Powered by Deep Web Technologies
Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Microgap ultra-violet detector  

DOE Patents (OSTI)

A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA)

1994-01-01T23:59:59.000Z

2

Ultra Violet Imaging Telescope (UVIT) on ASTROSAT  

E-Print Network (OSTI)

Ultra Violet Imaging Telescope on ASTROSAT Satellite mission is a suite of Far Ultra Violet (FUV 130 to 180 nm), Near Ultra Violet (NUV 200 to 300 nm) and Visible band (VIS 320 to 550nm) imagers. ASTROSAT is the first multi wavelength mission of INDIA. UVIT will image the selected regions of the sky simultaneously in three channels and observe young stars, galaxies, bright UV Sources. FOV in each of the 3 channels is about 28 arc-minute. Targeted angular resolution in the resulting UV images is better than 1.8 arc-second (better than 2.0 arc-second for the visible channel). Two identical co-aligned telescopes (T1, T2) of Ritchey-Chretien configuration (Primary mirror of 375 mm diameter) collect celestial radiation and feed to the detector system via a selectable filter on a filter wheel mechanism; gratings are available in filter wheels of FUV and NUV channels for slit-less low resolution spectroscopy. The detector system for each of the 3 channels is generically identical. One of the telescopes images in the...

Kumar, Amit; Hutchings, J; Kamath, P U; Kathiravan, S; Mahesh, P K; Murthy, J; S, Nagbhushana; Pati, A K; Rao, M N; Rao, N K; Sriram, S; Tandon, S N

2012-01-01T23:59:59.000Z

3

Effects of ultra-violet laser irradiation on graphene  

Science Conference Proceedings (OSTI)

Graphene can be applied for transparent electrodes instead of indium tin oxide (ITO). For patterning of ITO, the maskless laser process was reported as a simple and fast process. Raman spectra and electrical resistances of graphene were measured before ... Keywords: Graphene, Maskless laser process, Ultra-violet laser

Fujio Wakaya; Tsuyoshi Teraoka; Toshiya Kisa; Tomoya Manabe; Satoshi Abo; Mikio Takai

2012-09-01T23:59:59.000Z

4

Tests & Calibration on Ultra Violet Imaging Telescope (UVIT)  

E-Print Network (OSTI)

Ultra Violet Imaging Telescope on ASTROSAT Satellite mission is a suite of Far Ultra Violet (FUV; 130 to 180 nm), Near Ultra Violet (NUV; 200 to 300 nm) and Visible band (VIS; 320 to 550nm) imagers. ASTROSAT is a first multi wavelength mission of INDIA. UVIT will image the selected regions of the sky simultaneously in three channels & observe young stars, galaxies, bright UV Sources. FOV in each of the 3 channels is about 28 arc-minute. Targeted angular resolution in the resulting UV images is better than 1.8 arc-second (better than 2.0 arc-second for the visible channel). Two identical co-aligned telescopes (T1, T2) of Ritchey-Chretien configuration (Primary mirror of 375 mm diameter) collect the celestial radiation and feed to the detector system via a selectable filter on a filter wheel mechanism; gratings are available in the filter wheels of FUV and NUV channels for slit-less low resolution spectroscopy. The detector system for each of the 3 channels is generically identical. One telescope images in ...

Kumar, Amit; Kamath, P U; Postma, Joe; Kathiravan, S; Mahesh, P K; S, Nagbhushana; Navalgund, K H; Rajkumar, N; Rao, M N; Sarma, K S; Sriram, S; Stalin, C S; Tandon, S N

2012-01-01T23:59:59.000Z

5

Ultra-violet laser processing of graphene on SiO2/Si  

Science Conference Proceedings (OSTI)

A graphene transparent electrode might be used in industry in the near future instead of indium tin oxide (ITO). For patterning of ITO, the maskless laser process was reported as a simple and fast process. In this paper, effects of ultra-violet laser ... Keywords: Graphene, Maskless laser process, Ultra-violet laser

Fujio Wakaya, Tadashi Kurihara, Satoshi Abo, Mikio Takai

2013-10-01T23:59:59.000Z

6

Studying the Imaging Characteristics of Ultra Violet Imaging Telescope (UVIT) through Numerical Simulations  

E-Print Network (OSTI)

Ultra-Violet Imaging Telescope (UVIT) is one of the five payloads aboard the Indian Space Research Organization (ISRO)'s ASTROSAT space mission. The science objectives of UVIT are broad, extending from individual hot stars, star-forming regions to active galactic nuclei. Imaging performance of UVIT would depend on several factors in addition to the optics, e.g. resolution of the detectors, Satellite Drift and Jitter, image frame acquisition rate, sky background, source intensity etc. The use of intensified CMOS-imager based photon counting detectors in UVIT put their own complexity over reconstruction of the images. All these factors could lead to several systematic effects in the reconstructed images. A study has been done through numerical simulations with artificial point sources and archival image of a galaxy from GALEX data archive, to explore the effects of all the above mentioned parameters on the reconstructed images. In particular the issues of angular resolution, photometric accuracy and photometric...

Srivastava, Mudit K; Tandon, Shyam N

2009-01-01T23:59:59.000Z

7

Ultra Violet Waterworks (UVW)  

Office of Scientific and Technical Information (OSTI)

It is a uniquely effective device that operates using the equivalent of a 60-Watt light bulb at a cost of as low as 4 centston of water treated, treating 15 litersminute, and...

8

Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications  

SciTech Connect

An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol ethers, and other individual compounds including d-limonene, 1,2,4-trimethylbenzene, and decamethylcyclopentasiloxane. This result implies a reaction efficiency of about 30% per irradiated monolith face, which is in agreement with the maximum efficiency for the system predicted with a simulation model. In these and other experiments, the performance of the system for highly reactive VOCs appeared to be limited by mass transport of reactants to the catalyst surface rather than by photocatalytic activity. Increasing the air flow rate through the UVPCO device decreases the residence time of the air in the monoliths and improves mass transfer to the catalyst surface. The effect of gas velocity was examined in four pairs of experiments in which the air flow rate was varied from approximately 175 m{sup 3}/h to either 300 or 600 m{sup 3}/h. Increased gas velocity caused a decrease in reaction efficiency for nearly all reactive VOCs. For all of the more reactive VOCs, the decrease in performance was less, and often substantially less, than predicted based solely on residence time, again likely due to mass transfer limitations at the low flow rate. The results demonstrate that the UVPCO is capable of achieving high conversion efficiencies for reactive VOCs at air flow rates above the base experimental rate of 175 m{sup 3}/h. The effect of UV power was examined in a series of experiments with the building product mixture in which the number of lamps was varied between nine and three. For the most reactive VOCs in the mixture, the effects of UV power were surprisingly small. Thus, even with only one lamp in each section, there appears to be sufficient photocatalytic activity to decompose most of the mass of reactive VOCs that reach the catalyst surface. For some less reactive VOCs, the trend of decreasing efficiency with decreasing UV intensity was in general agreement with simulation model predictions.

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-10-31T23:59:59.000Z

9

Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements  

SciTech Connect

Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

Niemi, K.; O'Connell, D.; Gans, T. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Oliveira, N. de; Joyeux, D.; Nahon, L. [Synchrotron Soleil, l'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette Cedex (France); Booth, J. P. [Laboratoire de Physique des Plasmas-CNRS, Ecole Polytechnique, 91128 Palaiseau (France)

2013-07-15T23:59:59.000Z

10

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations  

SciTech Connect

Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the most reactive chemical classes with conversion efficiencies often near or above 70% at the low flow rate and near 40% at the high flow rate. Ketones and terpene hydrocarbons were somewhat less reactive. The relative VOC conversion rates are generally favorable for treatment of indoor air since many contemporary products used in buildings employ oxygenated solvents. A commercial UVPCO device likely would be installed in the supply air stream of a building and operated to treat both outdoor and recirculated air. Assuming a recirculation rate comparable to three times the normal outdoor air supply rate, simple mass-balance modeling suggests that a device with similar characteristics to the study unit has sufficient conversion efficiencies for most VOCs to compensate for a 50% reduction in outdoor air supply without substantially impacting indoor VOC concentrations. Formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid were produced in these experiments as reaction byproducts. No other significant byproducts were observed. A coupled steady-state mass balance model is presented and applied to VOC data from a study of a single office building. For the operating assumptions described above, the model estimated a three-fold increase in indoor formaldehyde and acetaldehyde concentrations. The outcome of this limited assessment suggests that evaluation of the potential effects of the operation of a UVPCO device on indoor concentrations of these contaminants is warranted. Other suggested studies include determining VOC conversion efficiencies in actual buildings and evaluating changes in VOC conversion efficiency as monoliths age with long-term operation.

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-09-30T23:59:59.000Z

11

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) for...  

NLE Websites -- All DOE Office Websites (Extended Search)

165 and 580 m3h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were...

12

Are peanuts harmful for squirrels?  

NLE Websites -- All DOE Office Websites (Extended Search)

A Date: NA Question: Are peanuts harmful for squirrels? In the winter I put out field corn. Presently have one friendly female who looks for a treat to be tossed her way....

13

Ultra Accelerated Testing of PV Module Components  

DOE Green Energy (OSTI)

Using concentrated natural sunlight at the NREL High Flux Solar Furnace, we have exposed several materials to acceleration factors of up to 400 times the normal outdoor UV exposure dose. This accelerated rate allows the exposure of materials such that a year of outdoor exposure can be simulated in about 5 hours. We have studied the solarization of cerium containing glass, the degradation of ethylene vinyl acetate laminated between borosilicate glass, and the yellowing of standard polystyrene test coupons. The first two candidates are of interest to the photovoltaics (PV) program, and the last candidate material is a widely used dosimeter for ultra violet (UV) exposure in accelerated weathering chambers

Pitts, J. R.; King, D. E.; Bingham, C.; Czanderna, A. W.

1998-10-28T23:59:59.000Z

14

Harm Reduction Journal BioMed Central  

E-Print Network (OSTI)

Bundling occupational safety with harm reduction information as a feasible method for improving police receptiveness to syringe access programs: evidence from three U.S. cities

Corey S Davis; Leo Beletsky; Open Access

2009-01-01T23:59:59.000Z

15

Does Bankruptcy Protection Harm the Airline Industry?  

E-Print Network (OSTI)

Does Bankruptcy Protection Harm the Airline Industry?lower fare during bankruptcy does not necessarily mean thatof this opportunity and how does the resulting change a¤ect

Lee, Hwa Ryung

2009-01-01T23:59:59.000Z

16

Durable silver mirror with ultra-violet thru far infra-red reflection  

DOE Patents (OSTI)

A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

Wolfe, Jesse D. (Discovery Bay, CA)

2010-11-23T23:59:59.000Z

17

Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics  

E-Print Network (OSTI)

Niche of harmful alga Aureococcus anophagefferens revealedc consensus. Harmful Algae 8:3–13. 2. Sunda WG, Graneli E,of the United States. Harmful Algae 8:39–53. 4. Smayda TJ (

Grigoriev, Igor

2011-01-01T23:59:59.000Z

18

Aspirations and Well-Being: When Are High Aspirations Harmful?.  

E-Print Network (OSTI)

??Are high aspirations harmful or beneficial? The hedonic adaptation prevention model posits that lofty aspirations are detrimental to well-being (Lyubomirsky, 2011; Sheldon & Lyubomirsky, 2012),… (more)

Bao, Katherine

2013-01-01T23:59:59.000Z

19

Ultra Fine Grain/Ultra Low Carbon 718  

Science Conference Proceedings (OSTI)

An ultra low carbon alloy 718 composition has been investigated in combination with ultra fine grain processing to improve the low cycle fatigue capabilities.

20

IN HARM'S WAY: Lack Of Federal Coal Ash  

E-Print Network (OSTI)

IN HARM'S WAY: Lack Of Federal Coal Ash Regulations Endangers Americans And Their Environment 2010 Thirty-nine New Damage Cases of Contamination from Improperly Disposed Coal Combustion Waste, Editor and Contributing Author #12;IN HARM'S WAY: Lack of Federal Coal Ash Regulations Endangers

Short, Daniel

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Harmful Exhaust Emissions Monitoring of Road Vehicle Engine  

Science Conference Proceedings (OSTI)

Road vehicle improve the quality of people's life, however harmful vehicle exhaust emissions, such as carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), hydrocarbon (HC), and sulphur dioxide (SO2), have become more and more unacceptable ... Keywords: optic absorption spectroscopy based gas sensor, harmful exhaust emission monitoring, engine vibration

Chuliang Wei; Zhemin Zhuang; H. Ewald; A. I. Al-Shamma'a

2012-01-01T23:59:59.000Z

22

Parametric Evaluation of an Innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) Air Cleaning Technology for Indoor Applications  

E-Print Network (OSTI)

exited through a hole in a plywood panel fit to the doorway.19 m 2 all exposed surfaces), a plywood panel (5.9 m 2surfaces), a decorative plywood panel (5.9 m 2 all exposed

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-01-01T23:59:59.000Z

23

Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection  

SciTech Connect

Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.

Lai, Y. H.; He, Q. L. [Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China) [Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Cheung, W. Y.; Lok, S. K.; Wong, K. S.; Sou, I. K. [Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China)] [Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Ho, S. K. [Faculty of Science and Technology, University of Macau, Macau, People's Republic of China (China)] [Faculty of Science and Technology, University of Macau, Macau, People's Republic of China (China); Tam, K. W. [Department of Electrical and Electronics Engineering, University of Macau, Macau, People's Republic of China (China)] [Department of Electrical and Electronics Engineering, University of Macau, Macau, People's Republic of China (China)

2013-04-29T23:59:59.000Z

24

Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics  

E-Print Network (OSTI)

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the ...

Bertrand, Erin Marie

25

Molecular insights into the niche of harmful brown tides  

E-Print Network (OSTI)

Recurrent brown tide blooms caused by the harmful alga Alureococcus anophagefferens have decimated coastal ecosystems and shellfisheries along the Eastern U.S and South Africa. The exact mechanisms controlling bloom ...

Wurch, Louie L. (Louie Lorne)

2011-01-01T23:59:59.000Z

26

Ultra-Low Sulfur Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Low Sulfur Diesel ULSD LSD Off-Road Ultra-Low Sulfur Highway Diesel Fuel (15 ppm Sulfur Maximum). Required for use in all model year 2007 and later highway diesel vehicles...

27

The hyperplanes of DW(5, 2) Harm Pralle  

E-Print Network (OSTI)

The hyperplanes of DW(5, 2) Harm Pralle Abstract A (geometric) hyperplane of a geometry is a proper polar space DW(5, 2): Theoretical results from Shult, Pasini and Shpectorov, and the author guarantee embedding of DW(5, 2). MSC 2000: 05E15, 05E20, 51A50, 51E20 Key words: backtrack algorithm, dual polar

Pralle, Harm

28

Ultra-Clean Low Swirl Combustion : Technologies : From the Lab to the  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Clean Low Swirl Combustion Ultra-Clean Low Swirl Combustion From the Lab to the Marketplace Ten Years Later, Energy Efficient Technologies from Research at the Lawrence Berkeley National Laboratory Berkeley Lab logo (left) with six rows of gray dots transitioning to a line art drawing of a cityscape and residential houses. Ultra-Clean Low Swirl Combustion Combustion provides 83% of the energy consumed in the U.S. For the past three decades the reduction of harmful pollutants from combustion systems has been the major driver of combustion technology development. In 1991, Robert Cheng, a Berkeley Lab scientist, conceived a combustion method that emits a very low level of pollutants. His low swirl combustion method operates on a new basic principle that can be broadly applied to heat and

29

Sweet Violets  

NLE Websites -- All DOE Office Websites (Extended Search)

most of the world: in rich woodlands, prairies and meadows, marshy places, bogs, dry sandy plains, on high mountains, and even in the arctic and Antarctic regions, Usually, each...

30

Ultra supercritical steamside oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are part of the U.S. Department of Energy's Vision 21 goals. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Vision 21 goals include steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems. Emphasis is placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, M.; Alman, David A.; Ochs, Thomas L.

2004-01-01T23:59:59.000Z

31

Ultra Supercritical Steamside Oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

2005-01-01T23:59:59.000Z

32

Ultra Supercritical Steamside Oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

2005-01-01T23:59:59.000Z

33

Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics  

SciTech Connect

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.

Gobler, C J; Grigoriev, I V; Berry, D L; Dyhrman, S T; Wilhelm, S W; Salamov, A; Lobanov, A V; Zhang, Y; Collier, J L; Wurch, L L; Kustka, A B; Dill, B D; Shah, M; VerBerkomes, N C; Kuo, A; Terry, A; Pangilinan, J; Lindquist, E A; Lucas, S; Paulsen, I; Hattenrath-Lehmann, T K; Talmage, S; Walker, E A; Koch, F; Burson, A M; Marcoval, M A; Tang, Y; LeCleir, G R; Coyne, K J; Berg, G M; Bertrand, E M; Saito, M A; Gladyshev, V N

2011-03-02T23:59:59.000Z

34

Why Plaintiffs Should Have to Prove Irreparable Harm in Copyright Preliminary Injunction Cases  

E-Print Network (OSTI)

to a presumption of irreparable harm in Torpso Hockey v.Kor Hockey. 42 However, the court opined that “eBay?s logic

Samuelson, Pamela

2009-01-01T23:59:59.000Z

35

Ultra-Long-Haul WDM transmission systems  

Science Conference Proceedings (OSTI)

This paper discusses the key transmission issues and design considerations for ultra-long-haul WDM systems. The key enabling technologies for the current generation of ultra-long-haul WDM transmission are described. Noise analysis and transmission modelling ...

Y. R. Zhou; A. Lord; S. R. Sikora

2002-10-01T23:59:59.000Z

36

Ultra-Deepwater Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater Advisory Committee Ultra-Deepwater Advisory Committee Minutes of Meeting of June 21, 2007 Crystal City Marriott, Arlington, VA Executive Session Bill Hochheiser, the Committee Management Officer (CMO), welcomed the Ultra- Deepwater Advisory Committee (hereafter referred to as the Committee) at 8:35 a.m. on June 21, 2007. Bill noted that he shared the CMO responsibilities with Elena Melchert but, although she was not able to attend the meeting, she sent her regards to the Committee members. The Agenda for the meeting and Committee Member Sign-in sheet are provided as Appendix 1 and Appendix 2, respectively. After appointment and administration of Oath of Office for special Government employees, the Committee was briefed on conflict of interest statutes and the

37

Ultra-wideband Propagation Measurements and Channel ...  

Science Conference Proceedings (OSTI)

... including capacitor, resonator, and coaxial cavities methods, and radiated measurements as well [Bak98]. This work concentrates on ultra ...

2009-02-03T23:59:59.000Z

38

The ultra-low-linolenic soybean market  

Science Conference Proceedings (OSTI)

Does the failure of Asoyia Inc., the Iowa-based company that marketed 1% ultra-low-linolenic soybeans and soy oil, signal the beginning of the end for the ultra-low-linolenic soy oil market in the United States? The ultra-low-linolenic soybean market ...

39

On the Physical Cause and the Distance of Gamma Ray Bursts and Related Phenomena in the X-Rays and the Ultra-Violet  

E-Print Network (OSTI)

The modified Lorentz transformation of a distance-dependent special theory of relativity - which will be briefly summarized - predicts the possibility of superluminal velocity of very distantly moving material bodies to be connected with the generation of Cerencov radiation off the quantum vacuum. It is shown that vacuum Cerencov radiation due to the superluminal propagation of extraterrestrial spaceprobes in the interstellar space would account for all known properties of gamma ray bursts (GRBs) and the "afterglow" at lower frequencies. Distances and other parameter prove to be calculable and the theoretical results on these grounds to be in good accord with experiment.

