National Library of Energy BETA

Sample records for harmful ultraviolet radiation

  1. Ultraviolet radiation induced discharge laser

    DOE Patents [OSTI]

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  2. Ultraviolet laser beam monitor using radiation responsive crystals

    DOE Patents [OSTI]

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  3. Key issues of ultraviolet radiation of OH at high altitudes

    SciTech Connect (OSTI)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}?{sup +}?X{sup 2}? ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  4. Lamp for generating high power ultraviolet radiation

    DOE Patents [OSTI]

    Morgan, Gary L.; Potter, James M.

    2001-01-01

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  5. ULTRAVIOLET RADIATION INSIDE INTERSTELLAR GRAIN AGGREGATES. III. FLUFFY GRAINS

    SciTech Connect (OSTI)

    Cacciola, Adriano; Saija, Rosalba; Borghese, Ferdinando; Denti, Paolo; Cecchi-Pestellini, Cesare; Iati, Maria Antonia

    2009-08-20

    We study the problem of light depolarization within fluffy interstellar dust grains, in which coagulation generates interstitial cavities partly filled with icy condensed gas. A significant amount of elliptical polarized ultraviolet radiation may be generated in situ by geometry-induced depolarization within the cavities. The behavior of the depolarization is studied both by changing the orientation of the aggregates and by changing chemical composition and size of the subunits forming the aggregate. We found that a considerable amount of depolarization occurs within the ice mantles of the subunits, provided their thickness is not too large. We discuss the implications of these results for chiral selection in space.

  6. Bipolar charging of dust particles under ultraviolet radiation

    SciTech Connect (OSTI)

    Filippov, A. V. Babichev, V. N.; Fortov, V. E.; Gavrikov, A. V.; Pal', A. F.; Petrov, O. F.; Starostin, A. N.; Sarkarov, N. E.

    2011-05-15

    The photoemission charging of dust particles under ultraviolet radiation from a xenon lamp has been investigated. The velocities of yttrium dust particles with a work function of 3.3 eV and their charges have been determined experimentally; the latter are about 400-500 and about 100 elementary charges per micron of radius for the positively and negatively charged fractions, respectively. The dust particle charging and the dust cloud evolution in a photoemission cell after exposure to an ultraviolet radiation source under the applied voltage have been simulated numerically. The photoemission charging of dust particles has been calculated on the basis of nonlocal and local charging models. Only unipolar particle charging is shown to take place in a system of polydisperse dust particles with the same photoemission efficiency. It has been established that bipolar charging is possible in the case of monodisperse particles with different quantum efficiencies. Polydispersity in this case facilitates the appearance of oppositely charged particles in a photoemission plasma.

  7. Ultraviolet radiation as disinfection for fish surgical tools

    SciTech Connect (OSTI)

    Walker, Ricardo W.; Markillie, Lye Meng; Colotelo, Alison HA; Geist, David R.; Gay, Marybeth E.; Woodley, Christa M.; Eppard, M. B.; Brown, Richard S.

    2013-04-04

    Telemetry is frequently used to examine the behavior of fish, and the transmitters used are normally surgically implanted into the coelomic cavity of fish. Implantation requires the use of surgical tools such as scalpels, forceps, needle holders, and sutures. When fish are implanted consecutively, as in large telemetry studies, it is common for surgical tools to be sterilized or, at minimum, disinfected between each use so that pathogens that may be present are not spread among fish. To determine the efficacy for this application, ultraviolet (UV) radiation was used to disinfect surgical tools exposed to one of four aquatic organisms that typically lead to negative health issues for salmonids. These organisms included Aeromonas salmonicida, Flavobacterium psychrophilum, Renibacterium salmoninarum, and Saprolegnia parasitica, causative agents of furunculosis, coldwater disease, bacterial kidney disease, and saprolegniasis (water mold), respectively. Four experiments were conducted to address the question of UV efficacy. In the first experiment, forceps were exposed to the three bacteria at three varying concentrations. After exposure to the bacterial culture, tools were placed into a mobile Millipore UV sterilization apparatus. The tools were then exposed for three different time periods – 2, 5, or 15 min. UV radiation exposures at all durations were effective at killing all three bacteria on forceps at the highest bacteria concentrations. In the second experiment, stab scalpels, sutures, and needle holders were exposed to A. salmonicida using the same methodology as used in Experiment 1. UV radiation exposure at 5 and 15 min was effective at killing A. salmonicida on stab scalpels and sutures but not needle holders. In the third experiment, S. parasitica, a water mold, was tested using an agar plate method and forceps-pinch method. UV radiation was effective at killing the water mold at all three exposure durations. Collectively, this study shows that UV

  8. Lubricating bacteria model for the growth of bacterial colonies exposed to ultraviolet radiation

    SciTech Connect (OSTI)

    Zhang Shengli; Zhang Lei; Liang Run; Zhang Erhu; Liu Yachao; Zhao Shumin

    2005-11-01

    In this paper, we study the morphological transition of bacterial colonies exposed to ultraviolet radiation by modifying the bacteria model proposed by Delprato et al. Our model considers four factors: the lubricant fluid generated by bacterial colonies, a chemotaxis initiated by the ultraviolet radiation, the intensity of the ultraviolet radiation, and the bacteria's two-stage destruction rate with given radiation intensities. Using this modified model, we simulate the ringlike pattern formation of the bacterial colony exposed to uniform ultraviolet radiation. The following is shown. (1) Without the UV radiation the colony forms a disklike pattern and reaches a constant front velocity. (2) After the radiation is switched on, the bacterial population migrates to the edge of the colony and forms a ringlike pattern. As the intensity of the UV radiation is increased the ring forms faster and the outer velocity of the colony decreases. (3) For higher radiation intensities the total population decreases, while for lower intensities the total population increases initially at a small rate and then decreases. (4) After the UV radiation is switched off, the bacterial population grows both outward as well as into the inner region, and the colony's outer front velocity recovers to a constant value. All these results agree well with the experimental observations [Phys. Rev. Lett. 87, 158102 (2001)]. Along with the chemotaxis, we find that lubricant fluid and the two-stage destruction rate are critical to the dynamics of the growth of the bacterial colony when exposed to UV radiation, and these were not previously considered.

  9. Surface photoconductivity of organosilicate glass dielectrics induced by vacuum-ultraviolet radiation

    SciTech Connect (OSTI)

    Zheng, H.; Nichols, M. T.; Pei, D.; Shohet, J. L.; Nishi, Y.

    2013-08-14

    The temporary increase in the electrical surface conductivity of low-k organosilicate glass (SiCOH) during exposure to vacuum-ultraviolet radiation (VUV) is investigated. To measure the photoconductivity, patterned comb structures are deposited on dielectric films and exposed to synchrotron radiation in the range of 825 eV, which is in the energy range of most plasma vacuum-ultraviolet radiation. The change in photo surface conductivity induced by VUV radiation may be beneficial in limiting charging damage of dielectrics by depleting the plasma-deposited charge.

  10. The Efficacy of Ultraviolet Radiation for Sterilizing Tools Used for Surgically Implanting Transmitters into Fish

    SciTech Connect (OSTI)

    Walker, Ricardo W.; Markillie, Lye Meng; Colotelo, Alison HA; Gay, Marybeth E.; Woodley, Christa M.; Brown, Richard S.

    2013-02-28

    Telemetry is frequently used to examine the behavior of fish, and the transmitters used are normally surgically implanted into the coelom of fish. Implantation requires the use of surgical tools such as scalpels, forceps, needle holders, and sutures. When several fish are implanted consecutively for large telemetry studies, it is common for surgical tools to be sterilized or, at minimum, disinfected between each use so that pathogens that may be present are not spread among fish. However, autoclaving tools can take a long period of time, and chemical sterilants or disinfectants can be harmful to both humans and fish and have varied effectiveness. Ultraviolet (UV) radiation is commonly used to disinfect water in aquaculture facilities. However, this technology has not been widely used to sterilize tools for surgical implantation of transmitters in fish. To determine its efficacy for this application, Pacific Northwest National Laboratory researchers used UV radiation to disinfect surgical tools (i.e., forceps, needle holder, stab scalpel, and suture) that were exposed to one of four aquatic organisms that typically lead to negative health issues for salmonids. These organisms included Aeromonas salmonicida, Flavobacterium psychrophilum, Renibacterium salmoninarum, and Saprolegnia parasitica. Surgical tools were exposed to the bacteria by dipping them into a confluent suspension of three varying concentrations (i.e., low, medium, high). After exposure to the bacterial culture, tools were placed into a mobile Millipore UV sterilization apparatus. The tools were then exposed for three different time periods—2, 5, or 15 min. S. parasitica, a water mold, was tested using an agar plate method and forceps-pinch method. UV light exposures of 5 and 15 min were effective at killing all four organisms. UV light was also effective at killing Geobacillus stearothermophilus, the organism used as a biological indicator to verify effectiveness of steam sterilizers. These

  11. A new facility for the synchrotron radiation-based calibration of transfer radiation sources in the ultraviolet and vacuum ultraviolet spectral range

    SciTech Connect (OSTI)

    Thornagel, Reiner; Fliegauf, Rolf; Klein, Roman Kroth, Simone; Paustian, Wolfgang; Richter, Mathias

    2015-01-15

    The Physikalisch-Technische Bundesanstalt (PTB) has a long tradition in the calibration of radiation sources in the ultraviolet and vacuum ultraviolet spectral range, with traceability to calculable synchrotron radiation. Within this context, new instrumentation in the PTB laboratory at the Metrology Light Source (MLS) has been put into operation that opens up extended and improved calibration possibilities. A new facility for radiation source calibrations has been set up in the spectral range from 7 nm to 400 nm based on a combined normal incidence-grazing incidence monochromator. The facility can be used for the calibration of transfer sources in terms of spectral radiant intensity or mean spectral radiance, with traceability to the MLS primary source standard. We describe the design and performance of the experimental station and give examples of some commissioning results.

  12. Improved energy efficiency by use of the new ultraviolet light radiation paint curing process

    SciTech Connect (OSTI)

    Grosset, A.M.; Su, W.-F.A.

    1984-08-01

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures is more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. The replacement of a conventional natural gas fired oven by an ultraviolet radiation curing line for paint curing could save quadrillions of joules per year for each finishing line. In this program sponsored by the U.S. Department of Energy, Office of Industrial Programs, two photoinduced polymerizations, via free radical or cationic mechanisms, were considered in the formulation of UV curable paints. The spectral output of radiation sources was chosen so as to complement the absorption spectra of pigments and photoactive agents; thus highly pigmented thick films could be cured fully by UV radiation. One coat enamels, topcoats, and primers have been developed which can be applied on three dimensional objects by spraying and can be cured by passing through a tunnel containing UV lamps.

  13. Device and method for noresonantly Raman shifting ultraviolet radiation

    DOE Patents [OSTI]

    Loree, Thomas R.; Barker, Dean L.

    1979-01-01

    A device and method for nonresonantly Raman shifting broad band uv excimer laser radiation, which enhances preselected Stokes signals by varying the pressure of the Raman scattering medium, the focal interaction length of the incident radiation within the Raman scattering medium and its power density level. Gaseous molecular H.sub.2, D.sub.2, CH.sub.4 (methane), HD and mixes thereof, and liquid N.sub.2 are used as the Raman scattering medium to frequency shift the outputs of high power KrF and ArF lasers. A cable fed discharge with an unstable resonant cavity configuration is utilized to produce the output laser power levels required for operation.

  14. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    SciTech Connect (OSTI)

    Gasper, Gerald L.; Takahashi, Lynelle K.; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F.; Hanley, Luke

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  15. Measurement of the solar ultraviolet radiation at ground level in Bangi, Malaysia

    SciTech Connect (OSTI)

    Aljawi, Ohoud; Gopir, Geri; Duay, Abdul Basit

    2015-04-24

    Understanding the amount of ultraviolet (UV) radiation received by human, plant, and animal organisms near the earth’s surface is important to a wide range of fields such as cancer research, agriculture and forestry. The solar ultraviolet spectral irradiance at ground level was measured using the Avantes spectrometer for the period of January to March 2014 at Bangi (2°55´N, 101°46´E, 50 m above sea level) in Malaysia. These data were used to estimate the diurnal variation of UV irradiance (300 – 400 nm). The maximum irradiance of UV radiation was 45 W m{sup −2} on horizontal surface. The maximum irradiance of UV received in the local noon time, and the minimum values of UV irradiance was received in the local morning time. It is found a bigger value of UV radiation was observed on clear sky in January. The estimation of daily flux average of UV irradiance was (921± 91) kJ m{sup −2}.

  16. A brief review of intermediate controlled nuclear syntheses (ICNS) without harmful radiations

    SciTech Connect (OSTI)

    Lanjewar, R. B.

    2015-03-10

    Hadronic mechanics gave birth to new magnecular fuels. The present day demand is of clean energy source that is cheap and abundant. Clean energy can be obtained by harnessing renewable energy sources like solar, wind etc. Nuclear energy conventionally produced by fission reactions emits hazardous radiation and radioactive waste. The requirements of clean and safe energy gets fulfilled by novel fuel that achieved by elevating the traditional quantum mechanics to hadronic mechanics and to hadronic chemistry. In the present paper, a comprehensive review on both the theoretical and experimental aspect of the Intermediate Controlled Nuclear Synthesis (ICNS) as developed by Italian American Scientist Professor R. M. Santilli.

  17. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    SciTech Connect (OSTI)

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-07

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  18. Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation

    DOE Patents [OSTI]

    Glownia, J.H.; Sander, R.K.

    1982-06-29

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  19. Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation

    DOE Patents [OSTI]

    Glownia, James H.; Sander, Robert K.

    1985-01-01

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  20. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    SciTech Connect (OSTI)

    Jablonowski, H.; Hammer, M. U.; Reuter, S.; Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  1. Ultraviolet absorption hygrometer

    DOE Patents [OSTI]

    Gersh, Michael E.; Bien, Fritz; Bernstein, Lawrence S.

    1986-01-01

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.

  2. Ultraviolet absorption hygrometer

    DOE Patents [OSTI]

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  3. A simplified scheme for generating narrow-band mid-ultraviolet laser radiation

    SciTech Connect (OSTI)

    Almog, G.; Scholz, M. Weber, W.; Leisching, P.; Kaenders, W.; Udem, Th.

    2015-03-15

    We report on the development and characterization of continuous, narrow-band, and tunable laser systems that use direct second-harmonic generation from blue and green diode lasers with an output power level of up to 11.1 mW in the mid-ultraviolet. One of our laser systems was tuned to the mercury 6{sup 1}S{sub 0} → 6{sup 3}P{sub 1} intercombination line at 253.7 nm. We could perform Doppler-free saturation spectroscopy on this line and were able to lock our laser to the transition frequency on long time scales.

  4. Lithium-fluoride flashover ion source cleaned with a glow discharge and irradiated with vacuum-ultraviolet radiation

    SciTech Connect (OSTI)

    Burns, E.J.T.; Woodworth, J.R.; Bieg, K.W.; Mehlhorn, T.A.; Stygar, W.A.; Sweeney, M.A.

    1988-01-01

    We have studied methods of varying the ion species generated by a lithium-fluoride overcoated anode in a 0.5-MV magnetically insulated ion diode. We found that cleaning the anode surface with a 13.6-MHz rf glow discharge or illuminating the anode with a pulsed soft x-ray, vacuum-ultraviolet (XUV) radiation source just before the accelerator pulse significantly altered the ion species of the ion beam produced by the diode. The glow-discharge plasma removed adsorbates (carbon, hydrogen, and oxygen) from the surface of the LiF flashover source. The ions seen were lithium and hydrogen. Unfortunately, the diode impedance with a lithium-fluoride anode was high and the ion efficiency was low; however, XUV irradiation of the surface dramatically lowered the impedance by desorbing neutrals from the ion source via photon-stimulated desorption. Current densities of ten times the Child--Langmuir space-charge limit were achieved under XUV irradiation. In particular, ion currents increased by over a factor of 3 when 12 mJ/cm/sup 2/ of XUV radiation was used. However, with XUV irradiation the largest fraction of ions were fluorine, oxygen, carbon, and hydrogen, not lithium.

  5. Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases

    SciTech Connect (OSTI)

    Li, Jixia; Malakhova, Margarita; Mottamal, Madhusoodanan; Reddy, Kanamata; Kurinov, Igor; Carper, Andria; Langfald, Alyssa; Oi, Naomi; Kim, Myoung Ok; Zhu, Feng; Sosa, Carlos P.; Zhou, Keyuan; Bode, Ann M.; Dong, Zigang

    2012-06-27

    Ultraviolet (UV) irradiation is the leading factor in the development of skin cancer, prompting great interest in chemopreventive agents for this disease. In this study, we report the discovery of norathyriol, a plant-derived chemopreventive compound identified through an in silico virtual screening of the Chinese Medicine Library. Norathyriol is a metabolite of mangiferin found in mango, Hypericum elegans, and Tripterospermum lanceolatum and is known to have anticancer activity. Mechanistic investigations determined that norathyriol acted as an inhibitor of extracellular signal-regulated kinase (ERK)1/2 activity to attenuate UVB-induced phosphorylation in mitogen-activated protein kinases signaling cascades. We confirmed the direct and specific binding of norathyriol with ERK2 through a cocrystal structural analysis. The xanthone moiety in norathyriol acted as an adenine mimetic to anchor the compound by hydrogen bonds to the hinge region of the protein ATP-binding site on ERK2. Norathyriol inhibited in vitro cell growth in mouse skin epidermal JB6 P+ cells at the level of G{sub 2}-M phase arrest. In mouse skin tumorigenesis assays, norathyriol significantly suppressed solar UV-induced skin carcinogenesis. Further analysis indicated that norathyriol mediates its chemopreventive activity by inhibiting the ERK-dependent activity of transcriptional factors AP-1 and NF-{kappa}B during UV-induced skin carcinogenesis. Taken together, our results identify norathyriol as a safe new chemopreventive agent that is highly effective against development of UV-induced skin cancer.

  6. Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilayer systems for extreme ultraviolet radiation regime

    SciTech Connect (OSTI)

    Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.

    2014-03-28

    Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100?eV and 1000?eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.

  7. Radiation damage resistance of AlGaN detectors for applications in the extreme-ultraviolet spectral range

    SciTech Connect (OSTI)

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus; John, Joachim; Malinowski, Pawel E.

    2009-09-15

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky-photodiode-based detectors. AlGaN layers were grown using metal-organic chemical vapor deposition (MOCVD) on Si(111) wafers. The diodes were characterized at a wavelength of 13.5 nm using a table-top extreme-ultraviolet (EUV) radiation source, consisting of a laser-produced xenon plasma and a Schwarzschild objective. The responsivity of the diodes was tested between EUV energies ranging from 320 nJ down to several picojoules. For low fluences, a linear responsivity of 7.14 mAs/J could be determined. Saturation starts at approximately 1 nJ, merging into a linear response of 0.113 mAs/J, which could be attributed to the photoeffect on the Au electrodes on top of the diode. Furthermore, degradation tests were performed up to an absolute dose of 3.3x10{sup 19} photons/cm{sup 2}. AlGaN photodiodes were compared to commercially available silicon-based photodetectors. For AlGaN diodes, responsivity does not change even for the highest EUV dose, whereas the response of the Si diode decreases linearly to {approx}93% after 2x10{sup 19} photons/cm{sup 2}.

  8. Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source

    SciTech Connect (OSTI)

    Barkusky, Frank; Bayer, Armin; Peth, Christian; Mann, Klaus

    2009-01-01

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-driven EUV plasma source utilizing a solid Au target. By 10x demagnified imaging of the plasma a maximum pulse energy density of {approx}0.73 J/cm{sup 2} at a wavelength of 13.5 nm can be achieved in the image plane of the objective at a pulse duration of 8.8 ns. In this paper we present EUV photoetching rates measured for polymethyl methacrylate, polycarbonate, and polytetrafluoroethylene at various fluence levels. A linear dependence between etch depth and applied EUV pulse number could be observed without the necessity for any incubation pulses. By evaluating the slope of these data, etch rates were determined, revealing also a linear behavior for low fluences. A threshold energy density could not be observed. The slope of the linear etch regime as well as deviations from the linear trend at higher energy densities are discussed and compared to data known from deep UV laser ablation. Furthermore, the surface roughness of the structured polymers was measured by atomic force microscopy and compared to the nonirradiated polymer surface, indicating a rather smooth etch process (roughness increase of 20%-30%). The different shapes of the etch craters observed for the three polymers at high energy densities can be explained by the measured fluence dependence of the etch rates, having consequences for the proper use of polymer ablation for beam profiling of focused EUV radiation.

  9. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    SciTech Connect (OSTI)

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain

  10. Suppression of H_2 Cooling in the Ultraviolet Background (Journal...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ASTROPHYSICS; HYDROGEN; COOLING; ULTRAVIOLET RADIATION; ...

  11. Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source

    SciTech Connect (OSTI)

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus

    2007-06-15

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-based EUV plasma source (pulse energy 3 mJ at {lambda}=13.5 nm, plasma diameter {approx}300 {mu}m). By 10x demagnified imaging of the plasma a pulse energy density of {approx}75 mJ/cm{sup 2} at a pulse length of 6 ns can be achieved in the image plane of the objective. As demonstrated for poly(methyl methacrylate) (PMMA), photoetching of polymer surfaces is possible at this EUV fluence level. This paper presents first results, including a systematic determination of PMMA etching rates under EUV irradiation. Furthermore, the contribution of out-of-band radiation to the surface etching of PMMA was investigated by conducting a diffraction experiment for spectral discrimination from higher wavelength radiation. Imaging of a pinhole positioned behind the plasma accomplished the generation of an EUV spot of 1 {mu}m diameter, which was employed for direct writing of surface structures in PMMA.

  12. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    SciTech Connect (OSTI)

    Wilson, Daniel; Rudolf, Denis Juschkin, Larissa; Weier, Christian; Adam, Roman; Schneider, Claus M.; Winkler, Gerrit; Frmter, Robert; Danylyuk, Serhiy; Bergmann, Klaus; Grtzmacher, Detlev

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  13. Alpha Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments

  14. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (727 Clara St., Livermore, Alameda County, CA 94550); Kubiak, G. D. (475 Maple St., Livermore, Alameda County, CA 94550)

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  15. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E.; Kubiak, Glenn D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  16. Kevin Harms | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Harms Principal Applications Performance Engineer Kevin Harms Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 1129 Argonne, IL 60439 630-252-3398 harms@alcf.anl

  17. Photoresist composition for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (Alameda County, CA); Kubiak, G. D. (Alameda County, CA)

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  18. Ultraviolet reflector materials for solar detoxification of hazardous waste

    SciTech Connect (OSTI)

    Jorgensen, G.; Govindarajan, R.

    1991-07-01

    Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.

  19. Stanford Synchrotron Radiation Lightsource: SPEAR3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1990, the machine was dedicatedto synchrotron radiation research. Two particular SPEAR ... SPEAR also produces intense beam of synchrotron radiation -- ultraviolet and x-ray photons ...

  20. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  1. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  2. Down-regulation of kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xuebin; Liu, Chang -Jun; Gou, Mingyue; Guo, Chunrong; Yang, Huijun

    2014-12-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis Kelch-domain containing F-box proteins, AtKFB01, -20, and -50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL’s ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PALs' stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting thatmore » KFB39 is an additional post-translational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to UV-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and post-translational regulation mechanisms to maximize its responses to UV stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant’s tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant’s resistance to environmental stress.« less

  3. Down-regulation of kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation

    SciTech Connect (OSTI)

    Zhang, Xuebin [Brookhaven National Lab. (BNL), Upton, NY (United States); Shanxi Agriculture Univ., Taigu, Shanxi (People's Republic of China); Stony Brook Univ., Stony Brook, NY (United States); Liu, Chang -Jun [Brookhaven National Lab. (BNL), Upton, NY (United States); Shanxi Agriculture Univ., Taigu, Shanxi (People's Republic of China); Stony Brook Univ., Stony Brook, NY (United States); Gou, Mingyue [Brookhaven National Lab. (BNL), Upton, NY (United States); Shanxi Agriculture Univ., Taigu, Shanxi (People's Republic of China); Stony Brook Univ., Stony Brook, NY (United States); Guo, Chunrong [Brookhaven National Lab. (BNL), Upton, NY (United States); Shanxi Agriculture Univ., Taigu, Shanxi (People's Republic of China); Stony Brook Univ., Stony Brook, NY (United States); Yang, Huijun [Brookhaven National Lab. (BNL), Upton, NY (United States); Shanxi Agriculture Univ., Taigu, Shanxi (People's Republic of China); Stony Brook Univ., Stony Brook, NY (United States)

    2014-12-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis Kelch-domain containing F-box proteins, AtKFB01, -20, and -50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PALs ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PALs' stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional post-translational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to UV-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and post-translational regulation mechanisms to maximize its responses to UV stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plants tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plants resistance to environmental stress.

  4. Down-regulation of kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation

    SciTech Connect (OSTI)

    Zhang, Xuebin; Liu, Chang -Jun; Gou, Mingyue; Guo, Chunrong; Yang, Huijun

    2014-12-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis Kelch-domain containing F-box proteins, AtKFB01, -20, and -50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL’s ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PALs' stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional post-translational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to UV-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and post-translational regulation mechanisms to maximize its responses to UV stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant’s tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant’s resistance to environmental stress.

  5. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOE Patents [OSTI]

    Hassanein, Ahmed; Konkashbaev, Isak

    2006-10-03

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  6. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    SciTech Connect (OSTI)

    Chen, Hong; Duan, Lian; Lan, Hui; Wang, Xinbing Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-05-21

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  7. Lesson 4 - Ionizing Radiation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 - Ionizing Radiation Lesson 4 - Ionizing Radiation Lesson Three showed that unstable isotopes emit energy as they become more stable. This energy is known as radiation. This lesson explores forms of radiation, where radiation is found, how we detect and measure radiation, what sources of radiation people are exposed to, whether radiation is harmful, and how we can limit our exposure. Specific topics covered in this lesson include: Types of radiation Non-ionizing Ionizing Forms of ionizing

  8. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOE Patents [OSTI]

    MacGowan, Brian J.; Matthews, Dennis L.; Trebes, James E.

    1988-01-01

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  9. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOE Patents [OSTI]

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  10. Extreme ultraviolet lithography machine

    DOE Patents [OSTI]

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  11. Safety Around Sources of Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Keeping Exposure Low Working Safely Around Radioactive Contamination Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Is it safe to be around sources? Too much radiation exposure is harmful. The degree of radiation injury depends on the amount of radiation received and the time involved. In general, the higher the amount, the greater the severity of early effects (occurring within a few weeks) and the greater the possibility of late effects such as cancer. The

  12. Vacuum ultraviolet laser

    DOE Patents [OSTI]

    Berkowitz, J.; Ruscic, B.M.; Greene, J.P.

