Harmonic and interharmonic distortion modeling in multiconverter systems
Carbone, R.; Morrison, R.E.; Testa, A.; Menniti, D.
1995-07-01
The problem of modeling multiconverter systems in presence of harmonic and interharmonic distortion is considered. Specifically, current source rectifiers are considered as distortion sources some supply d.c. motors and the remaining supplying inverters feeding a.c. machines. The classical analogue, frequency domain and time domain models proposed in the literature to study harmonic distortion in a multiconverter system are considered and for each model suitable extension to include the interharmonic distortion are presented and critically analyzed. The results of several experiments are reported to show the usefulness and to compare the accuracy of the different extensions considered.
Uncertainties in compliance with harmonic current distortion limits in electric power systems
Gruzs, T.M. )
1991-07-01
The harmonic distortion of any repetitive voltage or current waveform is typically described by the quantity total harmonic distortion (THD). With the proliferation of nonlinear loads, such as static power converters, there has been increasing concern over the generation of harmonic currents and the effects of these currents on the power system. Proposals have been made to limit harmonic currents in power systems using the total harmonic distortion of the current as the criterion. This criterion, although it may be necessary, can be ambiguous and lead to compliance uncertainties. In this paper a discussion is presented on several of the practical problems by applying total harmonic current distortion limits to industrial and commercial power systems.
Calculation of voltage harmonic distortion caused by small non-linear loads
Hegazy, Y.G.; Salama, M.M.A.
1995-10-01
This paper presents an accurate method to evaluate the harmonic distortion in distribution systems. This method overcomes most of the drawbacks of the traditional methods. The main idea of the proposed method is to represent the harmonic effects of small non-linear loads by an equivalent large load. A case study is presented in the paper to illustrate the proposed method. The total harmonic distortion factor is evaluated at different busses of a distribution system using the proposed method. The results are then compared to those obtained using the traditional methods.
Revenue and harmonics: An evaluation of some proposed rate structures
McEachern, A.; Grady, W.M.; Moncrief, W.A.; Heydt, G.T.; McGranaghan, M.
1995-01-01
IEEE Recommended Practice 519 sets specific limits on harmonic voltages and currents at the ``point of common coupling``, which is usually interpreted as the revenue meter. Although most utilities will employ these limits simply to persuade and encourage their customers to reduce harmonics (and vice versa), it is also possible to construct economic incentives to encourage both the utility and the consumer to remain within the limits described in IEEE 519. 7his paper discusses seven approaches to this challenge, and discusses the advantages and disadvantages of each. It appears that the ``Harmonic-Adjusted Power Factor`` approach is practical, justifiable, compatible with existing rate structures, and relatively easy to implement.
Nonlinear stochastic growth rates and redshift space distortions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Jennings, Elise; Jennings, David
2015-04-09
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a nonlinear, stochastic relation between ? – ? • ?(x,t)/aH and ?. This provides a new phenomenological approach that examines the conditional mean (???), together with the fluctuations of ? around this mean. We measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10% at kmore »relation and nonlinearity are more pronounced for halos, M ? 5 x 10¹²Mh?¹, compared to the dark matter at z – 0 and 1. Nonlinear growth effects manifest themselves as a rotation of the mean (???) away from the linear theory prediction –fLT?, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second order Lagrangian perturbation theory (2LPT) for k LT from two point statistics in redshift space. Given that the relationship between ? and ? is stochastic and nonlinear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.« less
Nonlinear stochastic growth rates and redshift space distortions
Jennings, Elise; Jennings, David
2015-04-09
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a nonlinear, stochastic relation between ? – ? • ?(x,t)/aH and ?. This provides a new phenomenological approach that examines the conditional mean (???), together with the fluctuations of ? around this mean. We measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10% at k<0.2hMpc?¹ to 25% at k ~ 0.45hMpc?¹ at z – 0. Both the stochastic relation and nonlinearity are more pronounced for halos, M ? 5 x 10¹²Mh?¹, compared to the dark matter at z – 0 and 1. Nonlinear growth effects manifest themselves as a rotation of the mean (???) away from the linear theory prediction –f_{LT}?, where f_{LT} is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second order Lagrangian perturbation theory (2LPT) for k < 0.1 hMpc?¹. The stochasticity in the ? – ? relation is not so simply described by 2LPT, and we discuss its impact on measurements of f_{LT} from two point statistics in redshift space. Given that the relationship between ? and ? is stochastic and nonlinear, this will have implications for the interpretation and precision of f_{LT} extracted using models which assume a linear, deterministic expression.
Non-linear stochastic growth rates and redshift space distortions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Jennings, Elise; Jennings, David
2015-04-09
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between Î¸ = âˆ‡ âˆ™ v(x,t)/aH and Î´. This provides a new phenomenological approach that examines the conditional mean <Î¸|Î´>, together with the fluctuations of Î¸ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc-1 to 25 per cent at kmoreÂ Â» ~ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M â‰¤ 5 Ã— 1012 MâŠ™ h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <Î¸|Î´> away from the linear theory prediction -fLTÎ´, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc-1. Furthermore, the stochasticity in the Î¸ â€“ Î´ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Furthermore, given that the relationship between Î´ and Î¸ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.Â«Â less
High-order harmonic generation using a high-repetition-rate turnkey laser
Lorek, E. Larsen, E. W.; Heyl, C. M.; CarlstrÃ¶m, S.; Mauritsson, J.; PaleÄek, D.; Zigmantas, D.
2014-12-15
We generate high-order harmonics at high pulse repetition rates using a turnkey laser. High-order harmonics at 400 kHz are observed when argon is used as target gas. In neon, we achieve generation of photons with energies exceeding 90 eV (âˆ¼13 nm) at 20 kHz. We measure a photon flux of up to 4.4 Ã— 10{sup 10} photons per second per harmonic in argon at 100 kHz. Many experiments employing high-order harmonics would benefit from higher repetition rates, and the user-friendly operation opens up for applications of coherent extreme ultra-violet pulses in new research areas.
High-order harmonic generation at a repetition rate of 100 kHz
Lindner, F.; Stremme, W.; Schaetzel, M. G.; Grasbon, F.; Paulus, G. G.; Walther, H.; Hartmann, R.; Strueder, L.
2003-07-01
We report high-order harmonic generation (HHG) in rare gases using a femtosecond laser system with a very high repetition rate (100 kHz) and low pulse energy (7 {mu}J). To our knowledge, this is the highest repetition rate reported to date for HHG. The tight focusing geometry required to reach sufficiently high intensities implies low efficiency of the process. Harmonics up to the 45th order are nevertheless generated and detected. We show evidence of clear separation and selection of quantum trajectories by moving the gas jet with respect to the focus, in agreement with the theoretical predictions of the semiclassical model of HHG.
Layden, B.; Cairns, Iver H.; Robinson, P. A.; Percival, D. J.
2011-02-15
Three-wave interactions in plasmas are described, in the framework of kinetic theory, by the quadratic response tensor (QRT). The cold-plasma QRT is a common approximation for interactions between three fast waves. Here, the first-order thermal correction (FOTC) to the cold-plasma QRT is derived for interactions between three fast waves in a warm unmagnetized collisionless plasma, whose particles have an arbitrary isotropic distribution function. The FOTC to the cold-plasma QRT is shown to depend on the second moment of the distribution function, the phase speeds of the waves, and the interaction geometry. Previous calculations of the rate for second harmonic plasma emission (via Langmuir-wave coalescence) assume the cold-plasma QRT. The FOTC to the cold-plasma QRT is used here to calculate the FOTC to the second harmonic emission rate, and its importance is assessed in various physical situations. The FOTC significantly increases the rate when the ratio of the Langmuir phase speed to the electron thermal speed is less than about 3.
References Publications Definitions definitions LCA Harmonization Notice: Results for natural gas (conventional and unconventional) will be updated soon, please check back...
Harmonics and Resonance Issues with Wind Plants
Bradt, M.; Badrzadeh, Babak; Camm, E H; Castillo, Nestor; Mueller, David; Siebert, T.; Schoene, Jens; Smith, Travis M; Starke, Michael R; Walling, R.
2011-01-01
Wind plants are susceptible to lightly-damped resonances which can attract and amplify ambient grid harmonic distortion and magnify wind turbine harmonic generation. Long-accepted harmonic modeling assumptions and practices are not appropriate for wind plants. VSCs are not ideal current sources and grid impedance is important. Attention to modeling detail and thorough evaluation over range of conditions is critical to meaningful analysis. In general, wind turbines are very slight sources of harmonics. Most harmonic issues are a result of resonance, caused by capacitor banks (for reactive power compensation) or from the extensive underground cabling in a collector system. Converter controls instability can be exacerbated by power system resonances. In some cases this has caused severe voltage distorDon and other problems. The IEEE 519 recommended guidelines are very restrictive. I recommend that they are used to resolve serious harmonic issues, and not to create petty problems.
Spakovszky, Z.S.; Weigl, H.J.; Paduano, J.D.; Schalkwyk, C.M. van; Suder, K.L.; Bright, M.M.
1999-07-01
This paper presents the first attempt to stabilize rotating stall in a single-stage transonic axial flow compressor with inlet distortion using active feedback control. The experiments were conducted at the NASA Lewis Research Center on a single-stage transonic core compressor inlet stage. An array of 12 jet injectors located upstream of the compressor was used for forced response testing and feedback stabilization. Results for a circumferential total pressure distortion of about one dynamic head and a 120 deg extent (DC(60){equals}0.61) are reported in this paper. Part 1 (Spaskovszky et al., 1999) reports results for radial distortion. Control laws were designed using empirical transfer function estimates determined from forced response results. Distortion introduces coupling between the harmonics of circumferential pressure perturbations, requiring multivariable identification and control design techniques. The compressor response displayed a strong first spatial harmonic, dominated by the well-known incompressible Moore-Greitzer mode. Steady axisymmetric injection of 4 percent of the compressor mass flow resulted in a 6.2 percent reduction of stalling mass flow. Constant gain feedback, using unsteady asymmetric injection, yielded a further range extension of 9 percent. A more sophisticated robust H{sub {infinity}} controller allowed a reduction in stalling mass flow of 10.2 percent relative to steady injection, yielding a total reduction in stalling mass flow of 16.4 percent.
Bennett, Charles L.
2009-10-20
A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.
System and methods for reducing harmonic distortion in electrical converters
Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M
2013-12-03
Systems and methods are provided for delivering energy using an energy conversion module. An exemplary method for delivering energy from an input interface to an output interface using an energy converison module coupled between the input interface and the output interface comprises the steps of determining an input voltage reference for the input interface based on a desired output voltage and a measured voltage and the output interface, determining a duty cycle control value based on a ratio of the input voltage reference and the measured voltage, operating one or more switching elements of the energy conversion module to deliver energy from the input interface to the output interface to the output interface with a duty cycle influenced by the dute cycle control value.
Bennett, Charles L.; Sewall, Noel; Boroa, Carl
2014-08-19
An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.
Reduced Switching Frequency Active Harmonic Elimination for Multilevel Converters
Du, Zhong; Tolbert, Leon M; Chiasson, John N; Ozpineci, Burak
2008-01-01
This paper presents a reduced switching-frequency active-harmonic-elimination method (RAHEM) to eliminate any number of specific order harmonics of multilevel converters. First, resultant theory is applied to transcendental equations to eliminate low-order harmonics and to determine switching angles for a fundamental frequency-switching scheme. Next, based on the number of harmonics to be eliminated, Newton climbing method is applied to transcendental equations to eliminate high-order harmonics and to determine switching angles for the fundamental frequency-switching scheme. Third, the magnitudes and phases of the residual lower order harmonics are computed, generated, and subtracted from the original voltage waveform to eliminate these low-order harmonics. Compared to the active-harmonic-elimination method (AHEM), which generates square waves to cancel high-order harmonics, RAHEM has lower switching frequency. The simulation results show that the method can effectively eliminate all the specific harmonics, and a low total harmonic distortion (THD) near sine wave is produced. An experimental 11-level H-bridge multilevel converter with a field-programmable gate-array controller is employed to experimentally validate the method. The experimental results show that RAHEM does effectively eliminate any number of specific harmonics, and the output voltage waveform has low switching frequency and low THD.
Voltage distortion in distribution feeders with nonlinear loads
Emanuel, A.E.; Janczak, J. ); Pileggi, D.J.; Gulachenski, E.M.; Root, C.E.; Breen, M. ); Gentile, T.J. )
1994-01-01
The voltage of three real-life 13.8kV feeders supplying customers with non-linear loads was analyzed by means of computer simulations. Three classes of non-linear loads were considered. Each class is characteristic for different types of ac to dc converters such as the input dc supply used for adjustable-speed-drives, battery chargers, PC's, TV's and electronically ballasted lights. The analysis is based on the determination of the most harmonic susceptible busses and their response to each harmonic frequency. A new expeditive method that takes into account the background harmonic voltage phasor, and an equivalent bus impedance was developed and used to compute the maximum non-linear loads that yields VTHD = 5%, (Voltage Total Harmonic Distortion). The main conclusion of this work is that when mitigation methods are not used, for a 15kV class feeder with a maximum 10MVA installed load, the total non-linear residential load should not exceed 300kW if the ITHD <30% (Current Total Harmonic Distortion), and 100kW if ITHD >100%.
Voltage and current transducer harmonic sensitivity analysis
Domijan, A. Jr.
1998-10-01
This work presents the results of a study on the sensitivity of real power as a function of harmonic magnitudes and angles. These transducers are ones that are typical of those used, in combination with metering instruments, to measure the performance of variable-speed drives. Frequency response tests were performed on two different signal transducers (voltage and current) up to the 50th harmonic in accordance with Institute of Electrical and Electronics engineers (IEEE) Standard 519-1992. Results from these tests gave maximum magnitude percentage errors of {minus}2.2% (at 15th harmonic) and maximum phase shifts of +3.3 (at 50th harmonic) for voltage (at 120 V) and maximum percentage error of {minus}1.9% (at 2d harmonic) and maximum phase shift of {minus}4.3 for current (at 5 A). Using the percentage errors at 120 V and 5 A throughout the 60 Hz through 3,000 Hz range, in harmonic magnitudes and harmonic angles exhibited by the transducers, mathematical analysis was done on two sets of distorted signals and a sensitivity analysis was done to determine what would be the impact of the actual transducers` errors on the final calculation of real power. Variations of {minus}1.48% and {minus}1.60% were obtained. Then, assuming a maximum 5% change in current harmonic magnitudes and angles, a maximum real power percent variation of 0.02% and 2.47% were obtained for the same two sets of field-recorded voltage and current waveforms sets.
Mitigation of harmonic disturbance at pumped storage power station with static frequency converter
Chiang, J.C.; Wu, C.J.; Yen, S.S.
1997-09-01
This paper investigates the harmonic distortion problem and mitigation method at the Mingtan Pumped Storage Power Station in Taiwan, where six 300 MVA synchronous generators/motors are started by a static frequency converter (SFC) before the pumping stage. Since the SFC uses 6-pulse rectifier technique, a large amount of harmonic currents are produced during the starting period. The harmonic distortion level at each bus of the power plant was very high. Especially, the total harmonic distortion (THD) of current at the lighting feeder reached up to 184%, so that power fuses were burned out. At first a 5 mH reactor was inserted in the SFC feeder and a 5th order and high pass filter was installed. However, the harmonic distortion levels were still too high, but there is no space for additional higher-order filters. Finally, the SFC is fed with an individual transformer, and the harmonic disturbance problem is avoided. This paper also gives computer simulations to investigate the harmonic distortion problems and verify the mitigation methods.
Harmonization of Biodiesel Specifications
Alleman, T. L.
2008-02-01
Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.
A multiple deep attenuation frequency window for harmonic analysis in power systems
Daponte, P.; Falcomata, G. . Dept. di Elettronica Informatica e Sistemistica); Testa, A. . Dipt. di Ingegneria Elettrica)
1994-04-01
A novel window is presented and applied in electrical power system harmonic analysis. The goal of increasing the resolvability of low magnitude non-harmonic tones close in frequency to higher magnitude harmonics and the detectability of very low magnitude high frequency harmonics is pursued. The proposed window is derived from the Tseng window; its spectrum can be modeled in the synthesis stage and it is characterized by a narrow width main lobe and by sidelobes which are very low in correspondence to some specified frequencies. Numerical experiments demonstrate the performances and the usefulness of the new window in resolving periodic distorted waveforms in power systems.
Josh Harmon | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Josh Harmon About Us Josh Harmon - Intern, EERE International Most Recent Win-Win Opportunities at the Sixth Annual U.S.-China Energy Efficiency Forum October 30
High-order harmonic generation in a capillary discharge
Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.
2010-06-01
A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.
Summers, M.A.; Eimerl, D.; Boyd, R.D.
1982-06-10
A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).
Summers, Mark A.; Eimerl, David; Boyd, Robert D.
1985-01-01
A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").
Bennett, Charles L.
2016-03-22
A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.
Development of the third harmonic SC cavity at Fermilab
Nikolay Solyak et al.
2004-08-05
The third harmonic 3.9 GHz superconducting cavity was recently proposed by DESY for a new generation of high brightness photo-injector (TTF photoinjector-2) to compensate nonlinear distortion of the longitudinal phase space due to RF curvature of the 1.3 GHz TESLA cavities [1,2]. Installation of the 3rd harmonic cavity will allow us to generate ultra-short (<50 {micro}m rms) highly charged electron bunches with an extremely small transverse normalized emittance (<1 {micro}m). This is required to support a new generation of linear colliders, free electron lasers and synchrotron radiation sources. In this paper we present the current status of the 3rd harmonic cavity being developed at Fermilab. We discuss the design procedure, the building and testing of the copper and niobium half-cells and components, the design of input and HOM couplers.
Booster double harmonic setup notes
Gardner, C. J.
2015-02-17
The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.
Quaternionic Harmonic Analysis of Texture
Energy Science and Technology Software Center (OSTI)
2012-10-01
QHAT uses various functions and data structures native to MATLAB to analyze crystallographic texture information using harmonic functions on the space of rotations represented as normalized quaternions. These harmonic functions generalize the spherical harmonics in three dimensions, and form the basis for the irreducible representations of the four-dimensional rotation group. This allows the basis of harmonic functions to be reduced to linearly independent combinations that satisfy the crystal and sample symmetry point groups.
Superconductivity Distorted by the Coexisting Pseudogap in the...
Office of Scientific and Technical Information (OSTI)
Superconductivity Distorted by the Coexisting Pseudogap in the Antinodal Region of ... Citation Details In-Document Search Title: Superconductivity Distorted by the Coexisting ...
Zigzag laser with reduced optical distortion
Albrecht, Georg F.; Comaskey, Brian; Sutton, Steven B.
1994-01-01
The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends.
Zigzag laser with reduced optical distortion
Albrecht, G.F.; Comaskey, B.; Sutton, S.B.
1994-04-19
The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends. 11 figures.
Reflective optical imaging systems with balanced distortion
Hudyma, Russell M.
2001-01-01
Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.
Reflective optical imaging system with balanced distortion
Chapman, Henry N.; Hudyma, Russell M.; Shafer, David R.; Sweeney, Donald W.
1999-01-01
An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.
Dark-matter harmonics beyond annual modulation
Lee, Samuel K.; Lisanti, Mariangela; Safdi, Benjamin R. E-mail: mlisanti@princeton.edu
2013-11-01
The count rate at dark-matter direct-detection experiments should modulate annually due to the motion of the Earth around the Sun. We show that higher-frequency modulations, including daily modulation, are also present and in some cases are nearly as strong as the annual modulation. These higher-order modes are particularly relevant if (i) the dark matter is light, O(10) GeV, (ii) the scattering is inelastic, or (iii) velocity substructure is present; for these cases, the higher-frequency modes are potentially observable at current and ton-scale detectors. We derive simple expressions for the harmonic modes as functions of the astrophysical and geophysical parameters describing the Earth's orbit, using an updated expression for the Earth's velocity that corrects a common error in the literature. For an isotropic halo velocity distribution, certain ratios of the modes are approximately constant as a function of nuclear recoil energy. Anisotropic distributions can also leave observable features in the harmonic spectrum. Consequently, the higher-order harmonic modes are a powerful tool for identifying a potential signal from interactions with the Galactic dark-matter halo.
Echo-Enabled Harmonic Generation
Stupakov, Gennady; /SLAC
2012-06-28
A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.
Echo-Enabled Harmonic Generation
Stupakov, Gennady
2010-08-25
A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.
Harmonic analysis of electrical distribution systems
1996-03-01
This report presents data pertaining to research on harmonics of electric power distribution systems. Harmonic data is presented on RMS and average measurements for determination of harmonics in buildings; fluorescent ballast; variable frequency drive; georator geosine harmonic data; uninterruptible power supply; delta-wye transformer; westinghouse suresine; liebert datawave; and active injection mode filter data.
Redshift distortions of galaxy correlation functions
Fry, J.N. Florida Univ., Gainesville, FL . Dept. of Physics); Gaztanaga, E. Oxford Univ. . Dept. of Physics)
1993-05-12
To examine how peculiar velocities can affect the 2-, 3-, and 4-point correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r[sub 0] and power index [gamma] of the 2-point correlation, [anti [Xi
Metal-induced charge transfer, structural distortion, and orbital...
Office of Scientific and Technical Information (OSTI)
Metal-induced charge transfer, structural distortion, and orbital order in SrTiO3 thin films Prev Next Title: Metal-induced charge transfer, structural distortion, and ...
Potential-well distortion in barrier Rf
King Ng
2004-04-29
Head-tail asymmetry has been observed in the longitudinal beam profiles in the Fermilab Recycler Ring where protons or antiprotons are stored in rf barrier buckets. The asymmetry is caused by the distortion of the rf potential well in the presence of resistive impedance. Gaussian energy distribution can fit the observed asymmetric beam profile but not without discrepancy. It can also fit the measured energy distribution. On the other hand, generalized elliptic distribution gives a better fit to the beam profile. However, it fails to reproduce the observed energy distribution.
Prediction of Part Distortion in Die Casting
R. Allen Miller
2005-03-30
The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.
Third harmonic stimulated Raman backscattering of laser in a magnetized plasma
Paknezhad, Alireza; Dorranian, Davoud
2013-09-15
This article studies the nonlinear Raman shifted third harmonic backscattering of an intense extraordinary laser wave through a homogenous transversely magnetized cold plasma. Due to the relativistic nonlinearity, the plasma dynamic is modified in the presence of transversely magnetic field, and this can generate the third harmonic scattered wave and an electrostatic upper hybrid wave via the Raman scattering process. Using the nonlinear wave equation, the mechanism of nonlinear third harmonic Raman scattering is discussed in detail to obtain the maximum growth rate of instability in the mildly relativistic regime. The growth rate decreases as the static magnetic field increases. It also increases with the pump wave amplitude.
Testing cosmic geometry without dynamic distortions using voids
Hamaus, Nico; Sutter, P.M.; Lavaux, Guilhem; Wandelt, Benjamin D. E-mail: sutter@iap.fr E-mail: wandelt@iap.fr
2014-12-01
We propose a novel technique to probe the expansion history of the Universe based on the clustering statistics of cosmic voids. In particular, we compute their two-point statistics in redshift space on the basis of realistic mock galaxy catalogs and apply the Alcock-Paczynski test. In contrast to galaxies, we find void auto-correlations to be marginally affected by peculiar motions, providing a model-independent measure of cosmological parameters without systematics from redshift-space distortions. Because only galaxy-galaxy and void-galaxy correlations have been considered in these types of studies before, the presented method improves both statistical and systematic uncertainties on the product of angular diameter distance and Hubble rate, furnishing the potentially cleanest probe of cosmic geometry available to date.
Redshift-space distortions in massive neutrino and evolving dark...
Office of Scientific and Technical Information (OSTI)
Redshift-space distortions in massive neutrino and evolving dark energy cosmologies ... This content will become publicly available on March 16, 2017 Title: Redshift-space ...
Simulation of Distortion and Residual Stress Development During...
Office of Scientific and Technical Information (OSTI)
Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel ... Available experimental steel casting heat treatment data was determined to be of ...
Overcoming residual stresses and machining distortion in the...
Office of Scientific and Technical Information (OSTI)
in the production of aluminum alloy satellite boxes. Citation Details In-Document Search Title: Overcoming residual stresses and machining distortion in the production of ...
Killing vector fields and harmonic superfield theories
Groeger, Josua
2014-09-15
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Nucleon-nucleon scattering in a harmonic potential (Journal Article...
Office of Scientific and Technical Information (OSTI)
Journal Article: Nucleon-nucleon scattering in a harmonic potential Citation Details In-Document Search Title: Nucleon-nucleon scattering in a harmonic potential Authors: Luu, T ; ...
Half-harmonic Kelvin probe force microscopy with transfer function...
Office of Scientific and Technical Information (OSTI)
Using linear and half-harmonic BE enables quantitative correction of the cantilever transfer function. Half-harmonic band excitation Kelvin probe force microscopy (HBE KPFM) thus ...
Generation of even harmonics in coupled quantum dots (Journal...
Office of Scientific and Technical Information (OSTI)
Generation of even harmonics in coupled quantum dots Citation Details In-Document Search Title: Generation of even harmonics in coupled quantum dots Using the spatial-temporal...
A high-fidelity harmonic drive model.
Preissner, C.; Royston, T. J.; Shu, D.
2012-01-01
In this paper, a new model of the harmonic drive transmission is presented. The purpose of this work is to better understand the transmission hysteresis behavior while constructing a new type of comprehensive harmonic drive model. The four dominant aspects of harmonic drive behavior - nonlinear viscous friction, nonlinear stiffness, hysteresis, and kinematic error - are all included in the model. The harmonic drive is taken to be a black box, and a dynamometer is used to observe the input/output relations of the transmission. This phenomenological approach does not require any specific knowledge of the internal kinematics. In a novel application, the Maxwell resistive-capacitor hysteresis model is applied to the harmonic drive. In this model, sets of linear stiffness elements in series with Coulomb friction elements are arranged in parallel to capture the hysteresis behavior of the transmission. The causal hysteresis model is combined with nonlinear viscous friction and spectral kinematic error models to accurately represent the harmonic drive behavior. Empirical measurements are presented to quantify all four aspects of the transmission behavior. These measurements motivate the formulation of the complete model. Simulation results are then compared to additional measurements of the harmonic drive performance.
Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings
Beckermann, Christoph; Carlson, Kent
2011-07-22
the Navy-C ring (a classical test shape for heat treatment experiments) for several carbon and low alloy steels in order to generate data necessary to validate the code. The predicted distortions were in reasonable agreement with the experimentally measured values. However, the final distortions in the castings were small, making it difficult to determine how accurate the predictions truly are. It is recommended that further validation of the software be performed with the aid of additional experiments with large production steel castings that experience significant heat treatment distortions. It is apparent from this research that the mechanical properties of the bonded sand used for cores and sand molds are key in producing accurate stress simulation results. Because of this, experiments were performed to determine the temperature-dependent elastic modulus of a resin-bonded sand commonly utilized in the steel casting industry. The elastic modulus was seen to vary significantly with heating and cooling rates. Also, the retained room temperature elastic modulus after heating was seen to degrade significantly when the sand was heated above 125Â°C. The elastic modulus curves developed in this work can readily be utilized in casting simulation software. Additional experiments with higher heating rates are recommended to determine the behavior of the elastic modulus in the sand close to the mold-metal interface. The commercial heat treatment residual stress and distortion code, once fully validated, is expected to result in an estimated energy savings of 2.15 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology.
Impact of Distortions on Fiber Position Location in the dark...
Office of Scientific and Technical Information (OSTI)
The mapping of the sky to the focal plane, needed to position the fibers accurately, is described in detail. A major challenge is dealing with the large amount of distortion ...
Harmonics in a Wind Power Plant: Preprint
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
... At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented ...
Harmon, Illinois: Energy Resources | Open Energy Information
Map This article is a stub. You can help OpenEI by expanding it. Harmon is a village in Lee County, Illinois. It falls under Illinois' 14th congressional district.12...
SEVENTH HARMONIC 20 GHz CO-GENERATOR
Hirshfield, Jay L
2014-04-08
To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.
NREL: Energy Analysis - Life Cycle Assessment Harmonization
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Energy Analysis Printable Version Life Cycle Assessment Harmonization Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet) Cover of the Life Cycle Greenhouse Gas Emissions from Electricity Generation factsheet Download the Fact Sheet The U.S. Department of Energy enlisted NREL to review and "harmonize" life cycle assessments (LCA) of electricity generation technologies. Hundreds of assessments have been published, often with considerable variability in results.
Quantum harmonic oscillator with superoscillating initial datum
Buniy, R. V.; Struppa, D. C.; Colombo, F.; Sabadini, I.
2014-11-15
In this paper, we study the evolution of superoscillating initial data for the quantum driven harmonic oscillator. Our main result shows that superoscillations are amplified by the harmonic potential and that the analytic solution develops a singularity in finite time. We also show that for a large class of solutions of the SchrÃ¶dinger equation, superoscillating behavior at any given time implies superoscillating behavior at any other time.
HARMONIC CAVITY PERFORMANCE FOR NSLS-II
BLEDNYKH, A.; KRINSKY, S.; PODOBEDOV, B.; ROSE, J.; TOWNE, N.; WANG, J.M.
2005-05-15
NSLS-II is a 3 GeV ultra-high brightness storage ring planned to succeed the present NSLS rings at BNL. Ultralow emittance combined with short bunch length means that it is critical to minimize the effects of Touschek scattering and coherent instabilities. Improved lifetime and stability can be achieved by including a third-harmonic RF cavity in the baseline design. This paper describes the required harmonic RF parameters and the expected system performance.
Microsoft Word - Global Harmonization Classifications.docx
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Harmonization Classifications: The following is prepared for your understanding of the new Global Harmonization System Physical hazards ï‚· H200: Unstable explosive ï‚· H201: Explosive; mass explosion hazard ï‚· H202: Explosive; severe projection hazard ï‚· H203: Explosive; fire, blast or projection hazard ï‚· H204: Fire or projection hazard ï‚· H205: May mass explode in fire ï‚· H220: Extremely flammable gas ï‚· H221: Flammable gas ï‚· H222: Extremely flammable aerosol ï‚· H223: Flammable
Dual aperture dipole magnet with second harmonic component
Praeg, W.F.
1983-08-31
An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.
Dual aperture dipole magnet with second harmonic component
Praeg, Walter F.
1985-01-01
An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.
PULSAR PAIR CASCADES IN A DISTORTED MAGNETIC DIPOLE FIELD
Harding, Alice K.; Muslimov, Alex G.
2011-01-01
We investigate the effect of a distorted neutron star dipole magnetic field on pulsar pair cascade multiplicity and pair death lines. Using a simple model for a distorted dipole field that produces an offset polar cap (PC), we derive the accelerating electric field above the PC in space-charge-limited flow. We find that even a modest azimuthally asymmetric distortion can significantly increase the accelerating electric field on one side of the PC and, combined with a smaller field line radius of curvature, leads to larger pair multiplicity. The death line for producing pairs by curvature radiation moves downward in the P- P-dot diagram, allowing high pair multiplicities in a larger percentage of the radio pulsar population. These results could have important implications for the radio pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic ray positrons.
A hydrodynamical approach to CMB ?-distortion from primordial perturbations
Pajer, Enrico; Zaldarriaga, Matias E-mail: matiasz@ias.edu
2013-02-01
Spectral distortion of the cosmic microwave background provides a unique opportunity to probe primordial perturbations on very small scales by performing large-scale measurements. We discuss in a systematic and pedagogic way all the relevant physical phenomena involved in the production and evolution of the ?-type spectral distortion. Our main results agree with previous estimates (in particular we show that a recently found factor of 3/4 arises from relativistic corrections to the wave energy). We also discuss several subleading corrections such as adiabatic cooling and the effects of bulk viscosity, baryon loading and photon heat conduction. Finally we provide formulae for the spatial dependence of ?-distortions and its transfer function between the end of the ?-era and now.
High harmonic phase in molecular nitrogen
McFarland, Brian K.
2009-10-17
Electronic structure in atoms and molecules modulates the amplitude and phase of high harmonic generation (HHG). We report measurements of the high harmonic spectral amplitude and phase in N{sub 2}. The phase is measured interferometrically by beating the N{sub 2} harmonics with those of an Ar reference oscillator in a gas mixture. A rapid phase shift of 0.2{pi} is observed in the vicinity of the HHG spectral minimum, where a shift of {pi} had been presumed [J. Itatani et al., Nature 432, 867 (2004)]. We compare the phase measurements to a simulation of the HHG recombination step in N{sub 2} that is based on a simple interference model. The results of the simulation suggest that modifications beyond the simple interference model are needed to explain HHG spectra in molecules.
Low thermal distortion extreme-UV lithography reticle
Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.