Ernst Karl Kunst

2000-04-17T23:59:59.000Z

40

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) for Indoor Air Applications: Conversion of Volatile Organic Compounds at Low Part-per-Billion Concentrations  

E-Print Network (OSTI)

exited through a hole in a plywood panel fit to the doorway.19 m 2 all exposed surfaces), a plywood panel (5.9 m 2surfaces), a decorative plywood panel (5.9 m 2 all exposed

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) for Indoor Air Applications: Conversion of Volatile Organic Compounds at Low Part-per-Billion Concentrations  

E-Print Network (OSTI)

alkene hydrocarbon; and n-butane, an alkane hydrocarbon. UV> 2-butanone > 1-butene > n-butane. The order followed thedipole interaction for 1-butane, and weak dispersive forces

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-01-01T23:59:59.000Z

42

Diesel de Azufre Ultra Bajo  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel de Azufre Ultra Bajo Diesel de Azufre Ultra Bajo ULSD LSD Off-Road Diesel para Carretera de Azufre Ultra Bajo (máximo de 15 ppm de azufre). Se requiere su uso en todos los motores y vehículos diesel de carretera modelos 2007 y posteriores. También se recomienda su uso en todos los vehículos y motores diesel. Diesel para Carretera Bajo en Azufre (máximo de 500 ppm de azufre). Aviso: La ley federal prohíbe su uso en vehículos y motores modelos 2007 y posteriores, su uso podría dañarlos. Combustible Diesel que no es para Carretera (puede exceder 500 ppm de azufre). Aviso: La ley federal prohíbe su uso en vehículos y motores que no son de carretera, su uso podría dañarlos. Los consumidores con vehículos modelo 2007 ó posteriores deben utilizar solo diesel ultra bajo de azufre (ULSD). El ULSD es un diesel de

43

Ultra High Temperature | Open Energy Information  

Open Energy Info (EERE)

Ultra High Temperature Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid greater than 300°C is considered by Sanyal to be "ultra high temperature". "Such reservoirs are characterized by rapid development of steam saturation in the reservoir and steam fraction in the mobile fluid phase upon

44

Conversion of Ultra High Performance Carbon Fiber  

Conversion of Ultra High Performance Carbon Fiber Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

45

Functionalized Gold Nanoparticles for Rapid, Ultra- sensitive ...  

and Ocean Optics) Patent Baohua Gu. Functionalized Gold Surface-Enhanced Raman Scattering Substrate for Rapid and Ultra-Sensitive Detection of Anionic Species

46

Retail Prices for Ultra Low Sulfur Diesel  

U.S. Energy Information Administration (EIA)

Beginning July 26, 2010 publication of Ultra Low Sulfur Diesel (ULSD) price became fully represented by the Diesel Average All Types price. As of December 1, ...

47

Ultra-Low Sulfur Diesel Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Low Sulfur Diesel Fuel Ultra-Low Sulfur Diesel Fuel August 20, 2013 - 8:53am Addthis Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur...

48

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur...

49

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The...

50

2010 Annual Plan Ultra-Deepwater and Unconventional Natural Gas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2010 Annual Plan Ultra-Deepwater and Unconventional...

51

2009 Annual Plan Ultra-Deepwater and Unconventional Natural Gas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2009 Annual Plan Ultra-Deepwater and Unconventional...

52

Ultra-short pulse generator  

DOE Patents (OSTI)

An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

McEwan, T.E.

1993-12-28T23:59:59.000Z

53

Ultra-Deepwater Production Systems  

SciTech Connect

The report herein is a summary of the work performed on three projects to demonstrate hydrocarbon drilling and production methods applicable to deep and ultra deepwater field developments in the Gulf of Mexico and other like applications around the world. This work advances technology that could lead to more economic development and exploitation of reserves in ultra-deep water or remote areas. The first project is Subsea Processing. Its scope includes a review of the ''state of the art'' in subsea components to enable primary production process functions such as first stage liquids and gas separation, flow boosting, chemical treatment, flow metering, etc. These components are then combined to allow for the elimination of costly surface production facilities at the well site. A number of studies were then performed on proposed field development projects to validate the economic potential of this technology. The second project involved the design and testing of a light weight production riser made of composite material. The proposed design was to meet an actual Gulf of Mexico deepwater development project. The various engineering and testing work is reviewed, including test results. The third project described in this report encompasses the development and testing of a close tolerance liner drilling system, a new technology aimed at reducing deepwater drilling costs. The design and prototype testing in a test well are described in detail.

Ken L. Smith; Marc E. Leveque

2005-05-31T23:59:59.000Z

54

Unraveling the fish kill mechanism(s) of the harmful alga Chattonella marina, from the perspective of osmotic disturbance.  

E-Print Network (OSTI)

???The harmful algal bloom (HAB) species, Chattonella marina, has caused severe economic loss to marine fisheries worldwide. In the past three decades, suffocation or respiratory… (more)

Xu, Jingliang (???)

2010-01-01T23:59:59.000Z

55

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful  

E-Print Network (OSTI)

square foot on campus has flattened out. Students making a difference In 2004, Colorado State became one, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

56

APPENDIX C Colorado Statewide Forest Resource Assessment Protect Forests From Harm  

E-Print Network (OSTI)

on insect and disease activity in the state. Because the current aerial survey is conducted by different1 APPENDIX C ­ Colorado Statewide Forest Resource Assessment Data Gaps Protect Forests From Harm o. Need updated LANDFIRE data on the current condition of Colorado's lodgepole pine forests. Need a fuel

57

Security Automation Considered Harmful? W. Keith Edwards Erika Shehan Poole Jennifer Stoll  

E-Print Network (OSTI)

Security Automation Considered Harmful? W. Keith Edwards Erika Shehan Poole Jennifer Stoll School link in information security. Because of this perception, a growing body of research and commercial activity is focused on automated approaches to security. With these approaches, security decisions

Edwards, Keith

58

Ultra wide-bandwidth micro energy harvester  

E-Print Network (OSTI)

An ultra wide-bandwidth resonating thin film PZT MEMS energy harvester has been designed, modeled, fabricated and tested. It harvests energy from parasitic ambient vibration at a wide range of amplitude and frequency via ...

Hajati, Arman

2011-01-01T23:59:59.000Z

59

Ultra-Low Sulfur Diesel Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection Agency requires 80% of the highway diesel fuel refined in or...

60

Ultra-wide bandwidth piezoelectric energy harvesting  

E-Print Network (OSTI)

Here, we present an ultra wide-bandwidth energy harvester by exploiting the nonlinear stiffness of a doubly clamped microelectromechanical systems (MEMSs) resonator. The stretching strain in a doubly clamped beam shows a ...

Hajati, Arman

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ultra-wideband impedance sensor  

DOE Patents (OSTI)

The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

McEwan, Thomas E. (Livermore, CA)

1999-01-01T23:59:59.000Z

62

Ultra-wideband impedance sensor  

DOE Patents (OSTI)

The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

McEwan, T.E.

1999-03-16T23:59:59.000Z

63

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection...

64

Ultra Soy of America DBA USA Biofuels | Open Energy Information  

Open Energy Info (EERE)

Ultra Soy of America DBA USA Biofuels Jump to: navigation, search Name Ultra Soy of America (DBA USA Biofuels) Place Fort Wayne, Indiana Zip 46898 Sector Biofuels Product An...

65

Novel Composite Materials Demonstrate Ultra-sensitivity  

NLE Websites -- All DOE Office Websites (Extended Search)

2, Issue 25 2, Issue 25 Novel Composite Materials Demonstrate Ultra-sensitivity Gold nanowires on graphite templates used in gas sensing application page 2 Coronary Stent Wins Technology Transfer Award page 4 University of Oregon Team Wins Competition for Commercializing NETL Technology page 5 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY 2 Novel Composite Materials Demonstrate Ultra-sensitivity-Gold nanowires on graphite templates used in gas sensing applications ____________________2 Coronary Stent Wins Technology Transfer Award ________4 University of Oregon Team Wins Competition for Commercializing NETL Technology __________________5 NETL & WVU Researchers Design New Catalysts for CO 2 Management ___________________________________6 Structurally Dynamic MOF Sorbent Selectively Adsorbs

66

Ultra-wideband radar sensors and networks  

DOE Patents (OSTI)

Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

2013-08-06T23:59:59.000Z

67

Ultra Thin Quantum Well Materials  

Science Conference Proceedings (OSTI)

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

68

Ultra Thin Quantum Well Materials  

DOE Green Energy (OSTI)

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

69

UltraDots Inc formely UltraPhotonics | Open Energy Information  

Open Energy Info (EERE)

UltraDots Inc formely UltraPhotonics UltraDots Inc formely UltraPhotonics Jump to: navigation, search Name UltraDots Inc (formely UltraPhotonics ) Place Fremont, California Zip CA 94539 Product Nanotechnology company developing "quantum dot" technology for a range of energy, communications and medical applications. Originally included photovoltaics, but this application seems to no longer be the focus. Coordinates 44.2605°, -88.880509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2605,"lon":-88.880509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Ultra-Deepwater Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater Advisory Ultra-Deepwater Advisory Committee Ultra-Deepwater Advisory Committee Ultra-deepwater architecture and technology. | Graphic courtesy of FMC Ultra-deepwater architecture and technology. | Graphic courtesy of FMC Mission The Secretary of Energy, in response to provisions of Subtitle J, Sec. 999 of the Energy Policy Act of 2005, must carry out a program of research, development, demonstration, and commercial application of technologies for ultra-deepwater and onshore unconventional natural gas and other petroleum resource exploration and production, including addressing the technology challenges for small producers, safe operations, and environmental mitigation (including reduction of greenhouse gas emissions and sequestration of carbon). The Department's Ultra-Deepwater Advisory Committee (UDAC) was established

71

Two Novel Ultra-Incompressible Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Novel Ultra-Incompressible Materials Print Two Novel Ultra-Incompressible Materials Print Some current challenges in aerospace engineering and fission/fusion applications require materials that are mechanically and chemically stable at extreme conditions. One such class of materials is ultrahigh-temperature ceramics, which are often binary transition-metal carbides, borides, or nitrides. It is therefore of great interest to understand how to synthesize new compounds of this type. A research team from Germany, the United Kingdom, and Berkeley Lab working at ALS Beamlines 12.2.2 and 12.3.2 has now synthesized and characterized two novel bulk rhenium nitrides, Re2N and Re3N. Both phases are extremely incompressible, and Re3N is also better placed for potential technological applications than are other incompressible transition-metal carbides and nitrides of the period-six elements because it can be formed at relatively moderate pressures and temperatures.

72

Advanced Materials for Ultra Supercritical Boiler Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Patricia a. Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Robert M. Purgert Prime Contractor and Administrator Energy Industries of Ohio 6100 Oak Tree Boulevard, Suite 200 Independence, OH 44131-6914 216-643-2952 purgert@msn.com AdvAnced MAteriAls for UltrA sUpercriticAl Boiler systeMs Description A consortium led by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) has conducted the first phase of a multiyear program to develop materials technology for use in advanced ultra supercritical (USC) coal-fired power plants. The advanced materials developed in this project are essential for construction of

73

Two Novel Ultra-Incompressible Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Novel Ultra-Incompressible Materials Print Two Novel Ultra-Incompressible Materials Print Some current challenges in aerospace engineering and fission/fusion applications require materials that are mechanically and chemically stable at extreme conditions. One such class of materials is ultrahigh-temperature ceramics, which are often binary transition-metal carbides, borides, or nitrides. It is therefore of great interest to understand how to synthesize new compounds of this type. A research team from Germany, the United Kingdom, and Berkeley Lab working at ALS Beamlines 12.2.2 and 12.3.2 has now synthesized and characterized two novel bulk rhenium nitrides, Re2N and Re3N. Both phases are extremely incompressible, and Re3N is also better placed for potential technological applications than are other incompressible transition-metal carbides and nitrides of the period-six elements because it can be formed at relatively moderate pressures and temperatures.

74

Two Novel Ultra-Incompressible Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Novel Ultra-Incompressible Materials Print Two Novel Ultra-Incompressible Materials Print Some current challenges in aerospace engineering and fission/fusion applications require materials that are mechanically and chemically stable at extreme conditions. One such class of materials is ultrahigh-temperature ceramics, which are often binary transition-metal carbides, borides, or nitrides. It is therefore of great interest to understand how to synthesize new compounds of this type. A research team from Germany, the United Kingdom, and Berkeley Lab working at ALS Beamlines 12.2.2 and 12.3.2 has now synthesized and characterized two novel bulk rhenium nitrides, Re2N and Re3N. Both phases are extremely incompressible, and Re3N is also better placed for potential technological applications than are other incompressible transition-metal carbides and nitrides of the period-six elements because it can be formed at relatively moderate pressures and temperatures.

75

Two Novel Ultra-Incompressible Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Novel Ultra-Incompressible Materials Print Two Novel Ultra-Incompressible Materials Print Some current challenges in aerospace engineering and fission/fusion applications require materials that are mechanically and chemically stable at extreme conditions. One such class of materials is ultrahigh-temperature ceramics, which are often binary transition-metal carbides, borides, or nitrides. It is therefore of great interest to understand how to synthesize new compounds of this type. A research team from Germany, the United Kingdom, and Berkeley Lab working at ALS Beamlines 12.2.2 and 12.3.2 has now synthesized and characterized two novel bulk rhenium nitrides, Re2N and Re3N. Both phases are extremely incompressible, and Re3N is also better placed for potential technological applications than are other incompressible transition-metal carbides and nitrides of the period-six elements because it can be formed at relatively moderate pressures and temperatures.

76

Ultra-fast framing camera tube  

DOE Patents (OSTI)

An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

Kalibjian, Ralph (1051 Batavia Ave., Livermore, CA 94550)

1981-01-01T23:59:59.000Z

77

Inertial fusion with ultra-powerful lasers  

SciTech Connect

Ultra-high intensity lasers can be used to ignite ICF capsules with a few tens of kilojoules of light and can lead to high gain with as little as 100 kilojoules of incident laser light. We propose a scheme with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration. Second, a hole is bored through capsule corona composed of ablated material, pushing critical density close to the high density core of the capsule, by employing the ponderomotive force associated with high intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high intensity laser plasma interactions, which propagate from critical density to this high density core. This paper reviews two models of energy gain in ICF capsules and explains why ultra-high intensity lasers allow access to the model producing the higher gains. This new scheme also drastically reduces the difficulty of the implosion and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultra-high-intensity laser and of transporting this energy to the fuel.

Tabak, M.; Hammer, J.; Glinsky, M.; Kruer, W.; Wilks, S.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.

1993-10-01T23:59:59.000Z

78

ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND RECOMMENDATIONS 2014 ULTRA-DEEPWATER ADVISORY COMMITTEE COMMITTEE FINDINGS AND RECOMMENDATIONS i Table of Contents Research and Development Program Committee ............................................ 1 Sunset Committee .................................................................................................. 5 Advisory Committee Members ........................................................................... 7 ULTRA-DEEPWATER ADVISORY COMMITTEE COMMITTEE FINDINGS AND RECOMMENDATIONS 1 Research and Development Program Committee The R&D Program Subcommittee of the UDAC notes that the 2014 Annual Plan has continued to take into account safety and environment in several aspects of the proposed

79

Materials for Ultra-Supercritical Steam Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

80

When Do Their Casualties Count? Exploring Wartime Decisions that Pit Security Against Harm  

E-Print Network (OSTI)

This dissertation offers a new understanding about wartime decision making in the face of likely, but unintended, harm to foreign civilians. It empirically identifies conditions under which leaders in democratic nations are more or less likely to choose to attack a target when confronted with a dilemma between pursuing national security objectives and avoiding civilian casualties. An innovative targeting decision model was constructed that described both the theorized structure of the decisions inputs and the process by which these inputs are assembled into a choice. The model went beyond the normal target benefit and civilian casualty cost considerations of proportionality to also include the contextual input of prospect frame. Decision makers were expected to address the same benefit and cost differently depending on whether they were winning or losing the conflict. This was because the prospect frame would influence their risk attitudes, as predicted by prospect theory. This model was then tested via two decision-making experiments that used military officers and defense civilians as participants. Additionally, a statistical analysis of data collected from an extended period of the second Intifada was done to seek evidence that the model also applied in actual wartime decision making. All three tests supported portions of the targeting decision model. Higher target benefit and lower civilian casualty estimates increased support for the planned attack. Prospect frame influenced decisions in the cases where both target value and the civilian casualty estimates were high and the resulting dilemma was very difficult. In these situations, those told that their forces were losing the conflict were less sensitive to humanitarian harm and more likely to support the attack than when they were told their side was winning. Furthermore, the Intifada data analysis of attacks approved by Israeli officials against Palestinians found this same effect of prospect frame held generally across all six years of observations.

Roblyer, Dwight Andrew

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Information Administration (EIA) - The Transition to Ultra ...  

U.S. Energy Information Administration (EIA)

... a baseline scenario representing the nominal forecast for petroleum refining and marketing without the new requirement for ultra-low-sulfur diesel fuel ...

82

Ultra-Fast Calorimetry for Studies of Crystallization in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ultra-Fast Calorimetry for Studies of Crystallization in Chalcogenides for Phase-Change Memory. Author(s), A. L. Greer. On-Site Speaker ...

83

Corrosion Resistant Metallic Materials for Ultra-deep Well Drilling ...  

Science Conference Proceedings (OSTI)

... corrosion fatigue, etc., can be a primary cause of catastrophic degradation of tubular components during ultra-deep drilling of oil and natural gas shale.

84

NETL: EPAct2005 - Ultra-deepwater and Unconventional Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

technologies, architectures, and methods that ensure safe and environmentally responsible exploration and production of hydrocarbons from the ultra-deepwater portion of the Outer...

85

New Concept of Ultra Low Cost Chemically Bonded Ceramic ...  

Science Conference Proceedings (OSTI)

Presentation Title, New Concept of Ultra Low Cost Chemically Bonded Ceramic Materials Fabricated From Traditional Fillers and Wastes. Author(s), Henry A.

86

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

Science Conference Proceedings (OSTI)

Abstract Scope, The proposed steam inlet temperature in the Advanced Ultra ... 15 - The Effect of Primary ?' Distribution on Grain Growth Behavior of GH720Li ...

87

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High ...  

Science Conference Proceedings (OSTI)

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and Energy ... High Energy Density Lithium Capacitors Using Carbon-Carbon Electrodes.

88

Ultra-Deepwater Advisory Committee Members | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Committee Members Petroleum Reserves International Cooperation Natural Gas Regulation Advisory Committees 2011-2013 Ultra-Deepwater Advisory Committee Members Dr....

89

Ultra-short pulse compression using photonic crystal fibre  

Science Conference Proceedings (OSTI)

ABSTRACT A short section of photonic crystal fibre has been used for ultra-short pulse compression. The unique optical prop- erties of this novel medium in ...

90

Scanning Electron Microscope 1: Zeiss Ultra-60 FESEM  

Science Conference Proceedings (OSTI)

Scanning Electron Microscope 1: Zeiss Ultra-60 FESEM. ... Secondary and backscattered electron detectors; Images structures down to 10 nm in size; ...

2013-05-30T23:59:59.000Z

91

USANS: the Ultra-Small-Angle Neutron Scattering Instrument at...  

NLE Websites -- All DOE Office Websites (Extended Search)

USANS-Ultra-Small-Angle Neutron Scattering Instrument USANS is designed for the study of hierarchical structures in natural and artificial materials. It can be considered an...

92

Tungsten-Rhenium Super Alloy Development for Ultra High ...  

Science Conference Proceedings (OSTI)

Presentation Title, Tungsten-Rhenium Super Alloy Development for Ultra High Temperature Space Fission and Fusion Reactors. Author(s), Jonathan Webb, ...

93

Micro-mechanical Characterization of Ultra-high Strength Dendritic ...  

Science Conference Proceedings (OSTI)

Nanoscale Creep-fatigue Behavior of Indium at Room Temperature ... Ultra-low Density Nanotubular Metal Oxides with Super-high Modulus and Strength by ...

94

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn...

95

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and...

96

Ultra-wideband radar motion sensor  

DOE Patents (OSTI)

A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

McEwan, T.E.