    1984-07-06

    Transitions from the 2p/sup 4/(/sup 1/S/sub 0/)3s /sup 2/S/sub 1/2/ state of atomic fluorine to all allowed loser states produces laser emission at six new wavelengths: 680.7A, 682.6A, 3592.7A, 3574.1A, 6089.2A, and 6046.8A. Coherent radiation at these new wavelengths can be generated in an atomic fluorine laser operated as an amplifier or as an oscillator.

  13. Vacuum ultraviolet laser

    DOE Patents [OSTI]

    Berkowitz, Joseph; Ruscic, Branko M.; Greene, John P.

    1986-01-01

    Transitions from the 2p.sup.4 (.sup.1 S.sub.0)3s .sup.2 S.sub.1/2 state of atomic fluorine to all allowed lower states produces laser emission at six new wavelengths: 680.7 .ANG., 682.6 .ANG., 3592.7 .ANG., 3574.1 .ANG., 6089.2 .ANG., and 6046.8 .ANG.. Coherent radiation at these new wavelengths can be generated in an atomic fluorine laser operated as an amplifier or as an oscillator.

  14. Self-cleaning optic for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-12-16

    A multilayer reflective optic or mirror for lithographic applications, and particularly extreme ultraviolet (EUV) lithography, having a surface or "capping" layer which in combination with incident radiation and gaseous molecular species such as O.sub.2, H.sub.2, H.sub.2 O provides for continuous cleaning of carbon deposits from the optic surface. The metal capping layer is required to be oxidation resistant and capable of transmitting at least 90% of incident EUV radiation. Materials for the capping layer include Ru, Rh, Pd, Ir, Pt and Au and combinations thereof.

  15. Comparison of the vacuum-ultraviolet radiation response of HfO{sub 2}/SiO{sub 2}/Si dielectric stacks with SiO{sub 2}/Si

    SciTech Connect (OSTI)

    Upadhyaya, G. S.; Shohet, J. L.

    2007-02-12

    Vacuum ultraviolet (vuv) emitted during plasma processing degrades dielectrics by generating electron-hole pairs. VUV-induced charging of SiO{sub 2}/p-Si and HfO{sub 2}/SiO{sub 2}/p-Si dielectric stacks are compared. For SiO{sub 2}/p-Si, charging is observed for photon energies >15 eV by ionization of dielectric atoms from photoinjected electrons. In HfO{sub 2}/SiO{sub 2}/p-Si, charging is observed for photon >10 eV and is due to ionization by photoinjected electrons and by H{sup +} trapping in the HfO{sub 2}/SiO{sub 2} bulk. Hydrogen appears during annealing at the Si-SiO{sub 2} interface forming Si-H, which, during irradiation, is depassivated by photoinjected electrons. The authors conclude that dielectric charging in thin oxides (<10 nm) occurs more easily in HfO{sub 2}/SiO{sub 2} than in SiO{sub 2}.

  16. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Investigating Extreme Ultraviolet Lithography Mask Defects Print Wednesday, 28 July 2010 00:00 Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using

  17. Microgap ultra-violet detector

    DOE Patents [OSTI]

    Wuest, Craig R.; Bionta, Richard M.

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  18. Microgap ultra-violet detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  19. MoRu/Be multilayers for extreme ultraviolet applications

    DOE Patents [OSTI]

    Bajt, Sasa C.; Wall, Mark A.

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  20. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOE Patents [OSTI]

    Hudyma, Russell M.

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  1. mira_boot_camp_2016_harms_io

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Challenges of Portable I/O with Best Practices Scaling Your Science 2016 Kevin Harms - harms@alcf.anl.gov Venkat Vishwanath Phil Carns Rob Latham Storage vs Computation Trend 2 ASC Sequoia 20 PF/s Compute 500GB/s Storage ASCI Red Mira Mira I/O Infrastructure Overview 3 Infiniband QDR SAN Cooley Compute I/O Node mira-fs0 (GPFS) mira-fs1 (GPFS) mira-home (GPFS) Infiniband FDR Cetus Storage resources Mira I/O Infrastructure 4 BG/Q Optical 2x16 Gbit/sec QDR InfiniBand 32 Gbit/sec Serial ATA 6.0

  2. mira_boot_camp_2015_harms_io.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mira Boot Camp 2015 Kevin Harms - harms@alcf.anl.gov Venkat Vishwanath Phil Carns Rob Latham Mira Mira I/O Infrastructure Overview 2 Infiniband QDR S AN Tukey Cooley Compute I/O N ode mira---fs0 (GPFS) mira---fs1 (GPFS) mira---home (GPFS) Infiniband FDR Cetus Storage r esources Mira I/O Infrastructure 3 BG/Q Optical 2x16 Gbit/sec QDR InfiniBand 32 Gbit/sec Serial ATA 6.0 Gbit/sec Gateway nodes run parallel file system client software and forward I/O operations from HPC clients. 384 16-core

  3. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    SciTech Connect (OSTI)

    Sloan Roberts, F.; Anderson, Scott L.

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  4. Extreme ultraviolet induced defects on few-layer graphene

    SciTech Connect (OSTI)

    Gao, A.; Zoethout, E.; Lee, C. J.; Rizo, P. J.; Scaccabarozzi, L.; Banine, V.; Bijkerk, F.; MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede

    2013-07-28

    We use Raman spectroscopy to show that exposing few-layer graphene to extreme ultraviolet (EUV, 13.5 nm) radiation, i.e., relatively low photon energy, results in an increasing density of defects. Furthermore, exposure to EUV radiation in a H{sub 2} background increases the graphene dosage sensitivity, due to reactions caused by the EUV induced hydrogen plasma. X-ray photoelectron spectroscopy results show that the sp{sup 2} bonded carbon fraction decreases while the sp{sup 3} bonded carbon and oxide fraction increases with exposure dose. Our experimental results confirm that even in reducing environment oxidation is still one of the main source of inducing defects.

  5. Method for plasma formation for extreme ultraviolet lithography-theta pinch

    DOE Patents [OSTI]

    Hassanein, Ahmed; Konkashbaev, Isak; Rice, Bryan

    2007-02-20

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.

  6. Non-harmful insertion of data mimicking computer network attacks

    DOE Patents [OSTI]

    Neil, Joshua Charles; Kent, Alexander; Hash, Jr, Curtis Lee

    2016-06-21

    Non-harmful data mimicking computer network attacks may be inserted in a computer network. Anomalous real network connections may be generated between a plurality of computing systems in the network. Data mimicking an attack may also be generated. The generated data may be transmitted between the plurality of computing systems using the real network connections and measured to determine whether an attack is detected.

  7. Multilayer mirror with enhanced spectral selectivity for the next generation extreme ultraviolet lithography

    SciTech Connect (OSTI)

    Medvedev, V. V. Kruijs, R. W. E. van de; Yakshin, A. E.; Novikova, N. N.; Krivtsun, V. M.; Louis, E.; Bijkerk, F.; MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede ; Yakunin, A. M.

    2013-11-25

    We have demonstrated a hybrid extreme ultraviolet (EUV) multilayer mirror for 6.x nm radiation that provides selective suppression for infrared (IR) radiation. The mirror consists of an IR-transparent LaN∕B multilayer stack which is used as EUV-reflective coating and antireflective (AR) coating to suppress IR. The AR coating can be optimized to suppress CO{sub 2} laser radiation at the wavelength of 10.6 μm, which is of interest for application in next-generation EUV lithography systems.

  8. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  9. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  10. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  11. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  12. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  13. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  14. Ultraviolet Behavior of N = 8 supergravity

    SciTech Connect (OSTI)

    Dixon, Lance J.

    2010-06-07

    In these lectures the author describes the remarkable ultraviolet behavior of N = 8 supergravity, which through four loops is no worse than that of N = 4 super-Yang-Mills theory (a finite theory). I also explain the computational tools that allow multi-loop amplitudes to be evaluated in this theory - the KLT relations and the unitarity method - and sketch how ultraviolet divergences are extracted from the amplitudes.

  15. Gamma Radiation & X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations differ only in the amount of energy they have. Gamma rays and X-rays are the most energetic of these. 2. Gamma radiation is able to travel many meters in air and many centimeters in human tissue. It readily penetrates most materials and is sometimes called "penetrating radiation." 3. X-rays are like gamma rays.

  16. Supersonic cluster jet source for debris-free extreme ultraviolet production

    SciTech Connect (OSTI)

    Kubiak, G.D.; Bernardez, L.J.

    1997-09-01

    The supersonic cluster jet has been developed and characterized for use as a target medium to produce a clean source of extreme ultraviolet radiation for extreme ultraviolet lithography and other applications. Spectroscopic characterization of the laser plasma emission produced from Xe, O{sub 2} and Kr cluster gas targets has been performed. Xe is the most efficient target gas, exhibiting a conversion efficiency at 13.5 nm of 0.8% into the relevant 2.5% spectral bandwidth. The other target gases are less efficient in the spectral region of interest and, in the case of oxygen, emit {approximately}5 times less off-band radiation. The angular distribution of the Xe plasma emission has also been characterized.

  17. THE EXTREME-ULTRAVIOLET EMISSION FROM SUN-GRAZING COMETS

    SciTech Connect (OSTI)

    Bryans, P.; Pesnell, W. D.

    2012-11-20

    The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory has observed two Sun-grazing comets as they passed through the solar atmosphere. Both passages resulted in a measurable enhancement of extreme-ultraviolet (EUV) radiance in several of the AIA bandpasses. We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Molecules in the comet rapidly sublimate as it approaches the Sun. They are then photodissociated by the solar radiation field to create atomic species. Subsequent ionization of these atoms produces a higher abundance of ions than normally present in the corona and results in EUV emission in the wavelength ranges of the AIA telescope passbands.

  18. Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam

    SciTech Connect (OSTI)

    Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco; Guglielmina Pelizzo, Maria; Barkusky, Frank; Mann, Klaus; Mueller, Matthias

    2013-05-28

    Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.

  19. Vacuum ultraviolet laser (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Vacuum ultraviolet laser Citation Details In-Document Search Title: Vacuum ultraviolet laser Transitions from the 2p.sup.4 (.sup.1 S.sub.0)3s .sup.2 S.sub.12 state of atomic ...

  20. Microwave-driven ultraviolet light sources

    DOE Patents [OSTI]

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  1. Real-time self-networking radiation detector apparatus

    DOE Patents [OSTI]

    Kaplan, Edward; Lemley, James; Tsang, Thomas Y.; Milian, Laurence W.

    2007-06-12

    The present invention is for a radiation detector apparatus for detecting radiation sources present in cargo shipments. The invention includes the features of integrating a bubble detector sensitive to neutrons and a GPS system into a miniaturized package that can wirelessly signal the presence of radioactive material in shipping containers. The bubble density would be read out if such indicated a harmful source.

  2. Environmental radiation detection via thermoluminescence

    DOE Patents [OSTI]

    Miller, Steven D.

    1993-01-01

    The method and apparatus of the present invention relate to cryogenically cooling a thermoluminescent material, exposing it to a low level of radiation (less than about 1 R) while it is at the cooled temperature, warming the thermoluminescent material to "room temperature", and counting the photons emitted during heating. Sufficient sensitivity is achieved without exposing the thermoluminescent material to ultraviolet light thereby simplifying the measurements.

  3. Environmental radiation detection via thermoluminescence

    DOE Patents [OSTI]

    Miller, S.D.

    1993-03-23

    The method and apparatus of the present invention relate to cryogenically cooling a thermoluminescent material, exposing it to a low level of radiation (less than about 1 R) while it is at the cooled temperature, warming the thermoluminescent material to room temperature'' and counting the photons emitted during heating. Sufficient sensitivity is achieved without exposing the thermoluminescent material to ultraviolet light thereby simplifying the measurements.

  4. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum

    SciTech Connect (OSTI)

    Sarantopoulou, E. Stefi, A.; Kollia, Z.; Palles, D.; Cefalas, A. C.; Petrou, P. S.; Bourkoula, A.; Koukouvinos, G.; Kakabakos, S.; Velentzas, A. D.

    2014-09-14

    Ultraviolet photons can damage microorganisms, which rarely survive prolonged irradiation. In addition to the need for intact DNA, cell viability is directly linked to the functionality of the cell wall and membrane. In this work, Cladosporium herbarum spore monolayers exhibit high viability (7%) when exposed to 157 nm laser irradiation (412 kJm⁻²) or vacuum-ultraviolet irradiation (110–180 nm) under standard pressure and temperature in a nitrogen atmosphere. Spore viability can be determined by atomic-force microscopy, nano-indentation, mass, μ-Raman and attenuated reflectance Fourier-transform far-infrared spectroscopies and DNA electrophoresis. Vacuum ultraviolet photons cause molecular damage to the cell wall, but radiation resistance in spores arises from the activation of a photon-triggered signaling reaction, expressed via the exudation of intracellular substances, which, in combination with the low penetration depth of vacuum-ultraviolet photons, shields DNA from radiation. Resistance to phototoxicity under standard conditions was assessed, as was resistance to additional environmental stresses, including exposure in a vacuum, under different rates of change of pressure during pumping time and low (10 K) temperatures. Vacuum conditions were far more destructive to spores than vacuum-ultraviolet irradiation, and UV-B photons were two orders of magnitude more damaging than vacuum-ultraviolet photons. The viability of irradiated spores was also enhanced at 10 K. This work, in addition to contributing to the photonic control of the viability of microorganisms exposed under extreme conditions, including decontamination of biological warfare agents, outlines the basis for identifying bio-signaling in vivo using physical methodologies.

  5. Is N=8 Supergravity Ultraviolet Finite?

    SciTech Connect (OSTI)

    Bern, Zvi; Dixon, Lance J.; Roiban, Radu

    2006-11-15

    Conventional wisdom holds that no four-dimensional gravity field theory can be ultraviolet finite. This understanding is based mainly on power counting. Recent studies confirm that one-loop N = 8 supergravity amplitudes satisfy the so-called 'no-triangle hypothesis', which states that triangle and bubble integrals cancel from these amplitudes. A consequence of this hypothesis is that for any number of external legs, at one loop N = 8 supergravity and N = 4 super-Yang-Mills have identical superficial degrees of ultraviolet behavior in D dimensions. We describe how the unitarity method allows us to promote these one-loop cancellations to higher loops, suggesting that previous power counts were too conservative. We discuss higher-loop evidence suggesting that N = 8 supergravity has the same degree of divergence as N = 4 super-Yang-Mills theory and is ultraviolet finite in four dimensions. We comment on calculations needed to reinforce this proposal, which are feasible using the unitarity method.

  6. Source of coherent short wavelength radiation

    DOE Patents [OSTI]

    Villa, Francesco

    1990-01-01

    An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

  7. Method for detecting radiation dose utilizing thermoluminescent material

    DOE Patents [OSTI]

    Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Tomeraasen, Paul L.

    1991-01-01

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material to a cryogenic temperature. The thermoluminescent material is then optically stimulated by exposure to ultraviolet light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light.

  8. COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND IMPROVED...

    Office of Scientific and Technical Information (OSTI)

    SPECTRUM AND IMPROVED ENERGY LEVELS FOR SINGLY IONIZED CHROMIUM (Cr II) Citation Details In-Document Search Title: COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND ...

  9. Vacuum-ultraviolet photoreduction of graphene oxide: Electrical...

    Office of Scientific and Technical Information (OSTI)

    Vacuum-ultraviolet photoreduction of graphene oxide: Electrical conductivity of entirely reduced single sheets and reduced micro line patterns Citation Details In-Document Search...

  10. Effects of solar ultraviolet photons on mammalian cell DNA. [UVA (320-400 nm):a2

    SciTech Connect (OSTI)

    Peak, M.J.; Peak, J.G.

    1991-01-01

    This document presents information on the possible mechanisms of carcinogenesis caused by UVA (ultraviolet radiation in the 320--400 nm region). Most studies showing the carcinogenic effects of ultraviolet light have concentrated on UVB (280--320 nm). UVA had been considered harmless even though it penetrates biological tissues better than UVB. Recently, it has become apparent that UVA is also capable of causing damage to cellular DNA. This was unexpected because the DNA UV absorption spectrum indicates a negligible probability that photons of wavelengths longer than 320 nm will be directly absorbed. The most common defects induced in DNA by UVB are pyrimidine photoproducts, such as thymidine dimers. UVA photons produce defects resembling those caused by ionizing radiations: single- and double-strand breaks, and DNA-protein crosslinks. This paper also discusses the role of DNA repair mechanisms in UVA-induced defects and the molecular mechanisms of UVA damage induction. 38 refs. (MHB)

  11. Graphene defect formation by extreme ultraviolet generated photoelectrons

    SciTech Connect (OSTI)

    Gao, A. Lee, C. J.; Bijkerk, F.

    2014-08-07

    We have studied the effect of photoelectrons on defect formation in graphene during extreme ultraviolet (EUV) irradiation. Assuming the major role of these low energy electrons, we have mimicked the process by using low energy primary electrons. Graphene is irradiated by an electron beam with energy lower than 80?eV. After e-beam irradiation, it is found that the D peak, I(D), appears in the Raman spectrum, indicating defect formation in graphene. The evolution of I(D)/I(G) follows the amorphization trajectory with increasing irradiation dose, indicating that graphene goes through a transformation from microcrystalline to nanocrystalline and then further to amorphous carbon. Further, irradiation of graphene with increased water partial pressure does not significantly change the Raman spectra, which suggests that, in the extremely low energy range, e-beam induced chemical reactions between residual water and graphene are not the dominant mechanism driving defect formation in graphene. Single layer graphene, partially suspended over holes was irradiated with EUV radiation. By comparing with the Raman results from e-beam irradiation, it is concluded that the photoelectrons, especially those from the valence band, contribute to defect formation in graphene during irradiation.

  12. Ultraviolet nightglow production near the magnetic equator by neutral-particle precipitation

    SciTech Connect (OSTI)

    Abreu, V.J.; Eastes, R.W.; Yee, J.H.; Solomon, S.C.; Chakrabarti, S.

    1986-10-01

    The near-modnight latitudinal (+/-45) distribution of the OI 911-A, 1304-A, and 1356-A emissions, observed by the extreme ultraviolet (EUV) spectrometer on the STP 78-1 satellite, were analyzed and compared as a function of geomagnetic activity. The dominant source of these emissions is radiative recombination of atomic oxygen ions; however, for geomagnetically distributed periods, excess OI 1304-A and 1356-A emission is observed within +/-5 of the dip equator. Neutral-particle precipitation from the ring current is discussed as a possible source of the excess OI 1304-A and 1356-A emission.

  13. Compact multi-bounce projection system for extreme ultraviolet projection lithography

    DOE Patents [OSTI]

    Hudyma, Russell M.

    2002-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.

  14. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Perez-Hernandez, Jose A.; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.; et al

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching—the constructive addition of x-ray waves from a large number of atoms—favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams inmore » the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth–limited pulse trains of ~100 attoseconds.« less

  15. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    SciTech Connect (OSTI)

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Perez-Hernandez, Jose A.; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.; Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.; Gaffney, Jim A.; Foord, Mark; Libby, Stephen B.; Jaron-Becker, Agnieskzka; Becker, Andreas; Plaja, Luis; Muranane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching—the constructive addition of x-ray waves from a large number of atoms—favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth–limited pulse trains of ~100 attoseconds.

  16. Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography

    DOE Patents [OSTI]

    Chapman, Henry N.; Nugent, Keith A.

    2001-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  17. Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography

    DOE Patents [OSTI]

    Chapman, Henry N.; Nugent, Keith A.

    2002-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  18. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOE Patents [OSTI]

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  19. Biological applications of ultraviolet free-electron lasers

    SciTech Connect (OSTI)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated.

  20. Laser Makes New Shade of Ultraviolet (COSMIC Log on MSNBC.com...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cosmiclog.nbcnews.comnews201012285725603-laser-makes-new-shade-of-ultraviolet Submitted: Wednesday, December 29...

  1. Beta Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beta Radiation 1. Beta radiation may travel meters in air and is moderately penetrating. 2. Beta radiation can penetrate human skin to the "germinal layer," where new skin cells ...

  2. Ultraviolet Thomson scattering measurements of the electron feature...

    Office of Scientific and Technical Information (OSTI)

    Title: Ultraviolet Thomson scattering measurements of the electron feature with an energetic 263 nm probe Authors: Ross, J S ; Divol, L ; Sorce, C ; Froula, D H ; Glenzer, S H ...

  3. Issue #1: How Do We First Do No Harm with High-R Enclosures? | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 1: How Do We First Do No Harm with High-R Enclosures? Issue #1: How Do We First Do No Harm with High-R Enclosures? What materials and approaches provide the "perfect," cost-effective, production-level, high-R enclosures for all major U.S. climate regions that ensure no moisture damage? issue1_moisture_perf.pdf (3.47 MB) issue1_highr_enclosures.pdf (5.05 MB) issue1_exterior_wall.pdf (2.04 MB) More Documents & Publications Building Science ZERH Webinar: Getting

  4. Method for detecting radiation dose utilizing thermoluminescent material

    DOE Patents [OSTI]

    Miller, Steven D.; McDonald, Joseph C.; Eichner, Fred N.; Durham, James S.

    1992-01-01

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light.

  5. The diffuse galactic far-ultraviolet sky

    SciTech Connect (OSTI)

    Hamden, Erika T.; Schiminovich, David; Seibert, Mark

    2013-12-20

    We present an all-sky map of the diffuse Galactic far ultraviolet (1344-1786 Å) background using Galaxy Evolution Explorer data, covering 65% of the sky with 11.79 arcmin{sup 2} pixels. We investigate the dependence of the background on Galactic coordinates, finding that a standard cosecant model of intensity is not a valid fit. Furthermore, we compare our map to Galactic all-sky maps of 100 μm emission, N {sub H} {sub I} column, and Hα intensity. We measure a consistent low level far-UV (FUV) intensity at zero points for other Galactic quantities, indicating a 300 photons cm{sup –2} s{sup –1} sr{sup –1} Å{sup –1} non-scattered isotropic component to the diffuse FUV. There is also a linear relationship between FUV and 100 μm emission below 100 μm values of 8 MJy sr{sup –1}. We find a similar linear relationship between FUV and N {sub H} {sub I} below 10{sup 21} cm{sup –2}. The relationship between FUV and Hα intensity has no such constant cutoff. For all Galactic quantities, the slope of the linear portion of the relationship decreases with Galactic latitude. A modified cosecant model, taking into account dust scattering asymmetry and albedo, is able to accurately fit the diffuse FUV at latitudes above 20°. The best fit model indicates an albedo, a, of 0.62 ± 0.04 and a scattering asymmetry function, g, of 0.78 ± 0.05. Deviations from the model fit may indicate regions of excess FUV emission from fluorescence or shock fronts, while low latitude regions with depressed FUV emission are likely the result of self-shielding dusty clouds.

  6. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    SciTech Connect (OSTI)

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  7. A study of the terrestrial thermosphere by remote sensing of OI dayglow in the far and extreme ultraviolet

    SciTech Connect (OSTI)

    Cotton, D.M.

    1991-01-01

    The upper region of the Earth's atmosphere, the thermosphere, is a key part of the coupled solar-terrestrial system. An important method of obtaining information in the this region is through analysis of radiation excited through the interactions of the thermosphere with solar ionizing, extreme and far ultraviolet radiation. This dissertation presents one such study by the remote sensing of OI in the far and extreme ultraviolet dayglow. The research program included the development construction, and flight of a sounding rocket spectrometer to test this current understanding of the excitation and transport mechanisms of the OI 1356, 1304, 1027, and 989 {angstrom} emissions. This data set was analyzed using current electron and radiative transport models with the purpose of checking the viability of OI remote sensing; that is, whether existing models and input parameters are adequate to predict these detailed measurements. From discrepancies between modeled and measured emissions, inferences about these input parameters were made. Among other things, the data supports a 40% optically thick cascade contribution to the 1304 {angstrom} emission. From upper lying states corresponding to 1040, 1027 and 989 {angstrom} about half of this cascade has been accounted for in this study. There is also evidence that the Lyman {beta} airglow from the geo-corona contributes a significant proportion (30-50%) to the OI 1027 {angstrom} feature. Furthermore, the photoelectron contribution to the 1027 {angstrom} feature appears to be underestimated in the current models by a factor of 20.

  8. A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

    SciTech Connect (OSTI)

    Laity, George; Fierro, Andrew; Dickens, James; Neuber, Andreas; Frank, Klaus

    2014-03-28

    We demonstrate a method for determining the dissociation degree of atmospheric pressure air discharges by measuring the self-absorption characteristics of vacuum ultraviolet radiation from O and N atoms in the plasma. The atom densities are determined by modeling the amount of radiation trapping present in the discharge, without the use of typical optical absorption diagnostic techniques which require external sources of probing radiation into the experiment. For an 8.0 mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5 × 10{sup 17} cm{sup −3} and peak N atom densities of 9.9 × 10{sup 17} cm{sup −3} are observed within the first ∼1.0 mm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0 nm band of the vacuum ultraviolet spectrum.

  9. Enhancement of laser plasma extreme ultraviolet emission by shockwave-laser interaction

    SciTech Connect (OSTI)

    Bruijn, Rene de; Koshelev, Konstantin N.; Zakharov, Serguei V.; Novikov, Vladimir G.; Bijkerk, Fred

    2005-04-15

    A double laser pulse heating scheme has been applied to generate plasmas with enhanced emission in the extreme ultraviolet (EUV). The plasmas were produced by focusing two laser beams (prepulse and main pulse) with a small spatial separation between the foci on a xenon gas jet target. Prepulses with ps-duration were applied to obtain high shockwave densities, following indications of earlier published results obtained using ns prepulses. EUV intensities around 13.5 nm and in the range 5-20 nm were recorded, and a maximum increase in intensity exceeding 2 was measured at an optimal delay of 140 ns between prepulse and main pulse. The gain in intensity is explained by the interaction of the shockwave produced by the prepulse with the xenon in the beam waist of the main pulse. Extensive simulation was done using the radiative magnetohydrodynamic code Z{sup *}.

  10. Repair of localized defects in multilayer-coated reticle blanks for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.

    2004-11-23

    A method is provided for repairing defects in a multilayer coating layered onto a reticle blank used in an extreme ultraviolet lithography (EUVL) system. Using high lateral spatial resolution, energy is deposited in the multilayer coating in the vicinity of the defect. This can be accomplished using a focused electron beam, focused ion beam or a focused electromagnetic radiation. The absorbed energy will cause a structural modification of the film, producing a localized change in the film thickness. The change in film thickness can be controlled with sub-nanometer accuracy by adjusting the energy dose. The lateral spatial resolution of the thickness modification is controlled by the localization of the energy deposition. The film thickness is adjusted locally to correct the perturbation of the reflected field. For example, when the structural modification is a localized film contraction, the repair of a defect consists of flattening a mound or spreading out the sides of a depression.