2001-01-01
Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.
Low thermal distortion extreme-UV lithography reticle
Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.
2002-01-01
Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.
Low thermal distortion Extreme-UV lithography reticle and method
Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.
2002-01-01
Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.
Quantum stochastic thermodynamic on harmonic networks
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Deffner, Sebastian
2016-01-04
Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Furthermore, their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.
System for interferometric distortion measurements that define an optical path
Bokor, Jeffrey; Naulleau, Patrick
2003-05-06
An improved phase-shifting point diffraction interferometer can measure both distortion and wavefront aberration. In the preferred embodiment, the interferometer employs an object-plane pinhole array comprising a plurality of object pinholes located between the test optic and the source of electromagnetic radiation and an image-plane mask array that is positioned in the image plane of the test optic. The image-plane mask array comprises a plurality of test windows and corresponding reference pinholes, wherein the positions of the plurality of pinholes in the object-plane pinhole array register with those of the plurality of test windows in image-plane mask array. Electromagnetic radiation that is directed into a first pinhole of object-plane pinhole array thereby creating a first corresponding test beam image on the image-plane mask array. Where distortion is relatively small, it can be directly measured interferometrically by measuring the separation distance between and the orientation of the test beam and reference-beam pinhole and repeating this process for at least one other pinhole of the plurality of pinholes of the object-plane pinhole array. Where the distortion is relative large, it can be measured by using interferometry to direct the stage motion, of a stage supporting the image-plane mask array, and then use the final stage motion as a measure of the distortion.
Harmonic generation with multiple wiggler schemes
Bonifacio, R.; De Salvo, L.; Pierini, P.
1995-02-01
In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.
Strong Second Harmonic Generation from the Tantalum Thioarsenates...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Strong Second Harmonic Generation from the Tantalum Thioarsenates A3Ta2AsS11 (A K and ... and exhibit strong nonlinear optical (NLO) second harmonic generation (SHG) response. ...
Strongly Dispersive Transient Bragg Grating for High Harmonics
Farrell, J.; Spector, L.S.; Gaarde, M.B.; McFarland, B.K.; Bucksbaum, P.H.; Guhr, Markus; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.
2010-06-04
We create a transient Bragg grating in a high harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.
Bierbach, Jana; Yeung, Mark; Eckner, Erich; Roedel, Christian; Kuschel, Stephan; Zepf, Matt; Paulus, Gerhard G.
2015-05-01
Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3Â·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the ÂµJ range is measured. With the presented setup, relativistic surface high-harmonic generation becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.
Breast tissue decomposition with spectral distortion correction: A postmortem study
Ding, Huanjun; Zhao, Bo; Baturin, Pavlo; Behroozi, Farnaz; Molloi, Sabee
2014-10-15
Purpose: To investigate the feasibility of an accurate measurement of water, lipid, and protein composition of breast tissue using a photon-counting spectral computed tomography (CT) with spectral distortion corrections. Methods: Thirty-eight postmortem breasts were imaged with a cadmium-zinc-telluride-based photon-counting spectral CT system at 100 kV. The energy-resolving capability of the photon-counting detector was used to separate photons into low and high energy bins with a splitting energy of 42 keV. The estimated mean glandular dose for each breast ranged from 1.8 to 2.2 mGy. Two spectral distortion correction techniques were implemented, respectively, on the raw images to correct the nonlinear detector response due to pulse pileup and charge-sharing artifacts. Dual energy decomposition was then used to characterize each breast in terms of water, lipid, and protein content. In the meantime, the breasts were chemically decomposed into their respective water, lipid, and protein components to provide a gold standard for comparison with dual energy decomposition results. Results: The accuracy of the tissue compositional measurement with spectral CT was determined by comparing to the reference standard from chemical analysis. The averaged root-mean-square error in percentage composition was reduced from 15.5% to 2.8% after spectral distortion corrections. Conclusions: The results indicate that spectral CT can be used to quantify the water, lipid, and protein content in breast tissue. The accuracy of the compositional analysis depends on the applied spectral distortion correction technique.
Harmonic generation by circularly polarized laser beams propagating in plasma
Agrawal, Ekta; Hemlata,; Jha, Pallavi
2015-04-15
An analytical theory is developed for studying the phenomenon of generation of harmonics by the propagation of an obliquely incident, circularly polarized laser beam in homogeneous, underdense plasma. The amplitudes of second and third harmonic radiation as well as detuning distance have been obtained and their variation with the angle of incidence is analyzed. The amplitude of harmonic radiation increases with the angle of incidence while the detuning distance decreases, for a given plasma electron density. It is observed that the generated second and third harmonic radiation is linearly and elliptically polarized, respectively. The harmonic radiation vanishes at normal incidence of the circularly polarized laser beam.
Harmonics in a Wind Power Plant: Preprint
Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.
2015-04-02
Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.
Prolate spheroidal harmonic expansion of gravitational field
Fukushima, Toshio
2014-06-01
As a modification of the oblate spheroidal case, a recursive method is developed to compute the point value and a few low-order derivatives of the prolate spheroidal harmonics of the second kind, Q{sub nm} (y), namely the unnormalized associated Legendre function (ALF) of the second kind with its argument in the domain, 1 < y < âˆž. They are required in evaluating the prolate spheroidal harmonic expansion of the gravitational field in addition to the point value and the low-order derivatives of P-bar {sub nm}(t), the 4Ï€ fully normalized ALF of the first kind with its argument in the domain, |t| â‰¤ 1. The new method will be useful in the gravitational field computation of elongated celestial objects.
Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R
1982-09-01
Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.
Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print Wednesday, 28 February 2007 00:00 "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of
J. F. Wallace; D. Schwam
1998-10-01
The ultimate goal of this project is to increase die casting die life by using fast enough quenching rates to obtain good toughness and fatigue resistance in premium grade H-13 steel dies. The main tasks of the project were to compile a database on physical and mechanical properties of H-13; conduct gas quenching experiments to determine cooling rates of dies in difference vacuum furnaces; measure the as-quenched distortion of dies and the residual stresses; generate finite element analysis models to predict cooling rates, distortion, and residual stress of gas quenched dies; and establish rules and create PC-based expert system for prediction of cooling rates, distortion, and residual stress in vacuum/gas quenched H-13 dies. Cooling curves during gas quenching of H-13 blocks and die shapes have been measured under a variety of gas pressure. Dimensional changes caused by the gas quenching processes have been determined by accurate mapping of all surfaces with coordinate measuring machines before and after the quench. Residual stresses were determined by the ASTM E837 hole-drilling strain gage method. To facilitate the computer modeling work, a comprehensive database of H-13 mechanical and physical properties has been compiled. Finite element analysis of the heat treated shapes has been conducted using the TRAST/ABAQUS codes. There is a good fit between the predicted and measured distortion contours. However, the magnitude of the predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required before it can be used to predict distortion and residual stress in a quantitative manner. This last step is a prerequisite to generating rules for a reliable expert system.
One dimensional wavefront distortion sensor comprising a lens array system
Neal, D.R.; Michie, R.B.
1996-02-20
A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems. 8 figs.
One dimensional wavefront distortion sensor comprising a lens array system
Neal, Daniel R.; Michie, Robert B.
1996-01-01
A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems.
Probing correlations of early magnetic fields using Î¼-distortion
Ganc, Jonathan; Sloth, Martin S. E-mail: sloth@cp3.dias.sdu.dk
2014-08-01
The damping of a non-uniform magnetic field between the redshifts of about 10{sup 4} and 10{sup 6} injects energy into the photon-baryon plasma and causes the CMB to deviate from a perfect blackbody spectrum, producing a so-called Î¼-distortion. We can calculate the correlation (Î¼Â T) of this distortion with the temperature anisotropy T of the CMB to search for a correlation (Â B{sup 2}Î¶) between the magnetic field B and the curvature perturbation Î¶; knowing the (Â B{sup 2}Î¶) correlation would help us distinguish between different models of magnetogenesis. Since the perturbations which produce the Î¼-distortion will be much smaller scale than the relevant density perturbations, the observation of this correlation is sensitive to the squeezed limit of (Â B{sup 2}Î¶), which is naturally parameterized by b{sub NL} (a parameter defined analogously to f{sub NL}). We find that a PIXIE-like CMB experiments has a signal to noise S/Nâ‰ˆÂ 1.0Â Ã—Â b{sub NL}Â ( B-tilde {sub Î¼}/10nG){sup 2}, where B-tilde {sub Î¼} is the magnetic field's strength on Î¼-distortion scales normalized to today's redshift; thus, a 10 nG field would be detectable with b{sub NL}=O(1). However, if the field is of inflationary origin, we generically expect it to be accompanied by a curvature bispectrum (Î¶{sup 3}) induced by the magnetic field. For sufficiently small magnetic fields, the signal (Â B{sup 2}Â Î¶) will dominate, but for B-tilde {sub Î¼}âˆ¼>Â 1 nG, one would have to consider the specifics of the inflationary magnetogenesis model. We also discuss the potential post-magnetogenesis sources of a (Â B{sup 2}Î¶) correlation and explain why there will be no contribution from the evolution of the magnetic field in response to the curvature perturbation.
Algal Supply System Design - Harmonized Version
Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli
2013-03-01
The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.
Separation of High Order Harmonics with Fluoride Windows
Allison, Tom; van Tilborg, Jeroen; Wright, Travis; Hertlein, Marcus; Falcone, Roger; Belkacem, Ali
2010-08-02
The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.
Harmonization of Federal and International Regulations | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy Harmonization of Federal and International Regulations Harmonization of Federal and International Regulations Update of the U.S. Department of Transportation (DOT) Pipeline and Hazardous Materials Safety Administration (PHMSA). Harmonization of Federal and International Regulations (636.69 KB) More Documents & Publications DOE-STD-5507-2013 Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities FAQS Reference Guide - NNSA Package
Numerical Verification of Bounce Harmonic Resonances in Neoclassical
Office of Scientific and Technical Information (OSTI)
Toroidal Viscosity for Tokamaks (Technical Report) | SciTech Connect Numerical Verification of Bounce Harmonic Resonances in Neoclassical Toroidal Viscosity for Tokamaks Citation Details In-Document Search Title: Numerical Verification of Bounce Harmonic Resonances in Neoclassical Toroidal Viscosity for Tokamaks This Letter presents the rst numerical veri cation for the bounce-harmonic (BH) resonance phenomena of the neoclassical transport in a tokamak perturbed by non-axisymmetric magnetic
Cammin, Jochen E-mail: ktaguchi@jhmi.edu; Taguchi, Katsuyuki E-mail: ktaguchi@jhmi.edu; Xu, Jennifer; Barber, William C.; Iwanczyk, Jan S.; Hartsough, Neal E.
2014-04-15
Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra and count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi et al., “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011)]. The
Generation of even harmonics in coupled quantum dots
Guo Shifang; Duan Suqing; Yang Ning; Chu Weidong; Zhang Wei
2011-07-15
Using the spatial-temporal symmetry principle we developed recently, we propose an effective scheme for even-harmonics generation in coupled quantum dots. The relative intensity of odd and even harmonic components in the emission spectrum can be controlled by tuning the dipole couplings among the dots, which can be realized in experiments by careful design of the nanostructures. In particular, pure 2nth harmonics and (2n+1)th harmonics (where n is an integer) can be generated simultaneously with polarizations in two mutual perpendicular directions in our systems. An experimental design of the coupled dots system is presented.
Optical Third-Harmonic Generation in Graphene (Journal Article...
Office of Scientific and Technical Information (OSTI)
Published Article: Optical Third-Harmonic Generation in Graphene Title: Optical ... Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud ...
A Simple Harmonic Universe (Technical Report) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
RELATIVITY THEORY; HARMONICS; PARTICLE PRODUCTION; UNIVERSE Theory-HEP,HEPPH, HEPTH, ASTRO, GRQC Word Cloud More Like This Full Text preview image File size NAView Full Text...
Limitations and improvements for harmonic generation measurements
Best, Steven; Croxford, Anthony; Neild, Simon
2014-02-18
A typical acoustic harmonic generation measurement comes with certain limitations. Firstly, the use of the plane wave-based analysis used to extract the nonlinear parameter, Î², ignores the effects of diffraction, attenuation and receiver averaging which are common to most experiments, and may therefore limit the accuracy of a measurement. Secondly, the method usually requires data obtained from a through-transmission type setup, which may not be practical in a field measurement scenario where access to the component is limited. Thirdly, the technique lacks a means of pinpointing areas of damage in a component, as the measured nonlinearity represents an average over the length of signal propagation. Here we describe a three-dimensional model of harmonic generation in a sound beam, which is intended to provide a more realistic representation of a typical experiment. The presence of a reflecting boundary is then incorporated into the model to assess the feasibility of performing single-sided measurements. Experimental validation is provided where possible. Finally, a focusing acoustic source is modelled to provide a theoretical indication of the afforded advantages when the nonlinearity is localized.
Higher order harmonic detection for exploring nonlinear interactions
Vasudevan, Rama K; Okatan, M. B.; Rajapaksa, Indrajit; Kim, Yunseok; Marincel, Dan; Trolier-McKinstry, Susan; Jesse, Stephen; Nagarajan, Valanoor; Kalinin, Sergei V
2013-01-01
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, decoupling the contributions of competing or co-existing mechanisms to the system response can be achieved through investigation of higher order harmonics. Here, a method using band excitation scanning probe microscopy to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The utility of the technique is demonstrated by probing the first three harmonics of strain for a well-known system, a model Pb(Zr1-xTix)O3 ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, nanoscale measurements of the second harmonic response with field reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of combining proximal probe techniques with nth harmonic detection methods in exploring and decoupling nonlinear dynamics in a wide variety of nanoscale materials.
Basic principles of the surface harmonics method: Flat geometry
Kovalishin, A. A.
2011-12-15
The basic principles of the surface harmonics method are described. A one-dimensional problem is used to exemplify the specific features of the method and the algorithms for construction of finite-difference equations. The objective of this study is to popularize the surface harmonics method among specialists.
Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals
Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals
STAR FORMATION AND DUST OBSCURATION IN THE TIDALLY DISTORTED GALAXY NGC 2442
Pancoast, Anna; Sajina, Anna; Lacy, Mark; Noriega-Crespo, Alberto; Rho, Jeonghee
2010-11-01
We present a detailed investigation of the morphological distribution and level of star formation and dust obscuration in the nearby tidally distorted galaxy NGC 2442. Spitzer images in the IR at 3.6, 4.5, 5.8, 8.0, and 24 {mu}m and GALEX images at 1500 A and 2300 A allow us to resolve the galaxy on scales between {approx}240 and 600 pc. We supplement these with archival data in the B, J, H, and K bands. We use the 8 {mu}m, 24 {mu}m, and FUV (1500 A) emission to study the star formation rate (SFR). We find that, globally, these tracers of star formation give a range of results of {approx}6-11 M{sub sun} yr{sup -1}, with the dust-corrected FUV giving the highest value of SFR. We can reconcile the UV- and IR-based estimates by adopting a steeper UV extinction curve that lies in between the starburst (Calzetti) and Small Magellanic Cloud extinction curves. However, the regions of the highest SFR intensity along the spiral arms are consistent with a starburst-like extinction. Overall, the level of star formation we find is higher than previously published for this galaxy, by about a factor of 2, which, contrary to previous conclusions, implies that the interaction that caused the distorted morphology of NGC 2442 likely also triggered increased levels of star formation activity. We also find marked asymmetry in that the north spiral arm has a noticeably higher SFR than the southern arm. The tip of the southern spiral arm shows a likely tidally distorted peculiar morphology. It is UV bright and shows unusual IRAC colors, consistent with other published tidal features IRAC data. Outside of the spiral arms, we discover what appears to be a superbubble, {approx}1.7 kpc across, which is seen most clearly in the IRAC images. Significant H{alpha}, UV, and IR emission in the area also suggest vigorous ongoing star formation. A known, recent supernova (SN 1999ga) is located at the edge of this superbubble. Although speculative at this stage, this area suggests a large star
Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; ,
2012-02-15
Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.
Interaction between O{sub 2} and ZnO films probed by time-dependent second-harmonic generation
Andersen, S. V.; Vandalon, V.; Bosch, R. H. E. C.; Loo, B. W. H. van de; Kessels, W. M. M.; Pedersen, K.
2014-02-03
The interaction between O{sub 2} and ZnO thin films prepared by atomic layer deposition has been investigated by time-dependent second-harmonic generation, by probing the electric field induced by adsorbed oxygen molecules on the surface. The second-harmonic generated signal decays upon laser exposure due to two-photon assisted desorption of O{sub 2}. Blocking and unblocking the laser beam for different time intervals reveals the adsorption rate of O{sub 2} onto ZnO. The results demonstrate that electric field induced second-harmonic generation provides a versatile non-contact probe of the adsorption kinetics of molecules on ZnO thin films.
Roles of poloidal rotation in the q = 1 high-order harmonic tearing modes in a tokamak plasma
Wei Lai; Wang Zhengxiong
2013-01-15
Roles of poloidal rotation in stabilizing the m/n=1/1 kink-tearing mode and exciting its high-order harmonic tearing modes are numerically investigated by using a reduced magnetohydrodynamic model. It is found that the high-order harmonic tearing modes, such as m/n=2/2, m/n=3/3, or even much higher-m harmonics, can be destabilized so significantly by rotation shear as to be more unstable than or comparable to the m/n=1/1 mode. Moreover, the short wave-length Kelvin- Helmholtz (KH) instabilities can be excited in the large rotation shear regime. The scaling power laws of the linear growth rate for each harmonic mode in different rotation shear regimes are verified by the previous relevant theoretical results based on the non-constant-{psi} and constant-{psi} behavior categories in tearing modes. During the nonlinear evolution, the m/n=2/2 mode dominated phase first appears and then is followed by the m/n=1/1 mode dominated nonlinear phase instead. Afterward, some smaller sub-islands due to the high-order harmonics are produced in the large irregular m=1 crescent-shaped island, and then a coalescence process of turbulent island chains occurs before the decay phase.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...
High-harmonic generation in a dense medium
Strelkov, V.V.; Platonenko, V.T.; Becker, A.
2005-05-15
The high-harmonic generation in a plasma or gas under conditions when the single-atom response is affected by neighboring ions or atoms of the medium is studied theoretically. We solve numerically the three-dimensional Schroedinger equation for a single-electron atom in the combined fields of the neighboring particles and the laser, and average the results over different random positions of the particles using the Monte Carlo method. Harmonic spectra are calculated for different medium densities and laser intensities. We observe a change of the harmonic properties due to a random variation of the harmonic phase induced by the field of the medium, when the medium density exceeds a certain transition density. The transition density is found to depend on the harmonic order, but it is almost independent of the fundamental intensity. It also differs for the two (shorter and longer) quantum paths. The latter effect leads for ionic densities in the transition regime to a narrowing of the harmonic lines and a shortening of the attosecond pulses generated using a group of harmonics.
Relativistic high harmonic generation in gas jet targets
Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.; and others
2012-07-11
We experimentally demonstrate a new regime of high-order harmonic generation by relativistic-irradiance lasers in gas jet targets. Bright harmonics with both odd and even orders, generated by linearly as well as circularly polarized pulses, are emitted in the forward direction, while the base harmonic frequency is downshifted. A 9 TW laser generates harmonics up to 360 eV, within the 'water window' spectral region. With a 120 TW laser producing 40 uJ/sr per harmonic at 120 eV, we demonstrate the photon number scalability. The observed harmonics cannot be explained by previously suggested scenarios. A novel high-order harmonics generation mechanism [T. Zh. Esirkepov et al., AIP Proceedings, this volume], which explains our experimental findings, is based on the phenomena inherent in the relativistic laser - underdense plasma interactions (self-focusing, cavity evacuation, and bow wave generation), mathematical catastrophe theory which explains formation of electron density singularities (cusps), and collective radiation due to nonlinear oscillations of a compact charge.
High order harmonic generation in dual gas multi-jets
Tosa, Valer E-mail: calin.hojbota@itim-cj.ro; Hojbota, Calin E-mail: calin.hojbota@itim-cj.ro
2013-11-13
High order harmonic generation (HHG) in gas media suffers from a low conversion efficiency that has its origins in the interaction of the atom/molecule with the laser field. Phase matching is the main way to enhance the harmonic flux and several solutions have been designed to achieve it. Here we present numerical results modeling HHG in a system of multi-jets in which two gases alternate: the first gas jet (for example Ne) generates harmonics and the second one which ionizes easier, recover the phase matching condition. We obtain configurations which are experimentally feasible with respect to pressures and dimensions of the jets.
Virtually distortion-free imaging system for large field, high resolution lithography
Hawryluk, A.M.; Ceglio, N.M.
1993-01-05
Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.
Investigation of plasma diagnostics using a dual frequency harmonic technique
Kim, Dong-Hwan; Kim, Young-Do; Cho, Sung-Won; Kim, Yu-Sin; Chung, Chin-Wook
2014-09-07
Plasma diagnostic methods using harmonic currents analysis of electrostatic probes were experimentally investigated to understand the differences in their measurement of the plasma parameters. When dual frequency voltage (Ï‰{sub 1},Ï‰{sub 2}) was applied to a probe, various harmonic currents (Ï‰{sub 1},â€‰2Ï‰{sub 1},Ï‰{sub 2},â€‰2Ï‰{sub 2},Ï‰{sub 2}Â±Ï‰{sub 1},Ï‰{sub 2}Â±2Ï‰{sub 1}) were generated due to the non-linearity of the probe sheath. The electron temperature can be obtained from the ratio of the two harmonics of the probe currents. According to the combinations of the two harmonics, the sensitivities in the measurement of the electron temperature differed, and this results in a difference of the electron temperature. From experiments and simulation, it is shown that this difference is caused by the systematic and random noise.
Harmonic gyrotrons operating in high-order symmetric modes
Nusinovich, Gregory S.; Kashyn, Dmytro G.; Antonsen, T. M.
2015-01-05
It is shown that gyrotrons operating at cyclotron harmonics can be designed for operation in symmetric TE{sub 0,p}-modes. Such operation in fundamental harmonic gyrotrons is possible only at small radial indices (pâ‰¤3) because of the severe mode competition with TE{sub 2,p}-modes, which are equally coupled to annular beams as the symmetric modes. At cyclotron harmonics, however, this â€œdegeneracyâ€ of coupling is absent, and there is a region in the parameter space where harmonic gyrotrons can steadily operate in symmetric modes. This fact is especially important for sub-THz and THz-range gyrotrons where ohmic losses limit the power achievable in continuous-wave and high duty cycle regimes.
Reconstruction of local neutron physical functionals in surface harmonics method
Boyarinov, V. F. Nevinitsa, V. A.
2010-12-15
Formulas for reconstruction of local neutron physical functionals for a three-stage calculation of a 2D VVER-1000 core using the surface harmonics method are obtained, implemented in the SUHAM code, and verified.
Harmonic mode competition in a terahertz gyrotron backward-wave...
Office of Scientific and Technical Information (OSTI)
The viability of a harmonic gyro-BWO is assessed on the basis of the results obtained. Authors: Kao, S. H. ; Chiu, C. C. ; Chang, P. C. ; Wu, K. L. ; Chu, K. R. 1 + Show Author ...
A Massively Parallel Solver for the Mechanical Harmonic Analysis...
Office of Scientific and Technical Information (OSTI)
Details In-Document Search Title: A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities ACE3P is a 3D massively parallel simulation suite that...
Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes
Price, J. S.; Giebink, N. C.
2015-06-29
Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series of analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.
Nonlinearly driven harmonics of AlfvÃ©n modes
Zhang, B. Breizman, B. N.; Zheng, L. J.; Berk, H. L.
2014-01-15
In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal AlfvÃ©n Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.
Wind LCA Harmonization (Fact Sheet), NREL (National Renewable Energy Laboratory)
Not Available
2013-06-01
NREL recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that provides more exact estimates of GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty. This involved a systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems in order to determine the causes of life cycle greenhouse gases (GHG) emissions and, where possible, reduce variability in GHG estimates.
Williams, Brian G.; Schultz, Richard R.; McEligot, Don M.; McCreery, Glenn
2015-08-31
A reference design for the Next Generation Nuclear Plant (NGNP) is to use General Atomics Modular High Temperature Gas-cooled Reactor (MHTGR). For such a configuration in normal operation, the helium coolant flow proceeds from the upper plenum to the lower plenum principally through the core coolant channels and the interstitial gaps (bypass flow) that separate the prismatic blocks from one another. Only the core prismatic blocks have coolant channels. The interstitial gaps are present throughout the core, the inner reflector region, and the out reflector region. The bypass flows in a prismatic gas-cooled reactor (GCR) are of potential concern because they reduce the desired flow rates in the coolant channels and, thereby, can increase outlet gas temperatures and maximum fuel temperatures. Consequently, it is appropriate to account for bypass flows in reactor thermal gas dynamic analyses. The objectives of this project include the following: fundamentally understand bypass flow and heat transfer at scaled, undistorted conditions and with geometry distortions; develop improved estimates of associated loss coefficients, surface friction and heat transfer for systems and network codes; and obtain related data for validation of CFD (computational fluid dynamic) or system (e.g., RELAP5) codes which can be employed in predictions for a GCR for normal power, reduced power, and residual heat removal operations.
OBTAINING POTENTIAL FIELD SOLUTIONS WITH SPHERICAL HARMONICS AND FINITE DIFFERENCES
Toth, Gabor; Van der Holst, Bart; Huang Zhenguang
2011-05-10
Potential magnetic field solutions can be obtained based on the synoptic magnetograms of the Sun. Traditionally, a spherical harmonics decomposition of the magnetogram is used to construct the current- and divergence-free magnetic field solution. This method works reasonably well when the order of spherical harmonics is limited to be small relative to the resolution of the magnetogram, although some artifacts, such as ringing, can arise around sharp features. When the number of spherical harmonics is increased, however, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. We discuss here two approaches that can mitigate or completely avoid these problems: (1) remeshing the magnetogram onto a grid with uniform resolution in latitude and limiting the highest order of the spherical harmonics to the anti-alias limit; (2) using an iterative finite difference algorithm to solve for the potential field. The naive and the improved numerical solutions are compared for actual magnetograms and the differences are found to be rather dramatic. We made our new Finite Difference Iterative Potential-field Solver (FDIPS) a publicly available code so that other researchers can also use it as an alternative to the spherical harmonics approach.
Efficiency enhancement of a harmonic lasing free-electron laser
Salehi, E.; Maraghechi, B.; Mirian, N. S.
2015-03-15
The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bierbach, Jana; Yeung, Mark; Eckner, Erich; Roedel, Christian; Kuschel, Stephan; Zepf, Matt; Paulus, Gerhard G.
2015-05-01
Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3Â·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the ÂµJ range is measured. With the presented setup, relativistic surface high-harmonic generationmoreÂ Â» becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.Â«Â less
A restoration model of distorted electron density in wave-cutoff probe measurement
Jun, Hyun-Su Lee, Yun-Seong
2014-02-15
This study investigates the problem of electron density distortion and how the density can be restored in a wave-cutoff probe. Despite recent plasma diagnostics research using a wave-cutoff probe, the problem of electron density distortion caused by plasma conditions has not been resolved. Experimental results indicate that electron density measured using the wave-cutoff method is highly susceptible to variations in the probe tip gap. This electron density distortion is caused by the bulk plasma disturbance between probe tips, and it must be removed for calculating the absolute electron density. To do this, a detailed analytic model was developed using the power balance equation near probe tips. This model demonstrates the characteristics of plasma distortion in wave-cutoff probe measurement and successfully restored the absolute value of electron density with varying probe tip gaps.
Disentangling Redshift-Space Distortions and Nonlinear Bias using the 2D Power Spectrum
Jennings, Elise; Wechsler, Risa H.
2015-08-07
We present the nonlinear 2D galaxy power spectrum, P(k, Âµ), in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual Âµ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the Âµ < 0.2 simulation data, which we show is not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of ~ 5% at k < 0.6hMpc-1 . This use of individual Âµ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low Âµ simulation data to constrain the nonlinear bias, and Âµ > 0.2 to constrain the growth rate and show that f can be constrained to ~ 26(22)% to a kmax < 0.4(0.6)hMpc-1 from clustering alone using a simple dispersion model, for a range of galaxy models. Our analysis of individual Âµ bins also reveals interesting physical effects which arise simply from different methods of populating halos with galaxies. We also find a prominent turnaround scale, at which RSD damping effects are greater then the nonlinear growth, which differs not only for each Âµ bin but also for each galaxy model. These features may provide unique signatures which could be used to shed light on the galaxyâ€“dark matter connection. Furthermore, the idea of separating nonlinear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.
Efficient Forward Second-Harmonic Generation from Planar Archimedean Nanospirals
Davidson, Roderick B.; Ziegler, Jed I.; Vargas, Guillermo; Avanesyan, Sergey M.; Gong, Yu; Hess, Wayne P.; Haglund Jr., Richard F.
2015-01-21
The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from noncentrosymmetric nanoparticles that retain a local axis of symmetry. Here we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulse from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6â€¢10-9, 8â€¢10-9 and 1.3â€¢10-8 for left-handed circular, linear, and right-handed circular polarizations, respectively.
Broader source: Energy.gov [DOE]
One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...
Propagation of nonlinearly generated harmonic spin waves in microscopic stripes
Rousseau, O.; Yamada, M.; Miura, K.; Ogawa, S.; Otani, Y.
2014-02-07
We report on the experimental study of the propagation of nonlinearly generated harmonic spin waves in microscopic CoFeB stripes. Using an all electrical technique with coplanar waveguides, we find that two kinds of spin waves can be generated by nonlinear frequency multiplication. One has a non-uniform spatial geometry and thus requires appropriate detector geometry to be identified. The other corresponds to the resonant fundamental propagative spin waves and can be efficiently excited by double- or triple-frequency harmonics with any geometry. Nonlinear excited spin waves are particularly efficient in providing an electrical signal arising from spin wave propagation.
Nonlinear Trivelpiece--Gould waves: Recurrence, harmonic cascade, and sidebands
Cabral, J.A.C.; Lapao, L.M.; Mendonca, J.T. )
1993-03-01
A theoretical and experimental study of Trivelpiece--Gould waves propagating in a magnetized plasma column is presented in this paper. In the experiments, these waves are excited by a radio frequency (rf) source, which also serves to create the plasma. Observation of nonlinear effects includes space and time recurrence effects, a wave spectrum containing a large number (up to 25) harmonics, and low-frequency sidebands. The theoretical model explains the recurrence effects as a consequence of multiple nonlinear interactions between the fundamental wave and its harmonics. A good agreement is found between theory and the experiments.
Bright high-repetition-rate source of narrowband extreme-ultraviolet...
Office of Scientific and Technical Information (OSTI)
femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ... Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz ...
Opportunities for regional harmonization of appliance standards and l abeling program
McNeil, Michael A.
2003-09-01
the region are discussed in some detail. The section that follows covers the harmonization of efficiency test procedures. Special attention is given to this component of an EES&L program because it is the most critical element in terms of harmonization--having incompatible test procedures between trade partners can greatly impact the effectiveness of a program, and it can also unduly impact trade. Currently, policymakers in India and Sri Lanka are collaborating with the goal of aligning refrigerator test procedures used in their respective programs. For this reason, the section on test procedures of refrigerators goes into a significant amount of technical detail, in order to provide the clearest possible articulation of issues to be resolved in bringing the procedures into alignment. Following the discussion of test procedures, the report contains a section each on harmonization of efficiency rating levels, development of label designs, and enforcement issues. The report is organized such that the sections covering current programs and test procedures are subdivided by target appliance. These sections are further divided by country, where applicable. Each section is concluded with recommendations.
Loganathan, Muthukumaran; Bristow, Douglas A.
2014-04-15
This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.
WAVEMOTH-FAST SPHERICAL HARMONIC TRANSFORMS BY BUTTERFLY MATRIX COMPRESSION
Seljebotn, D. S.
2012-03-01
We present Wavemoth, an experimental open source code for computing scalar spherical harmonic transforms (SHTs). Such transforms are ubiquitous in astronomical data analysis. Our code performs substantially better than existing publicly available codes owing to improvements on two fronts. First, the computational core is made more efficient by using small amounts of pre-computed data, as well as paying attention to CPU instruction pipelining and cache usage. Second, Wavemoth makes use of a fast and numerically stable algorithm based on compressing a set of linear operators in a pre-computation step. The resulting SHT scales as O(L{sup 2}log{sup 2} L) for the resolution range of practical interest, where L denotes the spherical harmonic truncation degree. For low- and medium-range resolutions, Wavemoth tends to be twice as fast as libpsht, which is the current state-of-the-art implementation for the HEALPix grid. At the resolution of the Planck experiment, L {approx} 4000, Wavemoth is between three and six times faster than libpsht, depending on the computer architecture and the required precision. Because of the experimental nature of the project, only spherical harmonic synthesis is currently supported, although adding support for spherical harmonic analysis should be trivial.