1994-11-01T23:59:59.000Z

97

Materials for Advanced Ultra-Supercritical Steam Boilers  

E-Print Network (OSTI)

Materials for Advanced Ultra-Supercritical Steam Boilers Mike Santella ORNL 25th Annual Conference ­ For Profit Cost Sharing Consortium #12;2 26-May-2010 Materials for Advanced Ultra-Supercritical Steam Boilers Estimated Total Amount of Tubing for a Generic A-USC Boiler Images courtesy of The Babcock & Wilcox Company

98

Scattering of Ultra Cold Neutrons on Nano-size Bubbles  

E-Print Network (OSTI)

Inelastic scattering of ultra cold neutrons on bubbles with the size of nanometers is considered. It is shown that neutron-bubble cross section is large and sensitive to different vibration modes of bubbles. This process could be used for study of dynamics of nano-size bubbles and for new methods of ultra cold neutron production.

Vladimir Gudkov

2006-02-07T23:59:59.000Z

99

Narrow focus ultra-wideband antenna for breast cancer detection  

Science Conference Proceedings (OSTI)

A narrow focus ultra-wideband dielectric-filled antenna has been designed for the purpose of near-field breast cancer detection without the use of coupling media. Instead of immersing the antenna in a lossy liquid coupling medium, direct matching of ... Keywords: antenna feeds, antennas, breast cancer detection, directional, radar-based imaging, ultra-wide band

Daniel M. Hailu; Safieddin Safavi-Naeini

2009-01-01T23:59:59.000Z

100

The concept of information overload: A preliminary step in understanding the nature of a harmful information-related condition  

Science Conference Proceedings (OSTI)

The amount of content, both on and offline, to which people in reasonably affluent nations have access has increased to the point that it has raised concerns that we are now suffering from a harmful condition of ¿information overload.' Although the phrase ... Keywords: attention, information ethics, information excess, information overload, information problem, normative standards, technostress

Kenneth Einar Himma

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Action Spectra for Human Skin Cells: Estimates of the Relative Cytotoxicity of the Middle Ultraviolet, Near Ultraviolet, and Violet Regions of Sunlight on  

E-Print Network (OSTI)

Action spectra for the cytotoxic action of electromagnetic radiation in the solar range 280-434 nm have been determined for human fibroblasts and epidermal keratinocytes derived from the same foreskin biopsy. The spectra for the two cell types are close to identical and coincide with our previously published data for a human lymphoblastoid line indicating that the mechanism of inactivation of the three human cell types is similar at any given wavelength. Using published data for ultraviolet transmission of human skin and sample spectral irradiarÃa'data, we have estimated the relative biological effectiveness of the middle ultraviolet (UVB) (290-320 nm), near ultraviolet (UVA) (320-380 nm), and violet (380-434 nm) regions of sunlight for cytotoxicity at the basal layer of the epidermis. We conclude that the UVB component in noon summer sunlight (the most UVB rich spectral conditions tested) may contribute only about 40 % of the total cytotoxic effectiveness of sunlight at 290-

Rex M. Tyrrell; Mireille Pidoux; Cancer Res; Contact The Aacr Publications; Epidermal Keratinocytes; Rex M. Tyrrell; Mireille Pidoux

2013-01-01T23:59:59.000Z

102

Ultra Safe And Secure Blasting System  

SciTech Connect

The Ultra is a blasting system that is designed for special applications where the risk and consequences of unauthorized demolition or blasting are so great that the use of an extraordinarily safe and secure blasting system is justified. Such a blasting system would be connected and logically welded together through digital code-linking as part of the blasting system set-up and initialization process. The Ultra's security is so robust that it will defeat the people who designed and built the components in any attempt at unauthorized detonation. Anyone attempting to gain unauthorized control of the system by substituting components or tapping into communications lines will be thwarted in their inability to provide encrypted authentication. Authentication occurs through the use of codes that are generated by the system during initialization code-linking and the codes remain unknown to anyone, including the authorized operator. Once code-linked, a closed system has been created. The system requires all components connected as they were during initialization as well as a unique code entered by the operator for function and blasting.

Hart, M M

2009-07-27T23:59:59.000Z

103

Ultra supercritical turbines--steam oxidation  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

104

Ultra-high resolution computed tomography imaging  

DOE Patents (OSTI)

A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

2002-01-01T23:59:59.000Z

105

Multilayer ultra-high-temperature ceramic coatings  

SciTech Connect

A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

2012-03-20T23:59:59.000Z

106

Ultra-accelerated natural sunlight exposure testing  

SciTech Connect

Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

Jorgensen, Gary J. (Pine, CO); Bingham, Carl (Lakewood, CO); Goggin, Rita (Englewood, CO); Lewandowski, Allan A. (Evergreen, CO); Netter, Judy C. (Westminster, CO)

2000-06-13T23:59:59.000Z

107

Ultra-thin microporous/hybrid materials  

DOE Patents (OSTI)

Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.

Jiang, Ying-Bing (Albuquerque, NM); Cecchi, Joseph L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM)

2012-05-29T23:59:59.000Z

108

Ultra-Efficient Home Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Efficient Home Design Ultra-Efficient Home Design Ultra-Efficient Home Design April 26, 2012 - 9:52am Addthis All Kaupuni Village homes in Oahu, Hawaii, incorporate energy efficiency and renewable energy technologies to produce as much energy as they consume. Credit: Kenneth Kelly, NREL. All Kaupuni Village homes in Oahu, Hawaii, incorporate energy efficiency and renewable energy technologies to produce as much energy as they consume. Credit: Kenneth Kelly, NREL. What does this mean for me? Lower energy bills and improved comfort Energy reliability and security Environmental sustainability How does it work? Ultra-efficient home design reduces home energy use and meets all or part of the reduced energy requirements with on-site renewable energy systems, such as solar water heating and solar electricity.

109

Ultra-Bright Source Of Polarization-Entangled Photons  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Bright Source Of Polarization-Entangled Photons Ultra-Bright Source Of Polarization-Entangled Photons Ultra-Bright Source Of Polarization-Entangled Photons Utilizing the process of spontaneous parametric down-conversion in a novel crystal geometry, a source of polarization-entangled photon pairs has been provided that is more than ten times brighter, per unit of pump power, than previous sources, with another factor of 30 to 75 expected to be readily achievable. Available for thumbnail of Feynman Center (505) 665-9090 Email Ultra-Bright Source Of Polarization-Entangled Photons Utilizing the process of spontaneous parametric down-conversion in a novel crystal geometry, a source of polarization-entangled photon pairs has been provided that is more than ten times brighter, per unit of pump power, than previous sources, with another factor of 30 to 75 expected to be readily

110

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater and Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, launched by the Energy Policy Act of 2005 (EPAct), is a public/private partnership valued at $400 million over eight years that is designed to benefit consumers by developing technologies to increase America's domestic oil and gas production and reduce the Nation's dependency on foreign imports. Key aspects of the program include utilizing a non-profit consortium to manage the research, establishing two federal advisory committees, and funding of $50 million per year derived from royalties, rents, and bonuses from federal onshore

111

30vol%SiC at Ultra-high Temperatures  

Science Conference Proceedings (OSTI)

Presentation Title, SiC-depletion in ZrB2-30vol%SiC at Ultra-high Temperatures. Author(s), K N Shugart, E. J. Opila. On-Site Speaker (Planned), K N Shugart.

112

Pulse-based ultra-wideband transmitters for digital communication  

E-Print Network (OSTI)

Ultra-wideband radio (UWB) is a rapidly developing wireless technology that promises unprecedented data rates for short-range commercial radios, combined with precise locationing and high energy efficiency. These benefits ...

Wentzloff, David D. (David Dale), 1977-

2007-01-01T23:59:59.000Z

113

Design of low noise amplifier for ultra-wideband applications  

E-Print Network (OSTI)

The recent surge in the demand for low power portable wireless electronics that can offer extremely high data rates has resulted in much active research in Ultra-Wideband (UWB) systems. UWB is widely recognized as a promising ...

Vo, Danh T

2009-01-01T23:59:59.000Z

114

Ir-based alloys for ultra-high temperature applications ...  

Site Map; Printable Version; Share this resource. Send a link to Ir-based alloys for ultra-high temperature applications - Energy Innovation Portalto someone by E-mail

115

Studying coherence in ultra-cold atomic gases  

E-Print Network (OSTI)

This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate and a fermion pair condensate. In each ...

Miller, Daniel E. (Daniel Edward)

2007-01-01T23:59:59.000Z

116

Design of wind turbines with Ultra-High Performance Concrete  

E-Print Network (OSTI)

Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations ...

Jammes, François-Xavier

2009-01-01T23:59:59.000Z

117

Underwater ultra-wideband fingerprinting-based localization.  

E-Print Network (OSTI)

??In this work a new location fingerprinting-based localization algorithm is proposed for an underwater medium by utilizing ultra-wideband (UWB) signals. In many conventional underwater systems,… (more)

Shakeri, S.

2012-01-01T23:59:59.000Z

118

Ultra High-Energy Cosmic Ray Observations  

E-Print Network (OSTI)

The year 2007 has furnished us with outstanding results about the origin of the most energetic cosmic rays: a flux suppression as expected from the GZK-effect has been observed in the data of the HiRes and Auger experiments and correlations between the positions of nearby AGN and the arrival directions of trans-GZK events have been observed by the Pierre Auger Observatory. The latter finding marks the beginning of ultra high-energy cosmic ray astronomy and is considered a major breakthrough starting to shed first light onto the sources of the most extreme particles in nature. This report summarizes those observations and includes other major advances of the field, mostly presented at the 30th International Cosmic Ray Conference held in Merida, Mexico, in July 2007. With increasing statistics becoming available from current and even terminated experiments, systematic differences amongst different experiments and techniques can be studied in detail which is hoped to improve our understanding of experimental tec...

Kampert, Karl-Heinz

2008-01-01T23:59:59.000Z

119

Ultra-Scale Computing for Emergency Evacuation  

Science Conference Proceedings (OSTI)

Emergency evacuations are carried out in anticipation of a disaster such as hurricane landfall or flooding, and in response to a disaster that strikes without a warning. Existing emergency evacuation modeling and simulation tools are primarily designed for evacuation planning and are of limited value in operational support for real time evacuation management. In order to align with desktop computing, these models reduce the data and computational complexities through simple approximations and representations of real network conditions and traffic behaviors, which rarely represent real-world scenarios. With the emergence of high resolution physiographic, demographic, and socioeconomic data and supercomputing platforms, it is possible to develop micro-simulation based emergency evacuation models that can foster development of novel algorithms for human behavior and traffic assignments, and can simulate evacuation of millions of people over a large geographic area. However, such advances in evacuation modeling and simulations demand computational capacity beyond the desktop scales and can be supported by high performance computing platforms. This paper explores the motivation and feasibility of ultra-scale computing for increasing the speed of high resolution emergency evacuation simulations.

Bhaduri, Budhendra L [ORNL; Nutaro, James J [ORNL; Liu, Cheng [ORNL; Zacharia, Thomas [ORNL

2010-01-01T23:59:59.000Z

120

Columbia University Prospectivity of the Ultra-Deepwater Gulf of Mexico  

E-Print Network (OSTI)

", June 2001 and Oligney, R., J. Longbottom, and M. Kenderdine, Ultra-deepwater R&D Program Needed, Hart., Longbottom, J., and Kenderdine, M., Ultra-deepwater R&D Program Needed, Hart's E&P, Sept 2001. Werbos, P

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

2008 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2008 Annual Plan for the Ultra-Deepwater and...

122

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and...

123

Calibration of an ultra-low-background proportional counter for measuring 37 Ar  

Science Conference Proceedings (OSTI)

An ultra-low-background proportional counter design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials

2013-01-01T23:59:59.000Z

124

South Dakota No 2 Diesel Ultra Low Sulfur Less than 15 ppm Retail ...  

U.S. Energy Information Administration (EIA)

South Dakota No 2 Diesel Ultra Low Sulfur Less than 15 ppm Retail Sales by Refiners (Thousand Gallons per Day)

125

Method for laser welding ultra-thin metal foils  

SciTech Connect

A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1996-01-01T23:59:59.000Z

126

Ultra Bright LED Light Injection Calibration System for MINOS  

E-Print Network (OSTI)

We describe here a proposal for a light injection calibration system for the MINOS detectors based on ultra bright blue LEDs as the light source. We have shown that these LEDs are bright enough to span over two orders of magnitude in light intensity, commensurate with that expected in a single scintillator strip in the MINOS neutrino detectors.

Anderson, B; Dervan, P J; Lauber, J A; Thomas, J

1999-01-01T23:59:59.000Z

127

High Redshift Galaxies in the Hubble Ultra Deep Field  

E-Print Network (OSTI)

My dissertation presents results from three recent investigations in the Hubble Ultra Deep Field (HUDF) focusing on understanding structural and physical properties of high redshift galaxies. Here I summarize results from these studies. This thesis work was conducted at Arizona State University under the guidance of Prof. Rogier Windhorst and Prof. Sangeeta Malhotra.

Nimish P. Hathi

2008-10-02T23:59:59.000Z

128

A Search Strategy for Ultra-Wideband Signal Acquisition  

E-Print Network (OSTI)

A Search Strategy for Ultra-Wideband Signal Acquisition Saravanan Vijayakumaran and Tan F. Wong can be considered as successful acquisition. In this case, the serial search may no longer be the optimal choice for the sequential search strategy in the acquisition system. In this paper, we consider

Wong, Tan F.

129

Training ultra precision engineers for UK manufacturing industry  

Science Conference Proceedings (OSTI)

Ultra Precision Engineers are in demand in both UK and European manufacturing industries. Engineering Companies can address this skills shortage by training existing staff or recruiting new staff with the appropriate skills. Since companies are understandably ... Keywords: Higher education, Industry, Knowledge transfer, Postgraduate, Precision engineering

Christopher Sansom; Paul Shore

2013-06-01T23:59:59.000Z

130

Ultra Bright LED Light Injection Calibration System for MINOS  

E-Print Network (OSTI)

We describe here a proposal for a light injection calibration system for the MINOS detectors based on ultra bright blue LEDs as the light source. We have shown that these LEDs are bright enough to span over two orders of magnitude in light intensity, commensurate with that expected in a single scintillator strip in the MINOS neutrino detectors.

B. Anderson; A. Anjomshoaa; P. Dervan; J. A. Lauber; J. Thomas

1998-10-26T23:59:59.000Z

131

Ultra Bright LED Light Injection Calibration System for MINOS  

E-Print Network (OSTI)

We describe here a proposal for a light injection calibration system for the MINOS detectors based on ultra bright blue LEDs as the light source. We have shown that these LEDs are bright enough to span over two orders of magnitude in light intensity, commensurate with that expected in a single scintillator strip in the MINOS neutrino detectors. 1

B. Anderson; A. Anjomshoaa; P. Dervan; J. A. Lauber; J. Thomas

2008-01-01T23:59:59.000Z

132

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas Annual report on ultra-deepwater natural gas, etc, required by Energy Policy Act of 2005, Subtitle J, Section 999 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program More Documents & Publications 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan

133

Evaluation of Ultra Clean Fuels from Natural Gas  

DOE Green Energy (OSTI)

ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.

Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

2006-02-28T23:59:59.000Z

134

ealth physics is concerned with protecting people from the harmful effects of ionizing radiation while allowing its beneficial use in medicine, science,  

E-Print Network (OSTI)

, particularly from medical exposures and from the atomic-bomb ex- posures in Hiroshima and Nagasaki. DuringH ealth physics is concerned with protecting people from the harmful effects of ionizing radiation effects such as cancer that had been observed in populations of people receiv- ing high doses

Massey, Thomas N.

135

Solar System Signatures of Impacts by Compact Ultra Dense Objects  

E-Print Network (OSTI)

As a means of detecting compact ultra dense objects (CUDOs) with nuclear density or greater, and a mass $10^{-10}solar system bodies. We find that a heavy enough CUDO pulverizes, heats and entrains material in a small cylinder around its trajectory through the target body. Because the resulting impact features endure for geologic timescales, data is accumulated over the history of the solar system. Exclusion of all CUDO impact signatures would set a strong limit on their local abundance.

Labun, Lance; Rafelski, Johann

2011-01-01T23:59:59.000Z

136

Square wells, quantum wells and ultra-thin metallic films  

E-Print Network (OSTI)

The eigenvalue equations for the energy of bound states of a particle in a square well are solved, and the exact solutions are obtained, as power series. Accurate analytical approximate solutions are also given. The application of these results in the physics of quantum wells are discussed,especially for ultra-thin metallic films, but also in the case of resonant cavities, heterojunction lasers, revivals and super-revivals.

Victor Barsan

2013-07-09T23:59:59.000Z

137

Ultra-fast outflows (aka UFOs) from AGNs and QSOs  

E-Print Network (OSTI)

During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

Cappi, M; Giustini, M

2013-01-01T23:59:59.000Z

138

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Annual Plan for the Ultra-Deepwater and Unconventional Natural 7 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Annual report on ultra-deepwater, etc. natural gas research program required by Energy Policy Act of 2005, Subtitle J, Section 999 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program More Documents & Publications 2007 Annual Plan Recommendations: Draft 2008 Section 999 Annual Plan 2008 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program

139

Whole-cell sensing for a harmful bloom-forming microscopic alga by measuring antibody--antigen forces  

E-Print Network (OSTI)

Abstract—Aureococcus anophagefferens, a harmful bloomforming alga responsible for brown tides in estuaries of the Middle Atlantic U.S., has been investigated by atomic force microscopy for the first time, using probes functionalized with a monoclonal antibody specific for the alga. The rupture force between a single monoclonal antibody and the surface of A. anophagefferens was experimentally found to be 246 6 11 pN at the load rate of 12 nN/s. Force histograms for A. anophagefferens and other similarly-sized algae are presented and analyzed. The results illustrate the effects of load rates, and demonstrate that force-distance measurements can be used to build biosensors with high signal-to-noise ratios for A. anophagefferens. The methods described in this paper can be used, in principle, to construct sensors with single-cell resolution for arbitrary cells for which monoclonal antibodies are available. Index Terms—Atomic force microscopy, Aureococcus anophagefferens, biosensors, force-distance measurements, single-cell identification.

Er S. Lee; Mrinal Mahapatro; David A. Caron; Aristides A. G. Requicha; Life Fellow; Beth A. Stauffer; Mark E. Thompson; Chongwu Zhou

2006-01-01T23:59:59.000Z

140

Development of an ultra-safe, ultra-low emissions natural gas fueled school bus: Final report  

DOE Green Energy (OSTI)

This report documents work conducted under Southwest Research Institute (SwRI) Project 03-6871, ``Development of an Ultra-Safe and Low-Emission Dedicated Alternative Fuel School Bus.`` The project was sponsored by the National Renewable Energy Laboratory (NREL) under Subcontract No. ZCF-5-13519-01. This report documents Phase 3 -- Integration and Phase 4 -- Demonstration and serves as the final report for this project. Phase 1 -- Systems Design and Phase 2 -- Prototype Hardware Development were documented in NREL publications TP-425-7609 and TP-425-2 1081, respectively. Several significant areas of work are summarized in this report. Integration of the engine technologies developed under Phase 2 into a production Deere 8.1-L, spark-ignition compressed natural gas engine is detailed, including information on the engine and control system modifications that were made. Federal Test Procedure (FTP) emissions results verifying the ultra-low emissions output of this engine are also included. The informal project goal of producing oxides of nitrogen (NO{sub x}) emissions less than or equal to 1.0 g/bhp-hr over the FTP heavy-duty engine cycle was attained. In addition, a test run that resulted in less than one half of the Ultra-Low Emissions Vehicle limit for NO{sub x} plus non-methane hydrocarbons was obtained. These results were for engine-out (no catalyst) emissions. Results using a catalyst produced very low formaldehyde emissions and virtually zero carbon monoxide and particulate matter emissions. Following these excellent results, a duplicate engine was assembled and integrated into the prototype ultra-safe school bus, the Envirobus 2000. Many of the new and modified subsystems developed during this project for the engine are considered strong candidates for inclusion into the production Deere 8.1-L gas engine in the near future.