  11. Stability of vacuum-ultraviolet radiometric transfer standards: Electron cyclotron resonance versus hollow cathode source

    SciTech Connect (OSTI)

    Gottwald, Alexander; Richter, Mathias; Ulm, Gerhard; Schuehle, Udo

    2005-02-01

    Established transfer standards such as Penning and hollow cathode discharge sources suffer from limited spectral range and, in particular, a limited lifetime and stability due to electrode erosion. The development of a vacuum-ultraviolet radiation source based on an electron cyclotron resonance (ECR)-created plasma might overcome these limitations. To test such a source with regard to its usefulness as radiometric transfer standard, the emission intensity of a Ne plasma was monitored over an operation period of 180 days, with regard to stability and reproducibility in the 50-75 nm wavelength range. For comparison and calibration, a hollow cathode was used as transfer standard traceable to the electron storage ring BESSY II as primary standard. It was found that the ECR source exceeded the lifetime of the hollow cathode source by far, offering a more balanced spectral emission line variety with similar stability.

  12. Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser

    SciTech Connect (OSTI)

    Shahzad, M.; Culfa, O.; Rossall, A. K.; Tallents, G. J.; Wilson, L. A.; Guilbaud, O.; Kazamias, S.; Delmas, O.; Demailly, J.; Maitrallain, A.; Pittman, M.; Baynard, E.; Farjardo, M.

    2015-02-15

    We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV). A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.

  13. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  14. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides...

    Office of Scientific and Technical Information (OSTI)

    Conference: Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides Citation Details In-Document Search Title: Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of ...

  15. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides...

    Office of Scientific and Technical Information (OSTI)

    Conference: Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides Citation Details In-Document Search Title: Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of...

  16. Technology of the radiation hardened MOS devices

    SciTech Connect (OSTI)

    Dragan, M.; Draghici, I.; Sachelarie, D.; Sachelarie, M.

    1984-02-01

    During technological processes such as ion doping, plasma corrosion or X-ray lithography, radiation effects can be harmful to MOS devices used in the space, military and nuclear industries. Silicon and silicon dioxide preparation for radiation resistant MOS devices is reviewed. To obtain the lowest possible threshold voltage (1-2 V of 1,000,000 rad) the following points are outlined: (1) the silicon must be of the (100) type (2) the optimum oxidation temperature should be between 850 to 1000 C, while the sintering temperature should be between 460 to 500 C (3) aluminum doping can be useful. Silicon, silicon dioxide and metallization preparation and subsequent treatments are presented to achieve a very low shift in the threshold voltage under neutron radiation of a 10 to 4th power rad (si) total dose.

  17. Measuring Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Measurement Activity: How Much Is Present? The size or weight of a container or shipment does not indicate how much radioactivity is in it. The amount of radioactivity in a quantity of material can be determined by noting how many curies of the material are present. This information should be found on labels and/or shipping

  18. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Home MSDS Search MSDS Help Safety Training and Tests Contact Links LSU Campus Safety Glossary Radiation Safety Manual Radiation Safety Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! **Please allow two weeks for your badge to be processed.** Regulations and Hierarchy The CAMD Safety Officer reports to two separate individuals regarding safety. These are the Radiation Safety Officer for the University, and the Campus Safety Officer in all other matters. Thus safety

  19. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    SciTech Connect (OSTI)

    Chou, Jason

    2014-04-03

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

  20. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    ScienceCinema (OSTI)

    Chou, Jason

    2014-07-22

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

  1. INTENSITY ENHANCEMENT OF OVI ULTRAVIOLET EMISSION LINES IN SOLAR SPECTRA DUE TO OPACITY

    SciTech Connect (OSTI)

    Keenan, F. P.; Mathioudakis, M.; Doyle, J. G.; Madjarska, M. S.; Rose, S. J.; Bowler, L. A.; Britton, J.; McCrink, L.

    2014-04-01

    Opacity is a property of many plasmas. It is normally expected that if an emission line in a plasma becomes optically thick, then its intensity ratio to that of another transition that remains optically thin should decrease. However, radiative transfer calculations undertaken both by ourselves and others predict that under certain conditions the intensity ratio of an optically thick to an optically thin line can show an increase over the optically thin value, indicating an enhancement in the former. These conditions include the geometry of the emitting plasma and its orientation to the observer. A similar effect can take place between lines of differing optical depths. While previous observational studies have focused on stellar point sources, here we investigate the spatially resolved solar atmosphere using measurements of the I(1032 )/I(1038 ) intensity ratio of OVI in several regions obtained with the Solar Ultraviolet Measurements of Emitted Radiation instrument on board the Solar and Heliospheric Observatory satellite. We find several I(1032 )/I(1038 ) ratios observed on the disk to be significantly larger than the optically thin value of 2.0, providing the first detection (to our knowledge) of intensity enhancement in the ratio arising from opacity effects in the solar atmosphere. The agreement between observation and theory is excellent and confirms that the OVI emission originates from a slab-like geometry in the solar atmosphere, rather than from cylindrical structures.

  2. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  3. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  4. High extraction efficiency ultraviolet light-emitting diode

    DOE Patents [OSTI]

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  5. Superhydrophobic anti-ultraviolet films by doctor blade coating

    SciTech Connect (OSTI)

    Cai, Chang-Yun; Yang, Hongta; Lin, Kun-Yi Andrew

    2014-11-17

    This article reports a scalable technology for fabricating polymer films with excellent water-repelling and anti-ultraviolet properties. A roll-to-roll compatible doctor blade coating technology is utilized to prepare silica colloidal crystal-polymer composites. The silica microspheres can then be selectively removed to create flexible self-standing macroporous polymer films with crystalline arrays of pores. The void sizes are controlled by tuning the duration of a reactive ion etching process prior to the removal of the templating silica microspheres. After surface modification, superhydrophobic surface can be achieved. This study further demonstrates that the as-prepared transparent porous films with 200?nm of pores exhibit diffraction of ultraviolet lights originated from the Bragg's diffractive of light from the three-dimensional highly ordered air cavities.

  6. Genomic and ecosystem evidence demonstrate the importance of selenium for the harmful alga, Aureococcus anophagefferens

    SciTech Connect (OSTI)

    Gobler, Christopher J; Lobanov, Alexei V; Tang, Ying-Zhong; Turanov, Anton A; Zhang, Yan; Doblin, Martina; Taylor, Gordon T; Sanudo-Wilhelmy, Sergio A; Grigoriev, Igor V; Gladyshev, Vadim N

    2012-10-19

    The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated by the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95percent during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.

  7. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOE Patents [OSTI]

    Berman, Samuel M.; Richardson, Robert W.

    1985-01-01

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  8. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOE Patents [OSTI]

    Jorgensen, G. J.; Gee, R.

    2006-01-24

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  9. Amplitudes and Ultraviolet Behavior of N = 8 Supergravity

    SciTech Connect (OSTI)

    Bern, Zvi; Carrasco, John Joseph; Dixon, Lance J.; Johansson, Henrik; Roiban, Radu; /Penn State U.

    2011-05-20

    In this contribution we describe computational tools that permit the evaluation of multi-loop scattering amplitudes in N = 8 supergravity, in terms of amplitudes in N = 4 super-Yang-Mills theory. We also discuss the remarkable ultraviolet behavior of N = 8 supergravity, which follows from these amplitudes, and is as good as that of N = 4 super-Yang-Mills theory through at least four loops.

  10. Definition of Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of ...

  11. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    SciTech Connect (OSTI)

    Brown, Peter J., E-mail: pbrown@physics.tamu.edu [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States)

    2014-11-20

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the TypeIa supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observedmore than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 10{sup 13} cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia.

  12. Method for detecting radiation dose utilizing thermoluminescent material

    DOE Patents [OSTI]

    Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Durham, J.S.

    1992-08-04

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light. 5 figs.

  13. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  14. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  15. Photoionization in the Precursor of Laser Supported Detonation by Ultraviolet Radiation

    SciTech Connect (OSTI)

    Shimamura, Kohei; Michigami, Keisuke; Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2011-11-10

    The propagation mechanism of laser-supported detonation (LSD) is important for designing laser propulsion for a detonation type thruster. The purpose of this work to was to confirm that photo-ionization in precursor is the predominant LSD sustainment mechanism. First of all, we tried to investigate the dependency of LSD duration on ambient gas species, air and argon. We took a series of high-speed images using the laser shadow-graphy. Besides, to estimate the UV photons emitted from the plasma, we used plasma emission spectroscopy and determined the electron temperature and density. As a result, the LSD duration of argon plasma and air plasma are 0.7 {mu}s and 0.3 {mu}s, resp. Besides, argon plasma emitted 10{sup 10} to 10{sup 14} photons/seconds, which was higher than air plasma. These results reveal that LSD propagation depends on the photon-contributing photoionization. The threshold photon-emission rate of LSD termination gives the elucidation of the LSD termination condition.

  16. RADIATION DETECTOR

    DOE Patents [OSTI]

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  17. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  18. Interim report of the Advisory Committee on human radiation experiments

    SciTech Connect (OSTI)

    Not Available

    1994-10-21

    The Advisory Committee on Human Radiation Experiments was created by President Clinton to advise the Human Radiation Interagency Working Group on the ethical and scientific criteria applicable to human radiation experiments carried out or sponsored by the U.S. Government. The Committee seeks to answer several fundamental question: What ethics criteria should be used to evaluate human radiation experiments? What was the Federal Government`s role in human radiation experiments? What are the criteria for determining appropriate Federal responses where wrongs or harms have occurred? What lessons learned from studying past and present research standards and practices should be applied to the future? The Committee has been gathering vast amounts of information and working to render it orderly and accessible. In the next six months, the Committee will continue with the tasks of data gathering and organizing. The focus of the work, however, will be developing criteria for judging historical and contemporary experiments, policies, and procedures, as well as criteria for remedies that may be appropriate where harms or wrongs have ocurred. Based on findings, the Committee will make specific recommendations regarding policies for the future.

  19. Bright high-repetition-rate source of narrowband extreme-ultraviolet...

    Office of Scientific and Technical Information (OSTI)

    This enhancement exceeds the expected dipole scaling, evidencing improved phase-matching for ultraviolet-driven HHG under tight focusing as corroborated by simulations. Spectral ...

  20. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  1. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  2. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sistrunk, Emily; Lawrence Livermore National Lab.; Grilj, Jakob; Ecole Polytechnique Federal de Lausanne; Jeong, Jaewoo; Samant, Mahesh G.; Gray, Alexander X.; Temple Univ. Philadelphia, PA; Drr, Hermann A.; Parkin, Stuart S. P.; et al

    2015-02-11

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO? film with EUV diffraction from the optically excited sample. The VO? exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.

  3. Graphene/GaN diodes for ultraviolet and visible photodetectors

    SciTech Connect (OSTI)

    Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Shen, Bo; Liao, Zhi-Min, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn; Yu, Da-Peng, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-08-18

    The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ?mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

  4. RADIATION INTEGRATOR

    DOE Patents [OSTI]

    Glass, F.M.; Wilson, H.N.

    1959-02-17

    Radiation detecting and measuring systems, particularly a compact, integrating, background monitor, are discussed. One of the principal features of the system is the use of an electrometer tube where the input of the tube is directly connected to an electrode of the radiation detector and a capacitor is coupled to the tube input. When a predetermined quantity of radiation has been integrated, a trigger signal is fed to a recorder and a charge is delivered to the capacitor to render the tube inoperative. The capacitor is then recharged for the next period of operation. With this arrangement there is a substantial reduction in lead lengths and the principal components may be enclosed and hermetically sealed to insure low leakage.

  5. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J.

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  6. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  7. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    SciTech Connect (OSTI)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  8. Characterization of gas targets for laser produced extreme ultraviolet plasmas with a Hartmann-Shack sensor

    SciTech Connect (OSTI)

    Peth, Christian; Kranzusch, Sebastian; Mann, Klaus; Vioel, Wolfgang

    2004-10-01

    A table top extreme ultraviolet (EUV)-source was developed at Laser-Laboratorium Goettingen for the characterization of optical components and sensoric devices in the wavelength region from 11 to 13 nm. EUV radiation is generated by focusing the beam of a Q-switched Nd:YAG laser into a pulsed xenon gas jet. Since a directed gas jet with a high number density is needed for an optimal performance of the source, conical nozzles with different cone angles were drilled with an excimer laser to produce a supersonic gas jet. The influence of the nozzle geometry on the gas jet was characterized with a Hartmann-Shack wave front sensor. The deformation of a planar wave front after passing the gas jet was analyzed with this sensor, allowing a reconstruction of the gas density distribution. Thus, the gas jet was optimized resulting in an increase of EUV emission by a factor of two and a decrease of the plasma size at the same time.

  9. Narrowband filter radiometer for ground-based measurements of global ultraviolet solar irradiance and total ozone

    SciTech Connect (OSTI)

    Petkov, Boyan; Vitale, Vito; Tomasi, Claudio; Bonafe, Ubaldo; Scaglione, Salvatore; Flori, Daniele; Santaguida, Riccardo; Gausa, Michael; Hansen, Georg; Colombo, Tiziano

    2006-06-20

    The ultraviolet narrowband filter radiometer (UV-RAD) designed by the authors to take ground-based measurements of UV solar irradiance, total ozone, and biological dose rate is described, together with the main characteristics of the seven blocked filters mounted on it, all of which have full widths at half maxima that range 0.67 to 0.98 nm. We have analyzed the causes of cosine response and calibration errors carefully to define the corresponding correction terms, paying particular attention to those that are due to the spectral displacements of the filter transmittance peaks from the integer wavelength values. The influence of the ozone profile on the retrieved ozone at large solar zenith angles has also been examined by means of field measurements. The opportunity of carrying out nearly monochromatic irradiance measurements offered by the UV-RAD allowed us to improve the procedure usually followed to reconstruct the solar spectrum at the surface by fitting the computed results, using radiative transfer models with field measurements of irradiance. Two long-term comparison campaigns took place, showing that a mean discrepancy of+0.3% exists between the UV-RAD total ozone values and those given by the Brewer no. 63 spectroradiometer and that mean differences of+0.3% and-0.9% exist between the erythemal dose rates determined with the UV-RAD and those obtained with the Brewer no. 63 and the Brewer no. 104 spectroradiometers, respectively.

  10. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; et al

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  11. THE NEAR-ULTRAVIOLET LUMINOSITY FUNCTION OF YOUNG, EARLY M-TYPE DWARF STARS

    SciTech Connect (OSTI)

    Ansdell, Megan; Baranec, Christoph; Gaidos, Eric; Mann, Andrew W.; Lpine, Sebastien; James, David; Buccino, Andrea; Mauas, Pablo; Petrucci, Romina; Law, Nicholas M.; Riddle, Reed

    2015-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magnetohydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lpine and Gaidos catalog of bright M dwarfs with the Galaxy Evolution Explorer (GALEX) catalog of NUV (1771-2831 ) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (>2.5?) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated the overall occurrence of these ''false positives'' (FPs) as ?16%. We constructed an NUV luminosity function that accounted for FPs, detection biases of the source catalogs, and GALEX upper limits. We found the NUV luminosity function to be inconsistent with predictions from a constant star-formation rate and simplified age-activity relation defined by a two-parameter power law.

  12. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    SciTech Connect (OSTI)

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; Buck, Jens; Ilchen, Markus; Vodungbo, Boris; Mahne, Nicola; Svetina, Cristian; Spezzani, Carlo; Di Mitri, Simone; Penco, Giuseppe; Trovó, Mauro; Fawley, William M.; Rebernik, Primoz R.; Gauthier, David; Grazioli, Cesare; Coreno, Marcello; Ressel, Barbara; Kivimäki, Antti; Mazza, Tommaso; Glaser, Leif; Scholz, Frank; Seltmann, Joern; Gessler, Patrick; Grünert, Jan; De Fanis, Alberto; Meyer, Michael; Knie, André; Moeller, Stefan P.; Raimondi, Lorenzo; Capotondi, Flavio; Pedersoli, Emanuele; Plekan, Oksana; Danailov, Miltcho B.; Demidovich, Alexander; Nikolov, Ivaylo; Abrami, Alessandro; Gautier, Julien; Lüning, Jan; Zeitoun, Philippe; Giannessi, Luca

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independent instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.

  13. CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science

    SciTech Connect (OSTI)

    Grazioli, C.; Gauthier, D.; Ivanov, R.; De Ninno, G.; Elettra Sincrotrone Trieste, Trieste ; Callegari, C.; Spezzani, C.; Ciavardini, A.; Coreno, M.; Institute of Inorganic Methodologies and Plasmas , Montelibretti, Roma ; Frassetto, F.; Miotti, P.; Poletto, L.; Golob, D.; Kivimäki, A.; Mahieu, B.; Service des Photons Atomes et Molécules, Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, Bâtiment 522, 91191 Gif-sur-Yvette ; Bučar, B.; Merhar, M.; Polo, E.; Ressel, B.

    2014-02-15

    We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10{sup 5}-10{sup 8} photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10{sup 12}-10{sup 15} photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse that generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.

  14. Effects of the dynamics of droplet-based laser-produced plasma on angular extreme ultraviolet emission profile

    SciTech Connect (OSTI)

    Giovannini, Andrea Z.; Abhari, Reza S.

    2014-05-12

    The emission distribution of extreme ultraviolet (EUV) radiation from droplet targets is dependent on the dynamics of the laser-produced plasma. The EUV emission is measured on a 2% bandwidth centered at 13.5 nm (in-band). The targets of the laser are small (sub-50 μm) tin droplets, and the in-band emission distribution is measured for different laser irradiances and droplet sizes at various angular positions. Larger droplets lead to a faster decay of EUV emission at larger angles with respect to the laser axis. A decrease in laser irradiance has the opposite effect. The measurements are used together with an analytical model to estimate plume dynamics. Additionally, the model is used to estimate EUV emission distribution for a desired droplet diameter and laser irradiance.

  15. Note: On the wavelength dependence of the intensity calibration factor of extreme ultraviolet spectrometer determined with profile measurement of bremsstrahlung continuum

    SciTech Connect (OSTI)

    Yamaguchi, N.; Morita, S.; Dong, C. F.; Goto, M.; Maezawa, H.; Miyauchi, H.

    2015-06-15

    The absolute calibration factor of extreme ultraviolet spectroscopic instrument which has recently been determined from absolute radiation profile measurement of bremsstrahlung continuum has been investigated by comparing the calculated diffraction efficiency of grating. An overall tendency of the wavelength dependence of the calibration factor from 40 Å to 500 Å can be reproduced by that of the grating efficiency, especially the agreement between the measured calibration factor and the calculated grating efficiency has been found to be fairly good for the wavelength range 200 Å-500 Å.

  16. ULTRAVIOLET NUMBER COUNTS OF GALAXIES FROM SWIFT ULTRAVIOLET/OPTICAL TELESCOPE DEEP IMAGING OF THE CHANDRA DEEP FIELD SOUTH

    SciTech Connect (OSTI)

    Hoversten, E. A.; Gronwall, C.; Koch, T. S.; Roming, P. W. A.; Siegel, M. H.; Berk, D. E. Vanden; Breeveld, A. A.; Curran, P. A.; Still, M.

    2009-11-10

    Deep Swift UV/Optical Telescope (UVOT) imaging of the Chandra Deep Field South is used to measure galaxy number counts in three near-ultraviolet (NUV) filters (uvw2: 1928 A, uvm2: 2246 A, and uvw1: 2600 A) and the u band (3645 A). UVOT observations cover the break in the slope of the NUV number counts with greater precision than the number counts by the Hubble Space Telescope Space Telescope Imaging Spectrograph and the Galaxy Evolution Explorer, spanning a range 21 approx< m{sub AB} approx< 25. Model number counts confirm earlier investigations in favoring models with an evolving galaxy luminosity function.

  17. Ultraviolet Free Electron Laser Facility preliminary design report

    SciTech Connect (OSTI)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  18. How to Detect Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Detect Radiation How to Survey Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Detection How to Detect Radiation Radiation cannot be detected by human senses. A variety of instruments are available for detecting and measuring radiation. Examples of radiation survey meters: photos of survey meters alphacounter1.JPG (28857 bytes) This probe is used for the detection of alpha radiation. The most common type of

  19. radiation.p65

    Office of Legacy Management (LM)

    Potential Health Hazards of Radiation Man-made sources of radiation, most notably from medical uses and consumer products, contribute to the remaining radiation dose that ...

  20. Radiation Protection and Safety Training | Environmental Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Protection and Safety Training (3 hrs) Instructors: John Seaman and Neil Miller ... with an introduction to the fundamentals of ionizing radiation protection and safety. ...

  1. Review of using gallium nitride for ionizing radiation detection

    SciTech Connect (OSTI)

    Wang, Jinghui; Mulligan, Padhraic; Cao, Lei R.; Brillson, Leonard

    2015-09-15

    With the largest band gap energy of all commercial semiconductors, GaN has found wide application in the making of optoelectronic devices. It has also been used for photodetection such as solar blind imaging as well as ultraviolet and even X-ray detection. Unsurprisingly, the appreciable advantages of GaN over Si, amorphous silicon (a-Si:H), SiC, amorphous SiC (a-SiC), and GaAs, particularly for its radiation hardness, have drawn prompt attention from the physics, astronomy, and nuclear science and engineering communities alike, where semiconductors have traditionally been used for nuclear particle detection. Several investigations have established the usefulness of GaN for alpha detection, suggesting that when properly doped or coated with neutron sensitive materials, GaN could be turned into a neutron detection device. Work in this area is still early in its development, but GaN-based devices have already been shown to detect alpha particles, ultraviolet light, X-rays, electrons, and neutrons. Furthermore, the nuclear reaction presented by {sup 14}N(n,p){sup 14}C and various other threshold reactions indicates that GaN is intrinsically sensitive to neutrons. This review summarizes the state-of-the-art development of GaN detectors for detecting directly and indirectly ionizing radiation. Particular emphasis is given to GaN's radiation hardness under high-radiation fields.

  2. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary D.; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parametermore » dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.« less

  3. Method for the protection of extreme ultraviolet lithography optics

    DOE Patents [OSTI]

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  4. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    SciTech Connect (OSTI)

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.; Grassman, Tyler J.; McComb, David W.; Myers, Roberto C.

    2015-09-07

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junction within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.

  5. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Hirohito Ogasawara, Stanford Synchrotron Radiation Lightsource Dennis Nordlund, Stanford Synchrotron Radiation Lightsource Anders Nilsson, Stanford Synchrotron ...

  6. Types of Radiation Exposure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    External Irradiation Contamination Incorporation Biological Effects of Acute, Total Body Irradiation Managing Radiation Emergencies Procedure Demonstration Types of radiation ...

  7. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect (OSTI)

    Short, B J; Carter, J C; Gunter, D; Hovland, P; Jagode, H; Karavanic, K; Marin, G; Mellor-Crummey, J; Moore, S; Norris, B; Oliker, L; Olschanowsky, C; Roth, P C; Schulz, M; Shende, S; Snavely, A; Spear, W

    2009-06-03

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided {approx}2000-fold enhancement at 244 nm and {approx}800-fold improvement at 229 nm while PETN showed a maximum of {approx}25-fold at 244 nm and {approx}190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman

  8. Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources

    SciTech Connect (OSTI)

    Fuchs, S.; Roedel, C.; Bierbach, J.; Paz, A. E.; Foerster, E.; Paulus, G. G.; Krebs, M.; Haedrich, S.; Limpert, J.; Kuschel, S.; Wuensche, M.; Hilbert, V.; Zastrau, U.

    2013-02-15

    We report on the absolute sensitivity calibration of an extreme ultraviolet (XUV) spectrometer system that is frequently employed to study emission from short-pulse laser experiments. The XUV spectrometer, consisting of a toroidal mirror and a transmission grating, was characterized at a synchrotron source in respect of the ratio of the detected to the incident photon flux at photon energies ranging from 15.5 eV to 99 eV. The absolute calibration allows the determination of the XUV photon number emitted by laser-based XUV sources, e.g., high-harmonic generation from plasma surfaces or in gaseous media. We have demonstrated high-harmonic generation in gases and plasma surfaces providing 2.3 {mu}W and {mu}J per harmonic using the respective generation mechanisms.

  9. Systems and methods for the detection of low-level harmful substances in a large volume of fluid

    DOE Patents [OSTI]

    Carpenter, Michael V.; Roybal, Lyle G.; Lindquist, Alan; Gallardo, Vincente

    2016-03-15

    A method and device for the detection of low-level harmful substances in a large volume of fluid comprising using a concentrator system to produce a retentate and analyzing the retentate for the presence of at least one harmful substance. The concentrator system performs a method comprising pumping at least 10 liters of fluid from a sample source through a filter. While pumping, the concentrator system diverts retentate from the filter into a container. The concentrator system also recirculates at least part of the retentate in the container again through the filter. The concentrator system controls the speed of the pump with a control system thereby maintaining a fluid pressure less than 25 psi during the pumping of the fluid; monitors the quantity of retentate within the container with a control system, and maintains a reduced volume level of retentate and a target volume of retentate.

  10. The formation of IRIS diagnostics. III. Near-ultraviolet spectra and images

    SciTech Connect (OSTI)

    Pereira, T. M. D.; Leenaarts, J.; De Pontieu, B.; Carlsson, M.; Uitenbroek, H. E-mail: jorritl@astro.uio.no E-mail: mats.carlsson@astro.uio.no

    2013-12-01

    The Mg II h and k lines are the prime chromospheric diagnostics of NASA's Interface Region Imaging Spectrograph (IRIS). In the previous papers of this series, we used a realistic three-dimensional radiative magnetohydrodynamics model to calculate the h and k lines in detail and investigated how their spectral features relate to the underlying atmosphere. In this work, we employ the same approach to investigate how the h and k diagnostics fare when taking into account the finite resolution of IRIS and different noise levels. In addition, we investigate the diagnostic potential of several other photospheric lines and near-continuum regions present in the near-ultraviolet (NUV) window of IRIS and study the formation of the NUV slit-jaw images. We find that the instrumental resolution of IRIS has a small effect on the quality of the h and k diagnostics; the relations between the spectral features and atmospheric properties are mostly unchanged. The peak separation is the most affected diagnostic, but mainly due to limitations of the simulation. The effects of noise start to be noticeable at a signal-to-noise ratio (S/N) of 20, but we show that with noise filtering one can obtain reliable diagnostics at least down to a S/N of 5. The many photospheric lines present in the NUV window provide velocity information for at least eight distinct photospheric heights. Using line-free regions in the h and k far wings, we derive good estimates of photospheric temperature for at least three heights. Both of these diagnostics, in particular the latter, can be obtained even at S/Ns as low as 5.