Excitation of electron Langmuir frequency harmonics in the solar atmosphere
Fomichev, V. V.; Fainshtein, S. M.; Chernov, G. P.
2013-05-15
An alternative mechanism for the excitation of electron Langmuir frequency harmonics as a result of the development of explosive instability in a weakly relativistic beam-plasma system in the solar atmosphere is proposed. The efficiency of the new mechanism as compared to the previously discussed ones is analyzed.
Experimental study of a fourth-harmonic gyromultiplier
Bandurkin, I. V.; Bratman, V. L.; Savilov, A. V.; Samsonov, S. V.; Volkov, A. B.
2009-07-15
Simultaneous generation at the second and fourth cyclotron harmonics has been obtained from a single-cavity self-excited gyromultiplier. Output power of the short-wavelength radiation amounts to 100 W at a frequency of 75 GHz. The proposed scheme seems to be promising for the terahertz frequency range.
Wave kernels for the Dirac, Euler operators and the harmonic oscillator
Mohameden, Ahmedou Yahya Ould Moustapha, Mohamed Vall Ould
2014-03-15
Explicit solutions for the wave equations associated to the Dirac, Euler operators and the harmonic oscillator are given.
Enhanced Harmonic Up-Conversion Using a Hybrid HGHG-EEHG Scheme
Marksteiner, Quinn R.; Bishofberger, Kip A.; Carlsten, Bruce E.; Freund, Henry P.; Yampolsky, Nikolai A.
2012-04-30
We introduce a novel harmonic generation scheme which can be used, for a given desired harmonic, to achieve higher bunching factors, weaker chicanes, and/or less final energy spread than can be achieved using Echo-Enabled Harmonic Generation. This scheme only requires a single laser with relatively low power, and is a hybrid of High-Gain Harmonic Generation and EEHG. We present a design of this scheme applied to the Next Generation Light Source (NGLS).
Impact of the MLC on the MRI field distortion of a prototype MRI-linac
Kolling, Stefan; Keall, Paul; Oborn, Brad
2013-12-15
Purpose: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality.Methods: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0?T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps of the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30?cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300??T. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200?cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20?cm{sup 2}, to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B{sub 0} of 0.5, 1.0, and 1.5?T, to estimate how the MLC impact changes with B{sub 0}.Results: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was
Disentangling Redshift-Space Distortions and Nonlinear Bias using the 2D Power Spectrum
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Jennings, Elise; Wechsler, Risa H.
2015-08-07
We present the nonlinear 2D galaxy power spectrum, P(k, Âµ), in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual Âµ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the Âµ < 0.2 simulation data, which we show ismoreÂ Â» not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of ~ 5% at k < 0.6hMpc-1 . This use of individual Âµ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low Âµ simulation data to constrain the nonlinear bias, and Âµ > 0.2 to constrain the growth rate and show that f can be constrained to ~ 26(22)% to a kmax < 0.4(0.6)hMpc-1 from clustering alone using a simple dispersion model, for a range of galaxy models. Our analysis of individual Âµ bins also reveals interesting physical effects which arise simply from different methods of populating halos with galaxies. We also find a prominent turnaround scale, at which RSD damping effects are greater then the nonlinear growth, which differs not only for each Âµ bin but also for each galaxy model. These features may provide unique signatures which could be used to shed light on the galaxyâ€“dark matter connection. Furthermore, the idea of separating nonlinear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.Â«Â less
Study on higher harmonic suppression using edge filter and polished Si wafer
Gupta, R. K. Singh, Amol Modi, Mohammed H. Lodha, G. S.
2014-04-24
Higher harmonics contamination is a severe problem in synchrotron beamlines where grating monochromators are used. In these beamlines, absorption edge filters and critical angle mirrors are used to suppress the harmonic contaminations. In the present study, carried out using Indus-1 reflectivity beamline, a harmonic suppression characteristic of Al edge filter and polished silicon wafer are determined. It is found that the Al filter suppresses higher harmonics in 2â€“7% range whereas the polished silicon wafer can suppress the higher harmonics below 1%. The results of comparative study are discussed.
Kaur, Sukhdeep; Sharma, A. K.; Salih, Hyder A.
2009-04-15
Second harmonic generation of a right circularly polarized Gaussian electromagnetic beam in a magnetized plasma is investigated. The beam causes Ohmic heating of electrons and subsequent redistribution of the plasma, leading to self-defocusing. The radial density gradient, in conjunction with the oscillatory electron velocity, produces density oscillation at the wave frequency. The density oscillation beats with the oscillatory velocity to produce second harmonic current density, giving rise to resonant second harmonic radiation when the wave frequency is one-third of electron cyclotron frequency. The second harmonic field has azimuthal dependence as exp(i{theta}). The self-defocusing causes a reduction in the efficiency of harmonic generation.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...
Continuous third harmonic generation in a terahertz driven modulated nanowire
Hamilton, Kathleen E. De, Amrit; Pryadko, Leonid P.; Kovalev, Alexey A.
2015-06-07
We consider the possibility of observing continuous third-harmonic generation using a strongly driven, single-band one-dimensional metal. In the absence of scattering, the quantum efficiency of frequency tripling for such a system can be as high as 93%. Combining the Floquet quasi-energy spectrum with the Keldysh Green's function technique, we derive a semiclassical master equation for a one-dimensional band of strongly and rapidly driven electrons in the presence of weak scattering by phonons. The power absorbed from the driving field is continuously dissipated by phonon modes, leading to a quasi-equilibrium in the electron distribution. We use the Kronig-Penney model with varying effective mass to establish the growth parameters of an InAs/InP nanowire near optimal for third harmonic generation at terahertz frequency range.
Monitoring microstructural evolution in irradiated steel with second harmonic generation
Matlack, Kathryn H.; Kim, Jin-Yeon; Jacobs, Laurence J.; Wall, James J.; Qu, Jianmin
2015-03-31
Material damage in structural components is driven by microstructural evolution that occurs at low length scales and begins early in component life. In metals, these microstructural features are known to cause measurable changes in the acoustic nonlinearity parameter. Physically, the interaction of a monochromatic ultrasonic wave with microstructural features such as dislocations, precipitates, and vacancies, generates a second harmonic wave that is proportional to the acoustic nonlinearity parameter. These nonlinear ultrasonic techniques thus have the capability to evaluate initial material damage, particularly before crack initiation and propagation occur. This paper discusses how the nonlinear ultrasonic technique of second harmonic generation can be used as a nondestructive evaluation tool to monitor microstructural changes in steel, focusing on characterizing neutron radiation embrittlement in nuclear reactor pressure vessel steels. Current experimental evidence and analytical models linking microstructural evolution with changes in the acoustic nonlinearity parameter are summarized.
Echo-enabled Harmonic Generation Free Electron Laser
Xiang, D; Stupakov, G.; /SLAC
2008-12-18
In this paper, we systematically study the echo-enabled harmonic generation (EEHG) free electron laser (FEL). The EEHG FEL uses two modulators in combination with two dispersion sections that allow to generate in the beam a high harmonic density modulation starting with a relatively small initial energy modulation of the beam. After presenting analytical theory of the phenomenon, we address several practically important issues, such as the effect of incoherent synchrotron radiation in the dispersion sections, and the beam transverse size effect in the modulator. Using a representative realistic set of beam parameters, we show how the EEHG scheme enhances the FEL performance and allows to generate a fully (both longitudinally and transversely) coherent radiation. As an example, we demonstrate that 5 nm coherent soft x-rays with GW peak power can be generated directly from the 240 nm seeding laser using the proposed EEHG scheme.
Higher harmonics generation in relativistic electron beam with virtual cathode
Kurkin, S. A. Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E.
2014-09-15
The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.
Discrete quadratic solitons with competing second-harmonic components
Setzpfandt, Frank; Pertsch, Thomas; Sukhorukov, Andrey A.
2011-11-15
We describe families of discrete solitons in quadratic waveguide arrays supported by competing cascaded nonlinear interactions between one fundamental and two second-harmonic modes. We characterize the existence, stability, and excitation dynamics of these solitons and show that their features may resemble those of solitons in saturable media. Our results also demonstrate that a power threshold may appear for soliton formation, leading to a suppression of beam self-focusing which explains recent experimental observations.
Using Coupled Harmonic Oscillators to Model Some Greenhouse Gas Molecules
Go, Clark Kendrick C.; Maquiling, Joel T.
2010-07-28
Common greenhouse gas molecules SF{sub 6}, NO{sub 2}, CH{sub 4}, and CO{sub 2} are modeled as harmonic oscillators whose potential and kinetic energies are derived. Using the Euler-Lagrange equation, their equations of motion are derived and their phase portraits are plotted. The authors use these data to attempt to explain the lifespan of these gases in the atmosphere.
On the moment of inertia of a quantum harmonic oscillator
Khamzin, A. A. Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.
2013-04-15
An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.
Radar transponder operation with compensation for distortion due to amplitude modulation
Ormesher, Richard C.; Tise, Bertice L.; Axline, Jr., Robert M.
2011-01-04
In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.
Background and Reflections on the Life Cycle Assessment Harmonization Project
Broader source: Energy.gov [DOE]
Despite the ever-growing body of life cycle assessment literature on electricity generation technologies, inconsistent methods and assumptions hamper comparison across studies and pooling of published results. Synthesis of the body of previous research is necessary to generate robust results to assess and compare environmental performance of different energy technologies for the benefit of policy makers, managers, investors, and citizens. With funding from the U.S. Department of Energy, the National Renewable Energy Laboratory initiated the LCA Harmonization Project in an effort to rigorously leverage the numerous individual studies to develop collective insights.
STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator
M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser
2007-08-01
BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.
A non-conforming 3D spherical harmonic transport solver
Van Criekingen, S.
2006-07-01
A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)
Temperature-insensitive phase-matched optical harmonic conversion crystal
Barker, C.E.; Eimerl, D.; Velsko, S.P.; Roberts, D.
1993-11-23
Temperature-insensitive, phase-matched harmonic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions. 12 figures.
Ganeev, R. A.; Abdelrahman, Z. Frank, F.; Witting, T.; Okell, W. A.; Fabris, D.; Hutchison, C.; Marangos, J. P.; Tisch, J. W. G.
2014-01-13
We present measurements of the spatial coherence of the high-order harmonics generated in laser-produced ablation plumes. Harmonics were generated using 4 fs, 775â€‰nm pulses with peak intensity 3â€‰Ã—â€‰10{sup 14}â€‰Wâ€‰cm{sup âˆ’2}. Double-slit fringe visibilities in the range of â‰ˆ0.6â€“0.75 were measured for non-resonant harmonics in carbon and resonantly enhanced harmonics in zinc and indium. These are somewhat higher than the visibility obtained for harmonics generated in argon gas under similar conditions. This is attributed to lower time-dependent ionization of the plasma ablation targets compared to argon during the high harmonics generation process.
Braenzel, J.; SchnÃ¼rer, M.; Steinke, S.; Priebe, G.; Sandner, W.; Andreev, A.; Vavilov State Optical Institute, Birzhevaya line 4, 199034 St. Petersburg ; Platonov, K.
2013-08-15
Theoretical and experimental investigations of the dynamics of a relativistically oscillating plasma slab reveal spectral line splitting in laser driven harmonic spectra, leading to double harmonic series. Both series are well characterized with harmonics arising by two fundamental frequencies. While a relativistic oscillation of the critical density drives the harmonic emission, the splitting is a result of an additional acceleration during the laser pulse duration. In comparison with the oscillatory movement, this acceleration is rather weak and can be described by a plasma shock wave driven by the pressure of light. We introduce particle in cell simulations and an analytical model explaining the harmonic line splitting. The derived analytical formula gives direct access between the splitting in the harmonic spectrum and the acceleration of the plasma surface.
Gilbert, Dustin A.; Ye, Li; Varea, AÃ¯da; Agramunt-Puig, SebastiÃ ; del Valle, Nuria; Navau, Carles; LÃ³pez-Barbera, JosÃ© Francisco; Buchanan, Kristen S.; Hoffmann, Axel; SÃ¡nchez, Alvar; Sort, Jordi; Liu, Kai; NoguÃ©s, Josep
2015-04-28
Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpected asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.
dgtoexo2: A Distorted Grid Output File to Exodus II Finite Element Database Conversion Utility
Moffat, H.K.
1998-12-01
This report describes how to obtain publication-quality graphics from distorted grid electronic structure codes using the combination of the conversion utility, dgtoexo2, and mustafa, an AVS Express application. dgtoexo2 converts scalar function results from a format applicable to distorted grid codes into the Exodus II unstructured finite element data representation. nmstafa can read Exodus II files and use the AVS Express engine to visualize data on unix and Windows NT platforms. Though not designed for the purpose, the dgtoexo2/EXOdUS II/mustafa combination is sufficiently versatile to provide for the specialized graphics needs of electronic structure codes. The combination also scales well, producing robust performance for problems involving millions of grid points.
Structural distortions in 5-10 nm silver nanoparticles under high pressure
Koski, Kristie J.; Kamp, Noelle M.; Kunz, Martin; Knight, Jason K.; Alivisatos, A.P.; Smith, R.K.
2008-10-13
We present experimental evidence that silver nanoparticles in the size range of 5-10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. We have used x-ray diffraction with a synchrotron light source to investigate pressure-dependent and size-dependent trends in the crystal structure of silver nanoparticles in a hydrostatic medium compressed in a diamond-anvil cell. Results suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. We propose a mechanism for this transition that considers the bond-length distribution in idealized multiply twinned icosahedral particles. To further support this hypothesis, we also show that similar measurements of single-crystal platinum nanoparticles reveal no such distortions.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gilbert, Dustin A.; Ye, Li; Varea, AÃ¯da; Agramunt-Puig, SebastiÃ ; del Valle, Nuria; Navau, Carles; LÃ³pez-Barbera, JosÃ© Francisco; Buchanan, Kristen S.; Hoffmann, Axel; SÃ¡nchez, Alvar; et al
2015-04-28
Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpectedmoreÂ Â» asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.Â«Â less
Lattice distortions and oxygen vacancies produced in Au+ irradiated nano-crystalline cubic zirconia
Edmondson, Philip D; Weber, William J; Namavar, Fereydoon; Zhang, Yanwen
2011-01-01
The structural impact of oxygen vacancies in nanocrystalline cubic zirconia is investigated. A non-equilibrium number of oxygen vacancies in introduced to the lattice by ion irradiation. The lattice is observed to be initially compressed, undergoes a relaxation at 0.7 displacements per atom (dpa), and experiences a contraction before reaching a temperature dependent steady state value at above 7 dpa. The level of lattice distortion is related to the charge state of the accumulating oxygen vacancies.
Malakhovskii, A. V.; Gnatchenko, S. L.; Kachur, I. S.; Piryatinskaya, V. G.; Sukhachev, A. L.; Sokolov, A. E.; Strokova, A. Ya.; Kartashev, A. V.; Temerov, V. L.
2013-01-15
Optical absorption spectra of YbAl{sub 3}(BO{sub 3}){sub 4}, TmAl{sub 3}(BO{sub 3}){sub 4} and TbFe{sub 3}(BO{sub 3}){sub 4} trigonal crystals have been studied in temperature range 2-300 K. Temperature behavior of absorption lines parameters has shown, that during some f-f transitions the local environment of rare earth ions undergo distortions, which are absent in the ground state.
Tracing the structure of asymmetric molecules from high-order harmonic generation
Chen Yanjun; Zhang, Bing
2011-11-15
We investigate high-order harmonic generation (HHG) from asymmetric molecules exposed to intense laser fields. We show that the emissions of odd and even harmonics depend differently on the orientation angle, the internuclear distance, as well as the effective charge. This difference mainly comes from different roles of intramolecular interference in the HHG of odd and even harmonics. These roles map the structure of the asymmetric molecule to the odd vs even HHG spectra.
Optic for industrial endoscope/borescope with narrow field of view and low distortion
Stone, Gary F.; Trebes, James E.
2005-08-16
An optic for the imaging optics on the distal end of a flexible fiberoptic endoscope or rigid borescope inspection tool. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion), compared to the typical <20% distortion. The optic will permit non-contact surface roughness measurements using optical techniques. This optic will permit simultaneous collection of selected image plane data, which data can then be subsequently optically processed. The image analysis will yield non-contact surface topology data for inspection where access to the surface does not permit a mechanical styles profilometer verification of surface topology. The optic allows a very broad spectral band or range of optical inspection. It is capable of spectroscopic imaging and fluorescence induced imaging when a scanning illumination source is used. The total viewing angle for this optic is 10 degrees for the full field of view of 10 degrees, compared to 40-70 degrees full angle field of view of the conventional gradient index or GRIN's lens systems.
N = 4 supersymmetric mechanics: Harmonic superspace as a universal tool of model-building
Ivanov, E. A.
2013-08-15
We overview applications of the harmonic superspace approach in models of N = 4supersymmetric mechanics, with emphasis on some recent results.
Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot
Feng Liubin; Lu Xin; Liu Xiaolong; Li Yutong; Chen Liming; Ma Jinglong; Dong Quanli; Wang Weimin; Xi Tingting; Sheng Zhengming; Zhang Jie; He Duanwei
2012-07-15
Third-harmonic emission from laser filament intercepted by plasma spot is studied by numerical simulations. Significant enhancement of the third-harmonic generation is obtained due to the disturbance of the additional plasma. The contribution of the pure plasma effect and the possible plasma-enhanced third-order susceptibility on the third-harmonic generation enhancement are compared. It is shown that the plasma induced cancellation of destructive interference [Y. Liu et al., Opt. Commun. 284, 4706 (2011)] of two-colored filament is the dominant mechanism of the enhancement of third-harmonic generation.
Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach
Toutounji, Mohamad
2015-02-15
This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electronâ€“phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.
Structural characterization of particle systems using spherical harmonics
Feinauer, Julian; Spettl, Aaron; Manke, Ingo; Strege, Stefan; Kwade, Arno; Pott, Andres; Schmidt, Volker
2015-08-15
Many important properties of particulate materials are heavily influenced by the size and shape of the constituent particles. Thus, in order to control and improve product quality, it is important to develop a good understanding of the shape and size of the particles that make up a given particulate material. In this paper, we show how the spherical harmonics expansion can be used to approximate particles obtained from tomographic 3D images. This yields an analytic representation of the particles which can be used to calculate structural characteristics. We present an estimation method for the optimal length of expansion depending on individual particle shapes, based on statistical hypothesis testing. A suitable choice of this parameter leads to a smooth approximation that preserves the main shape features of the original particle. To show the wide applicability of this procedure, we use it to approximate particles obtained from two different tomographic 3D datasets of particulate materials. The first one describes an anode material from lithium-ion cells that consists of sphere-like particles with different sizes. The second dataset describes a powder of highly non-spherical titanium dioxide particles. - Highlights: â€¢ Complex particle shapes are described analytically by spherical harmonics expansion. â€¢ The optimal length of the expansion is estimated for each particle individually. â€¢ Characteristics like, e.g., particle surface areas can be calculated efficiently. â€¢ The method is applied to two tomographic datasets of particulate materials.
Rates Meetings and Workshops (pbl/rates)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...
Wang, Gaozhong; Zhang, Saifeng E-mail: jwang@siom.ac.cn; Cheng, Xin; Dong, Ningning; Zhang, Long; Wang, Jun E-mail: jwang@siom.ac.cn; Umran, Fadhil A.; Coghlan, Darragh; Blau, Werner J.; Cheng, Ya
2014-04-07
Spatial self-phase modulation (SSPM) was observed directly when a focused He-Ne laser beam at 633â€‰nm went through liquid-phase-exfoliated graphene dispersions. The diffraction pattern of SSPM was found to be distorted rapidly right after the incident beam horizontally passing through the dispersions, while no distortion for the vertically incident geometry. We show that the distortion is originated mainly from the non-axis-symmetrical thermal convections of the graphene nanosheets induced by laser heating, and the relative change of nonlinear refractive index can be determined by the ratio of the distortion angle to the half-cone angle. Therefore, the effective nonlinear refractive index of graphene dispersions can be tuned by changing the incident intensity and the temperature of the dispersions.
Hawryluk, A.M.; Ceglio, N.M.
1993-01-12
Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.
Longitudinal instabilities with a non-harmonic rf potential
Krinsky, S.; Wang, J.M.
1983-01-01
We consider the longitudinal instabilities of a bunched beam subject to a non-harmonic rf potential. Assuming the unperturbed bunch to be described by a Maxwell-Boltzmann distribution, our treatment is based upon the linearized Vlasov equation. The formalism developed is exact, and in particular, correctly describes the effect of the dependence on amplitude of the synchrotron oscillation frequency. We discuss the fast blowup limit, and extend Wang and Pellegrini's treatment of the microwave instability to include the case of a non-Gaussian bunch. Next, within the short bunch approximation, we derive the dispersion relation describing the Landau damping of the coupled bunch modes, resulting from the use of a Landau cavity.
Cai, Jiandong; Zhang, Li; Wang, Michael Yu
2015-12-15
In multifrequency atomic force microscopy (AFM), probeâ€™s characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitudeâ€™s sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement.
Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon
Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.
2015-02-23
We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities Ï‡{sub zxx}{sup (2)},â€‰Ï‡{sub zyy}{sup (2)} and the electric fields of the fundamental cavity mode.
Singh, Mamta; Gupta, D. N.; Suk, H.
2015-06-15
We propose an idea to enhance the efficiency of second- and third-harmonic generation by considering the amplitude-modulation of the fundamental laser pulse. A short-pulse laser of finite spot size is modeled as amplitude modulated in time. Amplitude-modulation of fundamental laser contributes in quiver velocity of the plasma electrons and produces the strong plasma-density perturbations, thereby increase in current density at second- and third-harmonic frequency. In a result, the conversion efficiency of harmonic generation increases significantly. Power conversion efficiency of harmonic generation process is the increasing function of the amplitude-modulation parameter of the fundamental laser beam. Harmonic power generated by an amplitude modulated laser is many folds higher than the power obtained in an ordinary case.
Third harmonic generation in air ambient and laser ablated carbon plasma
Singh, Ravi Pratap Gupta, Shyam L.; Thareja, Raj K.
2015-12-15
We report the third harmonic generation of a nanosecond laser pulse (1.06â€‰Î¼m) in air ambient and in the presence of nanoparticles from laser ablated carbon plasma. Significant decrease in the threshold of third harmonic generation and multi-fold increment in the intensity of generated third harmonic is observed in presence of carbon plasma. The third harmonic in air is due to the quasi-resonant four photon process involving vibrationally excited states of molecular ion of nitrogen due to electron impact ionization and laser pulse. Following optical emission spectroscopic observations we conclude that the presence of C{sub 2} and CN in the ablated plume play a vital role in the observed third harmonic signals.
Improvement of nonlinear harmonics in free electron laser with planar wiggler
Bazouband, F.; Maraghechi, B.
2012-11-15
Spontaneous emission of free electron laser with planar wiggler and ion-channel guiding is calculated analytically and possibility of emission at up-shifted wiggler or ion-channel betatron frequency and their harmonics has been found. To investigate the nonlinear odd harmonics, a set of self-consistent nonlinear differential equations that governs the evolution of radiation and electron beam are derived and solved numerically by Runge-Kutta method. Using the simulation code, gain improvement of third harmonic is studied in the range of microwave frequency by applying ion-channel guiding for a cold beam. It is shown that the combination of the ion-channel and a prebunched electron beam increases the amplitude of the third harmonic of the radiation and decreases its saturation length. The relation between the linear and nonlinear harmonics is discussed.
Controlling harmonic instability of HVDC links connected to weak ac systems
Bodger, P.S. ); Irwin, G.D.; Woodford, D.A. )
1990-10-01
Time domain digital simulation of HVDC transmission enables harmonic stability of a system to be studied. This paper reports two alternative measures of controlling harmonic instability were investigated; the use of C-type ac filters and a simple addition of a harmonic damping circuit in the rectifier converter control. The design of a C-type filter is described and its effectiveness presented. Harmonic damping by controls consists of taking the output from a fast response dc current transducer, passing it through a filter and a gain and adding the output to the firing angle order. Both methods result in stable recovery from faults at both rectifier and inverter terminal busbars for a dc system inherently harmonically unstable.
Guo, Qixum; Zhao, Yusheng; Zin, Zhijun; Wang, Zhongwu; Skrabalak, Sara E; Xia, Younan
2008-01-01
Silver micro- and nanocrystals with sizes of {approx}2--3.5 {mu}m and {approx}50--100 nm were uniaxially compressed under nonhydrostatic pressures (strong deviatoric stress) up to {approx}30 GPa at room temperature in a symmetric diamond-anvil cell and studied in situ using angle-dispersive synchrotron X-ray diffraction. A cubic to trigonal structural distortion along a 3-fold rotational axis was discovered by careful and comprehensive analysis of the apparent lattice parameter and full width at half-maximum, which are strongly dependent upon the Miller index and crystal size.
Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.
2005-07-05
A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.
Welding Induced Alignment Distortion in Dual-in-Line LD Packages
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Shi, Frank G.
2007-11-11
The tolerance for the movement of a single mode fiber relative to the laser is extremely tight, a submicron movement can often lead to a significant misalignment and thus the reduction in the power coupled into the fiber. Among various fiber pigtailing assembly technologies, pulsed laser welding is the method with submicron accuracy and is most conducive to automation. However, the melting-solidification process during laser welding can often distort the pre-achieved fiber-optic alignment. This Welding-Induced-Alignment-Distortion (WIAD) is a serious concern and significantly affects the yield for single mode fiber pigtailing to a semiconductor laser. In this paper, effect of laser welding sequence on WIAD in a dual-in-line packager is numerically investigated by means of Finite Element Method (FEM). Optimal welding sequence may minimize WIAD in dual-in-line package. Additionally, unsymmetrical space between fiber and U-channel induced by laser welding of U-channel–to-plate in DIP LD packages is found to have obvious effect on WIAD.
Harmonization - Two Years' of Transportation Regulation Lessons Learned
Colborn, K.
2007-07-01
The U.S. Department of Transportation issued modifications to the Hazardous Materials Regulations in October, 2004 as part of an ongoing effort to 'harmonize' U.S. regulations with those of the International Atomic Energy Agency. The harmonization effort had several predictable effects on low level radioactive materials shipment that were anticipated even prior to their implementation. However, after two years' experience with the new regulations, transporters have identified several effects on transportation which were not entirely apparent when the regulations were first implemented. This paper presents several case studies in the transportation of low level radioactive materials since the harmonization rules took effect. In each case, an analysis of the challenge posed by the regulatory revision is provided. In some cases, more than one strategy for compliance was considered, and the advantages and disadvantages of each are discussed. In several cases, regulatory interpretations were sought and obtained, and these are presented to clarify the legitimacy of the compliance approach. The presentation of interpretations will be accompanied by reports of clarifying discussions with the U.S. DOT about the interpretation and scope of the regulatory change. Specific transportation issues raised by the revised hazardous materials regulations are reviewed, including: The new definition of radioactive material in accordance with isotope-specific concentration and total activity limits. The new hazardous materials regulations (HMR) created a new definition for radioactive material. A case study is presented for soils contaminated with low levels of Th-230. These soils had been being shipped for years as exempt material under the old 2,000 pCi/g concentration limit. Under the new HMR, these same soils were radioactive material. Further, in rail-car quantities their activity exceeded an A2 value, so shipment of the material in gondolas appeared to require an IP-2 package
Madsen, C. B.; Madsen, L. B.
2007-10-15
Using a quantum-mechanical three-step model, we present numerical calculations of the high-order harmonic generation from four polyatomic molecules. Ethylene (C{sub 2}H{sub 4}) serves as an example where orbital symmetry directly affects the harmonic yield. We treat the case of methane (CH{sub 4}) to address the high-order harmonic generation resulting from a molecule with degenerate orbitals. To this end we illustrate how the single-orbital contributions show up in the total high-order harmonic signal. This example illustrates the importance of adding coherently the amplitude contributions from the individual degenerate orbitals. Finally, we study the high-order harmonic generation from propane (C{sub 3}H{sub 8}) and butane (C{sub 4}H{sub 10}). These two molecules, being extended and far from spherical in structure, produce harmonics with nontrivial orientational dependencies. In particular, propane can be oriented so that very high-frequency harmonics are favored, and thus the molecule contains prospects for the generation of uv attosecond pulses.
Analysis of higher harmonic contamination with a modified approach using a grating analyser
Gupta, Rajkumar Modi, Mohammed H.; Lodha, G. S.; Kumar, M.; Chakera, J. A.
2014-04-15
Soft x-ray spectra of the toroidal grating monochromator (TGM) at the reflectivity beamline of Indus-1 synchrotron source are analyzed for higher harmonic contribution. A diffraction grating of central line spacing 1200 l/mm is used to disperse the monochromatic beam received from TGM to quantify the harmonic contents in the 50â€“360 Ã… wavelength range. In order to calculate the harmonic contamination, conventionally the intensity of higher order peak is divided by first order peak intensity of the desired wavelength. This approach is found to give wrong estimate as first order peak itself is overlapped by higher order peaks. In the present study, a modified approach has been proposed to calculate harmonic contamination where the intensity contributions of overlapping orders have been removed from the first order diffraction peak of the desired wavelength. It is found that the order contamination in the TGM spectra is less than 15% in the wavelength range of 90â€“180 Ã…. The total harmonic contribution increases from 6%â€“60% in the wavelength range of 150â€“260 Ã…. The critical wavelength of Indus-1 is 61 Ã… hence the harmonic contamination below 90 Ã… is significantly low. The results obtained with modified approach match well with those obtained by quantitative analysis of multilayer reflectivity data. The obtained higher harmonics data are used to fit the transmission of aluminum edge filter in the 120â€“360 Ã… wavelength range.
RF physics of ICWC discharge at high cyclotron harmonics
Lyssoivan, A.; Van Eester, D.; Wauters, T.; Vervier, M.; Van Schoor, M.; Bobkov, V.; Rohde, V.; Schneider, P.; Douai, D.; Kogut, D.; Kreter, A.; MÃ¶ller, S.; Philipps, V.; Sergienko, G.; Moiseenko, V.; Noterdaeme, J.-M.; Collaboration: TEXTOR Team; ASDEX Upgrade Team
2014-02-12
Recent experiments on Ion Cyclotron Wall Conditioning (ICWC) performed in tokamaks TEXTOR and ASDEX Upgrade with standard ICRF antennas operated at fixed frequencies but variable toroidal magnetic field demonstrated rather contrasting parameters of ICWC discharge in scenarios with on-axis fundamental ion cyclotron resonance (ICR) for protons,Ï‰=Ï‰{sub H+}, and with its high cyclotron harmonics (HCH), Ï‰=10Ï‰{sub cH+}â‹… HCH scenario: very high antenna coupling to low density RF plasmas (P{sub pl}â‰ˆ0.9P{sub RF-G}) and low energy Maxwellian distribution of CX hydrogen atoms with temperature T{sub H}â‰ˆ350 eV. Fundamental ICR: lower antenna-plasma coupling efficiency (by factor of about 1.5 times) and generation of high energy non-Maxwellian CX hydrogen atoms (with local energy E{sub âŠ¥H} â‰¥1.0 keV). In the present paper, we analyze the obtained experimental results numerically using (i) newly developed 0-D transport code describing the process of plasma production with electron and ion collisional ionization in helium-hydrogen gas mixture and (ii) earlier developed 1-D Dispersion Relation Solver accounting for finite temperature effects and collision absorption mechanisms for all plasma species in addition to conventionally examined Landau/TTPM damping for electrons and cyclotron absorption for ions. The numerical study of plasma production in helium with minor hydrogen content in low and high toroidal magnetic fields is presented. The investigation of the excitation, conversion and absorption of plasma waves as function of B{sub T}-field suggests that only fast waves (FW) may give a crucial impact on antenna coupling and characteristics of the ICWC discharge using standard poloidally polarized ICRF antennas designed to couple RF power mainly to FW. The collisional (non-resonant) absorption by electrons and ions and IC absorption by resonant ions of minor concentration in low T{sub e} plasmas is studied at fundamental ICR and its high harmonics.
Current BPA Power Rates (pbl/rates)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...
Power Rates Announcements (pbl/rates)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...
Surface plasma wave assisted second harmonic generation of laser over a metal film
Chauhan, Santosh; Parashar, J.
2015-01-15
Second harmonic generation of laser mode converted surface plasma wave (SPW) over a corrugated metal film is studied. The laser, impinged on the metal film, under attenuated total reflection configuration, excites SPW over the metalâ€“vacuum interface. The excited SPW extends over a much wider surface area than the laser spot cross-section. It exerts a second harmonic ponderomotive force on metal electrons, imparting them velocity that beats with the surface ripple to produce a nonlinear current, driving resonant second harmonic surface plasma wave.
