measurements
Best, Steven; Croxford, Anthony; Neild, Simon [Department of Mechanical Engineering, Queens Building, University Walk, Bristol BS8 1TR (United Kingdom)
2014-02-18T23:59:59.000Z
A typical acoustic harmonic generation measurement comes with certain limitations. Firstly, the use of the plane wave-based analysis used to extract the nonlinear parameter, ?, ignores the effects of diffraction, attenuation and receiver averaging which are common to most experiments, and may therefore limit the accuracy of a measurement. Secondly, the method usually requires data obtained from a through-transmission type setup, which may not be practical in a field measurement scenario where access to the component is limited. Thirdly, the technique lacks a means of pinpointing areas of damage in a component, as the measured nonlinearity represents an average over the length of signal propagation. Here we describe a three-dimensional model of harmonic generation in a sound beam, which is intended to provide a more realistic representation of a typical experiment. The presence of a reflecting boundary is then incorporated into the model to assess the feasibility of performing single-sided measurements. Experimental validation is provided where possible. Finally, a focusing acoustic source is modelled to provide a theoretical indication of the afforded advantages when the nonlinearity is localized.
Leahy, Richard M.
Harmonic MappingsConstrained Harmonic Mappings Anand A Joshi1, David W Shattuck2, Paul M Thompson2 and Richard M Leahy1 Subcortical Structure AIR Harmonic HAMMER Harmonic +Intensity Left Thalamus 0.79 0.68 0. Extrapolation of the surface map to the entire cortical volume by a harmonic map. 3. Refinement of the harmonic
Yazdani, B.; Culp, C.; Haberl, J.; Baltazar, J. C.; Do, S. L.
2009-01-01T23:59:59.000Z
In August 2004, the USEPA issued guidance on quantifying the air emission benefits from electric sector energy efficiency and renewable energy. Because there was no clear best strategy, the EPA’s guidance provided a framework and the basic...
Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Fuel Systems Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report...
Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions...
Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Home About the Fuel Cell Technologies Office...
Harmonic Chain with Weak Dissipation
A. A. Lykov; V. A. Malyshev
2013-02-20T23:59:59.000Z
We consider finite harmonic chain (consisting of N classical particles) plus dissipative force acting on one particle (called dissipating particle) only. We want to prove that "in the generic case" the energy (per particle) for the whole system tends to zero in the large time limit and then in the large N limit. "In the generic case" means: for almost all initial conditions and for almost any choice of the dissipating particle, in the thermodynamic limit.
ANALYSIS OF OPTICAL Fe II EMISSION IN A SAMPLE OF ACTIVE GALACTIC NUCLEUS SPECTRA
Kovacevic, Jelena; Popovic, Luka C.; Dimitrijevic, Milan S., E-mail: jkovacevic@aob.bg.ac.r [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia)
2010-07-15T23:59:59.000Z
We present a study of optical Fe II emission in 302 active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey. We group the strongest Fe II multiplets into three groups according to the lower term of the transition (b{sup 4} F, a{sup 6} S, and a{sup 4} G terms). These approximately correspond to the blue, central, and red parts, respectively, of the 'iron shelf' around H{beta}. We calculate an Fe II template that takes into account transitions into these three terms and an additional group of lines, based on a reconstruction of the spectrum of I Zw 1. This Fe II template gives a more precise fit of the Fe II lines in broad-line AGNs than other templates. We extract Fe II, H{alpha}, H{beta}, [O III], and [N II] emission parameters and investigate correlations between them. We find that Fe II lines probably originate in an intermediate line region. We note that the blue, red, and central parts of the iron shelf have different relative intensities in different objects. Their ratios depend on continuum luminosity, FWHM H{beta}, the velocity shift of Fe II, and the H{alpha}/H{beta} flux ratio. We examine the dependence of the well-known anti-correlation between the equivalent widths of Fe II and [O III] on continuum luminosity. We find that there is a Baldwin effect for [O III] but an inverse Baldwin effect for the Fe II emission. The [O III]/Fe II ratio thus decreases with L {sub {lambda}5100}. Since the ratio is a major component of the Boroson and Green Eigenvector 1 (EV1), this implies a connection between the Baldwin effect and EV1 and could be connected with AGN evolution. We find that spectra are different for H{beta} FWHMs greater and less than {approx}3000 km s{sup -1}, and that there are different correlation coefficients between the parameters.
Energy-consumption and carbon-emission analysis of vehicle and component manufacturing.
Sullivan, J. L.; Burnham, A.; Wang, M.; Energy Systems
2010-10-12T23:59:59.000Z
A model is presented for calculating the environmental burdens of the part manufacturing and vehicle assembly (VMA) stage of the vehicle life cycle. The approach is bottom-up, with a special focus on energy consumption and CO{sub 2} emissions. The model is applied to both conventional and advanced vehicles, the latter of which include aluminum-intensive, hybrid electric, plug-in hybrid electric and all-electric vehicles. An important component of the model, a weight-based distribution function of materials and associated transformation processes (casting, stamping, etc.), is developed from the United States Council for Automotive Research Generic Vehicle Life Cycle Inventory Study. As the approach is bottom-up, numerous transformation process data and plant operational data were extracted from the literature for use in representing the many operations included in the model. When the model was applied to conventional vehicles, reliable estimates of cumulative energy consumption (34 GJ/vehicle) and CO{sub 2} emission (2 tonnes/vehicle) were computed for the VMA life-cycle stage. The numerous data sets taken from the literature permitted the development of some statistics on model results. Because the model explicitly includes a greater coverage of relevant manufacturing processes than many earlier studies, our energy estimates are on the higher end of previously published values. Limitations of the model are also discussed. Because the material compositions of conventional vehicles within specific classes (cars, light duty trucks, etc.) are sensibly constant on a percent-by-weight basis, the model can be reduced to a simple linear form for each class dependent only on vehicle weight. For advanced vehicles, the material/transformation process distribution developed above needs to be adjusted for different materials and components. This is particularly so for aluminum-intensive and electric-drive vehicles. In fact, because of their comparatively high manufacturing energy, batteries required for an electric vehicle can significantly add to the energy burden of the VMA stage. Overall, for conventional vehicles, energy use and CO{sub 2} emissions from the VMA stage are about 4% of their total life-cycle values. They are expected to be somewhat higher for advanced vehicles.
Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework
Lipman, Timothy Edward
1999-01-01T23:59:59.000Z
the Analysis of High Power Battery Designs, Report for thebe coupled with a peak-power battery power system, in ordersystem and no peak-power battery. FCVs that use hydrogen
Wind Farm Structures' Impact on Harmonic Emission and Grid Interaction
Bak, Claus Leth
in this paper. The largest wind farms in the world, Horns Rev 2 Offshore Wind Farm and Polish Karnice Onshore (WTs) with full-scale converters used in large offshore wind farms (OWFs) is increasing into consideration, the largest in the world Horns Rev 2 Offshore Wind Farm and located in Poland Karnice Onshore
Focused analyte spray emission apparatus and process for mass spectrometric analysis
Roach, Patrick J. (Kennewick, WA); Laskin, Julia (Richland, WA); Laskin, Alexander (Richland, WA)
2012-01-17T23:59:59.000Z
An apparatus and process are disclosed that deliver an analyte deposited on a substrate to a mass spectrometer that provides for trace analysis of complex organic analytes. Analytes are probed using a small droplet of solvent that is formed at the junction between two capillaries. A supply capillary maintains the droplet of solvent on the substrate; a collection capillary collects analyte desorbed from the surface and emits analyte ions as a focused spray to the inlet of a mass spectrometer for analysis. The invention enables efficient separation of desorption and ionization events, providing enhanced control over transport and ionization of the analyte.
Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint
Barnitt, R.; Gonder, J.
2011-04-01T23:59:59.000Z
The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.
Killing vector fields and harmonic superfield theories
Groeger, Josua, E-mail: groegerj@mathematik.hu-berlin.de [Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489 Berlin (Germany)
2014-09-15T23:59:59.000Z
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Extra Harmonic Vowel in Chicahuaxtla Trique
Matsukawa, Kosuke
2008-01-01T23:59:59.000Z
Extra Harmonic Vowel in Chicahuaxtla Trique1 Kosuke Matsukawa State University of New York at Albany 1. Introduction Chicahuaxtla Trique is spoken in Oaxaca, Mexico and belongs to the Trique language group of the Mixtecan family...). In Chicahuaxtla Trique, an extra harmonic vowel is added after a laryngealized vowel (either a glottalized vowel or an aspirated vowel) in a final syllable. The extra harmonic vowel does not exist in Copala Trique or Itunyoso Trique and is attached mostly...
Package for the Interactive Analysis of Line Emission: MarkovChain and Monte Carlo Methods
ods in the Package for Interactive Analysis of Line Emis sion (PINTofALE), which is a collection to determine errors in spectral line parameters, and use MarkovChain Monte Carlo meth ods to construct ated using a known DEM. Monte Carlo and MCMC meth ods have attained increasing popularity in a diverse
Assessing Damage of Reinforced Concrete Beam Using ``b-value'' Analysis of Acoustic Emission Signals
.K. motorways and trunk roads stock bridges. As their age is of the order of 2535 years they are starting to show signs of deterioration. This compares with the U.S. bridge stock, which is commonly ap- proaching; Iwanami et al. 1997 . The b-value analysis can take all these factors into account and it could
Felkner, L. J.; Waggoner, R. M.
The control of harmonics in power systems continues to be a major concern in the telecommunications industry. AC/DC telecommunication conversion equipment has rarely been thought of as playing a major role in the harmonic interaction problem. Yet...
Zhou, Nan
2010-01-01T23:59:59.000Z
electricity savings would be 5450 TWh and CO2 emissions inelectricity savings would be 5450 TWh and annual CO2 emissionselectricity consumption could be reduced by 9503 TWh, and CO2 emissions
Muntean, Marilena
The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, ...
Modulation compression for short wavelength harmonic generation
Qiang, J.
2010-01-01T23:59:59.000Z
Wavelength Harmonic Generation Ji Qiang Lawrence Berkeleyform a basis for fourth generation light source. Currently,e?ciency was proposed for generation of short wavelength
Harmonic Cheeger-Simons characters with applications
Richard Green; Varghese Mathai
2009-02-13T23:59:59.000Z
We initiate the study of harmonic Cheeger-Simons characters, with applications to smooth versions of the Geometric Langlands program in the abelian case.
NREL: Energy Analysis: Life Cycle Assessment Harmonization
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomasYiminGeospatialLife
Making space for harmonic oscillators
Michelotti, Leo; /Fermilab
2004-11-01T23:59:59.000Z
If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.
Constructing Buildings and Harmonic Maps
Katzarkov, Ludmil; Pandit, Pranav; Simpson, Carlos
2015-01-01T23:59:59.000Z
In a continuation of our previous work, we outline a theory which should lead to the construction of a universal pre-building and versal building with a $\\phi$-harmonic map from a Riemann surface, in the case of two-dimensional buildings for the group $SL_3$. This will provide a generalization of the space of leaves of the foliation defined by a quadratic differential in the classical theory for $SL_2$. Our conjectural construction would determine the exponents for $SL_3$ WKB problems, and it can be put into practice on examples.
Energy-Related Carbon Emissions in Manufacturing
Reports and Publications (EIA)
2000-01-01T23:59:59.000Z
Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.
Haya, Barbara
2010-01-01T23:59:59.000Z
analysis inputs are distinct values, like the cost of a windanalysis – wind projects in India for which the main costs
A Formal model to aid documenting and harmonizing of information
Zheng, Yuliang
A Formal model to aid documenting and harmonizing of information security requirements Jussipekka Information security development, harmonization of information security, organizational modeling 1 INTRODUCTION A formal top down model to harmonize and document information security requirements shall
HARMONIC MAPPINGS BETWEEN RIEMANNIAN MANIFOLDS Anand Arvind Joshi
Leahy, Richard M.
HARMONIC MAPPINGS BETWEEN RIEMANNIAN MANIFOLDS by Anand Arvind Joshi A Thesis Presented ii Abstract iv 1 Harmonic Mappings 1 1.1 Space of Maps Variation Formula . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Harmonic Maps
Acoustoelectric Harmonic Generation in a Photoconductive Piezoelectric Semiconductor
Acoustoelectric Harmonic Generation in a Photoconductive Piezoelectric Semiconductor W. Arthur, R harmonics in the low frequency regime (. Piezoelectric semiconductors can exhibit harmonic generation because of interactions between the acoustic
Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)
Not Available
2012-11-01T23:59:59.000Z
The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.
Radiation reaction and quantum damped harmonic oscillator
F. Kheirandish; M. Amooshahi
2005-07-19T23:59:59.000Z
By taking a Klein-Gordon field as the environment of an harmonic oscillator and using a new method for dealing with quantum dissipative systems (minimal coupling method), the quantum dynamics and radiation reaction for a quantum damped harmonic oscillator investigated. Applying perturbation method, some transition probabilities indicating the way energy flows between oscillator, reservoir and quantum vacuum, obtained
Harmonic cascade FEL designs for LUX
2004-01-01T23:59:59.000Z
1.3: a fully 3D time-dependent FEL sim- ulation code, Nucl.a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNLLBNL-56329 Harmonic cascade FEL designs for LUX G. Penn, M.
Impact of stray capacitance on hvdc harmonics
Larsen, E.V.; Sublich, M.; Kapoor, S.C.
1989-01-01T23:59:59.000Z
Recent experience suggests that a new approach is needed to determining harmonic generation from hvdc converters for the purpose of telephone interference evaluation. This paper presents simulation results showing the effect on harmonic generation of stray capacitances inherent to hvdc converters. These simulation results illustrate the basic characteristics of the phenomenon, which agree qualitatively with field experience.
CHAPLIN - Complex Harmonic Polylogarithms in Fortran
Stephan Buehler; Claude Duhr
2011-06-28T23:59:59.000Z
We present a new Fortran library to evaluate all harmonic polylogarithms up to weight four numerically for any complex argument. The algorithm is based on a reduction of harmonic polylogarithms up to weight four to a minimal set of basis functions that are computed numerically using series expansions allowing for fast and reliable numerical results.
advanced harmonic filter: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Hazem ZUBI Signature: 12;iv ABSTRACT LOWPASS BROADBAND HARMONIC FILTER DESIGN Zubi passive harmonic filter (IBF) for three phase diode rectifier front-end type adjustable speed...
Role of ellipticity in high-order harmonic generation by homonuclear diatomic molecules
Odzak, S. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Milosevic, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, D-12489 Berlin (Germany)
2010-08-15T23:59:59.000Z
We present a theory of high-order harmonic generation by diatomic molecules exposed to an elliptically polarized laser field. This theory is based on the molecular strong-field approximation with the laser-field-dressed initial bound state and the undressed final state. The interference minima, observed for linear polarization, are blurred with the increase of the laser-field ellipticity. The nth harmonic emission rate has contributions of the components of the T-matrix element in the direction of the laser-field polarization and in the direction perpendicular to it. We analyze the destructive interference condition for this perpendicular component. Taking into account that the aligned molecules are an anisotropic medium for high-harmonic generation, we introduce elliptic dichroism as a measure of this anisotropy and discuss possibilities of its use for determining the molecular structure.
Fuel Cell Technologies Publication and Product Library (EERE)
This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies
Nahum Arav; Thomas A. Barlow; Ari Laor; Wallace L. W. Sargent; Roger D. Blandford
1998-01-04T23:59:59.000Z
We search for a direct signature of discrete ''clouds'' in the broad line region (BLR) of the Seyfert galaxy NGC 4151. For this purpose we apply cross correlation (CC) analysis to a high resolution KECK spectrum of the galaxy. No such signature is found in the data. In order for cloud models to be compatible with this result, there must be at least $\\sim3\\times10^7$ emitting clouds in the BLR, where the limit is based on simulation of a homogeneous cloud population. More realistic distributions increase the lower limit to above $10^8$. These numbers are an order of magnitude improvement on our previous limit from Mrk 335, where the improvement comes from higher S/N, broader lines, and refined simulations. Combined with the predicted upper limit for the number of emitting clouds in NGC 4151 ($10^6-10^7$), the derived lower limit puts a strong constraint on the cloud scenario in the BLR of this object. Similar constraints can be paled on models where the emission originates in streams and sheets. Thus, this investigation suggests that the BELs in NGC 4151, and by extension in all AGNs, are not made of an ensemble of discrete independent emitters.
Orange, N Brice; Chesny, David L; Patel, Maulik; Hesterly, Katie; Preuss, Lauren; Neira, Chantale; Turner, Niescja E
2015-01-01T23:59:59.000Z
Since their discovery twenty year ago, transition region bright points (TRBPs) have never been observed spectroscopically. Bright point properties have not been compared with similar transition region and coronal structures. In this work we have investigated three transient quiet Sun brightenings including a TRBP, a coronal BP (CBP) and a blinker. We use time-series observations of the extreme ultraviolet emission lines of a wide range of temperature T (log T = 5.3 - 6.4) from the EUV imaging spectrometer (EIS) onboard the Hinode satellite. We present the EIS temperature maps and Doppler maps, which are compared with magnetograms from the Michelson Doppler Imager (MDI) onboard the SOHO satellite. Doppler velocities of the TR BP and blinker are <,25 km s$^{-1}$, which is typical of transient TR phenomena. The Dopper velocities of the CBP were found to be < 20 km s^{-1} with exception of those measured at log T = 6.2 where a distinct bi-directional jet is observed. From an EM loci analysis we find evidenc...
Advanced LD Engine Systems and Emissions Control Modeling and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
LD Engine Systems and Emissions Control Modeling and Analysis Advanced LD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...
Advanced PHEV Engine Systems and Emissions Control Modeling and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...
Advanced HD Engine Systems and Emissions Control Modeling and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
HD Engine Systems and Emissions Control Modeling and Analysis Advanced HD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...
A high-fidelity harmonic drive model.
Preissner, C.; Royston, T. J.; Shu, D. (APS Engineering Support Division); ( MCS); (Univ. of Illinois)
2012-01-01T23:59:59.000Z
In this paper, a new model of the harmonic drive transmission is presented. The purpose of this work is to better understand the transmission hysteresis behavior while constructing a new type of comprehensive harmonic drive model. The four dominant aspects of harmonic drive behavior - nonlinear viscous friction, nonlinear stiffness, hysteresis, and kinematic error - are all included in the model. The harmonic drive is taken to be a black box, and a dynamometer is used to observe the input/output relations of the transmission. This phenomenological approach does not require any specific knowledge of the internal kinematics. In a novel application, the Maxwell resistive-capacitor hysteresis model is applied to the harmonic drive. In this model, sets of linear stiffness elements in series with Coulomb friction elements are arranged in parallel to capture the hysteresis behavior of the transmission. The causal hysteresis model is combined with nonlinear viscous friction and spectral kinematic error models to accurately represent the harmonic drive behavior. Empirical measurements are presented to quantify all four aspects of the transmission behavior. These measurements motivate the formulation of the complete model. Simulation results are then compared to additional measurements of the harmonic drive performance.
Scaling of the generation of high-order harmonics in large gas media with focal length
Boutu, W.; Auguste, T.; Caumes, J. P.; Carre, B. [Service des Photons, Atomes et Molecules, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Merdji, H. [Service des Photons, Atomes et Molecules, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); PULSE Institute for Ultrafast Energy Science, Stanford Linear Accelerator Center, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)
2011-11-15T23:59:59.000Z
We present theoretical and experimental results on high-order harmonic generation in a low-density few-centimeter-long gas medium (L{sub med}{<=} 10 cm). We study the dependence with focal length of harmonic efficiency. Theoretically, we consider in detail the generation of the 25th harmonic of a short pulse Ti:sapphire laser in argon. Within the strong-field approximation for the atomic dipole, and a complete account of the macroscopic propagation, we compute the number of photons produced as a function of the medium parameters and the focusing conditions. The simulations show that, at constant intensity, the emission of the 25th harmonic scales with the focal length as {approx}f{sup 4} at low pressure (P=2 Torr) and as {approx}f{sup 6} at higher pressure (P=5 Torr). At constant laser energy, we find that the harmonic signal scales approximately as f{sup 2} at low pressure and as f{sup 4} at higher pressure. Those numerical results are compared with experimental data.