  11. Anisotropy of radiation emitted from planar wire arrays

    SciTech Connect (OSTI)

    Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Williamson, K. M.; Osborne, G. C.; Shrestha, I. K.; Weller, M. E.; Shlyaptseva, V. V.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A.

    2013-07-15

    The planar wire array (PWA) is a promising load for new multi-source inertial confinement fusion (ICF) hohlraums [B. Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The hohlraum radiation symmetry is an important issue for ICF. It was found that extreme ultraviolet and sub-keV photon emission from PWAs may have considerable anisotropy in the load azimuthal plane. This experimental result is obtained on the UNR 1–1.7 MA Zebra generator. The time-dependent anisotropy effect is detected. This feature is studied in 2D numerical simulations and can be explained by initial anisotropy of implosion of those non-cylindrical loads radiating essentially as surface sources in sub-keV quanta and also by radiation absorption in cold magnetized plasma tails forming in the direction of magnetic compression.

  12. Office of radiation and indoor air: Program description

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

  13. Radiation-induced gene responses

    SciTech Connect (OSTI)

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-12-31

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5` region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression.

  14. RADIATION COUNTER

    DOE Patents [OSTI]

    Goldsworthy, W.W.

    1958-02-01

    This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

  15. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W.; Hegland, Joel E.; Braunlich, Peter F.; Tetzlaff, Wolfgang

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  16. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  17. Adaptors for radiation detectors

    SciTech Connect (OSTI)

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  18. The far-ultraviolet UPS and downs of Alpha Centauri (Journal...

    Office of Scientific and Technical Information (OSTI)

    Centauri have yielded a detailed time history of far-ultraviolet (FUV: 1150-1700 ) emissions of the solarlike primary (A: G2 V) and the cooler but more active secondary (B: K1...

  19. Europium (Z=63) n=3-3 lines in the extreme ultraviolet: Na- through...

    Office of Scientific and Technical Information (OSTI)

    Title: Europium (Z63) n3-3 lines in the extreme ultraviolet: Na- through Si-like ions Authors: Trabert, E ; Beiersdorfer, P ; Hell, N ; Brown, G V Publication Date: 2014-08-22 ...

  20. Bright high-repetition-rate source of narrowband extreme-ultraviolet...

    Office of Scientific and Technical Information (OSTI)

    femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ... Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz ...

  1. Ultraviolet light absorbers having two different chromophors in the same molecule

    DOE Patents [OSTI]

    Vogl, O.; Li, S.

    1983-10-06

    This invention relates to novel ultraviolet light absorbers having two chromophors in the same molecule, and more particularly to benzotriazole substituted dihydroxybenzophenones and acetophenones. More particularly, this invention relates to 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxybenzophenone and 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxyacetophenone which are particularly useful as an ultraviolet light absorbers.

  2. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOE Patents [OSTI]

    Cohen, Simon J; Jeong, Hwan J; Shafer, David R

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  3. Xe capillary target for laser-plasma extreme ultraviolet source

    SciTech Connect (OSTI)

    Inoue, Takahiro; Okino, Hideyasu; Nica, Petru Edward; Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu

    2007-10-15

    A cryogenic Xe jet system with an annular nozzle has been developed in order to continuously fast supply a Xe capillary target for generating a laser-plasma extreme ultraviolet (EUV) source. The cooling power of the system was evaluated to be 54 W, and the temperature stability was {+-}0.5 K at a cooling temperature of about 180 K. We investigated experimentally the influence of pressure loss inside an annular nozzle on target formation by shortening the nozzle length. Spraying caused by cavitation was mostly suppressed by mitigating the pressure loss, and a focused jet was formed. Around a liquid-solid boundary, a solid-Xe capillary target (100/70 {mu}m {phi}) was formed with a velocity of {<=}0.01 m/s. Laser-plasma EUV generation was tested by focusing a Nd:YAG laser beam on the target. The results suggested that an even thinner-walled capillary target is required to realize the inertial confinement effect.

  4. AN EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A SURGE

    SciTech Connect (OSTI)

    Zheng, Ruisheng; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Hong, Junchao; Yang, Bo; Yang, Dan

    2013-02-10

    Taking advantage of the high temporal and spatial resolution observations from the Solar Dynamics Observatory, we present an extreme-ultraviolet (EUV) wave associated with a surge on 2010 November 13. Due to the magnetic flux cancelation, some surges formed in the source active region (AR). The strongest surge produced our studied event. The surge was deflected by the nearby loops that connected to another AR, and disrupted the overlying loops that slowly expanded and eventually evolved into a weak coronal mass ejection (CME). The surge was likely associated with the core of the CME. The EUV wave happened after the surge deflected. The wave departed far from the flare center and showed a close location relative to the deflected surge. The wave propagated in a narrow angular extent, mainly in the ejection direction of the surge. The close timing and location relations between the EUV wave and the surge indicate that the wave was closely associated with the CME. The wave had a velocity of 310-350 km s{sup -1}, while the speeds of the surge and the expanding loops were about 130 and 150 km s{sup -1}, respectively. All of the results suggest that the EUV wave was a fast-mode wave and was most likely triggered by the weak CME.

  5. Ultraviolet photodissociation of OCS: Product energy and angular distributions

    SciTech Connect (OSTI)

    McBane, G. C. [Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401 (United States); Schmidt, J. A.; Johnson, M. S. [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Schinke, R. [Max-Planck-Institut fuer Dynamik und Selbstorganisation (MPIDS), D-37077 Goettingen (Germany)

    2013-03-07

    The ultraviolet photodissociation of carbonyl sulfide (OCS) was studied using three-dimensional potential energy surfaces and both quantum mechanical dynamics calculations and classical trajectory calculations including surface hopping. The transition dipole moment functions used in an earlier study [J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke, J. Chem. Phys. 137, 054313 (2012)] were improved with more extensive treatment of excited electronic states. The new functions indicate a much larger contribution from the 1 {sup 1}A{sup Double-Prime} state ({sup 1}{Sigma}{sup -} in linear OCS) than was found in the previous work. The new transition dipole functions yield absorption spectra that agree with experimental data just as well as the earlier ones. The previously reported potential energy surfaces were also empirically modified in the region far from linearity. The resulting product state distributions P{sub v,j}, angular anisotropy parameters {beta}(j), and carbon monoxide rotational alignment parameters A{sub 0}{sup (2)}(j) agree reasonably well with the experimental results, while those computed from the earlier transition dipole and potential energy functions do not. The higher-j peak in the bimodal rotational distribution is shown to arise from nonadiabatic transitions from state 2 {sup 1}A{sup Prime} to the OCS ground state late in the dissociation.

  6. Photoionized plasmas induced in neon with extreme ultraviolet and soft X-ray pulses produced using low and high energy laser systems

    SciTech Connect (OSTI)

    Bartnik, A.; Wachulak, P.; Fok, T.; Węgrzyński, Ł.; Fiedorowicz, H.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Dudzak, R.; Dostal, J.; Krousky, E.; Skala, J.; Ullschmied, J.; Hrebicek, J.; Medrik, T.

    2015-04-15

    A comparative study of photoionized plasmas created by two soft X-ray and extreme ultraviolet (SXR/EUV) laser plasma sources with different parameters is presented. The two sources are based on double-stream Xe/He gas-puff targets irradiated with high (500 J/0.3 ns) and low energy (10 J/1 ns) laser pulses. In both cases, the SXR/EUV beam irradiated the gas stream, injected into a vacuum chamber synchronously with the radiation pulse. Irradiation of gases resulted in formation of photoionized plasmas emitting radiation in the SXR/EUV range. The measured Ne plasma radiation spectra are dominated by emission lines corresponding to radiative transitions in singly charged ions. A significant difference concerns origin of the lines: K-shell or L-shell emissions occur in case of the high and low energy irradiating system, respectively. In high energy system, the electron density measurements were also performed by laser interferometry, employing a femtosecond laser system. A maximum electron density for Ne plasma reached the value of 2·10{sup 18 }cm{sup −3}. For the low energy system, a detection limit was too high for the interferometric measurements, thus only an upper estimation for electron density could be made.

  7. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sheep Cortical Bone Using Synchrotron Radiation Transmission X-ray Microscopy", PLoS ONE ... Garry R. Brock, Cornell University Joy C. Andrews, Stanford Synchrotron Radiation ...

  8. Radiation Effects Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and ... Twitter Google + Vimeo Newsletter Signup SlideShare Radiation Effects Sciences Home...

  9. Wireless radiation sensor

    DOE Patents [OSTI]

    Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.; Kress, Reid L.

    2016-08-09

    Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  10. HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS OF THE TEMPERATURE STRUCTURE OF THE QUIET CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Warren, Harry P. [Space Science Division, Code 7673, Naval Research Laboratory, Washington, DC 20375 (United States); Williams, David R. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Watanabe, Tetsuya, E-mail: dhbrooks@ssd5.nrl.navy.mi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2009-11-10

    We present a differential emission measure (DEM) analysis of the quiet solar corona on disk using data obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode. We show that the expected quiet-Sun DEM distribution can be recovered from judiciously selected lines, and that their average intensities can be reproduced to within 30%. We present a subset of these selected lines spanning the temperature range log T = 5.6-6.4 K that can be used to derive the DEM distribution reliably, including a subset of iron lines that can be used to derive the DEM distribution free of the possibility of uncertainties in the elemental abundances. The subset can be used without the need for extensive measurements, and the observed intensities can be reproduced to within the estimated uncertainty in the pre-launch calibration of EIS. Furthermore, using this subset, we also demonstrate that the quiet coronal DEM distribution can be recovered on size scales down to the spatial resolution of the instrument (1'' pixels). The subset will therefore be useful for studies of small-scale spatial inhomogeneities in the coronal temperature structure, for example, in addition to studies requiring multiple DEM derivations in space or time. We apply the subset to 45 quiet-Sun data sets taken in the period 2007 January to April, and show that although the absolute magnitude of the coronal DEM may scale with the amount of released energy, the shape of the distribution is very similar up to at least log T approx 6.2 K in all cases. This result is consistent with the view that the shape of the quiet-Sun DEM is mainly a function of the radiating and conducting properties of the plasma and is fairly insensitive to the location and rate of energy deposition. This universal DEM may be sensitive to other factors such as loop geometry, flows, and the heating mechanism, but if so they cannot vary significantly from quiet-Sun region to region.

  11. HELIOS—A laboratory based on high-order harmonic generation of extreme ultraviolet photons for time-resolved spectroscopy

    SciTech Connect (OSTI)

    Plogmaker, S. E-mail: Joachim.Terschluesen@physics.uu.se Terschlüsen, J. A. E-mail: Joachim.Terschluesen@physics.uu.se Krebs, N.; Svanqvist, M.; Forsberg, J.; Cappel, U. B.; Rubensson, J.-E.; Siegbahn, H.; Söderström, J. E-mail: Joachim.Terschluesen@physics.uu.se

    2015-12-15

    In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20 000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 10{sup 10} photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.

  12. The efficacy of post porosity plasma protection against vacuum-ultraviolet damage in porous low-k materials

    SciTech Connect (OSTI)

    Lionti, K.; Volksen, W.; Darnon, M.; Magbitang, T.; Dubois, G.

    2015-03-21

    As of today, plasma damage remains as one of the main challenges to the reliable integration of porous low-k materials into microelectronic devices at the most aggressive node. One promising strategy to limit damage of porous low-k materials during plasma processing is an approach we refer to as post porosity plasma protection (P4). In this approach, the pores of the low-k material are filled with a sacrificial agent prior to any plasma treatment, greatly minimizing the total damage by limiting the physical interactions between plasma species and the low-k material. Interestingly, the contribution of the individual plasma species to the total plasma damage is not fully understood. In this study, we investigated the specific damaging effect of vacuum-ultraviolet (v-UV) photons on a highly porous, k = 2.0 low-k material and we assessed the P4 protective effect against them. It was found that the impact of the v-UV radiation varied depending upon the v-UV emission lines of the plasma. More importantly, we successfully demonstrated that the P4 process provides excellent protection against v-UV damage.

  13. Enhancement of pyroelectric signal by continuous ultraviolet illumination of epitaxial Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} films

    SciTech Connect (OSTI)

    Pintilie, L.; Iuga, A.; Botea, M.

    2014-09-29

    The pyroelectric signal generated by an epitaxial Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film can be enhanced by continuous illumination with ultraviolet (UV) light. The measured signal increases more than 2 times at low modulation frequencies of the incident infrared (IR) radiation (∼10 Hz) and at wavelengths where the short-circuit photocurrent presents the maximum value (∼280–300 nm). The tentative explanation is that the changes in polarization induced by the temperature variation under modulated IR illumination are generating a variable internal electric field, able to collect the photogenerated carriers produced under continuous UV illumination leading to an additional signal in phase with the pyroelectric one. This finding could be exploited for designing pyroelectric detectors with enhanced characteristics by combining both UV and IR responses.

  14. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    SciTech Connect (OSTI)

    Aquila, Andrew Lee

    2009-05-21

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs

  15. Method for the detection of nitro-containing compositions using ultraviolet photolysis

    DOE Patents [OSTI]

    Reagen, William K.; Lancaster, Gregory D.; Partin, Judy K.; Moore, Glenn A.

    2000-01-01

    A method for detecting nitro-containing compositions (e.g. nitrate/nitrite materials) in water samples and on solid substrates. In a water sample, ultraviolet light is applied to the sample so that dissolved nitro compositions therein will photolytically dissociate into gaseous nitrogen oxides (NO.sub.2(g) and/or NO.sub.(g)). A carrier gas is then introduced into the sample to generate a gaseous stream which includes the carrier gas combined with any gaseous nitrogen oxides. The carrier gas is thereafter directed into a detector. To detect nitro-compositions on solid substrates, ultraviolet light is applied thereto. A detector is then used to detect any gaseous nitrogen oxides which are photolytically generated during ultraviolet illumination. An optional carrier gas may be applied to the substrate during illumination to produce a gaseous stream which includes the carrier gas and any gaseous nitrogen oxides. The gaseous stream is then supplied to the detector.

  16. Ultraviolet and infrared laser-induced fragmentation of free (CF{sub 3}I){sub n} clusters in a molecular beam and (CF{sub 3}I){sub n} clusters inside or on the surface of large (Xe){sub m} clusters

    SciTech Connect (OSTI)

    Apatin, V. M.; Lokhman, V. N.; Makarov, G. N. Ogurok, N.-D. D.; Petin, A. N.; Ryabov, E. A.

    2015-02-15

    The fragmentation of free homogeneous (CF{sub 3}I){sub n} clusters in a molecular beam (n ≤ 45 is the average number of molecules in the cluster) and (CF{sub 3}I){sub n} clusters inside or on the surface of large (Xe){sub m} clusters (m ≥ 100 is the average number of atoms in the cluster) by ultraviolet and infrared laser radiations has been studied. These three types of (CF{sub 3}I){sub n} clusters are shown to have different stabilities with respect to fragmentation by both ultraviolet and infrared radiations and completely different dependences of the fragmentation probability on the energy of ultraviolet and infrared radiations. When exposed to ultraviolet radiation, the free (CF{sub 3}I){sub n} clusters fragment at comparatively low fluences (Φ{sub UV} ≤ 0.15 J cm{sup −2}) and the weakest energy dependence of the fragmentation probability is observed for them. A stronger energy dependence of the fragmentation probability is observed for the (CF{sub 3}I){sub n} clusters localized inside (Xe){sub m} clusters, and the strongest dependence is observed for the (CF{sub 3}I){sub n} clusters located on the surface of (Xe){sub m} clusters. When the clusters are exposed to infrared radiation, the homogeneous (CF{sub 3}I){sub n} clusters efficiently fragment at low fluences (Φ{sub IR} ≤ 25 mJ cm{sup −2}), higher fluences (Φ{sub IR} ≈ 75 mJ cm{sup −2}) are needed for the fragmentation of the (CF{sub 3}I){sub n} localized inside (Xe){sub m} clusters, and even higher fluences (Φ{sub IR} ≈ 150 mJ cm{sup −2}) are needed for the fragmentation of the (CF{sub 3}I){sub n} clusters located on the surface of (Xe){sub m} clusters. It has been established that small (CF{sub 3}I){sub n} clusters located on the surface of (Xe){sub m} clusters do not fragment up to fluences Φ{sub IR} ≈ 250 mJ cm{sup −2}. The fragmentation efficiency of (CF{sub 3}I){sub n} clusters is shown to be the same (at the same fluence) when they are excited by both pulsed (τ{sub p}

  17. Radiation Safety Poster | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Poster Radiation Safety Poster Radiation Safety Poster

  18. Wave-mixing with high-order harmonics in extreme ultraviolet region

    SciTech Connect (OSTI)

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-12

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process.

  19. On-board Measurement of NO and NO2 using Non-dispersive Ultraviolet (NDUV)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spectroscopy | Department of Energy board Measurement of NO and NO2 using Non-dispersive Ultraviolet (NDUV) Spectroscopy On-board Measurement of NO and NO2 using Non-dispersive Ultraviolet (NDUV) Spectroscopy Analyzer allows simultaneous and separate measurement of NO and NO2 for on-road and non-raod applications p-11_ensfield.pdf (194.58 KB) More Documents & Publications On-Board Measurement of Ammonia and Nitrous Oxide Using Feedback Absorption Laser Spectroscopy Combined with

  20. Plutonium radiation surrogate

    DOE Patents [OSTI]

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  1. Photoluminescence performance of thulium doped Li{sub 4}SrCa(SiO{sub 4}){sub 2} under irradiation of ultraviolet and vacuum ultraviolet lights

    SciTech Connect (OSTI)

    Wang, Zhaofeng; Li, Yezhou; Liu, Xiong; Wei, Xingmin; Chen, Yueling; Zhou, Fei; Wang, Yuhua

    2014-11-15

    Highlights: A novel blue-emitting phosphor Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} was reported. Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} exhibited excellent thermal and irradiation stability. Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} was found to possess high color purity. - Abstract: In this work, we synthesized Tm{sup 3+} doped Li{sub 4}SrCa(SiO{sub 4}){sub 2} phosphors and investigated their photoluminescence properties under the excitation of ultraviolet and vacuum ultraviolet lights. The crystal structure analysis and variation of cell parameters confirm that Tm{sup 3+} ions have been successfully doped in the structure of Li{sub 4}SrCa(SiO{sub 4}){sub 2} host by occupying the sites of Ca{sup 2+} with the coordination number of 6. The luminescence results suggest that Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} is a good blue-emitting phosphor when excited by ultraviolet and vacuum ultraviolet irradiations. In addition, it is observed that there is nearly no degradation for Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} after undergoing thermal and irradiation treatments. Possible mechanisms for the luminescence processes are proposed on the basis of the discussion of excitation and emission spectra. In particular, the emission color of Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} by excitation of 147 and 172 nm irradiations is very close to the standard blue color, suggesting that it could be potentially applied in plasma display panels and mercury-free fluorescence lamps.

  2. NREL: Solar Radiation Research - Solar Radiation Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Research Laboratory Photographs The Solar Radiation Research Laboratory (SRRL) houses more than 70 instruments to analyze and record solar radiation and surface ...

  3. Collisional-Radiative Modeling for Radiation Hydrodynamics (Book...

    Office of Scientific and Technical Information (OSTI)

    Publisher: Modern Methods in Collisional-Radiative Modelling of Plasmas, Collisional-Radiative Modeling for Radiation Hydrodynamics, Springer International Publishing, unknown, ...

  4. Radiation.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation is a natural part of our everyday environment. Cosmic rays showering the Earth ... and radon gas seeping up from the soil are only two examples of natural radiation. ...

  5. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan -

  6. Hybrid radiator cooling system

    DOE Patents [OSTI]

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  7. THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC...

    Office of Scientific and Technical Information (OSTI)

    THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC DIFFUSION FOR EXAFLAG Citation Details In-Document Search Title: THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH ...

  8. THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC...

    Office of Scientific and Technical Information (OSTI)

    THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC DIFFUSION FOR EXAFLAG Citation Details In-Document Search Title: THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH...

  9. Ultraviolet light absorbers having two different chromophors in the same molecule

    DOE Patents [OSTI]

    Vogl, Otto; Li, Shanjun

    1988-05-17

    Ultraviolet light absorbing compounds having two different chromophors in the same molecule, particularly the benzotriazole chromophor and either the dihydroxybenzophenone or dihydroxyacetophenone chromophor; specifically, the two compounds 3,5-[di(2H-benzotriazole-2-yl)]-2,4-dihydroxyacetophenone and 3,5-[di(2H-benzotriazole-2-yl)]2,4-dihydroxybenzophenone.

  10. High efficiency, radiation-hard solar cells

    SciTech Connect (OSTI)

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  11. How Radiation Oncologists Would Disclose Errors: Results of a Survey of Radiation Oncologists and Trainees

    SciTech Connect (OSTI)

    Evans, Suzanne B.; Yu, James B.; Chagpar, Anees

    2012-10-01

    Purpose: To analyze error disclosure attitudes of radiation oncologists and to correlate error disclosure beliefs with survey-assessed disclosure behavior. Methods and Materials: With institutional review board exemption, an anonymous online survey was devised. An email invitation was sent to radiation oncologists (American Society for Radiation Oncology [ASTRO] gold medal winners, program directors and chair persons of academic institutions, and former ASTRO lecturers) and residents. A disclosure score was calculated based on the number or full, partial, or no disclosure responses chosen to the vignette-based questions, and correlation was attempted with attitudes toward error disclosure. Results: The survey received 176 responses: 94.8% of respondents considered themselves more likely to disclose in the setting of a serious medical error; 72.7% of respondents did not feel it mattered who was responsible for the error in deciding to disclose, and 3.9% felt more likely to disclose if someone else was responsible; 38.0% of respondents felt that disclosure increased the likelihood of a lawsuit, and 32.4% felt disclosure decreased the likelihood of lawsuit; 71.6% of respondents felt near misses should not be disclosed; 51.7% thought that minor errors should not be disclosed; 64.7% viewed disclosure as an opportunity for forgiveness from the patient; and 44.6% considered the patient's level of confidence in them to be a factor in disclosure. For a scenario that could be considerable, a non-harmful error, 78.9% of respondents would not contact the family. Respondents with high disclosure scores were more likely to feel that disclosure was an opportunity for forgiveness (P=.003) and to have never seen major medical errors (P=.004). Conclusions: The surveyed radiation oncologists chose to respond with full disclosure at a high rate, although ideal disclosure practices were not uniformly adhered to beyond the initial decision to disclose the occurrence of the error.

  12. Radiation detection system

    DOE Patents [OSTI]

    Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.

    1976-01-01

    A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.

  13. RADIATION WAVE DETECTOR

    DOE Patents [OSTI]

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  14. PERSONAL RADIATION MONITOR

    DOE Patents [OSTI]

    Dilworth, R.H.; Borkowski, C.J.

    1961-12-26

    A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)

  15. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco...

  16. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco

  17. Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective

    SciTech Connect (OSTI)

    Barkusky, Frank; Peth, Christian; Mann, Klaus; Feigl, Torsten; Kaiser, Norbert

    2005-10-15

    In order to generate high-energy densities of 13.5 nm radiation, an extreme ultraviolet (EUV) Schwarzschild mirror objective with a numerical aperture of 0.44 and a demagnification of 10 was developed and adapted to a compact laser-based EUV source. The annular spherical mirror substrates were coated with Mo/Si multilayer systems. With a single mirror reflectance of more than 65% the total transmittance of the Schwarzschild objective exceeds 40% at 13.5 nm. From the properties of the EUV source (pulse energy 3 mJ at 13.5 nm and plasma diameter approximately 300 {mu}m), energy densities of 73 mJ/cm{sup 2} at a pulse length of 6 ns can be estimated in the image plane of the objective. As a first application, the formation of color centers in lithium fluoride crystals by EUV radiation was investigated. F{sub 2}, F{sub 3}, and F{sub 3}{sup +} color centers could be identified by absorption spectroscopy. The formation dynamics was studied as a function of the EUV dose. By imaging of a pinhole positioned behind the plasma, an EUV spot of 5 {mu}m diameter was generated, which accomplishes direct writing of color centers with micrometer resolution.

  18. The ultraviolet-bright, slowly declining transient PS1-11af as a partial tidal disruption event

    SciTech Connect (OSTI)

    Chornock, R.; Berger, E.; Zauderer, B. A.; Kamble, A.; Soderberg, A. M.; Czekala, I.; Dittmann, J.; Drout, M.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Lunnan, R.; Marion, G. H.; Narayan, G.; Gezari, S.; Rest, A.; Riess, A. G.; Chomiuk, L.; Huber, M. E.; Lawrence, A.; and others

    2014-01-01

    We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ?0.002 M {sub ?}, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.

  19. RADIATION WAVE DETECTION

    DOE Patents [OSTI]

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  20. ORISE Video: What is the difference between radiation exposure and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation contamination?

  1. RHOBOT: Radiation hardened robotics

    SciTech Connect (OSTI)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  2. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRLUO functions include: sponsoring and presenting the Annual Farrel W. Lytle Award to promote important technical or scientific accomplishments in synchrotron radiation-based ...

  3. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  4. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  5. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now the Synchrotron Medical Imaging Team, a group of Canadian, US, and European scientists (including scientists from the Stanford Synchrotron Radiation Lightsource) are using ...

  6. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This work demonstrates that synchrotron radiation-based spectroscopies provide invaluable, atom-specific tools to determine the electronic properties of different dopant and defect ...

  7. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  8. Ultraviolet and white photon avalanche upconversion in Ho{sup 3+}-doped nanophase glass ceramics

    SciTech Connect (OSTI)

    Lahoz, F.; Martin, I.R.; Calvilla-Quintero, J.M.

    2005-01-31

    Ho{sup 3+}-doped fluoride nanophase glass ceramics have been synthesized from silica-based oxyfluoride glass. An intense white emission light is observed by the naked eye under near infrared excitation at 750 nm. This visible upconversion is due to three strong emission bands in the primary color components, red, green, and blue. Besides, ultraviolet signals are also recorded upon the same excitation wavelength. The excitation mechanism of both the ultraviolet and the visible emissions is a photon avalanche process with a relatively low pump power threshold at about 20 mW. The total upconverted emission intensity has been estimated to increase by about a factor of 20 in the glass ceramic compared to the precursor glass, in which an avalanche type mechanism is not generated.