Li, Dongsheng; Khaleel, Mohammad A.; Sun, Xin; Garmestani, Hamid
2010-03-01
Statistical correlation function, including two-point function, is one of the popular methods to digitize microstructure quantitatively. This paper investigated how to represent statistical correlations using layered fast spherical harmonics expansion. A set of spherical harmonics coefficients may be used to represent the corresponding microstructures. It is applied to represent carbon nanotube composite microstructures to demonstrate how efficiently and precisely the harmonics coefficients will characterize the microstructure. This microstructure representation methodology will dramatically improve the computational efficiencies for future works in microstructure reconstruction and property prediction.
Approach of spherical harmonics to the representation of the deformed su(1,1) algebra
Fakhri, H.; Ghaneh, T.
2008-11-15
The m-shifting generators of su(2) algebra together with a pair of l-shifting ladder symmetry operators have been used in the space of all spherical harmonics Y{sub l}{sup m}({theta},{phi}) in order to introduce a new set of operators, expressing the transitions between them. It is shown that the space of spherical harmonics whose l+2m or l-2m is given presents negative and positive irreducible representations of a deformed su(1,1) algebra, respectively. These internal symmetries also suggest new algebraic methods to construct the spherical harmonics in the framework of the spectrum-generating algebras.
Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A.
2012-07-01
Finite-difference time-dependent equations of Surface Harmonics method have been obtained for plane geometry. Verification of these equations has been carried out by calculations of tasks from 'Benchmark Problem Book ANL-7416'. The capacity and efficiency of the Surface Harmonics method have been demonstrated by solution of the time-dependent neutron transport equation in diffusion approximation. The results of studies showed that implementation of Surface Harmonics method for full-scale calculations will lead to a significant progress in the efficient solution of the time-dependent neutron transport problems in nuclear reactors. (authors)
Effect of the resonant growth of harmonics on the electron density in capacitively coupled plasma
Yamazawa, Yohei
2009-11-09
The growth of harmonics is known to occur under the condition of plasma series resonance (PSR). In an actual plasma process chamber, the external circuit also affects the PSR. We experimentally demonstrated the resonant growth of the third and fourth harmonics by tuning a variable capacitor attached to the electrode, and investigated the influence of the growth on the electron density. We observed significant increases in electron density as the amplitude of harmonics grows. The result clearly shows that nonlinear electron resonance heating actually takes place.
Electro-optic harmonic conversion to switch a laser beam out of a cavity
Haas, Roger A.; Henesian, Mark A.
1987-01-01
The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.
A new frequency domain arc furnace model for iterative harmonic analysis
Mayordomo, J.G.; Beites, L.F.; Asensi, R.; Izzeddine, M.; Zabala, L.; Amantegui, J.
1997-10-01
This paper presents a new frequency domain Arc Furnace model for Iterative Harmonic Analysis (IHA) by means of a Newton method. Powerful analytical expressions for harmonic currents and their derivatives are obtained under the balanced conditions of the system. The model offers a three phase configuration where there is no path for homopolar currents. Moreover, it contemplates continuous and discontinuous evolution of the arc current. The solution obtained is validated by means of time domain simulations. Finally, the model was integrated in a harmonic power flow where studies have been performed in a network with more than 700 busbars and 7 actual Arc Furnace Loads.
Third-harmonic performance of the Beamlet prototype laser
Wegner, P.J.; Barker, C.E.; Caird, J.A.; Dixit, S.N.; Henesian, M.A.; Seppala, L.G.; Thompson, C.E.; Van Wonterghem, B.V.
1997-01-31
The Beamlet laser is a nearly full-scale, single-aperture prototype of the driver design for the National Ignition Facility (NIF). As part of a test and validation plan for the NIF design, Beamlet was recently equipped with final focusing optics and diagnostics for the purpose of evaluating integrated component performance and equivalent target-plane irradiance conditions at the 0.351-{mu}m output wavelength specified for NIF targets. A 37-cm aperture two-crystal converter scheme generates the third harmonic of the Nd:glass 1.053-{mu}m wavelength with high efficiency. The efficiency of the converter has been characterized and is reported, along with detailed measurements of the near-field and far-field UV irradiance distributions at operating conditions up to and exceeding red-line levels for the NIF. Dependences of observed beam quality on critical laser parameters including output power, B-integral, and spatial filtering are discussed and compared with numerical simulations.
All-sky interferometry with spherical harmonic transit telescopes
Shaw, J. Richard; Pen, Ue-Li; Sigurdson, Kris; Sitwell, Michael; Stebbins, Albert
2014-02-01
In this paper, we describe the spherical harmonic transit telescope through the use of a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved-sky complications of traditional interferometry and so is particularly well-suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics, which allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-LoÃ¨ve transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor 20 below the 21 cm signal, even in highly contaminated regions of the sky. This is despite the presence of the mode-mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21 cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with 21st century 21 cm science.
Fermi surface distortion induced by interaction between Rashba and Zeeman effects
Choi, Won Young; Koo, Hyun Cheol; Chang, Joonyeon; Kim, Hyung-jun; Lee, Kyung-Jin
2015-05-07
To evaluate Fermi surface distortion induced by interaction between Rashba and Zeeman effects, the channel resistance in an InAs quantum well layer is investigated with an in-plane magnetic field transverse to the current direction. In the magnetoresistance curve, the critical point occurs at âˆ¼3.5â€‰T, which is approximately half of the independently measured Rashba field. To get an insight into the correlation between the critical point in magnetoresistance curve and the Rashba strength, the channel conductivity is calculated using a two-dimensional free-electron model with relaxation time approximation. The critical point obtained from the model calculation is in agreement with the experiment, suggesting that the observation of critical point can be an alternative method to experimentally determine the Rashba parameter.
Photon-axion conversion as a mechanism for supernova dimming: Limits from CMB spectral distortion
Mirizzi, Alessandro; Raffelt, Georg G.; Serpico, Pasquale D.
2005-07-15
Axion-photon conversion induced by intergalactic magnetic fields has been proposed as an explanation for the dimming of distant supernovae of type Ia (SNe Ia) without cosmic acceleration. The effect depends on the intergalactic electron density n{sub e} as well as the B-field strength and domain size. We show that for n{sub e} < or approx. 10{sup -9} cm{sup -3} the same mechanism would cause excessive spectral distortion of the cosmic microwave background (CMB). This small-n{sub e} parameter region had been left open by the most restrictive previous constraints based on the dispersion of quasar (QSO) spectra. The combination of CMB and QSO limits suggests that the photon-axion conversion mechanism can only play a subleading role for SN Ia dimming. A combined analysis of all the observables affected by the photon-axion oscillations would be required to give a final verdict on the viability of this model.
Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear
Bertsch, Rebecca L. Girimaji, Sharath S.
2015-12-15
The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence is absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. The underlying mechanisms are explained.
Oxygen octahedral distortions in LaMO3/SrTiO3 superlattices
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Sanchez-Santolino, Gabriel; Cabero, Mariona; Varela, Maria; Garcia-Barriocanal, Javier; Leon, Carlos; Pennycook, Stephen J.; Santamaria, Jacobo
2014-04-24
Here we study the interfaces between the Mott insulator LaMnO3 (LMO) and the band insulator SrTiO3 (STO) in epitaxially grown superlattices with different thickness ratios and different transport and magnetic behaviors. Using atomic resolution electron energy-loss spectrum imaging, we analyze simultaneously the structural and chemical properties of these interfaces. We find changes in the oxygen octahedral tilts within the LaMnO3 layers when the thickness ratio between the manganite and the titanate layers is varied. Superlattices with thick LMO and ultrathin STO layers present unexpected octahedral tilts in the STO, along with a small amount of oxygen vacancies. On the othermoreÂ Â» hand, thick STO layers exhibit undistorted octahedra while the LMO layers present reduced O octahedral distortions near the interfaces. In conclusion, these findings will be discussed in view of the transport and magnetic differences found in previous studies.Â«Â less
Popov, Y.F.; Levitin, R.Z.; Zeleny, M.; Deryagin, A.V.; Andreev, A.V.
1980-06-01
We investigate the temperature dependences of the crystal-lattice parameters, of the anisotropy, and of the Young's modulus of the intermetallide compound UFe/sub 2/. The contribution of the uranium ions to the magnetic moment of this compound is negligible (..mu../sub U/=0.06..mu../sub B/), owing to the almoft complete delocalization of the uranium 5f electrons. The measured magnetic anisotropy is relatively small (K/sub 1/approx. =-10/sup 6/ erg/cm/sup 3/ at 0 K). However, the transition to the magnetically ordered state (T/sub c/=170 K) is accompanied by large rhombohedral distortions of the UFe/sub 2/ crystal structure and by a considerable anomaly of the Young's modulus, thus attesting to a large value of the magnetoelastic interaction in this compound (..delta..K/sub 1/ /sup m/eapprox. =-8 x 10/sup 6/ erg/cm/sup 3/).
Experimental and Numerical Analysis on the Distortion of Parts Made of 20MnCr5 by Hot Metal Forming
Rentsch, Ruediger; Brinksmeier, Ekkard [Stiftung Institut fuer Werkstofftechnik, Badgasteiner Strasse 3, 28359 Bremen (Germany)
2011-05-04
For high performance applications, shafts and gears made of 20MnCr5 (AISI 5120) are manufactured in large numbers every year. Inhomogeneities in the material properties, process perturbations and asymmetries in shape and operation setups provide a potential for the distortion of parts, often released by heat treatment. In this contribution experimental results on the distortion of shafts and the dishing of disk-like gear wheel blanks are presented. The numerical analysis of the hot-rolling process allowed to trace a peculiar segregation distribution at the cross-section of the bars back to the casting process, and to identify an asymmetric strain distribution which may be the main cause for shaft distortion. For the dishing of the disks a correlation to the resulting distribution of the material flow was found and, a process perturbation parameter identified which is assumed to be responsible for the observed material flow variation.
Resonant third harmonic generation of KrF laser in Ar gas
Rakowski, R.; Barna, A.; Suta, T.; FÃ¶ldes, I. B.; Bohus, J.; SzatmÃ¡ri, S.; MikoÅ‚ajczyk, J.; Bartnik, A.; Fiedorowicz, H.; Verona, C.; Verona Rinati, G.; Margarone, D.; Nowak, T.; and others
2014-12-15
Investigations of emission of harmonics from argon gas jet irradiated by 700 fs, 5 mJ pulses from a KrF laser are presented. Harmonics conversion was optimized by varying the experimental geometry and the nozzle size. For the collection of the harmonic radiation silicon and solar-blind diamond semiconductor detectors equipped with charge preamplifiers were applied. The possibility of using a single-crystal CVD diamond detector for separate measurement of the 3rd harmonic in the presence of a strong pumping radiation was explored. Our experiments show that the earlier suggested 0.7% conversion efficiency can really be obtained, but only in the case when phase matching is optimized with an elongated gas target length corresponding to the length of coherence.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bansal, Dipanshu; Aref, Amjad; Dargush, Gary; Delaire, Olivier A.
2016-07-20
Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. In this study, we illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Our results agreemoreÂ Â» well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.Â«Â less
de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente
2008-12-16
Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.
Compensation for phase mismatch of high harmonics by the group-velocity mismatch
Kulagin, I A; Kim, V V; Usmanov, T
2011-09-30
A mechanism providing an essential enhancement of the conversion efficiency of a single high harmonic in gaseous media is first proposed using an appropriate change in the phase mismatch and group-velocity mismatch in the vicinity of resonance.
Heath, G.
2012-06-01
This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.
A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron...
Office of Scientific and Technical Information (OSTI)
ThesisDissertation: A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC Citation Details In-Document Search Title: A Proof-of-Principle...
Optical Third-Harmonic Generation in Graphene Hong, Sung-Young...
Office of Scientific and Technical Information (OSTI)
Third-Harmonic Generation in Graphene Hong, Sung-Young; Dadap, Jerry I.; Petrone, Nicholas; Yeh, Po-Chun; Hone, James; Osgood, Richard M. American Physical Society None USDOE...
Second-harmonic generation of upper-hybrid radiation in a plasma
Tewari, D.P.; Tripathi, V.K.
1980-05-01
Employing the fluid model for the nonlinear response of electrons, we have studied the phenomenon of second-harmonic generation of upper-hybrid electromagnetic radiation in an inhomogeneous plasma. In the case of laser-pallet fusion, the maximum contribution for harmonic generation comes from the vicinity of the upper-hybrid layer, and the harmonic conversion efficiency turns out to be approx.0.1% at the power densities approx.10/sup 14/ W/cm/sup 2/ (CO/sub 2/ laser), the same order as observed experimentally. In the case of electron cyclotron heating experiments of tokamak, a strong second harmonic must be generated at the cyclotron resonance layer. The wave-number-matching condition could be satisfied in a tokamak, which adds to the conversion efficiency.
High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum
MendonÃ§a, J. T.; Vieira, J.
2015-12-15
We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a â‰« 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able to show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.
Hagmann, Mark J.; Stenger, Frank S.; Yarotski, Dmitry A.
2013-12-14
Previous analyses suggest that microwave frequency combs (MFCs) with harmonics having extremely narrow linewidths could be produced by photodetection with a mode-locked ultrafast laser. In the MFC generated by focusing a passively mode-locked ultrafast laser on a tunneling junction, 200 harmonics from 74.254â€‰MHz to 14.85â€‰GHz have reproducible measured linewidths approximating the 1â€‰Hz resolution bandwidth (RBW) of the spectrum analyzer. However, in new measurements at a RBW of 0.1â€‰Hz, the linewidths are distributed from 0.12 to 1.17â€‰Hz. Measurements and analysis suggest that, because the laser is not stabilized, the stochastic drift in the pulse repetition rate is the cause for the distribution in measured linewidths. It appears that there are three cases in which the RBW is (1) greater than, (2) less than, or (3) comparable with the intrinsic linewidth. The measured spectra in the third class are stochastic and may show two or more peaks at a single harmonic.
Second harmonic generation from direct band gap quantum dots pumped by femtosecond laser pulses
Liu, Liwei Wang, Yue; Hu, Siyi; Ren, Yu; Huang, Chen
2014-02-21
We report on nonlinear optical experiments performed on Cu{sub 2}S quantum dots (QDs) pumped by femtosecond laser pulses. We conduct a theoretical simulation and experiments to determine their second harmonic generation characteristics. Furthermore, we demonstrate that the QDs have a second harmonic generation conversion efficiency of up to 76%. Our studies suggest that these Cu{sub 2}S QDs can be used for solar cells, bioimaging, biosensing, and electric detection.
Attachment of second harmonic-active moiety to molecules for detection of molecules at interfaces
Salafsky, Joshua S.; Eisenthal, Kenneth B.
2005-10-11
This invention provides methods of detecting molecules at an interface, which comprise labeling the molecules with a second harmonic-active moiety and detecting the labeled molecules at the interface using a surface selective technique. The invention also provides methods for detecting a molecule in a medium and for determining the orientation of a molecular species within a planar surface using a second harmonic-active moiety and a surface selective technique.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...
Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma
Si Xuejiao; Xu Xiang; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Zhao Shuxia [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium); Bogaerts, A. [Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium)
2011-03-15
A fluid model is self-consistently established to investigate the harmonic effects in an inductively coupled plasma, where the electromagnetic field is solved by the finite difference time domain technique. The spatiotemporal distribution of harmonic current density, harmonic potential, and other plasma quantities, such as radio frequency power deposition, plasma density, and electron temperature, have been investigated. Distinct differences in current density have been observed when calculated with and without Lorentz force, which indicates that the nonlinear Lorentz force plays an important role in the harmonic effects, especially at low frequencies. Moreover, the even harmonics are larger than the odd harmonics both in the current density and the potential. Finally, the dependence of various plasma quantities with and without the Lorentz force on various driving frequencies is also examined. It is shown that the deposited power density decreases and the depth of penetration increases slightly because of the Lorentz force. The electron density increases distinctly while the electron temperature remains almost the same when the Lorentz force is taken into account.
Harmonic mode competition in a terahertz gyrotron backward-wave oscillator
Kao, S. H.; Chiu, C. C.; Chang, P. C.; Wu, K. L.; Chu, K. R.
2012-10-15
Electron cyclotron maser interactions at terahertz (THz) frequencies require a high-order-mode structure to reduce the wall loss to a tolerable level. To generate THz radiation, it is also essential to employ cyclotron harmonic resonances to reduce the required magnetic field strength to a value within the capability of the superconducting magnets. However, much weaker harmonic interactions in a high-order-mode structure lead to serious mode competition problems. The current paper addresses harmonic mode competition in the gyrotron backward wave oscillator (gyro-BWO). We begin with a comparative study of the mode formation and oscillation thresholds in the gyro-BWO and gyromonotron. Differences in linear features result in far fewer 'windows' for harmonic operation of the gyro-BWO. Nonlinear consequences of these differences are examined in particle simulations of the multimode competition processes in the gyro-BWO, which shed light on the competition criteria between modes of different as well as the same cyclotron harmonic numbers. The viability of a harmonic gyro-BWO is assessed on the basis of the results obtained.
Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere
Kuo, Spencer P.
2013-09-15
Electron acceleration by upper hybrid waves under cyclotron harmonic resonance interaction is studied. Theory is formulated; the analytical solutions in the second and fourth harmonic cyclotron resonance cases are obtained, and in the third harmonic case, a first order differential equation governing the evolution of the electron energy is derived. The theory is applied for explaining the generation of artificial ionization layers observed in high-frequency (HF) ionospheric heating experiments. The upper hybrid waves are assumed to be excited parametrically by the O-mode HF heating wave. As the decay mode is the lower hybrid wave, the excited upper hybrid waves have wavelengths ranging from 0.25 to 0.5 m, which are short enough to effectively incorporate the finite Larmour radius effect for the harmonic cyclotron resonance interactions as well as have a frequency bandwidth of about 20 kHz, which provides an altitude region of about 10 km for continuous harmonic cyclotron resonance interaction between electrons and descending waves in the slightly inhomogeneous geomagnetic field. The numerical results on electron acceleration show that electron fluxes with energies larger than 14 eV are generated in the three harmonic cases. These energetic electrons cause impact ionizations, which are descending to form artificial ionization layers at the bottom of the ionospheric F region.
Hanif, M.; Salik, M.; Arif, F.
2015-03-15
In this research work, spectroscopic studies of carbon (C) plasma by using laser-induced breakdown spectroscopy (LIBS) are presented. The plasma was produced by the first (1064 nm) and second (532 nm) harmonics of a Q-switched Nd:YAG (Quantel Brilliant) pulsed laser having a pulse duration of 5 ns and 10-Hz repetition rate, which is capable of delivering 400 mJ at 1064 nm and 200 mJ at 532 nm. The laser beam was focused on the target material (100% carbon) by placing it in air at atmospheric pressure. The experimentally observed line profiles of five neutral carbon (C I) lines at 247.85, 394.22, 396.14, 588.95, and 591.25 nm were used to extract the electron temperature T{sub e} by using the Boltzmann plot method and determine its value, 9880 and 9400 K, respectively, for the fundamental and second harmonics of the laser, whereas the electron density N{sub e} was determined from the Stark broadening profile of neutral carbon line at 247.85 nm. The values of N{sub e} at a distance of 0.05 mm from the target surface for the fundamental-harmonic laser with a pulse energy of 130 mJ and the second-harmonic laser with a pulse energy of 72 mJ are 4.68 Ã— 10{sup 17} and 5.98 Ã— 10{sup 17} cm{sup âˆ’3}, respectively. This extracted information on T{sub e} and N{sub e} is useful for the deposition of carbon thin films by using the pulsed laser deposition technique. Moreover, both plasma parameters (T{sub e} and N{sub e}) were also calculated by varying the distance from the target surface along the line of propagation of the plasma plume and also by varying the laser irradiance.
PNCA-02 Rate Case (rates/ratecases)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Proposed Adjustment to the Rate for Interchange Energy Imbalances Under the Pacific Northwest Coordination Agreement (PNCA-02 Rate Case) (updated on April 26, 2002) BPA has issued...
SU-E-J-209: Geometric Distortion at 3T in a Commercial 4D MRI-Compatible Phantom
Fatemi-Ardekani, A; Wronski, M; Kim, A; Stanisz, G; Sarfehnia, A; Keller, B
2015-06-15
Purpose: There are very few commercial 4D phantoms that are marketed as MRI compatible. We are evaluating one such commercial phantom, made to be used with an MRI-Linear accelerator. The focus of this work is to characterize the geometric distortions produced in this phantom at 3T using 3 clinical MR pulse sequences. Methods: The CIRS MRI-Linac Dynamic Phantom (CIRSTM) under investigation in this study consists of a softwaredriven moving tumour volume within a thorax phantom body and enables dose accumulation by placing a dosimeter within the tumour volume. Our initial investigation is to evaluate the phantom in static mode prior to examining its 4D capability. The water-filled thorax phantom was scanned using a wide-bore Philips 3T Achieva MRI scanner employing a Thoracic xl coil and clinical 2D T1W FFE, 2D T1W TSE and 3D T1W TFE pulse sequences. Each of the MR image sets was rigidly fused with a reference CT image of the phantom employing a rigid registration with 6 degrees of freedom. Geometric distortions between the MR and CT image sets were measured in 3 dimensions at selected points along the periphery of the distortion grid embedded within the phantom body (11.5, 7.5 and 3 cm laterally, ant/post and sup/inf of magnetic isocenter respectively). Results: The maximal measured geometric distortions between the MR and reference CT points of interest were 0.9, 1.8 and 1.3 mm in the lateral, anteriorposterior and cranio-caudal directions, respectively. For all 3 spatial dimensions, the maximal distortions occurred for the FFE pulse sequence. Maximal distortions for the 2D FFE, 2D TSE and 3D TFE sequences were 1, 0.7 and 1.8 mm, respectively. Conclusion: Our initial static investigation of this phantom shows minimal geometric distortions at 3T along the periphery of the embedded grid. CIRS has provided us with a phantom at no charge for evaluation at 3 Tesla.
Global Harmonization of Quality Assurance Naming Conventions in Radiation Therapy Clinical Trials
Melidis, Christos; Bosch, Walther R.; Izewska, Joanna; Fidarova, Elena; Zubizarreta, Eduardo; Ulin, Kenneth; Ishikura, Satoshi; Followill, David; Galvin, James; Haworth, Annette; Besuijen, Deidre; Clark, Clark H.; Miles, Elizabeth; Aird, Edwin; and others
2014-12-01
Purpose: ToÂ review the various radiation therapy quality assurance (RTQA) procedures used by the Global Clinical Trials RTQA Harmonization Group (GHG) steering committee members and present the harmonized RTQA naming conventions by amalgamating procedures with similar objectives. Methods and Materials: A survey of the GHG steering committee members' RTQA procedures, their goals, and naming conventions was conducted. The RTQA procedures were classified as baseline, preaccrual, and prospective/retrospective data capture and analysis. After all the procedures were accumulated and described, extensive discussions took place to come to harmonized RTQA procedures and names. Results: The RTQA procedures implemented within a trial by the GHG steering committee members vary in quantity, timing, name, and compliance criteria. The procedures of each member are based on perceived chances of noncompliance, so that the quality of radiation therapy planning and treatment does not negatively influence the trial measured outcomes. A comparison of these procedures demonstrated similarities among the goals of the various methods, but the naming given to each differed. After thorough discussions, the GHG steering committee members amalgamated the 27 RTQA procedures to 10 harmonized ones with corresponding names: facilityÂ questionnaire, beam output audit, benchmark case, dummy run, complex treatment dosimetry check, virtual phantom, individual case review, review of patients' treatment records, and protocol compliance and dosimetry site visit. Conclusions: Harmonized RTQA harmonized naming conventions, which can be used in all future clinical trials involving radiation therapy, have been established. Harmonized procedures will facilitate future intergroup trial collaboration and help to ensure comparable RTQA between international trials, which enables meta-analyses and reduces RTQA workload for intergroup studies.
Krause, Jens C.; Ekiert, Damian C.; Tumpey, Terrence M.; Smith, Patricia B.; Wilson, Ian A.; Crowe, Jr., James E.
2011-09-02
The structural and functional significance of somatic insertions and deletions in antibody chains is unclear. Here, we demonstrate that a naturally occurring three-amino-acid insertion within the influenza virus-specific human monoclonal antibody 2D1 heavy-chain variable region reconfigures the antibody-combining site and contributes to its high potency against the 1918 and 2009 pandemic H1N1 influenza viruses. The insertion arose through a series of events, including a somatic point mutation in a predicted hot-spot motif, introduction of a new hot-spot motif, a molecular duplication due to polymerase slippage, a deletion due to misalignment, and additional somatic point mutations. Atomic resolution structures of the wild-type antibody and a variant in which the insertion was removed revealed that the three-amino-acid insertion near the base of heavy-chain complementarity-determining region (CDR) H2 resulted in a bulge in that loop. This enlarged CDR H2 loop impinges on adjacent regions, causing distortion of the CDR H1 architecture and its displacement away from the antigen-combining site. Removal of the insertion restores the canonical structure of CDR H1 and CDR H2, but binding, neutralization activity, and in vivo activity were reduced markedly because of steric conflict of CDR H1 with the hemagglutinin antigen.
Distorting general relativity: gravity's rainbow and f(R) theories at work
Garattini, Remo
2013-06-01
We compute the Zero Point Energy in a spherically symmetric background combining the high energy distortion of Gravity's Rainbow with the modification induced by a f(R) theory. Here f(R) is a generic analytic function of the Ricci curvature scalar R in 4D and in 3D. The explicit calculation is performed for a Schwarzschild metric. Due to the spherically symmetric property of the Schwarzschild metric we can compare the effects of the modification induced by a f(R) theory in 4D and in 3D. We find that the final effect of the combined theory is to have finite quantities that shift the Zero Point Energy. In this context we setup a Sturm-Liouville problem with the cosmological constant considered as the associated eigenvalue. The eigenvalue equation is a reformulation of the Wheeler-DeWitt equation which is analyzed by means of a variational approach based on gaussian trial functionals. With the help of a canonical decomposition, we find that the relevant contribution to one loop is given by the graviton quantum fluctuations around the given background. A final discussion on the connection of our result with the observed cosmological constant is also reported.
Epitaxial growth of NiTiO3 with a distorted ilmenite structure
Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Bolin, Trudy B.; Shelton, William A.; Chambers, Scott A.
2012-06-30
MTiO3 (M = Fe, Mn, Ni) compounds have received recent attention as possible candidates for new multiferroic materials capable of magnetization switching by application of an electric field. Epitaxial Ni1-xTi1-yO3 films of different thickness and composition were deposited on Al2O3(0001) by pulsed laser deposition, and characterized using several techniques. Structural parameters for the metastable LiNbO3-type NiTiO3 structure with the space group R3c were predicted using density functional theory calculations, and compared with the experimental results. Our structural data from x-ray diffraction and x-ray absorption spectroscopy indicate that epitaxial ilmenite-type NiTiO3 films were successfully grown. Furthermore, lattice strain exerted by the sapphire substrate results in a distorted ilmenite structure similar to the LiNbO3-type one. Our results demonstrate the potential of oxide heteroepitaxy to stabilize metastable multiferroic phases that may be difficult to prepare or are inaccessible in the bulk.
Analysis of the orbit distortion by the use of the wavelet transform
Matsushita, T.; Takao, M.; Aoyagi, H.; Takeuchi, M.; Tanaka, H.; Agui, A.; Yoshigoe, A.; Nakatani, T.
2004-05-12
We have adopted matching pursuit algorithm of discrete wavelet transform (DWT) for the analysis of the beam position shift correlated with the motion of insertion device (ID). The beam position data measured by the rf beam position monitors have included high-frequency 'noises' and fluctuation of background level. Precise evaluation of the electron beam position shift correlated with the motion of the ID is required for estimation of the steering magnet currents in order to suppress the closed orbit distortion (COD). The DWT is a powerful tool for frequency analysis and data processing. The analysis of DWT was applied to the beam position shift correlated with the phase motion of APPLE-2 type undulator (ID23) in SPring-8. The result of the analysis indicated that 'noises' are mainly composed of the components of 50 {approx} 6.25Hz and < 0.1Hz. We carried out the data processing to remove the 'noises' by the matching pursuit algorithm. Then we have succeeded in suppressing the COD within 2 {mu}m by the use of the steering magnet currents calculated from the processed data.
Density- and wavefunction-normalized Cartesian spherical harmonics for l ? 20
Michael, J. Robert; Volkov, Anatoliy
2015-03-01
The widely used pseudoatom formalism in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l ? 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens. It was shown that the analytical form for normalization coefficients is available primarily for
G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit
Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.; Kao, B. H.; Chen, Chien-Hsiang; Lin, T. Y.; Guo, Y. W.
2014-12-15
Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA. An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10â€‰dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50â€‰kW at 198.8â€‰GHz, corresponding to a saturated gain of 55â€‰dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5â€‰GHz.
Control of high-order harmonics for attoscience using a static-electric-field pattern
Serrat, Carles
2011-12-15
Quantum control in high-order-harmonic generation is considered theoretically by using a spatial distribution of static electric fields along the propagation direction of the driving field. It is shown that the trajectories of the electrons during its acceleration by the laser field in the high-harmonics-generation process can be controlled by periodically distributed static electric fields, which conveniently shape the driving laser field during propagation. Applying this mechanism, a quasi-phase-matching scheme that leads to filtered enhanced high harmonics is achieved. The harmonics in the plateau region are enhanced due to periodical phase variations in the long quantum trajectories as a consequence of the faster change experienced by the intensity-dependent phase along the longer electron trajectories. This effect should be observed in all quasi-phase-matching schemes based on perturbation of the microscopic quantum phase. The richness of adding a static-electric-field spatial pattern in the interaction region suggests a general scheme for feedback loop control in high-order-harmonic generation.
Density- and wavefunction-normalized Cartesian spherical harmonics for l â‰¤ 20
Michael, J. Robert; Volkov, Anatoliy
2015-03-01
The widely used pseudoatom formalism in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l â‰¤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens. It was shown that the analytical form for normalization coefficients is available primarily for
Kolakoski sequence as an element to radiate giant forward and backward second harmonic signals
Parvini, T. S.; Tehranchi, M. M. E-mail: teranchi@sbu.ac.ir; Hamidi, S. M. E-mail: teranchi@sbu.ac.ir; Sarkarati, S.
2015-11-14
We propose a novel type of aperiodic one-dimensional photonic crystal structures which can be used for generating giant forward and backward second harmonic signals. The studied structure is formed by stacking together the air and nonlinear layers according to the Kolakoski self-generation scheme in which each nonlinear layer contains a pair of antiparallel 180Â° poled LiNbO{sub 3} crystal layers. For different generation stages of the structure, conversion efficiencies of forward and backward second harmonic waves have been calculated by nonlinear transfer matrix method. Numerical simulations show that conversion efficiencies in the Kolakoski-based multilayer are larger than the perfect ones for at least one order of magnitude. Especially for 33rd and 39th generation stages, forward second harmonic wave are 42 and 19 times larger, respectively. In this paper, we validate the strong fundamental field enhancement and localization within Kolakoski-based multilayer due to periodicity breaking which consequently leads to very strong radiation of backward and forward second harmonic signals. Following the applications of analogous aperiodic structures, we expect that Kolakosi-based multilayer can play a role in optical parametric devices such as multicolor second harmonic generators with high efficiency.
Experimental investigation of a phased-locked harmonic multiplying inverted gyrotwystron
Guo, H.; Rodgers, J.; Chen, S.; Walter, M.; Granatstein, V.L.
1996-12-31
The University of Maryland is investigating harmonic multiplication as a means of generating high frequency, large bandwidth, high power microwaves with reduced magnetic field and high subharmonic injection gain. The current experimental efforts are concentrated don two-stage devices. One of them is the phase-locked, harmonic-multiplying inverted gyrotwystron (phigtron) which uses a MIG produced electron beam (60 kV, 10 A), a combined mode launcher/input coupler, a Ku band fundamental gyro-TWT prebunching section, a radiation-free drift section, and a Ka band special complex cavity as output section. The bandwidth of this phigtron is expected to be improved over that of a gyroklystron since the input cavity is replaced by a traveling wave interaction structure. The second harmonic content of the beam may develop within both the input section and the drift space, and this allows the use of a smaller input signal. For a proof-of-principle experiment, a hot test tube was built. Initial experimental data will be provided in this presentation and will be compared with theoretical predictions. Finally, the feasibility of using a phigtron configuration with second harmonic prebunching and fourth harmonic output to realize a compact, high performance MMW power source at 94 GHz is discussed.
Experimental investigation of a phase-locked harmonic multiplying inverted gyrotwystron
Guo, H.; Rodgers, J.; Chen, S.; Walter, M.; Granatstein, V.L.