Kubesh, J.T. [Southwest Research Inst., San Antonio, TX (United States)

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New Materials for 750°C Boilers in Advanced Ultra-supercritical  

Science Conference Proceedings (OSTI)

Presentation Title, New Materials for 750°C Boilers in Advanced Ultra- supercritical (A-USC) Power Plants. Author(s), Yuefeng Gu, Z ZHONG, Y Yuan, Z Shi.

142

Assessing Cast Alloys for Use in Advanced Ultra-supercritical Steam ...  

Science Conference Proceedings (OSTI)

... of these alloys were examined via SEM; phase identification and chemistry are being ... Phase Stability of Cast and Wrought IN 740 at Ultra Supercritical Boiler ...

143

Illinois No 2 Diesel Ultra Low Sulfur Less than 15 ppm ...  

U.S. Energy Information Administration (EIA)

Illinois No 2 Diesel Ultra Low Sulfur Less than 15 ppm Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 ... Propane, No.1 ...

144

2007 R&D 100 Award: Ultra-High-Resolution Mammography System...  

NLE Websites -- All DOE Office Websites (Extended Search)

7 R&D 100 Awards: Ultra-High-Resolution Mammography System (UHRMS) Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets,...

145

168 Phase Transformation from Ultra-Fine Grained Austenite in a ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Large number of grain boundaries in ultra-fine grained (UFG) metals ..... Oxides Nanocompounds for Electrodes in Electrochemical Capacitors.

146

Alloy Design of 9% Cr Steel for High Efficiency Ultra-Supercritical ...  

Science Conference Proceedings (OSTI)

Presentation Title, Alloy Design of 9% Cr Steel for High Efficiency Ultra- Supercritical Power Plants. Author(s), Fujio Abe. On-Site Speaker (Planned), Fujio Abe.

147

Design Method for Light Absorption Enhancement in Ultra-Thin Film ...  

Science Conference Proceedings (OSTI)

ultra-thin film organic solar cells (OSCs) to improve the light absorption. ... In the promising field of solar cells, organic solar cells (OSCs) are advantageous in its ...

148

Capacity of ultra-wideband power-constrained ad hoc networks  

E-Print Network (OSTI)

Capacity of Ultra-Wideband Power-Constrained Ad Hoc Networks Xiaojun Tang and Yingbo Hua, Fellow, IEEE This algorithm then produces mappings

Tang, Xiaojun; Hua, Yingbo

2008-01-01T23:59:59.000Z

149

UltraSpec: Ultrahigh Energy-Resolution Gamma and Fast-Neutron ...  

Current Weather. Protocol Office. Where to stay. Tri-Valley Visitors Bureau. ... UltraSpec is a new analytical tool for examining nuclear materials non-destructively.

150

A7: On-the-fly System Design for High Precision/Ultra Fast/Wide ...  

Science Conference Proceedings (OSTI)

The ultra-high speed laser scanner system is limited by its size of scanning area, for ... via a New Bi-layer Curvature Relaxation Measurement Technique.

151

Fossil AGN jets as ultra high energy particle accelerators  

E-Print Network (OSTI)

Remnants of AGN jets and their surrounding cocoons leave colossal magnetohydrodynamic (MHD) fossil structures storing total energies ~10^{60} erg. The original active galacic nucleus (AGN) may be dead but the fossil will retain its stable configuration resembling the reversed-field pinch (RFP) encountered in laboratory MHD experiments. In an RFP the longitudinal magnetic field changes direction at a critical distance from the axis, leading to magnetic re-connection there, and to slow decay of the large-scale RFP field. We show that this field decay induces large-scale electric fields which can accelerate cosmic rays with an E^{-2} power-law up to ultra-high energies with a cut-off depending on the fossil parameters. The cut-off is expected to be rigidity dependent, implying the observed composition would change from light to heavy close to the cut-off if one or two nearby AGN fossils dominate. Given that several percent of the universe's volume may house such slowly decaying structures, these fossils may even re-energize ultra-high energy cosmic rays from distant/old sources, offsetting the ``GZK-losses'' due to interactions with photons of the cosmic microwave background radiation and giving evidence of otherwise undetectable fossils. In this case the composition would remain light to the highest energies if distant sources or fossils dominated, but otherwise would be mixed. It is hoped the new generation of cosmic ray experiments such as the Pierre Auger Observatory and ultra-high energy neutrino telescopes such as ANITA and lunar Cherenkov experiments will clarify this.

Gregory Benford; R. J. Protheroe

2007-06-29T23:59:59.000Z

152

UCom: Ultra-wideband Communications in Harsh Propagation Environments  

SciTech Connect

LLNL has developed an ultra-wideband (UWB) system that provides unique, through-the-wall wireless communications in heavy metallic and heavy concrete indoor channels. LLNL's UWB system is the only available wireless communications system that performs successfully and reliably in facilities where conventional narrowband communications usually fail due to destructive reflections from multiple surfaces. These environments include: cargo ships and reinforced, heavy concrete buildings. LLNL's revolutionary system has applications for the military, as well as commercial indoor communications in multistory buildings, and cluttered industrial structures.

Nekoogar, F

2007-03-14T23:59:59.000Z

153

GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra  

Science Conference Proceedings (OSTI)

The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

Winn, W.G.

1999-07-28T23:59:59.000Z

154

Ultra high vacuum broad band high power microwave window  

DOE Patents (OSTI)

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

1997-01-01T23:59:59.000Z

155

Ultra high vacuum broad band high power microwave window  

DOE Patents (OSTI)

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

Nguyen-Tuong, V.; Dylla, H.F. III

1997-11-04T23:59:59.000Z

156

Ultra high energy neutrinos from gamma ray bursts  

E-Print Network (OSTI)

Protons accelerated to high energies in the relativistic shocks that generate gamma ray bursts photoproduce pions, and then neutrinos in situ. I show that ultra high energy neutrinos (> 10^19 eV) are produced during the burst and the afterglow. A larger flux, also from bursts, is generated via photoproduction off CMBR photons in flight but is not correlated with currently observable bursts, appearing as a bright background. Adiabatic/synchrotron losses from protons/pions/muons are negligible. Temporal and directional coincidences with bursts detected by satellites can separate correlated neutrinos from the background.

Mario Vietri

1998-02-18T23:59:59.000Z

157

High Efficiency, Ultra-Low Emission, Integrated Process Heater System  

Science Conference Proceedings (OSTI)

The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution relied heavily on computational fluid dynamic predictions of design alternatives. The final design features modular separate radiant cells, each with one and two-side fired vertical tubes. The convection section configuration is vertical tube banks enclosed in the radiant channels. Commercial modular plate air preheaters are used. The predicted performance for the integrated advanced heater and Callidus burner is 95 percent efficiency with 9 ppm NOx emissions firing natural gas, and 12 ppm firing refinery gas. The total erected cost is less than a conventional heater with combustion air preheat.

Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

2006-06-19T23:59:59.000Z

158

Color superconductivity in ultra-dense quark matter  

E-Print Network (OSTI)

At ultra-high density, matter is expected to form a degenerate Fermi gas of quarks in which there is a condensate of Cooper pairs of quarks near the Fermi surface. This phenomenon is called color superconductivity. In these proceedings I review the underlying physics of color superconductivity and our current understanding of the possible phases of real-world quark matter. Then I consider how lattice gauge theorists would proceed to investigate the phase structure of dense quark matter if it were possible to perform the path integral numerically, i.e. if the sign problem had been solved.

Mark G. Alford

2006-10-06T23:59:59.000Z

159

Chemical surface deposition of ultra-thin semiconductors  

DOE Patents (OSTI)

A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

McCandless, Brian E. (243 W. Main St., Elkton, MD 21921); Shafarman, William N. (1905 N. Van Buren St., Wilmington, DE 19802)

2003-03-25T23:59:59.000Z

160

Multi-User Ultra-Wide Band Communication System Based on Modified Gegenbauer and Hermite Functions  

Science Conference Proceedings (OSTI)

In this paper a multi-user communication system based on ultra-wide band (UWB) technology is studied. UWB uses very short pulses, so that the spectrum of the emitted signals may spread over several GHz. In order to implement multi-user communication, ... Keywords: Gegenbauer polynomials, Hermite polynomials, ultra-wide band

F. Elbahhar; A. Rivenq-Menhaj; J. M. Rouvaen

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The ultra-thin solar cells that could generate power through windows  

E-Print Network (OSTI)

The ultra-thin solar cells that could generate power through windows By Claire Bates Last updated, generating enough electricity to power the GPS or air conditioning. Solar cells, which convert solar energy into tinted windows Page 1 of 3The ultra-thin solar cells that could generate power through windows | Mail

Rogers, John A.

162

Thermal shock modeling of Ultra-High Temperature Ceramics under active cooling  

Science Conference Proceedings (OSTI)

Thermal shock resistance is one of the most important parameters in Ultra-High Temperature Ceramics (UHTCs) since it determines their performance in various applications. In this paper, due to the fact that the material parameters of UHTCs are very sensitive ... Keywords: Active cooling, Target temperature, Thermal protection system, Thermal shock resistance, Ultra-High Temperature Ceramics

Weiguo Li; Fan Yang; Daining Fang

2009-12-01T23:59:59.000Z

163

Ultra-wideband bandpass filter on coplanar waveguide: Proposal and implementation: Research Articles  

Science Conference Proceedings (OSTI)

In this paper, a novel ultra-wideband (UWB: 3.1 ? 10.6 GHz) bandpass filter on coplanar waveguide (CPW) is presented, designed and implemented. At first, an open-ended nonuniform or multiple-mode resonator with three distinctive sections is constructed ... Keywords: UWB bandpass filter, coplanar waveguide, interdigital capacitor, multiple-mode resonator, ultra-wideband

Jing Gao; Lei Zhu; Wolfgang Menzel; Frank Bögelsack

2007-03-01T23:59:59.000Z

164

THE ASTROPHYSICS OF ULTRA-COMPACT BINARIES A WHITE PAPER FOR THE ASTRO2010 DECADAL REVIEW  

E-Print Network (OSTI)

THE ASTROPHYSICS OF ULTRA-COMPACT BINARIES A WHITE PAPER FOR THE ASTRO2010 DECADAL REVIEW G interact- ing AM CVn stars, ultra-compact X-ray binaries, detached double white dwarfs, double neutron stars, white dwarf/neutron star binaries and as yet unobserved binaries such as black holes with neutron

165

Linearizer for pulse-shaping of received pulse in ultra-wideband radio systems  

Science Conference Proceedings (OSTI)

This paper presents a novel concept of pulse-shaping in an ultra-wide band radio system. Instead of attempting to design an antenna with flat group delay, the emphasis has been shifted to the signal processing aspect of pulse shaping. The received pulse ... Keywords: Group delay, Linearizer, Pulse shaping, Radar, Radio systems, Ultra-wideband

Ajay K. Singh; Pradeep Kumar; G. Singh; T. Chakravarty

2010-03-01T23:59:59.000Z

166

Evaluation of the SUN UltraSparc T2+ Processor for Computational Science  

Science Conference Proceedings (OSTI)

The Sun UltraSparc T2+ processor was designed for throughput computing and thread level parallelism. In this paper we evaluate its suitability for computational science. A set of benchmarks representing typical building blocks of scientific applications ... Keywords: Computational Science, Evaluation, Niagara2, Sun UltraSparc T2+

Martin Sandrieser; Sabri Pllana; Siegfried Benkner

2009-05-01T23:59:59.000Z

167

System analysis of a negative impedance converter receiver for ultra low frequencies  

Science Conference Proceedings (OSTI)

Monitoring electromagnetic waves in the Ultra Low Frequency (ULF) range between 1 mHz and 1 Hz is essential for an understanding of the processes in the earths magnetosphere. Also earthquake prone areas are under suspect to emit precursor ULF signals. ... Keywords: magnetosphere, negative impedance convert, system analysis, ultra low frequency

Ernst D. Schmitter

2008-07-01T23:59:59.000Z

168

Remote visualization of large scale data for ultra-high resolution display environments  

Science Conference Proceedings (OSTI)

ParaView is one of the most widely used scientific tools that support parallel visualization of large scale data. The Scalable Adaptive Graphics Environment (SAGE) is a graphics middleware that enables real-time streaming of ultra-high resolution visual ... Keywords: ParaView, SAGE, large-scale data, remote visualization, ultra-high resolution visualization

Sungwon Nam; Byungil Jeong; Luc Renambot; Andrew Johnson; Kelly Gaither; Jason Leigh

2009-11-01T23:59:59.000Z

169

Ultra low head ambient pressure hydroturbine. Technical report, fiscal year one, fourth quarter ending June 30, 1998  

DOE Green Energy (OSTI)

This report briefly discusses the testing and design of a model for a ultra head ambient pressure hydroturbine.

NONE

1998-06-27T23:59:59.000Z

170

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast

171

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will Convert Northeast Home Heating Oil Reserve to Ultra Low Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast Home Heating Oil Reserve, a total of approximately 2 million barrels, and

172

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid-Scale Energy Storage Demonstration Using Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy storage system. The UltraBattery technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) More Documents & Publications

173

Ultra-compact Marx-type high-voltage generator  

DOE Patents (OSTI)

An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

Goerz, David A. (Brentwood, CA); Wilson, Michael J. (Modesto, CA)

2000-01-01T23:59:59.000Z

174

Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers  

Science Conference Proceedings (OSTI)

This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

2009-08-24T23:59:59.000Z

175

GZK Photons as Ultra High Energy Cosmic Rays  

E-Print Network (OSTI)

We calculate the flux of "GZK-photons", namely the flux of Ultra High Energy Cosmic Rays (UHECR) consisting of photons produced by extragalactic nucleons through the resonant photoproduction of pions, the so called GZK effect. We We calculate the flux of "GZK-photons", namely the flux of Ultra High Energy Cosmic Rays (UHECR) consisting of photons produced by extragalactic nucleons through the resonant photoproduction of pions, the so called GZK effect. We show that, for primary nucleons, the GZK photon fraction of the total UHECR flux is between $10^{-4}$ and $10^{-2}$ above $10^{19}$ eV and up to the order of 0.1 above $10^{20}$ eV. The GZK photon flux depends on the assumed UHECR spectrum, slope of the nucleon flux at the source, distribution of sources and intervening backgrounds. Detection of this photon flux would open the way for UHECR gamma-ray astronomy. Detection of a larger photon flux would imply the emission of photons at the source or new physics. We compare the photon fractions expected for GZK photons and the minimal predicted by Top-Down models. We find that the photon fraction above $10^{19}$ eV is a crucial test for Top-Down models.

Graciela B. Gelmini; Oleg E. Kalashev; Dmitry V. Semikoz

2005-06-06T23:59:59.000Z

176

Gaussian pulse generators for subbanded Ultra-Wideband transmitters  

E-Print Network (OSTI)

Abstract—This paper presents calculations for approximating the measured spectrum of pulsed signals in the high and low pulserepetition-frequency (PRF) region. Experimentally verified peak and average power calculations are presented for pulse trains with no modulation and when modulated by random data using binary phase-shift keying (BPSK). A pulse generator is presented that is built using commercially available discrete components. BPSK pulses are generated at a PRF of 50 MHz. The output spectrum has a center frequency of 5.355 GHz and a 10-dB bandwidth of 550 MHz. A technique for pulse shaping is presented that approximates a Gaussian pulse by exploiting the exponential behavior of a bipolar junction transistor. This technique is demonstrated by a pulse generator fabricated in a 0.18- m SiGe BiCMOS process. BPSK pulses are generated by inverting a local oscillator signal as opposed to the reference pulse, improving matching. Pulses are transmitted at a PRF of 100 MHz and centered in 528-MHz-wide channels equally spaced within the 3.1–10.6-GHz ultra-wideband band. Measurement results for both transmitters match well with calculated values. Index Terms—Gaussian, pulse analysis, pulse generation, transmitter, ultra-wideband (UWB). I.

David D. Wentzloff; Anantha P. Ch

2006-01-01T23:59:59.000Z

177

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

178

Ultra-Compact High-Efficiency Luminaire for General Illumination  

SciTech Connect

Cree has developed a new ultra-compact light emitting diode (LED) luminaire capable of providing high efficacy with excellent color quality that can lead to significant energy savings in todayâ??s commercial and retail applications. This success was based on an integrated development effort tailoring the LED component characteristics, optics, thermal management and driver design for the small footprint to achieve an overall system efficiency of â?¥ 70%. A new LED component was designed to provide high brightness and efficacy in a form factor that allowed for a small directional beam with a luminaire housing design able to dissipate the heat effectively using a small physical envelope. A very compact, 90% efficient driver was developed to meet the system performance while not taking away any thermal mass from the heat sink. A 91% efficient secondary optics was designed to maximize efficiency while providing a smooth beam. The reliability of the new LED component was robust under accelerated testing conditions. Luminaires were assembled integrating the novel LED component, secondary optics, heat sink and driver technology to demonstrate the system improvement. Cree has successfully completed this project by developing an ultra-compact LED luminaire that provided 380 lumens at a correlated color temperature (CCT) of 2822 K and color rendering index (CRI) of 94 with an efficacy of 94 lumens per watt (LPW) when operating at 4 W input power (steady state) with an overall system efficiency of 81%. At a higher input power of 9 Watts, the lamp provided 658 lumens at 71 LPW.

Ted Lowes

2012-04-08T23:59:59.000Z

179

Dipolar interaction in ultra-cold atomic gases  

SciTech Connect

Ultra-cold atomic systems provide a new setting where to investigate the role of long-range interactions. In this paper we will review the basics features of those physical systems, in particular focusing on the case of Chromium atoms. On the experimental side, we report on the observation of dipolar effects in the expansion dynamics of a Chromium Bose-Einstein condensate. By using a Feshbach resonance, the scattering length characterising the contact interaction can be strongly reduced, thus increasing the relative effect of the dipole-dipole interaction. Such experiments make Chromium atoms the strongest candidates at present for the achievement of the strong dipolar regime. On the theoretical side, we investigate the behaviour of ultra-cold dipolar systems in the presence of a periodic potential. We discuss how to realise this situation experimentally and we characterise the system in terms of its quantum phases and metastable states, discussing in detail the differences with respect to the case of zero-range interactions.

Menotti, C. [ICFO-Institut de Ciencies Fotoniques, E-08860 Castelldefels, Barcelona (Spain); CNR-INFM-BEC and Dipartimento di Fisica, Universita di Trento, I-38050 Povo (Italy); Lewenstein, M. [ICFO--Institut de Ciencies Fotoniques, E-08860 Castelldefels, Barcelona (Spain); Lahaye, T. [ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona (Spain); Pfau, T. [5. Physikalisches Institut, Universitaet Stuttgart, D-70550 Stuttgart (Germany)

2008-01-11T23:59:59.000Z

180

Design Considerations for Large Mass Ultra-Low Background Experiments  

SciTech Connect

Summary The objective of this document is to present the designers of the next generation of large-mass, ultra-low background experiments with lessons learned and design strategies from previous experimental work. Design issues divided by topic into mechanical, thermal and electrical requirements are addressed. Large mass low-background experiments have been recognized by the scientific community as appropriate tools to aid in the refinement of the standard model. The design of these experiments is very costly and a rigorous engineering review is required for their success. The extreme conditions that the components of the experiment must withstand (heavy shielding, vacuum/pressure and temperature gradients), in combination with unprecedented noise levels, necessitate engineering guidance to support quality construction and safe operating conditions. Physical properties and analytical results of typical construction materials are presented. Design considerations for achieving ultra-low-noise data acquisition systems are addressed. Five large-mass, low-background conceptual designs for the one-tonne scale germanium experiment are proposed and analyzed. The result is a series of recommendations for future experiments engineering and for the Majorana simulation task group to evaluate the different design approaches.

Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.; Orrell, John L.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ferroelectric Thin Film Capacitors to Enable a Miniaturized Smart L ...  

Science Conference Proceedings (OSTI)

The effects ultra-violet (UV)-assisted processing and compositional grading of BST capacitor thin films will be presented and the material property trade-offs for  ...

182

Numerical Simulation of an Open Channel Ultraviolet Waste-water Disinfection Reactor.  