High harmonic generation from Bloch electrons in solids
Wu, Mengxi; Reis, David A; Schafer, Kenneth J; Gaarde, Mette B
2015-01-01T23:59:59.000Z
We study the generation of high harmonic radiation by Bloch electrons in a model transparent solid driven by a strong mid-infrared laser field. We solve the single-electron time-dependent Schr\\"odinger equation (TDSE) using a velocity-gauge method [New J. Phys. 15, 013006 (2013)] that is numerically stable as the laser intensity and number of energy bands are increased. The resulting harmonic spectrum exhibits a primary plateau due to the coupling of the valence band to the first conduction band, with a cutoff energy that scales linearly with field strength and laser wavelength. We also find a weaker second plateau due to coupling to higher-lying conduction bands, with a cutoff that is also approximately linear in the field strength. To facilitate the analysis of the time-frequency characteristics of the emitted harmonics, we also solve the TDSE in a time-dependent basis set, the Houston states [Phys. Rev. B 33, 5494 (1986)], which allows us to separate inter-band and intra-band contributions to the time-depe...
Dual aperture dipole magnet with second harmonic component
Praeg, W.F.
1983-08-31T23:59:59.000Z
An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.
Dual aperture dipole magnet with second harmonic component
Praeg, Walter F. (Palos Park, IL)
1985-01-01T23:59:59.000Z
An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.
Local Harmonic Estimation in Musical Sound Rafael A. IRIZARRY
Irizarry, Rafael A.
Local Harmonic Estimation in Musical Sound Signals Rafael A. IRIZARRY Statistical modeling so a local harmonic model that tracks changes in pitch and in the amplitudes of the harmonics is fit estimates of the harmonic signal and of the noise signal. Different musical composition applications may
High-Order Harmonic Generation of Heteronuclear Diatomic Molecules
Chu, Shih-I
High-Order Harmonic Generation of Heteronuclear Diatomic Molecules in Intense Ultrashort Laser ionization (MPI) and high-order harmonic generation (HHG) processes of N2 and CO molecules in intense laser of the homonuclear N2 molecule can generate only odd harmonics, both even and odd harmonics can be produced from
SEVENTH HARMONIC 20 GHz CO-GENERATOR
Hirshfield, Jay L
2014-04-08T23:59:59.000Z
To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.
SPECTRAL APPROXIMATION OF TIME-HARMONIC MAXWELL ...
2014-10-25T23:59:59.000Z
the electric permittivity, ? is the frequency of the harmonic wave, n is the unit outward normal of D ... In order to deal with more general scatterers D and non-
boundary behavior of univalent harmonic mappings
1910-70-32T23:59:59.000Z
valent harmonic mapping f from the unit disk U “onto” a bounded convex ..... Our next result examines the stability of a function f given in The- orem 2 upon the ...
Localized waves with spherical harmonic symmetries
Mills, M. S.
We introduce a class of propagation invariant spatiotemporal optical wave packets with spherical harmonic symmetries in their field configurations. The evolution of these light orbitals is considered theoretically in ...
Harmonizing Systems and Software Cost Estimation
Wang, Gan
2009-07-19T23:59:59.000Z
The objective of this paper is to examine the gaps and overlaps between software and systems engineering cost models with intent to harmonize the estimates in engineering engineering estimation. In particular, we evaluate ...
Harmonic Representation of Combinations and Partitions
Michalis Psimopoulos
2011-03-01T23:59:59.000Z
In the present article a new method of deriving integral representations of combinations and partitions in terms of harmonic products has been established. This method may be relevant to statistical mechanics and to number theory.
Some examples of exponentially harmonic maps
A D Kanfon; A Füzfa; D Lambert
2002-05-15T23:59:59.000Z
The aim of this paper is to study some examples of exponentially harmonic maps. We study such maps firstly on flat euclidean and Minkowski spaces and secondly on Friedmann-Lema\\^ itre universes. We also consider some new models of exponentially harmonic maps which are coupled with gravity which happen to be based on a generalization of the lagrangian for bosonic strings coupled with dilatonic field.
HARMONIC CAVITY PERFORMANCE FOR NSLS-II
BLEDNYKH, A.; KRINSKY, S.; PODOBEDOV, B.; ROSE, J.; TOWNE, N.; WANG, J.M.
2005-05-15T23:59:59.000Z
NSLS-II is a 3 GeV ultra-high brightness storage ring planned to succeed the present NSLS rings at BNL. Ultralow emittance combined with short bunch length means that it is critical to minimize the effects of Touschek scattering and coherent instabilities. Improved lifetime and stability can be achieved by including a third-harmonic RF cavity in the baseline design. This paper describes the required harmonic RF parameters and the expected system performance.
Coherent states for the nonlinear harmonic oscillator
Ghosh, Subir [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108 (India)
2012-06-15T23:59:59.000Z
Wave packets for the quantum nonlinear oscillator are considered in the generalized coherent state framework. To first order in the nonlinearity parameter the coherent state behaves very similar to its classical counterpart. The position expectation value oscillates in a simple harmonic manner. The energy-momentum uncertainty relation is time independent as in a harmonic oscillator. Various features (such as the squeezed state nature) of the coherent state have been discussed.
Nonlinearly driven harmonics of Alfvén modes
Zhang, B., E-mail: bozhang@austin.utexas.edu; Breizman, B. N.; Zheng, L. J.; Berk, H. L. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)] [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)
2014-01-15T23:59:59.000Z
In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.
Cabral, Marco
Harmonic Functions are Real Analytic1 On this very short note we prove that harmonic functions prove Lemma 1 using the mean value property of harmonic functions, Green's theorem and the maximum principle. Lemma 1 (estimate on first derivative) Suppose w is harmonic in Rn , > 0, y and B
Blitzer, Charles R.
1990-01-01T23:59:59.000Z
A general equilibrium approach, in the form of a multisector, intertemporal programming model, is used to analyze the effects on the growth of the Egyptian economy of carbon emissions constraints that differ across sectors ...
On the harmonic oscillator on the Lobachevsky plane
P. Stovicek; M. Tusek
2007-09-24T23:59:59.000Z
We introduce the harmonic oscillator on the Lobachevsky plane with the aid of the potential $V(r)=(a^2\\omega^2/4)sinh(r/a)^2$ where $a$ is the curvature radius and $r$ is the geodesic distance from a fixed center. Thus the potential is rotationally symmetric and unbounded likewise as in the Euclidean case. The eigenvalue equation leads to the differential equation of spheroidal functions. We provide a basic numerical analysis of eigenvalues and eigenfunctions in the case when the value of the angular momentum, $m$, equals 0.
dc field-emission analysis of GaAs and plasma-source ion-implanted stainless steel
C. Hernandez; T. Wang; T. Siggins; D. Bullard; H. F. Dylla; C. Reece; N. D. Theodore; D. M. Manos
2003-06-01T23:59:59.000Z
Field-emission studies have been performed on a GaAs wafer and a sample of its stainless-steel (SS) support electrode that are part of a photocathode gun for the 10 kW Upgrade infrared free electron laser at Jefferson Lab. The objective of the studies presented here is to characterize the effect of both the cleanliness of the wafer and the plasma-source ion-implanted layer on the electrode to suppress field emission. Field emission is the limiting factor to achieve the required 6 MV/m at the surface of the wafer. Potential field emitters are first located on the surface of 1 in. diameter samples with a dc scanning field-emission microscope at 60 MV/m, then each emitter is characterized in a scanning electron microscope equipped with an energy dispersive spectrometer. The GaAs wafer was hydrogen cleaned before the study. The results show three emitters caused by indium contamination during wafer handling. The GaAs wafer thus shows good high-voltage characteristics and the need to maintain cleanliness during handling. The SS sample is hand polished with diamond paste to a 1-m surface finish, then implanted with N2/SiO2 in a plasma-source ion-implantation chamber in preparation for the field-emission studies.
Emmel, T.E. (Radian Corp., Austin, TX (USA)); South, D.W. (Argonne National Lab., IL (USA))
1990-01-01T23:59:59.000Z
Emission control of acid rain precursors is currently the subject of intense debate on Capitol Hill. Numerous bills have been introduced which call for substantial reduction in sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emissions from operating utility and industrial boilers. The primary focus of the debates is on the cost, applicability and potential market impacts of emissions control options available to achieve the desired reductions. These topics are also the focus of a report in preparation for the 1990 Assessment of the National Acid Precipitation Assessment Program (NAPAP). This paper summarizes some of the abatement technology information for utility boilers contained in the NAPAP report. First the major provisions in the proposed acid rain legislation are summarized and the emission reduction options potentially applicable to the utility boiler population discussed. This is followed by discussion of the retrofit issues for utility boilers and a synopsis of the applicability and cost of retrofit emission control options. Since the focus of the current proposed legislation is on near-term reduction requirements for utility boilers, this paper emphasizes retrofit control options. 1 ref., 12 figs., 3 tabs.
Lim, Eunju, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp [Department of Applied Physics, Institute of Nanosensor and Biotechnology, Dankook University, Jukjeon-dong, Gyeonggi-do 448-701 (Korea, Republic of); Taguchi, Dai, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp; Iwamoto, Mitsumasa, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)
2014-08-18T23:59:59.000Z
We studied the carrier transport and carrier trapping in indium tin oxide/polyimide (PI)/6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)/Au diodes by using charge modulation spectroscopy (CMS) and time-resolved electric field induced optical second harmonic generation (TR-EFISHG) measurements. TR-EFISHG directly probes the spatial carrier behaviors in the diodes, and CMS is useful in explaining the carrier motion with respect to energy. The results clearly indicate that the injected carriers move across TIPS-pentacene thorough the molecular energy states of TIPS-pentacene and accumulate at the PI/TIPS-pentacene interface. However, some carriers are trapped in the PI layers. These findings take into account the capacitance-voltage and current-voltage characteristics of the diodes.
High-harmonic spectroscopy of molecular isomers
Wong, M. C. H.; Brichta, J.-P.; Bhardwaj, V. R. [Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, K1N 6N5 (Canada); Spanner, M.; Patchkovskii, S. [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6 (Canada)
2011-11-15T23:59:59.000Z
We demonstrate that high-order-harmonic generation (HHG) spectroscopy can be used to probe stereoisomers of randomly oriented 1,2-dichloroethylene (C{sub 2}H{sub 2}Cl{sub 2}) and 2-butene (C{sub 4}H{sub 8}). The high-harmonic spectra of these isomers are distinguishable over a range of laser intensities and wavelengths. Time-dependent numerical calculations of angle-dependent ionization yields for 1,2-dichloroethylene suggest that the harmonic spectra of molecular isomers reflect differences in their strong-field ionization. The subcycle ionization yields for the cis isomer are an order of magnitude higher than those for the trans isomer. The sensitivity in discrimination of the harmonic spectra of cis- and trans- isomers is greater than 8 and 5 for 1,2-dichloroethylene and 2-butene, respectively. We show that HHG spectroscopy cannot differentiate the harmonic spectra of the two enantiomers of the chiral molecule propylene oxide (C{sub 3}H{sub 6}O).
Son, Dong Hee; Wittenberg, Joshua S.; Banin, Uri; Alivisatos, A. Paul
2006-01-01T23:59:59.000Z
Second harmonic generation and confined acoustic phonons inenhancement of second harmonic generation, and the effect ofmeasurements. The second harmonic signal showed a sublinear
Milosevic, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Str. 2a, D-12489 Berlin (Germany)
2010-02-15T23:59:59.000Z
Experimentally observed strong enhancement of a single high-order harmonic in harmonic generation from low-ionized laser plasma ablation is explained as resonant harmonic generation. The resonant harmonic intensity increases regularly with the increase of the laser intensity, while the phase of the resonant harmonic is almost independent of the laser intensity. This is in sharp contrast with the usual plateau and cutoff harmonics, the intensity of which exhibits wild oscillations while its phase changes rapidly with the laser intensity. The temporal profile of a group of harmonics, which includes the resonant harmonic, has the form of a broad peak in each laser-field half cycle. These characteristics of resonant harmonics can have an important application in attoscience. We illustrate our results using examples of Sn and Sb plasmas.
Bermingham, Eldredge
-energy sector GHG emissions and to encourage broader participation in climate change mitigation by generally, Col. Country Club, Guadalajara, Jalisco, Me´xico, C.P. 45010, Mexico 1. Introduction: avoiding deforestation and protected areas In the last decade, climate change mitigation has received much international
Dickerson, Russell R.
America and Europe, butwitha lower BC/CO slope. Ambient concentrations indicate high BC emission from South Asia: 2 Panel on Climate Change (IPCC), 1996; National Research Council (NRC), 1996; Jacobson, 2001], but little; published 4 September 2002. [1] Air from South Asia carries heavy loadings of organic and light
Hoffman, Forrest M.
An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with regions of strong anthropogenic CO2 emissions. Citation: Erickson, D. J., III, R. T. Mills, J. Gregg, T. J
Burke, A.F.; Miller, M.
1997-01-01T23:59:59.000Z
are for total full fuel cycle emissions. References l.Light Duty Vehicle Full Fuel Cycle Emissions Analysis,AND FUEL ECONOMY FULL FUEL CYCLE EMISSIONS REGULATORY
Models of soft rotators and the theory of a harmonic rotator
Zahid Zakir
2012-12-12T23:59:59.000Z
The states of a planar oscillator are separated to a vibrational mode, containing a zero-point energy, and a rotational mode without the zero-point energy, but having a conserved angular momentum. On the basis of the analysis of properties of models of rigid and semirigid rotators, the theory of soft rotators is formulated where the harmonic attractive force is balanced only by the centrifugal force. As examples a Coulomb rotator (the Bohr model) and a magneto-harmonic rotator (the Fock-Landau levels) are considered. Disappearance of the radial speed in the model of a magneto-harmonic rotator is taken as a defining property of a pure rotational motion in the harmonic potential. After the exception of energies of the magnetic and spin decompositions, specific to magnetic fields, one turns to a simple and general model of a planar harmonic rotator (circular oscillator without radial speed) where kinetic energy is reduced to the purely rotational energy. Energy levels of the harmonic rotator have the same frequency and are twice degenerate, the energy spectrum is equidistant. In the ground state there is no zero-point energy from rotational modes, and the zero-point energy of vibrational modes can be compensated by spin effects or symmetries of the system. In this case the operators of observables vanish the ground state, i.e. are "strongly" normally ordered. In a chain of harmonic rotators collective rotations around a common axis lead to transverse waves, at quantization of which there appear quasi-particles and holes carrying an angular momentum. In the chain SU(2) appears as a group of symmetry of a rotator.
Plasmon signatures in high harmonic generation
J. Zanghellini; Ch. Jungreuthmayer; T. Brabec
2005-12-12T23:59:59.000Z
High harmonic generation in polarizable multi-electron systems is investigated in the framework of multi-configuration time-dependent Hartree-Fock. The harmonic spectra exhibit two cut offs. The first cut off is in agreement with the well established, single active electron cut off law. The second cut off presents a signature of multi-electron dynamics. The strong laser field excites non-linear plasmon oscillations. Electrons that are ionized from one of the multi-plasmon states and recombine to the ground state gain additional energy, thereby creating the second plateau.
Spherical Harmonic Decomposition on a Cubic Grid
Charles W. Misner
1999-10-12T23:59:59.000Z
A method is described by which a function defined on a cubic grid (as from a finite difference solution of a partial differential equation) can be resolved into spherical harmonic components at some fixed radius. This has applications to the treatment of boundary conditions imposed at radii larger than the size of the grid, following Abrahams, Rezzola, Rupright et al.(gr-qc/9709082}. In the method described here, the interpolation of the grid data to the integration 2-sphere is combined in the same step as the integrations to extract the spherical harmonic amplitudes, which become sums over grid points. Coordinates adapted to the integration sphere are not needed.
Simulation of a parametric quartz crystal oscillator by the symbolic harmonic method
Paris-Sud XI, Université de
method amounts to compute the behavior of the linear part of the circuit in the frequency domain differential equations describing the oscillator circuit is replaced by a system of non- linear equations de l'Observatoire, F-25044 Besan¸con, France The Symbolic Harmonic Analysis (SHA) method
accounting standards harmonization: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
numbers were Introduced by Ore 6 In 1948, though not under that name. A natural number n is harmonic if the harmonic mean of its positive divisors is an integer....
Second Harmonic Generation Studies of Fe(II) Interactions with...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Second Harmonic Generation Studies of Fe(II) Interactions with Hematite (?-Fe2O3). Second Harmonic Generation Studies of Fe(II) Interactions with Hematite (?-Fe2O3)....
Nonadiabatic molecular high-order harmonic generation from polar molecules: Spectral redshift
Bian Xuebin; Bandrauk, Andre D. [Departement de Chimie, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada)
2011-04-15T23:59:59.000Z
Molecular high-order harmonic generation (MHOHG) from the polar diatomic molecule HeH{sup 2+} in short intense laser fields is studied numerically. Due to the nonadiabatic response of the molecular dipole to the rapid change of laser intensity, a spectral redshift is predicted in high-intensity and ultrashort laser pulses, contrary to the blueshift observed in the harmonics generated from atoms in long laser pulses. The MHOHG temporal structures are investigated by a wavelet time-frequency analysis, which shows that the enhanced excitation of localized long lifetime excited states shifts the harmonic generation spectrum in the falling part of short laser pulses, due to the presence of a permanent dipole moment, and thus is unique to polar molecules.
Hadronization Scheme Dependence of Long-Range Azimuthal Harmonics in High Energy p+A Reactions
Esposito, Angelo
2015-01-01T23:59:59.000Z
We compare the distortion effects of three popular final state hadronization schemes that modify the initial-state gluon azimuthal harmonic correlations in high energy p+A collisions. The three models considered are (1) LPH: local parton-hadron duality, (2) CPR: collinear parton-hadron resonance independent fragmenation, and (3) LUND: color string hadronization. Strong initial-state multi-gluon azimuthal correlations are generated using the non-abelian beam jet bremsstrahlung GLVB model, assuming a saturation scale Qsat = 2 GeV. Long-range final hadron pair elliptic and triangular harmonics are compared based on the three hadronization schemes. Our analysis shows that the hadron level harmonics are strongly hadronization scheme dependent in the low pT < 3 GeV domain.
Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing
2011-04-01T23:59:59.000Z
China has implemented a series of minimum energy performance standards (MEPS) for over 30 appliances, voluntary energy efficiency label for 40 products and a mandatory energy information label that covers 19 products to date. However, the impact of these programs and their savings potential has not been evaluated on a consistent basis. This paper uses modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, under development or those proposed for development in 2010 under three scenarios that differ in the pace and stringency of MEPS development. In addition to a baseline 'Frozen Efficiency' scenario at 2009 MEPS level, the 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice efficiency in broad commercial use today in 2014. This paper concludes that under 'CIS', cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions of energy used for all 37 products would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction of energy used for 11 appliances would be 35% lower.
Characterization of Particulate Emissions from GDI Engine Combustion...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Analysis...
Urea/Ammonia Distribution Optimization in an SCR Emission Control...
Broader source: Energy.gov (indexed) [DOE]
UreaAmmonia Distribution Optimization in an SCR Emission Control System Through the Use of CFD Analysis UreaAmmonia Distribution Optimization in an SCR Emission Control System...
Parametric Estimation of Harmonically Related Sinusoids
Dixit, Richa
2010-04-01T23:59:59.000Z
Mud-pulse telemetry is a method used for measurement-while-drilling (MWD)in the oil industry. The telemetry signals are corrupted by spurious mud pump noise consisting of a large number of harmonically related sinusoids. In order to denoise...
Harmonic Fluids Changxi Zheng Doug L. James
Columbia University
Harmonic Fluids Changxi Zheng Doug L. James Cornell University Abstract Fluid sounds- ing. Furthermore, while offline applications can rely on talented foley artists to "cook up" plausible for vortex-based fluid sounds [Dobashi et al. 2003] and solid bodies [O'Brien et al. 2001; James et al. 2006
Markovian evolution of strongly coupled harmonic oscillators
Chaitanya Joshi; Patrik Ohberg; James D. Cresser; Erika Andersson
2014-12-16T23:59:59.000Z
We investigate how to model Markovian evolution of coupled harmonic oscillators, each of them interacting with a local environment. When the coupling between the oscillators is weak, dissipation may be modeled using local Lindblad terms for each of the oscillators in the master equation, as is commonly done. When the coupling between oscillators is strong, this model may become invalid. We derive a master equation for two coupled harmonic oscillators which are subject to individual heat baths modeled by a collection of harmonic oscillators, and show that this master equation in general contains non-local Lindblad terms. We compare the resulting time evolution with that obtained for dissipation through local Lindblad terms for each individual oscillator, and show that the evolution is different in the two cases. In particular, the two descriptions give different predictions for the steady state and for the entanglement between strongly coupled oscillators. This shows that when describing strongly coupled harmonic oscillators, one must take great care in how dissipation is modeled, and that a description using local Lindblad terms may fail. This may be particularly relevant when attempting to generate entangled states of strongly coupled quantum systems.