  9. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties

    SciTech Connect (OSTI)

    Imaki, Masaharu; Kobayashi, Takao

    2005-10-01

    An ultraviolet incoherent Doppler lidar that incorporates the high-spectral-resolution (HSR) technique has been developed for measuring the wind field and aerosol optical properties in the troposphere. An injection seeded and tripled Nd:YAG laser at an ultraviolet wavelength of 355 nm was used in the lidar system. The HRS technique can resolve the aerosol Mie backscatter and the molecular Rayleigh backscatter to derive the signal components. By detecting the Mie backscatter, a great increase in the Doppler filter sensitivity was realized compared to the conventional incoherent Doppler lidars that detected the Rayleigh backscatter. The wind velocity distribution in a two-dimensional cross section was measured. By using the HSR technique, multifunction and absolute value measurements were realized for aerosol extinction, and volume backscatter coefficients; the laser beam transmittance, the lidar ratio, and the backscatter ratio are derived from these measurements.

  10. Mechanisms of radiation-induced gene responses

    SciTech Connect (OSTI)

    Woloschak, G.E.; Paunesku, T.

    1996-10-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5` region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3` region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts; however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process.

  11. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    SciTech Connect (OSTI)

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  12. Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance

    SciTech Connect (OSTI)

    Kikawada, Masakazu; Ono, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2014-06-02

    Enhanced multicolor fluorescence has been achieved using deep-ultraviolet surface plasmon resonance (DUV-SPR) on an aluminum thin film using the Kretschmann configuration. The film thickness and the incident angle of the light were optimized by calculations using the Fresnel equations. The presence of a surface oxide layer was also considered in the calculations. Experimental measurements showed that DUV-SPR led to a strong enhancement of the fluorescence intensity from both quantum dots and dye-labeled cells.

  13. Extreme Ultraviolet Imaging of Electron Heated Targets in Petawatt Laser Experiments

    SciTech Connect (OSTI)

    Ma, T; MacPhee, A; Key, M; Akli, K; Mackinnon, A; Chen, C; Barbee, T; Freeman, R; King, J; Link, A; Offermann, D; Ovchinnikov, V; Patel, P; Stephens, R; VanWoerkom, L; Zhang, B; Beg, F

    2007-11-29

    The study of the transport of electrons, and the flow of energy into a solid target or dense plasma, is instrumental in the development of fast ignition inertial confinement fusion. An extreme ultraviolet (XUV) imaging diagnostic at 256 eV and 68 eV provides information about heating and energy deposition within petawatt laser-irradiated targets. XUV images of several irradiated solid targets are presented.

  14. Ultraviolet and electron irradiation of DC-704 siloxane oil in zinc orthotitanate paint

    SciTech Connect (OSTI)

    Mossman, D.L.; Barsh, M.K.; Greenberg, S.A.

    1982-01-01

    Discrepancies exist between accelerated laboratory simulation and geosynchronous orbit flight data for zinc orthotitanate (ZOT) paint degradation. The effects of ultraviolet and electron irradiation on ZOT contaminated with DC-704 silicone oil are reported. In-situ solar absorptance and emittance changes for contaminated and clean specimens are discussed with reference to post-test surface morphology, determined by scanning electron microscope analysis. Features of the contaminated ZOT degradation kinetics correlate with orbital performance.

  15. Characterizing ultraviolet and infrared observational properties for galaxies. II. Features of attenuation law

    SciTech Connect (OSTI)

    Mao, Ye-Wei; Kong, Xu; Lin, Lin E-mail: xkong@ustc.edu.cn

    2014-07-01

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.

  16. Photodegradation of aniline by goethite doped with boron under ultraviolet and visible light irradiation

    SciTech Connect (OSTI)

    Liu, Guanglong; Liao, Shuijiao; College of Basic Sciences of Huazhong Agricultural University, Wuhan 430070 ; Zhu, Duanwei; Liu, Linghua; Cheng, Dongsheng; Zhou, Huaidong

    2011-08-15

    Highlights: {yields} Goethite modified by boron was prepared by sol-gel method in presence of boron acid at the low temperature. {yields} B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. {yields} The results showed that semiconductor photocatalytic reaction mechanism should exist in the process of aniline degradation with goethite and B-goethite as photocatalyst. -- Abstract: In the present study, goethite and goethite doped with boron (B-goethite) were employed to detect the presence or absence of semiconductor photocatalytic reaction mechanism in the reaction systems. B-goethite was prepared by sol-gel method in presence of boron acid in order to improve its photocatalystic efficiency under the ultraviolet and visible light irradiation. The optical properties of goethite and B-goethite were characterized by ultraviolet and visible absorption spectra and the result indicated that B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. Degradation of aniline was investigated in presence of goethite and B-goethite in aqueous solution. It was found that the B-goethite photocatalyst exhibited enhanced ultraviolet and visible light photocatalytic activity in degradation of aniline compared with the pristine goethite. The photocatalytic degradation mechanism of B-goethite was discussed.

  17. Radiative Flux Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  18. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2007-01-09

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  19. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2010-06-15

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  20. Instrument for assaying radiation

    DOE Patents [OSTI]

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  1. Radiation detection system

    DOE Patents [OSTI]

    Franks, Larry A.; Lutz, Stephen S.; Lyons, Peter B.

    1981-01-01

    A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

  2. Electromagnetic radiation detector

    DOE Patents [OSTI]

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  3. Underwater radiation detector

    DOE Patents [OSTI]

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  4. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  5. Radiation Effects In Space

    SciTech Connect (OSTI)

    Tripathi, Ram K.

    2011-06-01

    Protecting space missions from severe exposures from radiation, in general, and long duration/deep space human missions, in particular, is a critical design driver, and could be a limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues and microelectronic devices. One is required to know how every element (and all isotopes of each element) in the periodic table interacts and fragments on every other element in the same table as a function of kinetic energy ranging over many decades. In addition, the accuracy of the input information and database, in general and nuclear data in particular, impacts radiation exposure health assessments and payload penalty. After a brief review of effects of space radiation on materials and electronics, human space missions to Mars is discussed.

  6. Non-LTE Radiation Transport in High Radiation Plasmas (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Non-LTE Radiation Transport in High Radiation Plasmas Citation Details ... DOE Contract Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: ...

  7. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments [OSTI]

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  8. Low Dose Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancient Salt Beds Repository Science Renewable Energy The WIPP Underground may be ideal to study effects of Very Low Dose Rates on Biological Systems Low Background Radiation Experiment We're all bathing in it. It's in the food we eat, the water we drink, the soil we tread and even the air we breathe. It's background radiation, it's everywhere and we can't get away from it. But what would happen if you somehow "pulled the plug" on natural background radiation? Would organisms suffer or

  9. Miniaturized radiation chirper

    DOE Patents [OSTI]

    Umbarger, C. John; Wolf, Michael A.

    1980-01-01

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  10. Radiation Safety System

    SciTech Connect (OSTI)

    Vylet, Vaclav; Liu, James C.; Walker, Lawrence S.; /Los Alamos

    2012-04-04

    The goal of this work is to provide an overview of a Radiation safety system (RSS) designed for protection from prompt radiation hazard at accelerator facilities. RSS design parameters, functional requirements and constraints are derived from hazard analysis and risk assessment undertaken in the design phase of the facility. The two main subsystems of a RSS are access control system (ACS) and radiation control system (RCS). In this text, a common approach to risk assessment, typical components of ACS and RCS, desirable features and general design principles applied to RSS are described.

  11. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  12. Biological Applications of Synchrotron Radiation:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Applications of Synchrotron Radiation: An Evaluation of the State of the Field ... Maxwell's equations show that electromagnetic radiation is generated when charged ...

  13. Radiation Safety Work Control Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form : ... Safety Office (namesignaturedate) Radiation Physics (namesignaturedate) Section 4: ...

  14. ARM West Antarctic Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Antarctic Radiation Experiment of the most advanced atmospheric research ... From the fall of 2015 to early 2017, the Atmospheric Radiation Measurement (ARM) West ...

  15. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If you have any questions regarding the completion of this process please contact Matt Padilla (mpadilla@slac.stanford.edu, 1-650-926-3861 or Radiation Protection Field Operations ...

  16. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  17. RADIATION APPLICATIONS INCORPORATED

    Office of Legacy Management (LM)

    . <' ," . . * . RADIATION APPLICATIONS INCORPORATED . 370 Lexl.ngton Avenue New York 17 New York jq.5' L- Contract No. A T (30-l)-2093 with the United States Atom ic Energy ...

  18. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 2021-08-11 SHANGHAI INST OF APPLIED PHYSICS CHINA 2020-10-23 SHANGHAI SYNCHROTRON RADIATION FACILITY 2020-10-23 SHANGHAI TECH UNIVERSITY 2019-01-23 SIMON FRASER UNIVERSITY ...

  19. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jorge L. Gardea-Torresdey, University of Texas at El Paso Joy C. Andrews, Stanford Synchrotron Radiation Lightsource Jose A. Hernandez-Viezcas, University of Texas at El Paso 2575 ...

  20. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  1. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  2. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  3. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  4. Method of enhancing radiation response of radiation detection materials

    DOE Patents [OSTI]

    Miller, Steven D.

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  5. Packet personal radiation monitor

    DOE Patents [OSTI]

    Phelps, James E.

    1989-01-01

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  6. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  7. JET ROTATION INVESTIGATED IN THE NEAR-ULTRAVIOLET WITH THE HUBBLE SPACE TELESCOPE IMAGING SPECTROGRAPH

    SciTech Connect (OSTI)

    Coffey, Deirdre; Ray, Thomas P.; Rigliaco, Elisabetta; Bacciotti, Francesca; Eisloeffel, Jochen

    2012-04-20

    We present results of the second phase of our near-ultraviolet investigation into protostellar jet rotation using the Hubble Space Telescope Imaging Spectrograph. We obtain long-slit spectra at the base of five T Tauri jets to determine if there is a difference in radial velocity between the jet borders which may be interpreted as a rotation signature. These observations are extremely challenging and push the limits of current instrumentation, but have the potential to provide long-awaited observational support for the magnetocentrifugal mechanism of jet launching in which jets remove angular momentum from protostellar systems. We successfully detect all five jet targets (from RW Aur, HN Tau, DP Tau, and CW Tau) in several near-ultraviolet emission lines, including the strong Mg II doublet. However, only RW Aur's bipolar jet presents a sufficiently high signal-to-noise ratio to allow for analysis. The approaching jet lobe shows a difference of 10 km s{sup -1} in a direction which agrees with the disk rotation sense, but is opposite to previously published optical measurements for the receding jet. The near-ultraviolet difference is not found six months later, nor is it found in the fainter receding jet. Overall, in the case of RW Aur, differences are not consistent with a simple jet rotation interpretation. Indeed, given the renowned complexity and variability of this system, it now seems likely that any rotation signature is confused by other influences, with the inevitable conclusion that RW Aur is not suited to a jet rotation study.

  8. Attosecond extreme ultraviolet generation in cluster by using spatially inhomogeneous field

    SciTech Connect (OSTI)

    Feng, Liqiang; Liu, Hang

    2015-01-15

    A promising method to generate the attosecond extreme ultraviolet (XUV) sources has been theoretically investigated emerging from the two-dimensional Ar{sup +} cluster driven by the spatially inhomogeneous field. The results show that with the introduction of the Ar{sup +} cluster model, not only the harmonic cutoffs are enhanced, but also the harmonic yields are reinforced. Furthermore, by properly moderating the inhomogeneity as well as the laser parameters of the inhomogeneous field, the harmonic cutoff can be further extended. As a result, three almost linearly polarized XUV pulses with durations of 40 as, 42 as, and 45 as can be obtained.

  9. Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Montcalm, Claude (Livermore, CA); Stearns, Daniel G. (Los Altos, CA); Vernon, Stephen P. (Pleasanton, CA)

    1999-01-01

    A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.

  10. Cooperative effect of ultraviolet and near-infrared beams in laser-induced condensation

    SciTech Connect (OSTI)

    Matthews, M.; Henin, S.; Pomel, F.; Kasparian, J.; Wolf, J.-P.; Thberge, F.; Daigle, J.-F.; Lassonde, P.; Kieffer, J.-C.

    2013-12-23

    We demonstrate the cooperative effect of near infrared (NIR) and ultraviolet (UV) beams on laser-induced condensation. Launching a UV laser after a NIR pulse yields up to a 5-fold increase in the production of nanoparticles (25300 nm) as compared to a single NIR beam. This cooperative effect exceeds the sum of those from the individual beams and occurs for delays up to 1 ?s. We attribute it to the UV photolysis of ozone created by the NIR pulses. The resulting OH radicals oxidize NO{sub 2} and volatile organic compounds, producing condensable species.

  11. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    SciTech Connect (OSTI)

    Sivaraman, B.; Nair, B. G.; Mason, N. J.; Lo, J.-I.; Cheng, B.-M.; Kundu, S.; Davis, D.; Prabhudesai, V.; Krishnakumar, E.; Raja Sekhar, B. N.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  12. Improving Ramsey spectroscopy in the extreme-ultraviolet region with a random-sampling approach

    SciTech Connect (OSTI)

    Eramo, R.; Bellini, M. [Istituto Nazionale di Ottica (INO-CNR), Largo E. Fermi 6, I-50125 Florence (Italy); European Laboratory for Non-linear Spectroscopy (LENS), I-50019 Sesto Fiorentino, Florence (Italy); Corsi, C.; Liontos, I. [European Laboratory for Non-linear Spectroscopy (LENS), I-50019 Sesto Fiorentino, Florence (Italy); Cavalieri, S. [European Laboratory for Non-linear Spectroscopy (LENS), I-50019 Sesto Fiorentino, Florence (Italy); Department of Physics, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy)

    2011-04-15

    Ramsey-like techniques, based on the coherent excitation of a sample by delayed and phase-correlated pulses, are promising tools for high-precision spectroscopic tests of QED in the extreme-ultraviolet (xuv) spectral region, but currently suffer experimental limitations related to long acquisition times and critical stability issues. Here we propose a random subsampling approach to Ramsey spectroscopy that, by allowing experimentalists to reach a given spectral resolution goal in a fraction of the usual acquisition time, leads to substantial improvements in high-resolution spectroscopy and may open the way to a widespread application of Ramsey-like techniques to precision measurements in the xuv spectral region.

  13. Chemo-physical properties of renal capsules under ultraviolet-c exposure

    SciTech Connect (OSTI)

    Baghapour, Sh.; Parvin, P. Mokhtari, S.; Reyhani, A.; Mortazavi, S. Z.; Amjadi, A.

    2014-08-07

    The renal capsule tissue of lamb was irradiated with ultraviolet-C light and the treated samples were analyzed by uniaxial tensile test, dynamic mechanical analysis, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. It was shown that the skin cross-linking is dominant in low doses in accordance with the contact angle assessment. Conversely, the strong bulk degradation takes place at high doses. Similarly, the bulk cross-linking affects the mechanical tests as to enhance the stiffness at low doses, whereas strong degradation occurs at high doses that mainly arises from the strong bulk chain scission.

  14. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    SciTech Connect (OSTI)

    Li, Wei [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Hacker, Christina A.; Cheng, Guangjun; Hight Walker, A. R.; Richter, Curt A.; Gundlach, David J., E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Liang, Yiran; Tian, Boyuan; Liang, Xuelei, E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn; Peng, Lianmao [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China)

    2014-03-21

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.

  15. Properites of ultrathin films appropriate for optics capping layers in extreme ultraviolet lithography (EUVL)

    SciTech Connect (OSTI)

    Bajt, S; Edwards, N V; Madey, T E

    2007-06-25

    The contamination of optical surfaces by irradiation shortens optics lifetime and is one of the main concerns for optics used in conjunction with intense light sources, such as high power lasers, 3rd and 4th generation synchrotron sources or plasma sources used in extreme ultraviolet lithography (EUVL) tools. This paper focuses on properties and surface chemistry of different materials, which as thin layers, could be used as capping layers to protect and extend EUVL optics lifetime. The most promising candidates include single element materials such as ruthenium and rhodium, and oxides such as TiO{sub 2} and ZrO{sub 2}.

  16. Los Alamos Lab: Radiation Protection: Annual Occupational Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dosimetry Report Annual Occupational Radiation Dosimetry Report Print information on Annual Occupational Radiation Dosimetry Report (pdf). This webpage provides information to help you understand the dose quantities being reported to you on your Annual Occupational Radiation Dosimetry Report. If you would like general information about radiation exposure, please refer to www.radiationanswers.org. Title 10 Code of Federal Regulation Part 835, Occupational Radiation Protection (10 CFR 835),

  17. THE FAR-ULTRAVIOLET 'CONTINUUM' IN PROTOPLANETARY DISK SYSTEMS. II. CARBON MONOXIDE FOURTH POSITIVE EMISSION AND ABSORPTION

    SciTech Connect (OSTI)

    France, Kevin; Schindhelm, Eric; Burgh, Eric B.; Brown, Alexander; Green, James C.; Herczeg, Gregory J.; Brown, Joanna M.; Harper, Graham M.; Linsky, Jeffrey L.; Yang Hao; Abgrall, Herve; Ardila, David R.; Bergin, Edwin; Bethell, Thomas; Calvet, Nuria; Ingleby, Laura; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne A.; Hussain, Gaitee

    2011-06-10

    We exploit the high sensitivity and moderate spectral resolution of the Hubble Space Telescope Cosmic Origins Spectrograph to detect far-ultraviolet (UV) spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. The CO absorption most likely arises in warm inner disk gas. We measure a CO column density and rotational excitation temperature of N(CO) = (2 {+-} 1) x 10{sup 17} cm{sup -2} and T{sub rot}(CO) 500 {+-} 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by UV line photons, predominantly H I Ly{alpha}. All three objects show emission from CO bands at {lambda} > 1560 A, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H{sub 2}, and photo-excited H{sub 2}, all of which appeared as a 'continuum' whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar Ly{alpha} emission profile. We find CO parameters in the range: N(CO) {approx} 10{sup 18}-10{sup 19} cm{sup -2}, T{sub rot}(CO) {approx}> 300 K for the Ly{alpha}-pumped emission. We combine these results with recent work on photo-excited and collisionally excited H{sub 2} emission, concluding that the observations of UV-emitting CO and H{sub 2} are consistent with a common spatial origin. We suggest that the CO/H{sub 2} ratio ({identical_to} N(CO)/N(H{sub 2})) in the inner disk is {approx}1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future

  18. FIRST DETECTION OF ULTRAVIOLET EMISSION FROM A DETACHED DUST SHELL: GALAXY EVOLUTION EXPLORER OBSERVATIONS OF THE CARBON ASYMPTOTIC GIANT BRANCH STAR U Hya

    SciTech Connect (OSTI)

    Sanchez, Enmanuel; Montez, Rodolfo Jr.; Stassun, Keivan G.; Ramstedt, Sofia

    2015-01-10

    We present the discovery of an extended ring of ultraviolet (UV) emission surrounding the asymptotic giant branch (AGB) star U Hya in archival observations performed by the Galaxy Evolution Explorer. This is the third discovery of extended UV emission from a carbon AGB star and the first from an AGB star with a detached shell. From imaging and photometric analysis of the FUV and NUV images, we determined that the UV ring has a radius of ∼110'', thus indicating that the emitting material is likely associated with the detached shell seen in the infrared. We find that scattering of the central point source of NUV and FUV emission by the dust shell is negligible. Moreover, we find that scattering of the interstellar radiation field by the dust shell can contribute at most ∼10% of the FUV flux. Morphological and photometric evidence suggests that shocks caused by the star's motion through space and, possibly, shock-excited H{sub 2} molecules are the most likely origins of the UV flux. In contrast to previous examples of extended UV emission from AGB stars, the extended UV emission from U Hya does not show a bow-shock-like structure, which is consistent with a lower space velocity and lower interstellar medium density. This suggests the detached dust shell is the source of the UV-emitting material and can be used to better understand the formation of detached shells.

  19. Radiation delivery system and method

    DOE Patents [OSTI]

    Sorensen, Scott A.; Robison, Thomas W.; Taylor, Craig M. V.

    2002-01-01

    A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

  20. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  1. AREA RADIATION MONITOR

    DOE Patents [OSTI]

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  2. Synchrotron Radiation Workshop (SRW)

    Energy Science and Technology Software Center (OSTI)

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations inmore » steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, soft and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  3. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, Peter F.; Tetzlaff, Wolfgang; Hegland, Joel E.; Jones, Scott C.

    1991-01-01

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

  4. Packet personal radiation monitor

    DOE Patents [OSTI]

    Phelps, J.E.

    1988-03-31

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

  5. LARGE-SCALE EXTREME-ULTRAVIOLET DISTURBANCES ASSOCIATED WITH A LIMB CORONAL MASS EJECTION

    SciTech Connect (OSTI)

    Dai, Y.; Auchere, F.; Vial, J.-C.; Tang, Y. H.; Zong, W. G.

    2010-01-10

    We present composite observations of a coronal mass ejection (CME) and the associated large-scale extreme-ultraviolet (EUV) disturbances on 2007 December 31 by the Extreme-ultraviolet Imager (EUVI) and COR1 coronagraph on board the recent Solar Terrestrial Relations Observatory mission. For this limb event, the EUV disturbances exhibit some typical characteristics of EUV Imaging Telescope waves: (1) in the 195 A bandpass, diffuse brightenings are observed propagating oppositely away from the flare site with a velocity of approx260 km s{sup -1}, leaving dimmings behind; (2) when the brightenings encounter the boundary of a polar coronal hole, they stop there to form a stationary front. Multi-temperature analysis of the propagating EUV disturbances favors a heating process over a density enhancement in the disturbance region. Furthermore, the EUVI-COR1 composite display shows unambiguously that the propagation of the diffuse brightenings coincides with a large lateral expansion of the CME, which consequently results in a double-loop-structured CME leading edge. Based on these observational facts, we suggest that the wave-like EUV disturbances are a result of magnetic reconfiguration related to the CME liftoff rather than true waves in the corona. Reconnections between the expanding CME magnetic field lines and surrounding quiet-Sun magnetic loops account for the propagating diffuse brightenings; dimmings appear behind them as a consequence of volume expansion. X-ray and radio data provide us with complementary evidence.

  6. Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources

    SciTech Connect (OSTI)

    Sizyuk, Tatyana; Hassanein, Ahmed [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-08-15

    Photon sources produced by laser beams with moderate laser intensities, up to 10{sup 14?}W/cm{sup 2}, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5%??1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6. nm wavelengths, and water-window microscopy utilizing 2.48?nm (La-?) and 2.88?nm (He-?) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.?nm sources.

  7. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan; Smith, Michael L.; Biedermann, Laura

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less

  8. Semiconductor radiation detector

    SciTech Connect (OSTI)

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  9. Audible radiation monitor

    DOE Patents [OSTI]

    Odell, Daniel M. C.

    1993-01-01

    A method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  10. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-08-02

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  11. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  12. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  13. Wireless passive radiation sensor

    DOE Patents [OSTI]

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  14. Radiation Source Replacement Workshop

    SciTech Connect (OSTI)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  15. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  16. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  17. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  18. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  19. Thermostatic Radiator Valve Evaluation

    SciTech Connect (OSTI)

    Dentz, Jordan; Ansanelli, Eric

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  20. Solar Radiation Research Laboratory | Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Research Laboratory Since 1981, NREL's Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar radiation components, ...

  1. Kentucky National Guard Radiation Specialist Course | Department...

    Office of Environmental Management (EM)

    Kentucky National Guard Radiation Specialist Course Kentucky National Guard Radiation Specialist Course Kentucky National Guard Radiation Specialist Course (628.78 KB) More ...

  2. ORISE: Radiation Emergency Medicine - Continuing Medical Education...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Emergency Medicine Dates Scheduled Register Online August 9-12, 2016 Fee: 200 ... The course begins with a discussion of the fundamentals of radiation physics, radiation ...

  3. ORISE: The Medical Aspects of Radiation Incidents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Medical Aspects of Radiation Incidents The Medical Aspects of Radiation Incidents provides the basic information needed for the medical management of victims of radiation ...

  4. ORISE: Radiation Treatment Medication Package Inserts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training RANET Asset Resources Overview Frequently Asked Questions about Radiation Understanding Radiation Video Series The Medical Aspects of Radiation Incidents Dose Estimates ...

  5. Radiation Effects Facility - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Effects Facility Typical DUT(device under test) set-up at the end of the Radiation Effects beamline. The Radiation Effects Facility is available for commercial, ...

  6. Annual DOE Occupational Radiation Exposure Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual DOE Occupational Radiation Exposure Reports Annual DOE Occupational Radiation Exposure Reports November 17, 2015 Annual DOE Occupational Radiation Exposure | 2014 Report The...

  7. Apparatus for generating partially coherent radiation

    DOE Patents [OSTI]

    Naulleau, Patrick P.

    2005-02-22

    Techniques for generating partially coherent radiation and particularly for converting effectively coherent radiation from a synchrotron to partially coherent EUV radiation suitable for projection lithography.

  8. "Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki Ono The invention utilizes liquid lithium as a radiative material. The radiative process greatly reduces the ...

  9. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    SciTech Connect (OSTI)

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  10. Radiation Levels in Real Time?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma radiation levels in the southern Nevada area will soon be accessible around the world at the touch of a finger. Makers of the cell phone application EcoData: Radiation are ...

  11. QUIET-SUN INTENSITY CONTRASTS IN THE NEAR-ULTRAVIOLET AS MEASURED FROM SUNRISE

    SciTech Connect (OSTI)

    Hirzberger, J.; Feller, A.; Riethmueller, T. L.; Schuessler, M.; Borrero, J. M.; Gandorfer, A.; Solanki, S. K.; Barthol, P.; Afram, N.; Unruh, Y. C.; Berdyugina, S. V.; Berkefeld, T.; Schmidt, W.; Bonet, J. A.; MartInez Pillet, V.; Knoelker, M.; Title, A. M.

    2010-11-10

    We present high-resolution images of the Sun in the near-ultraviolet spectral range between 214 nm and 397 nm as obtained from the first science flight of the 1 m SUNRISE balloon-borne solar telescope. The quiet-Sun rms intensity contrasts found in this wavelength range are among the highest values ever obtained for quiet-Sun solar surface structures-up to 32.8% at a wavelength of 214 nm. We compare the rms contrasts obtained from the observational data with theoretical intensity contrasts obtained from numerical magnetohydrodynamic simulations. For 388 nm and 312 nm the observations agree well with the numerical simulations whereas at shorter wavelengths discrepancies between observed and simulated contrasts remain.

  12. Study of the extreme ultraviolet spectrum of O/sub 2/ by electron impact

    SciTech Connect (OSTI)

    Ajello, J.M.; Franklin, B.

    1985-03-15

    We have measured in the laboratory the electron impact emission cross sections for O/sub 2/ at 200 eV. Included in the study are all emission features in the extreme ultraviolet from 40 to 131 nm at a resolution of 0.5 nm. The features are entirely from the dissociation products (OI, OII, OIII). Additionally we have measured the excitation functions from 0 to 400 eV for characteristic OI multiplets at 98.9 and 102.6 nm and for OII multiplets at 53.9 and 83.3 nm. We find the OI multiplets are formed near the dissociation limit whereas the OII multiplets have a threshold about 10 eV above the dissociation limit. We also determine the total VUV emission cross section of O/sub 2/ from 40 to 200 nm and indicate the effects of autoionization to the measured emission spectrum.