E-Print Network (OSTI)

??The disinfection characteristics of an open channel ultra-violet (UV) wastewater disinfection reactor are investigated using a computational fluid dynamics (CFD) model. The model is based… (more)

Saha, Rajib Kumar

2013-01-01T23:59:59.000Z

183

Journal of Research Volume 3  

Science Conference Proceedings (OSTI)

... Efficiency of machinists' vises, p. 191 Whittemore, HL; Sweetman, LR http://dx.doi ... Data on ultra-violet solar radiation and the solarization of window ...

2012-11-06T23:59:59.000Z

184

Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 DOE EERE Kick-off Meeting 2009 DOE EERE Kick-off Meeting Announcement No: DE-PS36-08GO98010 Topic: 1A Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading Argonne National Laboratory Materials Science Division PI: Nenad M. Markovic Co-PI: Vojislav R. Stamenkovic Subcontractors: * Oak Ridge National Laboratory - Karren More * Jet Propulsion Laboratory - NASA - S.R. Narayan * Brown University - Shouheng Sun * Indiana University Purdue - Goufeng Wang * 3M Company - Radoslav Atanasoski Overview Timeline * Project start: 9/2009 * Project end: 9/2012 Barriers ~ 30-40% (!!!) Cathode kinetics * The main losses: CATHODE 1) High content of Pt 2) Poor activity: Pt/C = Pt-poly/10 3) Durability (Pt dissolves: power loss) 4) Carbon support corrosion Budget * Total Project funding $ 6.5M

185

Instrument Series: Microscopy Ultra-High Vacuum, Low- Temperature Scanning  

NLE Websites -- All DOE Office Websites (Extended Search)

Low- Low- Temperature Scanning Probe Microscope EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM, is the preeminent system dedicated to surface chemistry and physics at low temperatures down to 5 K. Operating at low temperatures provides high mechanical stability, superior vacuum conditions, and negligible drift for long-term experiments. With thermal diffusion being entirely suppressed, stable imaging becomes possible even for weakly bound species. The system is primarily used for probing single-site chemical reactivity, while the combination with a hyperthermal molecular beam allows the study of important chemical processes at energies corresponding to the operational temperatures well beyond typical UHV studies. The LT SPM provides

186

Ultra-wideband Location Authentication for Item Tracking  

SciTech Connect

International safeguards is increasingly utilizing unattended and remote monitoring methods to improve inspector efficiency and the timeliness of diversion detection. Item identification and tracking has been proposed as one unattended remote monitoring method, and a number of radio-frequency (RF) technologies have been proposed. When utilizing location information for verification purposes, strong assurance of the authenticity of the reported location is required, but most commercial RF systems are vulnerable to a variety of spoofing and relay attacks. ORNL has developed a distance bounding method that uses ultra-wideband technology to provide strong assurance of item location. This distance bounding approach can be coupled with strong symmetric key authentication methods to provide a fully authenticable tracking system that is resistant to both spoofing and relay attacks. This paper will discuss the overall problems associated with RF tracking including the common spoofing and relay attack scenarios, the ORNL distance bounding approach for authenticating location, and the potential applications for this technology.

Rowe, Nathan C [ORNL; Kuhn, Michael J [ORNL; Stinson, Brad J [ORNL; Holland, Stephen A [ORNL

2012-01-01T23:59:59.000Z

187

Scenarios for the ATF2 Ultra-Low Betas Proposal  

SciTech Connect

The current ATF2 Ultra-Low beta proposal was designed to achieve 20nm vertical IP beam size without considering the multipolar components of the FD magnets. In this paper we describe different scenarios that avoid the detrimental effect of these multipolar errors to the beam size at the interaction point (IP). The simplest approach consists in modifying the optics, but other solutions are studied as the introduction of super-conducting wigglers to reduce the emittance or the replacement of the normal-conducting focusing quadrupole in the Final Doublet (NC-QF1FF) with a super-conducting quadrupole one (SC-QF1FF). These are fully addressed in the paper.

Marin, Eduardo; /CERN; Tomas, Rogelio; /CERN; Bambade, Philip; /Orsay, LAL; Kuroda, Shigeru; /KEK, Tsukuba; Okugi, Toshiyuki; /KEK, Tsukuba; Tauchi, Toshiaki; /KEK, Tsukuba; Terunuma, Nobuhiro; /KEK, Tsukuba; Urakawa, Junji; /KEK, Tsukuba; Parker, Brett; /Brookhaven; Seryi, Andrei; /SLAC; White, Glen; /SLAC; Woodley, Mark; /SLAC

2012-06-29T23:59:59.000Z

188

Ultra Wide Band RFID Neutron Tags for Nuclear Materials Monitoring  

SciTech Connect

Recent advancements in the ultra-wide band Radio Frequency Identification (RFID) technology and solid state pillar type neutron detectors have enabled us to move forward in combining both technologies for advanced neutron monitoring. The LLNL RFID tag is totally passive and will operate indefinitely without the need for batteries. The tag is compact, can be directly mounted on metal, and has high performance in dense and cluttered environments. The LLNL coin-sized pillar solid state neutron detector has achieved a thermal neutron detection efficiency of 20% and neutron/gamma discrimination of 1E5. These performance values are comparable to a fieldable {sup 3}He based detector. In this paper we will discuss features about the two technologies and some potential applications for the advanced safeguarding of nuclear materials.

Nekoogar, F; Dowla, F; Wang, T

2010-01-27T23:59:59.000Z

189

Ultra-Accelerated Natural Sunlight Exposure Testing Facilities  

DOE Patents (OSTI)

A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

Lewandowski, Allan A. (Evergreen, CO); Jorgensen, Gary J. (Pine, CO)

2004-11-23T23:59:59.000Z

190

Ultra-low density microcellular polymer foam and method  

DOE Patents (OSTI)

An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed. These foams can be used for ICF targets.

Simandl, R.F.; Brown, J.D.

1995-12-31T23:59:59.000Z

191

Ultra-low density microcellular polymer foam and method  

DOE Patents (OSTI)

An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.

Simandl, Ronald F. (Farragut, TN); Brown, John D. (Harriman, TN)

1996-01-01T23:59:59.000Z

192

Apparatus and Method for Ultra-Sensitive trace Analysis  

DOE Patents (OSTI)

An apparatus and method for conducting ultra-sensitive trace element and isotope analysis. The apparatus injects a sample through a fine nozzle to form an atomic beam. A DC discharge is used to elevate select atoms to a metastable energy level. These atoms are then acted on by a laser oriented orthogonally to the beam path to reduce the traverse velocity and to decrease the divergence angle of the beam. The beam then enters a Zeeman slower where a counter-propagating laser beam acts to slow the atoms down. Then select atoms are captured in a magneto-optical trap where they undergo fluorescence. A portion of the scattered photons are imaged onto a photo-detector, and the results analyzed to detect the presence of single atoms of the specific trace elements.

Lu, Zhengtian; Bailey, Kevin G.; Chen, Chun Yen; Li, Yimin; O' Connor, Thomas P.; Young, Linda

2000-01-03T23:59:59.000Z

193

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations. This report describes activities for the ninth quarter of work performed under this agreement. The design of the vessel for pressure testing has been completed. The design will be finalized and purchased in the next quarter.

Donald P. Malone; William R. Renner

2005-07-01T23:59:59.000Z

194

Ultra-high current density thin-film Si diode  

DOE Patents (OSTI)

A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

Wang; Qi (Littleton, CO)

2008-04-22T23:59:59.000Z

195

EU promises new biofuel rules won't harm the environment http://www.pr-inside.com/eu-promises-new-biofuel-rules-won-t-r385258.htm 1 of 2 1/16/2008 12:32 PM  

E-Print Network (OSTI)

of the Earth Europe on Monday called for the EU to step away from its 10 percent biofuel target unless it couldEU promises new biofuel rules won't harm the environment http://www.pr-inside.com/eu-promises-new-biofuel promises new biofuel rules won't harm the environment © AP 2008-01-14 16:21:49 - BRUSSELS, Belgium (AP

196

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials  

DOE Patents (OSTI)

An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

2010-03-30T23:59:59.000Z

197

Ultra Energy Efficient Data Center Saves NREL $200,000 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra Energy Efficient Data Center Saves NREL $200,000 Ultra Energy Efficient Data Center Saves NREL $200,000 Ultra Energy Efficient Data Center Saves NREL $200,000 November 14, 2011 - 5:08pm Addthis The National Renewable Energy Laboratory's (NREL) Data Center marks a significant accomplishment in its ultra-efficiency. | Video courtesy of NREL. National Renewable Energy Laboratory (NREL) Technician Mic Stremel works with a blade server in the green data center at the Research Support Facility. | Image courtesy of NREL, Dennis Schroeder. National Renewable Energy Laboratory (NREL) Technician Mic Stremel works with a blade server in the green data center at the Research Support Facility. | Image courtesy of NREL, Dennis Schroeder. National Renewable Energy Laboratory (NREL) Technician Mic Stremel works with a blade server in the green data center at the Research Support Facility.

198

DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selects Projects Aimed at Reducing Drilling Risks in Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater November 22, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy's Office of Fossil Energy (FE) has selected six new natural gas and oil research projects aimed at reducing risks and enhancing the environmental performance of drilling in ultra-deepwater settings. The projects have been selected for negotiation leading to awards totaling $9.6 million, and will add to the research portfolio for FE's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. Research needs addressed by the projects include the prevention of uncontrolled oil flow through new and better ways to cement well casing,

199

Photothermal nano-cavities for ultra-sensitive chem-bio detection  

E-Print Network (OSTI)

Nano-cavity photothermal spectroscopy is a novel technique for ultra-sensitive chem-bio detection. We illustrate that through simultaneous localization of optical and thermal interactions in a planar nano-cavity, detection ...

Hu, Juejun

200

An ultra-compact and efficient Li-ion battery charger circuit for biomedical applications  

E-Print Network (OSTI)

This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger for wirelessly powered implantable medical devices. The charger presented here takes advantage of the tanh output current profile of an ...

Do Valle, Bruno Guimaraes

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electromagnetically-driven ultra-fast tool servos for diamond turning  

E-Print Network (OSTI)

This thesis presents the design, implementation, and control of a new class of fast tool servos (FTS). The primary thesis contributions include the design and experimental demonstration of: novel ultra-fast electromagnetic ...

Lu, Xiaodong, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

202

PEM fuel cellstack development based on membrane-electrode assemblies of ultra-low platinum loadings  

DOE Green Energy (OSTI)

Attempt is made to scale-up single cell technology, based on ultra-low platinum loadings, to develop a polymer electrolyte membrane fuel cell stack for stationary power generation.

Zawodzinski, C.; Wilson, M.S.; Gottesfeld, S.

1995-09-01T23:59:59.000Z

203

Recommendations for the design of ultra-high performance concrete structures  

E-Print Network (OSTI)

New materials frequently require modifications or rewrites of existing construction codes. They may also need new methods for their manufacture and installation. DUCTAL, a new ultra-high performance concrete (UHPC) with ...

Davila, Ricardo S

2007-01-01T23:59:59.000Z

204

Multi-dimensional ultra-high frequency passive radio frequency identification tag antenna designs  

E-Print Network (OSTI)

In this thesis, we present the design, simulation, and empirical evaluation of two novel multi-dimensional ultra-high frequency (UHF) passive radio frequency identification (RFID) tag antennas, the Albano-Dipole antenna ...

Delichatsios, Stefanie Alkistis

2006-01-01T23:59:59.000Z

205

Telecontrol of Ultra-High Voltage Electron Microscope over Global IPv6 Network  

Science Conference Proceedings (OSTI)

Osaka University has an Ultra-High VoltageElectron Microscope (UHVEM) which can provide highquality specimen images for worldwide researchers. Forusability improvements, we have worked on thetelecontrol of the UHVEM. In this paper, we would liketo introduce ...

Toyokazu Akiyama; Shinji Shimojo; Shojiro Nishio; Yoshinori Kitatsuji; Steven Peltier; Thomas Hutton; Fang-Pang Lin

2003-01-01T23:59:59.000Z

206

Structural Dynamics Experimental Activities in Ultra-Lightweight and Inflatable Space Structures  

Science Conference Proceedings (OSTI)

This paper reports recently completed structural dynamics experimental activities with new ultra-lightweight and inflatable space structures (a.k.a., "Gossamer" spacecraft) at NASA Langley Research Center, NASA Marshall Space Flight Center, and NASA ...

Pappa Richard S.; Lassiter John O.; Ross Brain P.

2001-05-01T23:59:59.000Z

207

Nuclear astrophysics studies with ultra-peripheral heavy-ion collisions  

E-Print Network (OSTI)

I describe in very simple terms the theoretical tools needed to investigate ultra-peripheral nuclear reactions for nuclear astrophysics purposes. For a more detailed account, see arXiv:0908.4307.

C. A. Bertulani

2009-12-17T23:59:59.000Z

208

Method of Producing Ultra-heavy Homogeneous Aerosol of Sub-micron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Method of Producing Ultra-heavy Homogeneous Aerosol of Sub-micron Particles Ernest J. Valeo and Nathaniel J. Fisch This invention forms a heavy homogeneous aerosol by agitating...

209

A high speed image transmission system for ultra-wideband wireless links  

E-Print Network (OSTI)

Ultra-wideband (UWB) communication is an emerging technology that offers short range, high data rate wireless transmission, with low power consumption and low consumer cost. Operating in the 3.1 GHz - 10.6 GHz frequency ...

Liang, Helen He

2009-01-01T23:59:59.000Z

210

Cost-benefit analysis of ultra-low sulfur jet fuel  

E-Print Network (OSTI)

The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

Kuhn, Stephen (Stephen Richard)

2010-01-01T23:59:59.000Z

211

New Ultra-High Speed Network Connection for Researchers and Educators is 10  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-High Speed Network Connection for Researchers and Ultra-High Speed Network Connection for Researchers and Educators is 10 Times Faster Than Commercial Internet Providers New Ultra-High Speed Network Connection for Researchers and Educators is 10 Times Faster Than Commercial Internet Providers October 13, 2011 - 10:47am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the activation of an ultra-high speed network connection for scientists, researchers and educators at universities and National Laboratories that is at least ten times faster than commercial Internet providers. The project - funded with $62 million from the 2009 economic stimulus law - is intended for research use but could pave the way for widespread commercial use of similar technology. "While this breakthrough will make sharing information between our labs

212

Table 1. Design specifications of ultra-high speed PM motor. Supply voltage (V) 12  

E-Print Network (OSTI)

Analysis of Ultra-High Speed Permanent-Magnet Motor Masaru Kano, and Toshihiko Noguchi Department@vos.nagaokaut.ac.jp Abstract This paper describes a design of an ultra-high speed (UHS) permanent-magnet (PM) synchronous motor, a surface permanent-magnet (SPM) motor (150,000 r/min, 1.5 kW) fed by a low voltage battery (12 V

Fujimoto, Hiroshi

213

Light transmission through and its complete stoppage in an ultra slow wave optical medium  

E-Print Network (OSTI)

Light Wave transmission -- its compression, amplification, and the optical energy storage -- in an Ultra Slow Wave Medium (USWM) is studied analytically. Our phenomenological treatment is based entirely on the continuity equation for the optical energy flux, and the well known distribution-product property of Dirac delta-function. The results so obtained provide a clear understanding of some recent experiments on light transmission and its complete stoppage in an USWM. Keywords : Ultra slow light, stopped light, slow wave medium, EIT.

V., Ranjith

2013-01-01T23:59:59.000Z

214

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

Science Conference Proceedings (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench-scale. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. The project is on schedule and on budget. Task 4, a bench-scale demonstration of the ultra-fast TSA system is complete. Rapid thermal swing of an adsorbent bed using microchannels has been successfully demonstrated and the separation of a 70% methane and 30% nitrogen was purified to 92% methane. The bench-scale demonstration unit was small relative to the system dead volume for the initial phase of experiments and a purge step was added to sweep the dead volume prior to desorbing the bed and measuring purity. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement.

Anna Lee Tonkovich

2005-07-01T23:59:59.000Z

215

Ultra-Gradient Test Cavity for Testing SRF Wafer Samples  

SciTech Connect

A 1.3 GHz test cavity has been designed to test wafer samples of superconducting materials. This mushroom shaped cavity, operating in TE01 mode, creates a unique distribution of surface fields. The surface magnetic field on the sample wafer is 3.75 times greater than elsewhere on the Niobium cavity surface. This field design is made possible through dielectrically loading the cavity by locating a hemisphere of ultra-pure sapphire just above the sample wafer. The sapphire pulls the fields away from the walls so the maximum field the Nb surface sees is 25% of the surface field on the sample. In this manner, it should be possible to drive the sample wafer well beyond the BCS limit for Niobium while still maintaining a respectable Q. The sapphire's purity must be tested for its loss tangent and dielectric constant to finalize the design of the mushroom test cavity. A sapphire loaded CEBAF cavity has been constructed and tested. The results on the dielectric constant and loss tangent will be presented

N.J. Pogue, P.M. McIntyre, A.I. Sattarov, C. Reece

2010-11-01T23:59:59.000Z

216

Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

Science Conference Proceedings (OSTI)

The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

Anna Lee Tonkovich

2008-08-11T23:59:59.000Z

217

Fossil AGN jets as ultra high energy particle accelerators  

E-Print Network (OSTI)

Remnants of AGN jets and their surrounding cocoons leave colossal magnetohydrodynamic (MHD) fossil structures storing total energies ~10^{60} erg. The original active galacic nucleus (AGN) may be dead but the fossil will retain its stable configuration resembling the reversed-field pinch (RFP) encountered in laboratory MHD experiments. In an RFP the longitudinal magnetic field changes direction at a critical distance from the axis, leading to magnetic re-connection there, and to slow decay of the large-scale RFP field. We show that this field decay induces large-scale electric fields which can accelerate cosmic rays with an E^{-2} power-law up to ultra-high energies with a cut-off depending on the fossil parameters. The cut-off is expected to be rigidity dependent, implying the observed composition would change from light to heavy close to the cut-off if one or two nearby AGN fossils dominate. Given that several percent of the universe's volume may house such slowly decaying structures, these fossils may even...

Benford, Gregory

2007-01-01T23:59:59.000Z

218

Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper  

SciTech Connect

The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

Dr. VIjay K. Mathur

2009-04-30T23:59:59.000Z

219

Ultra Fast Outflows: Galaxy-Scale Active Galactic Nucleus Feedback  

E-Print Network (OSTI)

We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous hot hydrostatic medium. The outflow floods through the inter-cloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically, rather than in a disc. In the latter case the turbulent backflow...

Wagner, A Y; Bicknell, G V

2012-01-01T23:59:59.000Z

220

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ultra Wideband (UWB) communication vulnerability for security applications.  

Science Conference Proceedings (OSTI)

RF toxicity and Information Warfare (IW) are becoming omnipresent posing threats to the protection of nuclear assets, and within theatres of hostility or combat where tactical operation of wireless communication without detection and interception is important and sometimes critical for survival. As a result, a requirement for deployment of many security systems is a highly secure wireless technology manifesting stealth or covert operation suitable for either permanent or tactical deployment where operation without detection or interruption is important The possible use of ultra wideband (UWB) spectrum technology as an alternative physical medium for wireless network communication offers many advantages over conventional narrowband and spread spectrum wireless communication. UWB also known as fast-frequency chirp is nonsinusoidal and sends information directly by transmitting sub-nanosecond pulses without the use of mixing baseband information upon a sinusoidal carrier. Thus UWB sends information using radar-like impulses by spreading its energy thinly over a vast spectrum and can operate at extremely low-power transmission within the noise floor where other forms of RF find it difficult or impossible to operate. As a result UWB offers low probability of detection (LPD), low probability of interception (LPI) as well as anti-jamming (AJ) properties in signal space. This paper analyzes and compares the vulnerability of UWB to narrowband and spread spectrum wireless network communication.