Compatibility of radial, Lorenz and harmonic gauges
Elena Magliaro; Claudio Perini; Carlo Rovelli
2007-05-07T23:59:59.000Z
We observe that the radial gauge can be consistently imposed \\emph{together} with the Lorenz gauge in Maxwell theory, and with the harmonic traceless gauge in linearized general relativity. This simple observation has relevance for some recent developments in quantum gravity where the radial gauge is implicitly utilized.
Yan, Jun
2012-07-16T23:59:59.000Z
design methodology of sinusoidal oscillator named digital-harmonic-cancellation (DHC) technique is presented. DHC technique is realized by summing up a set of square-wave signals with different phase shifts and different summing coefficient to cancel...
Physics 5B Winter 2009 Solving the Simple Harmonic Oscillator
California at Santa Cruz, University of
Physics 5B Winter 2009 Solving the Simple Harmonic Oscillator 1. The harmonic oscillator solution: displacement as a function of time We wish to solve the equation of motion for the simple harmonic oscillator shall employ for solving this di#erential equation is called the method of inspired guessing. In class
Physics 5B Winter 2009 Solving the Simple Harmonic Oscillator
California at Santa Cruz, University of
Physics 5B Winter 2009 Solving the Simple Harmonic Oscillator 1. The harmonic oscillator solution: displacement as a function of time We wish to solve the equation of motion for the simple harmonic oscillator employ for solving this differential equation is called the method of inspired guessing. In class, we
Selective compensation of voltage harmonics in grid-connected microgrids
Vasquez, Juan Carlos
1 Selective compensation of voltage harmonics in grid-connected microgrids Mehdi Savaghebia , Juan is proposed for selective compensation of main voltage harmonics in a grid- connected microgrid. The aim level. Keywords Distributed Generator (DG); microgrid; grid-connected; voltage harmonics compensation. 1
Approximation of Harmonic Maps and Wave Maps Soren Bartels
Bartels, Soeren
Approximation of Harmonic Maps and Wave Maps SÂ¨oren Bartels Partial differential equations to certain boundary condtions. If X = then critical points u : N are called harmonic maps into N, Â·) = u0, tu(0, Â·) = v0. To approximate harmonic maps or wave maps we consider a regular triangula- tion
Isolated attosecond pulses using a detuned second-harmonic field
Neumark, Daniel M.
Isolated attosecond pulses using a detuned second-harmonic field Hamed Merdji,1,2, * Thierry 2 . The slight detuning of the second harmonic is used to break the symmetry of the electric field-order harmonics generation (HHG) of intense laser pulses in gases is attracting much attention due to both
Tracking butterfly flight paths across the landscape with harmonic radar
Northampton, University of
Tracking butterfly flight paths across the landscape with harmonic radar E. T. Cant1,*, A. D. Smith of five butterfly species were successfully tracked using harmonic radar within an agricultural landscape. Keywords: butterfly flight; harmonic radar; linear landscape features; Aglais urticae; Inachis io 1
The Harmonic Series Diverges Again and Again Steven J. Kifowit
California at Santa Cruz, University of
The Harmonic Series Diverges Again and Again Steven J. Kifowit Prairie State College Terra A. Stamps Prairie State College The harmonic series, n=1 1 n = 1 + 1 2 + 1 3 + 1 4 + 1 5 + Â· Â· Â· , is one, the harmonic series provides the instructor with a wealth of opportunities. The leaning tower of lire (Johnson
Second harmonic imaging of membrane potential of neurons with retinal
Columbia University
Second harmonic imaging of membrane potential of neurons with retinal Boaz A. Nemet Volodymyr of neurons, using the nonlinear optical phenom- enon of second harmonic generation (SHG) with a photopigment reti- nal as the chromophore [second harmonic retinal imaging of mem- brane potential (SHRIMP)]. We
Harmonic moment dynamics in Laplacian growth Alexander Leshchiner,1
Texas at Austin. University of
Harmonic moment dynamics in Laplacian growth Alexander Leshchiner,1 Matthew Thrasher,1 Mark B received 12 November 2009; published 12 January 2010 Harmonic moments are integrals of integer powers of z horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena
Temporal-Harmonic Specific POD Mode Extraction Gilead Tadmor
Dabiri, John O.
Temporal-Harmonic Specific POD Mode Extraction Gilead Tadmor and Daniel Bissex Electrical changes the systems mean field changes significantly, as does the leading shedding harmonic4 , once mode pair will capture harmonically rich time dynamics, reflecting a spatial mix of multiple vortical
Ruth, M.; Diakov, V.; Goldsby, M. E.; Sa, T. J.
2010-12-01T23:59:59.000Z
It is commonly accepted that the introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of infrastructure elements, such as production, delivery, and consumption, all associated with certain emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The macro-system model is being developed as a cross-cutting analysis tool that combines a set of hydrogen technology analysis models. Within the MSM, a federated simulation framework is used for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of 'over-the-net' computation.
Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Fact Sheet)
Not Available
2012-11-01T23:59:59.000Z
The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that makes great strides in clarifying inconsistent and conflicting GHG emission estimates in the published literature while providing more precise estimates of GHG emissions from utility-scale CSP systems.
Zhou, Nan; Fridley, David; McNeill, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing; Saheb, Yamina
2010-06-07T23:59:59.000Z
China is now the world's largest producer and consumer of household appliances and commercial equipment. To address the growth of electricity use of the appliances, China has implemented a series of minimum energy performance standards (MEPS) for 30 appliances, and voluntary energy efficiency label for 40 products. Further, in 2005, China started a mandatory energy information label that covers 19 products to date. However, the impact of these standard and labeling programs and their savings potential has not been evaluated on a consistent basis. This research involved modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, or under development and those proposed for development in 2010. Two scenarios that have been developed differ primarily in the pace and stringency of MEPS development. The 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step considering the technical limitation of the technology. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice MEPS in 2014. This paper concludes that under the 'CIS' of regularly scheduled MEPS revisions to 2030, cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction would be 35% lower than in the frozen scenario.
Electricity Generation and Emissions Reduction Decisions
Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General analysis, and public education in global environmental change. It seeks to provide leadership;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium
Quantifying avoided emissions from renewable generation
Gomez, Gabriel R. (Gabriel Rodriguez)
2009-01-01T23:59:59.000Z
Quantifying the reduced emissions due to renewable power integration and providing increasingly accurate emissions analysis has become more important for policy makers in the age of renewable portfolio standards (RPS) and ...
Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas
2006-01-10T23:59:59.000Z
Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the secondary sites. Aboveground carbon density is 120 {+-} 15 t ha{sup -1} in primary forest and 40 {+-} 5 t ha{sup -1} in secondary forest. Forest stands in the secondary forest sites range in age from 10 to 42 y. Growth in biomass (t ha{sup -1}) as a function of time (y) follows the relation: biomass = 4.09-0.017 age{sup 2} (p < 0.001). Aboveground biomass and forest species richness are positively correlated (r{sup 2} = 0.59, p < 0.001). Analyses of Landsat data show that the land cover of the 3700 km{sup 2} of non-cloud areas in 1999 was: closed forest 78%; open forest 12%, low vegetation cover 4%, sparse vegetation cover 6%. Deforestation from 1987 to 1999 claimed a net 200 km{sup 2} of forest, proceeding at a rate of 0.005 y{sup -1}. Of those areas of closed forest in 1987, only 89% remained closed forest in 1999. Consequently, closed forests experienced disruption in the time period at double the rate of net deforestation. The three protected areas experienced negligible deforestation or slight reforestation. Based on 1987 forest cover, 26,000 ha are eligible for forest carbon trading under the Clean Development Mechanism, established by the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Principal components analysis showed that distance to nonforest was the factor that best explained observed patterns of deforestation while distance to forest best explained observed patterns of reforestation, more significant than elevation, distance to rivers, distance to roads, slope, and distance to towns of population > 400. Aboveground carbon in live vegetation in the project area decreased from 35 million {+-} 4 million t in 1987 to 34 million {+-} 4 million t in 1999. Projected aboveground carbon in live vegetation would fall to 33 million {+-} 4 million t in 2006, 32 million {+-} 4 million t in 2011, and 29 million {+-} 3 million t in 2035. Projected net deforestation in the research area would total 13,000 {+-} 3000 ha in the period 1999-2011, proceeding at a rate of 0.003 {+-} 0.0007 y{sup -1}, and would total 33,000 {+-} 7000
Te (R,t) Measurements using Electron Bernstein Wave Thermal Emission on NSTX
Diem, S J; Efthimion, P C; LeBlanc, B P; Carter, M; Caughman, J; Wilgen, J B; Harvey, R W; Preinhaelter, J; Urban, J
2006-06-09T23:59:59.000Z
The National Spherical Torus Experiment (NSTX) routinely studies overdense plasmas with ne of (1–5) X 1019 m-3 and total magnetic field of <0.6 T, so that the first several electron cyclotron harmonics are overdense. The electrostatic electron Bernstein wave (EBW) can propagate in overdense plasmas, exhibits strong absorption, and is thermally emitted at electron cyclotron harmonics. These properties allow thermal EBW emission to be used for local Te measurement. A significant upgrade to the previous NSTX EBW emission diagnostic to measure thermal EBW emission via the oblique B-X-O mode conversion process has been completed. The new EBW diagnostic consists of two remotely steerable, quad-ridged horn antennas, each of which is coupled to a dual channel radiometer. Fundamental (8–18 GHz) and second and third harmonic (18–40 GHz) thermal EBW emission and polarization measurements can be obtained simultaneously.
Houlihan-Wiberg, Aoife Anne-marie
2010-07-18T23:59:59.000Z
Conservation Measures………… …… … … … … … … … … … … 1 6 6 5.1.4 Nordic Swan Analysis of Actual Energy Consumption Data…………169 5.1.5 Authors Analysis of Actual Energy Consumption Data………………. 1 7 3 5.1.6 Results... Consumption data………….. 1 9 6 5.2.6 Authors Analysis of Actual Energy Consumption Data………………. . 1 9 8 5.2.7 Results………………… … … … … … … … … … … … … … … … … … … … . . . 2 0 4 5.2.8 Recommendations for Improvement……………… … … … … … … … … . 2 0 8 5.3 In...
Feng, Wei
2013-01-01T23:59:59.000Z
DER Technologies Cost Data in China (USD) Technologies Fixedin Northern China make the CHP system not cost-effective.for China -- a Regional Analysis of Building Energy Costs
A BAYESIAN METHOD FOR THE ANALYSIS OF THE DUST EMISSION IN THE FAR-INFRARED AND SUBMILLIMETER
Veneziani, M.; Noriega-Crespo, A.; Carey, S.; Paladini, R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Piacentini, F. [Dipartimento di Fisica, Universita di Roma ''La Sapienza'', I-00185 Rome (Italy); Paradis, D., E-mail: marcella.veneziani@ipac.caltech.edu [Universite de Toulouse, UPS-OMP, IRAP, F-31062 Toulouse (France)
2013-07-20T23:59:59.000Z
We present a method, based on Bayesian statistics, to fit the dust emission parameters in the far-infrared and submillimeter wavelengths. The method estimates the dust temperature and spectral emissivity index, plus their relationship, properly taking into account the statistical and systematic uncertainties. We test it on three sets of simulated sources detectable by the Herschel Space Observatory in the PACS and SPIRE spectral bands (70-500 {mu}m), spanning over a wide range of dust temperatures. The simulated observations are a one-component interstellar medium and two two-component sources, both warm (H II regions) and cold (cold clumps (CCs)). We first define a procedure to identify the better model, then we recover the parameters of the model and measure their physical correlations by means of a Markov Chain Monte Carlo algorithm adopting multi-variate Gaussian priors. In this process, we assess the reliability of the model recovery and of parameter estimation. We conclude that the model and parameters are properly recovered only under certain circumstances and that false models may be derived in some cases. We applied the method to a set of 91 starless CCs in an interarm region of the Galactic plane with low star formation activity, observed by Herschel in the Hi-GAL survey. Our results are consistent with a temperature-independent spectral index.
Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic eects
Seitzinger, Sybil
Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic, are increasing due to human activities. Our analysis suggests that a third of global anthropogenic N2O emission the remainder. Over 80% of aquatic anthropogenic N2O emissions are from the Northern Hemisphere mid
Johns, H. M.; Mancini, R. C.; Hakel, P.; Nagayama, T. [Physics Department, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557 (United States); Smalyuk, V. A.; Regan, S. P.; Delettrez, J. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States)
2014-08-15T23:59:59.000Z
Ti-doped tracer layers embedded in the shell at varying distances from the fuel-shell interface serve as a spectroscopic diagnostic for direct-drive experiments conducted at OMEGA. Detailed modeling of Ti K-shell absorption spectra produced in the tracer layer considers n?=?1–2 transitions in F- through Li-like Ti ions in the 4400–4800?eV range, both including and excluding line self-emission. Testing the model on synthetic spectra generated from 1-D LILAC hydrodynamic simulations reveals that the model including self-emission best reproduces the simulation, while the model excluding self-emission overestimates electron temperature T{sub e} and density N{sub e} to a higher degree for layers closer to the core. The prediction of the simulation that the magnitude of T{sub e} and duration of Ti absorption will be strongly tied to the distance of the layer from the core is consistent with the idea that regions of the shell close to the core are more significantly heated by thermal transport out of the hot dense core, but more distant regions are less affected by it. The simulation predicts more time variation in the observed T{sub e}, N{sub e} conditions in the compressed shell than is observed in the experiment, analysis of which reveals conditions remain in the range T{sub e}?=?400–600?eV and N{sub e}?=?3.0–10.0?×?10{sup 24} cm{sup ?3} for all but the most distant Ti-doped layer, with error bars ?5% T{sub e} value and ?10% N{sub e} on average. The T{sub e}, N{sub e} conditions of the simulation lead to a greater degree of ionization for zones close to the core than occurs experimentally, and less ionization for zones far from the core.
Generalized harmonic formulation in spherical symmetry
Evgeny Sorkin; Matthew W. Choptuik
2010-04-30T23:59:59.000Z
In this pedagogically structured article, we describe a generalized harmonic formulation of the Einstein equations in spherical symmetry which is regular at the origin. The generalized harmonic approach has attracted significant attention in numerical relativity over the past few years, especially as applied to the problem of binary inspiral and merger. A key issue when using the technique is the choice of the gauge source functions, and recent work has provided several prescriptions for gauge drivers designed to evolve these functions in a controlled way. We numerically investigate the parameter spaces of some of these drivers in the context of fully non-linear collapse of a real, massless scalar field, and determine nearly optimal parameter settings for specific situations. Surprisingly, we find that many of the drivers that perform well in 3+1 calculations that use Cartesian coordinates, are considerably less effective in spherical symmetry, where some of them are, in fact, unstable.
Prolate spheroidal harmonic expansion of gravitational field
Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)
2014-06-01T23:59:59.000Z
As a modification of the oblate spheroidal case, a recursive method is developed to compute the point value and a few low-order derivatives of the prolate spheroidal harmonics of the second kind, Q{sub nm} (y), namely the unnormalized associated Legendre function (ALF) of the second kind with its argument in the domain, 1 < y < ?. They are required in evaluating the prolate spheroidal harmonic expansion of the gravitational field in addition to the point value and the low-order derivatives of P-bar {sub nm}(t), the 4? fully normalized ALF of the first kind with its argument in the domain, |t| ? 1. The new method will be useful in the gravitational field computation of elongated celestial objects.
Antolak, A.J.; Pontau, A.E.; Morse, D.H. (Sandia National Laboratories, Livermore, California 94551 (United States)); Weirup, D.L.; Heikkinen, D.W. (Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)); Cholewa, M.; Bench, G.S.; Legge, G.J.F. (Micro Analytical Research Centre, University of Melbourne, Melbourne (Australia))
1992-07-01T23:59:59.000Z
The complementary techniques of ion microtomography (IMT) and particle-induced x-ray emission (PIXE) are used to provide submicron-scale characterization of inertial confinement fusion (ICF) targets for density uniformity, sphericity, and trace-element spatial distributions. ICF target quality control in the laser fusion program is important to ensure that the energy deposition from the lasers results in uniform compression and minimization of Rayleigh--Taylor instabilities. We obtain 1% total electron density determinations using IMT with spatial resolution approaching 2 {mu}m. Utilizing PIXE, we can map out dopant and impurity distributions with elemental detection sensitivities on the order of a few parts per million. We present examples of ICF target characterization by IMT and PIXE in order to demonstrate their potential impact in assessing target fabrication processes.
Harmonic polylogarithms for massive Bhabha scattering
M. Czakon; J. Gluza; T. Riemann
2005-08-19T23:59:59.000Z
One- and two-dimensional harmonic polylogarithms, HPLs and GPLs, appear in calculations of multi-loop integrals. We discuss them in the context of analytical solutions for two-loop master integrals in the case of massive Bhabha scattering in QED. For the GPLs we discuss analytical representations, conformal transformations, and also their transformations corresponding to relations between master integrals in the s- and t-channel.
${\\cal D}$-deformed harmonic oscillators
F. Bagarello; F. Gargano; D. Volpe
2014-12-30T23:59:59.000Z
We analyze systematically several deformations arising from two-dimensional harmonic oscillators which can be described in terms of $\\cal{D}$-pseudo bosons. They all give rise to exactly solvable models, described by non self-adjoint hamiltonians whose eigenvalues and eigenvectors can be found adopting the quite general framework of the so-called $\\cal{D}$-pseudo bosons. In particular, we show that several models previously introduced in the literature perfectly fit into this scheme.
Tabors, Richard D.
1991-01-01T23:59:59.000Z
The object of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gases. The research used the EPRI Electric Generation Expansion Analysis ...
Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina
2013-11-15T23:59:59.000Z
Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.
The Value of Emissions Trading
Webster, Mort David.
This paper estimates the value of international emissions trading, focusing attention on a here-to-fore neglected component: its value as a hedge against uncertainty. Much analysis has been done of the Kyoto Protocol and ...
M. K. Gaidarov; Y. Watanabe; K. Ogata; M. Kohno; M. Kawai; A. N. Antonov
2003-07-28T23:59:59.000Z
A semiclassical distorted wave (SCDW) model with Wigner transform of one-body density matrix is presented for multistep direct $(p,p^{\\prime}x)$ reactions to the continuum. The model uses Wigner distribution functions obtained in methods which include nucleon-nucleon correlations to a different extent, as well as Woods-Saxon (WS) single-particle wave function. The higher momentum components of target nucleons that play a crucial role in reproducing the high-energy part of the backward proton spectra are properly taken into account. This SCDW model is applied to analyses of multistep direct processes in $^{12}$C$(p,p^{\\prime}x)$, $^{40}$Ca$(p,p^{\\prime}x)$ and $^{90}$Zr$(p,p^{\\prime}x)$ in the incident energy range of 150--392 MeV. The double differential cross sections are calculated up to three-step processes. The calculated angular distributions are in good agreement with the experimental data, in particular at backward angles where the previous SCDW calculations with the WS single-particle wave function showed large underestimation. It is found that the result with the Wigner distribution function based on the coherent density fluctuation model provides overall better agreement with the experimental data over the whole emission energies.
Huang, Jun-Lin; Zhou, Ke-Yi, E-mail: boiler@seu.edu.cn; Xu, Jian-Qun [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu Province (China); Wang, Xin-Meng; Tu, Yi-You [School of Materials Science and Engineering, Southeast University, Nanjing 210096, Jiangsu Province (China)
2014-07-28T23:59:59.000Z
Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.
Strecker, Bryan Anthony
2012-12-31T23:59:59.000Z
through the update of embedded time-sheet emissions lookup tables using EPA's Motor Vehicle Emissions Simulator (MOVES). This simulation package utilizes a statistical database of over 3000 counties in the continental United States in calculating...