  13. The effects of concentrated ultraviolet light on high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    Ruby, D.S.; Schubert, W.K.

    1991-01-01

    The importance of stability in the performance of solar cells is clearly recognized as fundamental. Some of the highest efficiency silicon solar cells demonstrated to date, such as the Point Contact solar cell and the Passivated Emitter solar cell, rely upon the passivation of cell surfaces in order to minimize recombination, which reduces cell power output. Recently, it has been shown that exposure to ultraviolet (UV) light of wavelengths present in the terrestrial solar spectrum can damage a passivating silicon-oxide interface and increase recombination. In this study, we compared the performance of Point Contact and Passivated Emitter solar cells after exposure to UV light. We also examined the effect of UV exposure on oxide-passivated silicon wafers. We found that current Passivated Emitter designs are stable at both one-sun and under concentrated sunlight. The evolution of Point Contact concentrator cell performance shows a clear trend towards more stable cells. 15 refs., 18 figs.

  14. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    SciTech Connect (OSTI)

    Henderson, Kevin; Harper, Ron; Funsten, Herb; MacDonald, Elizabeth [Space Science and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-15

    We have developed and demonstrated a versatile, compact electron source that can produce a mono-energetic electron beam up to 50 mm in diameter from 0.1 to 30 keV with an energy spread of <10 eV. By illuminating a metal cathode plate with a single near ultraviolet light emitting diode, a spatially uniform electron beam with 15% variation over 1 cm{sup 2} can be generated. A uniform electric field in front of the cathode surface accelerates the electrons into a beam with an angular divergence of <1 Degree-Sign at 1 keV. The beam intensity can be controlled from 10 to 10{sup 9} electrons cm{sup -2} s{sup -1}.

  15. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Zheng; Vendrell, Oriol

    2016-01-13

    The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2O)n after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. As a result, for situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20more » to 40 fs driven by strong non-adiabatic effects.« less

  16. Ultraviolet Absorption Spectrum of Malonaldehyde in Water Is Dominated by Solvent-Stabilized Conformations

    SciTech Connect (OSTI)

    Xu, Xuefei; Zheng, Jingjing; Truhlar, Donald G.

    2015-07-01

    Free energy calculations for eight enol isomers of malonaldehyde (MA) and simulation of the ultraviolet (UV) absorption spectrum in both the gas phase and water (pH = 3, where the molecule exists in neutral undeprotonated form) show that in water the two s-trans nonchelated enol conformers of MA become thermodynamically more stable than the internally hydrogen-bonded (“chelated enol”) conformer (CE). The pure CE conformer in water has a slightly red-shifted UV spectrum with respect to that in the gas phase, but the blue-shifted spectrum observed in water at pH 3 is dominated by solvent-stabilized conformations that have negligible populations in the gas phase. Density functional calculations with the solvation model based on density (SMD) and an ensemble-averaged vertical excitation model explain the experimental observations in detail.

  17. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  18. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  19. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  20. radiation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radiation NNSA to conduct Aerial Radiation Assessment Survey over Boston area BOSTON - On April 12 through April 15, the U.S. Department of Energy's National Nuclear Security Administration's (NNSA) will conduct low-altitude helicopter flights around Boston to measure naturally occurring background radiation. Officials from NNSA announced that the... NNSA to Participate in Aerial Radiation Training Exercise in Philadelphia, Pennsylvania (WASHINGTON, D.C.) - On March 21 through March 24, the

  1. Radiation Damage/Materials Modification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation damage materials modification Radiation Damage/Materials Modification High-energy ion irradiation is an important tool for studying radiation damage effects Materials in a nuclear reactor are exposed to extreme temperature and radiation conditions that degrade their physical properties to the point of failure. For example, alpha-decay in nuclear fuels results in dislocation damage to and accumulation of helium and fission gasses in the material. Similarly, neutrons interacting with

  2. ARM - Measurement - Photosynthetically Active Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPhotosynthetically Active Radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Photosynthetically Active Radiation Photosynthetically Active Radiation (PAR) designates the spectral range (wave band) of solar radiation from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis Categories Radiometric Instruments The above measurement is

  3. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  4. Los Alamos Lab: Radiation Protection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Division Leader Shawna Eisele Office Administrator Shirley D. Martinez Senior Advisor Paul Hoover Special Assistant and Issues Management Coordinator Elinor Gwynn Radiation Protection Radiation Protection The Radiation Protection Division supports the Laboratory in accomplishing its mission by helping to ensure radiological work is conducted safely and within requirements established by Occupational Radiation Protection (10 CFR 835) and enforced under the Price Anderson Amendments Act.

  5. Radiation Levels in Real Time?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levels in Real Time? There's an App for That! Gamma radiation levels in the southern Nevada area will soon be accessible around the world at the touch of a finger. Makers of the cell phone application EcoData: Radiation are expanding their global network of radiation monitoring stations to include up-to-date readings from the Community Environmental Monitoring Program (CEMP) based out of southern Nevada. The CEMP was established in 1981 to monitor manmade and natural radiation levels surrounding

  6. Far-ultraviolet observations of comet C/2001 Q4 (NEAT) with FIMS/SPEAR

    SciTech Connect (OSTI)

    Lim, Y.-M.; Min, K.-W.; Feldman, P. D.; Han, W.; Edelstein, J.

    2014-02-01

    We present the results of far-ultraviolet observations of comet C/2001 Q4 (NEAT) that were made with the Far-Ultraviolet Imaging Spectrograph on board the Korean satellite STSAT-1. The observations were conducted in two campaigns during its perihelion approach between 2004 May 8 and 15. Based on the scanning mode observations in the wavelength band of 1400-1700 Å, we have constructed an image of the comet with an angular size of 5°×5°, which corresponds to the central coma region. Several important fluorescence emission lines were detected including S I multiplets at 1429 and 1479 Å, C I multiplets at 1561 and 1657 Å, and the CO A{sup 1}Π-X{sup 1}Σ{sup +} Fourth Positive system; we have estimated the production rates of the corresponding species from the fluxes of these emission lines. The estimated production rate of CO was Q {sub CO} = (2.65 ± 0.63) × 10{sup 28} s{sup –1}, which is 6.2%-7.4% of the water production rate and is consistent with earlier predictions. The average carbon production rate was estimated to be Q{sub C} = ∼1.59 × 10{sup 28} s{sup –1}, which is ∼60% of the CO production rate. However, the observed carbon profile was steeper than that predicted using the two-component Haser model in the inner coma region, while it was consistent with the model in the outer region. The average sulfur production rate was Q{sub S} = (4.03±1.03) × 10{sup 27} s{sup –1}, which corresponds to ∼1% of the water production rate.

  7. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    SciTech Connect (OSTI)

    Heays, A. N.; Ajello, J. M.; Aguilar, A.; Lewis, B. R.; Gibson, S. T.

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 ) extreme-ultraviolet (EUV, 800-1350 ) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}? {sub g} , b {sup 1}? {sub u} , and b'{sup 1}? {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}? {sub u} {sup +}, c{sub n} {sup 1}? {sub u} , and o{sub n} {sup 1}? {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  8. CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE

    SciTech Connect (OSTI)

    Mao Yewei; Kong Xu [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Hao, Cai-Na [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Zhou Xu, E-mail: owen81@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2012-09-20

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-{beta}) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter

  9. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, William J.; Lessing, Paul A.

    2000-12-26

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  10. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, William J.; Lessing, Paul A.

    1998-01-01

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  11. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, W.J.; Lessing, P.A.

    1998-07-28

    A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

  12. Time encoded radiation imaging

    DOE Patents [OSTI]

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  13. Multilayer radiation shield

    DOE Patents [OSTI]

    Urbahn, John Arthur; Laskaris, Evangelos Trifon

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  14. Handheld CZT radiation detector

    DOE Patents [OSTI]

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  15. Semiconductor radiation detector

    DOE Patents [OSTI]

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  16. Terahertz radiation mixer

    DOE Patents [OSTI]

    Wanke, Michael C.; Allen, S. James; Lee, Mark

    2008-05-20

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  17. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    SciTech Connect (OSTI)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  18. RADIATION SHIELDING DEVICE

    DOE Patents [OSTI]

    Wigner, E.P.; Young, G.J.

    1958-09-23

    ABS>A radiation shield that is suitable for the protection of personnel from both gamma rays and nentrons is described. The shield is comprised of a hollow wall and an aggregate consisting of iron and water in approximately equal amounts by volume substantially filling the wall. A means is provided to circulate the water through the wall to cool the shield when in use.

  19. Hyperon radiative decay

    SciTech Connect (OSTI)

    Kaxiras, Efthimios; Moniz, Ernest J.; Soyeur, Madeleine

    1985-08-01

    The radiative decay widths of the low-lying strange baryons are calculated both within the relativistic quark bag model and the nonrelativistic potential model. These widths are found to depend sensitively upon the quark-model dynamics through multiplet mixing and q4q-bar admixtures. The comparison between our calculated results and the very limited experimental data is discussed.

  20. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Format for Proposal Extension Request Proposals are eligible for a one-time extension request. Submit extension requests by Email as a Word or PDF attachment to: Michelle Steger (steger@slac.stanford.edu) Proposal Number: Date of Extension Request: Spokesperson: 1. PROGRESS: Provide a progress report describing work accomplished at SSRL on this proposal to date (1-2 pages) 2. NEW ELEMENTS: Describe any new elements that may add interest to extending the

  1. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, Daniel N.; Dilmanian, F. Avraham; Spanne, Per O.

    1994-01-01

    A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

  2. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  3. DOE 2011 occupational radiation exposure

    SciTech Connect (OSTI)

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  4. DOE 2012 occupational radiation exposure

    SciTech Connect (OSTI)

    none,

    2013-10-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.

  5. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites ...

  6. Influence of Extraterrestrial Radiation on Radiation Portal Monitors

    SciTech Connect (OSTI)

    Keller, Paul E.; Kouzes, Richard T.

    2009-06-01

    Cosmic radiation and solar flares can be a major source of background radiation at the Earths surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

  7. Study of extreme-ultraviolet emission and properties of a coronal streamer from PROBA2/SWAP, HINODE/EIS and Mauna Loa Mk4 observations

    SciTech Connect (OSTI)

    Goryaev, F.; Slemzin, V.; Vainshtein, L. [P.N. Lebedev Physical Institute of the RAS (LPI), Moscow 119991 (Russian Federation); Williams, David R., E-mail: goryaev_farid@mail.ru [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey, RH5 6NT (United Kingdom)

    2014-02-01

    Wide-field extreme-ultraviolet (EUV) telescopes imaging in spectral bands sensitive to 1 MK plasma on the Sun often observe extended, ray-like coronal structures stretching radially from active regions to distances of 1.5-2 R {sub ?}, which represent the EUV counterparts of white-light streamers. To explain this phenomenon, we investigated the properties of a streamer observed on 2010 October 20 and 21, by the PROBA2/SWAP EUV telescope together with the Hinode/EIS (HOP 165) and the Mauna Loa Mk4 white-light coronagraph. In the SWAP 174 band comprising the Fe IX-Fe XI lines, the streamer was detected to a distance of 2 R {sub ?}. We assume that the EUV emission is dominated by collisional excitation and resonant scattering of monochromatic radiation coming from the underlying corona. Below 1.2 R {sub ?}, the plasma density and temperature were derived from the Hinode/EIS data by a line-ratio method. Plasma conditions in the streamer and in the background corona above 1.2 R {sub ?} from the disk center were determined by forward-modeling the emission that best fit the observational data in both EUV and white light. It was found that the plasma in the streamer above 1.2 R {sub ?} is nearly isothermal, with a temperature of T = 1.43 0.08 MK. The hydrostatic scale-height temperature determined from the evaluated density distribution was significantly higher (1.72 0.08 MK), which suggests the existence of outward plasma flow along the streamer. We conclude that, inside the streamer, collisional excitation provided more than 90% of the observed EUV emission, whereas, in the background corona, the contribution of resonance scattering became comparable with that of collisions at R ? 2 R {sub ?}.

  8. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, H.O.; Martin, D.C.; Lampton, M.L.

    1983-07-26

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.

  9. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, Hal O.; Martin, Donn C.; Lampton, Michael L.

    1983-01-01

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.

  10. RADIATION SHIELDING COMPOSITION

    DOE Patents [OSTI]

    Dunegan, H.L.

    1963-01-29

    A light weight radiation shielding composition is described whose mechanical and radiological properties can be varied within wide limits. The composition of this shielding material consists of four basic ingredients: powder of either Pb or W, a plastic resin, a resin plasticizer, and a polymerization catalyst to promote an interaction of the plasticizer with the plastic resin. Air may be mixed into the above ingredients in order to control the density of the final composition. For equivalent gamma attenuation, the shielding composition weighs one-third to one-half as much as conventional Pb shielding. (AEC)

  11. RADIATION DETECTOR SYSTEM

    DOE Patents [OSTI]

    Gundlach, J.C.; Kelley, G.G.

    1958-02-25

    This patent relates to radiation detection devices and presents a unique detection system especialiy desirable for portable type instruments using a Geiger-Mueller for a high voltage battery, thereby reducing the size and weight of the instrument, by arranging a one-shot multivibrator to recharge a capacitance applying operating potential to tho Geiger-Mueller tube each time a nuclear particle is detected. When detection occurs, the multivibrator further delivers a pulse to an appropriate indicator doing away with the necessity for the pulse amplifier conventionally intermediate between the detector and indicator in pulse detection systems.

  12. Analysis of Contribution from Edge Radiation to Optical Diffraction Radiation

    SciTech Connect (OSTI)

    C. Liu, P. Evtushenko, A. Freyberger, C. Liu, A.H. Lumpkin

    2009-05-01

    Beam size measurement with near-field optical diffraction radiation (ODR) has been carried out successfully at CEBAF. The ODR station is installed on the Hall-A beam line after eight bending magnets. The ODR images were affected by an unexpected radiation. Some calculations for analyzing the source of the radiation will be presented. Furthermore, two schemes will be proposed to alleviate the contamination.

  13. Proportional counter radiation camera

    DOE Patents [OSTI]

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  14. Radiation Embrittlement Archive Project

    SciTech Connect (OSTI)

    Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T; Phillips, Rick; Erickson, Marjorie A; Kirk, Mark T; Stevens, Gary L

    2013-01-01

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  15. DOE 2008 occupational radiation exposure

    SciTech Connect (OSTI)

    none,

    2009-10-01

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE. The DOE 2008 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. This report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  16. DOE 2010 occupational radiation exposure

    SciTech Connect (OSTI)

    none,

    2011-11-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2010 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  17. The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN

    SciTech Connect (OSTI)

    Gaddy, BE; Bryan, Z; Bryan, I; Xie, JQ; Dalmau, R; Moody, B; Kumagai, Y; Nagashima, T; Kubota, Y; Kinoshita, T; Koukitu, A; Kirste, R; Sitar, Z; Collazo, R; Irving, DL

    2014-05-19

    Co-doping AlN crystals with Si is found to suppress the unwanted 4.7 eV (265 nm) deep ultraviolet absorption associated with isolated carbon acceptors common in materials grown by physical vapor transport. Density functional theory calculations with hybrid functionals demonstrate that silicon forms a stable nearest-neighbor defect complex with carbon. This complex is predicted to absorb at 5.5 eV and emit at or above 4.3 eV. Absorption and photoluminescence measurements of co-doped samples confirm the presence of the predicted C-N-Si-Al complex absorption and emission peaks and significant reduction of the 4.7 eV absorption. Other sources of deep ultraviolet absorption in AlN are also discussed. (C) 2014 AIP Publishing LLC.

  18. Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode

    SciTech Connect (OSTI)

    Kang, Jang-Won; Choi, Yong-Seok; Goo Kang, Chang; Hun Lee, Byoung [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Byeong-Hyeok [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Tu, C. W. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407 (United States); Park, Seong-Ju, E-mail: sjpark@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-02-03

    We report on ultraviolet emission from a multi-layer graphene (MLG)/MgZnO/ZnO light-emitting diodes (LED). The p-type MLG and MgZnO in the MLG/MgZnO/ZnO LED are used as transparent hole injection and electron blocking layers, respectively. The current-voltage characteristics of the MLG/MgZnO/ZnO LED show that current transport is dominated by tunneling processes in the MgZnO barrier layer under forward bias conditions. The holes injected from p-type MLG recombine efficiently with the electrons accumulated in ZnO, and the MLG/MgZnO/ZnO LED shows strong ultraviolet emission from the band edge of ZnO and weak red-orange emission from the deep levels of ZnO.

  19. Deterministic methods in radiation transport

    SciTech Connect (OSTI)

    Rice, A.F.; Roussin, R.W.

    1992-06-01

    The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community.

  20. ARM - Measurement - Radiative heating rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  1. CASL - Radiation Transport Methods Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Transport Methods Update The Radiation Transport Methods (RTM) focus area is responsible for the development of methods, algorithms, and implementations of radiation transport methods as they apply to the design and analysis of light water nuclear reactors. the fundamental areas of investigation in RTM include high-order deterministic transport low-order transport approximations multigroup cross section generation depletion as it applies to in-core neutronics and material coupling

  2. Radiator Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer

  3. Shining New Light on Protein Structure and Function thru Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy

    SciTech Connect (OSTI)

    Wallace,B.

    2005-01-01

    Circular dichroism (CD) spectroscopy has been employed for more than 50 years for the study of the structure and dynamics of proteins. It is now a workhorse of structural biology, finding applications in the determination of protein secondary structures, monitoring and deciphering protein folding, examining macromolecular interactions, and defining and quantitating protein-ligand binding. For the most part, CD studies have used laboratory-based instruments to measure electronic transitions in the far (190-250 nm), near ultraviolet (UV) (250-300 nm) and visible (> 400 nm) wavelength ranges, which have enabled studies of polypeptide backbones, aromatic amino acids and colored chromophores, respectively. Additional transitions exist at lower wavelengths in the vacuum ultraviolet (VUV) region (<190 nm); however, these transitions tend to be inaccessible to conventional CD instruments, due to the low intensity of their Xenon arc lamp light sources at wavelengths below190 nm. In 1980, the first synchrotron-based CD instruments were constructed, which took advantage of the high photon flux available from synchrotron light sources at these wavelengths. However, the technique of synchrotron radiation circular dichroism (SRCD) did not really take off until enabling studies had been done to show that additional data were obtainable for proteins in the VUV region, that these data were readily accessible with modern beamlines, and most importantly, that new applications of these data existed in structural molecular biology.

  4. Removal of pollutant compounds from water supplies using ozone, ultraviolet light, and a counter, current packed column. Master's thesis

    SciTech Connect (OSTI)

    Kelly, E.L.

    1991-01-01

    Many water pollutants are determined to be carcinogenic and often appear in very low concentrations and still pose a health risk. Conventional water treatment processes cannot remove these contaminants and there is a great demand for the development of alternative removal technologies. The use of ozone and ultraviolet light in a counter current packed column could prove to be an effective treatment process to remove these contaminants.

  5. Time-resolved extreme-ultraviolet spectroscopy of laser-produced plasmas originating at the parylene layer of microballon targets

    SciTech Connect (OSTI)

    Griem, H.R.; Moreno, J.

    1991-03-01

    In experiments this past year at the University of Rochester's Laboratory for Laser Energetics we obtained time-integrated and time-resolved spectra from the ultraviolet to the x-ray region. We have investigated various phenomena in laser-produced plasmas including spectral line broadening, plasma expansion velocities, ionization and recombination of low-Z materials in spherical targets, and the formation of satellites near some resonance lines. In addition we have improved our spectroscopic instrumentation.

  6. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  7. Scintillator Waveguide For Sensing Radiation

    DOE Patents [OSTI]

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  8. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  9. Presentation: Synchrotron Radiation Light Sources

    Broader source: Energy.gov [DOE]

    A briefing to the Secretary's Energy Advisory Board on Synchrotron Radiation Light Sources delivered by Patricia Dehmer, U.S. Department of Energy

  10. Radiator Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The New York State Energy Research & Development Authority estimates that 15 to 30 percent of the heat is wasted by overheating of steam buildings. Radiator Labs developed a ...

  11. A Molecular- and Nano-Electronics Test (MONET) platform fabricated using extreme ultraviolet lithography.

    SciTech Connect (OSTI)

    Dentinger, Paul M.; Cardinale, Gregory F.; Hunter, Luke L.; Talin, Albert Alec

    2003-12-01

    We describe the fabrication and characterization of an electrode array test structure, designed for electrical probing of molecules and nanocrystals. We use Extreme Ultraviolet Lithography (EUVL) to define the electrical test platform features. As fabricated, the platform includes nominal electrode gaps of 0 nm, 40 nm, 60 nm, and 80 nm. Additional variation in electrode gap is achieved by controlling the exposure conditions, such as dose and focus. To enable EUVL based nanofabrication, we develop a novel bi-level photoresist process. The bi-level photoresist consists of a combination of a commercially available polydimethylglutarimide (PMGI) bottom layer and an experimental EUVL photoresist top (imaging) layer. We measure the sensitivity of PMGI to EUV exposure dose as a function of photoresist pre-bake temperature, and using this data, optimize a metal lift-off process. Reliable fabrication of 700 Angstrom thick Au structures with sub-1000 Angstrom critical dimensions is achieved, even without the use of a Au adhesion layer, such as Ti. Several test platforms are used to characterize electrical properties of organic molecules deposited as self assembled monolayers.

  12. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2005-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  13. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  14. Distinguishing Unfolding and Functional Conformational Transitions of Calmodulin Using Ultraviolet Resonance Raman Spectroscopy

    SciTech Connect (OSTI)

    Jones, Eric M.; Balakrishnan, G.; Squier, Thomas C.; Spiro, Thomas

    2014-06-14

    Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this paper, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca2+ binding. This spectral difference is entirely due to differences in teritary contacts at the inter-domain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.

  15. Effective interface state effects in hydrogenated amorphous-crystalline silicon heterostructures using ultraviolet laser photocarrier radiometry

    SciTech Connect (OSTI)

    Melnikov, A.; Mandelis, A.; Halliop, B.; Kherani, N. P.

    2013-12-28

    Ultraviolet photocarrier radiometry (UV-PCR) was used for the characterization of thin-film (nanolayer) intrinsic hydrogenated amorphous silicon (i-a-Si:H) on c-Si. The small absorption depth (approximately 10?nm at 355?nm laser excitation) leads to strong influence of the nanolayer parameters on the propagation and recombination of the photocarrier density wave (CDW) within the layer and the substrate. A theoretical PCR model including the presence of effective interface carrier traps was developed and used to evaluate the transport parameters of the substrate c-Si as well as those of the i-a-Si:H nanolayer. Unlike conventional optoelectronic characterization methods such as photoconductance, photovoltage, and photoluminescence, UV-PCR can be applied to more complete quantitative characterization of a-Si:H/c-Si heterojunction solar cells, including transport properties and defect structures. The quantitative results elucidate the strong effect of a front-surface passivating nanolayer on the transport properties of the entire structure as the result of effective a-Si:H/c-Si interface trap neutralization through occupation. A further dramatic improvement of those properties with the addition of a back-surface passivating nanolayer is observed and interpreted as the result of the interaction of the increased excess bulk CDW with, and more complete occupation and neutralization of, effective front interface traps.

  16. On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate)

    SciTech Connect (OSTI)

    Prasad, Manish; Conforti, Patrick F.; Garrison, Barbara J.

    2007-05-15

    The role of chemical reactions is investigated versus the thermal and mechanical processes occurring in a polymer substrate during irradiation by a laser pulse and subsequent ablation. Molecular dynamics simulations with an embedded Monte Carlo based reaction scheme were used to study ultraviolet ablation of poly(methyl methacrylate) at 157 nm. We discuss the onset of ablation, the mechanisms leading to ablation, and the role of stress relaxation of the polymer matrix during ablation. Laser induced heating and chemical decomposition of the polymer substrate are considered as ablation pathways. It is shown that heating the substrate can set off ablation via mechanical failure of the material only for very short laser pulses. For longer pulses, the mechanism of ejection is thermally driven limited by the critical number of bonds broken in the substrate. Alternatively, if the photon energy goes towards direct bond breaking, it initiates chemical reactions, polymer unzipping, and formation of gaseous products, leading to a nearly complete decomposition of the top layers of substrates. The ejection of small molecules has a hollowing out effect on the weakly connected substrates which can lead to lift-off of larger chunks. Excessive pressure buildup upon the creation of gaseous molecules does not lead to enhanced yield. The larger clusters are thermally ejected, and an entrainment of larger polymer fragments in gaseous molecules is not observed.

  17. High-performance deep ultraviolet photodetectors based on ZnO quantum dot assemblies

    SciTech Connect (OSTI)

    Xu, Xiaoyong; Xu, Chunxiang E-mail: jghu@yzu.edu.cn; Hu, Jingguo E-mail: jghu@yzu.edu.cn

    2014-09-14

    A high-performance ZnO quantum dots (QDs)-based ultraviolet (UV) photodetector has been successfully fabricated via the self-assembly of QDs on the Au interdigital electrode. The broadened band gap in ZnO QDs makes the device has the highly selective response for the deep UV detection. The unique QD-QD junction barriers similar to back-to-back Schottky barriers dominate the conductance of the QD network and the UV light-induced barrier-height modulation plays a crucial role in enhancing the photoresponsivity and the response speed. Typically, the as-fabricated device exhibits the fast response and recovery times of within 1 s, the deep UV selectivity of less than 340 nm, and the stable repeatability with on/off current ratio over 10, photoresponsivity of 5.0410A/W, and photocurrent gain of 1.910, demonstrating that the ZnO QD network is a superior building block for deep UV photodetectors.

  18. Characterizing mid-ultraviolet to optical light curves of nearby type IIn supernovae

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    de la Rosa, Janie; Roming, Pete; Pritchard, Tyler; Fryer, Chris

    2016-03-21

    Here, we present early mid-ultraviolet and optical observations of Type IIn supernovae (SNe IIn) observed from 2007 to 2013. Our results focus on the properties of UV light curves: peak absolute magnitudes, temporal decay, and color evolution. During early times, this sample demonstrates that UV light decays faster than optical, and each event transitions from a predominantly UV-bright phase to an optically bright phase. In order to understand early UV behavior, we generate and analyze the sample's blackbody luminosity, temperature, and radius as the SN ejecta expand and cool. Since most of our observations were detected post maximum luminosity, wemore » introduce a method for estimating the date of peak magnitude. When our observations are compared based on filter, we find that even though these SNe IIn vary in peak magnitudes, there are similarities in UV decay rates. We use a simple semi-analytical SN model in order to understand the effects of the explosion environment on our UV observations. Understanding the UV characteristics of nearby SNe IIn during an early phase can provide valuable information about the environment surrounding these explosions, leading us to evaluating the diversity of observational properties in this subclass.« less

  19. Gold nanoparticles formed directly on a membrane by ultraviolet light irradiation

    SciTech Connect (OSTI)

    Qian, Hui Chen, Jian; Shen, Wei-Zheng; Kawasaki, Masahiro; Egerton, Ray F.