1996-12-31
The University of Maryland is investigating harmonic multiplication as a means of generating high frequency, large bandwidth, high power microwaves with reduced magnetic fields and high subharmonic injection gain. The current experimental efforts are concentrated on two-stage devices. One of them is the phase-locked, harmonic-multiplying inverted gyrotwystron (phigtron) which uses a MIG produced electron beam (60 kV, 10 A), a combined mode launcher/input coupler, a Ku band fundamental gyro-TWT prebunching section, a radiation-free drift section, and a Ka band special complex cavity as output section. The bandwidth of this phigtron is expected to be improved over that of a gyroklystron since the input cavity is replaced by a traveling wave interaction structure. The second harmonic content of the beam may develop within both the input section and the drift space, and this allows the use of a smaller input signal. For a proof-of-principle experiment, a hot test tube was built. Initial experimental data will be provided in this presentation and will be compared with theoretical predictions. Finally, the feasibility of sing a phigtron configuration with second harmonic prebunching and fourth harmonic output to realize a compact, high performance MMW power source at 94 GHz will be discussed.
Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band
Yeh, Y. S.; Guo, Y. W.; Kao, B. H.; Chen, C. H.; Wang, Z. W.; Hung, C. L.; Chang, T. H.
2015-12-15
Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14â€‰dB to suppress the competing modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24â€‰kW at 200.4â€‰GHz, corresponding to a saturated gain of 56â€‰dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0â€‰GHz.
Density- and wavefunction-normalized Cartesian spherical harmonics for l â‰¤ 20
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Michael, J. Robert; Volkov, Anatoliy
2015-03-01
The widely used pseudoatom formalism in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l â‰¤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens. It was shown that the analytical form for normalization coefficients is available primarily forl â‰¤ 4. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 < l â‰¤ 7.moreÂ Â» In most cases for l > 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturleâ€“Coppens method in the Wolfram Mathematicasoftware to derive the Cartesian spherical harmonics for l â‰¤ 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.Â«Â less
Harmonic superspace geometry of (4,4) supersymmetric {sigma} models with torsion
Ivanov, E.A.
1996-02-01
Starting from the dual action of (4,4) two-dimensional (2D) twisted multiplets in the harmonic superspace with two independent sets of SU(2) harmonic variables, we present its generalization which hopefully provides an off-shell description of general (4,4) supersymmetric {sigma} models with torsion. Like the action of the torsionless (4,4) hyper-K{umlt a}hler {sigma} models in the standard harmonic superspace, it is characterized by a number of superfield potentials. They depend on {ital n} copies of a triple of analytic harmonic (4,4) superfields. As distinct from the hyper-K{umlt a}hler case, the potentials prove to be severely constrained by the self-consistency condition which stems from the commutativity of the left and right harmonic derivatives. We show that for {ital n}=1 these constraints reduce the general action to that of the (4,4) twisted multiplet, while for {ital n}{ge}2 there exists a wide class of new actions which cannot be written only via twisted multiplets. Their most strikng feature is the non-Abelian and in general nonlinear gauge invariance which substitutes the Abelian gauge symmetry of the dual action of twisted multiplets and ensures the correct number of physical degrees of freedom. We show, on a simple example, that these actions describe {sigma} models with noncommuting left and right complex structures on the bosonic target. {copyright} {ital 1996 The American Physical Society.}
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Proceeding Rate Information Residential Exchange Program Surplus Power Sales Reports Rate Case Elements BPA's rate cases are decided "on the record." That is, in making a decision...
Jha, Pallavi; Agrawal, Ekta
2014-05-15
An analytical study of second harmonic generation due to interaction an intense, p-polarized laser beam propagating obliquely in homogeneous underdense plasma, in the mildly relativistic regime, has been presented. The efficiency of the second harmonic radiation as well as its detuning length has been obtained and their variation with the angle of incidence is analyzed. It is shown that, for a given plasma electron density, the second harmonic efficiency increases with the angle of incidence while the detuning length decreases. The second harmonic amplitude vanishes at normal incidence of the laser beam.
Ganeev, R. A.; Baba, M.; Suzuki, M.; Yoneya, S.; Kuroda, H.
2014-12-28
The systematic studies of the harmonic generation of ultrashort laser pulses in the 5-mm-long Zn and Mn plasmas (i.e., application of nanosecond, picosecond, and femtosecond pulses for ablation, comparison of harmonic generation from atomic, ionic, and cluster-contained species of plasma, variation of plasma length, two-color pump of plasmas, etc.) are presented. The conversion efficiency of the 11thâ€“19th harmonics generated in the Zn plasma was âˆ¼5â€‰Ã—â€‰10{sup âˆ’5}. The role of the ionic resonances of Zn near the 9th and 10th harmonics on the enhancement of harmonics is discussed. The enhancement of harmonics was also analyzed using the two-color pump of extended plasmas, which showed similar intensities of the odd and even harmonics along the whole range of generation. The harmonics up to the 107th order were demonstrated in the case of manganese plasma. The comparison of harmonic generation in the 5-mm-long and commonly used short (â‰¤0.5â€‰mm) plasma plumes showed the advanced properties of extended media.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...
Nonlinear absorption and harmonic generation of laser in a gas with anharmonic clusters
Kumar, Manoj; Tripathi, V. K.
2013-02-15
The nonlinear absorption and harmonic generation of intense short pulse laser in a gas embedded with anharmonic clusters are investigated theoretically. When the laser induced excursion of cluster electrons becomes comparable to cluster radius, the restoration force on electrons no longer remains linearly proportional to the excursion. As a consequence, the plasmon resonance is broadened, leading to broadband laser absorption. It also leads to second and third harmonic generations, at much higher level than the one due to ponderomotive nonlinearity. The harmonic yield is resonantly enhanced at the plasmon resonance {omega}={omega}{sub pe}/{radical}(3), where {omega} is the frequency of the laser and {omega}{sub pe} is the plasma frequency of cluster electrons.
Pressure-induced phase matching in high-order harmonic generation
Kazamias, S.; Daboussi, S.; Guilbaud, O.; Cassou, K.; Ros, D.; Cros, B.; Maynard, G.
2011-06-15
We present an alternative explanation of the high-order-harmonic-generation experimental results published recently by Seres et al. [Nature Phys. 6, 455 (2010)]. We show that the physical interpretation can be comprehensively done in the frame of classical theory of high-order harmonic generation without referring to a parametric effect in the XUV domain. The experimental conditions explored by Seres et al. indeed correspond to the case of long-pulse, low-infrared-energy laser beams for which tight focusing is necessary to reach the minimum intensity required for high atomic response. The positive atomic dispersion can compensate for the Gouy phase and explains the behavior of the experimental variation of the harmonic signal presented. We will show that our interpretation explains not only the global behavior of the curves but also the second-order variation of the signal as a function of experimental parameters.
Cho, Suwon; Kwak, Jong-Gu
2014-04-15
The propagation and absorption of high harmonic fast waves is of interest for non-inductive current drives in fusion experiments. The fast wave can be coupled with the ion Bernstein wave that propagates in the high magnetic field side of an ion cyclotron harmonic resonance layer. This coupling and the absorption are analyzed using the hot plasma dispersion relation and a wave equation that was converted from an approximate dispersion relation for the case where Î»{sub i}=k{sub âŠ¥}{sup 2}Ï{sub i}{sup 2}/2â‰³1 (where k{sub âŠ¥} is the perpendicular wave number and Ï{sub i} is the ion Larmor radius). It is found that both reflection and conversion may occur near the harmonic resonance layer but that they decrease rapidly, giving rise to a sharp increase in the absorption as the parallel wave number increases.
Influence of gas pressure on high-order-harmonic generation of Ar and Ne
Wang Guoli; Jin Cheng; Le, Anh-Thu; Lin, C. D.
2011-11-15
We study the effect of gas pressure on the generation of high-order harmonics where harmonics due to individual atoms are calculated using the recently developed quantitative rescattering theory, and the propagation of the laser and harmonics in the medium is calculated by solving the Maxwell's wave equation. We illustrate that the simulated spectra are very sensitive to the laser focusing conditions at high laser intensity and high pressure since the fundamental laser field is severely reshaped during the propagation. By comparing the simulated results with several experiments we show that the pressure dependence can be qualitatively explained. The lack of quantitative agreement is tentatively attributed to the failure of the complete knowledge of the experimental conditions.
Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht
2014-01-14
We derive via the interaction â€œrepresentationâ€ the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric fieldâ€”the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement â€“ the uniform electron gas â€“ the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.
Guo, Y.; Keller, J.; Parker, R. G.
2012-06-01
The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Carroll, Susan
Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Carroll, Susan
2013-07-01
Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Britto, Sylvia; Leskes, Michal; Hua, Xiao; HÃ©bert, Claire-Alice; Shin, Hyeon Suk; Clarke, Simon; Borkiewicz, Olaf; Chapman, Karena W.; Seshadri, Ram; Cho, Jaephil; et al
2015-06-08
Vanadium sulfide VS4 in the patronite mineral structure, is a linear chain compound comprising vanadium atoms coordinated by disulfide anions [S2]2â€“. 51V NMR shows that the material, despite having V formally in the d1 configuration, is diamagnetic, suggesting potential dimerization through metal-metal bonding associated with a Peierls distortion of the linear chains. This is supported by density functional calculations, and is also consistent with the observed alternation in V-V distances of 2.8 Ã… and 3.2 Ã… along the chains. Partial lithiation results in reduction of the disulfide ions to sulfide S2â€“, including via an internal redox process whereby an electronmoreÂ Â» from V4+ is transferred to [S2]2â€“ resulting in oxidation of V4+ to V5+ and reduction of the [S2]2â€“ to S2- to form Li3VS4 containing tetrahedral [VS4]3â€“ anions. On further lithiation this is followed by reduction of the V5+ in Li3VS4 to form Li3+xVS4 (x=0.5-1), a mixed valent V4+/V5+ compound. Eventually reduction to Li2S plus elemental V occurs. Despite the complex redox processes involving both the cation and the anion occurring in this material, the system is found to be partially reversible between 0 and 3 V. In conclusion, the unusual redox processes in this system are elucidated using a suite of short range characterization tools including 51V Nuclear Magnetic Resonance spectroscopy (NMR), S Kedge X-ray Absorption Near Edge Spectroscopy (XANES) and Pair Distribution Function (PDF) Analysis of X-ray data.Â«Â less
Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Sheng, Y.
2015-06-01
Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.
Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs
Buckley, Sonia Radulaski, Marina; VuÄkoviÄ‡, Jelena; Biermann, Klaus
2013-11-18
We demonstrate second harmonic generation at telecommunications wavelengths in photonic crystal cavities in (111)-oriented GaAs. We fabricate 30 photonic crystal structures in both (111)- and (100)-oriented GaAs and observe an increase in generated second harmonic power in the (111) orientation, with the mean power increased by a factor of 3, although there is a large scatter in the measured values. We discuss possible reasons for this increase, in particular, the reduced two photon absorption for transverse electric modes in (111) orientation, as well as a potential increase due to improved mode overlap.
Beam test of a grid-less multi-harmonic buncher.
Ostroumov, P. N.; Aseev, V. N.; Barcikowski, A.; Clifft, B.; Pardo, R.; Sharamentov, S. I.; Sengupta, M.; Physics
2008-01-01
The Argonne Tandem Linear Accelerator System (ATLAS) is the first superconducting heavy-ion linac in the world. Currently ATLAS is being upgraded with the Californium Rare Ion Breeder Upgrade (CARIBU). The latter is a funded project to expand the range of shortlived, neutron-rich rare isotope beams available for nuclear physics research at ATLAS. To avoid beam losses associated with the existing gridded multi-harmonic buncher (MHB), we have developed and built a grid-less four-harmonic buncher with fundamental frequency of 12.125 MHz. In this paper, we report the results of the MHB commissioning and ATLAS beam performance with the new buncher.
Ising antiferromagnet with ultracold bosonic mixtures confined in a harmonic trap
Guglielmino, M.; Penna, V.; Capogrosso-Sansone, B.
2011-09-15
We present accurate results based on quantum Monte Carlo simulations of two-component bosonic systems on a square lattice and in the presence of an external harmonic confinement. Starting from hopping parameters and interaction strengths which stabilize the Ising antiferromagnetic phase in the homogeneous case and at half-integer filling factor, we study how the presence of the harmonic confinement challenges the realization of such a phase. We consider realistic trapping frequencies and number of particles, and we establish under which conditions, i.e., total number of particles and population imbalance, the antiferromagnetic phase can be observed in the trap.
Heath, G.; O'Donoughue, P.; Whitaker, M.
2012-12-01
This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.
Zhang Xiaofei |; Yang Qin |; Zhang Jiefang; Chen, X. Z.; Liu, W. M.
2008-02-15
We present how to control interactions between solitons, either bright or dark, in Bose-Einstein condensates by synchronizing Feshbach resonance and harmonic trap. Our results show that as long as the scattering length is to be modulated in time via a changing magnetic field near the Feshbach resonance, and the harmonic trapping frequencies are also modulated in time, exact solutions of the one-dimensional nonlinear Schroedinger equation can be found in a general closed form, and interactions between two solitons are modulated in detail in currently experimental conditions. We also propose experimental protocols to observe the phenomena such as fusion, fission, warp, oscillation, elastic collision in future experiments.
Hayes, R.M.; Kirkpatrick, T.L.; Lauletta, J.L.; Shuter, T.C.; Vollkommer, H.T. Jr.
1987-05-19
A system is described for determining directions of locations of sources of power harmonics relative to a node interconnecting n branches of a power distribution network, where n is an integer greater than or equal to 2, comprising: voltage transducer means for monitoring voltage waveforms in at least (n-1) of the n branches; current transducer means for monitoring current waveforms in at least (n-1) branches; means for sampling the current and voltage waveforms to obtain analog current and voltage waveform samples; A/D converter means for digitizing the analog waveform samples; and spectrum analyzer means for resolving the digitized samples into their respective harmonic components.
Levin, I.; Krayzman, V.; Woicik, J. C.; Tucker, M. G.
2014-06-16
The local structure of tetragonal BiFeO{sub 3}-PbTiO{sub 3} solid solutions featuring anomalous lattice distortions has been determined using simultaneous fitting of neutron total scattering and extended X-ray absorption fine structure data. On the local scale, the large tetragonal distortion, promoted by the displacements of the A-cations (Bi and Pb), is accommodated primarily by the [FeO{sub 6}] octahedra, even though both Fe and Ti acquire (5+1)-fold coordination. Bi cations exhibit considerably larger displacements than Pb. The combination of the A-cation displacements and the ability of M-cations to adopt 5-fold coordination is suggested as key for stabilizing the large tetragonality in BiMO{sub 3}-PbTiO{sub 3} systems.
Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.; Khan, S. A.
2013-10-21
Important correlation between valence band spectra and hydrogenation properties in Pd alloy nanoparticles is established by studying the properties of size selected and monocrystalline Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles. The X-ray photoelectron spectroscopy and elastic recoil detection analysis show that size induced Pd4d centroid shift is related to enhanced hydrogenation with H/Pd ratio of 0.57 and 0.49 in Pd-Ag and Pd-Cu nanoparticles in comparison to reported bulk values of 0.2 and 0.1, respectively. Pd-alloy nanoparticles show lower hydrogen induced lattice distortion. The reduced distortion and higher hydrogen reactivity of Pd-alloy nanoparticles is important for numerous hydrogen related applications.
Lack of a Jahn-Teller Distortion in La1-xSrxCoO3 Determined by EXAFS and
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Neutron PDF Studies Lack of a Jahn-Teller Distortion in La1-xSrxCoO3 Determined by EXAFS and Neutron PDF Studies The transition metal oxides exhibit a wide range of interesting properties, of which superconductivity in the copper oxides and colossal magnetoresistance in the manganese oxides are perhaps the best known. However, the strange magnetic behavior of several cobalt oxides is another example of these unusual properties, although not yet as intensively studied. The cobaltite system
Britto, Sylvia; Leskes, Michal; Hua, Xiao; HÃ©bert, Claire-Alice; Shin, Hyeon Suk; Clarke, Simon; Borkiewicz, Olaf; Chapman, Karena W.; Seshadri, Ram; Cho, Jaephil; Grey, Clare P.
2015-06-08
Vanadium sulfide VS_{4} in the patronite mineral structure, is a linear chain compound comprising vanadium atoms coordinated by disulfide anions [S_{2}]^{2â€“}. ^{51}V NMR shows that the material, despite having V formally in the d^{1} configuration, is diamagnetic, suggesting potential dimerization through metal-metal bonding associated with a Peierls distortion of the linear chains. This is supported by density functional calculations, and is also consistent with the observed alternation in V-V distances of 2.8 Ã… and 3.2 Ã… along the chains. Partial lithiation results in reduction of the disulfide ions to sulfide S^{2â€“}, including via an internal redox process whereby an electron from V^{4+} is transferred to [S_{2}]^{2â€“ } resulting in oxidation of V^{4+} to V^{5+} and reduction of the [S_{2}]^{2â€“} to S^{2-} to form Li_{3}VS_{4} containing tetrahedral [VS_{4}]^{3â€“} anions. On further lithiation this is followed by reduction of the V^{5+} in Li_{3}VS_{4} to form Li_{3+x}VS_{4} (x=0.5-1), a mixed valent V^{4+}/V^{5+} compound. Eventually reduction to Li_{2}S plus elemental V occurs. Despite the complex redox processes involving both the cation and the anion occurring in this material, the system is found to be partially reversible between 0 and 3 V. In conclusion, the unusual redox processes in this system are elucidated using a suite of short range characterization tools including ^{51}V Nuclear Magnetic Resonance spectroscopy (NMR), S Kedge X-ray Absorption Near Edge Spectroscopy (XANES) and Pair Distribution Function (PDF) Analysis of X-ray data.
Kumar, M.; Singhal, H.; Chakera, J. A.; Naik, P. A.; Khan, R. A.; Gupta, P. D.
2013-07-21
A study of the spatial coherence of the high order harmonic radiation generated by the interaction of 45 fs Ti:sapphire laser beam with carbon (graphite) plasma plume has been carried out using Young's double slit interferometry. It is observed that the spatial coherence varies with harmonic order, laser focal spot size in plasma plume, and peaks at an optimal spot size. It is also observed that the spatial coherence is higher when the laser pulse is focused before the plasma plume than when focused after the plume, and it decreases with increase in the harmonic order. The optimum laser parameters and the focusing conditions to achieve good spatial coherence with high harmonic conversion have been identified, which is desirable for practical applications of the harmonic radiation.
Samet Y. Kadioglu; Robert R. Nourgaliev; Vincent A. Mousseau
2008-03-01
We perform a comparative study for the harmonic versus arithmetic averaging of the heat conduction coefficient when solving non-linear heat transfer problems. In literature, the harmonic average is the method of choice, because it is widely believed that the harmonic average is more accurate model. However, our analysis reveals that this is not necessarily true. For instance, we show a case in which the harmonic average is less accurate when a coarser mesh is used. More importantly, we demonstrated that if the boundary layers are finely resolved, then the harmonic and arithmetic averaging techniques are identical in the truncation error sense. Our analysis further reveals that the accuracy of these two techniques depends on how the physical problem is modeled.
Campione, Salvatore; Benz, Alexander; Brener, Igal; Sinclair, Michael B.; Capolino, Filippo
2014-03-31
We theoretically analyze the second harmonic generation capacity of two-dimensional periodic metamaterials comprising sub-wavelength resonators strongly coupled to intersubband transitions in quantum wells (QWs) at mid-infrared frequencies. The metamaterial is designed to support a fundamental resonance at âˆ¼30â€‰THz and an orthogonally polarized resonance at the second harmonic frequency (âˆ¼60â€‰THz), while the asymmetric quantum well structure is designed to provide a large second order susceptibility. Upon continuous wave illumination at the fundamental frequency we observe second harmonic signals in both the forward and backward directions, with the forward efficiency being larger. We calculate the overall second harmonic conversion efficiency of the forward wave to be âˆ¼1.3â€‰Ã—â€‰10{sup âˆ’2} W/W{sup 2}â€”a remarkably large value, given the deep sub-wavelength dimensions of the QW structure (about 1/15th of the free space wavelength of 10â€‰Î¼m). The results shown in this Letter provide a strategy for designing easily fabricated sources across the entire infrared spectrum through proper choice of QW and resonator designs.
Stabilizing effect of a double-harmonic RF system in the CERN PS
Bhat, C.; Caspers, F.; Damerau, H.; Hancock, S.; Mahner, E.; Zimmermann, F.; /CERN
2009-04-01
Motivated by the discussions on scenarios for LHC upgrades, beam studies on the stability of flat bunches in a double-harmonic RF system have been conducted in the CERN Proton Synchrotron (PS). Injecting nearly nominal LHC beam intensity per cycle, 18 bunches are accelerated on harmonic h = 21 to 26GeV with the 10MHz RF system. On the flat-top, all bunches are then transformed to flat bunches by adiabatically adding RF voltage at h = 42 from a 20 MHz cavity in anti-phase to the h = 21 system. The voltage ratio V (h42)/V (h21) of about 0.5 was set according to simulations. For the next 140 ms, longitudinal profiles show stable bunches in the double-harmonic RF bucket until extraction. Without the second harmonic component, coupled-bunch oscillations are observed. The flatness of the bunches along the batch is analyzed as a measure of the relative phase error between the RF systems due to beam loading. The results of beam dynamics simulations and their comparison with the measured data are presented.
Krebs, I.; HÃ¶lzl, M.; Lackner, K.; GÃ¼nter, S.
2013-08-15
Nonlinear simulations of the early edge-localized mode (ELM) phase based on a typical type-I ELMy ASDEX Upgrade discharge have been carried out using the reduced MHD code JOREK. The analysis is focused on the evolution of the toroidal Fourier spectrum. It is found that during the nonlinear evolution, linearly subdominant low-n Fourier components, in particular the n = 1, grow to energies comparable with linearly dominant harmonics. A simple model is developed, based on the idea that energy is transferred among the toroidal harmonics via second order nonlinear interaction. The simple model reproduces and explains very well the early nonlinear evolution of the toroidal spectrum in the JOREK simulations. Furthermore, it is shown for the n = 1 harmonic, that its spatial structure changes significantly during the transition from linear to nonlinearly driven growth. The rigidly growing structure of the linearly barely unstable n = 1 reaches far into the plasma core. In contrast, the nonlinearly driven n= 1 has a rigidly growing structure localized at the plasma edge, where the dominant toroidal harmonics driving the n = 1 are maximal and in phase. The presented quadratic coupling model might explain the recent experimental observation of strong low-n components in magnetic measurements [Wenninger et al., â€œNon-linear magnetic perturbations during edge localized modes in TCV dominated by low n mode components,â€ Nucl. Fusion (submitted)].
Sherratt, Paul A. J.; Ramakrishna, S.; Seideman, Tamar
2011-05-15
We explore the information content of the polarization of high-order harmonics emitted from aligned molecules driven by a linearly polarized field. The study builds upon our previous work [Ramakrishna et al., Phys. Rev. A 81, 021802(R) (2010)], which illustrated that the phase of the continuum electronic wave function, and hence the underlying molecular potential, is responsible, at least in part, for the ellipticity observed in harmonic spectra. We use a simple model potential and systematically vary the potential parameters to investigate the sense in which, and the degree to which, the shape of the molecular potential is imprinted onto the polarization of the emitted harmonics. Strong ellipticity is observed over a wide range of potential parameters, suggesting that the emission of elliptically polarized harmonics is a general phenomenon, yet qualitatively determined by the molecular properties. The sensitivity of the ellipticity to the model parameters invites the use of ellipticity measurements as a probe of the continuum wave function and the underlying molecular potential.
High-order harmonics from bow wave caustics driven by a high-intensity laser
Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.; and others
2012-07-11
We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.
X-ray FEL based on harmonics generation and electron beam outcoupling
Litvinenko, V.N.; Burnham, B.
1995-12-31
Electron beam outcoupling was suggested by N. A. Vinokurov as a method of optics independent outcoupling for high power FELs. The bunching of the electron beam is provided in a master oscillator. The prebunched electron beam then radiates coherently into an additional wiggler called the radiator. The electron beam is turned by an achromatic bend into this wiggler and its radiation propagates with a small angle with respect to the OK-4 optical axis. Thus, the radiation will pass around the mirror of the master oscillator optical cavity and can then be utilized. This scheme is perfectly suited for harmonic generation if the radiator wiggler is tuned on one of the master oscillator wavelength harmonics. This system is reminiscent of a klystron operating on a harmonic of the reference frequency. In this paper we present the theory of this device, its spectral and spatial characteristics of radiation, the optimization of the master oscillator, the achromatic bend and bunching for harmonic generation, and influence of beam parameters (energy spread, emittance, etc.) on generated power. Examples of possible storage ring and linac driven systems are discussed.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Liabilities Financial Plan Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...
2012 Transmission Rate Schedules
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu -Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng
2015-12-16
Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. We find, consistent withmoreÂ Â» PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.Â«Â less
Capineri, Lorenzo
2014-10-01
This paper presents the design and the realization of a linear power amplifier with large bandwidth (15 MHz) capable of driving low impedance ultrasonic transducers. The output current driving capability (up to 5 A) and low distortion makes it suitable for new research applications using high power ultrasound in the medical and industrial fields. The electronic design approach is modular so that the characteristics can be scaled according to specific applications and implementation details for the circuit layout are reported. Finally the characterization of the power amplifier module is presented.
Vejling Andersen, SÃ¸ren; Lund Trolle, Mads; Pedersen, Kjeld
2013-12-02
Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.
Arpin, P.; Popmintchev, T.; Kapteyn, H. C.; Murnane, M. M.; Wagner, N. L.; Cohen, O.
2009-10-02
By combining laser pulse self-compression and high harmonic generation within a single waveguide, we demonstrate high harmonic emission from multiply charged ions for the first time. This approach enhances the laser intensity and counteracts ionization-induced defocusing, extending the cutoff photon energy in argon above 500 eV for the first time, with higher spectral intensity and cutoff energy than He for the same input laser parameters. This Letter demonstrates a pathway for extending high harmonic emission to very high photon energies using large, multiply charged, ions with high ionization potentials.
An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers
HÃ¶ppner, H.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Faatz, B.; Tavella, F.
2015-05-15
High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720â€“900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7â€“13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.
A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities
O. Kononenko
2015-02-17
ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)
Advanced properties of extended plasmas for efficient high-order harmonic generation
Ganeev, R. A.; Physics Department, Voronezh State University, Voronezh 394006 ; Suzuki, M.; Kuroda, H.
2014-05-15
We demonstrate the advanced properties of extended plasma plumes (5â€‰mm) for efficient harmonic generation of laser radiation compared with the short lengths of plasmas (âˆ¼0.3â€“0.5â€‰mm) used in previous studies. The harmonic conversion efficiency quadratically increased with the growth of plasma length. The studies of this process along the whole extreme ultraviolet range using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced laser frequency conversion and two-color pump, are presented. Such plasmas could be used for the quasi-phase matching experiments by proper modulation of the spatial characteristics of extended ablating area and formation of separated plasma jets.
Radice, David; Abdikamalov, Ernazar; Rezzolla, Luciano; Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA ; Ott, Christian D.
2013-06-01
Recent work by McClarren and Hauck (2010) [31] suggests that the filtered spherical harmonics method represents an efficient, robust, and accurate method for radiation transport, at least in the two-dimensional (2D) case. We extend their work to the three-dimensional (3D) case and find that all of the advantages of the filtering approach identified in 2D are present also in the 3D case. We reformulate the filter operation in a way that is independent of the timestep and of the spatial discretization. We also explore different second- and fourth-order filters and find that the second-order ones yield significantly better results. Overall, our findings suggest that the filtered spherical harmonics approach represents a very promising method for 3D radiation transport calculations.
LeiÃŸner, Till; KostiuÄenko, Oksana; Rubahn, Horst-GÃ¼nter; Fiutowski, Jacek; Brewer, Jonathan R.
2015-12-21
In this letter we show that the optical response of organic nanofibers, grown from functionalized para-quaterphenylene molecules, can be controlled by forming organic-plasmonic hybrid systems. The interaction between nanofibers and supporting regular arrays of nanostructures leads to a strongly enhanced second harmonic response. At the same time, the fluorescence lifetime of the nanofibers is reduced from 0.32â€‰ns for unstructured gold films to 0.22â€‰ns for gold nanosquare arrays, demonstrating efficient organicâ€“plasmonic interaction. To study the origin of these effects, we applied two-photon laser scanning microscopy and fluorescence lifetime imaging microscopy. These findings provide an effective approach for plasmon-enhanced second-harmonic generation at the nanoscale, which is attractive for nanophotonic circuitry.
Multiple layer optical memory system using second-harmonic-generation readout
Boyd, Gary T.; Shen, Yuen-Ron
1989-01-01
A novel optical read and write information storage system is described which comprises a radiation source such as a laser for writing and illumination, the radiation source being capable of radiating a preselected first frequency; a storage medium including at least one layer of material for receiving radiation from the radiation source and capable of being surface modified in response to said radiation source when operated in a writing mode and capable of generating a pattern of radiation of the second harmonic of the preselected frequency when illuminated by the radiation source at the preselected frequency corresponding to the surface modifications on the storage medium; and a detector to receive the pattern of second harmonic frequency generated.
Burton, J. R.; Watson, C. A.; Fitzsimmons, A.; Moulds, V.; Pollacco, D.; Wheatley, P. J.; Littlefair, S. P.
2014-07-10
The close proximity of short-period hot-Jupiters to their parent star means they are subject to extreme tidal forces. This has a profound effect on their structure and, as a result, density measurements that assume that the planet is spherical can be incorrect. We have simulated the tidally distorted surface for 34 known short-period hot-Jupiters, assuming surfaces of constant gravitational equipotential for the planet, and the resulting densities have been calculated based only on observed parameters of the exoplanet systems. Comparing these results to the density values, assuming the planets are spherical, shows that there is an appreciable change in the measured density for planets with very short periods (typically less than two days). For one of the shortest-period systems, WASP-19b, we determine a decrease in bulk density of 12% from the spherical case and, for the majority of systems in this study, this value is in the range of 1%-5%. On the other hand, we also find cases where the distortion is negligible (relative to the measurement errors on the planetary parameters) even in the cases of some very short period systems, depending on the mass ratio and planetary radius. For high-density gas planets requiring apparently anomalously large core masses, density corrections due to tidal deformation could become important for the shortest-period systems.
Reed, M.; Smith, K.; Forget, B.
2013-07-01
Fast reactor core reactivities are sensitive to geometric distortions arising from three distinct phenomena: (1) irradiation swelling of fuel throughout core lifetime, (2) thermal expansion of fuel during transients, and (3) mechanical oscillations during seismic events. Performing comprehensive reactivity analysis of these distortions requires methods for rapidly computing a multitude of minute reactivity changes. Thus, we introduce the 'virtual density' principle of neutronics as a new perturbation technique to achieve this rapid computation. This new method obviates many of the most challenging aspects of conventional geometric perturbation theory. Essentially, this 'virtual density' principle converts geometric perturbations into equivalent material density perturbations (either isotropic or anisotropic), which are highly accurate and comparatively simple to evaluate. While traditional boundary perturbation theory employs surface integrals, the 'virtual density' principle employs equivalent volume integrals. We introduce and validate this method in three subsequent stages: (1) isotropic 'virtual density', (2) anisotropic 'virtual density' for whole cores, and (3) anisotropic 'virtual density' for interior zones within cores. We numerically demonstrate its accuracy for 2-D core flowering scenarios. (authors)
Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.
2010-11-09
All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.
Application of IEEE Standard 519-1992 harmonic limits for revenue billing meters
Arseneau, R.; Heydt, G.T.; Kempker, M.J.
1997-01-01
This paper identifies the potential for billing inequities at harmonic generating loads due to different measuring methods implemented in revenue meters. Potential problems are almost exclusively in the commercial and industrial sectors where demand and power factor charges are common. Field data are used to illustrate that compliance with IEEE Standard 519-1992 reduces the possibility of meter reading differences thus promoting a more equitable treatment of all customers.
Campo, V. L. Jr.; Capelle, K.
2005-12-15
We construct the complete U-{mu} phase diagram for harmonically confined ultracold fermionic atoms with repulsive and attractive interactions({mu} is the chemical potential and U the interaction strength). Our approach is based on density-functional theory, and employs analytical expressions for the kinetic and correlation energy functionals, permitting us to obtain closed expressions for all phase boundaries and characteristic lines of the phase diagram, both for repulsive and attractive interactions.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Rubinstein, Robert; Kurien, Susan; Cambon, Claude
2015-06-22
The representation theory of the rotation group is applied to construct a series expansion of the correlation tensor in homogeneous anisotropic turbulence. The resolution of angular dependence is the main analytical difficulty posed by anisotropic turbulence; representation theory parametrises this dependence by a tensor analogue of the standard spherical harmonics expansion of a scalar. As a result, the series expansion is formulated in terms of explicitly constructed tensor bases with scalar coefficients determined by angular moments of the correlation tensor.