Plaza, Celina
2014-11-22T23:59:59.000Z
The intent of this research is to examine the effectiveness and impact of the UK’s mandatory reporting of company greenhouse gas emissions, otherwise known as carbon dioxide equivalent (CO2e) emissions, in accordance to ...
Rittiger, J. [Siemens AG, Erlangen (Germany)] [Siemens AG, Erlangen (Germany); Kulicke, B. [Technische Univ. Berlin (Germany)] [Technische Univ. Berlin (Germany)
1995-10-01T23:59:59.000Z
In order to study the effects of large HVDC converters to the feeding ac networks, it is of importance to explain and to calculate harmonic phenomena which are a result of converter operation. During commissioning of real HVDC converters it could be seen, that harmonics resulting from unsymmetries in the system voltages or from unsymmetries in converter operation led to significant difficulties concerning the system design. For this reason, not only the effects of characteristic but also the effects of noncharacteristic converter harmonics must be taken into account. The aim is to describe the steady state harmonic behavior of the converter. The harmonic spectra are not determined by time domain analysis but instead the solution is found by frequency domain calculations. This can result in reduced calculation time in comparison to conventional fourier analysis of the time functions. The converter is interpreted as an amplitude modulator with voltage and current converter functions which describe the coupling of the dc circuit and the ac network through the converter. To verify the theory, comparison of frequency domain with time domain calculations were carried out.
alternating phase harmonic: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
the effects of harmonics on their systems: telephone noise, excessive heating of transformers and other equipment, capacitor damage, and others, and would like to limit the...
Simple connection between Faddeev's and the K-harmonic approaches
Coelho, H.T.; Gloeckle, W.; Delfino, A.
1980-10-01T23:59:59.000Z
By employing a system for three bound identical bosons, a simple connection is made between Faddeev's and the K-harmonic approaches.
Algal Supply System Design - Harmonized Version
Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli
2013-03-01T23:59:59.000Z
The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.
Harmonic-Oscillator-Based Effective Theory
W. C. Haxton
2006-08-06T23:59:59.000Z
I describe harmonic-oscillator-based effective theory (HOBET) and explore the extent to which the effects of excluded higher-energy oscillator shells can be represented by a contact-gradient expansion in next-to-next-to-leading order (NNLO). I find the expansion can be very successful provided the energy dependence of the effective interaction, connected with missing long-wavelength physics associated with low-energy breakup channels, is taken into account. I discuss a modification that removes operator mixing from HOBET, simplifying the task of determining the parameters of an NNLO interaction.
Harmon, Illinois: Energy Resources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation Handbook forHansung ANewHardyCounty,Harmon,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolÃ©(tm) Harmonic Engine GyroSolÃ©(tm) engine * Simple * Efficient
Carroll, D.P. [Florida Univ., Gainesville, FL (United States); Kasturi, S. [MOS, Inc., Melville, NY (United States); Subudhi, M.; Gunther, W. [Brookhaven National Lab., Upton, NY (United States)
1992-12-31T23:59:59.000Z
Most previous analysis on the effects of geomagnetically induced currents (GIC) on electric utility systems has steady-state phenomena, with the main interest in the generator step-up transformer and the off-site power system. This paper begins to investigate the possible effects that a GIC event might have on the power plant itself, by examining the harmonic distortion that could exist at various voltage levels in the on-site distribution system.
Carroll, D.P. (Florida Univ., Gainesville, FL (United States)); Kasturi, S. (MOS, Inc., Melville, NY (United States)); Subudhi, M.; Gunther, W. (Brookhaven National Lab., Upton, NY (United States))
1992-01-01T23:59:59.000Z
Most previous analysis on the effects of geomagnetically induced currents (GIC) on electric utility systems has steady-state phenomena, with the main interest in the generator step-up transformer and the off-site power system. This paper begins to investigate the possible effects that a GIC event might have on the power plant itself, by examining the harmonic distortion that could exist at various voltage levels in the on-site distribution system.
N. N. Ajitanand; J. M. Alexander; P. Chung; W. G. Holzmann; M. Issah; Roy A. Lacey; A. Shevel; A. Taranenko; P. Danielewicz
2005-06-14T23:59:59.000Z
Methodology is presented for analysis of two-particle azimuthal angle correlation functions obtained in collisions at ultra-relativistic energies. We show that harmonic and di-jet contributions to these correlation functions can be reliably decomposed by two techniques to give an accurate measurement of the jet-pair distribution. Results from detailed Monte Carlo simulations are used to demonstrate the efficacy of these techniques in the study of possible modifications to jet topologies in heavy ion reactions.
Hyperspherical harmonic study of identical-flavor four-quark systems
J. Vijande; N. Barnea; A. Valcarce
2006-10-23T23:59:59.000Z
We present an exact method based on a hyperspherical harmonic expansion to study systems made of quarks and antiquarks of the same flavor. Our formalism reproduces and improves the results obtained with variational approaches. This analysis shows that identical-flavor four-quark systems with non-exotic $2^{++}$ quantum numbers may be bound independently of the quark mass. $0^{+-}$ and $1^{+-}$ states become attractive only for larger quarks masses.
Donald J. Kouri
2015-02-06T23:59:59.000Z
At the recent QSCP XIX, the author claimed a procedure of using a scaled Fourier transform (the scaling being determined by the detailed interaction and particle mass for a harmonic oscillator) to achieve simultaneous resolution of position and momentum greater than the standard Heisenberg value of 1/2. The procedure is, in fact, invalid for quantum mechanics. The purpose of this paper is simply to give the correct analysis of the uncertainty product, thereby clarifying the error made.
Koeylue, U.O. [Yale Univ., New Haven, CT (United States). Dept. of Chemical Engineering] [Yale Univ., New Haven, CT (United States). Dept. of Chemical Engineering
1997-05-01T23:59:59.000Z
An in situ particulate diagnostic/analysis technique is outlined based on the Rayleigh-Debye-Gans polydisperse fractal aggregate (RDG/PFA) scattering interpretation of absolute angular light scattering and extinction measurements. Using proper particle refractive index, the proposed data analysis method can quantitatively yield all aggregate parameters (particle volume fraction, f{sub v}, fractal dimension, D{sub f}, primary particle diameter, d{sub p}, particle number density, n{sub p}, and aggregate size distribution, pdf(N)) without any prior knowledge about the particle-laden environment. The present optical diagnostic/interpretation technique was applied to two different soot-containing laminar and turbulent ethylene/air nonpremixed flames in order to assess its reliability. The aggregate interpretation of optical measurements yielded D{sub f}, d{sub p}, and pdf(N) that are in excellent agreement with ex situ thermophoretic sampling/transmission electron microscope (TS/TEM) observations within experimental uncertainties. However, volume-equivalent single particle models (Rayleigh/Mie) overestimated d{sub p} by about a factor of 3, causing an order of magnitude underestimation in n{sub p}. Consequently, soot surface areas and growth rates were in error by a factor of 3, emphasizing that aggregation effects need to be taken into account when using optical diagnostics for a reliable understanding of soot formation/evolution mechanism in flames. The results also indicated that total soot emissivities were generally underestimated using Rayleigh analysis (up to 50%), mainly due to the uncertainties in soot refractive indices at infrared wavelengths. This suggests that aggregate considerations may not be essential for reasonable radiation heat transfer predictions from luminous flames because of fortuitous error cancellation, resulting in typically a 10 to 30% net effect.
A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC
Pernet, Pierre-Louis; /Ecole Polytechnique, Lausanne /SLAC
2012-01-06T23:59:59.000Z
With the advent of X-ray Free Electron Lasers (FELs), new methods have been developed to extend capabilities at short wavelengths beyond Self-Amplified Spontaneous Emission (SASE). In particular, seeding of a FEL allows for temporal control of the radiation pulse and increases the peak brightness by orders of magnitude. Most recently, Gennady Stupakov and colleagues at SLAC proposed a new technique: Echo-Enabled Harmonic Generation (EEHG). Here a laser microbunches the beam in an undulator and the beam is sheared in a chicane. This process is repeated with a second laser, undulator and chicane. The interplay between these allows a seeding of the X-ray laser up to the 100th harmonic of the first laser. After introducing the physics of FELs and the EEHG seeding technique, we describe contributions to the experimental effort. We will present detailed studies of the experiment including the choice of parameters and their optimization, the emittance effect, spontaneous emission in the undulators, the second laser phase effect, and measurements of the jitter between RF stations. Finally, the status and preliminary results of the Echo-7 experiment will be outlined.
High-peak-power surface high-harmonic generation at extreme ultra-violet wavelengths from a tape
Shaw, B. H. [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States) [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States); Applied Science and Technology, University of California, Berkeley, California 94720 (United States); Tilborg, J. van; Sokollik, T.; Schroeder, C. B.; McKinney, W. R.; Artemiev, N. A.; Yashchuk, V. V.; Gullikson, E. M. [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States)] [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States); Leemans, W. P. [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States) [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States); Physics Department, University of California, Berkeley, California 94720 (United States)
2013-07-28T23:59:59.000Z
Solid-based surface high-harmonic generation from a tape is experimentally studied. By operating at mildly relativistic normalized laser strengths a{sub 0}?0.2, harmonics up to the 17th order are efficiently produced in the coherent wake emission (CWE) regime. CWE pulse properties, such as divergence, energy, conversion efficiency, and spectrum, are investigated for various tape materials and drive laser conditions. A clear correlation between surface roughness and harmonic beam divergence is found. At the measured pulse properties for the 15th harmonic (conversion efficiency ?6.5×10{sup ?7}, divergence ?7?15 mrad), the 100-mJ-level drive laser produces several MWs of extreme ultra-violet pulses. The spooling tape configuration enables multi-Hz operation over thousands of shots, making this source attractive as a seed to the few-Hz laser-plasma-accelerator-driven free-electron laser (FEL). Models indicate that these CWE pulses with MW level powers are sufficient for seed-induced bunching and FEL gain.
Havey, C. D.; McCormick, R. L.; Hayes, R. R.; Dane, A. J.; Voorhees, K. J.
2006-01-01T23:59:59.000Z
The presence of nitro-polycyclic aromatic hydrocarbons (NPAHs) in diesel fuel emissions has been studied for a number of years predominantly because of their contribution to the overall health and environmental risks associated with these emissions. Electron monochromator-mass spectrometry (EM-MS) is a highly selective and sensitive method for detection of NPAHs in complex matrixes, such as diesel emissions. Here, EM-MS was used to compare the levels of NPAHs in fuel emissions from conventional (petroleum) diesel, ultra-low sulfur/low-aromatic content diesel, Fischer-Tropsch synthetic diesel, and conventional diesel/synthetic diesel blend. The largest quantities of NPAHs were detected in the conventional diesel fuel emissions, while the ultra-low sulfur diesel and synthetic diesel fuel demonstrated a more than 50% reduction of NPAH quantities when compared to the conventional diesel fuel emissions. The emissions from the blend of conventional diesel with 30% synthetic diesel fuel also demonstrated a more than 30% reduction of the NPAH content when compared to the conventional diesel fuel emissions. In addition, a correlation was made between the aromatic content of the different fuel types and NPAH quantities and between the nitrogen oxides emissions from the different fuel types and NPAH quantities. The EM-MS system demonstrated high selectivity and sensitivity for detection of the NPAHs in the emissions with minimal sample cleanup required.
Saving Fuel, Reducing Emissions
Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes
2009-01-01T23:59:59.000Z
lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle
Design study of the bending sections between harmonic cascade FEL stages
Wan, Weishi; Corlett, John; Fawley, William; Zholents, A.
2004-01-01T23:59:59.000Z
A XUV/Soft X-Ray Harmonic- Cascade FEL for the Proposed LBNLin a Cascaded Harmonic FEL CBP Tech Note-281, Februarybetween Harmonic Cascade FEL Stages W. Wan, J. Corlett, W.
Complex harmonic wave scattering asthe framework for investigation of bounded beam reflection their pro- files.We will verifythesestatementswith a largenumberof illustrations. I. COMPLEX HARMONIC WAVE REFLECTION AND TRANSMISSION A. Representation of a complex harmonic wave in a viscoelastic medium
Antonietta Vincenti, Maria; Campione, Salvatore; de Ceglia, Domenico; Capolino, Filippo; Scalora, Michael
2012-01-01T23:59:59.000Z
from metal shells 3.1. Second-harmonic generation from gold3.2. Third-harmonic generation from golddriven second- and third-harmonic generation at ?-near-zero
Nelson, Christopher Scott; Nelson, Christopher Scott
2012-01-01T23:59:59.000Z
3.2 Simple Cases of Non-Commutative -Harmonic Polyno-3.2.2 1-Harmonic Polynomials . . . . . . . . . . .1.2.1 Non-Commutative Harmonic and Subharmonic Poly-
North-South Standards Harmonization and International Trade
Paris-Sud XI, Université de
North-South Standards Harmonization and International Trade Olivier CADOT Lausanne University Anne,version1-20Mar2014 #12;1 North-South Standards Harmonization and International Trade Anne-Célia Disdier investigate whether the technical requirements contained in North-South Agreements affect international trade
Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft
Santolik, Ondrej
Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft F. Nemec,1,2 O. SantoliÂ´k,3 January 2006; published 22 April 2006. [1] Results of a systematic survey of Power Line Harmonic Radiation from the electric power systems which are magnetically conjugated with the place of observation
Power line harmonic radiation: A systematic study using DEMETER spacecraft
Santolik, Ondrej
Power line harmonic radiation: A systematic study using DEMETER spacecraft F. Nemec a,b,*, O of a systematic survey of Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft. DEME- TER frequency spacing corresponds well to the power system frequency at anticipated source locations. Moreover
Propagation of nonlinearly generated harmonic spin waves in microscopic stripes
Otani, Yoshichika
Propagation of nonlinearly generated harmonic spin waves in microscopic stripes O. Rousseau,1 M on the experimental study of the propagation of nonlinearly generated harmonic spin waves in microscopic CoFeB stripes wave propagation. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4864480] In recent years
Harmonic minimization waveforms for modulated heating experiments at HAARP
Harmonic minimization waveforms for modulated heating experiments at HAARP G. Jin,1 M. Spasojevic,1), Harmonic minimization waveforms for modulated heating experiments at HAARP, J. Geophys. Res., 117, A11315 and Stubbe [1984], and Milikh et al. [1999]. The High Fre- quency Active Auroral Research Program (HAARP
Higher order harmonic detection for exploring nonlinear interactions
Vasudevan, Rama K [ORNL; Okatan, M. B. [University of New South Wales; Rajapaksa, Indrajit [Oak Ridge National Laboratory (ORNL); Kim, Yunseok [ORNL; Marincel, Dan [Materials Science and Engineering, Pennsylvania State University; Trolier-McKinstry, Susan [Pennsylvania State University; Jesse, Stephen [ORNL; Nagarajan, Valanoor [University of New South Wales; Kalinin, Sergei V [ORNL
2013-01-01T23:59:59.000Z
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, decoupling the contributions of competing or co-existing mechanisms to the system response can be achieved through investigation of higher order harmonics. Here, a method using band excitation scanning probe microscopy to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The utility of the technique is demonstrated by probing the first three harmonics of strain for a well-known system, a model Pb(Zr1-xTix)O3 ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, nanoscale measurements of the second harmonic response with field reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of combining proximal probe techniques with nth harmonic detection methods in exploring and decoupling nonlinear dynamics in a wide variety of nanoscale materials.
South Africa-Quantifying Emission Reduction Opportunities in...
AgencyCompany Organization Ecofys Sector Energy Topics Background analysis, GHG inventory, Low emission development planning, Pathways analysis Website http:www.ecofys.com...
Data Needs for Evolving Motor Vehicle Emission Modeling Approaches
Guensler, Randall
1993-01-01T23:59:59.000Z
in factor analysis and running loss analysis) are conductedis motion constitute running losses. A lower frequency ofassumedprobability that elevated running loss emissions are
Vehicle Technologies Office Merit Review 2014: Emissions Modeling...
More Documents & Publications GREET Development and Applications for Life-Cycle Analysis of VehicleFuel Systems Fuel-Cycle Energy and Emissions Analysis with the GREET Model...
Spectrum of second-harmonic radiation generated from incoherent light
Stabinis, A.; Pyragaite, V.; Tamosauskas, G.; Piskarskas, A. [Department of Quantum Electronics, Vilnius University, Sauletekio Avenue 9, Building 3, LT-10222 Vilnius (Lithuania)
2011-10-15T23:59:59.000Z
We report on the development of the theory of second-harmonic generation by an incoherent pump with broad angular and frequency spectra. We show that spatial as well as temporal walk-off effects in a nonlinear crystal result in angular dispersion of the second-harmonic radiation. We demonstrate that the acceptance angle in second-harmonic generation by incoherent light is caused by the width of the pump angular spectrum and the resulting angular dispersion of second-harmonic radiation but does not depend on crystal length. In this case the frequency spectrum of second-harmonic radiation is determined by its angular dispersion and the pump angular spectrum. The theory is supported by an experiment in which a LiIO{sub 3} crystal was pumped by a tungsten halogen lamp.
Commissioning of a higher harmonic RF system for the Advanced Light Source
Byrd, John M.; De Santis, Stefano; Georgsson, Mattias; Stover, G.; Fox, John D.; Teytelman, Dmitry
2000-01-01T23:59:59.000Z
Commissioning of a higher harmonic RF system for theAbstract We report on the commissioning of a higher harmonicpresents the results of commissioning of the ALS harmonic
Hierarchical Control Scheme for Voltage Harmonics Compensation in an Islanded Droop-
Vasquez, Juan Carlos
Hierarchical Control Scheme for Voltage Harmonics Compensation in an Islanded Droop- Controlled on the resistance emulation. Furthermore, a droop characteristic based on DG harmonic reactive power has been
Relativistic harmonic oscillator model for quark stars
Vishnu M. Bannur
2008-10-06T23:59:59.000Z
The relativistic harmonic oscillator (RHO) model of hadrons is used to study quark stars. The mass-radius relationship is obtained and compared with bag model of quark star, using Tolman-Oppenheimer-Volkoff equation. In this model, the outward degenerate pressure due to discrete Landau levels and Landau degeneracy balances the inward gravitational pressure. Where as in bag model the degenerate pressure is due to the standard continuum levels which balances the combined inward pressure due to gravitation and bag pressure. So in RHO model, the confinement effect is included in the degenerate pressure. We found a qualitative similarity, but quantitative differences in mass-radius relationship of quark stars in these two models. Masses and radii are relatively larger and the central energy densities, required for stable quark stars, are lower in RHO model than that of bag model.
Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC; ,
2012-02-15T23:59:59.000Z
Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.
Saving Fuel, Reducing Emissions
Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes
2009-01-01T23:59:59.000Z
COMPACT EMISSIONS HEV PHEV marginal power plant is a coalpower uses relatively little coal, but in other cases emissions
Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Abdou, Y. [Department of Physics and Astronomy, University of Gent, B-9000 Gent (Belgium); Abu-Zayyad, T. [Department of Physics, University of Wisconsin, River Falls, WI 54022 (United States); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Ahlers, M. [Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Altmann, D. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Auffenberg, J.; Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Bai, X. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Bazo Alba, J. L.; Benabderrahmane, M. L. [DESY, D-15735 Zeuthen (Germany); Beattie, K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Bechet, S. [Science Faculty CP230, Universite Libre de Bruxelles, B-1050 Brussels (Belgium); Becker, J. K. [Fakultaet fuer Physik and Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); and others
2012-01-20T23:59:59.000Z
We present the results of a search for high-energy muon neutrinos with the IceCube detector in coincidence with the Crab Nebula flare reported on 2010 September by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed {gamma}-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E{sup -2}{sub {nu}} neutrino spectrum typical of first-order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cutoffs as observed for various Galactic sources in {gamma}-rays. The 90% confidence level (CL) best upper limits on the Crab flux during the 10 day flare are 4.73 Multiplication-Sign 10{sup -11} cm{sup -2} s{sup -1} TeV{sup -1} for an E{sup -2}{sub {nu}} neutrino spectrum and 2.50 Multiplication-Sign 10{sup -10} cm{sup -2} s{sup -1} TeV{sup -1} for a softer neutrino spectra of E{sup -2.7}{sub {nu}}, as indicated by Fermi measurements during the flare. In this paper, we also illustrate the impact of the time-integrated limit on the Crab neutrino steady emission. The limit obtained using 375.5 days of the 40-string configuration is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL.