Cooley, H. Timothy

2010-07-01T23:59:59.000Z

222

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

This report describes activities for the third quarter of work performed under this agreement. Atmospheric testing was conducted as scheduled on June 5 through June 13, 2003. The test results were encouraging, however, the rate of carbon dissolution was below expectations. Additional atmospheric testing is scheduled for the first week of September 2003. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product stream. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2003-07-31T23:59:59.000Z

223

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

This report describes activities for the seventh quarter of work performed under this agreement. We await approval from the Swedish pressure vessel board to allow us to proceed with the procurement of the vessel for super atmospheric testing. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2005-01-01T23:59:59.000Z

224

Advanced Ultra-High Speed Motor for Drilling  

Science Conference Proceedings (OSTI)

Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at full speed 10,000 rpm for every 30.48 cm (12 inches) of power section. Operating conditions are 300 voltage AC at the motor leads. Power voltage losses in the cables/wirelines to the motor(s) are expected to be about 10% for 5000 feet carrying 2 amperes. Higher voltages and better insulators can lower these losses and carry more amperes. Cutting elements for such high tip velocities are currently not available, consequently these motors will not be built at this time. However, 7.62 cm (3 inch) OD, low speed, PMSM radial electric motors based on this project design are being built under a 2006 Oklahoma Center for the Advancement of Science and Technology 'proof of concept' grant.

Impact Technologies LLC; University of Texas at Arlington

2007-03-31T23:59:59.000Z

225

Unmanned air vehicle (UAV) ultra-persitence research  

DOE Green Energy (OSTI)

Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were considered. Fundamental cost driver analysis was also performed. System development plans were drafted in order to determine where the technological and programmatic critical paths lay. As a result of this effort, UAVs were to be able to provide far more surveillance time and intelligence information per mission while reducing the high cost of support activities. This technology was intended to create unmatched global capabilities to observe and preempt terrorist and weapon of mass destruction (WMD) activities. Various DOE laboratory and contractor personnel and facilities could have been used to perform detailed engineering, fabrication, assembly and test operations including follow-on operational support. Unfortunately, none of the results will be used in the near-term or mid-term future. NGIS UMS and SNL felt that the technical goals for the project were accomplished. NGIS UMS was quite pleased with the results of analysis and design although it was disappointing to all that the political realities would not allow use of the results. Technology and system designs evaluated under this CRADA had previously never been applied to unmanned air vehicles (UAVs). Based upon logistic support cost predictions, because the UAVs would not have had to refuel as often, forward basing support costs could have been reduced due to a decrease in the number and extent of support systems and personnel being required to operate UAVs in remote areas. Basic application of the advanced propulsion and power approach is well understood and industry now understands the technical, safety, and political issues surrounding implementation of these strategies. However, the overall economic impact was not investigated. The results will not be applied/implemented. No near-term benefit to industry or the taxpayer will be encountered as a result of these studies.

Dron, S. B.

2012-03-01T23:59:59.000Z

226

Superalloys for ultra supercritical steam turbines--oxidation behavior  

Science Conference Proceedings (OSTI)

Goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

Holcomb, G.R.

2008-09-01T23:59:59.000Z

227

Ultra Large Castings to Produce Low Cost Aluminum Vehicle Structures  

DOE Green Energy (OSTI)

Through a cooperative effort with the U.S. Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT), Alcoa is developing a casting process to produce ultra large thin wall components. The casting process is a low pressure, metal mold, multiport injection vertical casting process. The specific system for demonstration of the process is located at Alcoa's Technology Center and will be capable of producing parts extending 3 M long, 1.7 M wide and 0.4 M high. For example, single castings of car floor pan frames or side wall aperture structures are candidates for this installation. This shall provide a major opportunity to reduce the cost of lightweight transportation vehicle structures by (a) reducing the components or part count and (b) reducing the cost of assembly. To develop and demonstrate the process, an inner panel of the Chrysler minivan liftgate will be first produced on this system. Through computer analyses, the cast inner panel design was developed to satisfy both structural performance and casting process requirements. Currently, this is an 11 part assembly of steel components. At the time of this abstract, the numerous system components are in various phases of fabrication and site preparation is fully underway, with system shakedown beginning in the second quarter of 1999. Successful demonstration of caster system operation is anticipated to occur during the third quarter and production of a high quality product during the fourth quarter. Although the process is targeted toward reducing the cost of lightweight trucks, buses and autos, consideration is being given to application in the aircraft industry.

T. N. Meyer; M. J. Kinosz; E. M. Bradac; M. Mbaye; J. T. Burg; M. A. Klingensmith

1999-04-26T23:59:59.000Z

228

On the Origin of Ultra High Energy Cosmic Rays II  

Science Conference Proceedings (OSTI)

We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

2011-03-08T23:59:59.000Z

229

Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study  

SciTech Connect

Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

2006-06-30T23:59:59.000Z

230

Challenge: Ultra-low-power Energy-harvesting Active Networked Tags (EnHANTs  

E-Print Network (OSTI)

This paper presents the design challenges posed by a new class of ultra-low-power devices referred to as Energy-Harvesting Active Networked Tags (EnHANTs). EnHANTs are small, flexible, and self-reliant (in terms of energy) devices that can be attached to objects that are traditionally not networked (e.g., books, clothing, and produce), thereby providing the infrastructure for various novel tracking applications. Examples of these applications include locating misplaced items, continuous monitoring of objects (items in a store, boxes in transit), and determining locations of disaster survivors. Recent advances in ultra-low-power wireless communications, ultra-wideband (UWB) circuit design, and organic electronic harvesting techniques will enable the realization of EnHANTs in the near future. In order for EnHANTs to rely on harvested energy, they have to spend significantly less energy than Bluetooth, Zigbee, and IEEE 802.15.4a devices. Moreover, the harvesting components and the ultra-low-power physical layer have special characteristics whose implications on the higher layers have yet to be studied (e.g., when using ultra-low-power circuits, the energy required to receive a bit is an order of magnitude higher than the energy required to transmit a bit). These special characteristics pose several new cross-layer research problems. In this paper, we describe the design challenges at the layers above the physical layer, point out relevant research directions, and outline possible starting points for solutions.

Maria Gorlatova; Peter Kinget; Ioannis Kymissis; Dan Rubenstein; Xiaodong Wang; Gil Zussman

2009-01-01T23:59:59.000Z

231

Metals Concentrations in Soils Below Decks Made of CCA-Treated Wood  

E-Print Network (OSTI)

the report titled: New Lines of CCA-Treated Wood Research, In-Service and Disposal Issues Which was finalized 13 Street, Suite D Gainesville, FL 32609 Excerpts from Report #00-12 #12;This page left intentionally.S. Environmental Protection Agency UV Ultra Violet UV/Vis Ultra Violet ­ Visible Light Region WET Waste Extraction

Florida, University of

232

Measurement and Evaluation of Ultra-fine Particle Emissions from Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement and Evaluation of Ultra-fine Particle Emissions from Laser Measurement and Evaluation of Ultra-fine Particle Emissions from Laser Printers Speaker(s): Tunga Salthammer Date: October 9, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Hugo Destaillats Several publications have recently appeared which describe the release of ultra-fine particles (UFPs) from hardcopy devices not only in chamber tests but also under real room conditions. Due to assumed health impacts attributed to UFPs this subject currently receives substantial public attention. For the characterization of emitted UFPs from laser printers, different test methods (box chamber tests, flow chamber tests, furnace tests) and analytical techniques (SMPS, FMPS, VHTDMA, GC/MS, Headspace/MS, thermography, etc...) were applied. It could be shown that the release of

233

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Penn Manufacturing East Penn Manufacturing American Recovery and Reinvestment Act (ARRA) Grid-Scale Energy Storage Demonstration Using UltraBattery ® Technology Demonstrating new lead-acid battery and capacitor energy storage technology to improve grid performance East Penn Manufacturing, through its subsidiary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery ® modules integrated in a turnkey battery energy storage system. The UltraBattery ® technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. The system is selling up to 3 MW of frequency regulation to PJM Interconnection's grid.

234

NETL: News Release - DOE Issues Plan for Developing Ultra-Clean  

NLE Websites -- All DOE Office Websites (Extended Search)

January 27, 2001 January 27, 2001 DOE Issues Plan for Developing Ultra-Clean Transportation Fuels Workshops Also Scheduled for February to Plan Upcoming Competition for Supporting Science, Enabling Technologies PITTSBURGH, PA - With several initiatives underway to develop a new generation of "ultra-clean" transportation fuels, the Department of Energy has issued a document describing its overall strategy and plans for dramatically reducing pollution from tomorrow's cars and trucks through advances in technology. In a related action, the department's National Energy Technology Laboratory, which is coordinating much of the government's ultra-clean fuels research program, is planning three public workshops in February to begin identifying the key fundamental science and technology needs of the fuels industry and how federal programs can best address them.

235

Ultra-Wideband Time-of-Arrival and Angle-of-Arrival Estimation Using a Signal Model Based on Measurements  

Science Conference Proceedings (OSTI)

This paper presents an ultra wideband (UWB) channel sounding scheme with a technique for estimating time of arrival (TOA) and angle of arrival (AOA) using measurement signals. Since the power spectrum over the UWB bandwidth can be measured in advance, ... Keywords: Cramér-Rao bound, multiple signal classification, radio channel measurement and estimation, ultra-wideband propagation

Naohiko Iwakiri; Takehiko Kobayashi

2007-11-01T23:59:59.000Z

236

Single-peak excitonic emission of CdSe ultra-thin quantum wells finished with fractional monolayers  

Science Conference Proceedings (OSTI)

Ultra-thin quantum wells (UTQWs) of CdSe grown by atomic layer epitaxy (ALE) present very interesting features, such as intense excitonic luminescence and relatively narrow width. Grown under adequate conditions only a single excitonic peak is exhibited ... Keywords: Atomic layer epitaxy (ALE), CdSe, Excitons, II-VI semiconductors, Interface, Photoluminiscence, Ultra-thin quantum wells, ZnSe

Adrián Alfaro-Martínez; Isaac Hernández-Calderón

2008-03-01T23:59:59.000Z

237

The Role of Daylight in Achieving Ultra-Low-Energy Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylight in Achieving Daylight in Achieving Ultra-Low-Energy Buildings May 6, 2011 Neall Digert, Ph.D., MIES Vice President of Product Enterprise Solatube International, Inc. Countries around the globe are experiencing an energy crisis! The World's enormous design and construction market is focused on energy-efficient retrofit and innovative, ultra-low energy new construction. The desire to halt global warming is creating an awareness and need for sustainable buildings, communities, and societies. Energy Policy is at the forefront of governmental initiatives in nearly every country. China needs to increase its generation capacity by over 1,312 GW between 2006 and 2030. Source: International Energy Agency, "World

238

Big fish, small fish: Two New Ultra-Faint Satellites of the Milky Way  

E-Print Network (OSTI)

We report the discovery of two new Milky Way satellites in the neighboring constellations of Pisces and Pegasus identified in data from the Sloan Digital Sky Survey. Pisces II, an ultra-faint dwarf galaxy lies at the distance of ~180 kpc, some 15 degrees away from the recently detected Pisces I. Segue 3, an ultra-faint star cluster lies at the distance of 16 kpc. We use deep follow-up imaging obtained with the 4-m Mayall telescope at Kitt Peak National Observatory to derive their structural parameters. Pisces II has a half-light radius of ~60 pc, while Segue 3 is twenty times smaller at only 3pc.

Belokurov, V; Evans, N W; Gilmore, G; Irwin, M J; Just, D; Koposov, S; Mateo, M; Olszewski, E; Watkins, L; Wyrzykowski, L

2010-01-01T23:59:59.000Z

239

Ultra Fast X-ray Streak Camera for TIM Based Platforms  

SciTech Connect

Ultra fast x-ray streak cameras are a staple for time resolved x-ray measurements. There is a need for a ten inch manipulator (TIM) based streak camera that can be fielded in a newer large scale laser facility. The LLNL ultra fast streak camera's drive electronics have been upgraded and redesigned to fit inside a TIM tube. The camera also has a new user interface that allows for remote control and data acquisition. The system has been outfitted with a new sensor package that gives the user more operational awareness and control.

Marley, E; Shepherd, R; Fulkerson, E S; James, L; Emig, J; Norman, D

2012-05-02T23:59:59.000Z

240

Ultra fast x-ray streak camera for ten inch manipulator based platforms  

Science Conference Proceedings (OSTI)

Ultra fast x-ray streak cameras are a staple for time resolved x-ray measurements. There is a need for a ten inch manipulator (TIM) based streak camera that can be fielded in a newer large scale laser facility. The Lawrence Livermore National Laboratory ultra fast streak camera's drive electronics have been upgraded and redesigned to fit inside a TIM tube. The camera also has a new user interface that allows for remote control and data acquisition. The system has been outfitted with a new sensor package that gives the user more operational awareness and control.

Marley, E. V. [Physics and Life Science, Lawrence Livermore National Laboratory, M.S. L-490, Livermore, California 94550 (United States); University of California Davis, One Shields Avenue, Davis, California 95616 (United States); Shepherd, R.; Fulkerson, S.; James, L.; Emig, J.; Norman, D. [Physics and Life Science, Lawrence Livermore National Laboratory, M.S. L-490, Livermore, California 94550 (United States)

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuel Cell/Turbine Ultra High Efficiency Power System  

DOE Green Energy (OSTI)

FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will be utilized in the design of a 40-MW high efficiency Vision 21 power plant. Additionally, these tests are providing the valuable insight for DFC/Turbine power plant potential for load following, increased reliability, and enhanced operability.

Hossein, Ghezel-Ayagh

2001-11-06T23:59:59.000Z

242

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

Science Conference Proceedings (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench scale. The project is on schedule and on budget. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement. The system has six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration will be initiated in the next fiscal year. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study.

Anna Lee Tonkovich

2004-07-01T23:59:59.000Z

243

Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers  

SciTech Connect

Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on processing of advanced nanocrystalline coating systems and development of diffusion barrier interlayer coatings. Among the diffusion interlayer coatings evaluated, the TiN interlayer coating was found to be the optimum one. This report describes the research conducted under the Task 3 workscope.

David W. Gandy; John P. Shingledecker

2011-04-11T23:59:59.000Z

244

Ultra Low NOx Catalytic Combustion for IGCC Power Plants  

DOE Green Energy (OSTI)

In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

2008-03-31T23:59:59.000Z

245

Development of an ultra-safe, ultra-low emissions natural gas-fueled bus. Phase 1: Systems design -- Final report  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with Southwest Research Institute (SwRI) to develop an ultra-safe, ultra-low emissions natural gas-fueled school bus. To develop the bus, SwRI teamed with Blue Bird, Incorporated, a school bus manufacturer, Deere Power Systems Group, an engine manufacturer, and CNG Cylinder Company, a supplier of compressed natural gas storage and handling systems. The primary focus of work for Phase 1 was the design of the component systems, i.e. vehicle, engine, and fuel storage systems. The bus chassis prototype is expected to be completed by the middle of July, 1995. A complete prototype vehicle body and chassis should be delivered to SwRI by the beginning of December, 1995. This prototype vehicle will include the new compressed natural gas cylinders and associated fuel storage system hardware which has been designed by CNG Cylinder Company.

Kubesh, J. [Southwest Research Inst., San Antonio, TX (United States)

1995-05-01T23:59:59.000Z

246

HIGH-ENERGY EMISSION INDUCED BY ULTRA-HIGH-ENERGY PHOTONS AS A PROBE OF ULTRA-HIGH-ENERGY COSMIC-RAY ACCELERATORS EMBEDDED IN THE COSMIC WEB  

SciTech Connect

The photomeson production in ultra-high-energy cosmic-ray (UHECR) accelerators such as {gamma}-ray bursts and active galaxies may lead to ultra-high-energy (UHE) {gamma}-ray emission. We show that the generation of UHE pairs in magnetized structured regions where the sources are embedded is inevitable, and accompanying {approx}> 0.1 TeV synchrotron emission provides an important probe of UHECR acceleration. It would especially be relevant for powerful transient sources, and synchrotron pair echoes may be detected by future CTA via coordinated search for transients of duration {approx}0.1-1 yr for the structured regions of {approx}Mpc. Detections will be useful for knowing structured extragalactic magnetic fields as well as properties of the sources.

Murase, Kohta [Department of Physics, Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH 43210 (United States)

2012-02-15T23:59:59.000Z

247

Opportunities for Decay Counting of Environmental Radioisotopes Using Ultra-low-background Detection Systems  

SciTech Connect

Executive Summary We present results from a scoping study whose intent was to define challenge measurements to be pursued on the Ultra-Sensitive Nuclear Measurements Initiative. Potential challenge measurements using new radiation detection technology in the shallow underground laboratory that would have substantial impact in environmental science were the focus of this study.

Runkle, Robert C.; Aalseth, Craig E.; Bailey, Vanessa L.; Bonicalzi, Ricco; Moran, James J.; Seifert, Allen; Warren, Glen A.

2012-08-01T23:59:59.000Z

248

Search for ultra-high energy photons using Telescope Array surface detector  

SciTech Connect

We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive an upper limit on the absolute flux of primary photons with energies above 10{sup 19} eV.

Rubtsov, G. I.; Troitsky, S. V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, 117312 (Russian Federation); Ivanov, D.; Stokes, B. T. [Rutgers - State University of New Jersey, Piscataway (United States); Thomson, G. B. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States)

2011-09-22T23:59:59.000Z

249

Ultra high energy photon showers in magnetic field:angular distribution of produced particles  

E-Print Network (OSTI)

Ultra high energy (UHE) photons can initiate electromagnetic showers in magnetic field. We analyze the two processes that determine the development of the shower, $e^+ e^-$ pair creation and synchrotron radiation, and derive formulae for the angular distribution of the produced particles. These formulae are necessary to study the three-dimensional development of the shower.

Massimo Coraddu; Marcello Lissia; Giuseppe Mezzorani

2002-10-07T23:59:59.000Z

250

Vision 21: Ultra-Clean Energy Plants for the 21st Century  

E-Print Network (OSTI)

Vision 21 is the U.S. Department of Energy’s new initiative for developing the technology needed for ultra-clean 21st century energy plants. The goal of Vision 21 is to effectively remove, at competitive costs, environmental concerns associated with the use of fossil fuels for producing electricity and transportation fuels.

Lawrence A. Ruth

2000-01-01T23:59:59.000Z

251

Development and Testing of an UltraBattery-Equipped Honda Civic  

DOE Green Energy (OSTI)

The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

Donald Karner

2012-04-01T23:59:59.000Z

252

Ultra High Energy Particles Propagation and the Transition from Galactic to Extra-Galactic Cosmic Rays  

E-Print Network (OSTI)

We discuss the basic features of the propagation of Ultra High Energy Cosmic Rays in astrophysical backgrounds, comparing two alternative computation schemes to compute the expected fluxes. We also discuss the issue of the transition among galactic and extra-galactic cosmic rays using theoretical results on fluxes to compare different models.

Aloisio, Roberto

2013-01-01T23:59:59.000Z

253

Static behaviour of an advanced ultra-light sandwich composite structure for a wheel chair  

Science Conference Proceedings (OSTI)

A theoretical approach of an ultra lightweight sandwich composite structure with extreme rigidity is presented. The structure features two carbon/epoxy skins reinforced with twill weave fabric, and an expanded polystyrene (EPS) core. The structure is ... Keywords: carbon/epoxy skins, expanded polystyrene core, sandwich structure, twill weave fabric

Florin Teodorescu; Condurache Dumitru; Grigore Stanca; Valeriu Avramescu; Raluca Magdalena Nita

2008-09-01T23:59:59.000Z

254

An ultra low power ADC for wireless micro-sensor applications  

E-Print Network (OSTI)

Autonomous micro-sensor nodes rely on low-power circuits to enable energy harvesting as a means of sustaining long-term, maintenance free operation. This work pursues the design of an ultra low-power analog-to-digital ...