Vignolo, Patrizia; Minguzzi, Anna
2003-05-01
We develop a Green's function method to evaluate the exact equilibrium particle-density profiles of noninteracting Fermi gases in external harmonic confinement in any spatial dimension and for arbitrary trap anisotropy. While in a spherically symmetric configuration the shell effects are negligible in the case of a large number of particles, we find that for very anisotropic traps the quantum effects due to single-level occupancy and the deviations from the Thomas-Fermi approximation are also visible for mesoscopic clouds.
Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.
2012-04-01
This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.
The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Perez-Hernandez, Jose A.; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.; et al
2015-12-04
High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matchingâ€”the constructive addition of x-ray waves from a large number of atomsâ€”favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams inmoreÂ Â» the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidthâ€“limited pulse trains of ~100 attoseconds.Â«Â less
Shao, Yan-Lin Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.
A variable-width harmonic probe for multifrequency atomic force microscopy
Cai, Jiandong; Zhang, Li; Xia, Qi E-mail: michael.wang@nus.edu.sg; Luo, Yangjun; Wang, Michael Yu E-mail: michael.wang@nus.edu.sg
2015-02-16
In multifrequency atomic force microscopy (AFM) to simultaneously measure topography and material properties of specimens, it is highly desirable that the higher order resonance frequencies of the cantilever probe are assigned to be integer harmonics of the excitation frequency. The harmonic resonances are essential for significant enhancement of the probe's response at the specified harmonic frequencies. In this letter, a structural optimization technique is employed to design cantilever probes so that the ratios between one or more higher order resonance frequencies and the fundamental natural frequency are ensured to be equal to specified integers and, in the meantime, that the fundamental natural frequency is maximized. Width profile of the cantilever probe is the design variable in optimization. Thereafter, the probes were prepared by modifying a commercial probe through the focused ion beam (FIB) milling. The resonance frequencies of the FIB fabricated probes were measured with an AFM. Results of the measurement show that the optimal design of probe is as effective as design prediction.
Han, Yong-Chang; Madsen, Lars Bojer
2010-06-15
We solve the time-dependent Schroedinger equation for atomic hydrogen in an intense field using spherical coordinates with a radial grid and a spherical harmonic basis for the angular part. We present the high-order harmonic spectra based on three different forms, the dipole, dipole velocity, and acceleration forms, and two gauges, the length and velocity gauges. The relationships among the harmonic phases obtained from the Fourier transform of the three forms are discussed in detail. Although quantum mechanics is gauge invariant and the length and velocity gauges should give identical results, the two gauges present different computation efficiencies, which reflects the different behavior in terms of characteristics of the physical couplings acting in the two gauges. In order to obtain convergence, more angular momentum states are required in the length gauge, while more grid points are required in the velocity gauge. At lower laser intensity, the calculation in the length gauge is faster than that in the velocity gauge, while at high laser intensity, the calculation in the velocity gauge is more efficient. The velocity gauge is also expected to be more efficient in higher-dimensional calculations.
The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas
Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Perez-Hernandez, Jose A.; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.; Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.; Gaffney, Jim A.; Foord, Mark; Libby, Stephen B.; Jaron-Becker, Agnieskzka; Becker, Andreas; Plaja, Luis; Muranane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio
2015-12-04
High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matchingâ€”the constructive addition of x-ray waves from a large number of atomsâ€”favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidthâ€“limited pulse trains of ~100 attoseconds.
Meliopoulos, A.P.S.; Zhang, Fan ); Cokkinides, G.J. ); Coffeen, L.; Burnett, R.; McBride, J. ); Zelingher, S.; Stillman, G.
1993-07-01
This paper presents a technique for laboratory characterization of instrument transformers designed for transmission level voltage and current measurements. The technique is also extended to Transient Event Recorders (TERs). The objective of the method is to determine the suitability of existing substation instrument transformers for harmonic measurements, particularly in the frequency range of 60 to 1500 Hz covering the first 25 harmonics. Specifically, the following characteristics are of interest in the frequency range of 60 to 1500 Hz: transfer function magnitude and phase, linearity, and sensitivity of the frequency response to burdens. The measurement technique is based on exciting the instrument transformer primary with an impulsive waveform. Both input and output waveforms are recorded using laboratory grade probes and digitizers. Subsequently, digital signal processing techniques are used to compute the instrument transformer frequency response. Several voltage transformers (both PTs and CCVTs) and current transformers in the 230kV-765kV voltage range were tested. The results of these tests are described in the paper. Conclusions are presented regarding the suitability of the instrument transformers and transient event recorders for harmonic measurement and the requirements for such a system. A quantitative analysis of the measurement accuracy and software based methods to enhance the measurement accuracy is also presented.
Efficiency enhancement of nonlinear odd harmonics in thermal free electron laser
Bazouband, F.; Maraghechi, B.
2013-05-07
The effect of axial energy spread on the radiation of third harmonic is studied in the free electron laser with planar wiggler and ion-channel guiding. Spread in the longitudinal momentum and so in the initial energy of electron beam, without any spread in the transverse velocity, is assumed in the form of Gaussian distribution function. The technique that is employed is a one-dimensional and steady-state simulation. A set of self consistent nonlinear differential equations that describes the system is solved numerically by Runge-Kutta method. Due to the sensitivity of harmonics to thermal effects, gain improvement of third harmonic radiation is achieved by using ion-channel guiding technique and efficiency enhancement is applied by tapering the magnetic field of wiggler to optimize radiation. The bunching parameter of the electron beam is also studied. It is found that the growth of the magnitude of the bunching parameter that is caused by the ponderomotive wave stops before the saturation point of the radiation. This means that ponderomotive wave saturates at a shorter distance compared to the radiation.
Theory of third-harmonic generation using Bessel beams, and self-phase-matching
Tewari, S.P.; Huang, H.; Boyd, R.W.
1996-09-01
Taking Bessel beams ({ital J}{sub 0} beam) as a representation of a conical beam, and a slowly varying envelope approximation (SVEA) we obtain the results for the theory of third-harmonic generation from an atomic medium. We demonstrate how the phenomenon of self-phase-matching is contained in the transverse-phase-matching integral of the theory. A method to calculate the transverse-phase-matching integral containing four Bessel functions is described which avoids the computer calculations of the Bessel functions. In order to consolidate the SVEA result an alternate method is used to obtain the exact result for the third-harmonic generation. The conditions are identified in which the exact result goes over to the result of the SVEA. The theory for multiple Bessel beams is also discussed which has been shown to be the source of the wide width of the efficiency curve of the third-harmonic generation observed in experiments. {copyright} {ital 1996 The American Physical Society.}
Ransom, Ray M.; Gallegos-Lopez, Gabriel; Kinoshita, Michael H.
2012-07-31
Methods, system and apparatus are provided for quickly approximating a peak summed magnitude (A) of a phase voltage (Vph) waveform in a multi-phase system that implements third harmonic injection.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; Wang, Shaoheng; Guo, Jiquan
2016-08-01
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10â€“30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10â€“1/30 (150mAâ€“50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmoreÂ Â» rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.Â«Â less
Erba, A. Dovesi, R.; Shahrokhi, M.; Moradian, R.
2015-01-28
Harmonic and quasi-harmonic thermal properties of two isostructural simple oxides (periclase, MgO, and lime, CaO) are computed with ab initio periodic simulations based on the density-functional-theory (DFT). The more polarizable character of calcium with respect to magnesium cations is found to dramatically affect the validity domain of the quasi-harmonic approximation that, for thermal structural properties (such as temperature dependence of volume, V(T), bulk modulus, K(T), and thermal expansion coefficient, Î±(T)), reduces from [0 K-1000 K] for MgO to just [0 K-100 K] for CaO. On the contrary, thermodynamic properties (such as entropy, S(T), and constant-volume specific heat, C{sub V}(T)) are described reliably at least up to 2000 K and quasi-harmonic constant-pressure specific heat, C{sub P}(T), up to about 1000 K in both cases. The effect of the adopted approximation to the exchange-correlation functional of the DFT is here explicitly investigated by considering five different expressions of three different classes (local-density approximation, generalized-gradient approximation, and hybrids). Computed harmonic thermodynamic properties are found to be almost independent of the adopted functional, whereas quasi-harmonic structural properties are more affected by the choice of the functional, with differences that increase as the system becomes softer.
Final Report - National Database of Utility Rates and Rate Structure...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
National Database of Utility Rates and Rate Structure Final Report - National Database of Utility Rates and Rate Structure Awardee: Illinois State University Location: Normal, IL ...
Improving Entrainment Rate Parameterization
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Entrainment Rate Parameterization For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Parameterization of entrainment rate is critical for improving representation of cloud- and convection-related processes in climate models; however, much remains unclear. This work seeks to improve understanding and parameterization of entrainment rate by use of aircraft observations and large-eddy simulations of shallow cumulus clouds over
Resonant thermonuclear reaction rate
Haubold, H.J.; Mathai, A.M.
1986-08-01
Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-italic-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-italic-function is discussed in physical terms.
Broader source: Energy.gov [DOE]
Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
For Regional Dialogue Discussion Purposes Only Pre-Decisional Draft Tiered Rates Methodology March 7, 2008 Pre-decisional, Deliberative, For Discussion Purposes Only March 7,...
Evidence of the 2s2p({sup 1}P) doubly excited state in the harmonic generation spectrum of helium
Ngoko Djiokap, J. M.; Starace, Anthony F.
2011-07-15
By solving the two-active-electron time-dependent Schroedinger equation in an intense, ultrashort laser field, we investigate evidence of electron correlations in the high-order harmonic generation spectrum of helium. As the frequency of the driving laser pulse varies from 4.6 to 6.6 eV, the 13th, 11th, and 9th harmonics sequentially become resonant with the transition between the ground state and the isolated 2s2p({sup 1}P) autoionizing state of helium, which dramatically enhances these harmonics and changes their profiles. When each of the 9th and 13th harmonics are in resonance with this autoionizing state, there is also a low-order multiphoton resonance with a Rydberg state, resulting in a particularly large enhancement of these harmonics relative to neighboring harmonics. When the 11th harmonic is in resonance with the 2s2p({sup 1}P) autoionizing state, the 13th harmonic is simultaneously in resonance with numerous higher-energy autoionizing states, resulting in a competition between these two harmonics for intensity. These results demonstrate that even electron correlations occurring over a narrow energy interval can have a significant effect on strong-field processes such as harmonic generation.
A study of astrometric distortions due to â€œtree ringsâ€ in CCD sensors using LSST Photon Simulator
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Beamer, Benjamin; Nomerotski, Andrei; Tsybychev, Dmitri
2015-05-22
Imperfections in the production process of thick CCDs lead to circularly symmetric dopant concentration variations, which in turn produce electric fields transverse to the surface of the fully depleted CCD that displace the photogenerated charges. We use PhoSim, a Monte Carlo photon simulator, to explore and examine the likely impacts these dopant concentration variations will have on astrometric measurements in LSST. The scale and behavior of both the astrometric shifts imparted to point sources and the intensity variations in flat field images that result from these doping imperfections are similar to those previously observed in Dark Energy Camera CCDs, givingmoreÂ Â» initial confirmation of PhoSim's model for these effects. In addition, the organized shape distortions were observed as a result of the symmetric nature of these dopant variations, causing nominally round sources to be imparted with a measurable ellipticity either aligned with or transverse to the radial direction of this dopant variation pattern.Â«Â less
Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.
2015-07-06
In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200â€‰kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27â€‰T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15â€‰T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.
Webster, C. H.; Helme, L. M.; Boothroyd, A. T.; McMorrow, D. F.; Wilkins, S. B.; Detlefs, C.; Detlefs, B.; Bewley, R. I.; McKelvy, M. J.
2007-10-01
A synchrotron x-ray diffraction study of the crystallographic structure of PrO{sub 2} in the Jahn-Teller distorted phase is reported. The distortion of the oxygen sublattice, which was previously ambiguous, is shown to be a chiral structure in which neighboring oxygen chains have opposite chiralities. A temperature dependent study of the magnetic excitation spectrum, probed by neutron inelastic scattering, is also reported. Changes in the energies and relative intensities of the crystal field transitions provide an insight into the interplay between the static and dynamic Jahn-Teller effects.
Warner, E. S.; Heath, G. A.
2012-04-01
A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.
iHarmonizer: improving the disk efficiency of I/O-intensive multithreaded codes
Davis, Marion Kei; Wang, Yizhe; Jiang, Song
2010-01-01
Challenged by serious power and thermal constraints, and limited by available instruction-level parallelism, processor designs have evolved to multi-core architectures. These architectures, many augmented with native simultaneous multithreading, are driving software developers to use multithreaded programs to exploit thread-level parallelism. While multithreading is well-known to introduce concerns of data dependency and CPU load balance, less known is that the uncertainty of relative progress of thread execution can cause patterns of I/O requests, issued by different threads, to be effectively random and so significantly degrade hard-disk efficiency. This effect can severely offset the performance gains from parallel execution, especially for I/O-intensive programs. Retaining the benefits of multithreading while not reducing I/O efficiency is an urgent and challenging problem. We propose a user-level scheme, iHarmonizer, to streamline the servicing of I/O requests from multiple threads in OpenMP programs. Specifically, we use the compiler to insert code into OpenMP programs so that data usage can be transmitted at run time to a supporting run-time library; this library in turn prefetches data in a disk-friendly way and coordinates threads execution according to the availability of their requested data. Transparently to the programmer, iHarmonizer makes a multithreaded program I/O efficient while maintaining the benefits of parallelism. Our experiments show that iHarmonizer can significantly speed up the execution of a representative set of I/O-intensive scientific benchmarks.
Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell's equations
El Bouajaji, M.
2014-12-15
The aim of this paper is to propose new local and accurate approximate magnetic-to-electric surface boundary operators for the three-dimensional time-harmonic Maxwell's equations. After their construction where their accuracy is improved through a regularization process, a localization of these operators and a full finite element approximation is introduced. Next, their numerical efficiency and accuracy is investigated in detail for different scatterers when these operators are used in the extreme situation of On-Surface Radiation Conditions methods.
Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons
Menikoff, Ralph
2014-09-02
A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gr Ìˆuneisen EOS developed for an atomic solid, the specific heat and Gr Ìˆuneisen coefficient depend on both density and temperature.
Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films
Luk, Ting S. Liu, Sheng; Campione, Salvatore; Ceglia, Domenico de; Vincenti, Maria A.; Keeler, Gordon A.; Sinclair, Michael B.; Prasankumar, Rohit P.; Scalora, Michael
2015-04-13
We experimentally demonstrate efficient third harmonic generation from an indium tin oxide nanofilm (Î»/42 thick) on a glass substrate for a pump wavelength of 1.4â€‰Î¼m. A conversion efficiency of 3.3 Ã— 10{sup âˆ’6} is achieved by exploiting the field enhancement properties of the epsilon-near-zero mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.
Coherent states for nonlinear harmonic oscillator and some of its properties
Amir, Naila E-mail: naila.amir@sns.nust.edu.pk; Iqbal, Shahid E-mail: siqbal@sns.nust.edu.pk
2015-06-15
A one-dimensional nonlinear harmonic oscillator is studied in the context of generalized coherent states. We develop a perturbative framework to compute the eigenvalues and eigenstates for the quantum nonlinear oscillator and construct the generalized coherent states based on Gazeau-Klauder formalism. We analyze their statistical properties by means of Mandel parameter and second order correlation function. Our analysis reveals that the constructed coherent states exhibit super-Poissonian statistics. Moreover, it is shown that the coherent states mimic the phenomena of quantum revivals and fractional revivals during their time evolution. The validity of our results has been discussed in terms of various parametric bounds imposed by our computational scheme.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei
2014-09-08
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Two-wave regime of operation of the high-harmonic gyrotron
Savilov, A. V.; Denisov, G. G.; Kalynov, Yu. K.; Osharin, I. V.
2015-04-15
The use of the two-wave co-generation is proposed as a way to decrease the effective Q-factor of the operating near-cutoff wave of the gyrotron. In this two-wave regime, the operating wave represents a â€œhotâ€ wave mode formed by two partial â€œcoldâ€ modes (near-cutoff and far-from-cutoff ones) coupled on the electron beam. It is shown that the use of this regime can provide a significant decrease of the Ohmic losses in low-relativistic high-harmonic gyrotrons operating in the THz frequency range.
Reliability of IGBT in a STATCOM for Harmonic Compensation and Power Factor Correction
Gopi Reddy, Lakshmi Reddy; Tolbert, Leon M; Ozpineci, Burak; Xu, Yan; Rizy, D Tom
2012-01-01
With smart grid integration, there is a need to characterize reliability of a power system by including reliability of power semiconductors in grid related applications. In this paper, the reliability of IGBTs in a STATCOM application is presented for two different applications, power factor correction and harmonic elimination. The STATCOM model is developed in EMTP, and analytical equations for average conduction losses in an IGBT and a diode are derived and compared with experimental data. A commonly used reliability model is used to predict reliability of IGBT.
Office of Energy Efficiency and Renewable Energy (EERE)
As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.
Office of Energy Efficiency and Renewable Energy (EERE)
As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.
Study of the second harmonic generation and optical rectification in a cBN crystal
Dou Qingping; Ma Haitao; Jia Gang; Chen Zhanguo; Cao Kun; Zhang Tiechen
2007-02-28
Cubic boron nitride (cBN) - a kind of an artificial (synthetic) crystal with the band gap of {approx}6.3 eV, which has the zinc blende structure and the 4-bar 3m symmetry, is studied. The optical rectification is obtained and the second harmonic generation (SHG) is observed in the cBN crystal for the first time by using a 1064-nm Q-switched Nd:YAG laser. The green light at 532 nm from the cBN sample can be seen with a naked eye. (nonlinear optical phenomena)
Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization
Broader source: Energy.gov [DOE]
As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.
Broader source: Energy.gov [DOE]
As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.
Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films
Luk, Ting S.; De Ceglia, Domenico; Liu, Sheng; Keeler, Gordon Arthur; Prasankumar, Rohit; Los Alamos National Lab. , Los Alamos, NM ; Vincenti, Maria A; Scalora, Michael; Sinclair, Michael B.; campione, salvatore
2015-04-13
We demonstrate, through our experimentation, efficient third harmonic generation from an indium tin oxide nanofilm (Î»/42 thick) on a glass substrate for a pump wavelength of 1.4 Î¼m. A conversion efficiency of 3.3 Ã— 10^{-6} is achieved by exploiting the field enhancement properties of the epsilon-near-zero mode with an enhancement factor of 200. Furthermore, this nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.
CORRELATED AND ZONAL ERRORS OF GLOBAL ASTROMETRIC MISSIONS: A SPHERICAL HARMONIC SOLUTION
Makarov, V. V.; Dorland, B. N.; Gaume, R. A.; Hennessy, G. S.; Berghea, C. T.; Dudik, R. P.; Schmitt, H. R.
2012-07-15
We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.
Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
Beverly, L.H.; Hance, R.D.; Kristalinski, A.L.; Visser, A.T.
1996-11-19
An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer. 23 figs.
Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
Beverly, Leon H.; Hance, Richard D.; Kristalinski, Alexandr L.; Visser, Age T.
1996-01-01
An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer.
Restricted thermalization for two interacting atoms in a multimode harmonic waveguide
Yurovsky, V. A.; Olshanii, M. [School of Chemistry, Tel Aviv University, IL-69978 Tel Aviv (Israel); Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States)
2010-04-15
In this article, we study the thermalizability of a system consisting of two atoms in a circular, transversely harmonic waveguide in the multimode regime. While showing some signatures of quantum-chaotic behavior, the system fails to reach a thermal equilibrium in a relaxation from an initial state, even when the interaction between the atoms is infinitely strong. We relate this phenomenon to the previously addressed unattainability of a complete quantum chaos in the Seba billiard [P. Seba, Phys. Rev. Lett. 64, 1855 (1990)], and we conjecture the absence of a complete thermalization to be a generic property of integrable quantum systems perturbed by a nonintegrable but well-localized perturbation.
Broader source: Energy.gov [DOE]
As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.
Zhang, Xiao-Fei; Du, Zhi-Jing; Tan, Ren-Bing; Dong, Rui-Fang; Chang, Hong; Zhang, Shou-Gang
2014-07-15
We consider a pair of coupled nonlinear SchrÃ¶dinger equations modeling a rotating two-component Boseâ€“Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic) harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven â€œserpentineâ€ vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: â€¢Different vortex structures are obtained within the full parameter space. â€¢Effects of system parameters on the ground state structure are discussed. â€¢Phase transition between different vortex structures is also examined. â€¢Present one possible way to obtain the rotating droplet structure. â€¢Provide many possibilities to manipulate vortex in two-component BEC.
Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D
Jay L. Hirshfield
2012-07-26
Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.
Best Practices: Escalation Rates
Office of Environmental Management (EM)
Best Practices Escalation Rates Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 3-4, 2015 Houston, TX Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX Best Practices: Escalation Rate Value of future energy savings * Provides purchasing power for implementing a robust, comprehensive and customized ECM set * Provides an option for paying back financing in the shortest possible
2007-2009 Power Rate Adjustments (pbl/rates)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Function Review (PFR) Firstgov FY 2007 2009 Power Rate Adjustments BPA's 2007-2009 Wholesale Power Rate Schedules and General Rate Schedule Provisions (GRSPs) took effect on...
WP-07 Power Rate Case (rates/ratecases)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Meetings & Workshops Rate Case Parties Web Site WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...
Combining harmonic generation and laser chirping to achieve high spectral density in Compton sources
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
TerziÄ‡, BalÅ¡a; Reeves, Cody; Krafft, Geoffrey A.
2016-04-25
Recently various laser-chirping schemes have been investigated with the goal of reducing or eliminating ponderomotive line broadening in Compton or Thomson scattering occurring at high laser intensities. Moreover, as a next level of detail in the spectrum calculations, we have calculated the line smoothing and broadening expected due to incident beam energy spread within a one-dimensional plane wave model for the incident laser pulse, both for compensated (chirped) and unchirped cases. The scattered compensated distributions are treatable analytically within three models for the envelope of the incident laser pulses: Gaussian, Lorentzian, or hyperbolic secant. We use the new results tomoreÂ Â» demonstrate that the laser chirping in Compton sources at high laser intensities: (i) enables the use of higher order harmonics, thereby reducing the required electron beam energies; and (ii) increases the photon yield in a small frequency band beyond that possible with the fundamental without chirping. We found that this combination of chirping and higher harmonics can lead to substantial savings in the design, construction and operational costs of the new Compton sources. This is of particular importance to the widely popular laser-plasma accelerator based Compton sources, as the improvement in their beam quality enters the regime where chirping is most effective.Â«Â less
Bertelli, N; Jaeger, E F; Hosea, J C; Phillips, C K; Berry, L; Bonoli, P T; Gerhardt, S P; Green, D; LeBlanc, B; Perkins, R J; Ryan, P M; Taylor, G; Valeo, E J; Wilso, J R; Wright, J C
2014-07-01
Fast waves at harmonics of the ion cyclotron frequency, which have been used successfully on National Spherical Torus Experiment (NSTX), will also play an important role in ITER and are a promising candidate for the Fusion Nuclear Science Facility (FNSF) designs based on spherical torus (ST). Experimental studies of high harmonic fast waves (HHFW) heating on the NSTX have demonstrated that substantial HHFW power loss occurs along the open field lines in the scrape-off layer (SOL), but the mechanism behind the loss is not yet understood. The full wave RF code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain, is applied to specific NSTX discharges in order to predict the effects and possible causes of this power loss. In the studies discussed here, a collisional damping parameter has been implemented in AORSA as a proxy to represent the real, and most likely nonlinear, damping processes. A prediction for the NSTX Upgrade (NSTX-U) experiment, that will begin operation next year, is also presented, indicating a favorable condition for the experiment due to a wider evanescent region in edge density.*Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.
Psikal, J.; Klimo, O.; Weber, S.; Margarone, D.
2014-07-15
The influence of laser frequency on laser-driven ion acceleration is investigated by means of two-dimensional particle-in-cell simulations. When ultrashort intense laser pulse at higher harmonic frequency irradiates a thin solid foil, the target may become re lativistically transparent for significantly lower laser pulse intensity compared with irradiation at fundamental laser frequency. The relativistically induced transparency results in an enhanced heating of hot electrons as well as increased maximum energies of accelerated ions and their numbers. Our simulation results have shown the increase in maximum proton energy and increase in the number of high-energy protons by a factor of 2 after the interaction of an ultrashort laser pulse of maximum intensity 7â€‰Ã—â€‰10{sup 21â€‰}W/cm{sup 2} with a fully ionized plastic foil of realistic density and of optimal thickness between 100â€‰nm and 200â€‰nm when switching from the fundamental frequency to the third harmonics.
Flux harmonics in large SFR cores in relation with core characteristics such as power peaks
Rimpault, G.; Buiron, L.; Fontaine, B.; Sciora, P.; Tommasi, J.
2013-07-01
Designing future Sodium Fast Reactors (SFR) requires enhancing their operational performance and reducing the probability to go into core disruption. As a consequence of these constraints, these novel reactors exhibit rather unusual features compared to past designs. The cores are much larger with rather flat shape. The consequences of that shape on the core characteristics deserve to be studied. The approach taken in this paper is to calculate the eigenvalue associated to the first harmonic and its associated flux. It is demonstrated that these values are linked to some core features, in particular, those sensitive to spatial effects such as power peaks induced by the movement of control rods. The uncertainty associated to these characteristics is being tentatively studied and guidelines for further studied are being identified. In the development strategy of these new SFR designs, a first demonstration plant of limited installed power (around 1500 MWth) will have to be built first. Identifying the possibility of going later to higher power plants (around 3600 MWth) without facing new challenges is an important criterion for designing such a plant. That strategy is being studied, in this paper, focusing on some rather frequent initiator such as the inadvertent control rod withdrawal for different core sizes with the help of the perturbation theory and the flux harmonics. (authors)
A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC
Pernet, Pierre-Louis
2010-06-24
With the advent of X-ray Free Electron Lasers (FELs), new methods have been developed to extend capabilities at short wavelengths beyond Self-Amplified Spontaneous Emission (SASE). In particular, seeding of a FEL allows for temporal control of the radiation pulse and increases the peak brightness by orders of magnitude. Most recently, Gennady Stupakov and colleagues at SLAC proposed a new technique: Echo-Enabled Harmonic Generation (EEHG). Here a laser microbunches the beam in an undulator and the beam is sheared in a chicane. This process is repeated with a second laser, undulator and chicane. The interplay between these allows a seeding of the X-ray laser up to the 100th harmonic of the first laser. After introducing the physics of FELs and the EEHG seeding technique, we describe contributions to the experimental effort. We will present detailed studies of the experiment including the choice of parameters and their optimization, the emittance effect, spontaneous emission in the undulators, the second laser phase effect, and measurements of the jitter between RF stations. Finally, the status and preliminary results of the Echo-7 experiment will be outlined.
Harmonic Resonant Kicker Design for the MEIC Electron Circular Cooler Ring
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.
2015-09-01
Bunched-beam electron cooling of the high-energy ion beam emittance may be a crucial technology for the proposed Medium energy Electron Ion Collider (MEIC) to achieve its design luminosity. A critical component is a fast kicker system in the Circular Ring (CR) that periodically switches electron bunches in and out of the ring from and to the driver Energy Recovery Linac (ERL). Compared to a conventional strip-line type kicker, a quarter wave resonator (QWR) based deflecting structure has a much higher shunt impedance and so requires much less RF power. The cavity has been designed to resonate simultaneously at many harmonic modes that are integer multiples of the fundamental mode. In this way the resulting waveform will kick only a subset of the circulating bunches. In this paper, analytical shunt impedance optimization, the electromagnetic simulations of this type of cavity, as well as tuner and coupler concept designs to produce 5 odd and 5 even harmonics of 47.63MHz will be presented, in order to kick every 10th bunch in a 476.3 MHz bunch train.
Singh, Arvinder E-mail: naveens222@rediffmail.com; Gupta, Naveen E-mail: naveens222@rediffmail.com
2015-01-15
This paper presents an investigation of relativistic self-focusing effect of a q-Gaussian laser beam on second harmonic generation in a preformed parabolic plasma channel. An expression has been derived for density perturbation associated with the plasma wave excited by the laser beam. This in turn acts as a source of second harmonic generation. The moment theory approach has been used to derive a differential equation that governs the evolution of spot size of the laser beam with the distance of propagation. The detailed effects of intensity distribution deviation from Gaussian distribution, intensity of laser beam, density, and depth of the channel have been studied on self-focusing as well as on second harmonic generation.
Emelin, M Yu; Ryabikin, M Yu
2013-03-31
The influence of the magnetic field of a laser pulse and the depletion of bound levels of working-medium atoms on the generation of high harmonics of mid-IR laser radiation in gases is investigated using numerical quantum-mechanical calculations. The maximum attainable spectral widths of high harmonics are estimated for model atoms with different ionisation potentials taking into account the aforementioned limiting effects. It is shown (within a two-dimensional model) that high harmonics with wavelengths to several angstroms can be generated by irradiating helium atoms with high-power femtosecond pulses of a laser [5] with a centre wavelength of 3.9 {mu}m. The possibility of observing experimentally relativistic effects using modern desktop mid-IR laser sources is demonstrated. (extreme light fields and their applications)
Heger, Matthias; Suhm, Martin A.; Mata, Ricardo A.
2014-09-14
The discrepancy between experimental and harmonically predicted shifts of the OH stretching fundamental of methanol upon hydrogen bonding to a second methanol unit is too large to be blamed mostly on diagonal and off-diagonal anharmonicity corrections. It is shown that a decisive contribution comes from post-MP2 electron correlation effects, which appear not to be captured by any of the popular density functionals. We also identify that the major deficiency is in the description of the donor OH bond. Together with estimates for the electronic and harmonically zero-point corrected dimer binding energies, this work provides essential constraints for a quantitative description of this simple hydrogen bond. The spectroscopic dissociation energy is predicted to be larger than 18 kJ/mol and the harmonic OH-stretching fundamental shifts by about ?121 cm{sup ?1} upon dimerization, somewhat more than in the anharmonic experiment (?111 cm{sup ?1})
Burkhardt, J. J.; Heath, G.; Cohen, E.
2012-04-01
In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.
Chen, M.-C.; Arpin, P.; Popmintchev, T.; Gerrity, M.; Zhang, B.; Seaberg, M.; Popmintchev, D.; Murnane, M. M.; Kapteyn, H. C.
2010-10-22
We demonstrate fully phase-matched high harmonic emission spanning the water window spectral region important for nano- and bioimaging and a breadth of materials and molecular dynamics studies. We also generate the broadest bright coherent bandwidth ({approx_equal}300 eV) to date from any light source, small or large, that is consistent with a single subfemtosecond burst. The harmonic photon flux at 0.5 keV is 10{sup 3} higher than demonstrated previously. This work extends bright, spatially coherent, attosecond pulses into the soft x-ray region for the first time.
Observation of spectral gain narrowing in a high-order harmonic seeded soft-x-ray amplifier
Tissandier, F.; Sebban, S.; Ribiere, M.; Gautier, J.; Zeitoun, Ph.; Lambert, G.; Barszczak Sardinha, A.; Goddet, J.-Ph.; Burgy, F.; Lefrou, T.; Valentin, C.; Rousse, A.; Guilbaud, O.; Klisnick, A.; Nejdl, J.; Mocek, T.; Maynard, G.
2010-06-15
We report an observation of spectral gain narrowing of a high-order harmonic amplified by a soft-x-ray optical-field-ionized plasma. The temporal coherence and spectral linewidth of both the seeded and unseeded soft-x-ray lasers were experimentally measured using a varying-path-difference interferometer. The results showed that the high-order harmonic is subject to a strong spectral narrowing during its propagation in the plasma amplifier without rebroadening at saturation. This is in good agreement with a radiative transfer calculation including gain narrowing and saturation rebroadening.
A Perpendicular Biased 2nd Harmonic Cavity for the Fermilab Booster
Tan, C. Y.; Dey, J.; Madrak, R. L.; Pellico, W.; Romanov, G.; Sun, D.; Terechkine, I.