Shaheen, Susan A.; Bejamin-Chung, Jade; Allen, Denise; Howe-Steiger, Linda
2009-01-01T23:59:59.000Z
Schleich (2006). EU Emissions Trading: an Early Analysis of2002). Comparing Emission Trading with Absolute and Relativein the European Emissions Trading System: a Commentary.
Wu, Mingshen
from heavy-duty diesel engines Z. Gerald Liu a,*, Devin R. Berg a , Victoria N. Vasys a , Melissa E 18 November 2009 Keywords: Organic compound emissions Particulate matter emissions Heavy-duty diesel engines Aftertreatment technology Diesel particulate filter Chemical speciation a b s t r a c t To meet
SU(4) harmonic superspace and supersymmetric gauge theory
B. M. Zupnik
2014-10-10T23:59:59.000Z
We consider the harmonic-superspace formalism in the $N=4$ supersymmetry using the $SU(4)/SU(2)\\times SU(2)\\times U(1)$ harmonics which was earlier applied to the abelian gauge theory. The N=4 non-abelian constraints in a standard superspace are reformulated as the harmonic-superspace equations for two basic analytic superfields: the independent superfield strength W of a dimension 1 and the dimensionless harmonic gauge 4-prepotential V having the $U(1)$ charge 2. These constraint equations I manifestly depend on the Grassmann coordinates $\\theta$, although they are covariant under the unusual N=4 supersymmetry transformations. We analyze an alternative harmonic formalism of the supergauge theory for two unconstrained nonabelian analytic superfields W and V. The gauge-invariant action A(W,V) in this formalism contains $\\theta$ factors in each term, it is invariant under the $SU(4)$ automorphism group. In this model, the interaction of two infinite-dimensional N=4 supermultiplets with the physical and auxiliary fields arises at the level of component fields. The action A(W,V) generate analytic equations of motion II alternative to the harmonic-superspace superfield constraints I. Both sets of equations give us the equivalent equations for the physical component fields of the $N=4$ gauge supermultiplet, they connect auxiliary and physical fields of two superfields. The nonlinear effective interaction of the abelian harmonic superfield W is constructed.
Relativistic high harmonic generation in gas jet targets
Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.; and others
2012-07-11T23:59:59.000Z
We experimentally demonstrate a new regime of high-order harmonic generation by relativistic-irradiance lasers in gas jet targets. Bright harmonics with both odd and even orders, generated by linearly as well as circularly polarized pulses, are emitted in the forward direction, while the base harmonic frequency is downshifted. A 9 TW laser generates harmonics up to 360 eV, within the 'water window' spectral region. With a 120 TW laser producing 40 uJ/sr per harmonic at 120 eV, we demonstrate the photon number scalability. The observed harmonics cannot be explained by previously suggested scenarios. A novel high-order harmonics generation mechanism [T. Zh. Esirkepov et al., AIP Proceedings, this volume], which explains our experimental findings, is based on the phenomena inherent in the relativistic laser - underdense plasma interactions (self-focusing, cavity evacuation, and bow wave generation), mathematical catastrophe theory which explains formation of electron density singularities (cusps), and collective radiation due to nonlinear oscillations of a compact charge.
Second harmonic effect on geodesic modes in tokamak plasmas
Elfimov, A. G.; Galvão, R. M. O. [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil)] [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Smolyakov, A. I. [University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada) [University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada); Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); Melnikov, A. V. [Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation)] [Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation)
2013-05-15T23:59:59.000Z
Results of a kinetic treatment of Geodesic Acoustic Modes (GAMs) that fully takes into account ion parallel dynamics, including the magnetic field component, are presented. The finite-orbit-width (FOW) parameter is considered in the calculation of the second harmonic effect on GAMs. For larger values of the FOW parameter, it is shown that dispersive effects related to the m = 2 harmonics is the cause of the mode frequency splitting and the modes appear due to the interaction with the ion sound mode. Furthermore, the modes may have enhanced damping rates due to second harmonic Landau damping.
Harmonic measurements from a group connected generator HVdc converter scheme
Macdonald, S.J.; Enright, W.; Arrillaga, J. [Univ. of Canterbury, Christchurch (New Zealand)] [Univ. of Canterbury, Christchurch (New Zealand); O`Brien, M.T.
1995-10-01T23:59:59.000Z
A recent CIGRE document published in ELECTRA has described the potential benefits of a direct connection of generators to HVdc converters. While many theoretical contributions have been made, no practical test data has become available so far. This paper reports on harmonic tests carried out at the Benmore end of the New Zealand HVdc link operating as a group connected scheme. It was found that the measured harmonic current levels were well below specified generator ratings. Dynamic simulation accurately predicted the harmonic currents whereas the results of a steady state formulation were less reliable.
Generalized Harmonic Equations in 3+1 Form
J. David Brown
2011-11-29T23:59:59.000Z
The generalized harmonic equations of general relativity are written in 3+1 form. The result is a system of partial differential equations with first order time and second order space derivatives for the spatial metric, extrinsic curvature, lapse function and shift vector, plus fields that represent the time derivatives of the lapse and shift. This allows for a direct comparison between the generalized harmonic and the Arnowitt-Deser-Misner formulations. The 3+1 generalized harmonic equations are also written in terms of conformal variables and compared to the Baumgarte-Shapiro-Shibata-Nakamura equations with moving puncture gauge conditions.
High order harmonic generation in dual gas multi-jets
Tosa, Valer, E-mail: valer.tosa@itim-cj.ro, E-mail: calin.hojbota@itim-cj.ro; Hojbota, Calin, E-mail: valer.tosa@itim-cj.ro, E-mail: calin.hojbota@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath 65-103, 400293 Cluj-Napoca (Romania)] [National Institute for Research and Development of Isotopic and Molecular Technologies, Donath 65-103, 400293 Cluj-Napoca (Romania)
2013-11-13T23:59:59.000Z
High order harmonic generation (HHG) in gas media suffers from a low conversion efficiency that has its origins in the interaction of the atom/molecule with the laser field. Phase matching is the main way to enhance the harmonic flux and several solutions have been designed to achieve it. Here we present numerical results modeling HHG in a system of multi-jets in which two gases alternate: the first gas jet (for example Ne) generates harmonics and the second one which ionizes easier, recover the phase matching condition. We obtain configurations which are experimentally feasible with respect to pressures and dimensions of the jets.
Harmonic Superspace Gaugeon Formalism for the ABJM Theory
Mir Faizal
2012-07-12T23:59:59.000Z
In this paper we will analyse the ABJM theory in harmonic superspace. The harmonic superspace variables will be parameterized by the coset $SU(2)/U(1)$ and thus will have manifest $\\mathcal{N} =3$ supersymmetry. We will study the quantum gauge transformations and the BRST transformations of this theory in gaugeon formalism. We will use this BRST symmetry to project out the physical sub-space from the total Hilbert space. We will also show that the evolution of the $\\mathcal{S}$-matrix is unitary for this ABJM theory in harmonic superspace.
Production, Energy, and Carbon Emissions: A Data Profile of the Iron and Steel Industry
Reports and Publications (EIA)
2000-01-01T23:59:59.000Z
Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.
2008-01-01T23:59:59.000Z
independent budgeting of fossil fuel CO 2 over Europe by (CO2008), Where do fossil fuel carbon dioxide emissions from2004), Estimates of annual fossil-fuel CO 2 emitted for each
2008-01-01T23:59:59.000Z
independent budgeting of fossil fuel CO 2 over Europe by (CO2008 Where do fossil fuel carbon dioxide emissions frompatterns and mixing of fossil fuel-derived CO 2 is important
Interference-Aware Geometric Modeling David Harmon1
Grinspun, Eitan
Interference-Aware Geometric Modeling David Harmon1 Daniele Panozzo1,2 Olga Sorkine1,3 Denis Zorin1 as glaring artifacts, and eliminate the ability to use the final model further down many software pipelines
Time-optimal controls for frictionless cooling in harmonic traps
Salamon, Peter
OFFPRINT Time-optimal controls for frictionless cooling in harmonic traps K. H. Hoffmann, P payment Details on preparing, submitting and tracking the progress of your manuscript from submission
Classification of Certain Compact Riemannian Manifolds with Harmonic Curvature a...
Derdzinski, Andrzej
Classification of Certain Compact Riemannian Manifolds with Harmonic Curvature a... Derdzinski and University Library provides access to digitized documents strictly for noncommercial educational, research) requires prior written permission from the Goettingen State- and University Library. Each copy of any part
Electric shock and elevated EMF levels due to triplen harmonics
Tran, T.Q.; Conrad, L.E.; Stallman, B.K. [PSI Energy, Inc., Plainfield, IN (United States)] [PSI Energy, Inc., Plainfield, IN (United States)
1996-04-01T23:59:59.000Z
The increasing use of single phase rectifiers for electric power conversion in residential applications increases harmonic load on utility systems. Many papers have analyzed the effect of these loads on power quality and equipment loadability. However, there are two more critical concerns for harmonic loads served phase to neutral on multi-grounded wye systems. Triplen harmonics, particularly the third, add in the neutral and have little diversity between loads. The higher neutral currents may cause significant problems. Neutral to earth voltages will increase near the substations which could increase stray voltage complaints. The additional neutral current on three phase lines will elevate EMF levels especially in the fringe areas. This paper provides fundamental understanding of triplen harmonic influence on stray voltage and EMF related to multi-grounded wye electric distribution systems.
Harmonic Image Reconstruction Assisted by a Nonlinear Metmaterial Surface
Wang, Zhiyu
We experimentally demonstrate a microwave far-field image reconstruction modality with the transverse resolution exceeding the diffraction limit by using a single layer of highly nonlinear metamaterial. The harmonic fields ...
Driven harmonic oscillator as a quantum simulator for open systems
Jyrki Piilo; Sabrina Maniscalco
2006-10-03T23:59:59.000Z
We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for non-Markovian damped harmonic oscillator. In the general framework, the results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals new physical insight into the open system dynamics, e.g. the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.
NEW ESTIMATES IN HARMONIC ANALYSIS FOR MIXED LEBESGUE SPACES
Ward, Erika L.
2010-07-16T23:59:59.000Z
(x;y)jjB1!B2 Cjx yjn (1.4) 17 and the regularity conditions jj !K (x;y) !K (x;z)jjB1!B2 C jy zj d jx yjn+d for jx yj 2jy zj (1.5) jj !K (x;y) !K (w;y)jjB1!B2 C jx wj d jx yjn+d for jx yj 2jx wj (1.6) for some 0
Probabilistic topic models for automatic harmonic analysis of music
Hu, Diane J.
2012-01-01T23:59:59.000Z
ISMIR), 2005. [5] D. Blei and J. .D. Lafferty. CorrelatedNIPS), 2005. [6] David M. Blei, Andrew Y. Ng, and Michael I.2006. [30] M. Hoffman, D. Blei, and P. Cook. Easy as cba: A
OPTICAL ANALYSIS OF SURFACES BY SECOND HARMONIC GENERATION
Marrucci, Lorenzo
additives, commonly used in the lubricant industry, whose effect derives from surface adsorption. Moreover of possible experiments that could obtain information, in particular, on the working principle of those oil In the last years, within the physics community the study of friction and lubrication has been experiencing
Casimir Friction Force for Moving Harmonic Oscillators
Johan S. Høye; Iver Brevik
2011-11-21T23:59:59.000Z
Casimir friction is analyzed for a pair of dielectric particles in relative motion. We first adopt a microscopic model for harmonically oscillating particles at finite temperature T moving non-relativistically with constant velocity. We use a statistical-mechanical description where time-dependent correlations are involved. This description is physical and direct, and, in spite of its simplicity, is able to elucidate the essentials of the problem. This treatment elaborates upon, and extends, an earlier theory of ours back in 1992. The energy change Delta E turns out to be finite in general, corresponding to a finite friction force. In the limit of zero temperature the formalism yields, however, Delta E ->0, this being due to our assumption about constant velocity, meaning slowly varying coupling. For couplings varying more rapidly, there will also be a finite friction force at T=0. As second part of our work, we consider the friction problem using time-dependent perturbation theory. The dissipation, basically a second order effect, is obtainable with the use of first order theory, the reason being the absence of cross terms due to uncorrelated phases of eigenstates. The third part of the present paper is to demonstrate explicitly the equivalence of our results with those recently obtained by Barton (2010); this being not a trivial task since the formal results are seemingly quite different from each other.
Harmonic entanglement with second-order non-linearity
Nicolai B. Grosse; Warwick P. Bowen; Kirk McKenzie; Ping Koy Lam
2005-07-08T23:59:59.000Z
We investigate the second-order non-linear interaction as a means to generate entanglement between fields of differing wavelengths. And show that perfect entanglement can, in principle, be produced between the fundamental and second harmonic fields in these processes. Neither pure second harmonic generation, nor parametric oscillation optimally produce entanglement, such optimal entanglement is rather produced by an intermediate process. An experimental demonstration of these predictions should be imminently feasible.
Calculation of Massless Feynman Integrals using Harmonic Sums
Stefan Bekavac
2006-07-10T23:59:59.000Z
A method for the evaluation of the epsilon expansion of multi-loop massless Feynman integrals is introduced. This method is based on the Gegenbauer polynomial technique and the expansion of the Gamma function in terms of harmonic sums. Algorithms for the evaluation of nested and harmonic sums are used to reduce the expressions to get analytical or numerical results for the expansion coefficients. Methods to increase the precision of numerical results are discussed.
Fast optimal frictionless atom cooling in harmonic traps
Xi Chen; A. Ruschhaupt; S. Schmidt; A. del Campo; D. Guery-Odelin; J. G. Muga
2009-10-05T23:59:59.000Z
A method is proposed to cool down atoms in a harmonic trap without phase-space compression as in a perfectly slow adiabatic expansion, i.e., keeping the populations of the instantaneous initial and final levels invariant, but in a much shorter time. This may require that the harmonic trap becomes an expulsive parabolic potential in some time interval. The cooling times achieved are also shorter than previous minimal times using optimal-control bang-bang methods and real frequencies.
Harmonic generation of gravitational wave induced Alfven waves
Mats Forsberg; Gert Brodin
2007-11-26T23:59:59.000Z
Here we consider the nonlinear evolution of Alfven waves that have been excited by gravitational waves from merging binary pulsars. We derive a wave equation for strongly nonlinear and dispersive Alfven waves. Due to the weak dispersion of the Alfven waves, significant wave steepening can occur, which in turn implies strong harmonic generation. We find that the harmonic generation is saturated due to dispersive effects, and use this to estimate the resulting spectrum. Finally we discuss the possibility of observing the above process.
Current Generated Harmonics and Their Effect Upon Electrical Industrial Systems
Alexander, H. R.; Rogge, D. S.
of the nonlinear loads with respect to that system. The distortion increases as the percentage of nonlinear loads increases. (2) PROBLEMS ENCOUNTERED WITH HARMONICS High Neutral Conductor Currcnts Perhaps the dominant harmonic problem encountered... in commercial facilities and some industrial plants has been the overheating of neutral conductors of 3-phase, 4-wire branch and feeder distribution systems. In a balanced, 3-phase, 4-wire wye system with phase-to-ncutral linear loads, the neutral current...
Uncertainty in Greenhouse Emissions and Costs of Atmospheric Stabilization
Webster, Mort D.
We explore the uncertainty in projections of emissions, and costs of atmospheric stabilization applying the MIT Emissions Prediction and Policy Analysis model, a computable general equilibrium model of the global economy. ...
Harley, Robert
2013-01-01T23:59:59.000Z
Turnover on Drayage Truck Emissions at the Port of Oakland,”actions to clean up port truck emissions in Oakland serve asTurnover on Drayage Truck Emissions at the Port of Oakland,”
Loureiro, S.M., E-mail: saulo@lima.coppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Rovere, E.L.L., E-mail: emilio@ppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Mahler, C.F., E-mail: mahler0503@yahoo.com [Department of Civil Engineering, Federal University of Rio de Janeiro, C.P. 68506, CEP 21945-970, Rio de Janeiro, RJ (Brazil)
2013-05-15T23:59:59.000Z
Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)
2014-09-08T23:59:59.000Z
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Jiangyong Jia; Peng Huo
2014-09-11T23:59:59.000Z
An "event-shape twist" technique is proposed to study the longitudinal dynamics of harmonic flow, in particular the effects of rapidity fluctuation and event-plane decorrelation. This technique can distinguish between two types of rapidity decorrelation effects: a systematic rotation versus a random fluctuation of flow angles along the rapidity direction. The technique is demonstrated and the magnitude of the two decorrelation effects is predicted using the AMPT model via a single particle analysis and two-particle correlation analysis. An observed decorrelation can be attributed to a systematic rotation of event-plane angle along the pseudorapidity, consistent with a collective response to an initial state twist of the fireball proposed by Bozek {\\it et.al.}. This rotation is also observed for several higher-order harmonics with the same sign and similar magnitudes.
Three-particle cumulant Study of Conical Emission
Claude Pruneau
2009-01-07T23:59:59.000Z
We discuss the sensitivity of the three-particle azimuthal cumulant method for a search and study of conical emission in central relativistic $A+A $ collisions. Our study is based on a multi-component Monte Carlo model which include flow background, Gaussian mono-jets, jet-flow, and Gaussian conical signals. We find the observation of conical emission is hindered by the presence of flow harmonics of fourth order ($v_4 $) but remains feasible even in the presence of a substantial background. We consider the use of probability cumulants for the suppression of 2$^{nd}$ order flow harmonics. We find that while probability cumulant significantly reduce $v_2^2$ contributions, they also complicate the cumulant of jets, and conical emission. The use of probability cumulants is therefore not particularly advantageous in searches for conical emission. We find the sensitivity of the (density) cumulant method depends inextricably on strengths of $v_2 $, $v_4 $, background and non-Poisson character of particle production. It thus cannot be expressed in a simple form, and without specific assumptions about the values of these parameters.
Dynamics of harmonically-confined systems: Some rigorous results
Wu, Zhigang, E-mail: zwu@physics.queensu.ca; Zaremba, Eugene, E-mail: zaremba@sparky.phy.queensu.ca
2014-03-15T23:59:59.000Z
In this paper we consider the dynamics of harmonically-confined atomic gases. We present various general results which are independent of particle statistics, interatomic interactions and dimensionality. Of particular interest is the response of the system to external perturbations which can be either static or dynamic in nature. We prove an extended Harmonic Potential Theorem which is useful in determining the damping of the centre of mass motion when the system is prepared initially in a highly nonequilibrium state. We also study the response of the gas to a dynamic external potential whose position is made to oscillate sinusoidally in a given direction. We show in this case that either the energy absorption rate or the centre of mass dynamics can serve as a probe of the optical conductivity of the system. -- Highlights: •We derive various rigorous results on the dynamics of harmonically-confined atomic gases. •We derive an extension of the Harmonic Potential Theorem. •We demonstrate the link between the energy absorption rate in a harmonically-confined system and the optical conductivity.
Higher harmonics increase LISA's mass reach for supermassive black holes
K. G. Arun; Bala R. Iyer; B. S. Sathyaprakash; Siddhartha Sinha
2007-06-05T23:59:59.000Z
Current expectations on the signal to noise ratios and masses of supermassive black holes which the Laser Interferometer Space Antenna (LISA) can observe are based on using in matched filtering only the dominant harmonic of the inspiral waveform at twice the orbital frequency. Other harmonics will affect the signal-to-noise ratio of systems currently believed to be observable by LISA. More significantly, inclusion of other harmonics in our matched filters would mean that more massive systems that were previously thought to be {\\it not} visible in LISA should be detectable with reasonable SNRs. Our estimates show that we should be able to significantly increase the mass reach of LISA and observe the more commonly occurring supermassive black holes of masses $\\sim 10^8M_\\odot.$ More specifically, with the inclusion of all known harmonics LISA will be able to observe even supermassive black hole coalescences with total mass $\\sim 10^8 M_\\odot (10^9M_\\odot)$ (and mass-ratio 0.1) for a low frequency cut-off of $10^{-4}{\\rm Hz}$ $(10^{-5}{\\rm Hz})$ with an SNR up to $\\sim 60$ $(\\sim 30)$ at a distance of 3 Gpc. This is important from the astrophysical viewpoint since observational evidence for the existence of black holes in this mass range is quite strong and binaries containing such supermassive black holes will be inaccessible to LISA if one uses as detection templates only the dominant harmonic.