    2015-06-08

    There have been numerous research efforts directed towards the synthesis of gold (Au) nanoparticles (NPs) and the understanding of their formation, so that their size, shape, and stability can be well controlled for desired applications. Here, we report a dry photo-reduced method of Au NP formation directly on a membrane, such as a carbon thin film or a quartz slide. The evolution of Au NP formation was revealed by ex-situ experiments in an aberration-corrected scanning transmission electron microscope. The membranes were immersed in Au{sup 3+} solution before being taken out and quickly dried in ambient air at room temperature, then irradiated with ultraviolet (UV) light with wavelengths of 189 nm and 254 nm in a low-pressure chamber. The results show that Au{sup 3+} ions and ion clusters self-assembled on the membrane surface before UV irradiation and that solid Au NPs with sizes of 3 nm–12 nm were formed after UV irradiation. Annealing at 40 °C for about 30 min helped to further stabilize the nanoparticles. The Au NPs were uniform and well dispersed, and should find applications in the electron microscopy field, for example.

  20. The WFPC2 ultraviolet survey: The blue straggler population in NGC 5824

    SciTech Connect (OSTI)

    Sanna, N.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B.; Miocchi, P.

    2014-01-01

    We have used a combination of high-resolution Hubble Space Telescope Wide Field Planetary Camera 2 and wide-field ground-based observations, in ultraviolet and optical bands, to study the blue straggler star population of the massive outer halo globular cluster NGC 5824 over its entire radial extent. We have computed the center of the cluster and constructed the radial density profile from detailed star counts. The profile is well reproduced by a Wilson model with a small core (r{sub c} ? 4.''4) and a concentration parameter c ? 2.74. We also present the first age determination for this cluster. From a comparison with isochrones, we find t = 13 0.5 Gyr. We discuss this result in the context of the observed age-metallicity relation of Galactic globular clusters. A total of 60 bright blue stragglers has been identified. Their radial distribution is found to be bimodal, with a central peak, a well-defined minimum at r ? 20'', and an upturn at large radii. In the framework of the dynamical clock recently defined by Ferraro et al., this feature suggests that NGC 5824 is a cluster of intermediate dynamical age.

  1. Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED)

    SciTech Connect (OSTI)

    Kurose, N. Aoyagi, Y.; Shibano, K.; Araki, T.

    2014-02-15

    A vertical ultraviolet (UV) light-emitting diode (LED) that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n{sup +} Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH{sub 3} and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400 nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

  2. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  3. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    SciTech Connect (OSTI)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  4. Characterization of a radio frequency carbon nanotube growth plasma by ultraviolet absorption and optical emission spectroscopy

    SciTech Connect (OSTI)

    Cruden, Brett A.; Meyyappan, M.

    2005-04-15

    Radio frequency driven methane/hydrogen plasmas for carbon nanotube growth at pressures between 0.5 and 20 Torr, bias power from 0 to 110 W, and inductive coil power from 0 to 200 W are characterized via optical diagnostics. Ultraviolet absorption spectroscopy is used for quantitative determination of CH{sub 3} radical density for these systems, giving densities on the order of 10{sup 13} cm{sup -3}, accounting for approximately 0.1% of the plasma neutral content. Emission data are also analyzed to extract neutral gas temperatures from the H{sub 2} spectrum and electron densities and temperatures and approximate atomic H densities in the system. Neutral temperature is estimated between 700 and 1100 K, though the lower electrode is heated to 1273 K. Electron temperature is estimated to be between 2.5 and 3.5 eV in the high-energy (>12 eV) portion of the electron energy distribution, and the data suggest an overall non-Maxwellian distribution of electrons. The dissociation of hydrogen is estimated at around 0.1%. Dependencies on power and pressure are explored, indicating more efficient ionization, dissociation, and electron heating at lower pressure and higher power. The absence of any dependency on coil power suggests the plasma is operating in a noninductive mode for these conditions.

  5. THE EXTREME ULTRAVIOLET DEFICIT AND MAGNETICALLY ARRESTED ACCRETION IN RADIO-LOUD QUASARS

    SciTech Connect (OSTI)

    Punsly, Brian

    2014-12-20

    The Hubble Space Telescope composite quasar spectra presented in Telfer et al. show a significant deficit of emission in the extreme ultraviolet for the radio-loud component of the quasar population (RLQs) compared to the radio-quiet component of the quasar population. The composite quasar continuum emission between 1100 Å and ∼580 Å is generally considered to be associated with the innermost regions of the accretion flow onto the central black hole. The deficit between 1100 Å and 580 Å in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. It is proposed that this can be the result of islands of large-scale magnetic flux in RLQs that are located close to the central black hole that remove energy from the accretion flow as Poynting flux (sometimes called magnetically arrested accretion). These magnetic islands are natural sites for launching relativistic jets. Based on the Telfer et al. data and the numerical simulations of accretion flows in Penna et al., the magnetic islands are concentrated between the event horizon and an outer boundary of <2.8 M (in geometrized units) for rapidly rotating black holes and <5.5 M for modestly rotating black holes.

  6. Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field

    SciTech Connect (OSTI)

    Roy, Amitava E-mail: aroy@barc.gov.in; Murtaza Hassan, Syed; Harilal, Sivanandan S.; Hassanein, Ahmed; Endo, Akira; Mocek, Tomas

    2014-05-15

    We investigated the role of a guiding magnetic field on extreme ultraviolet (EUV) and ion emission from a laser produced Sn plasma for various laser pulse duration and intensity. For producing plasmas, planar slabs of pure Sn were irradiated with 1064?nm, Nd:YAG laser pulses with varying pulse duration (515?ns) and intensity. A magnetic trap was fabricated with the use of two neodymium permanent magnets which provided a magnetic field strength ?0.5?T along the plume expansion direction. Our results indicate that the EUV conversion efficiency do not depend significantly on applied axial magnetic field. Faraday Cup ion analysis of Sn plasma show that the ion flux reduces by a factor of ?5 with the application of an axial magnetic field. It was found that the plasma plume expand in the lateral direction with peak velocity measured to be ?1.2?cm/?s and reduced to ?0.75?cm/?s with the application of an axial magnetic field. The plume expansion features recorded using fast photography in the presence and absence of 0.5?T axial magnetic field are simulated using particle-in-cell code. Our simulation results qualitatively predict the plasma behavior.

  7. JOINT EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JOINT EPADOE STATEMENT: Radiation Monitors Confirm That No Radiation Levels of Concern Have Reached the United States JOINT EPADOE STATEMENT: Radiation Monitors Confirm That No ...

  8. Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jin, Qiaoling; Vogt, Stefan; Lai, Barry; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Ward, Jesse; Deng, Junjing; Mak, Rachel; Moonier, Nena; et al

    2015-02-23

    Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologicallymore » important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.« less

  9. Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis

    SciTech Connect (OSTI)

    Jin, Qiaoling; Vogt, Stefan; Lai, Barry; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Ward, Jesse; Deng, Junjing; Mak, Rachel; Moonier, Nena; Jacobsen, Chris; Brody, James P.

    2015-02-23

    Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologically important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.

  10. Coastal-inland solar radiation difference study. Final report

    SciTech Connect (OSTI)

    Bach, W.D. Jr.; Vukovich, F.M.

    1980-04-01

    The purpose of this study was to quantify the characteristics of solar insolation in the coastal zone and to determine the effect of the sea breeze circulation on the global insolation. In order to satisfy these objectives, a six station sampling network was established in the coastal plain of southeastern North Carolina, where previous evidence has indicated that the sea breeze circulation is almost a daily occurrence from late May through October. Three sites (Sloop Point, Onslow Beach, and Cape Fear Technical Institute (CFTI)) were located near the coast (coastal sites) to assess the insolation at the coast. A site (Clinton) was located in an area seldom affected by the sea breeze (about 100 km from the coast). Two additional sites, Wallace and Ellis Airport, located between the coastal sites and the control site, were to be used to assess the transient impact of the sea breeze upon the insolation. Pyranometers were located at each site to measure the global insolation. Direct normal insolation measured by a pyrheliometer and ultraviolet radiation measured by uv radiometers were observed at the Sloop Point and Clinton sites only. Data were collected during the calendar year 1978. The results of the study indicated that the global insolation had greater variability over the network during the summer season (June, July, and August). During the summer, there was a systematicdiurnal variation of the difference in global insolation between the inland and the coastal sites.

  11. Radiation imaging system

    DOE Patents [OSTI]

    Immel, David M.; Bobbit, III, John T.; Plummer, Jean R.; Folsom, Matthew D.; Serrato, Michael G.

    2016-03-22

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  12. Thermostatic Radiator Valve Evaluation

    SciTech Connect (OSTI)

    Dentz, J.; Ansanelli, E.

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market. In this project, the ARIES team sought to better understand the current usage of TRVs by key market players in steam and hot water heating and to conduct limited experiments on the effectiveness of new and old TRVs as a means of controlling space temperatures and reducing heating fuel consumption. The project included a survey of industry professionals, a field experiment comparing old and new TRVs, and cost-benefit modeling analysis using BEopt™ (Building Energy Optimization software).

  13. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Halavanau, A.; Piot, P.

    2016-03-03

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge ismore » used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.« less

  14. Simulation of a cascaded longitudinal space charge amplifier for broadband radiation production using a superconducting linac

    SciTech Connect (OSTI)

    Halavanau, A.; Piot, P.

    2015-10-02

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge is used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab

  15. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOE Patents [OSTI]

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  16. Radiation camera motion correction system

    DOE Patents [OSTI]

    Hoffer, P.B.

    1973-12-18

    The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)

  17. Ultraviolet observations of Super-Chandrasekhar mass type Ia supernova candidates with swift UVOT

    SciTech Connect (OSTI)

    Brown, Peter J.; Smitka, Michael T.; Krisciunas, Kevin; Wang, Lifan; Kuin, Paul; De Pasquale, Massimiliano; Scalzo, Richard; Holland, Stephen; Milne, Peter

    2014-05-20

    Among Type Ia supernovae (SNe Ia), a class of overluminous objects exist whose ejecta mass is inferred to be larger than the canonical Chandrasekhar mass. We present and discuss the UV/optical photometric light curves, colors, absolute magnitudes, and spectra of three candidate Super-Chandrasekhar mass SNe—2009dc, 2011aa, and 2012dn—observed with the Swift Ultraviolet/Optical Telescope. The light curves are at the broad end for SNe Ia, with the light curves of SN 2011aa being among the broadest ever observed. We find all three to have very blue colors which may provide a means of excluding these overluminous SNe from cosmological analysis, though there is some overlap with the bluest of 'normal' SNe Ia. All three are overluminous in their UV absolute magnitudes compared to normal and broad SNe Ia, but SNe 2011aa and 2012dn are not optically overluminous compared to normal SNe Ia. The integrated luminosity curves of SNe 2011aa and 2012dn in the UVOT range (1600-6000 Å) are only half as bright as SN 2009dc, implying a smaller {sup 56}Ni yield. While it is not enough to strongly affect the bolometric flux, the early time mid-UV flux makes a significant contribution at early times. The strong spectral features in the mid-UV spectra of SNe 2009dc and 2012dn suggest a higher temperature and lower opacity to be the cause of the UV excess rather than a hot, smooth blackbody from shock interaction. Further work is needed to determine the ejecta and {sup 56}Ni masses of SNe 2011aa and 2012dn and to fully explain their high UV luminosities.

  18. Tin removal from extreme ultraviolet collector optics by inductively coupled plasma reactive ion etching

    SciTech Connect (OSTI)

    Shin, H.; Srivastava, S. N.; Ruzic, D. N. [Center for Plasma Material Interactions, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2008-05-15

    Tin (Sn) has the advantage of delivering higher conversion efficiency compared to other fuel materials (e.g., Xe or Li) in an extreme ultraviolet (EUV) source, a necessary component for the leading next generation lithography. However, the use of a condensable fuel in a lithography system leads to some additional challenges for maintaining a satisfactory lifetime of the collector optics. A critical issue leading to decreased mirror lifetime is the buildup of debris on the surface of the primary mirror that comes from the use of Sn in either gas discharge produced plasma (GDPP) or laser produced plasma (LPP). This leads to a decreased reflectivity from the added material thickness and increased surface roughness that contributes to scattering. Inductively coupled plasma reactive ion etching with halide ions is one potential solution to this problem. This article presents results for etch rate and selectivity of Sn over SiO{sub 2} and Ru. The Sn etch rate in a chlorine plasma is found to be much higher (of the order of hundreds of nm/min) than the etch rate of other materials. A thermally evaporated Sn on Ru sample was prepared and cleaned using an inductively coupled plasma etching method. Cleaning was confirmed using several material characterization techniques. Furthermore, a collector mock-up shell was then constructed and etching was performed on Sn samples prepared in a Sn EUV source using an optimized etching recipe. The sample surface before and after cleaning was analyzed by atomic force microscopy, x-ray photoelectron spectroscopy, and Auger electron spectroscopy. The results show the dependence of etch rate on the location of Sn samples placed on the collector mock-up shell.

  19. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect (OSTI)

    Tripathi, Durgesh [Inter-University Centre for Astronomy and Astrophysics, Pune University Campus, Pune 411007 (India); Mason, Helen E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Klimchuk, James A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  20. ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE

    SciTech Connect (OSTI)

    Martino, C.; King, W.; Ketusky, E.

    2012-07-10

    In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

  1. A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave

    SciTech Connect (OSTI)

    Shen, Yuandeng; Tian, Zhanjun; Zhao, Ruijuan; Ichimoto, Kiyoshi; Ishii, Takako T.; Shibata, Kazunari

    2014-05-10

    Winking (oscillating) filaments have been observed for many years. However, observations of successive winking filaments in one event have not yet been reported. In this paper, we present the observations of a chain of winking filaments and a subsequent jet that are observed right after the X2.1 flare in AR11283. The event also produced an extreme-ultraviolet (EUV) wave that has two components: an upward dome-like wave (850 km s{sup 1}) and a lateral surface wave (554 km s{sup 1}) that was very weak (or invisible) in imaging observations. By analyzing the temporal and spatial relationships between the oscillating filaments and the EUV waves, we propose that all the winking filaments and the jet were triggered by the weak (or invisible) lateral surface EUV wave. The oscillation of the filaments last for two or three cycles, and their periods, Doppler velocity amplitudes, and damping times are 11-22 minutes, 6-14 km s{sup 1}, and 25-60 minutes, respectively. We further estimate the radial component magnetic field and the maximum kinetic energy of the filaments, and they are 5-10 G and ?10{sup 19} J, respectively. The estimated maximum kinetic energy is comparable to the minimum energy of ordinary EUV waves, suggesting that EUV waves can efficiently launch filament oscillations on their path. Based on our analysis results, we conclude that the EUV wave is a good agent for triggering and connecting successive but separated solar activities in the solar atmosphere, and it is also important for producing solar sympathetic eruptions.

  2. Overlying extreme-ultraviolet arcades preventing eruption of a filament observed by AIA/SDO

    SciTech Connect (OSTI)

    Chen, Huadong; Ma, Suli; Zhang, Jun

    2013-11-20

    Using the multi-wavelength data from the Atmospheric Imaging Assembly/Solar Dynamic Observatory (AIA/SDO) and the Sun Earth Connection Coronal and Heliospheric Investigation/Solar Terrestrial Relations Observatory (SECCHI/STEREO), we report a failed filament eruption in NOAA AR 11339 on 2011 November 3. The eruption was associated with an X1.9 flare, but without any coronal mass ejection (CME), coronal dimming, or extreme ultraviolet (EUV) waves. Some magnetic arcades above the filament were observed distinctly in EUV channels, especially in the AIA 94 and 131 wavebands, before and during the filament eruption process. Our results show that the overlying arcades expanded along with the ascent of the filament at first until they reached a projected height of about 49 Mm above the Sun's surface, where they stopped. The following filament material was observed to be confined by the stopped EUV arcades and not to escape from the Sun. After the flare, a new filament formed at the low corona where part of the former filament remained before its eruption. These results support that the overlying arcades play an important role in preventing the filament from successfully erupting outward. We also discuss in this paper the EUV emission of the overlying arcades during the flare. It is rare for a failed filament eruption to be associated with an X1.9 class flare, but not with a CME or EUV waves. Therefore, this study also provides valuable insight into the triggering mechanism of the initiation of CMEs and EUV waves.

  3. Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-Infeld

    SciTech Connect (OSTI)

    Jimnez, Jose Beltrn; Heisenberg, Lavinia; Olmo, Gonzalo J. E-mail: Lavinia.Heisenberg@unige.ch

    2014-11-01

    We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.

  4. Patient-Physician Communication About Complementary and Alternative Medicine in a Radiation Oncology Setting

    SciTech Connect (OSTI)

    Ge Jin; Fishman, Jessica; Annenberg School for Communication at University of Pennsylvania, University of Pennsylvania Health System, Philadelphia, Pennsylvania ; Vapiwala, Neha; Department of Radiation Oncology, University of Pennsylvania Health System, Philadelphia, Pennsylvania ; Li, Susan Q.; Desai, Krupali; Xie, Sharon X.; Mao, Jun J.

    2013-01-01

    Purpose: Despite the extensive use of complementary and alternative medicine (CAM) among cancer patients, patient-physician communication regarding CAM therapies remains limited. This study quantified the extent of patient-physician communication about CAM and identified factors associated with its discussion in radiation therapy (RT) settings. Methods and Materials: We conducted a cross-sectional survey of 305 RT patients at an urban academic cancer center. Patients with different cancer types were recruited in their last week of RT. Participants self-reported their demographic characteristics, health status, CAM use, patient-physician communication regarding CAM, and rationale for/against discussing CAM therapies with physicians. Multivariate logistic regression was used to identify relationships between demographic/clinical variables and patients' discussion of CAM with radiation oncologists. Results: Among the 305 participants, 133 (43.6%) reported using CAM, and only 37 (12.1%) reported discussing CAM therapies with their radiation oncologists. In multivariate analyses, female patients (adjusted odds ratio [AOR] 0.45, 95% confidence interval [CI] 0.21-0.98) and patients with full-time employment (AOR 0.32, 95% CI 0.12-0.81) were less likely to discuss CAM with their radiation oncologists. CAM users (AOR 4.28, 95% CI 1.93-9.53) were more likely to discuss CAM with their radiation oncologists than were non-CAM users. Conclusions: Despite the common use of CAM among oncology patients, discussions regarding these treatments occur rarely in the RT setting, particularly among female and full-time employed patients. Clinicians and patients should incorporate discussions of CAM to guide its appropriate use and to maximize possible benefit while minimizing potential harm.

  5. Radiation detection system

    DOE Patents [OSTI]

    Riedel, Richard A.; Wintenberg, Alan L.; Clonts, Lloyd G.; Cooper, Ronald G.

    2012-02-14

    A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.

  6. Kevin Harms | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel File Systems High Performance Computing and Storage Platform Analysis and Benchmarking Projects ALCF Darshan: HPC IO Characterization Tool Triton CODES: Enabling...

  7. Radiation-induced lung injury

    SciTech Connect (OSTI)

    Rosiello, R.A.; Merrill, W.W. )

    1990-03-01

    The use of radiation therapy is limited by the occurrence of the potentially fatal clinical syndromes of radiation pneumonitis and fibrosis. Radiation pneumonitis usually becomes clinically apparent from 2 to 6 months after completion of radiation therapy. It is characterized by fever, cough, dyspnea, and alveolar infiltrates on chest roentgenogram and may be difficult to differentiate from infection or recurrent malignancy. The pathogenesis is uncertain, but appears to involve both direct lung tissue toxicity and an inflammatory response. The syndrome may resolve spontaneously or may progress to respiratory failure. Corticosteroids may be effective therapy if started early in the course of the disease. The time course for the development of radiation fibrosis is later than that for radiation pneumonitis. It is usually present by 1 year following irradiation, but may not become clinically apparent until 2 years after radiation therapy. It is characterized by the insidious onset of dyspnea on exertion. It most often is mild, but can progress to chronic respiratory failure. There is no known successful treatment for this condition. 51 references.

  8. DOE 2013 occupational radiation exposure

    SciTech Connect (OSTI)

    none,

    2014-11-01

    The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.

  9. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOE Patents [OSTI]

    Kublak, Glenn D.; Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  10. RADIATION DETECTING AND TELEMETERING SYSTEM

    DOE Patents [OSTI]

    Richards, H.K.

    1959-12-15

    A system is presented for measuring ionizing radiation at several remote stations and transmitting the measured information by radio to a central station. At each remote station a signal proportioned to the counting rate is applied across an electrical condenser made of ferroelectric material. The voltage across the condenser will vary as a function of the incident radiation and the capacitance of the condenser will vary accordingly. This change in capacitance is used to change the frequency of a crystalcontrolled oscillator. The output of the oscillator is coupled to an antenna for transmitting a signal proportional to the incident radiation.

  11. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  12. Oak Rigde Associated Universities (ORAU) Radiation Emergency...

    Broader source: Energy.gov (indexed) [DOE]

    Rigde Associated Universities (ORAU) Radiation Emergency Assistance CenterTraining Site (REACTS), ORAU Director Oak Rigde Associated Universities (ORAU) Radiation Emergency ...

  13. STANFORD SYNCHROTRON RADIATION LIGHTSOURCE The Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STANFORD SYNCHROTRON RADIATION LIGHTSOURCE The Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory produces extremely bright X-rays used to study our ...

  14. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-027 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  15. AUDIT REPORT Atmospheric Radiation Measurement Climate Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmospheric Radiation Measurement Climate Research Facility OAI-M-16-10 May 2016 U.S. ... Audit Report on the "Atmospheric Radiation Measurement Climate Research Facility" ...

  16. Support - Facilities - Radiation Effects Facility / Cyclotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During experiments at the Radiation Effects Facility users are assisted by the experienced ... shops are available to the users of the Radiation Effects Facility for design, ...

  17. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  18. Surface Radiation Budget from ARM Satellite Retrievals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Radiation Budget from ARM Satellite Retrievals P. Minnis, D. P. Kratz, and T. P. ... Hampton, Virginia Introduction Since the Atmospheric Radiation Measurement (ARM) Program ...

  19. ORISE: REAC/TS Radiation Accident Registries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accident Registries The Radiation Emergency Assistance CenterTraining Site (REACTS) at the Oak Ridge Institute for Science and Education (ORISE) maintains a number of radiation ...

  20. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  1. Fluorescent Nanoparticles for Radiation DetectionFluorescent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Fluorescent Nanoparticles for Radiation DetectionFluorescent Nanoparticles for Radiation Detection Oak Ridge National Laboratory Contact ORNL ...

  2. ORISE: REAC/TS Radiation Treatment Medications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment Medications The Radiation Emergency Assistance CenterTraining Site (REACTS) is a valuable resource in the use of drug therapies to treat radiation exposure. REACTS ...

  3. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  4. Atmospheric Radiation Measurement Program Science Plan. Current...

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation ...

  5. ORISE: Radiation Dose Estimates and Other Compendia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rapidly estimate internal and external radiation dose magnitudes that can be used to help ... (PDF) Health Concerns Related to Radiation Exposure of the Female Nuclear Medicine ...

  6. Annual DOE Occupational Radiation Exposure | 2014 Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE 2014 Occupational Radiation Exposure Report analyzes occupational radiation exposures at U.S. Department of Energy (DOE) facilities during 2014.

  7. DOE 2014 Occupational Radiation Exposure Report

    Energy Savers [EERE]

    available on the U.S. Department of Energy Radiation Exposure Monitoring System Program Web Site at: http:energy.govehssoccupational-radiation-exposure Foreword iii MATTHEW B....

  8. ORISE: Radiation Emergency Preparedeness Conference | How ORISE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Emergency Preparedness Conference White House thanks ORISE for assisting CDC in hosting radiation emergency preparedness conference How ORISE is Making a Difference The...

  9. Annual DOE Occupational Radiation Exposure | 2009 Report

    Broader source: Energy.gov [DOE]

    The DOE 2009 Occupational Radiation Exposure Report analyzes occupational radiation exposures at U.S. Department of Energy (DOE) facilities during 2009.

  10. Annual DOE Occupational Radiation Exposure | 1996 Report

    Broader source: Energy.gov [DOE]

    The DOE Occupational Radiation Exposure Report, 1996 reports occupational radiation exposures incurred by individuals at U.S. Department of Energy (DOE) facilities during the calendar year 1996.

  11. Annual DOE Occupational Radiation Exposure | 2010 Report

    Broader source: Energy.gov [DOE]

    The DOE 2010 Occupational Radiation Exposure Report analyzes occupational radiation exposures at U.S. Department of Energy (DOE) facilities during 2010.

  12. Annual DOE Occupational Radiation Exposure | 2003 Report

    Broader source: Energy.gov [DOE]

    The DOE 2003 Occupational Radiation Exposure Report analyzes occupational radiation exposures at U.S. Department of Energy (DOE) facilities during 2003.

  13. Annual DOE Occupational Radiation Exposure | 1995 Report

    Broader source: Energy.gov [DOE]

    The DOE Occupational Radiation Exposure Report, 1995 reports occupational radiation exposures incurred by individuals at U.S. Department of Energy (DOE) facilities during the calendar year 1995.

  14. 10 CFR 835- Occupational Radiation Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The rules in this part establish radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of DOE activities.

  15. Annual DOE Occupational Radiation Exposure | 1998 Report

    Broader source: Energy.gov [DOE]

    The DOE Occupational Radiation Exposure Report, 1998 reports occupational radiation exposures incurred by individuals at DOE facilities during the calendar year 1998.

  16. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting Apparatus, systems, and methods for...

  17. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting You are accessing a document from...

  18. Annual DOE Occupational Radiation Exposure | 1974 Report

    Broader source: Energy.gov [DOE]

    The Seventh Annual Report of Radiation Exposures for AEC & AEC Contractor Employees analyzes occupational radiation exposures at the Atomic Energy Commission (AEC) and its contractor employees during 1974.

  19. DOE 2013 occupational radiation exposure (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    DOE 2013 occupational radiation exposure Citation Details In-Document Search Title: DOE 2013 occupational radiation exposure The Office of Analysis within the U.S. Department of ...

  20. Hybrid Radiator Cooling System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiator Cooling System Technology available for licensing: Hybrid radiator cooling system uses conventional finned air cooling under most driving conditions that would be...