Verma, Naveen

2005-01-01T23:59:59.000Z

255

Improvement of mechanical integrity of ultra low k dielectric stack and CMP compatibility  

Science Conference Proceedings (OSTI)

This paper reports about examinations on mechanical integrity improvement which were done to enable the integration of aerogel as ultra low k (ULK) dielectric into copper damascene technology. Our work focussed on the increase of the adhesive strength ... Keywords: Dielectric thin films, Low dielectric constant, Metallization, Permittivity, Porous materials, SiO2 Aerogel

K. Schulze; S. E. Schulz; S. Frühauf; H. Körner; U. Seidel; D. Schneider; T. Gessner

2004-10-01T23:59:59.000Z

256

Computational performance of ultra-high-resolution capability in the Community Earth System Model  

Science Conference Proceedings (OSTI)

With the fourth release of the Community Climate System Model, the ability to perform ultra-high-resolution climate simulations is now possible, enabling eddy-resolving ocean and sea-ice models to be coupled to a finite-volume atmosphere model for a ... Keywords: Earth system modeling, Performance engineering, application optimization, climate modeling, high-resolution

John M. Dennis; Mariana Vertenstein; Patrick H. Worley; Arthur A. Mirin; Anthony P. Craig; Robert Jacob; Sheri Mickelson

2012-02-01T23:59:59.000Z

257

The Radio Cerenkov Technique for Ultra-High Energy Neutrino Detection  

E-Print Network (OSTI)

I review the status of the Radio Cerenkov detection technique in searches for ultra-high energy (UHE) neutrinos of cosmic origin. After outlining the physics motivations for UHE neutrino searches, I give an overview of the status of current and proposed experiments in the field.

Amy Connolly

2008-09-22T23:59:59.000Z

258

Ultra-low-power components for an RFID Tag with physical and chemical sensors  

Science Conference Proceedings (OSTI)

In this work the development and optimization of the main components for a multisensing flexible Tag with RFID communication capabilities and integrated physical and chemical sensors for logistic datalogging applications will be reported. For this specific ... Keywords: Logistics, MOX sensors, RFID, Ultra-low-power

Stefano Zampolli; Ivan Elmi; Enrico Cozzani; Gian Carlo Cardinali; Andrea Scorzoni; Michele Cicioni; Santiago Marco; Francisco Palacio; Jose M. Gómez-Cama; Ilker Sayhan; Thomas Becker

2008-03-01T23:59:59.000Z

259

UltraHaptics: Multi-Point Mid-Air Haptic Feedback for Touch Tom Carter1  

E-Print Network (OSTI)

UltraHaptics: Multi-Point Mid-Air Haptic Feedback for Touch Surfaces Tom Carter1 , Sue Ann Seah1 that the system is capable of creating multiple localised points of feedback in mid-air. Through psychophysicalHaptics provides. Author Keywords Haptic feedback; touch screens; interactive tabletops. ACM Classification

Subramanian, Sriram

260

Time efficient fabrication of ultra large scale nano dot arrays using electron beam lithography  

Science Conference Proceedings (OSTI)

An astonishingly simple yet versatile alternative method for the creation of ultra large scale nano dot arrays [1-3] utilising the fact that exposure in electron beam lithography (EBL) is performed by addressing single pixels with defined distances is ... Keywords: Electron beam lithography, Nano dot, Patterning, Photonic crystal, Plasmonics

Jochen Grebing; JüRgen FaíBender; Artur Erbe

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

PiCam: an ultra-thin high performance monolithic camera array  

Science Conference Proceedings (OSTI)

We present PiCam (Pelican Imaging Camera-Array), an ultra-thin high performance monolithic camera array, that captures light fields and synthesizes high resolution images along with a range image (scene depth) through integrated parallax detection ... Keywords: array camera, computational camera, depth map, light field, parallax detection, plenoptic acquisition, superresolution

Kartik Venkataraman, Dan Lelescu, Jacques Duparré, Andrew McMahon, Gabriel Molina, Priyam Chatterjee, Robert Mullis, Shree Nayar

2013-11-01T23:59:59.000Z

262

Project: Towards Architecturally Engineered, Ultra-high Performance Solid Oxide Fuel Cells by Scalable Manufacturing Methods  

E-Print Network (OSTI)

cells (SOFCs) in a sustainable energy future is readily appreciated. SOFCs are the most efficient questions in the design of SOFCs with ultra-high power density and their fabrication by scalable techniques-scale fabrication methods to build SOFC structures with unparalleled performance at reasonable cost. We have

Nur, Amos

263

Physics of Ultra-Relativistic Nuclear Collisions with Heavy Beams at LHC Energy  

E-Print Network (OSTI)

We discuss current plans for experiments with ultra-relativistic nuclear collisions with heavy beams at LHC energy ($\\sqrt{s} = 5.5$ TeV/nucleon pair). Emphasis will be placed on processes which are unique to the LHC program. They include event-by-event interferometry, complete spectroscopy of the $\\Upsilon$ resonances, and open charm and open beauty measurements.

Peter Braun-Munzinger

1999-08-18T23:59:59.000Z

264

Synchronous Ultra-Wide Band Wireless Sensors Networks for oil and gas exploration  

E-Print Network (OSTI)

Synchronous Ultra-Wide Band Wireless Sensors Networks for oil and gas exploration Stefano Savazzi1 of new oil and gas reservoir. Seismic exploration requires a large number (500 ÷ 2000 nodes, MAC and network layer to develop wireless sensors networks tailored for oil (and gas) exploration

Savazzi, Stefano

265

Computation Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers  

Science Conference Proceedings (OSTI)

Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler waterwalls and tubing. Reliable coatings are required for Ultrasupercritical (USC) application to mitigate corrosion since these boilers will operate at a much higher temperatures and pressures than in supercritical (565 C {at} 24 MPa) boilers. Computational modeling efforts have been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanocrystalline coatings that form a protective, continuous scale of either Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. The computational modeling results identified a new series of Fe-25Cr-40Ni with or without 10 wt.% Al nanocrystalline coatings that maintain long-term stability by forming a diffusion barrier layer at the coating/substrate interface. The computational modeling predictions of microstructure, formation of continuous Al{sub 2}O{sub 3} scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. Advanced coatings, such as MCrAl (where M is Fe, Ni, or Co) nanocrystalline coatings, have been processed using different magnetron sputtering deposition techniques. Several coating trials were performed and among the processing methods evaluated, the DC pulsed magnetron sputtering technique produced the best quality coating with a minimum number of shallow defects and the results of multiple deposition trials showed that the process is repeatable. scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. The cyclic oxidation test results revealed that the nanocrystalline coatings offer better oxidation resistance, in terms of weight loss, localized oxidation, and formation of mixed oxides in the Al{sub 2}O{sub 3} scale, than widely used MCrAlY coatings. However, the ultra-fine grain structure in these coatings, consistent with the computational model predictions, resulted in accelerated Al diffusion from the coating into the substrate. An effective diffusion barrier interlayer coating was developed to prevent inward Al diffusion. The fire-side corrosion test results showed that the nanocrystalline coatings with a minimum number of defects have a great potential in providing corrosion protection. The coating tested in the most aggressive environment showed no evidence of coating spallation and/or corrosion attack after 1050 hours exposure. In contrast, evidence of coating spallation in isolated areas and corrosion attack of the base metal in the spalled areas were observed after 500 hours. These contrasting results after 500 and 1050 hours exposure suggest that the premature coating spallation in isolated areas may be related to the variation of defects in the coating between the samples. It is suspected that the cauliflower-type defects in the coating were presumably responsible for coating spallation in isolated areas. Thus, a defect free good quality coating is the key for the long-term durability of nanocrystalline coatings in corrosive environments. Thus, additional process optimization work is required to produce defect-free coatings prior to development of a coating application method for production parts.

J. Shingledecker; D. Gandy; N. Cheruvu; R. Wei; K. Chan

2011-06-21T23:59:59.000Z

266

Ultra-Thin, Energy Efficient Facades- A Contradiction in Terms?  

E-Print Network (OSTI)

Within the European Union about 40 percent of the energy is consumed in buildings. In Germany roughly a quarter of the primary energy demand is used for the heating of buildings. A detailed analysis reveals that more than 90 percent of this energy can be related to old buildings, which were constructed before 1977. Reducing the heat losses through façades and using transparent or translucent façade elements to profit from solar heat gains are some of the first measures to improve energy efficiency of buildings. With the use of state-of-the-art insulation materials, thermal heat losses via the façade could be sufficiently reduced to provide an excellent insulation standard. However in some cases, lack of space or aesthetic needs, do not allow for sufficiently thick insulation layers. Within the last decade vacuum insulation panels (VIP) were developed, whose thermal conductivity values are 5 to 10 times lower (e.g. 0.002 to 0.008 W/(m×K) at ambient conditions) than those reported for standard insulation materials. Thus a 2 cm thick VIP could replace a 20 cm of standard insulation material, e.g. polystyrene foam, with no changes to the thermal performance. Nowadays VIPs are commercially available and used more and more for the insulation of buildings, especially if space for insulation is expensive or not sufficiently available or a slim architecture is preferred. Right now an innovative evacuated double glazing (VIG) is being developed which provides an U-value below 0.5 W/(m²×K) for a system thickness of only 9 mm. The low weight of such a glazing reduces the mechanical requirements in comparison to a standard triple glazing and thus allows for the use of thin, highly insulating frames. With these slim opaque and transparent insulation elements (VIP, VIG) ultra-thin and aesthetic façade construction can be realized. However, reducing the construction mass of building walls also leads to a loss of thermal capacity and therefore more regulation measures are needed to keep a comfortable living climate within such a building. It is expected that in future multifunctional façade elements will further improve the thermal performance of buildings. One example is the switchable insulation, where the thermal conductivity can be electrically switched from 0.002 W/(m×K) to 0.16 W/(m×K) within minutes. Future research work is dedicated to the application of textiles in architecture. Such textiles can be functionalized by using low-e coatings to reduce radiative heat transfer or by adding phase-change- materials (PCM) to enhance the thermal capacity of the textile based, low-weight constructions. The combination of such textiles with vacuum insulation panels to improve the insulation properties or with flexible photovoltaic cells to generate electricity is another key aspect of textile architecture. This research work was supported in the past by the Bavarian Ministry for Economics, Information, Traffic and Technology and is actually supported by the Federal Ministry of Economics and Technology.

Ebert, H. P.

2008-10-01T23:59:59.000Z

267

Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report  

SciTech Connect

This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a ?standard? 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (~600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output.

Rubiolo, Pablo R.; Conway, Lawarence E.; Oriani, Luca; Lahoda, Edward J.; DeSilva, Greg (Westinghouse Science and Technology Department); Hu, Min H.; Hartz, Josh; Bachrach, Uriel; Smith, Larry; Dudek, Daniel F. (Westinghouse Nuclear Services Division); Toman, Gary J, (Electric Power Research Institute); Feng, Dandong; Hejzlar, Pavel; Kazimi, Mujid S. (Massachusetts Institute of Technology)

2006-03-31T23:59:59.000Z

268

An in depth examination of semi floating gate ultra low voltage flip-flops for high speed applications.  

E-Print Network (OSTI)

??In this thesis 4 different ultra low voltage (ULV) flip-flops are presented. Floating gates has been exploited to significantly increase the drain-source current. This technique… (more)

Simenstad, Erik Jonathan

2013-01-01T23:59:59.000Z

269

A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion  

E-Print Network (OSTI)

411–422. [9] I. Glassman, Combustion, 3rd Edition, AcademicB. Lewis, G. von Elbe, Combustion, Flames and Explosions ofin Ultra-Lean, Hydrogen-Air Combustion Joseph F. Grcar a a

Grcar, Joseph F

2008-01-01T23:59:59.000Z

270

Architecture for ultra-low power multi-channel transmitters for Body Area Networks using RF resonators  

E-Print Network (OSTI)

Body Area Networks (BANs) are gaining prominence for their use in medical and sports monitoring. This thesis develops the specifications of a ultra-low power 2.4GHz transmitter for use in a Body Area Networks, taking ...

Paidimarri, Arun

2011-01-01T23:59:59.000Z

271

Full length article: Multiresolution wavelet denoising for ultra-wideband time-of-arrival estimation with regularized least squares  

Science Conference Proceedings (OSTI)

Improving accuracy in wireless localization and ranging is a challenging task which often demands an increase in the signal-to-noise ratio (SNR). Impulsive ultra-wideband (UWB) technology is a promising signaling alternative that is capable of high-resolution ... Keywords: Channel estimation, Discrete wavelet transform (DWT), Impulse radio (IR), Ranging, Regularized least squares (RLS), Time-of-arrival (ToA) estimation, Ultra-wideband (UWB), Wavelet denoising (WD)

Ted C. -K. Liu; Xiaodai Dong; Wu-Sheng Lu

2009-12-01T23:59:59.000Z

272

NETL: News Release - Ultra-low Cost Well Monitoring Could Save Thousands of  

NLE Websites -- All DOE Office Websites (Extended Search)

January 19, 2005 January 19, 2005 Ultra-low Cost Well Monitoring Could Save Thousands of Marginal Oil Wells DOE-funded Project in California Tested Successfully TULSA, OKLA. - A new, ultra-low cost method for monitoring marginal oil wells promises to help rescue thousands of U.S. wells from an early demise. Developed with funding from the Department of Energy (DOE) and project-managed by DOE's National Energy Technology Laboratory, this novel, inexpensive, monitoring-system prototype helps improve the efficiency of rod-pumped oil wells. The ultimate payoff for such an approach could be the recovery of millions of barrels of oil otherwise permanently lost while the United States watches its oil production continue to slide. MORE INFO Marginal Expense Oil Well Wireless Surveillance MEOWS -Phase II final technical report [PDF-294KB]

273

NETL: Advanced NOx Emissions Control: Control Technology - Ultra Low-NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra Low NOx Integrated System Ultra Low NOx Integrated System TFS 2000(tm) Low NOx Firing System Project Summary: ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important,

274

Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Ultra-low Platinum Alloy Development of Ultra-low Platinum Alloy C th d C t l t f PEM F l C ll Cathode Catalyst for PEM Fuel Cells 2010 DOE Hydrogen Program Fuel Cell Project Kick-Off P I : Branko N Popov P. I.: Branko N. Popov Center for Electrochemical Engineering University of South Carolina Columbia SC 29208. September 28, 2010 This presentation does not contain any proprietary, confidential, or otherwise restricted information Center for Electrochemical Engineering, University of South Carolina 1 Overview Timeline * S Start d date: J June 01 2010 01 2010 * End date: Nov 30 2012 (Phase I) : May 31 2014 (Phase II) Budget * Total project funding ¾ DOE share: $ 4 400 000 ¾ DOE share: $ 4,400,000 ¾ Contractor share: $1,100,000 * Incremental funding received in FY10: $750,000

275

ULTRA-DEEPWATER AND FRONTIER REGIONS RESEARCH NETL Team Technical Coordinator: Kelly Rose  

NLE Websites -- All DOE Office Websites (Extended Search)

ULTRA-DEEPWATER AND FRONTIER REGIONS RESEARCH NETL Team Technical Coordinator: Kelly Rose ULTRA-DEEPWATER AND FRONTIER REGIONS RESEARCH NETL Team Technical Coordinator: Kelly Rose Name Project Role Affiliation University Project Title Enick, Robert PI Pitt Baled, Hseen Post Doc Pitt Enick, Robert PI Pitt Baled, Hseen Post Doc Pitt Liu, Xingbo PI WVU Chen, Ting Graduate Student WVU Enick, Robert PI Pitt Baled, Hseen Post Doc Pitt Xing, Dazun Post Doc Pitt Baled, Hseen Grad Student Pitt Anderson, Brian PI WVU Velaga, Srinath Grad Student WVU Equation of State Model Assessment and development Evaluate Heavy Oil Viscosity Standard Quantifying complex fluid- phase properties at high pressure/high temperature (HTHP) Experimental and numerical evaluation of key metal-based failures Plume Modeling for High- pressure Water Tunnel Facility Name Title Affiliation Rose, Kelly Geologist

276

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources Program) Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources Program) NETL-ORD Project Information Resource Assessment | Drilling Under Extreme Conditions | Environmental Impacts Enhanced and Unconventional Oil Recovery Enhanced Oil Recovery from Fractured Media Read Detailed Project Information [PDF] Read project abstract Oil recovery from unconventional media is often difficult. However, significant hydrocarbon resources can be found in fractured reservoirs. As the supply of oil from conventional reservoirs is depleted, fractured media will provide a greater proportion of the country's oil reserves. One example of such a resource is the Bakken shale, part of the Williston Basin in North and South Dakota and Montana. It is estimated that over 100-176 billion barrels of oil are present in the Bakken shale. However, due to the low permeability of the formation and the apparent oil-wet nature of the shale, production from this formation presents considerable problems.

277

A Copper Crystal Lens for Ultra-High-Sensitivity Medical Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

A Copper Crystal Lens for Ultra-High-Sensitivity Medical Imaging A Copper Crystal Lens for Ultra-High-Sensitivity Medical Imaging A copper crystal lens developed at the Advanced Photon Source represents a new and promising approach in nuclear medicine for imaging very small tumors in the human body with higher sensitivity and higher spatial resolution than the cameras now in use. Conceptual view of the 6-lens array system. This system would provide sufficient data to generate a 3-dimensional image of a tumor. Conceptual view of the 6-lens array system. This system would provide sufficient data to generate a 3-dimensional image of a tumor. The lens is designed to focus gamma-ray energies of 100 to 200 keV, which makes it ideal for focusing the 140.6-keV gamma rays from Technetium-99m typically used in radioactive tracers. This new approach to medical imaging

278

NREL: News Feature - New Ultra-Efficient HPC Data Center Debuts  

NLE Websites -- All DOE Office Websites (Extended Search)

New Ultra-Efficient HPC Data Center Debuts New Ultra-Efficient HPC Data Center Debuts March 11, 2013 Photo of a man standing in front of computer racks that are part of NREL's high performance computing data center. Enlarge image Steve Hammond, director of NREL's Computational Science Center, stands in front of air-cooled racks in the high performance computing (HPC) data center in the Energy Systems Integration Facility (ESIF). The rest of the system will be built out this summer using warm-water liquid cooling to reach an annualized average power usage effectiveness (PUE) rating of 1.06 or better. Credit: Dennis Schroeder Scientists and researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) are constantly innovating, integrating novel technologies, and "walking the talk." Since 1982, NREL has won 52 R&D

279

A Combined Electrochemical and Ultra-High Vacuum Approach to Heterogeneous  

NLE Websites -- All DOE Office Websites (Extended Search)

A Combined Electrochemical and Ultra-High Vacuum Approach to Heterogeneous A Combined Electrochemical and Ultra-High Vacuum Approach to Heterogeneous Electrocatalysis Friday, February 24, 2012 - 11:00am SSRL Bldg. 137-322, 3rd floor Conference Room Matthew A. Rigsby, Oak Ridge National Laboratory Improved energy conversion and storage technologies are crucial for meeting the growing energy demands of the world. Understanding the factors that are currently limiting the advancement of these technologies is vital. One must examine the fundamental properties of electrocatalyst/photoelectrocatalyst materials and the fluid-solid interfaces of which they are a part, and one of the simplest ways to do this is to study model electrocatalyst systems. In the work presented here, studies began with real nanoparticle fuel cell electrocatalysts that demonstrated the key relationship between reactivity

280

Cavity resonance absorption in ultra-high bandwidth CRT deflection structure  

DOE Patents (OSTI)

An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

Dunham, M.E.; Hudson, C.L.

1991-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials  

SciTech Connect

Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

Fischer, D.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Mitchell, G.E.; Dekoven, B.M. [Dow Chemical Co., Midland, MI (United States); Yeh, A.T.; Gland, J.L. [Michigan Univ., Ann Arbor, MI (United States); Moodenbaugh, A.R. [Brookhaven National Lab., Upton, NY (United States)

1993-06-01T23:59:59.000Z

282

Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials  

SciTech Connect

Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

Fischer, D.A. (National Institute of Standards and Technology, Gaithersburg, MD (United States)); Mitchell, G.E.; Dekoven, B.M. (Dow Chemical Co., Midland, MI (United States)); Yeh, A.T.; Gland, J.L. (Michigan Univ., Ann Arbor, MI (United States)); Moodenbaugh, A.R. (Brookhaven National Lab., Upton, NY (United States))

1993-01-01T23:59:59.000Z

283

Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load  

DOE Patents (OSTI)

An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

Dunham, M.E.; Hudson, C.L.