An Enhanced GINGER Simulation Code with Harmonic Emission and HDF5 IO Capabilities
Fawley, William M.
2006-01-01T23:59:59.000Z
S. Reiche. I also thank the LCLS project of?ce at SLAC for ?1 (2004); see also http://www- ssrl.slac.stanford.edu/lcls/lcls tech notes.html/LCLS-TN- 04-3.pdf . [2] National Center
Multiwavelength Thermal Emission
California at Santa Cruz, University of
Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks
Harmonic entanglement in a degenerate parametric down conversion
Sintayehu Tesfa
2007-07-25T23:59:59.000Z
We study the harmonic entanglement and squeezing in a two-mode radiation produced in a degenerate parametric down conversion process coupled to a two-mode vacuum reservoir employing the linearization procedure. It is found that there is a quadrature entanglement between the harmonically related fundamental and second-harmonic modes and the superimposed radiation exhibits a significant two-mode squeezing. The entanglement exits even when there is no two-mode squeezing, since the correlation leading to these phenomena are essentially different. In addition, the more the external coherent light is down converted, the more stronger the entanglement and mean photon number of the two-mode radiation would be which is not generally true for squeezing.
Unitary approach to the quantum forced harmonic oscillator
D. Velasco-Martinez; V. G. Ibarra-Sierra; J. C. Sandoval-Santana; J. L. Cardoso; A. Kunold
2014-08-31T23:59:59.000Z
In this paper we introduce an alternative approach to studying the evolution of a quantum harmonic oscillator subject to an arbitrary time dependent force. With the purpose of finding the evolution operator, certain unitary transformations are applied successively to Schr\\"odinger's equation reducing it to its simplest form. Therefore, instead of solving the original Schr\\"odinger's partial differential equation in time and space the problem is replaced by a system of ordinary differential equations. From the obtained evolution operator we workout the propagator. Even though we illustrate the use of unitary transformations on the solution of a forced harmonic oscillator, the method presented here might be used to solve more complex systems. The present work addresses many aspects regarding unitary transformations and the dynamics of a forced quantum harmonic oscillator that should be useful for students and tutors of the quantum mechanics courses at the senior undergraduate and graduate level.
Levin, David
. Â·Â·Â· (Â·Â·Â·Â·) Â·Â·Â·ÂÂ·Â·Â· Contents lists available at ScienceDirect Applied and Computational Harmonic Analysis www-stationary subdivision Daubechies wavelets Wavelet analysis Non-stationary wavelets We investigate non for the subdivision scheme, and a deep analysis and new methods were developed to determine its order of regularity
Harmonic Wavelet Transform and Image Approximation
Zhang, Zhihua; Saito, Naoki
2010-01-01T23:59:59.000Z
C.K. : An Introduction to Wavelets. Academic Press, SanDaubechies, I. , Vial, P. : Wavelet bases on the inter- valGlobal climate change, wavelet analysis, image processing,
Advanced PHEV Engine Systems and Emissions Control Modeling and...
Broader source: Energy.gov (indexed) [DOE]
PHEV Engine Systems and Emissions Control Modeling and Analysis Stuart Daw (PI), Zhiming Gao, Kalyan Chakravarthy Oak Ridge National Laboratory 2011 U.S. DOE Hydrogen and Vehicle...
High-order harmonic generation in a capillary discharge
Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.
2010-06-01T23:59:59.000Z
A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.
Harmonic mean, the Gamma factor and Speed of Light
Chandru Iyer
2008-11-17T23:59:59.000Z
The relationship between the harmonic mean and special relativity is concisely elucidated. The arguments in favor and against SRT are explored. It is shown that the ratio of the speed of light to the harmonic mean of the onward and return speeds of light in a moving frame under Newtonian mechanics, when equitably distributed between space and time as a correction, leads to the Lorentz transformation. This correction implies an apparent contraction of objects and time dilation. However, the symmetry of the onward and inverse transformations give a different meaning to the gamma factor
On the harmonic oscillator properties in a twisted Moyal plane
Ezinvi Baloitcha; Mahouton Norbert Hounkonnou; Dine Ousmane Samary
2012-03-25T23:59:59.000Z
This work prolongs, using an operator method, the investigations started in our recent paper J. Math. Phys. 51., 102108 on the spectrum and states of the harmonic oscillator on twisted Moyal plane, where rather a Moyal-star-algebraic approach was used. The physical spectrum and states of the harmonic oscillator on twisted Moyal space, obtained here by solving the corresponding differential equation, are similar to those of the ordinary Moyal space, with different parameters. This fortunately contrasts with the previous study which produced unexpected results, i.e. infinitely degenerate states with energies depending on the coordinate functions.
Constraint damping in the Z4 formulation and harmonic gauge
Carsten Gundlach; Jose M. Martin-Garcia; Gioel Calabrese; Ian Hinder
2005-07-14T23:59:59.000Z
We show that by adding suitable lower-order terms to the Z4 formulation of the Einstein equations, all constraint violations except constant modes are damped. This makes the Z4 formulation a particularly simple example of a lambda-system as suggested by Brodbeck et al. We also show that the Einstein equations in harmonic coordinates can be obtained from the Z4 formulation by a change of variables that leaves the implied constraint evolution system unchanged. Therefore the same method can be used to damp all constraints in the Einstein equations in harmonic gauge.
Reduced Turbine Emissions Using Hydrogen-Enriched Fuels
·Aids in the attainment of energy independence from foreign sources Low-heating and medium emissions Source: Analysis of Strategies for Reducing Multiple Emissions from Power Plants: Sulfur Dioxide Systems At ultra lean conditions a tradeoff exists between NOx and CO emissions · Lean Premixed Combustion
SINGULAR FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND EMISSIONS DERIVATIVES
Carmona, Rene
SINGULAR FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND EMISSIONS DERIVATIVES REN´E CARMONA and why they appear naturally as models for the valuation of CO2 emission allowances. Single phase cap is motivated by the mathematical analysis of the emissions markets, as implemented for example in the European
Gunst, R. F.
2013-05-01T23:59:59.000Z
Phase 3 of the EPAct/V2/E-89 Program investigated the effects of 27 program fuels and 15 program vehicles on exhaust emissions and fuel economy. All vehicles were tested over the California Unified Driving Cycle (LA-92) at 75 degrees F. The program fuels differed on T50, T90, ethanol, Reid vapor pressure, and aromatics. The vehicles tested were new, low-mileage 2008 model year Tier 2 vehicles. A total of 956 test runs were made. Comprehensive statistical modeling and analyses were conducted on methane, carbon dioxide, carbon monoxide, fuel economy, non-methane hydrocarbons, non-methane organic gases, oxides of nitrogen, particulate matter, and total hydrocarbons. In general, model fits determined that emissions and fuel economy were complicated by functions of the five fuel parameters. An extensive evaluation of alternative model fits produced a number of competing model fits. Many of these alternative fits produce similar estimates of mean emissions for the 27 program fuels but should be carefully evaluated for use with emerging fuels with combinations of fuel parameters not included here. The program includes detailed databases on each of the 27 program fuels on each of the 15 vehicles and on each of the vehicles on each of the program fuels.
Paris-Sud XI, Université de
BLIND HARMONIC ADAPTIVE DECOMPOSITION APPLIED TO SUPERVISED SOURCE SEPARATION Benoit Fuentes through an algorithm called Blind Harmonic Adaptive Decomposition (BHAD). This algorithm provides [1]. However, performing this task in a completely blind way remains challenging, basically due
Ultrasensitive Optical Shape Characterization of Gold Nanoantennas Using Second Harmonic Generation
Dalang, Robert C.
Ultrasensitive Optical Shape Characterization of Gold Nanoantennas Using Second Harmonic Generation for the sensitive optical characterization of plasmonic nanostructures. Furthermore, defects located where on the second harmonic signal. KEYWORDS: Plasmonics, nonlinear optics, surface integral formulation, realistic
Wideband phased array antennas and compact, harmonic-suppressed microstrip filters
Tu, Wen-Hua
2009-05-15T23:59:59.000Z
. Since the electromagnetic spectrum is limited and has to be shared, interference is getting serious as more and more wireless applications emerge. Filters are key components to prevent harmonic interference. The harmonic signals can be suppressed...
Wideband phased array antennas and compact, harmonic-suppressed microstrip filters
Tu, Wen-Hua
2009-05-15T23:59:59.000Z
. Since the electromagnetic spectrum is limited and has to be shared, interference is getting serious as more and more wireless applications emerge. Filters are key components to prevent harmonic interference. The harmonic signals can be suppressed...
Fiber optics spectrochemical emission sensors
Griffin, J.W.; Olsen, K.B.
1992-02-04T23:59:59.000Z
A method is described of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species. The method uses a probe insertable into the well or tank via a cable and having an electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has an optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited in the fluid in alignment with the light guide axis. Optical emissions are received from the excited chemical species along such axis. 18 figs.
Fiber optics spectrochemical emission sensors
Griffin, Jeffrey W. (Kennewick, WA); Olsen, Khris B. (West Richland, WA)
1992-01-01T23:59:59.000Z
A method of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species uses a probe insertable into the well or tank via a cable and having electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited the fluid in alignment with the light guide axis and optical emissions are received from the excited chemical species along such axis.
Improved gauge driver for the generalized harmonic Einstein system Lee Lindblom and Bela Szilagyi
Lindblom, Lee
Improved gauge driver for the generalized harmonic Einstein system Lee Lindblom and BeÂ´la SzilaÂ´gyi
Wave kernels for the Dirac, Euler operators and the harmonic oscillator
Mohameden, Ahmedou Yahya Ould, E-mail: ahmeddou2011@yahoo.fr; Moustapha, Mohamed Vall Ould, E-mail: khames@univ-nkc.mr [Université des Sciences, de Technologie et de la Medécine (USTM) Faculté des Sciences et Techniques. Département de Mathématiques et Informatique, Unité de Recherche: Analyse, EDP et Modélisation: (AEDPM) B.P: 5026, Nouakchott-Mauritanie (United States)
2014-03-15T23:59:59.000Z
Explicit solutions for the wave equations associated to the Dirac, Euler operators and the harmonic oscillator are given.
Enhanced Harmonic Up-Conversion Using a Hybrid HGHG-EEHG Scheme
Marksteiner, Quinn R. [Los Alamos National Laboratory; Bishofberger, Kip A. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory; Freund, Henry P. [Los Alamos National Laboratory; Yampolsky, Nikolai A. [Los Alamos National Laboratory
2012-04-30T23:59:59.000Z
We introduce a novel harmonic generation scheme which can be used, for a given desired harmonic, to achieve higher bunching factors, weaker chicanes, and/or less final energy spread than can be achieved using Echo-Enabled Harmonic Generation. This scheme only requires a single laser with relatively low power, and is a hybrid of High-Gain Harmonic Generation and EEHG. We present a design of this scheme applied to the Next Generation Light Source (NGLS).
Web-assisted tunneling in the kicked harmonic oscillator
André R. R. Carvalho; Andreas Buchleitner
2004-09-20T23:59:59.000Z
We show that heating of harmonically trapped ions by periodic delta kicks is dramatically enhanced at isolated values of the Lamb-Dicke parameter. At these values, quasienergy eigenstates localized on island structures undergo avoided crossings with extended web-states.
LOWPASS BROADBAND HARMONIC FILTER DESIGN A THESIS SUBMITTED TO
Hava, Ahmet
. Nevzat ÖZAY METU, (EE) _____________________ Dr. Ahmet Erbil NALÇACI (Energy Market Regulatory Authority regulation, energy efficiency, size, and cost. The parallel/series harmonic resonance problem related issues/currents. Thus, the size and the performance of the filter can be optimized. The analytical method is verified
Classical thermodynamics of particles in harmonic traps Martin Ligarea
Ligare, Martin
, and the heat capacities. I also consider cyclic thermodynamic processes in a harmonically confined gas. Â© 2010 of state for a gas of N noninteract- ing particles in a rigid volume V is derived in almost every text and pressure vary with position within such traps, and the volume of the gas is not well defined
Valency of Harmonic Mappings onto Bounded Convex Domains
1910-30-82T23:59:59.000Z
[11] considered harmonic mappings of D to K that extend continuously to n- valent sense-preserving ..... ?3(u) = 8(1 + 35u)3?2(u) + 27(13u ? 1)(1 + 3u)3. Note that ?3(0) = ?3 = 0; ..... conjecture of H. S. Shapiro, Math. Proc. Cambridge Phil.
SPEECH ENHANCEMENT USING HARMONIC REGENERATION Cyril Plapous 1
Paris-Sud XI, UniversitÃ© de
SPEECH ENHANCEMENT USING HARMONIC REGENERATION Cyril Plapous 1 , Claude Marro 1 , Pascal Scalart 2 in enhanced speech because of the non reliability of estimators for small signal- to-noise ratios. We propose The problem of enhancing speech degraded by additive noise, when only the noisy speech is available, has been
Harmonic superspace formalism and the consistent chiral anomaly
Li, W.
1986-08-01T23:59:59.000Z
The harmonic superspace formalism has been used to construct the consistent chiral anomaly in N = 1, d = 6 supersymmetric Yang-Mills thoery. The expressions of the gauge anomaly ..delta../sub s//sup phi/ and of the supersymmetric anomaly ..delta../sub SUSY//sup phi/ are given together with the consistent condition. 7 refs.
Sliding-mode amplitude control techniques for harmonic oscillators
Marquart, Chad A.
2007-09-17T23:59:59.000Z
signal operating at frequencies ranging from 170 MHz to 2.1 GHz. Total harmonic distortion is maintained below 0:8% for an oscillation amplitude of 2 Vpp over the entire tuning range. Phase noise is measured as -105.6 dBc/Hz at 1.135 GHz with a 1 MHz...
Generation of harmonics and supercontinuum in nematic liquid crystals
Nyushkov, B N; Trashkeev, S I; Klementyev, Vasilii M; Pivtsov, V S; Kobtsev, Sergey M
2013-02-28T23:59:59.000Z
Nonlinear optical properties of nematic liquid crystals (NLC) have been investigated. A technique for efficient laser frequency conversion in a microscopic NLC volume deposited on an optical fibre end face is experimentally demonstrated. An efficient design of a compact NLC-based IR frequency converter with a fibre input and achromatic collimator is proposed and implemented. Simultaneous generation of the second and third harmonics is obtained for the first time under pumping NLC by a 1.56-mm femtosecond fibre laser. The second-harmonic generation efficiency is measured to be about 1 %, while the efficiency of third-harmonic generation is several tenths of percent. A strong polarisation dependence of the third-harmonic generation efficiency is revealed. When pumping NLC by a cw laser, generation of spectral supercontinua (covering the visible and near-IR spectral ranges) is observed. The nonlinear effects revealed can be due to the light-induced change in the orientational order in liquid crystals, which breaks the initial symmetry and leads to formation of disclination structures. The NLC optical nonlinearity is believed to be of mixed orientationalelectronic nature as a whole. (laser optics 2012)
Noncommutative Harmonic Oscillator at Finite Temperature: A Path Integral Approach
A. Jahan
2012-08-01T23:59:59.000Z
We use the path integral approach to a two-dimensional noncommutative harmonic oscillator to derive the partition function of the system at finite temperature. It is shown that the result based on the Lagrangian formulation of the problem, coincides with the Hamiltonian derivation of the partition function.
On the harmonic oscillator realisation of q-oscillators
D. Gangopadhyay; A. P. Isaev
2007-01-05T23:59:59.000Z
The general version of the bosonic harmonic oscillator realisation of bosonic q-oscillators is given. It is shown that the currently known realisation is a special case of our general solution. The investigation has been performed at the Laboratory of theoretical Physics,JINR.
Generalized harmonic spatial coordinates and hyperbolic shift conditions
Miguel Alcubierre; Alejandro Corichi; José A. González; Darío Núñez; Bernd Reimann; Marcelo Salgado
2005-10-24T23:59:59.000Z
We propose a generalization of the condition for harmonic spatial coordinates analogous to the generalization of the harmonic time slices introduced by Bona et al., and closely related to dynamic shift conditions recently proposed by Lindblom and Scheel, and Bona and Palenzuela. These generalized harmonic spatial coordinates imply a condition for the shift vector that has the form of an evolution equation for the shift components. We find that in order to decouple the slicing condition from the evolution equation for the shift it is necessary to use a rescaled shift vector. The initial form of the generalized harmonic shift condition is not spatially covariant, but we propose a simple way to make it fully covariant so that it can be used in coordinate systems other than Cartesian. We also analyze the effect of the shift condition proposed here on the hyperbolicity of the evolution equations of general relativity in 1+1 dimensions and 3+1 spherical symmetry, and study the possible development of blow-ups. Finally, we perform a series of numerical experiments to illustrate the behavior of this shift condition.
Strong Second Harmonic Generation from the Tantalum Thioarsenates...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Strong Second Harmonic Generation from the Tantalum Thioarsenates A3Ta2AsS11 (A K and Rb) Home Author: T.K. Bera, J.I. Jang, J.B. Ketterson, M.G. Kanatzidis Year: 2009 Abstract:...
Linear harmonic oscillator in spaces with degenerate metrics
N. A. Gromov
2006-03-02T23:59:59.000Z
With the help of contraction method we study the harmonic oscillator in spaces with degenerate metrics, namely, on Galilei plane and in the flat 3D Cayley-Klein spaces $R_3(j_2,j_3).$ It is shown that the inner degrees of freedom are appeared which physical dimensions are different from the dimension of the space.
Harmonic Superfields in N=4 Supersymmetric Quantum Mechanics
Evgeny A. Ivanov
2011-02-11T23:59:59.000Z
This is a brief survey of applications of the harmonic superspace methods to the models of N=4 supersymmetric quantum mechanics (SQM). The main focus is on a recent progress in constructing SQM models with couplings to the background non-Abelian gauge fields. Besides reviewing and systemizing the relevant results, we present some new examples and make clarifying comments.
Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms
Ablinger, Jakob; Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria)] [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria); Blümlein, Johannes [Deutsches Elektronen–Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)] [Deutsches Elektronen–Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)
2013-08-15T23:59:59.000Z
In recent three-loop calculations of massive Feynman integrals within Quantum Chromodynamics (QCD) and, e.g., in recent combinatorial problems the so-called generalized harmonic sums (in short S-sums) arise. They are characterized by rational (or real) numerator weights also different from ±1. In this article we explore the algorithmic and analytic properties of these sums systematically. We work out the Mellin and inverse Mellin transform which connects the sums under consideration with the associated Poincaré iterated integrals, also called generalized harmonic polylogarithms. In this regard, we obtain explicit analytic continuations by means of asymptotic expansions of the S-sums which started to occur frequently in current QCD calculations. In addition, we derive algebraic and structural relations, like differentiation with respect to the external summation index and different multi-argument relations, for the compactification of S-sum expressions. Finally, we calculate algebraic relations for infinite S-sums, or equivalently for generalized harmonic polylogarithms evaluated at special values. The corresponding algorithms and relations are encoded in the computer algebra package HarmonicSums.
Real-Time Selective Harmonic Minimization in Cascaded Multilevel Inverters
Tolbert, Leon M.
time but the output fundamental voltage will stay constant and the harmonic will still meet capability of generalizing solutions. What this means is that, if the correct range of data are used sources along with its operation as in a solar panel. This means that during a day of operation, the solar
HARMONIC MOMENTS AND AN INVERSE PROBLEMS FOR THE HEAT EQUATION
.3) with p HPm , where HPm = { harmonic polynomial of degree m } (m = 0, 1, 2, · · · ), 1 #12;2 BY MISHIO KAWASHITA, YAROSLAV KURYLEV AND HIDEO SOGA and all q HPm . In the paper we describe algorithms for an approximate reconstruction of given approximate integrals (1.4) with p, q HPm , m = 0, 1, 2
BP's Perspective on Emissions Purdue Emissions Trading Workshop
BP's Perspective on Emissions Trading Purdue Emissions Trading Workshop April 30, 2010 Mark - Government policies can create a carbon price via three primary mechanisms: - Emissions trading (BP's strong
1+1+2 gravitational perturbations on LRS class II space-times: GEM vector harmonic amplitudes
R. B. Burston
2007-08-19T23:59:59.000Z
This is the second in a series of papers which considers first-order gauge-invariant and covariant gravitational perturbations to locally rotationally symmetric (LRS) class II space-times. This paper shows how to decouple a complex combination of the gravito-electromagnetic (GEM) 2-vectors with the 2-tensors describing the shear of the 2/3-sheets. An arbitrary harmonic expansion is then used along with an eigen-vector/value analysis of the first-order GEM system, analogous to the first paper in this series. This results in four real decoupled equations governing four real combinations of the harmonic amplitudes of the GEM 2-vectors and the (2/3-sheet) shear 2-tensors. Finally, these are categorized into polar and axial perturbations.