2015-07-13
A perpendicular biased 2nd harmonic cavity is currently being designed for the Fermilab Booster. Its purpose cavity is to flatten the bucket at injection and thus change the longitudinal beam distribution so that space charge effects are decreased. It can also with transition crossing. The reason for the choice of perpendicular biasing over parallel biasing is that the Q of the cavity is much higher and thus allows the accelerating voltage to be a factor of two higher than a similar parallel biased cavity. This cavity will also provide a higher accelerating voltage per meter than the present folded transmission line cavity. However, this type of cavity presents technical challenges that need to be addressed. The two major issues are cooling of the garnet material from the effects of the RF and the cavity itself from eddy current heating because of the 15 Hz bias field ramp. This paper will address the technical challenge of preventing the garnet from overheating.
Chen, Bao-Qin; Zhang, Chao; Liu, Rong-Juan; Li, Zhi-Yuan
2014-10-13
We have designed and fabricated a lithium niobate (LN) nonlinear photonic crystal (NPC) with a two-dimensional (2D) ellipse structure of inverse poling domains. The structure can offer continuously varying reciprocal lattice vectors in different directions to compensate the phase-mismatching during the second harmonic generation (SHG) for diverse pump wavelengths. We consider three propagation directions with large effective nonlinear susceptibility and measure the nonlinear conversion efficiency of SHG. The experimental data are in good agreement with the quantitative calculation results using the effective susceptibility model with pump depletion. With high-efficiency SHG in multiple propagation direction, the 2D ellipse structure of LN NPC has the potential to realize various broadband nonlinear frequency conversion processes in different propagation direction with a single crystal.
Heteroclinic tangle phenomena in nanomagnets subject to time-harmonic excitations
Serpico, C.; Quercia, A.; Perna, S.; Bertotti, G.; Ansalone, P.; D'Aquino, M.; Mayergoyz, I.
2015-05-07
Magnetization dynamics in uniformly magnetized nanomagnets excited by time-harmonic (AC) external fields or spin-polarized injected currents is considered. The analysis is focused on the behaviour of the AC-excited dynamics near saddle equilibria. It turns out that this dynamics has a chaotic character at moderately low power level. This chaotic and fractal nature is due to the phenomenon of heteroclinic tangle which is produced by the combined effect of AC-excitations and saddle type dynamics. By using the perturbation technique based on Melnikov function, analytical formulas for the threshold AC excitation amplitudes necessary to create the heteroclinic tangle are derived. Both the cases of AC applied fields and AC spin-polarized injected currents are treated. Then, by means of numerical simulations, we show how heteroclinic tangle is accompanied by the erosion of the safe basin around the stable regimes.
Modeling of high harmonic fast wave current drive on EAST tokamak
Li, J. C.; Gong, X. Y. Li, F. Y.; Dong, J. Q.; Gao, Q. D.; Zhang, N.
2015-10-15
High harmonic fast waves (HHFW) are among the candidates for non-inductive current drive (CD), which is essential for long-pulse or steady-state operation of tokamaks. Current driven with HHFW in EAST tokamak plasmas is numerically studied. The HHFW CD efficiency is found to increase non-monotonically with the wave frequency, and this phenomenon is attributed to the multi-pass absorption of HHFW. The sensitivity of CD efficiency to the value of the parallel refraction index of the launched wave is confirmed. The quasilinear effects, assessed as significant in HHFW current drive with the GENRAY/CQL3D package, cause a significant increase in CD efficiency as RF power is increased, which is very different from helicon current drive. Simulations for a range of toroidal dc electric fields, in combination with a range of fast wave powers, are also presented and indicate that the presence of the DC field can also enhance the CD efficiency.
Nakai, Hiromi; Ishikawa, Atsushi
2014-11-07
We propose a novel quantum chemical method, called the harmonic solvation model (HSM), for calculating thermochemical parameters in the condensed phase, particularly in the liquid phase. The HSM represents translational and rotational motions of a solute as vibrations interacting with a cavity wall of solvent molecules. As examples, the HSM and the ideal-gas model (IGM) were used for the standard formation reaction of liquid water, combustion reactions of liquid formic acid, methanol, and ethanol, vaporâ€“liquid equilibration of water and ethanol, and dissolution of gaseous CO{sub 2} in water. The numerical results confirmed the reliability and applicability of the HSM. In particular, the temperature dependence of the Gibbs energy of liquid molecules was accurately reproduced by the HSM; for example, the boiling point of water was reasonably determined using the HSM, whereas the conventional IGM treatment failed to obtain a crossing of the two Gibbs energy curves for gaseous and liquid water.
Electro-optic harmonic conversion to switch a laser beam out of a cavity
Haas, R.A.; Henesian, M.A.
1984-10-19
The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.
Sequoia Messaging Rate Benchmark
Energy Science and Technology Software Center (OSTI)
2008-01-22
The purpose of this benchmark is to measure the maximal message rate of a single compute node. The first num_cores ranks are expected to reside on the 'core' compute node for which message rate is being tested. After that, the next num_nbors ranks are neighbors for the first core rank, the next set of num_nbors ranks are neighbors for the second core rank, and so on. For example, testing an 8-core node (num_cores = 8)moreÂ Â» with 4 neighbors (num_nbors = 4) requires 8 + 8 * 4 - 40 ranks. The first 8 of those 40 ranks are expected to be on the 'core' node being benchmarked, while the rest of the ranks are on separate nodes.Â«Â less
Residential Solar Valuation Rates
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Solar Valuation Rates Karl R. RÃ¡bago RÃ¡bago Energy LLC 1 The Ideal Residential Solar Tariff â€£ Fair to the utility and non-solar customers â€£ Fair compensation to the solar customer â€£ Decouple compensation from incentives â€£ Align public policy goals (decouple compensation from consumption) â€£ Intuitively sound and administratively simple 2 Historical Antecedents â€£ Externalities â€£ Price â‰ Cost â€£ Green Power â€£ Small Is Profitable (http://www.smallisprofitable.org/) â€£ Local
Hunter, Steven L. (Livermore, CA)
2002-01-01
A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.
Cari, C. Suparmi, A.
2014-09-30
Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.
Fridley, David; Lin, Jiang; Denver, Andrea; Biermayer, Peter; Dillavou, Tyler
2005-07-20
This report examines critical differences among energy-efficient labeling programs for CFLs in Brazil, China, the United States, and the seven members of the international Efficient Lighting Initiative (ELI) in terms of technical specifications and test procedures, and review issues related to international harmonization of these standards.
Writing Effective Initial Summary Ratings Initial Summary Rating...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Initial Summary Ratings Initial Summary Rating (ISR) At the end of the performance cycle, the rating official must prepare an ISR in ePerformance for each SES member who has ...
Du, Yingge; Gu, Meng; Varga, Tamas; Wang, Chong M.; Bowden, Mark E.; Chambers, Scott A.
2014-08-27
In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planar defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.
Knoff, W. Åusakowski, A.; DomagaÅ‚a, J. Z.; Minikayev, R.; Taliashvili, B.; Åusakowska, E.; PieniÄ…Å¼ek, A.; Szczerbakow, A.; Story, T.
2015-09-21
Ferromagnetic resonance (FMR) study of magnetic anisotropy is presented for thin layers of IV-VI diluted magnetic semiconductor Ge{sub 1âˆ’x}Mn{sub x}Te with xâ€‰=â€‰0.14 grown by molecular beam epitaxy on KCl (001) substrate with a thin PbTe buffer. Analysis of the angular dependence of the FMR resonant field reveals that an easy magnetization axis is located near to the normal to the layer plane and is controlled by two crystal distortions present in these rhombohedral Ge{sub 1âˆ’x}Mn{sub x}Te layers: the ferroelectric distortion with the relative shift of cation and anion sub-lattices along the [111] crystal direction and the biaxial in-plane, compressive strain due to thermal mismatch.
Aczel, Adam A; Bugaris, Dan; Li, Ling; Yan, Jiaqiang; Dela Cruz, Clarina R; Zur Loye, Hans-Conrad; Nagler, Stephen E
2013-01-01
The usual classical behaviour of S = 3/2, B-site ordered double perovskites generally results in simple, commensurate magnetic ground states. In contrast, heat capacity and neutron powder diffraction measurements for the S = 3/2 systems La2NaB'O6 (B = Ru, Os) reveal an incommensurate magnetic ground state for La2NaRuO6 and a drastically suppressed ordered moment for La2NaOsO6. This behaviour is attributed to the large monoclinic structural distortions of these double perovskites. The distortions have the effect of weakening the nearest neighbour superexchange interactions, presumably to an energy scale that is comparable to the next nearest neighbour superexchange. The exotic ground states in these materials can then arise from a competition between these two types of antiferromagnetic interactions, providing a novel mechanism for achieving frustration in the double perovskite family.
Writing Effective Initial Summary Ratings Initial Summary Rating (ISR)
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Initial Summary Ratings Initial Summary Rating (ISR) At the end of the performance cycle, the rating official must prepare an ISR in ePerformance for each SES member who has completed at least 90 days on an established performance plan. Rating officials must take into account the SES member's accomplishments achieved during the performance cycle and the impact to the organization's performance. Rating officials must appraise executives realistically and fairly and avoid ratings inflation.
Not Available
2012-07-01
NREL builds community and industry support by addressing concerns voiced by key standards organizations. Photovoltaic (PV) manufacturers in the United States test the safety of their products using standards developed through consensus processes. Because U.S. PV module safety standards are not aligned with international standards, manufacturers must test their modules twice - and sometimes maintain separate product lines. By meeting with standards organizations such as the Solar ABCs and Underwriters Laboratories (UL), National Renewable Energy Laboratory (NREL) leaders have worked to identify different stakeholders priorities and concerns. UL, specifically, has expressed concern that the international standards do not address all possible risks. For example, new encapsulant materials could soften at high temperatures and frameless modules could slide apart, exposing live electrical parts or allowing glass to fall on a person below. The deformation of a solid material under the influence of mechanical stresses is known as 'creep.' Current module qualification tests are limited to 85 C, whereas modules can, for short times, reach 105 C outdoors. In response to UL's concern, NREL designed and executed an experiment to compare on-sun and accelerated rates of creep for modules fabricated with various encapsulants, including some that have low melting points. Objectives were to (1) evaluate the potential for creep in outdoor exposure, (2) provide guidance on the risks and design needs with thermoplastic materials, and (3) provide a basis for modifying standards to account for materials with potential to creep. The study tested experimental materials with eight representative encapsulants in both outdoor and indoor (chamber) exposure. The study found that modules with materials that were expected to creep did so in the indoor exposure, but not in most outdoor environments and mounting configurations. The results provide a basis for defining an accelerated test needed to
October 1996 - September 2001 Wholesale Power Rates (rates/previous...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
affecting a specific power purchase. For more specific information see: 1996 Final Wholesale Power and Transmission Rate Schedules: Power Rates (PDF, 84 pages, 188 kb) Ancillary...
McDonald, H.C. Jr.
1962-12-18
A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)
Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Rate | Open...
Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier5Rate Jump to: navigation, search This is a property of type...
Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Rate | Open...
Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier1Rate Jump to: navigation, search This is a property of type...
Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Rate | Open...
Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier3Rate Jump to: navigation, search This is a property of type...
Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Rate | Open...
Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier3Rate Jump to: navigation, search This is a property of type...
Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Rate | Open...
Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier4Rate Jump to: navigation, search This is a property of type...
Studies of thin films and surfaces with optical harmonic generation and electron spectroscopy
Wilk, D.E.
1996-01-01
Optical second harmonic generation (SHG) and sum frequency generation (SFG) were used to study C{sup 60} thin solid films (low energy ED forbidden electronic excitations), and electron spectroscopy was used to study organic overlayers (xylenes) on Pt(111). Theory of SHG from a thin film is described in terms of surface and bulk contributions as well as local and nonlocal contributions to the optical nonlinearities. (1)In situ SHG data on C{sub 60} films during UHV film growth can be described in terms of only nonlocal contributions to both surface and bulk nonlinear susceptibilities. Microscopic origin of SHG response is discussed in terms of electric quadrupole and ED transitions of C{sub 60}. (2)Adsorption and thermal decomposition of ortho- and para-xylene on Pt(111) is studied using HREELS, LEED, AES, and thermal desorption spectroscopy. We have observed preferential decomposition of the methyl groups which leads to distinct decomposition pathways for ortho- and para-xylene on Pt(111).
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W
2015-01-07
Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in themoreÂ Â» SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.Â«Â less
Full sky harmonic analysis hints at large ultra-high energy cosmic ray deflections
Tinyakov, P. G. Urban, F. R.
2015-03-15
The full-sky multipole coefficients of the ultra-high energy cosmic ray (UHECR) flux have been measured for the first time by the Pierre Auger and Telescope Array collaborations using a joint data set with E > 10 EeV. We calculate these harmonic coefficients in the model where UHECR are protons and sources trace the local matter distribution, and compare our results with observations. We find that the expected power for low multipoles (dipole and quadrupole, in particular) is sytematically higher than in the data: the observed flux is too isotropic. We then investigate to which degree our predictions are influenced by UHECR deflections in the regular Galactic magnetic field. It turns out that the UHECR power spectrum coefficients C{sub l} are quite insensitive to the effects of the Galactic magnetic field, so it is unlikely that the discordance can be reconciled by tuning the Galactic magnetic field model. On the contrary, a sizeable fraction of uniformly distributed flux (representing for instance an admixture of heavy nuclei with considerably larger deflections) can bring simulations and observations to an accord.
Sum frequency and second harmonic generation from the surface of a liquid microjet
Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie; Jena, Kailash C.; Brown, Matthew A.
2014-11-14
The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.
Stability and tunneling dynamics of a dark-bright soliton pair in a harmonic trap
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Karamatskos, E. T.; Stockhofe, J.; Kevrekidis, P. G.; Schmelcher, P.
2015-04-30
In this study, we consider a binary repulsive Bose-Einstein condensate in a harmonic trap in one spatial dimension and investigate particular solutions consisting of two dark-bright solitons. There are two different stationary solutions characterized by the phase difference in the bright component, in-phase and out-of-phase states. We show that above a critical particle number in the bright component, a symmetry-breaking bifurcation of the pitchfork type occurs that leads to a new asymmetric solution whereas the parental branch, i.e., the out-of-phase state, becomes unstable. These three different states support different small amplitude oscillations, characterized by an almost stationary density of themoreÂ Â» dark component and a tunneling of the bright component between the two dark solitons. Within a suitable effective double-well picture, these can be understood as the characteristic features of a bosonic Josephson junction (BJJ), and we show within a two-mode approach that all characteristic features of the BJJ phase space are recovered. For larger deviations from the stationary states, the simplifying double-well description breaks down due to the feedback of the bright component onto the dark one, causing the solitons to move. In this regime we observe intricate anharmonic and aperiodic dynamics, exhibiting remnants of the BJJ phase space.Â«Â less
Anthropometry for WorldSID, a World-Harmonized Midsize Male Side Impact Crash Dummy
S. Moss; Z. Wang; M. Salloum; M. Reed; M. Van Ratingen; D. Cesari; R. Scherer; T. Uchimura; M. Beusenberg
2000-06-19
The WorldSID project is a global effort to design a new generation side impact crash test dummy under the direction of the International Organization for Standardization (ISO). The first WorldSID crash dummy will represent a world-harmonized mid-size adult male. This paper discusses the research and rationale undertaken to define the anthropometry of a world standard midsize male in the typical automotive seated posture. Various anthropometry databases are compared region by region and in terms of the key dimensions needed for crash dummy design. The Anthropometry for Motor Vehicle Occupants (AMVO) dataset, as established by the University of Michigan Transportation Research Institute (UMTRI), is selected as the basis for the WorldSID mid-size male, updated to include revisions to the pelvis bone location. The proposed mass of the dummy is 77.3kg with full arms. The rationale for the selected mass is discussed. The joint location and surface landmark database is appended to this paper.
Stability and tunneling dynamics of a dark-bright soliton pair in a harmonic trap
Karamatskos, E. T.; Stockhofe, J.; Kevrekidis, P. G.; Schmelcher, P.
2015-04-30
In this study, we consider a binary repulsive Bose-Einstein condensate in a harmonic trap in one spatial dimension and investigate particular solutions consisting of two dark-bright solitons. There are two different stationary solutions characterized by the phase difference in the bright component, in-phase and out-of-phase states. We show that above a critical particle number in the bright component, a symmetry-breaking bifurcation of the pitchfork type occurs that leads to a new asymmetric solution whereas the parental branch, i.e., the out-of-phase state, becomes unstable. These three different states support different small amplitude oscillations, characterized by an almost stationary density of the dark component and a tunneling of the bright component between the two dark solitons. Within a suitable effective double-well picture, these can be understood as the characteristic features of a bosonic Josephson junction (BJJ), and we show within a two-mode approach that all characteristic features of the BJJ phase space are recovered. For larger deviations from the stationary states, the simplifying double-well description breaks down due to the feedback of the bright component onto the dark one, causing the solitons to move. In this regime we observe intricate anharmonic and aperiodic dynamics, exhibiting remnants of the BJJ phase space.
Tolbert, Leon M; Ozpineci, Burak; Filho, Faete; Cao, Yue
2011-01-01
This work approximates the selective harmonic elimination problem using artificial neural networks (ANNs) to generate the switching angles in an 11-level full-bridge cascade inverter powered by five varying dc input sources. Each of the five full bridges of the cascade inverter was connected to a separate 195-W solar panel. The angles were chosen such that the fundamental was kept constant and the low-order harmonics were minimized or eliminated. A nondeterministic method is used to solve the system for the angles and to obtain the data set for the ANN training. The method also provides a set of acceptable solutions in the space where solutions do not exist by analytical methods. The trained ANN is a suitable tool that brings a small generalization effect on the angles' precision and is able to perform in real time (50-/60-Hz time window).
Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.
2010-02-16
Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.
Weber, S. J. Manschwetus, B.; Billon, M.; Bougeard, M.; Breger, P.; GÃ©lÃ©oc, M.; Gruson, V.; Lin, N.; Ruchon, T.; SaliÃ¨res, P.; CarrÃ©, B.
2015-03-15
We describe the versatile features of the attosecond beamline recently installed at CEA-Saclay on the PLFA kHz laser. It combines a fine and very complete set of diagnostics enabling high harmonic spectroscopy (HHS) through the advanced characterization of the amplitude, phase, and polarization of the harmonic emission. It also allows a variety of photo-ionization experiments using magnetic bottle and COLTRIMS (COLd Target Recoil Ion Momentum Microscopy) electron spectrometers that may be used simultaneously, thanks to a two-foci configuration. Using both passive and active stabilization, special care was paid to the long term stability of the system to allow, using both experimental approaches, time resolved studies with attosecond precision, typically over several hours of acquisition times. As an illustration, applications to multi-orbital HHS and electron-ion coincidence time resolved spectroscopy are presented.
Berman, Oleg L.; Lozovik, Yurii E.; Snoke, David W.
2008-04-15
Recent experiments have shown that it is possible to create an in-plane harmonic potential trap for a two-dimensional (2D) gas of exciton polaritons in a microcavity structure, and evidence has been reported of Bose-Einstein condensation of polaritons accumulated in this type of trap. We present here the theory of Bose-Einstein condensation (BEC) and superfluidity of the exciton polaritons in a harmonic potential trap. Along the way, we determine a general method for defining the superfluid fraction in a 2D trap, in terms of angular momentum representation. We show that in the continuum limit, as the trap becomes shallower, the superfluid fraction approaches the 2D Kosterlitz-Thouless limit, while the condensate fraction approaches zero, as expected.
A double-beam magnetron-injection gun for third-harmonic continuous wave 1-THz gyrotron
Glyavin, M.; Institute of Applied Physics of the Russian Academy of Sciences , Nizhny Novgorod 603600; Research Center for Development of Far Infrared Region, University of Fukui , Fukui-shi 910-8507 ; Manuilov, V.; Research Center for Development of Far Infrared Region, University of Fukui , Fukui-shi 910-8507 ; Idehara, T.
2013-12-15
The concept of a continuous wave 1-kW/1-THz gyrotron operated at the third cyclotron harmonic of the transverse electric TE{sub 9,7} operating mode has been developed. To suppress the mode competition effects in a terahertz gyrotron, we propose a scheme with two generating helical electron beams (HEBs) formed in a double-beam triode magnetron-injection gun (MIG), where both emitters of the electron beams are located on a common cathode of the conventional MIG. An optimal geometry of the MIG electrodes is found. It is shown that in a proposed scheme two HEBs having close pitch factors and a moderate velocity spread can be formed. This makes them suitable for high-efficiency single-mode generation in the high frequency gyrotron at high harmonic.
Gallegos-Lopez, Gabriel
2012-10-02
Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.
Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu -Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng
2015-12-16
Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni_{1/2}Ti_{1/2})O_{3} perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. We find, consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.
Yu Yahong; Shen Baifei; Ji Liangliang; Zhang Xiaomei; Wang Wenpeng; Zhao Xueyan; Wang Xiaofeng; Yi Longqing; Shi Yin; Xu Tongjun; Zhang Lingang; Xu Zhizhan
2013-03-15
High harmonic generation (HHG) from relativistic laser-foil interaction is investigated analytically and through particle-in-cell simulations. Previous work has shown that when two counter-propagating circularly polarized (CP) laser pulses interact with a thin foil, electrons can be well confined spatially to form a high density layer. The layer electrons oscillate in certain transversal direction and radiate intense high order harmonics. It is demonstrated here that there is a critical foil thickness, only below which can high harmonics be generated efficiently. Furthermore, to enhance the intensity in higher order region, the third linearly polarized (LP) short-wavelength laser pulse with much lower intensity is introduced. Analysis and simulations both show that the enhancement is determined by the relative phase {delta}{phi} between the driving CP laser pulses and LP pulse. The enhancement at high order is quite considerable and very sensitive to the relative phase {delta}{phi}, thus offering not only a way to efficiently produce HHG but also a new method to measure the phase of intense high-frequency laser pulses.
Betz, Barbara; Gyulassy, Miklos; Torrieri, Giorgio
2011-08-15
Second Fourier harmonics of jet quenching have been thoroughly explored in the literature and shown to be sensitive to the underlying jet path-length dependence of energy loss and the differences between the mean eccentricity predicted by Glauber and color glass condensate (CGC)/Kharzeev-Levin-Nardi (KLN) models of initial conditions. We compute the jet path-length dependence of energy-loss for higher azimuthal harmonics of jet-fragments in a generalized model of energy-loss for Relativistc Heavy Ion Collider energies and find, however, that even the high-p{sub T} second moment is most sensitive to the poorly known early time evolution during the first fm/c. Moreover, we demonstrate that higher-jet harmonics are remarkably insensitive to the initial conditions, while the different v{sub n}(N{sub part}) vs v{sub n}{sup I{sub AA}}(N{sub part}) correlations between the moments of monojet and dijet nuclear modifications factors remain a most sensitive probe to differentiate between Glauber and CGC/KLN initial state geometries of the strongly-coupled Quark-Gluon Plasma.
The q-profile effect on high-order harmonic q = 1 tearing mode generation during sawtooth crashes
Wang Zhengxiong; Wei Lai; Wang Xiaogang
2012-06-15
The effect of q-profiles on the excitation of high-order harmonic q=1 tearing modes during sawtooth crashes is investigated by a collisionless fluid model with the electron inertia term in Ohm's law. It is found that for a flat q-profile in the core region, the high-order harmonics, such as m/n=2/2 and/or m/n=3/3 modes, comparable to or stronger than the m/n=1/1 component, can be excited during tokamak sawteeth. The stronger the magnetic shear on the q=1 surface is, the more unstable the higher-m modes are. For smoothly monotonously increased q-profiles, a lower q value on the plasma edge tends to easily excite higher-m harmonics at the same level as the m = 1 mode simultaneously. The spatial characteristics of the eigenmodes in the cases with the typical q-profiles are also discussed. In addition, the basic feature of the magnetic island structures in the nonlinear evolution is numerically obtained, which is consistent qualitatively with the experimentally reconstructed phenomenon.
Multi-MW K-Band 7th Harmonic Multiplier for High-Gradient Accelerator R&D
Solyak, N.A.; Yakovlev, V.P.; Hirschfield, J.L.; Kazakevich, G.M.; LaPointe, M.A.; /Yale U.
2009-05-01
A preliminary design and current status are presented for a two-cavity 7th harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power in K-band using as its RF driver an XK-5 S-band klystron (2.856 GHz). The multiplier is to be built with a TE{sub 111} rotating mode input cavity and interchangeable output cavities, a principal example being a TE{sub 711} rotating mode cavity running at 20 GHz. The design that is described uses a 250 kV, 20 A injected laminar electron beam. With 8.5 MW of S-band drive power, 4.4 MW of 20-GHz output power is predicted. The design uses a gun, magnetic coils, and beam collector from an existing waveguide 7th harmonic multiplier. The gun has been re-conditioned and the desired operating parameters have been achieved.
Ganeev, R. A.; Boltaev, G. S.; Sobirov, B.; Reyimbaev, S.; Sherniyozov, H.; Usmanov, T.; Suzuki, M.; Yoneya, S.; Kuroda, H.
2015-01-15
We demonstrate the technique allowing the fine tuning of the distance between the laser-produced plasma plumes on the surfaces of different materials, as well as the variation of the sizes of these plumes. The modification of plasma formations is based on the tilting of the multi-slit mask placed between the heating laser beam and target surface, as well as the positioning of this mask in the telescope placed on the path of heating radiation. The modulated plasma plumes with the sizes of single plume ranging between 0.1 and 1â€‰mm were produced on the manganese and silver targets. Modification of the geometrical parameters of plasma plumes proved to be useful for the fine tuning of the quasi-phase-matched high-order harmonics generated in such structures during propagation of the ultrashort laser pulses. We show the enhancement of some groups of harmonics along the plateau range and the tuning of maximally enhanced harmonic by variable modulation of the plasma.
Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, R. J.; Venteris, E. R.; Wang, M. Q.
2012-06-01
The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced.
October 2005 - March 2006 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
above provides a table of monthly Slice, PF, RL, and IP rates with a 30.56% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...
April - September 2002 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
above provides a table of monthly Slice, PF, RL, and IP rates with a 40.77% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...
October 2004 - March 2005 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
The PDF documents above provide tables of monthly Slice, PF, RL, and IP rates with the LB + FB + SN CRAC adjustments for each month of the rate period. The table below is simply...
April - September 2005 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
above provides a table of monthly Slice, PF, RL, and IP rates with a 36.93% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...
October 2003 - March 2004 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
above provides a table of monthly Slice, PF, RL, and IP rates with a 43.66% non-Slice LB + FB + SN CRAC adjustment for each month of the rate period. The table below is simply a...
October 2002 - March 2003 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
above provides a table of monthly Slice, PF, RL, and IP rates with a 43.91% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...
October 2001 - March 2002 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
above provides a table of monthly Slice, PF, RL, and IP rates with a 46% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...
April - September 2003 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
above provides a table of monthly Slice, PF, RL, and IP rates with a 49.50% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...
April - September 2004 Power Rates (rates/previous)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
above provides a table of monthly Slice, PF, RL, and IP rates with a 47.00% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...
FPS-96R Rate Adjustment (rates/ratecases)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Final Firm Power Products and Services (FPS-96R) Rate Adjustment In August 1999, BPA proposed to correct errors in the Firm Power Products and Services rate schedule (FPS-96), and...
WP-02 Power Rate Case (rates/ratecases)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
WP-02 Power Rate Case (Updated on May 7, 2004) In May of 2000, the BPA Administrator signed a Record of Decision (ROD) on the 2002 Final Power Rate Proposal for the October 2001...
2007-2009 Power Rates Quarterly Updates (pbl/rates)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(PFR) Firstgov FY 2007 2009 Power Rates Quarterly Updates In BPAs 2007-2009 Wholesale Power Rate Case (WP-07), BPA agreed that it would post reports about BPAs power...
National Utility Rate Database: Preprint
Ong, S.; McKeel, R.
2012-08-01
When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.
Malkov, Yu A; Yashunin, D A; Kiselev, A M; Stepanov, A N; Andreev, N E
2014-05-30
We have carried out experimental and theoretical investigations of a tunable coherent soft X-ray radiation source in the 30 â€“ 52 nm wavelength range based on the generation of high-order harmonics of femtosecond laser radiation propagating in a dielectric xenon-filled capillary. The long path of laser pulse propagation through the capillary permits tuning the generated harmonic wavelengths to almost completely span the range under consideration. (interaction of radiation with matter)
Schlueter, R.D.; Halbach, K.
1991-12-04
This memo presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.
Project Definition Rating Index Workbook
Office of Energy Efficiency and Renewable Energy (EERE)
The Project Definition Rating Index (PDRI) Workbook is a tool that was developed to support DOE G-413.3-12A, U. S. Department of Energy Project Definition Rating Index Guide for Traditional Nuclear...
An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
HÃ¶ppner, H.; Hage, A.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Prandolini, M. J.; Faatz, B.; Tavella, F.
2015-05-15
High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720â€“900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7â€“13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymoreÂ Â» hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.Â«Â less
Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.
2013-07-01
Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing
Octahedral distortion induced magnetic anomalies in LaMn{sub 0.5}Co{sub 0.5}O{sub 3} single crystals
Manna, Kaustuv Elizabeth, Suja; Anil Kumar, P. S.; Bhadram, Venkata Srinu; Narayana, Chandrabhas
2014-07-28
Single crystals of LaMn{sub 0.5}Co{sub 0.5}O{sub 3} belonging to the ferromagnetic-insulator and distorted perovskite class were grown using a four-mirror optical float zone furnace. The as-grown crystal crystallizes into an orthorhombic Pbnm structure. The spatially resolved 2D Raman scan reveals a strain-induced distribution of transition metal (TM)–oxygen (O) octahedral deformation in the as-grown crystal. A rigorous annealing process releases the strain, thereby generating homogeneous octahedral distortion. The octahedra tilt by reducing the bond angle TM-O-TM, resulting in a decline of the exchange energy in the annealed crystal. The critical behavior is investigated from the bulk magnetization. It is found that the ground state magnetic behavior assigned to the strain-free LaMn{sub 0.5}Co{sub 0.5}O{sub 3} crystal is of the 3D Heisenberg kind. Strain induces mean field-like interaction in some sites, and consequently, the critical exponents deviate from the 3D Heisenberg class in the as-grown crystal. The temperature-dependent Raman scattering study reveals strong spin-phonon coupling and the existence of two magnetic ground states in the same crystal.
Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; De Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.
2007-09-15
The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also {chi}{sup (3)} processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part
SN-03 Rate Case Workshops (rates/meetings)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Materials Related Link: SN-03 Power Rate Case May 1 & 13, 2003 - Debt and Liquidity Strategies workshops (on BPA Corporate web site) March 27, 2003 - SN CRAC Prescheduling...
What Is the Right Rate? Loan Rates and Demand
Broader source: Energy.gov [DOE]
Better Buildings Neighborhood Program Financing Peer Exchange Call: â€œWhat is the Right Rate?â€ call slides and discussion summary, December 1, 2011.
ARM - Measurement - Radiative heating rate
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a
Rate Schedules | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Repayment studies prepared by the agency determine revenue requirements and appropriate rate levels and these studies for each of Southeastern's four power marketing systems are ...
Sustainable Building Rating Systems Summary
Fowler, Kimberly M.; Rauch, Emily M.
2006-07-01
The purpose of this document is to offer information that could be used to compare and contrast sustainable building rating systems.
Wholesale Power Rate Schedules | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Rate Schedules Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System:...
Ba Dinh, Khuong Vu Le, Hoang; Hannaford, Peter; Van Dao, Lap
2014-05-28
We experimentally study the observation of the Cooper minimum in a semi-infinite argon-filled gas cell using two-color laser fields at wavelengths of 1400â€‰nm and 800â€‰nm. The experimental results show that the additional 800â€‰nm field can change the macroscopic phase-matching condition through change of the atomic dipole phase associated with the electron in the continuum state and that this approach can be used to control the appearance of the Cooper minimum in the high-order harmonic spectrum in order to study the electronic structure of atoms and molecules.
Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A.
2013-07-01
Time-dependent equations of the Surface Harmonics Method (SHM) have been derived from the time-dependent neutron transport equation with explicit representation of delayed neutrons for solving the two-dimensional time-dependent problems. These equations have been realized in the SUHAM-TD code. The TWIGL benchmark problem has been used for verification of the SUHAM-TD code. The results of the study showed that computational costs required to achieve necessary accuracy of the solution can be an order of magnitude less than with the use of the conventional finite difference method (FDM). (authors)
Broader source: Energy.gov [DOE]
As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.
Enhanced reaction rates in NDP analysis with neutron scattering
Downing, R. Gregory
2014-04-15
Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.
Das, Nibedita; Nath, Masood A.; Thakur, Gohil S.; Thirumal, M.; Ganguli, Ashok K.