  1. Search for: "atmospheric radiation measurement" | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search DOE Data Explorer Search Results Page 1 of 70 Search for: "atmospheric radiation measurement" 697 results for: "atmospheric radiation ...

  2. Atmospheric Radiation Measurement Climate Research Facility Annual...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research ...

  3. Selective radiative heating of nanostructures using hyperbolic...

    Office of Scientific and Technical Information (OSTI)

    to break the diffraction limit for imaging and enhance near-field radiative heat transfer. ... Our result can find applications in radiative thermal management. Authors: Ding, Ding 1 ...

  4. Metamaterials - new opportunity in manipulating terahertz radiation...

    Office of Scientific and Technical Information (OSTI)

    Metamaterials - new opportunity in manipulating terahertz radiation Citation Details In-Document Search Title: Metamaterials - new opportunity in manipulating terahertz radiation...

  5. Radiation Exposure Monitoring Systems - Other Related Sites ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiation Exposure Monitoring Systems - Other Related Sites Radiation Exposure Monitoring Systems - Other Related Sites Other Related Sites DOE - Main Home Page - the home page for ...

  6. Radiation-thermoacoustic microscopy of condensed media

    SciTech Connect (OSTI)

    Lyamshev, L.M.; Chelnokov, B.I.

    1984-07-01

    Possibilities are discussed for the application of scanning radiation-thermoacoustic microscopy, using different types of radiation, for microstructure analysis. (AIP)

  7. INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION

    Office of Scientific and Technical Information (OSTI)

    interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...

  8. Annual DOE Occupational Radiation Exposure Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    employees during 1985. May 19, 2006 Annual DOE Occupational Radiation Exposure | 1984 Report The Seventeenth Annual Report of Radiation Exposures for DOE & DOE Contractor...

  9. FAR-ULTRAVIOLET SPECTROSCOPY OF THE NOVA-LIKE VARIABLE KQ MONOCEROTIS: A NEW SW SEXTANTIS STAR?

    SciTech Connect (OSTI)

    Wolfe, Aaron; Sion, Edward M.; Bond, Howard E. E-mail: edward.sion@villanova.edu

    2013-06-01

    New optical spectra obtained with the SMARTS 1.5 m telescope and archival International Ultraviolet Explorer (IUE) far-ultraviolet (FUV) spectra of the nova-like variable KQ Mon are discussed. The optical spectra reveal Balmer lines in absorption as well as He I absorption superposed on a blue continuum. The 2011 optical spectrum is similar to the KPNO 2.1 m IIDS spectrum we obtained 33 years earlier except that the Balmer and He I absorption is stronger in 2011. Far-ultraviolet IUE spectra reveal deep absorption lines due to C II, Si III, Si IV, C IV, and He II, but no P Cygni profiles indicative of wind outflow. We present the results of the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic optically thick, steady-state, viscous accretion-disk models with vertical structure and high-gravity photosphere models. We find that the photosphere of the white dwarf (WD) contributes very little FUV flux to the spectrum and is overwhelmed by the accretion light of a steady disk. Disk models corresponding to a WD mass of {approx}0.6 M {sub Sun }, with an accretion rate of order 10{sup -9} M {sub Sun} yr{sup -1} and disk inclinations between 60 Degree-Sign and 75 Degree-Sign , yield distances from the normalization in the range of 144-165 pc. KQ Mon is discussed with respect to other nova-like variables. Its spectroscopic similarity to the FUV spectra of three definite SW Sex stars suggests that it is likely a member of the SW Sex class and lends support to the possibility that the WD is magnetic.

  10. ULTRAVIOLET EMISSION-LINE CORRELATIONS IN HST/COS SPECTRA OF ACTIVE GALACTIC NUCLEI: SINGLE-EPOCH BLACK HOLE MASSES

    SciTech Connect (OSTI)

    Tilton, Evan M.; Shull, J. Michael, E-mail: evan.tilton@colorado.edu, E-mail: michael.shull@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States)

    2013-09-01

    Effective methods of measuring supermassive black hole masses in active galactic nuclei (AGNs) are of critical importance to studies of galaxy evolution. While there has been much success in obtaining masses through reverberation mapping, the extensive observing time required by this method has limited the practicality of applying it to large samples at a variety of redshifts. This limitation highlights the need to estimate these masses using single-epoch spectroscopy of ultraviolet (UV) emission lines. We use UV spectra of 44 AGNs from HST/COS, the International Ultraviolet Explorer, and the Far Ultraviolet Spectroscopic Explorer of the C IV {lambda}1549, O VI {lambda}1035, O III] {lambda}1664, He II {lambda}1640, C II {lambda}1335, and Mg II {lambda}2800 emission lines and explore their potential as tracers of the broad-line region and supermassive black hole mass. The higher signal-to-noise ratio and better spectral resolution of the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) resolve AGN intrinsic absorption and produce more accurate line widths. From these, we test the viability of mass-scaling relationships based on line widths and luminosities and carry out a principal component analysis based on line luminosities, widths, skewness, and kurtosis. At L{sub 1450} {<=} 10{sup 45} erg s{sup -1}, the UV line luminosities correlate well with H{beta}, as does the 1450 A continuum luminosity. We find that C IV, O VI, and Mg II can be used as reasonably accurate estimators of AGN black hole masses, while He II and C II are uncorrelated.

  11. PREDICTING Lyα AND Mg II FLUXES FROM K AND M DWARFS USING GALAXY EVOLUTION EXPLORER ULTRAVIOLET PHOTOMETRY

    SciTech Connect (OSTI)

    Shkolnik, Evgenya L.; Rolph, Kristina A.; Peacock, Sarah; Barman, Travis S. E-mail: kristina.rolph@fandm.edu E-mail: barman@lpl.arizona.edu

    2014-11-20

    A star's ultraviolet (UV) emission can greatly affect the atmospheric chemistry and physical properties of closely orbiting planets with the potential for severe mass loss. In particular, the Lyα emission line at 1216 Å, which dominates the far-ultraviolet (FUV) spectrum, is a major source of photodissociation of important atmospheric molecules such as water and methane. The intrinsic flux of Lyα, however, cannot be directly measured due to the absorption of neutral hydrogen in the interstellar medium and contamination by geocoronal emission. To date, reconstruction of the intrinsic Lyα line based on Hubble Space Telescope spectra has been accomplished for 46 FGKM nearby stars, 28 of which have also been observed by the Galaxy Evolution Explorer (GALEX). Our investigation provides a correlation between published intrinsic Lyα and GALEX far- and near-ultraviolet (NUV) chromospheric fluxes for K and M stars. The negative correlations between the ratio of the Lyα to the GALEX fluxes reveal how the relative strength of Lyα compared to the broadband fluxes weakens as the FUV and NUV excess flux increase. We also correlate GALEX fluxes with the strong NUV Mg II h+k spectral emission lines formed at lower chromospheric temperatures than Lyα. The reported correlations provide estimates of intrinsic Lyα and Mg II fluxes for the thousands of K and M stars in the archived GALEX all-sky surveys. These will constrain new stellar upper atmosphere models for cool stars and provide realistic inputs to models describing exoplanetary photochemistry and atmospheric evolution in the absence of UV spectroscopy.

  12. Survivable pulse power space radiator

    DOE Patents [OSTI]

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  13. Multiple-mode radiation detector

    DOE Patents [OSTI]

    Claus, Liam D.; Derzon, Mark S.; Kay, Randolph R.; Bauer, Todd; Trotter, Douglas Chandler; Henry, Michael David

    2015-08-25

    An apparatus for detecting radiation is provided. In embodiments, at least one sensor medium is provided, of a kind that interacts with radiation to generate photons and/or charge carriers. The apparatus also includes at least one electrode arrangement configured to collect radiation-generated charge from a sensor medium that has been provided. The apparatus also includes at least one photodetector configured to produce an electrical output in response to photons generated by radiation in such a sensor medium, and an electronic circuit configured to produce an output that is jointly responsive to the collected charge and to the photodetector output. At least one such electrode arrangement, at least one such photodetector, and at least one such sensor medium are combined to form an integral unit.

  14. Radiative capture reactions in astrophysics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  15. RADIATION FACILITY FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  16. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments [OSTI]

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  17. Survivable pulse power space radiator

    DOE Patents [OSTI]

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  18. ARM - Measurement - Aerosol backscattered radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a ...

  19. In-Ground Radiation Detection

    SciTech Connect (OSTI)

    McCormick, Kathleen R.; Stromswold, David C.; Woodring, Mitchell L.; Ely, James H.; Siciliano, Edward R.; Caggiano, Joseph A.; Hensley, Walter K.

    2006-10-29

    Vertically oriented radiation detectors may not provide sufficient screening in rail or aviation applications. Railcars can be heavily shielded on the sides, reducing the sensitivity of vertically mounted monitors. For aviation, the distance required for wingspan clearance reduces a vertical detector’s coverage of the fuselage. To surmount these, and other, challenging operational and sensitivity issues, we have investigated the use of in-ground radiation detectors. (PIET-43741-TM-605).

  20. Radiation Measurement (ARM) Climate Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overview Sponsored by the U.S. Department of Energy's (DOE) Office of Science, the Atmospheric Radiation Measurement (ARM) Climate Research Facility was established in 1990 to improve global climate models by increasing understanding of clouds and radiative feedbacks. Through the ARM Facility, DOE funded the development of highly instrumented research sites at strategic locations around the world: the Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA).

  1. Radiation Protection | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Radiation Protection of the Public and the Environment Radiation Protection of the Public and the Environment Water sampling and analysis at Idaho National Lab Water sampling and analysis at Idaho National Lab Idaho National Lab(INL) in partnership with the US Geological Service(USGS) sample, collect and analyze data in order to ensure that exposure to the public and the environment within and around the INL Complex are below the required authorized limits set by DOE. Read more

  2. Ultraviolet photodissociation dynamics of the n-propyl and i-propyl radicals

    SciTech Connect (OSTI)

    Song, Yu; Zheng, Xianfeng; Zhou, Weidong; Lucas, Michael; Zhang, Jingsong

    2015-06-14

    Ultraviolet (UV) photodissociation dynamics of jet-cooled n-propyl (n-C{sub 3}H{sub 7}) radical via the 3s Rydberg state and i-propyl (i-C{sub 3}H{sub 7}) radical via the 3p Rydberg states are studied in the photolysis wavelength region of 230260 nm using high-n Rydberg atom time-of-flight and resonance enhanced multiphoton ionization techniques. The H-atom photofragment yield spectra of the n-propyl and i-propyl radicals are broad and in good agreement with the UV absorption spectra. The H + propene product translational energy distributions, P(E{sub T})s, of both n-propyl and i-propyl are bimodal, with a slow component peaking around 5-6 kcal/mol and a fast one peaking at ?50 kcal/mol (n-propyl) and ?45 kcal/mol (i-propyl). The fraction of the average translational energy in the total excess energy, ?f{sub T}?, is 0.3 for n-propyl and 0.2 for i-propyl, respectively. The H-atom product angular distributions of the slow components of n-propyl and i-propyl are isotropic, while that of the fast component of n-propyl is anisotropic (with an anisotropy parameter ?0.8) and that of i-propyl is nearly isotropic. Site-selective loss of the ? hydrogen atom is confirmed using the partially deuterated CH{sub 3}CH{sub 2}CD{sub 2} and CH{sub 3}CDCH{sub 3} radicals. The bimodal translational energy and angular distributions indicate two dissociation pathways to the H + propene products in the n-propyl and i-propyl radicals: (i) a unimolecular dissociation pathway from the hot ground-state propyl after internal conversion from the 3s and 3p Rydberg states and (ii) a direct, prompt dissociation pathway coupling the Rydberg excited states to a repulsive part of the ground-state surface, presumably via a conical intersection.

  3. SIMULTANEOUS X-RAY AND ULTRAVIOLET OBSERVATIONS OF THE SW SEXTANTIS STAR DW URSAE MAJORIS

    SciTech Connect (OSTI)

    Hoard, D. W.; Wachter, S.; Lu, Ting-Ni; Knigge, Christian; Homer, Lee; Szkody, Paula; Still, M.; Long, Knox S.; Dhillon, V. S.

    2010-11-15

    We present the first pointed X-ray observation of DW Ursae Majoris, a novalike cataclysmic variable (CV) and one of the archetype members of the SW Sextantis class, obtained with the XMM-Newton satellite. These data provide the first detailed look at an SW Sex star in the X-ray regime (with previous X-ray knowledge of the SW Sex stars limited primarily to weak or non-detections in the ROSAT All Sky Survey). It is also one of only a few XMM-Newton observations (to date) of any high mass transfer rate novalike CV, and the only one in the evolutionarily important 3-4 hr orbital period range. The observed X-ray spectrum of DW UMa is very soft, with {approx}95% of the detected X-ray photons at energies <2 keV. The spectrum can be fit equally well by a one-component cooling flow model, with a temperature range of 0.2-3.5 keV, or a two-component, two-temperature thermal plasma model, containing hard ({approx}5-6 keV) and soft ({approx}0.8 keV) components. The X-ray light curve of DW UMa shows a likely partial eclipse, implying X-ray reprocessing in a vertically extended region, and an orbital modulation, implying a structural asymmetry in the X-ray reprocessing site (e.g., it cannot be a uniform corona). We also obtained a simultaneous near-ultraviolet light curve of DW UMa using the Optical Monitor on XMM-Newton. This light curve is similar in appearance to published optical-UV light curves of DW UMa and shows a prominent deep eclipse. Regardless of the exact nature of the X-ray reprocessing site in DW UMa, the lack of a prominent hard X-ray total eclipse and very low fraction of high energy X-rays point to the presence of an optically and geometrically thick accretion disk that obscures the boundary layer and modifies the X-ray spectrum emitted near the white dwarf.

  4. THE GALEX TIME DOMAIN SURVEY. I. SELECTION AND CLASSIFICATION OF OVER A THOUSAND ULTRAVIOLET VARIABLE SOURCES

    SciTech Connect (OSTI)

    Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Morrissey, P.; Wyder, T. K.; Huber, M.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Magnier, E. A.; Tonry, J. L.; Heckman, T.; Bianchi, L.; Neff, S. G.; Seibert, M.; Schiminovich, D.; Price, P. A.

    2013-03-20

    We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in {approx}40 deg{sup 2} of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of {approx}3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5{sigma} level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to |{Delta}m| = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV < 23 mag and |{Delta}m| > 0.2 mag of {approx}8.0, 7.7, and 1.8 deg{sup -2} for quasars, active galactic nuclei, and RR Lyrae stars, respectively. We also calculate a surface density rate in the

  5. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    SciTech Connect (OSTI)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  6. Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling

    SciTech Connect (OSTI)

    Maiti, Subarna; Vyas, Kairavi; Ghosh, Pushpito K.

    2010-08-15

    A promising option to reduce the cost of silicon photovoltaic systems is to concentrate the sunlight incident on the solar cells to increase the output power. However, this leads to higher module temperatures which affects performance adversely and may also cause long term damage. Proper cooling is therefore necessary to operate the system under concentrated radiation. The present work was undertaken to circumvent the problem in practical manner. A suitable liquid, connected to a heat exchanger, was placed in the housing of the photovoltaic module and unwanted wavelengths of solar radiation were filtered out to minimise overheating of the cells. The selection of the liquid was based on factors such as boiling point, transparency towards visible radiation, absorption of infrared and ultraviolet radiation, stability, flow characteristics, heat transfer properties, and electrical nonconductivity. Using a square parabolic type reflector, more than two fold increase in output power was realised on a clear sunny day employing a 0.13 m{sup 2} silicon solar module. Without the cooling arrangement the panel temperature rose uncontrollably. (author)

  7. Sandia National Labs: PCNSC: Departments: Radiation-Solid Interactions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences...

  8. Liquid cooled fiber thermal radiation receiver

    DOE Patents [OSTI]

    Butler, Barry L.

    1987-01-01

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  9. Liquid cooled fiber thermal radiation receiver

    DOE Patents [OSTI]

    Butler, B.L.

    1985-03-29

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  10. Radiation Exposure Monitoring Systems Data Reporting Guide

    Office of Energy Efficiency and Renewable Energy (EERE)

    Instructions for preparing occupational exposure data for submittal to the Radiation Exposure Monitoring System (REMS) repository.

  11. International Conference Synchrotron Radiation Instrumentation SRI `94

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This report contains abstracts for the international conference on Synchrotron Radiation Instrumentation at Brookhaven National Laboratory.

  12. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOE Patents [OSTI]

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  13. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOE Patents [OSTI]

    Ruffner, Judith Alison

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  14. High performance organic integrated device with ultraviolet photodetective and electroluminescent properties consisting of a charge-transfer-featured naphthalimide derivative

    SciTech Connect (OSTI)

    Wang, Hanyu; Wang, Xu; Yu, Junsheng E-mail: jsyu@uestc.edu.cn; Zhou, Jie; Lu, Zhiyun E-mail: jsyu@uestc.edu.cn

    2014-08-11

    A high performance organic integrated device (OID) with ultraviolet photodetective and electroluminescent (EL) properties was fabricated by using a charge-transfer-featured naphthalimide derivative of 6-(3,5-bis-[9-(4-t-butylphenyl)-9H-carbazol-3-yl]-phenoxy)-2- (4-t-butylphenyl)-benzo[de]isoquinoline-1,3-dione (CzPhONI) as the active layer. The results showed that the OID had a high detectivity of 1.5 × 10{sup 11} Jones at −3 V under the UV-350 nm illumination with an intensity of 0.6 mW/cm{sup 2}, and yielded an exciplex EL light emission with a maximum brightness of 1437 cd/m{sup 2}. Based on the energy band diagram, both the charge transfer feature of CzPhONI and matched energy level alignment were responsible for the dual ultraviolet photodetective and EL functions of OID.

  15. Study of the processes of degradation of the optical properties of mesoporous and macroporous silicon upon exposure to simulated solar radiation

    SciTech Connect (OSTI)

    Levitskii, V. S.; Lenshin, A. S. Seredin, P. V.; Terukov, E. I.

    2015-11-15

    The effect of solar radiation on the surface composition of mesoporous and macroporous silicon is studied by infrared spectroscopy, Raman spectroscopy, and photoluminescence measurements in order to analyze the possibility of using these materials as a material for solar-power engineering. The studies are conducted in the laboratory environment, with the use of a solar-radiation simulator operating under conditions close to the working conditions of standard silicon solar cells. The studies show that, in general, the materials meet the requirements of solar-power engineering, if it is possible to preclude harmful effects associated with the presence of heat-sensitive and photosensitive bonds at the nanomaterial surface by standard processing methods.

  16. ORISE: DOE's Radiation Exposure Monitoring System (REMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring System (REMS) ORISE maintains large database of radition exposure records for the U.S. Department of Energy ORISE staff monitoring radiation data for DOE Rule 10 CFR 835 establishes the U.S. Department of Energy's (DOE) occupational protection rule and requires assessment and recording of radiation doses to individuals who are exposed to sources of radiation or contamination. The Radiation Exposure Monitoring System (REMS) database is the radiation exposure data repository for all

  17. ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITH SWIFT AND SPITZER

    SciTech Connect (OSTI)

    Tzanavaris, P.; Hornschemeier, A. E.; Immler, S.; Johnson, K. E.; Reines, A. E.; Gronwall, C.; Hoversten, E.; Charlton, J. C.

    2010-06-10

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km s{sup -1}) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000 A) photometry to estimate the dust-unobscured component, SFR{sub UV}, of the total star formation rate, SFR{sub TOTAL}. We use Spitzer MIPS 24 {mu}m photometry to estimate SFR{sub IR}, the component of SFR{sub TOTAL} that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR{sub TOTAL} estimates for all HCG galaxies. We obtain total stellar mass, M {sub *}, estimates by means of Two Micron All Sky Survey K{sub s} -band luminosities, and use them to calculate specific star formation rates, SSFR {identical_to} SFR{sub TOTAL}/M {sub *}. SSFR values show a clear and significant bimodality, with a gap between low ({approx}<3.2 x 10{sup -11} yr{sup -1}) and high-SSFR ({approx_gt}1.2 x 10{sup -10} yr{sup -1}) systems. We compare this bimodality to the previously discovered bimodality in {alpha}{sub IRAC}, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 {mu}m data for these galaxies. We find that all galaxies with {alpha}{sub IRAC} {<=} 0 ( >0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and {alpha}{sub IRAC} bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the

  18. Radiative properties of ice clouds

    SciTech Connect (OSTI)

    Mitchell, D.L.; Koracin, D.; Carter, E.

    1996-04-01

    A new treatment of cirrus cloud radiative properties has been developed, based on anomalous diffraction theory (ADT), which does not parameterize size distributions in terms of an effective radius. Rather, is uses the size distribution parameters directly, and explicitly considers the ice particle shapes. There are three fundamental features which characterize this treatment: (1) the ice path radiation experiences as it travels through an ice crystal is parameterized, (2) only determines the amount of radiation scattered and absorbed, and (3) as in other treatments, the projected area of the size distribution is conserved. The first two features are unique to this treatment, since it does not convert the ice particles into equivalent volume or area spheres in order to apply Mie theory.

  19. Cadmium telluride photovoltaic radiation detector

    DOE Patents [OSTI]

    Agouridis, D.C.; Fox, R.J.

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  20. Cadmium telluride photovoltaic radiation detector

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.; Fox, Richard J.

    1981-01-01

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  1. Absorber for terahertz radiation management

    DOE Patents [OSTI]

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  2. Imaging radiation detector with gain

    DOE Patents [OSTI]

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1982-07-21

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  3. Imaging radiation detector with gain

    DOE Patents [OSTI]

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1984-01-01

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  4. 1993 Radiation Protection Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  5. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Hudyma, Russell; Shafer, David R.

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first convex mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receive a chief ray at an incidence angle of less than substantially 9.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 14.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than substantially 16 .mu.m.

  6. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Hudyma, Russell

    2000-01-01

    An all-refelctive optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first concave mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle less than substantially 12.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 15.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 7 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 14 .mu.m. Each of the six refelecting surfaces has an aspheric departure of less than 16.0 .mu.m.

  7. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Hudyma, Russell

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first concave mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle of less than substantially 12.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 15.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 7 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 14 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than 16.0 .mu.m.

  8. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Hudyma, Russell; Shafer, David

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first convex mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle of less than substantially 9.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 14.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than substantially 16 .mu.m.

  9. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    SciTech Connect (OSTI)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-06-06

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 109 sec-1mV-1 range, linear response in a broad spectral range below 320 nm, photocurrents around ~10-5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials photosensitivity.

  10. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-06-06

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 109 sec-1mV-1 range, linear response in a broad spectral range below 320 nm, photocurrentsmore » around ~10-5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.« less

  11. Characterization and calibration of compact array spectrometers in the ultraviolet spectral region

    SciTech Connect (OSTI)

    Shindo, Francois; Woolliams, Emma; Scott, Barry; Harris, Subrena

    2013-05-10

    Array-based spectrometers, with their compact size, low weight, low cost, and fast measurement time, are now frequently used in place of both conventional single-channel scanning monochromators, and broadband meters. Their rapid measurement capability makes them an attractive option for routine solar UV spectral measurements, where shortterm variability in signal is a challenge. However, compactness, portability, low cost and high speed are achieved at the expense of the spectrometer's optical and electronic performance. Thus such spectrometers are more prone to measurement error from environmental changes, and more prone to other intrinsic sources of error such as stray light and detector non-linearity, which significantly affect solar UV measurements, than a scanning monochromator. The effects of stray light and non-linearity can be reduced either by improved optical and detector design or by a detailed spectrometer characterization. We present in this paper our investigation of the performance of three different commercial array spectrometers: two mini-spectrometers, and a more elaborate array spectrometer with an on-board image amplifier device. These were tested for a subset of performance parameters: their wavelength accuracy and stability, electronic linearity, responsivity linearity, stray light sensitivity, and mechanical stability and repeatability. With all three spectrometers we found that these parameters, particularly but not limited to stray light, had a significant impact on the measurement of the incoming optical radiation. This meant that, without characterization, the instruments would be unable to accurately measure the UV component of any source with significant visible radiation. We discuss various simple and low-cost solutions for improving the performance of these instruments, and providing a rigorous calibration using a straightforward set-up including optical filters and the quasi-monochromatic light from a double monochromator.

  12. JOINT EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Levels of Concern Have Reached the United States | Department of Energy JOINT EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation Levels of Concern Have Reached the United States JOINT EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation Levels of Concern Have Reached the United States March 18, 2011 - 12:00am Addthis WASHINGTON - The United States Government has an extensive network of radiation monitors around the country and no radiation levels of concern have been

  13. Enhanced radiation detectors using luminescent materials

    DOE Patents [OSTI]

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  14. Solar Radiation Empirical Quality Assessment

    Energy Science and Technology Software Center (OSTI)

    1994-03-01

    The SERIQC1 subroutine performs quality assessment of one, two, or three-component solar radiation data (global horizontal, direct normal, and diffuse horizontal) obtained from one-minute to one-hour integrations. Included in the package is the QCFIT tool to derive expected values from historical data, and the SERIQC1 subroutine to assess the quality of measurement data.

  15. Radiation View Factor With Shadowing

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors as input data to finite element heat transfer analysis codes.

  16. Radiation augmentation energy storage system

    SciTech Connect (OSTI)

    Christe, K.O.

    1990-02-27

    This patent describes a method of converting radiation energy into chemical energy to produce a high-performance propellant. It comprises: photolytically converting oxygen to ozone; storing and stabilizing the ozone in liquid oxygen to form an ozone/liquid oxygen solution; and combusting the ozone/liquid oxygen solution with hydrogen.

  17. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, Paul H.

    1986-01-01

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  18. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  19. Radiation Detection Computational Benchmark Scenarios

    SciTech Connect (OSTI)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for

  20. High blue-near ultraviolet photodiode response of vertically stacked graphene-MoS{sub 2}-metal heterostructures

    SciTech Connect (OSTI)

    Wi, Sungjin; Chen, Mikai; Nam, Hongsuk; Liu, Amy C.; Meyhofer, Edgar; Liang, Xiaogan

    2014-06-09

    We present a study on the photodiode response of vertically stacked graphene/MoS{sub 2}/metal heterostructures in which MoS{sub 2} layers are doped with various plasma species. In comparison with undoped heterostructures, such doped ones exhibit significantly improved quantum efficiencies in both photovoltaic and photoconductive modes. This indicates that plasma-doping-induced built-in potentials play an important role in photocurrent generation. As compared to indium-tin-oxide/ MoS{sub 2}/metal structures, the presented graphene/MoS{sub 2}/metal heterostructures exhibit greatly enhanced quantum efficiencies in the blue-near ultraviolet region, which is attributed to the low density of recombination centers at graphene/MoS{sub 2} heterojunctions. This work advances the knowledge for making photo-response devices based on layered materials.