ANALYTIC MODEL OF HARMONIC GENERATION IN THE LOW-GAIN FEL REGIME
Wurtele, Jonathan
ANALYTIC MODEL OF HARMONIC GENERATION IN THE LOW-GAIN FEL REGIME G. Penn, M. Reinsch, J.S. Wurtele , LBNL, Berkeley, CA 94720, USA Abstract Harmonic generation using free electron lasers (FELs) requires with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX
Source levels and harmonic content of whistles in white-beaked dolphins (Lagenorhynchus albirostris)
Source levels and harmonic content of whistles in white-beaked dolphins (Lagenorhynchus albirostris of the 43 whistles contained an unequal number of harmonics recorded at the three hydrophones judging from of the fundamen- tal frequency is a harmonic Yost, 2000 . Rasmussen
Koch, Christiane
and harmonic baths David Gelmana) Fritz Haber Research Center for Molecular Dynamics, Hebrew University to a spin bath and to a harmonic bath. Converged results are obtained for the spin bath by the surrogate. The results are compared to calculations that include a finite number of harmonic modes carried out by using
HARMONIC CASCADE FEL DESIGNS FOR LUX G. Penn, M. Reinsch, J. Wurtele
Wurtele, Jonathan
HARMONIC CASCADE FEL DESIGNS FOR LUX G. Penn, M. Reinsch, J. Wurtele , J.N. Corlett, W.M. Fawley, A stages of higher harmonic generation, seeded by a 200Â250 nm laser of similar duration. This laser mod then produces ra- diation at a higher harmonic after entering a second, differ- ently tuned undulator. Repeated
IEEE TRANSACTIONSON PLASMA SCIENCE,VOL. 21, NO. 1, FEBRUARY 1993 Phase-Matched Third Harmonic
IEEE TRANSACTIONSON PLASMA SCIENCE,VOL. 21, NO. 1, FEBRUARY 1993 ~ 105 Phase-Matched Third Harmonic Generation in a Plasma J. M. Rax and N. J. Fisch Abstract-Relativistic third harmonic generationin a plasma is investigated. The growth of a third harmonic wave is limited by the difference between the phase velocity
Optical Third-Harmonic Generation in Graphene Sung-Young Hong,1
Hone, James
Optical Third-Harmonic Generation in Graphene Sung-Young Hong,1 Jerry I. Dadap,2,* Nicholas Petrone York 10027, USA (Received 8 April 2013; published 10 June 2013) We report strong third-harmonic verified. In addition, our polarization- and azimuthal-rotation-dependent third-harmonic
Research Report Effects of attention on the neural processing of harmonic syntax
Research Report Effects of attention on the neural processing of harmonic syntax in Western music) were recorded. The five-chord progressions included 61% harmonically expected cadences (IÂI6 ÂIVÂVÂI), 26% harmonically unexpected cadences (IÂI6 ÂIVÂVÂN6 ), and 13% with one of the five chords having
3D Harmonic Mapping and Tetrahedral Meshing of Brain Imaging Data
Thompson, Paul
3D Harmonic Mapping and Tetrahedral Meshing of Brain Imaging Data Yalin Wang1 , Xianfeng Gu2 , Paul algorithm finds a harmonic map from a 3-manifold to a 3D solid sphere and the second is a novel sphere of magnetic resonance images (MRI). A heat flow method is used to solve the volumetric harmonic mapping
Volumetric Harmonic Brain Mapping using a Variational Method Yalin Wang1
Thompson, Paul
Volumetric Harmonic Brain Mapping using a Variational Method Yalin Wang1 , Xianfeng Gu2 , Tony F investigation of 3D volumetric brain harmonic mapping. By transforming the full 3D brain volume to a solid volume to another. We suggest that 3D harmonic mapping of brain volumes to a solid sphere can provide
High harmonic generation in relativistic laserplasma interactiona... S. Banerjee,b)
Umstadter, Donald
High harmonic generation in relativistic laserÂplasma interactiona... S. Banerjee,b) A. R of Michigan, Ann Arbor, Michigan 48109 Received 2 November 2001; accepted 26 February 2002 High harmonics, in addition to the conventional atomic harmonics from bound electrons there is significant contribution
Harmonic Modelling of Thyristor Bridges using a Simplified Time Domain Method
Lehn, Peter W.
1 Harmonic Modelling of Thyristor Bridges using a Simplified Time Domain Method P. W. Lehn, Senior form solution for the harmonic injection of the converter is developed. For the more general case model module takes as input the ac voltage harmonics at the point of common coupling and outputs
Giant higher harmonic generation in mesoscopic metal wires and rings interrupted by tunnel junctions
van Oudenaarden, Alexander
Giant higher harmonic generation in mesoscopic metal wires and rings interrupted by tunnel 5046, 2600 GA Delft, The Netherlands Received 19 December 1997 Higher harmonic generation in mesoscopic is biased with a sinusoidal varying current, we observe giant higher harmon- ics in the conductance
Nonlinear harmonic generation and devices in doubly resonant Kerr cavities Hila Hashemi,1
Nonlinear harmonic generation and devices in doubly resonant Kerr cavities Hila Hashemi,1 Alejandro of the nonlinear dynamics of third-harmonic generation 3 via Kerr 3 nonlinearities in a resonant cavity harmonic generation, by a factor of V/Q2 , where V is the modal volume and Q is the lifetime, and can even
1 1 A Harmonic Approach for Calculating Daily Temperature Normals Constrained by2 Homogenized a constrained harmonic technique that forces the daily30 temperature normals to be consistent with the monthly, or harmonic even though the annual march of temperatures for some locations can be highly asymmetric. Here, we
HARMONIC CASCADE FEL DESIGNS FOR LUX, A FACILTY FOR ULTRAFAST X-RAY SCIENCE
Wurtele, Jonathan
HARMONIC CASCADE FEL DESIGNS FOR LUX, A FACILTY FOR ULTRAFAST X-RAY SCIENCE J. Corlett, W. Fawley. We also discuss lattice considerations pertinent to harmonic cascade FELs, somesensitivity studies. While much of this effort has been concentrated upon SASE-based FEL's, there is an alternative "harmonic
Harmonic phase-dispersion microscope with a MachZehnder interferometer
Fang-Yen, Christopher
Harmonic phase-dispersion microscope with a MachÂZehnder interferometer Andrew Ahn, Changhuei Yang S. Feld Harmonic phase-dispersion microscopy (PDM) is a new imaging technique in which contrast is provided by differences in refractive index at two harmonically related wavelengths. We report a new
Very-high-order harmonic generation from Ar atoms and Ar+ ions in superintense pulsed laser
Chu, Shih-I
Very-high-order harmonic generation from Ar atoms and Ar+ ions in superintense pulsed laser fields-high-order harmonic generation HHG from Ar atoms and Ar+ ions by means of the self-interaction-free time-order harmonic generation HHG is one of the most rapidly developing topics in the field of laser-atom molecule
Second and Fourth Harmonic Frequencies in Electric Field-Induced Liquid Crystal Reorientations
Wu, Shin-Tson
Second and Fourth Harmonic Frequencies in Electric Field-Induced Liquid Crystal Reorientations of Central Florida, Orlando, Florida, USA The second and fourth harmonics of low frequency electric field-optical modulation; liquid crystal; second and fourth harmonics 1. INTRODUCTION Nematic liquid crystal (LC) has been
Ultrafast Third Harmonic Micro-spectroscopy Reveals a Two-Photon Resonance in Human Hemoglobin
Kleinfeld, David
Ultrafast Third Harmonic Micro-spectroscopy Reveals a Two-Photon Resonance in Human Hemoglobin G Golden, CO 80401 Abstract The recently developed technique of ultrafast third harmonic generation (THG states in physiological solutions of human hemoglobin. Keywords: Third Harmonic Generation, Micro
Geist, Dennis
Search for Harmonic tremor in the Galapagos Jonathan M. Lees, University of North Carolina, Chapel Hill Harmonic volcano tremor can provide details of conduit physics during magma flow and volcano.71.2 Hz. Harmonic tremor has not been reported on Galapagos volcanoes, possibly because seismic
Emissions from US waste collection vehicles
Maimoun, Mousa A., E-mail: mousamaimoun@gmail.com [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Reinhart, Debra R. [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Gammoh, Fatina T. [Quality Department, Airport International Group, Amman (Jordan); McCauley Bush, Pamela [Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL (United States)
2013-05-15T23:59:59.000Z
Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.
Far-reaching statistical consequences of the zero-point energy for the harmonic oscillator
Luis de la Pena; Andrea Valdes-Hernandez; Ana Maria Cetto
2007-12-12T23:59:59.000Z
In a recent thermodynamic analysis of the harmonic oscillator and using an interpolation procedure, Boyer has shown that the existence of a zero-point energy leads to the Planck spectrum. Here we avoid the interpolation by adding a statistical argument to arrive at Planck's law as an inescapable result of the presence of the zero-point energy. No explicit quantum argument is introduced along the derivations. We disclose the connection of our results with the original analysis of Planck and Einstein, which led to the notion of the quantized radiation field. We then inquire into the discrete or continuous behaviour of the energy and pinpoint the discontinuities. Finally, to open the door to the description of the zero-point fluctuations, we briefly discuss the statistical (in contrast to the purely thermodynamic) description of the oscillator, which accounts for both thermal and temperature-independent contributions to the energy dispersion.
Ergodic theory and visualization. II. Harmonic mesochronic plots visualize (quasi)periodic sets
Zoran Levnaji?; Igor Mezi?
2014-07-26T23:59:59.000Z
We present a new method of analysis of measure-preserving dynamical systems, based on frequency analysis and ergodic theory, which extends our earlier work [1]. Our method employs the novel concept of harmonic time average [2], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets or arbitrary periodicity in the phase space. Besides identifying all periodic sets, our method is useful in detecting chaotic phase space regions with a good precision. The range of method's applicability is illustrated using well-known Chirikov standard map, while its full potential is presented by studying higher-dimensional measure-preserving systems, in particular Froeschl\\'e map and extended standard map.
Broader source: Energy.gov [DOE]
This regulation establishes requirements for a source whose operation results in an excess emission and to establish criteria for a source whose operation results in an excess emission to claim an...
Emissions Trading and Social Justice
Farber, Daniel A
2011-01-01T23:59:59.000Z
David M. Driesen, Does Emissions Trading Encourage Jason Coburn, Emissions Trading and Environmental Szambelan, U.S. Emissions Trading Markets for SO 2
Grids of stellar models including second harmonic and colours: Solar composition
Yildiz, Mutlu
2015-01-01T23:59:59.000Z
Grids of stellar evolution are required in many fields of astronomy/astrophysics, such as planet hosting stars, binaries, clusters, chemically peculiar stars, etc. In this study, a grid of stellar evolution models with updated ingredients and {recently determined solar abundaces} is presented. The solar values for the initial abundances of hydrogen, heavy elements and mixing-length parameter are 0.0172, 0.7024 and 1.98, respectively. The mass step is small enough (0.01 M$_\\odot$) that interpolation for a given star mass is not required. The range of stellar mass is 0.74 to 10.00 M$_\\odot$. We present results in different forms of tables for easy and general application. The second stellar harmonic, required for analysis of apsidal motion of eclipsing binaries, is also listed. We also construct rotating models to determine effect of rotation on stellar structure and derive fitting formula for luminosity, radius and the second stellar harmonic as a function of rotational parameter. We also compute and list colo...
Study on higher harmonic suppression using edge filter and polished Si wafer
Gupta, R. K., E-mail: rkg@rrcat.gov.in; Singh, Amol, E-mail: rkg@rrcat.gov.in; Modi, Mohammed H., E-mail: rkg@rrcat.gov.in; Lodha, G. S., E-mail: rkg@rrcat.gov.in [X-ray Optics Section, ISU Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)
2014-04-24T23:59:59.000Z
Higher harmonics contamination is a severe problem in synchrotron beamlines where grating monochromators are used. In these beamlines, absorption edge filters and critical angle mirrors are used to suppress the harmonic contaminations. In the present study, carried out using Indus-1 reflectivity beamline, a harmonic suppression characteristic of Al edge filter and polished silicon wafer are determined. It is found that the Al filter suppresses higher harmonics in 2–7% range whereas the polished silicon wafer can suppress the higher harmonics below 1%. The results of comparative study are discussed.
Rajagopal, Deepak
2010-01-01T23:59:59.000Z
Derivation of average cost of emission reduction by blending?) and ? respectively. GHG emissions per unit of blend is, ?+ ?? i Reduction in GHG emissions with respect to unblended
CO2 Emissions Mitigation and Technological Advance: An
PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology of atmospheric CO2 concentrations at 450 parts per million by volume (ppmv) and 550 ppmv in MiniCAM. Each
Evaluation of Partial Oxidation Reformer Emissions
Unnasch, Stefan; Fable, Scott; Waterland, Larry
2006-01-06T23:59:59.000Z
In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.
Sarshar, A. [Trench Electric, Scarborough, Ontario (Canada)] [Trench Electric, Scarborough, Ontario (Canada); Iravani, M.R.; Li, J. [Univ. of Toronto, Ontario (Canada). Dept. of Electrical and Computer Engineering] [Univ. of Toronto, Ontario (Canada). Dept. of Electrical and Computer Engineering
1996-01-01T23:59:59.000Z
In this paper, noncharacteristic harmonics of an HVdc converter station are calculated based on the use of digital time-domain simulation methods. An enhanced version of the Electromagnetic Transients Program (EMTP) is used for the studies. The noncharacteristic harmonics of interest are (1) the dc side triplen harmonics, and (2) the ac side second harmonic. Impacts of loading conditions, neutral filter, and converter firing angle on the dc side triplen harmonics are discussed. Effects of ac side network parameters, static VAR compensator (SVC), transformer half-cycle saturation, and Geomagnetically Induced Current (GIC) on the ac side second harmonic instability are also presented. This paper concludes that the digital time-domain simulation method provides significant flexibility for accurate prediction of (1) generation mechanism, and (2) adverse impacts of HVdc noncharacteristic harmonics.
Antolak, A.J.; Pontau, A.E.; Morse, D.H. (Sandia National Labs., Livermore, CA (United States)); Weirup, D.L.; Heikkinen, D.W.; Hornady, R.S. (Lawrence Livermore National Lab., CA (United States)); Cholewa, M.; Bench, G.S.; Legge, G.J.F. (Melbourne Univ. (Australia). Micro Analytical Research Centre)
1991-11-20T23:59:59.000Z
The complementary techniques of ion microtomography (IMT) and particle-induced x-ray emission (PIXE) are used to provide micro-characterization of inertial confinement fusion (ICF) targets for density uniformity, sphericity, and trace element spatial distributions. ICF target quality control in the laser fusion program is important to ensure that the energy deposition from the lasers results in uniform compression and minimization of Taylor-Rayleigh instabilities. We obtain 1% density determinations using IMT with spatial resolution approaching two microns. Utilizing PIXE, we can map out dopant and impurity distributions with elemental detection sensitivities on the order of a few ppm. We present examples of IMT and PIXE analyses performed on several ICF targets.
Xu, Xin, S.M. Massachusetts Institute of Technology
2013-01-01T23:59:59.000Z
This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...
Chies-Santos, Ana L; Aragón-Salamanca, Alfonso; Bamford, Steven P; Gray, Meghan E; Wolf, Christian; Böhm, Asmus; Maltby, David T; Pintos-Castro, Irene; Sánchez-Portal, Miguel; Weinzirl, Tim
2015-01-01T23:59:59.000Z
We present an overview of and first results from the OMEGA survey: the OSIRIS Mapping of Emission-line Galaxies in the multi-cluster system A901/2. The ultimate goal of this project is to study star formation and AGN activity across a broad range of environments at a single redshift. Using the tuneable-filter mode of the OSIRIS instrument on GTC, we target Halpha and [NII] emission lines over a ~0.5 X 0.5 deg2 region containing the z~0.167 multi-cluster system A901/2. In this paper we describe the design of the survey, the observations and the data analysis techniques developed. We then present early results from two OSIRIS pointings centred on the cores of the A901a and A902 clusters. AGN and star-forming (SF) objects are identified using the [NII]/Halpha vs. W_Halpha (WHAN) diagnostic diagram. The AGN hosts are brighter, more massive, and possess earlier-type morphologies than SF galaxies. Both populations tend to be located towards the outskirts of the high density regions we study. The typical Halpha lumi...
The TRANSIMS Approach to Emission Estimation
Barth, M.J.; Smith, L.; Thayer, G.R.; Williams, M.D.
1999-02-01T23:59:59.000Z
Transportation systems play a significant role in urban air quality, energy consumption and carbon-dioxide emissions. Recently, it has been found that current systems for estimating emissions of pollutants from transportation devices lead to significant inaccuracies. Most of the existing emission modules use very aggregate representations of traveler behavior and attempt to estimate emissions on typical driving cycles. However, recent data suggests that typical driving cycles produce relatively low emissions with most emissions coming from off-cycle driving, cold-starts, malfunctioning vehicles, and evaporative emissions. TRANSIMS is a simulation system for the analysis of transportation options in metropolitan areas. It's major functional components are: (1) a population disaggregation module, (2) a travel planning module, (3) a regional microsimulation module, and (4) an environmental module. In addition to the major functional components, it includes a strong underpining of simulation science and an analyst's tool box. The purpose of the environmental module is to translate traveler behavior into consequent air quality. The environmental module uses information from the TRANSIMS planner and the microsimulation and it supports the analyst's toolbox. The TRANSIMS system holds the promise of a more complete description of the role of heterogeneity in transportation in emission estimation.
All-Optical Field-Induced Second-Harmonic Generation
Davidson, Roderick B; Ziegler, Jed I; Avanesyan, Sergey M; Lawrie, Ben J; Haglund, Richard F
2015-01-01T23:59:59.000Z
Efficient frequency modulation techniques are crucial to the development of plasmonic metasurfaces for information processing and energy conversion. Nanoscale electric-field confinement in optically pumped plasmonic structures enables stronger nonlinear susceptibilities than are attainable in bulk materials. The interaction of three distinct electric fields in (chi)^3 optical processes allows for all-optical modulation of nonlinear signals. Here we demonstrate effcient third-order second harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients within a dielectric material. We utilize an ultrafast optical pump to control the plasmonically induced electric-fields and to generate bandwidth-limited ultrafast second-harmonic pulses driven by the control pulses. The combination of plasmonic metasurfaces with all-optical control and the freedom to choose the dielectric allow multiple generalizations of this concept and geometry to other four-wave mixing process...
Freely floating structures trapping time-harmonic water waves (revisited)
Nikolay Kuznetsov; Oleg Motygin
2014-10-22T23:59:59.000Z
We study the coupled small-amplitude motion of the mechanical system consisting of infinitely deep water and a structure immersed in it. The former is bounded above by a free surface, whereas the latter is formed by an arbitrary finite number of surface-piercing bodies floating freely. The mathematical model of time-harmonic motion is a spectral problem in which the frequency of oscillations serves as the spectral parameter. It is proved that there exist axisymmetric structures consisting of $N \\geq 2$ bodies; every structure has the following properties: (i) a time-harmonic wave mode is trapped by it; (ii) some of its bodies (may be none) are motionless, whereas the rest of the bodies (may be none) are heaving at the same frequency as water. The construction of these structures is based on a generalization of the semi-inverse procedure applied earlier for obtaining trapping bodies that are motionless although float freely.