2015-09-15
Double perovskite related oxide A{sub 2}ZnTiO{sub 6}A=Pr, Gd were synthesized by the solid state reaction method at 1523 K. The structure and microstructure of the compounds were studied by X-ray, SAED and FESEM. Rietveld refinement of the powder X-ray analysis shows that the compounds crystallizes in monoclinic space group P2{sub 1}/n (a{sup +}b{sup âˆ’}b{sup âˆ’}) with unit cell parameter âˆš2a{sub p}Ã—âˆš2a{sub p}Ã—2a{sub p} (a=5.5026(1) Ã…, b=5.6305(1) Ã…, c=7.8149(1) Ã…, Î²=90.02(1)Â° for Pr{sub 2}ZnTiO{sub 6} and a=5.3621(1) Ã…, b=5.6565(2) Ã…, c=7.6779(2) Ã… and Î²=90.264(2)Â° for Gd{sub 2}ZnTiO{sub 6}. Electron diffraction study confirms P2{sub 1}/n symmetry of the oxides. The monoclinic distortion is larger in Gd{sub 2}ZnTiO{sub 6} than Pr{sub 2}ZnTiO{sub 6} which is associated with the tolerance factor and the tilting angle of ZnO{sub 6} and TiO{sub 6} octahedra (Ï•=13.64Â° for Pr{sub 2}ZnTiO{sub 6} and 16.51Â° for Gd{sub 2}ZnTiO{sub 6}). The compounds are highly ordered. The charge and size difference between B site cations are the driving force for the ordering of the Bâ€²O{sub 6} and Bâ€³O{sub 6} octahedra. Pr{sub 2}ZnTiO{sub 6} shows a dielectric constant of 27 and dielectric loss of 0.003 while Gd{sub 2}ZnTiO{sub 6} has a dielectric constant of 17 and dielectric loss of 0.005 measured at 1 MHz. - Graphical abstract: Synthesis of new double perovskite dielectric material with very low dielectric loss. - Highlights: â€¢ Synthesis of new monoclinically distorted double perovskite (Pr{sub 2}ZnTiO{sub 6}). â€¢ Synthesis of monoclinically distorted double perovskite (Gd{sub 2}ZnTiO{sub 6}). â€¢ Selected area electron diffraction study of A{sub 2}ZnTiO{sub 6} (A=Pr, Gd). â€¢ Study of dielectric properties of A{sub 2}ZnTiO{sub 6} (A=Pr, Gd)
Kim, Yusung; Muruganandham, Manickam; Modrick, Joseph M.; Bayouth, John E.
2011-07-01
Purpose: The aim of this study was to characterize the levels of artifacts and distortions of titanium applicators on 3.0-Tesla magnetic resonance imaging (MRI). Methods and Materials: Fletcher-Suit-Delclos-style tandem and ovoids (T and O) and tandem and ring applicator (T and R) were examined. The quality assurance (QA) phantoms for each applicator were designed and filled with copper sulphate solution (1.5 g/l). The artifacts were quantified with the registration of corresponding computed tomography (CT) images. A favorable MR sequence was searched in terms of artifacts. Using the sequence, the artifacts were determined. The geometric distortions induced by the applicators were quantified through each registration of CT and MRI without applicators. The artifacts of T and O were also evaluated on in vivo MRI datasets of 5 patients. Results: T1-weighted MRI with 1-mm slice thickness was found as a favorable MR sequence. Applying the sequence, the artifacts at the tandem tip of T and O and T and R were determined as 1.5 {+-} 0.5 mm in a superior direction in phantom studies. In the ovoids of T and O, we found artifacts less than 1.5 {+-} 0.5 mm. The artifacts of a T and O tandem in vivo were found as less than 2.6 {+-} 1.3 mm on T1-weighted MRI, whereas less than 6.9 {+-} 3.4 mm on T2-weighted MRI. No more than 1.2 {+-} 0.6 mm (3.0 {+-} 1.5 mm) of distortions, due to a titanium applicator, were measured on T1-weighted MRI (T2-). Conclusion: In 3.0-Tesla MRI, we found the artifact widths at the tip of tandem were less than 1.5 {+-} 0.5 mm for both T and O and T and R when using T1-weighted MRI in phantom studies. However, exclusive 3.0-Tesla MRI-guided brachytherapy planning with a titanium applicator should be cautiously implemented.
Shao Tianjiao [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao Guangjiu; Yang Huan [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); School of Physics, Shandong University, Jinan 250100 (China); Wen Bin [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)
2010-12-15
In the present work, laser-parameter effects on the isolated attosecond pulse generation from two-color high-order harmonic generation (HHG) process are theoretically investigated by use of a wave-packet dynamics method. A 6-fs, 800-nm, 6x10{sup 14}W/cm{sup 2}, linearly polarized laser pulse serves as the fundamental driving pulse and parallel linearly polarized control pulses at 400 nm (second harmonic) and 1600 nm (half harmonic) are superimposed to create a two-color field. Of the two techniques, we demonstrate that using a half-harmonic control pulse with a large relative strength and zero phase shift relative to the fundamental pulse is a more promising way to generate the shortest attosecond pulses. As a consequence, an isolated 12-as pulse is obtained by Fourier transforming an ultrabroad xuv continuum of 300 eV in the HHG spectrum under half-harmonic control scheme when the relative strength {radical}(R)=0.6 and relative phase =0.
Welch, E. C.; Zhang, P.; He, Z.-H.; Dollar, F.; Krushelnick, K.; Thomas, A. G. R.
2015-05-15
High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a{sub 0} with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.
Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Colby, Robert J.; Manandhar, Sandeep; Shutthanandan, V.; Hu, Dehong; Kabius, Bernd C.; Apra, Edoardo; Shelton, William A.; Chambers, Scott A.
2013-04-15
We report the magnetic and structural characteristics of epitaxial NiTiO3 films grown by pulsed laser deposition that are isostructural with acentric LiNbO3 (space group R3c). Optical second harmonic generation and magnetometry demonstrate lattice polarization at room temperature and weak ferromagnetism below 250 K, respectively. These results appear to be consistent with earlier predictions from first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LiNbO3 structure. This acentric form of NiTiO3 is believed to be one of the rare examples of ferroelectrics exhibiting weak ferromagnetism generated by a Dzyaloshinskii-Moriya interaction.
Ruberti, M.; Averbukh, V.; Decleva, P.
2014-10-28
We present the first implementation of the ab initio many-body Green's function method, algebraic diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-order harmonic generation spectra) quantities. We show that the cross-section features that pose a challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also present the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC calculation in the B-spline basis. The present development paves the way for the application of the B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in atoms, molecules, and clusters.
Pattabi, A. Gu, Z.; Yang, Y.; Finley, J.; Lee, O. J.; Raziq, H. A.; Gorchon, J.; Salahuddin, S.; Bokor, J.
2015-10-12
Strong spin-orbit coupling in non-magnetic heavy metals has been shown to lead to large spin currents flowing transverse to a charge current in such a metal wire. This in turn leads to the buildup of a net spin accumulation at the lateral surfaces of the wire. Spin-orbit torque effects enable the use of the accumulated spins to exert useful magnetic torques on adjacent magnetic layers in spintronic devices. We report the direct detection of spin accumulation at the free surface of nonmagnetic metal films using magnetization-induced optical surface second harmonic generation. The technique is applied to probe the current induced surface spin accumulation in various heavy metals such as Pt, Î²-Ta, and Au with high sensitivity. The sensitivity of the technique enables us to measure the time dynamics on a sub-ns time scale of the spin accumulation arising from a short current pulse. The ability of optical surface second harmonic generation to probe interfaces suggests that this technique will also be useful for studying the dynamics of spin accumulation and transport across interfaces between non-magnetic and ferromagnetic materials, where spin-orbit torque effects are of considerable interest.
Plogmaker, S. E-mail: Joachim.Terschluesen@physics.uu.se TerschlÃ¼sen, J. A. E-mail: Joachim.Terschluesen@physics.uu.se Krebs, N.; Svanqvist, M.; Forsberg, J.; Cappel, U. B.; Rubensson, J.-E.; Siegbahn, H.; SÃ¶derstrÃ¶m, J. E-mail: Joachim.Terschluesen@physics.uu.se
2015-12-15
In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20â€‰000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 â‹… 10{sup 10} photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.
Van Eester, D.; Lerche, E.
2014-02-12
Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester and R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063], the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester and E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.
The effect of shot noise on the start up of the fundamental and harmonics in free-electron lasers
Freund, H. P.; Miner, W. H. Jr.; Giannessi, L.
2008-12-15
The problem of radiation start up in free-electron lasers (FELs) is important in the simulation of virtually all FEL configurations including oscillators and amplifiers in both seeded master oscillator power amplifier (MOPA) and self-amplified spontaneous emission (SASE) modes. Both oscillators and SASE FELs start up from spontaneous emission due to shot noise on the electron beam, which arises from the random fluctuations in the phase distribution of the electrons. The injected power in a MOPA is usually large enough to overwhelm the shot noise. However, this noise must be treated correctly in order to model the initial start up of the harmonics. In this paper, we discuss and compare two different shot noise models that are implemented in both one-dimensional wiggler-averaged (PERSEO) and non-wiggler-averaged (MEDUSA1D) simulation codes, and a three-dimensional non-wiggler-averaged (MEDUSA) formulation. These models are compared for examples describing both SASE and MOPA configurations in one dimension, in steady-state, and time-dependent simulations. Remarkable agreement is found between PERSEO and MEDUSA1D for the evolution of the fundamental and harmonics. In addition, three-dimensional correction factors have been included in the MEDUSA1D and PERSEO, which show reasonable agreement with MEDUSA for a sample MOPA in steady-state and time-dependent simulations.
Poletto, L.; Villoresi, P.; Benedetti, E.; Ferrari, F.; Stagira, S.; Sansone, G.; Nisoli, M.
2008-07-15
Ultrafast extreme-ultraviolet pulses are spectrally selected by a time-delay-compensated grating monochromator. The intrinsic very short duration of the pulses is obtained by exploiting the high-order harmonic generation process. The temporal characterization of the harmonic pulses is obtained using a cross-correlation method: pulses as short as 8 fs are measured at the output of the monochromator in the case of the 23rd harmonic. This value is in agreement with the expected duration of such pulses, indicating that the influence of the monochromator is negligible. The photon flux has been measured with a calibrated photodiode, pointing out the good efficiency of the monochromator, derived by the exploitation for the two gratings of the conical diffraction mounting.
BPA revises oversupply rate proposal
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
comments until May 22, 2013. The rate-setting process will end with the administrator making a decision based on the record developed in the case. BPA expects to issue a final...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
at a Tier 2 rate 3) Combination of the two On Nov 1, 2009, customers made their elections for how they will serve their Above-RHWM Load during the FY 2012-2014 purchase...
Broader source: Energy.gov (indexed) [DOE]
August 27, 2010 MEMORANDUM FOR HUMAN RESOURCES DIRECTORS FROM: SARA"iJ. Boku1, DIRECToR OF HUMAN CTAL MANAGEMENT SUBJECT: GUIDANCE MEMORANDUM 10 CATEGORY RATING The purpose of ...
Final Report- National Database of Utility Rates and Rate Structure
Broader source: Energy.gov [DOE]
One of the key informational barriers for consumers, installers, regulators and policymakers, is the proper comparison cost of utility-supplied electricity that will be replaced with a Photovoltaic (PV) system. Oftentimes, these comparisons are made with national or statewide averages which results in inaccurate comparisons and conclusions. Illinois State University seeks to meet the need for accurate information about electricity costs and rate structure by building a national database of utility rates and rate structures. The database will build upon the excellent framework that was developed by the OpenEI.org initiative and extend it in several important ways. First, the data will be populated and monitored by a team of trained regulatory economists. Second, the database will be more comprehensive because it will be populated with data from newer competitive retail suppliers for states that have restructured their electricity markets to allow such suppliers. Third, the University and its Institute for Regulatory Policy Studies will maintain the database and ensure that it contains the most recent rate information.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
rates, please see the transmission rates web site. Inactive Rate Cases Integrated Business Review (IBR) Integrated Program Review (IPR) Quarterly Business Review (QBR) Content...
Henry, J.J.
1961-09-01
A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.
Coal Transportation Rate Sensitivity Analysis
Reports and Publications (EIA)
2005-01-01
On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.
Zaytsev, Kirill I. Yurchenko, Stanislav O.
2014-08-04
Experimental and numerical results for second harmonic generation (SHG) in photonic crystal (PC) based on NaNO{sub 2}-infiltrated opal matrix are presented. SHG is performed in reflection mode; thus, the direction of the SHG maximum is equal to the angle of mirror reflection. The PC was pumped with femtosecond optical pulses at different angles of incidence, allowing the dependence of the SHG efficiency on the location of the fundamental wavelength toward the PC band gap (BG) to be examined. The most efficient SHG was observed when pumping the BG of the PC. To interpret the experimental results, finite-difference time-domain numerical simulations of the light interaction with the PC were conducted. The observed effect of highly efficient SHG is associated with structural light focusing, and, as a consequence, with strong optical field localization within certain near-surface PC regions. Thus, SHG enhancement based on structural light focusing in PC was demonstrated.
Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel
2014-06-03
Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.
Paarmann, Alexander Razdolski, Ilya; Melnikov, Alexey; Gewinner, Sandy; SchÃ¶llkopf, Wieland; Wolf, Martin
2015-08-24
The Reststrahl spectral region of silicon carbide has recently attracted much attention owing to its potential for mid-infrared nanophotonic applications based on surface phonon polaritons (SPhPs). Studies of optical phonon resonances responsible for surface polariton formation, however, have so far been limited to linear optics. In this Letter, we report the first nonlinear optical investigation of the Reststrahl region of SiC, employing an infrared free-electron laser to perform second harmonic generation (SHG) spectroscopy. We observe two distinct resonance features in the SHG spectra, one attributed to resonant enhancement of the nonlinear susceptibility Ï‡{sup (2)} and the other due to a resonance in the Fresnel transmission. Our work clearly demonstrates high sensitivity of mid-infrared SHG to phonon-driven phenomena and opens a route to studying nonlinear effects in nanophotonic structures based on SPhPs.
Zhang, Jun; Zhang, Xiangdong
2015-09-28
Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.
The effect of cooling rate during rapid solidification on the structure and texture of NiTi
Pedraza, A.J.; Godbole, M.J.; Kenik, E.A.; Pedraza, D.F.; Lowndes, D.H.
1986-01-01
A study has been conducted on the effects of increasing cooling rate during rapid solidification of NiTi upon the phases that are produced. The hammer and anvil rapid solidification technique and laser melting with a nanosecond excimer laser were used, which allow the cooling rate to be varied by three to four orders of magnitude. Although 1/3 (110) superlattice reflections are seen in the selected area diffraction (SAD) patterns of the splat quenched (SQ) specimens, x-ray diffraction analyses show the presence of only B2 phase and martensite. On the other hand, laser treatment (LT) of the specimens produces a layer that has a Ll/sub 0/ structure with a slight monoclinic distortion. This phase can be envisaged as a small distortion of a B2 unit cell with a volume per atom approx.3.3% lower than the equilibrium B2 phase. Also martensite is present in the layer. SQ alloys exhibited a marked (200) texture due to columnar growth opposite to the direction of heat extraction, while LT produces epitaxial regrowth of the melted layer. No substantial disordering is obtained in NiTi rapidly solidified alloys.
Eernisse, Errol P.; Peterson, Gary D.
1976-01-01
A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.
Fast repetition rate (FRR) flasher
Kolber, Zbigniew; Falkowski, Paul
1997-02-11
A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.
Fast repetition rate (FRR) flasher
Kolber, Z.; Falkowski, P.
1997-02-11
A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.
Floating Rate Agreement | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Floating Rate Agreement Floating Rate Agreement Floating Rate Agreement (99.85 KB) More Documents & Publications Fixed Rate Agreement Energy Efficiency Loan Program Agreement Template Energy Efficiency Loan Program Agreement-Template
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Shatnawi, Mouath; Bozin, Emil S.; Mitchell, J. F.; Billinge, Simon J. L.
2016-04-25
Evolution of the average and local crystal structure of Ca-doped LaMnO3 has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations (x = 0.18,0.22). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO6 octahedra across the OR transition at TS~720 K. The study utilizedmoreÂ Â» explicit two-phase PDF structural modeling, revealing that away from TMI there is no evidence for nanoscale phase coexistence. The local JT distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only a small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO3. The results hence do not support the percolative scenario for the MI transition in La1â€“xCaxMnO3 based on PS, and question its ubiquity in the manganites. In contrast to LaMnO3 that exhibits long-range orbital correlations and sizable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only ~1 nm with observably smaller distortions. In the x = 0.22 sample local JT distortions are found to persist across the OR transition and deep into the R phase (up to ~1050 K), where they are crystallographically prohibited. As a result, their magnitude and subnanometer spatial extent remain unchanged.Â«Â less
Evaluation Ratings Definitions (Excluding Utilization of Small...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
(Excluding Utilization of Small Business) Rating Definition Note Exceptional ... Definitions (Utilization of Small Business) Rating Definition Note Exceptional ...
1993 Wholesale Power and Transmission Rate Schedules.
US Bonneville Power Administration
1993-10-01
Bonneville Power Administration 1993 Wholesale Power Rate Schedules and General Rate Schedule Provisions and 1993 Transmission Rate Schedules and General Transmission Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1993. These rate schedules and provisions were approved by the Federal Energy Commission, United States Department of Energy, in September, 1993. These rate schedules and provisions supersede the Administration`s Wholesale Power Rate Schedules and General Rate Schedule Provisions and Transmission Rate Schedules and General Transmission Rate Schedule Provisions effective October 1, 1991.
What Is the Right Rate? Loan Rates and Demand | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Is the Right Rate? Loan Rates and Demand What Is the Right Rate? Loan Rates and Demand Better Buildings Neighborhood Program Financing Peer Exchange Call: "What is the Right Rate?" ...
Rating fenestration for energy efficiency
Markway, R.
1993-09-01
The grading of windows and doors by the National Fenestration Rating Council (NFRC) opens a new era regarding the energy efficiency of fenestration products. For the first time, architects, designers, and other specifiers will find themselves on a level playing field when it comes to comparing the thermal performance of fenestration products. Although only one state, California, now requires the use of fenestration products that have gone through the NFRC's simulation and testing procedures, five other states will soon be doing so, including Washington, Alaska, Oregon, Idaho, and Wisconsin. Others will follow suit; Florida, Arizona, Texas, Louisiana, New York, Massachusetts, and Colorado have shown interest. Exactly what does this mean to architects The NFRC, which was established last year, has developed a procedure to determine accurately the U-value of fenestration products. Under the NFRC program a number of independent simulation and testing laboratories have been approved. These laboratories are charged with the responsibility of determining whether products conform to the U-values represented by the manufacturers. The rating procedure and benefits from it are described.
Wholesale Power Rate Schedules | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Power Rate Schedules October 1, 2011 CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU October 1, 2011 CM-1-H Wholesale Power Rate...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: electric load data Type Term Title Author Replies Last Post sort icon...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: DOE Type Term Title Author Replies Last Post sort icon Blog entry DOE...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: API Type Term Title Author Replies Last Post sort icon Blog entry API...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: EZFeed Type Term Title Author Replies Last Post sort icon Blog entry...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Database Type Term Title Author Replies Last Post sort icon Blog entry...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: bug Type Term Title Author Replies Last Post sort icon Discussion bug...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: energy efficiency Type Term Title Author Replies Last Post sort icon...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: clean energy Type Term Title Author Replies Last Post sort icon Blog...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: datasets Type Term Title Author Replies Last Post sort icon Blog entry...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: FOA Type Term Title Author Replies Last Post sort icon Blog entry FOA...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Illinois State University Type Term Title Author Replies Last Post sort...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: building load Type Term Title Author Replies Last Post sort icon Blog...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: building load data Type Term Title Author Replies Last Post sort icon...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: dataset Type Term Title Author Replies Last Post sort icon Blog entry...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Energy Visions Prize Type Term Title Author Replies Last Post sort icon...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: funding Type Term Title Author Replies Last Post sort icon Blog entry...
Utility Rate | OpenEI Community
Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: EIA Type Term Title Author Replies Last Post sort icon Blog entry EIA...
Zhang Pengjie [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Science, 80 Nandan Road, Shanghai, China, 200030 (China)
2011-03-15
We derive the exact analytical solution of the linear structure growth rate in {Lambda}CDM cosmology with flat or curved geometry, under the Newtonian gauge. Unlike the well known solution under the Newtonian limit [D. J. Heath, Mon. Not. R. Astron. Soc. 179, 351 (1977)], our solution takes all general relativistic corrections into account and is hence valid at both the sub- and superhorizon scales. With this exact solution, we evaluate cosmological impacts induced by these relativistic corrections. (1) General relativistic corrections alter the density growth from z=100 to z=0 by 10% at k=0.01 h/Mpc and the impact becomes stronger toward larger scales. We caution the readers that the overdensity is not gauge invariant and the above statement is restrained to the Newtonian gauge. (2) Relativistic corrections introduce a k{sup -2} scale dependence in the density fluctuation. It mimics a primordial non-Gaussianity of the local type with f{sub NL}{sup local{approx}}1. This systematical error may become non-negligible for future all sky deep galaxy surveys. (3) Cosmological simulations with box size greater than 1 Gpc are also affected by these relativistic corrections. We provide a postprocessing recipe to correct for these effects. (4) These relativistic corrections affect the redshift distortion. However, at redshifts and scales relevant to redshift distortion measurements, such effect is negligible.
Truong, Lo Nhat; Fargin, Evelyne E-mail: fargin@icmcb-bordeaux.cnrs.fr Vigouroux, HÃ©lÃ¨ne; Fargues, Alexandre; Dussauze, Marc E-mail: fargin@icmcb-bordeaux.cnrs.fr Adamietz, FrÃ©dÃ©ric; Rodriguez, Vincent E-mail: fargin@icmcb-bordeaux.cnrs.fr; Santos, Luis
2015-04-20
A spherulitic crystallization of the crystalline phase LaBGeO{sub 5} is generated in the 25La{sub 2}O{sub 3}-25B{sub 2}O{sub 3}-50 GeO{sub 2} glass system. Linear and nonlinear optical properties of lanthanum borogermanate glass-ceramic have been investigated at both macroscopic and microscopic scales. Polarized Î¼-Raman analysis has evidenced a radial distribution of the crystallites along the c-axis inside spherulites, whereas polarized Î¼-Second Harmonic Generation (SHG) analysis revealed intensity maxima perpendicularly to the c-axis crystallites orientation. Polarized SHG mapping of a spherulite indicate that no dipolar response along the c-axis oriented crystallites occurs despite the individual dipolar symmetry C{sub 3} of the crystallites. At a larger mm scale, the isotropic scattering of spherulites recorded from macroscopic SHG experiment in the forward direction is consistent with an average coherent octupolar response per spherulite. These SHG analyses at different scale are both in accordance with radial antiferroelectric orientation along the c-axis of crystallites inside each spherulite.
Lin, J. Y. Y. [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Aczel, Adam A [ORNL] [ORNL; Abernathy, Douglas L [ORNL] [ORNL; Nagler, Stephen E [ORNL] [ORNL; Buyers, W. J. L. [National Research Council of Canada] [National Research Council of Canada; Granroth, Garrett E [ORNL] [ORNL
2014-01-01
Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of- flight chopper spectrometers [A.A. Aczel et al, Nature Communications 3, 1124 (2012)]. These modes are well described by 3D isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for the nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states (PDOS), and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T-dependence of the scattering from these modes is strongly influenced by the uranium lattice.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Akilbekova, Dana; Bratlie, Kaitlin M.; Abraham, Thomas
2015-06-30
The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG) microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. VariationmoreÂ Â» in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.Â«Â less
Akilbekova, Dana; Bratlie, Kaitlin M.; Abraham, Thomas
2015-06-30
The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG) microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.
LB CRAC Workshops (rates/meetings)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Load-Based (LB) CRAC Power Rate Adjustment Workshop Materials Related Links: Power Rate Adjustments > Load-Based (LB) CRAC December 13, 2006 LB CRAC Workshop Materials (updated...
utility rate | OpenEI Community
utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next...
Residential Solar Valuation Rates | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Residential Solar Valuation Rates Residential Solar Valuation Rates This presentation summarizes the information discussed by Rabago Energy during the Best Practices in the Design ...
Katsuno, Takashi Ishikawa, Tsuyoshi; Ueda, Hiroyuki; Uesugi, Tsutomu; Manaka, Takaaki; Iwamoto, Mitsumasa
2014-06-23
Two-dimensional current collapse imaging of a Schottky gate AlGaN/GaN high electron mobility transistor device was achieved by optical electric field-induced second-harmonic generation (EFISHG) measurements. EFISHG measurements can detect the electric field produced by carriers trapped in the on-state of the device, which leads to current collapse. Immediately after (e.g., 1, 100, or 800â€‰Î¼s) the completion of drain-stress voltage (200â€‰V) in the off-state, the second-harmonic (SH) signals appeared within 2â€‰Î¼m from the gate edge on the drain electrode. The SH signal intensity became weak with time, which suggests that the trapped carriers are emitted from the trap sites. The SH signal location supports the well-known virtual gate model for current collapse.
Liu, Weimin; Wang, Liang; Han, Fangyuan; Fang, Chong
2013-11-11
Coherent phonon dynamics in condensed-phase medium are responsible for important material properties including thermal and electrical conductivities. We report a structural dynamics technique, time-resolved surface third-harmonic generation (TRSTHG) spectroscopy, to capture transient phonon propagation near the surface of polycrystalline CaF{sub 2} and amorphous borosilicate (BK7) glass. Our approach time-resolves the background-free, high-sensitivity third harmonic generation (THG) signal in between the two crossing near-IR pulses. Pronounced intensity quantum beats reveal the impulsively excited low-frequency Raman mode evolution on the femtosecond to picosecond timescale. After amplified laser irradiation, danburite-crystal-like structure units form at the glass surface. This versatile TRSTHG setup paves the way to mechanistically study and design advanced thermoelectrics and photovoltaics.
Noguera, Norman; RÃ³zga, Krzysztof
2015-07-15
In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary SchrÃ¶dinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case of a slightly more general potential than the one for harmonic oscillator.
Gopalan, V.; Kawas, M.J.; Schlesinger, T.E.; Stancil, D.D.; Gupta, M.C.
1996-12-01
The authors report the first integrated quasi-phase-matched second-harmonic generator and electrooptic scanner on ferroelectric Z-cut LiTaO{sub 3}. The quasi-phase-matched second-harmonic generation device frequency doubles the infrared light at 829.7 nm into blue at 414.85 nm with a bulk conversion efficiency of 0.52%/W-cm. The blue light generated in the bulk then passes through an electrooptic scanner, consisting of a series of lithographically defined triangular-shaped domain-inverted regions extending through the thickness of the crystal. A deflection of 12 mrad/kv for the output blue light and 7.4 mrad/kv for the infrared light was observed at the scanner output.
Misra, Ranjeev; Mandal, Soma E-mail: soma@iucaa.ernet.in
2013-12-10
A generic model for alternating lags in quasi-periodic oscillation (QPO) harmonics is presented where variations in the photon spectrum are caused by oscillations in two parameters that characterize the spectrum. It is further assumed that variations in one of the parameters are linearly driven by variations in the other after a time delay t{sub d} . It is shown that alternating lags will be observed for a range of t{sub d} values. A phenomenological model based on this generic one is developed that can explain the amplitude and phase lag variation with energy of the fundamental and the next three harmonics of the 67 mHz QPO observed in GRS 1915+105. The phenomenological model also predicts the variation of the Bicoherence phase with energy, which can be checked by further analysis of the observational data.
De Luca, Gabriele; Rubano, Andrea; Gennaro, Emiliano di; Khare, Amit; Granozio, Fabio Miletto; Uccio, Umberto Scotti di; Marrucci, Lorenzo; Paparo, Domenico
2014-06-30
By a combination of optical second harmonic generation and transport measurements, we have investigated interfaces formed by either crystalline or amorphous thin films of LaAlO{sub 3} grown on TiO{sub 2}-terminated SrTiO{sub 3}(001) substrates. Our approach aims at disentangling the relative role of intrinsic and extrinsic doping mechanisms in the formation of the two-dimensional electron gas. The different nature of the two mechanisms is revealed when comparing the sample response variation as a function of temperature during annealing in air. However, before the thermal treatment, the two types of interfaces show almost the same intensity of the second harmonic signal, provided the overlayer thickness is the same. As we will show, the second harmonic signal is proportional to the depth of the potential well confining the charges at the interface. Therefore, our result demonstrates that this depth is about the same for the two different material systems. This conclusion supports the idea that the electronic properties of the two-dimensional electron gas are almost independent of the doping mechanism of the quantum well.
Chatrchyan, Serguei; et al.,
2014-04-01
Measurements are presented by the CMS Collaboration at the Large Hadron Collider (LHC) of the higher-order harmonic coefficients that describe the azimuthal anisotropy of charged particles emitted in sqrt(s[NN]) = 2.76 TeV PbPb collisions. Expressed in terms of the Fourier components of the azimuthal distribution, the n = 3-6 harmonic coefficients are presented for charged particles as a function of their transverse momentum (0.3 < pt < 8.0 GeV), collision centrality (0-70%), and pseudorapidity (abs(eta) < 2.0). The data are analyzed using the event plane, multiparticle cumulant, and Lee-Yang zeros methods, which provide different sensitivities to initial-state fluctuations. Taken together with earlier LHC measurements of elliptic flow (n = 2), the results on higher-order harmonic coefficients develop a more complete picture of the collective motion in high-energy heavy-ion collisions and shed light on the properties of the produced medium.
Fixed Rate Agreement | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Fixed Rate Agreement Fixed Rate Agreement Fixed Rate Agreement (110.33 KB) More Documents & Publications Floating Rate Agreement Notice of Proposed Rulemaking (August 6, 2009) Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010
Combined Retrieval, Microphysical Retrievals and Heating Rates
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Feng, Zhe
2013-02-22
Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.
Combined Retrieval, Microphysical Retrievals and Heating Rates
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Feng, Zhe
Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.
Wholesale Power Rate Schedules | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Rate Schedules Â» Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2015 KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-2-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-3-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 CU-CC-1-J Wholesale Power Rate Schedule Area: Duke Energy Progress, Western
Attachments Energy Ratings Council | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Attachments Energy Ratings Council Attachments Energy Ratings Council Attachments Energy Ratings Council Lead Performer: Window Covering Manufacturing Association - New York, NY DOE Funding: $1,600,000 Project Term: October 1, 2014 - September 30, 2018 Funding Opportunity Announcement: Certification and Rating Attachments for Fenestration Technologies DE-FOA-001000-1504 Project Objective This project is to develop an independent rating, certification, labeling, and performance verification
Richardson, Jeremy O. Bauer, Rainer; Thoss, Michael
2015-10-07
We present semiclassical approximations to Greenâ€™s functions of multidimensional systems, extending Gutzwillerâ€™s work to the classically forbidden region. Based on steepest-descent integrals over these functions, we derive an instanton method for computing the rate of nonadiabatic reactions, such as electron transfer, in the weak-coupling limit, where Fermiâ€™s golden-rule can be employed. This generalizes Marcus theory to systems for which the environment free-energy curves are not harmonic and where nuclear tunnelling plays a role. The derivation avoids using the Imâ€‰F method or short-time approximations to real-time correlation functions. A clear physical interpretation of the nuclear tunnelling processes involved in an electron-transfer reaction is thus provided. In Paper II [J. O. Richardson, J. Chem. Phys. 143, 134116 (2015)], we discuss numerical evaluation of the formulae.
Haubold, H.J.; Gerth, E.
1985-01-25
We continue the Fourier analysis of the argon-37 production rate for runs 18--80 observed in Davis' well known solar neutrino experiment. The method of Fourier analysis with the unequally-spaced data of Davis and associates is described and the discovered periods we compare with our recently published results for the analysis of runs 18--69 (Haubold and Gerth, 1983). The harmonic analysis of the data of runs 18--80 shows time variations of the solar neutrino flux with periods ..pi.. = 8.33; 5.26; 2.13; 1.56; 0.83; 0.64; 0.54; and 0.50 years, respectively, which confirms our earlier computations.
2014-2015 Power Rate Schedules
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
4 Power Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy Bonneville Power Administration 905 N.E. 11th Avenue...
Category:Utility Rates | Open Energy Information
Rates Jump to: navigation, search Add a new Utility Rate This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:Utility...
Utility Rate | OpenEI Community
Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: American Clean Skies Foundation Type Term Title Author Replies Last Post sort icon Blog entry...
Utility Rate | OpenEI Community
Utility Rate Home > Groups > Groups > Utility Rate Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in...
Energy Efficiency Interest Rate Reduction Program
Broader source: Energy.gov [DOE]
For new and existing home purchases that are rated 6 Star or 5 Star Plus, applicants are eligible for an interest rate reduction for the first $200,000 of the loan amount, with a blended interest...