Damping the zero-point energy of a harmonic oscillator
T. G Philbin; S. A. R. Horsley
2013-07-31T23:59:59.000Z
The physics of quantum electromagnetism in an absorbing medium is that of a field of damped harmonic oscillators. Yet until recently the damped harmonic oscillator was not treated with the same kind of formalism used to describe quantum electrodynamics in a arbitrary medium. Here we use the techniques of macroscopic QED, based on the Huttner--Barnett reservoir, to describe the quantum mechanics of a damped oscillator. We calculate the thermal and zero-point energy of the oscillator for a range of damping values from zero to infinity. While both the thermal and zero-point energies decrease with damping, the energy stored in the oscillator at fixed temperature increases with damping, an effect that may be experimentally observable. As the results follow from canonical quantization, the uncertainty principle is valid for all damping levels.
Higher signal harmonics, LISA's angular resolution, and dark energy
K. G. Arun; Bala R. Iyer; B. S. Sathyaprakash; Siddhartha Sinha; Chris Van Den Broeck
2007-10-24T23:59:59.000Z
It is generally believed that the angular resolution of the Laser Interferometer Space Antenna (LISA) for binary supermassive black holes (SMBH) will not be good enough to identify the host galaxy or galaxy cluster. This conclusion, based on using only the dominant harmonic of the binary SMBH signal, changes substantially when higher signal harmonics are included in assessing the parameter estimation problem. We show that in a subset of the source parameter space the angular resolution increases by more than a factor of 10, thereby making it possible for LISA to identify the host galaxy/galaxy cluster. Thus, LISA's observation of certain binary SMBH coalescence events could constrain the dark energy equation of state to within a few percent, comparable to the level expected from other dark energy missions.
Analysis and Simulation of Mechanical Trains Driven by Variable Frequency Drive Systems
Han, Xu
2012-02-14T23:59:59.000Z
2. Three-Phase Inverter and PWM Sidebands . . . . . . . . . . 45 C. Motor-Compressor Machinery Train . . . . . . . . . . . . . . . . . . 48 1. Electric Induction Motor . . . . . . . . . . . . . . . . . . . . . . . 48 2. Mechanical Components... . . . . . . . . . . . . . . . . . . . . . . . 77 4. DC Bus Harmonic Frequency = 120 Hz . . . . . . . . . . . . . 82 V ANALYSIS OF CLOSED-LOOP CONTROL-FOC : : : : : : : : : : : 87 A. Analysis for Harmonic Sources . . . . . . . . . . . . . . . . . . . . . . 87 B. Motor-Gearbox-Compressor...
Discrete quadratic solitons with competing second-harmonic components
Setzpfandt, Frank; Pertsch, Thomas [Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Sukhorukov, Andrey A. [Nonlinear Physics Center, Research School of Physics and Engineering, Australian National University, Canberra, 0200 ACT (Australia)
2011-11-15T23:59:59.000Z
We describe families of discrete solitons in quadratic waveguide arrays supported by competing cascaded nonlinear interactions between one fundamental and two second-harmonic modes. We characterize the existence, stability, and excitation dynamics of these solitons and show that their features may resemble those of solitons in saturable media. Our results also demonstrate that a power threshold may appear for soliton formation, leading to a suppression of beam self-focusing which explains recent experimental observations.
SU(3) symmetry in the triaxially deformed harmonic oscillator
Sugawara-Tanabe, Kazuko [Otsuma Women's University, Tama, Tokyo 206-8540 (Japan); Tanabe, Kosai [Department of Physics, Saitama University, Sakura-Ku, Saitama 338-8570 (Japan); Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Arima, Akito [Science Museum, Japan Science Foundation, Tokyo 102-0091 (Japan); Gruber, Bruno [College of Science, Southern Illinois University, Carbondale, Illinois 62901 (United States)
2009-10-15T23:59:59.000Z
An anisotropic harmonic oscillator Hamiltonian can be brought into invariant form under SU(3) transformations by applying nonlinear transformations to the oscillator bosons. The classification of the single-particle levels based on this covering group predicts magic numbers for the triaxial oscillator. It is shown that when the deformation |{delta}| is not too large, the physical operators are approximated by the group operators. Estimation is carried out for the alignment of orbital angular momentum in a triaxial field.
Vacuum high harmonic generation in the shock regime
Böhl, P; Ruhl, H
2015-01-01T23:59:59.000Z
Electrodynamics becomes nonlinear and permits the self-interaction of fields when the quantised nature of vacuum states is taken into account. The effect on a plane probe pulse propagating through a stronger constant crossed background is calculated using numerical simulation and by analytically solving the corresponding wave equation. The electromagnetic shock resulting from vacuum high harmonic generation is investigated and a nonlinear shock parameter identified.
Harmonic oscillator in a one-dimensional box
Paolo Amore; Francisco M. Fernandez
2009-07-31T23:59:59.000Z
We study a harmonic molecule confined to a one--dimensional box with impenetrable walls. We explicitly consider the symmetry of the problem for the cases of different and equal masses. We propose suitable variational functions and compare the approximate energies given by the variation method and perturbation theory with accurate numerical ones for a wide range of values of the box length. We analyze the limits of small and large box size.
Efficient Forward Second-Harmonic Generation from Planar Archimedean Nanospirals
Davidson, Roderick B; Vargas, Guillermo; Avanesyan, Sergey M; Haglund, Richard F
2015-01-01T23:59:59.000Z
The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulse from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6*10-9, 8*10-9 and 1.3*10-8 for left-handed circular, linear, and right-handed circular polarizations, respectively. The uncoated nanospirals are stable under average power loading of as much as 300 uW per nanoparticle. The nanospirals also exhibit a selective conversion between polarization states. These exp...
Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.
2008-05-01T23:59:59.000Z
Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were observed. The southward fluxes over the Pacific Ocean were maintained in a relatively coherent flow within the marine boundary layer, while the eastward fluxes were more vertically dispersed. Our results indicate that state and continental scale atmospheric inversions need to consider areas where concentration measurements are sparse (e.g., over the ocean to the south and west of California), transport within and across the marine boundary layer, and terrestrial boundary layer dynamics. Measurements of {Delta}{sub g} can be very useful in constraining these estimates.
Kinetic freeze-out, particle spectra and harmonic flow coefficients from mode-by-mode hydrodynamics
Stefan Floerchinger; Urs Achim Wiedemann
2014-08-27T23:59:59.000Z
The kinetic freeze-out for the hydrodynamical description of relativistic heavy ion collisions is discussed using a background-fluctuation splitting of the hydrodynamical fields. For a single event, the particle spectrum, or its logarithm, can be written as the sum of background part that is symmetric with respect to azimuthal rotations and longitudinal boosts and a part containing the contribution of fluctuations or deviations from the background. Using a complete orthonormal basis to characterize the initial state allows one to write the double differential harmonic flow coefficients determined by the two-particle correlation method as matrix expressions involving the initial fluid correlations. We discuss the use of these expressions for a mode-by-mode analysis of fluctuating initial conditions in heavy ion collisions.
Spectral Emission of Moving Atom
J. X. Zheng-Johansson
2008-03-17T23:59:59.000Z
A renewed analysis of the H.E. Ives and G.R. Stilwell's experiment on moving hydrogen canal rays (J. Opt. Soc. Am., 1938, v.28, 215) concludes that the spectral emission of a moving atom exhibits always a redshift which informs not the direction of the atom's motion. The conclusion is also evident from a simple energy relation: atomic spectral radiation is emitted as an orbiting electron consumes a portion of its internal energy on transiting to a lower-energy state which however has in a moving atom an additional energy gain; this results in a redshift in the emission frequency. Based on auxiliary experimental information and a scheme for de Broglie particle formation, we give a vigorous elucidation of the mechanism for deceleration radiation of atomic electron; the corresponding prediction of the redshift is in complete agreement with the Ives and Stilwell's experimental formula.
Petrosian, Vahe; /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept.; Madejski, Greg; /SLAC; Luli, Kevin; /Stanford U., Phys. Dept.
2006-08-16T23:59:59.000Z
Evidence for non-thermal activity in clusters of galaxies is well established from radio observations of synchrotron emission by relativistic electrons. New windows in the Extreme Ultraviolet and Hard X-ray ranges have provided for more powerful tools for the investigation of this phenomenon. Detection of hard X-rays in the 20 to 100 keV range have been reported from several clusters of galaxies, notably from Coma and others. Based on these earlier observations we identified the relatively high redshift cluster 1E0657-56 (also known as RX J0658-5557) as a good candidate for hard X-ray observations. This cluster, also known as the bullet cluster, has many other interesting and unusual features, most notably that it is undergoing a merger, clearly visible in the X-ray images. Here we present results from a successful RXTE observations of this cluster. We summarize past observations and their theoretical interpretation which guided us in the selection process. We describe the new observations and present the constraints we can set on the flux and spectrum of the hard X-rays. Finally we discuss the constraints one can set on the characteristics of accelerated electrons which produce the hard X-rays and the radio radiation.
High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak
Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)
2014-11-15T23:59:59.000Z
The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ?1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ?2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.
Field emission chemical sensor
Panitz, J.A.
1983-11-22T23:59:59.000Z
A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.
Modeling Traffic Flow Emissions
Cappiello, Alessandra
2002-09-17T23:59:59.000Z
The main topic of this thesis is the development of light-duty vehicle dynamic emission models and their integration with dynamic traffic models. Combined, these models
Saving Fuel, Reducing Emissions
Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes
2009-01-01T23:59:59.000Z
would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-
Vehicle Emissions Review - 2011
Broader source: Energy.gov (indexed) [DOE]
mass, membrane effects, fundamentals on permeability * DOC Pd:Pt ratios allow optimization * Gasoline emission control is amazing - Zone coating - Lower PGM with better...
Analysis of the Coal Sector under Carbon Constraints
McFarland, James R.
Application of the MIT Emissions Prediction and Policy Analysis (EPPA) model to assessment of the future
The effect of emissive biased limiter on the magnetohydrodynamic modes in the IR-T1 tokamak
Ghasemloo, M.; Ghoranneviss, M.; Salem, M. K.; Arvin, R.; Mohammadi, S.; Nik Mohammadi, A. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, P. O. Box 14665-678, Tehran (Iran, Islamic Republic of)
2013-03-15T23:59:59.000Z
A moveable emissive biased limiter (EBL) for the investigation of spatial and temporal structure of MHD modes in IR-T1 tokamak, based on mirnov oscillations, was designed and constructed. The biasing has been considered to improve the global confinement by setting up an electric field at the plasma edge. Radial electric field (E{sub r}) modifies edge plasma turbulence, plasma rotation, and transport. Mirnov oscillations using singular value decomposition (SVD) and wavelet techniques were analyzed. SVD algorithm has been employed to analyze the frequency and wavenumber harmonics of the MHD fluctuations. The time-resolved frequency component analysis has been performed using wavelets. The EBL was applied to plasma at 10 ms with negative polarity. The results show that after applying EBL, the m = 2 mode is grown, m = 3 mode is suppressed, and H{sub {alpha}} radiation is decreased. Furthermore, results of the wavelet analysis of mirnov coil in the time range of 8-12 ms indicate that 1.5 ms after applying EBL, the MHD frequency is reduced from 45 kHz to 25 kHz.
Air Emission Inventory for the INEEL -- 1999 Emission Report
Zohner, Steven K
2000-05-01T23:59:59.000Z
This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.
Third Harmonic Flow of Charged Particles in Au+Au Collisions at $\\sqrt {s_{NN}} = 200$ GeV
Yadav Pandit; for the STAR Collaboration
2012-09-03T23:59:59.000Z
In this proceedings, we report measurements of the third harmonic coefficient of the azimuthal anisotropy, $v_{3}$, known as triangular flow. The analysis is for charged particles near midrapidity in Au+Au collisions at $\\sqrt {s_{NN}} $ = 200 GeV, based on data from the STAR experiment at the Relativistic Heavy Ion Collider. Triangular flow as a function of centrality, pseudorapidity and transverse momentum are reported using various methods, including a study of the signal for particle pairs as a function of their pseudorapidity separation. Results are compared with other experiments and model predictions.
Physics 221B: Solution to HW # 6 1) Born-Oppenheimer for Coupled Harmonic Oscil-
Murayama, Hitoshi
Physics 221B: Solution to HW # 6 1) Born-Oppenheimer for Coupled Harmonic Oscil- lators model of coupled 1D harmonic oscilla- tors. Since we know how to solve the system exactly we can compare + 1 2 k(X2 - x3 - d)2 . Combining into one harmonic oscillator we get H = p2 3 2m + 1 2 2k x3 - X1 + X
Half-harmonic Kelvin probe force microscopy with transfer function correction
Guo, Senli [ORNL] [ORNL; Jesse, Stephen [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL
2012-01-01T23:59:59.000Z
An approach for surface potential imaging based on half-harmonic band excitation (BE) in Kelvin probe force microscopy is demonstrated. Using linear and half-harmonic BE enables quantitative correction of the cantilever transfer function. Half-harmonic band excitation Kelvin probe force microscopy (HBE KPFM) thus allows quantitative separation of surface potential and topographic contributions to the signal, obviating the primary sources of topographic cross-talk. HBE KPFM imaging and voltage spectroscopy methods are illustrated for several model systems.
Ramanujan's Harmonic Number Expansion into Negative Powers of a Triangular Number
Mark B. Villarino
2007-07-28T23:59:59.000Z
An algebraic transformation of the DeTemple-Wang half-integer approximation to the harmonic series produces the general formula and error estimate for the Ramanujan expansion for the nth harmonic number into negative powers of the nth triangular number. We also discuss the history of the Ramanujan expansion for the nth harmonic number as well as sharp estimates of its accuracy, with complete proofs, and we compare it with other approximative formulas.
Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space
Joseph Ben Geloun; Sunandan Gangopadhyay; Frederik G Scholtz
2009-01-22T23:59:59.000Z
We solve explicitly the two-dimensional harmonic oscillator and the harmonic oscillator in a background magnetic field in noncommutative phase-space without making use of any type of representation. A key observation that we make is that for a specific choice of the noncommutative parameters, the time reversal symmetry of the systems get restored since the energy spectrum becomes degenerate. This is in contrast to the noncommutative configuration space where the time reversal symmetry of the harmonic oscillator is always broken.
Graphene field emission devices
Kumar, S., E-mail: shishirk@gmail.com; Raghavan, S. [Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru (India); Duesberg, G. S. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and School of Chemistry, Trinity College Dublin, Dublin, D2 (Ireland); Pratap, R. [Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru (India); Department of Mechanical Engineering, Indian Institute of Science, Bengaluru (India)
2014-09-08T23:59:59.000Z
Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ?10?nA ?m{sup ?1} at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.
Dispersion-free monochromatization method for selecting a single-order harmonic beam
Takahashi, Eiji J; Ichimaru, Satoshi; Midorikawa, Katsumi
2015-01-01T23:59:59.000Z
We propose a method to monochromatize multiple orders of high harmonics by using a proper designed multilayer mirror. Multilayer mirrors designed by our concept realize the perfect extraction of a single-order harmonic from multiple-order harmonic beam, and exhibit broadband tenability and high reflectivity in the soft-x-ray region. Furthermore, the proposed monochromatization method can preserve the femtosecond to attosecond pulse duration for the reflected beam. This device is very useful for ultrafast soft x-ray experiments that require high-order harmonic beams, such as femtosecond/attosecond, time-resolved, pump-probe spectroscopy.
N = 4 supersymmetric mechanics: Harmonic superspace as a universal tool of model-building
Ivanov, E. A., E-mail: eivanov@theor.jinr.ru [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics (Russian Federation)
2013-08-15T23:59:59.000Z
We overview applications of the harmonic superspace approach in models of N = 4supersymmetric mechanics, with emphasis on some recent results.
A non-conforming 3D spherical harmonic transport solver
Van Criekingen, S. [Commissariat a l'Energie Atomique CEA-Saclay, DEN/DM2S/SERMA/LENR Bat 470, 91191 Gif-sur-Yvette, Cedex (France)
2006-07-01T23:59:59.000Z
A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)
Quantum Energy Teleportation with a Linear Harmonic Chain
Yasusada Nambu; Masahiro Hotta
2010-10-14T23:59:59.000Z
A protocol of quantum energy teleportation is proposed for a one-dimensional harmonic chain. A coherent-state POVM measurement is performed to coupled oscillators of the chain in the ground state accompanied by energy infusion to the system. This measurement consumes a part of ground state entanglement. Depending on the measurement result, a displacement operation is performed on a distant oscillator accompanied by energy extraction from the zero-point fluctuation of the oscillator. We find that the amount of consumed entanglement is bounded from below by a positive value that is proportional to the amount of teleported energy.
The effect of singular potentials on the harmonic oscillator
Filgueiras, C. [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-900 Joao Pessoa, PB (Brazil); Silva, E.O. [International Institute of Physics, Universidade Federal do Rio Grande do Norte, Campus Universitario Lagoa Nova, 59.072-970 Natal, RN (Brazil); Oliveira, W. [Departamento de Fisica, Universidade Federal de Juiz de Fora, 36.036-330 Juiz de Fora, MG (Brazil); Moraes, F., E-mail: moraes@fisica.ufpb.b [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-900 Joao Pessoa, PB (Brazil)
2010-11-15T23:59:59.000Z
We address the problem of a quantum particle moving under interactions presenting singularities. The self-adjoint extension approach is used to guarantee that the Hamiltonian is self-adjoint and to fix the choice of boundary conditions. We specifically look at the harmonic oscillator added of either a {delta}-function potential or a Coulomb potential (which is singular at the origin). The results are applied to Landau levels in the presence of a topological defect, the Calogero model and to the quantum motion on the noncommutative plane.
Second-harmonic generation in transition-metal-organic compounds
Frazier, C.C.; Harvey, M.A.; Cockerham, M.P.; Hand, H.M.; Chauchard, E.A.; Lee, C.H.
1986-10-23T23:59:59.000Z
The second-harmonic generation efficiencies of over 60 transition-metal-organic compounds in powder form were measured, using 1.06 ..mu..m light from a Nd:YAG laser. Most of the studied compounds were either group VI metal carbonyl arene, pyridyl, or chiral phosphine complexes. Four the complexes doubled the laser fundamental as well as or better than ammonium dihydrogen phosphate (ADP). The study shows that the same molecular features (e.g., conjugation and low-lying spectroscopic charge transfer) that contribute to second-order optical nonlinearity in organic compounds also enhance second-order effects in transition-metal-organic compounds.
Harmonic initial-boundary evolution in general relativity
Babiuc, Maria C. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Szilagyi, Bela [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany); Winicour, Jeffrey [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany)
2006-03-15T23:59:59.000Z
Computational techniques which establish the stability of an evolution-boundary algorithm for a model wave equation with shift are incorporated into a well-posed version of the initial-boundary value problem for gravitational theory in harmonic coordinates. The resulting algorithm is implemented as a 3-dimensional numerical code which we demonstrate to provide stable, convergent Cauchy evolution in gauge wave and shifted gauge wave testbeds. Code performance is compared for Dirichlet, Neumann, and Sommerfeld boundary conditions and for boundary conditions which explicitly incorporate constraint preservation. The results are used to assess strategies for obtaining physically realistic boundary data by means of Cauchy-characteristic matching.
Quantum Energy Teleportation with a Linear Harmonic Chain
Nambu, Yasusada
2010-01-01T23:59:59.000Z
A protocol of quantum energy teleportation is proposed for a one-dimensional harmonic chain. A coherent-state POVM measurement is performed to coupled oscillators of the chain in the ground state accompanied by energy infusion to the system. This measurement consumes a part of ground state entanglement. Depending on the measurement result, a displacement operation is performed on a distant oscillator accompanied by energy extraction from the zero-point fluctuation of the oscillator. We find that the amount of consumed entanglement is bounded from below by a positive value that is proportional to the amount of teleported energy.
Harmonic Initial-Boundary Evolution in General Relativity
Maria C. Babiuc; Bela Szilagyi; Jeffrey Winicour
2006-03-14T23:59:59.000Z
Computational techniques which establish the stability of an evolution-boundary algorithm for a model wave equation with shift are incorporated into a well-posed version of the initial-boundary value problem for gravitational theory in harmonic coordinates. The resulting algorithm is implemented as a 3-dimensional numerical code which we demonstrate to provide stable, convergent Cauchy evolution in gauge wave and shifted gauge wave testbeds. Code performance is compared for Dirichlet, Neumann and Sommerfeld boundary conditions and for boundary conditions which explicitly incorporate constraint preservation. The results are used to assess strategies for obtaining physically realistic boundary data by means of Cauchy-characteristic matching.