1993-05-11T23:59:59.000Z

284

Stability studies of nanosecond light sources based on blue ultra bright LEDs  

E-Print Network (OSTI)

We present the results of stability studies of nanosecond light sources based on single quantum well (SQW) InGaN/GaN ultra bright blue LEDs. It is shown that the light yield of such light sources and their timing characteristics don't deteriorate even after 10^10 total pulses. The longterm stability of the sources light yield is better than 1%.

Lubsandorzhiev, B K

2004-01-01T23:59:59.000Z

285

Computational Modeling and Assessment of Nanocoatings for Ultra-Supercritical Boilers  

Science Conference Proceedings (OSTI)

Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler water walls and tubing. Reliable coatings are required for ultra-supercritical application to mitigate corrosion because these boilers will operate at much higher temperatures and pressures than in supercritical boilers.Computational modeling efforts have been undertaken to design and assess potentialFe-Cr-Ni-Al systems to produce stable nanocrystalline ...

2012-12-12T23:59:59.000Z

286

Field test of ultra-low head hydropower package based on marine thrusters. Final report  

DOE Green Energy (OSTI)

The project includes the design, fabrication, assembly, installation, and field test of the first full-scale operating hydropower package (turbine, transmission, and generator) based on a design which incorporates a marine-thruster as the hydraulic prime mover. Included here are: the project overview; engineering design; ultra-low head hydropower package fabrication; component procurement, cost control, and scheduling; thruster hydraulic section installation; site modeling and resulting recommended modifications; testing; and baseline environmental conditions at Stone Drop. (MHR)

Not Available

1983-12-01T23:59:59.000Z

287

Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project  

DOE Green Energy (OSTI)

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

Steve Bergin

2005-10-14T23:59:59.000Z

288

An ultra-wideband impulse radio PHY layer model for network simulation  

Science Conference Proceedings (OSTI)

This paper presents a novel modeling technique of Ultra-Wideband Impulse Radio for the simulation of wireless sensor networks, to evaluate this technology from a systems point of view that includes the effect of communication protocols. The adopted approach, ... Keywords: Collisions, Complex Baseband Equivalent Representation, Energy Detection, IEEE 802.15.4A, Impulse Radio, Interference, MPAE, Maximum Pulse Amplitude Estimation, MiXiM, Network Simulation, OMNeT++, SNIR, Signal to Noise Ratio, UWB

Jérôme Rousselot; Jean-Dominique Decotignie

2011-01-01T23:59:59.000Z

289

Component Development to Accelerate Commercial Implementation of Ultra-Low Emissions Catalytic Combustion  

SciTech Connect

This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

Jon McCarty, Brian Berry, Kare Lundberg, Orris Anson

2003-03-31T23:59:59.000Z

290

Stability studies of nanosecond light sources based on blue ultra bright LEDs  

E-Print Network (OSTI)

We present the results of stability studies of nanosecond light sources based on single quantum well (SQW) InGaN/GaN ultra bright blue LEDs. It is shown that the light yield of such light sources and their timing characteristics don't deteriorate even after 10^10 total pulses. The longterm stability of the sources light yield is better than 1%.

B. K. Lubsandorzhiev; Y. E. Vyatchin

2004-03-01T23:59:59.000Z

291

Ultra-stable cryogenic optical resonators for tests of fundamental physics  

E-Print Network (OSTI)

We present the design and first measurement results for an ultra-stable cryogenically cooled optical sapphire resonator system with a potential relative frequency stability better than 3x10^-17. This level of oscillator stability allows for more precise tests of Einstein's theories of relativity and thus could help to find first hints of "new physics". We will give some details on a projected experiment to test Lorentz invariance that will utilize these cavities.

Nagel, M; Döringshoff, K; Schikora, S; Kovalchuk, E V; Peters, A

2013-01-01T23:59:59.000Z

292

Survey of Ultra-Supercritical Pulverized Coal Power Plants in Japan and China  

Science Conference Proceedings (OSTI)

Within the United States, there is interest in pulverized coal (PC) units operating at ultra-supercritical (USC) conditions, arbitrarily defined as having main steam temperatures of 1100186F (595186C) and above. Such units have higher efficiency than conventional supercritical (SC) PC units with corresponding reductions in emissions8212on a lb/MWh basis8212for CO2, criteria pollutants, and mercury. Some power producers also consider the improved efficiency a hedge against future coal price increases. To ...

2009-12-09T23:59:59.000Z

293

Layered ultra-thin coherent structures used as electrical resistors having low temperature coefficient of resistivity  

DOE Patents (OSTI)

A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

Werner, Thomas R. (Argonne, IL); Falco, Charles M. (Tucson, AZ); Schuller, Ivan K. (Woodridge, IL)

1984-01-01T23:59:59.000Z

294

Search for Ultra-High Energy Photons with the Pierre Auger Observatory  

E-Print Network (OSTI)

Data taken at the Pierre Auger Observatory are used to search for air showers initiated by ultra-high energy (UHE) photons. Results of searches are reported from hybrid observations where events are measured with both fluorescence and array detectors. Additionally, a more stringent test of the photon fluxes predicted with energies above 10^19 eV is made using a larger data set measured using only the surface detectors of the observatory.

M. D. Healy; for the Pierre Auger Collaboration

2007-09-28T23:59:59.000Z

295

Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid  

DOE Green Energy (OSTI)

The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

2012-08-01T23:59:59.000Z

296

GASEOUS SCINTILLATION COUNTER  

DOE Patents (OSTI)

A gaseous excitation counter for detecting the presence amd measuring the energy of subatomic particles and electromagnetic radiation is described. The counter includes a gas-tight chamber filled with an elemental gas capable of producing ultra-violet excitation quanta when irradiated with subatomic particles and electromagnetic radiation. The gas has less than one in a thousand parts ultra-violet absorbing contamination. When nuclear radiation ps present the ultra-violet light produced by the gas strikes a fluorescent material within the counter, responsive to produce visible excitation quanta, and photo-sensitive counting means detect the visible emission.

Eggler, C.; Huddleston, C.M.

1959-04-28T23:59:59.000Z

297

Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications  

Science Conference Proceedings (OSTI)

Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is the key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.

David M. Dean

2012-10-30T23:59:59.000Z

298

ULTRA-CLEAN DIESEL FUEL: U.S. PRODUCTION AND DISTRIBUTION CAPABILITY  

NLE Websites -- All DOE Office Websites (Extended Search)

91 91 ULTRA-CLEAN DIESEL FUEL: U.S. PRODUCTION AND DISTRIBUTION CAPABILITY G.R. Hadder Center for Transportation Analysis Oak Ridge National Laboratory Oak Ridge, TN B.D. McNutt U.S. Department of Energy Washington, DC August 2000 Prepared for Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 ii iii TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

299

The effect of highly structured cosmic magnetic fields on ultra-high energy cosmic ray propagation  

E-Print Network (OSTI)

The possibility that the magnetic field is strongly correlated with the large-scale structure of the universe has been recently considered in the literature. In this scenario the intergalactic magnetic field has a strong ($\\mu$G) regular component spanning tens of Mpc but localized in sheets and filaments, while the vast voids in between are almost free of magnetic field. If true, this could have important consequences on the propagation of ultra-high energy cosmic rays, and severely affect our capacity of doing astronomy with charged particles. A quantitative discussion of these effects is given in the present work.

Gustavo Medina Tanco

1998-08-07T23:59:59.000Z

300

Ultra high energy cosmic rays and the large scale structure of the galactic magnetic field  

E-Print Network (OSTI)

We study the deflection of ultra high energy cosmic ray protons in different models of the regular galactic magnetic field. Such particles have gyroradii well in excess of 1 kpc and their propagation in the galaxy reflects only the large scale structure of the galactic magnetic field. A future large experimental statistics of cosmic rays of energy above 10$^{19}$ eV could be used for a study of the large scale structure of the galactic magnetic field if such cosmic rays are indeed charged nuclei accelerated at powerful astrophysical objects and if the distribution of their sources is not fully isotropic.

Todor Stanev

1996-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Simulation of Ultra High Energy Neutrino Interactions in Ice and Water  

E-Print Network (OSTI)

The CORSIKA program, usually used to simulate extensive cosmic ray air showers, has been adapted to work in a water or ice medium. The adapted CORSIKA code was used to simulate hadronic showers produced by neutrino interactions. The simulated showers have been used to study the spatial distribution of the deposited energy in the showers. This allows a more precise determination of the acoustic signals produced by ultra high energy neutrinos than has been possible previously. The properties of the acoustic signals generated by such showers are described.

S. Bevan; S. Danaher; J. Perkin; S. Ralph; C. Rhodes; L. Thompson; T. Sloan; D. Waters

2007-04-08T23:59:59.000Z

302

Demonstration Development Project: Readiness of Advanced Ultra-Supercritical Pulverized Coal Technology for Demonstration  

Science Conference Proceedings (OSTI)

Advanced ultra-supercritical (A-USC) pulverized coal technology operates with main steam temperatures in the range of 700°C to 760°C (1290°F to 1400°F) and has the potential to raise net generating efficiency by up to 50% (HHV). Economic analysis indicates that, by lowering CO2/MWh, A-USC technology lowers the cost of CO2 capture and storage when it is integrated with the power plant. To achieve these higher operating temperatures, nickel alloys and associated fabrication procedures are b...

2011-08-26T23:59:59.000Z

303

Quarkonium production in ultra-relativistic nuclear collisions: suppression vs. enhancement  

E-Print Network (OSTI)

After a brief review of the various scenarios for quarkonium production in ultra-relativistic nucleus-nucleus collisions we focus on the ingredients and assumptions underlying the statistical hadronization model. We then confront model predictions for J/$\\psi$ phase space distributions with the most recent data from the RHIC accelerator. Analysis of the rapidity dependence of the J/$\\psi$ nuclear modification factor yields first evidence for the production of J/$\\psi$ mesons at the phase boundary. We conclude with predictions for charmonium production at the LHC.

P. Braun-Munzinger

2007-01-31T23:59:59.000Z

304

Simulation of Ultra High Energy Neutrino Interactions in Ice and Water  

E-Print Network (OSTI)

The CORSIKA program, usually used to simulate extensive cosmic ray air showers, has been adapted to work in a water or ice medium. The adapted CORSIKA code was used to simulate hadronic showers produced by neutrino interactions. The simulated showers have been used to study the spatial distribution of the deposited energy in the showers. This allows a more precise determination of the acoustic signals produced by ultra high energy neutrinos than has been possible previously. The properties of the acoustic signals generated by such showers are described.

Bevan, S; Perkin, J; Ralph, S; Rhodes, C; Thompson, L; Sloan, T; Waters, D

2007-01-01T23:59:59.000Z

305

Comoving acceleration of overdense electron-positron plasma by colliding ultra-intense laser pulses  

Science Conference Proceedings (OSTI)

Particle-in-cell (PIC) simulation results of sustained acceleration of electron-positron (e+e-) plasmas by comoving electromagnetic (EM) pulses are presented. When a thin slab of overdense e+e- plasma is irradiated with linear-polarized ultra-intense short laser pulses from both sides, the pulses are transmitted when the plasma is compressed to thinner than {approx}2 relativistic skin depths. A fraction of the plasma is then captured and efficiently accelerated by self-induced JxB forces. For 1 {mu}m laser and 10{sup 21} W cm{sup -2} intensity, the maximum energy exceeds GeV in a picosecond.

Liang, Edison [Rice University, P.O. Box 1892, Houston, Texas 77251 (United States)

2006-06-15T23:59:59.000Z

306

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources  

Science Conference Proceedings (OSTI)

RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Progress continues to be made in establishing the program administration policies, procedures, and strategic foundation for future research awards. Significant progress was made in development of the draft program solicitations. In addition, RPSEA personnel continued an aggressive program of outreach to engage the industry and ensure wide industry participation in the research award solicitation process.

Russell E. Fray

2007-06-30T23:59:59.000Z

307

Determining mutant spectra of three RNA viral samples using ultra-deep sequencing  

SciTech Connect

RNA viruses have extremely high mutation rates that enable the virus to adapt to new host environments and even jump from one species to another. As part of a viral transmission study, three viral samples collected from naturally infected animals were sequenced using Illumina paired-end technology at ultra-deep coverage. In order to determine the mutant spectra within the viral quasispecies, it is critical to understand the sequencing error rates and control for false positive calls of viral variants (point mutantations). I will estimate the sequencing error rate from two control sequences and characterize the mutant spectra in the natural samples with this error rate.

Chen, H

2012-06-06T23:59:59.000Z

308

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials  

DOE Patents (OSTI)

Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

2013-03-05T23:59:59.000Z

309

Effects of Interactions and Temperature in Disordered Ultra-Cold Bose Gases  

E-Print Network (OSTI)

We simulate ultra-cold interacting Bosons in quasi-one-dimensional, incommensurate optical lattices. In the tight-binding limit, these lattices have pseudo-random on-site energies and thus can potentially lead to Anderson localization. We explore the parameter regimes that lead to Anderson localization and investigate the role of repulsive interactions, harmonic confinement and finite temperature. We find that interactions can obscure the exponential localization characteristic of Anderson localization, thus impeding the direct observation of this phenomenon when interactions are present.

C. P. J. Adolphs; J. Towers; M. Piraud; K. V. Krutitsky; D. A. W. Hutchinson

2011-01-27T23:59:59.000Z

310

Activation and thermal stability of ultra-shallow B{sup +}-implants in Ge  

Science Conference Proceedings (OSTI)

The activation and thermal stability of ultra-shallow B{sup +} implants in crystalline (c-Ge) and preamorphized Ge (PA-Ge) following rapid thermal annealing was investigated using micro Hall effect and ion beam analysis techniques. The residual implanted dose of ultra-shallow B{sup +} implants in Ge was characterized using elastic recoil detection and was determined to correlate well with simulations with a dose loss of 23.2%, 21.4%, and 17.6% due to ion backscattering for 2, 4, and 6 keV implants in Ge, respectively. The electrical activation of ultra-shallow B{sup +} implants at 2, 4, and 6 keV to fluences ranging from 5.0 Multiplication-Sign 10{sup 13} to 5.0 Multiplication-Sign 10{sup 15} cm{sup -2} was studied using micro Hall effect measurements after annealing at 400-600 Degree-Sign C for 60 s. For both c-Ge and PA-Ge, a large fraction of the implanted dose is rendered inactive due to the formation of a presumable B-Ge cluster. The B lattice location in samples annealed at 400 Degree-Sign C for 60 s was characterized by channeling analysis with a 650 keV H{sup +} beam by utilizing the {sup 11}B(p, {alpha})2{alpha} nuclear reaction and confirmed the large fraction of off-lattice B for both c-Ge and PA-Ge. Within the investigated annealing range, no significant change in activation was observed. An increase in the fraction of activated dopant was observed with increasing energy which suggests that the surface proximity and the local point defect environment has a strong impact on B activation in Ge. The results suggest the presence of an inactive B-Ge cluster for ultra-shallow implants in both c-Ge and PA-Ge that remains stable upon annealing for temperatures up to 600 Degree-Sign C.

Yates, B. R.; Darby, B. L.; Jones, K. S. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Petersen, D. H. [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Hansen, O. [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); CINF, Center for Individual Nanoparticle Functionality, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Lin, R.; Nielsen, P. F. [CAPRES A/S, Scion-DTU, DK-2800 Kgs. Lyngby (Denmark); Romano, L. [IMM-CNR MATIS and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Doyle, B. L. [Sandia National Laboratories, MS-1056, Albuquerque, New Mexico 87185 (United States); Kontos, A. [Applied Materials, Gloucester, Massachusetts 01930 (United States)

2012-12-15T23:59:59.000Z

311

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources  

SciTech Connect

RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Significant progress has been made in establishing the program administration policies, procedures, and strategic foundation for future research awards. RPSEA has concluded an industry-wide collaborative effort to identify focus areas for research awards under this program. This effort is summarized in the RPSEA Draft Annual Plan, which is currently under review by committees established by the Secretary of Energy.

Russell E. Fray

2007-05-31T23:59:59.000Z

312

Means and method for characterizing high power, ultra short laser pulses in a real time, on line manner  

DOE Patents (OSTI)

An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90.degree. angle of incidence.

Veligdan, James T. (Manorville, NY)

1994-01-01T23:59:59.000Z

313

Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization  

Science Conference Proceedings (OSTI)

Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

2012-07-15T23:59:59.000Z

314

A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines  

SciTech Connect

The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were: ? Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines. ? Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions. ? Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

Dennis N. Assanis; Arvind Atreya; Jyh-Yuan Chen; Wai K. Cheng; Robert W. Dibble; Chris Edwards; Zoran S. Filipi; Christian Gerdes; Hong Im; George A. Lavoie; Margaret S. Wooldridge

2009-12-31T23:59:59.000Z

315

THE DISCOVERY OF AN ULTRA-FAINT STAR CLUSTER IN THE CONSTELLATION OF URSA MINOR  

Science Conference Proceedings (OSTI)

We report the discovery of a new ultra-faint globular cluster in the constellation of Ursa Minor, based on stellar photometry from the MegaCam imager at the Canada-France-Hawaii Telescope. We find that this cluster, Munoz 1, is located at a distance of 45 {+-} 5 kpc and at a projected distance of only 45' from the center of the Ursa Minor dwarf spheroidal galaxy. Using a maximum-likelihood technique we measure a half-light radius of 0.'5, or equivalently 7 pc, and an ellipticity consistent with being zero. We estimate its absolute magnitude to be M{sub V} -0.4 {+-} 0.9, which corresponds to L{sub V} = 120{sup +160}{sub -65} L{sub Sun} and we measure a heliocentric radial velocity of -137 {+-} 4 km s{sup -1} based on Keck/DEIMOS spectroscopy. This new satellite is separate from Ursa Minor by {approx}30 kpc and 110 km s{sup -1} suggesting the cluster is not obviously associated with the dSph, despite the very close angular separation. Based on its photometric properties and structural parameters we conclude that Munoz 1 is a new ultra-faint stellar cluster. Along with Segue 3 this is one of the faintest stellar clusters known to date.

Munoz, R. R.; Geha, M.; Vargas, L. C. [Astronomy Department, Yale University, New Haven, CT 06520 (United States); Cote, P.; Stetson, P. [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Santana, F. A. [Departamento de Astronomia, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Simon, J. D. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Djorgovski, S. G., E-mail: rmunoz@das.uchile.cl [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States)

2012-07-01T23:59:59.000Z

316

Software-Defined Ultra-wideband Radio Communications: A New RF Technology for Emergency Response Applications  

SciTech Connect

Reliable wireless communication links for local-area (short-range) and regional (long-range) reach capabilities are crucial for emergency response to disasters. Lack of a dependable communication system can result in disruptions in the situational awareness between the local responders in the field and the emergency command and control centers. To date, all wireless communications systems such as cell phones and walkie-talkies use narrowband radio frequency (RF) signaling for data communication. However, the hostile radio propagation environment caused by collapsed structures and rubble in various disaster sites results in significant degradation and attenuation of narrowband RF signals, which ends up in frequent communication breakdowns. To address the challenges of reliable radio communication in disaster fields, we propose an approach to use ultra-wideband (UWB) or wideband RF waveforms for implementation on Software Defined Radio (SDR) platforms. Ultra-wideband communications has been proven by many research groups to be effective in addressing many of the limitations faced by conventional narrowband radio technologies. In addition, LLNL's radio and wireless team have shown significant success in field deployment of various UWB communications system for harsh environments based on LLNL's patented UWB modulation and equalization techniques. Furthermore, using software defined radio platform for UWB communications offers a great deal of flexibility in operational parameters and helps the radio system to dynamically adapt itself to its environment for optimal performance.

Nekoogar, F; Dowla, F

2009-10-19T23:59:59.000Z

317

Disordered surface structure of an ultra-thin tin oxide film on Rh(100)  

SciTech Connect

The composition and structure of an ultra-thin tin oxide film on Rh(100), prepared by the deposition of a submonolayer of tin followed by annealing in an O{sub 2} atmosphere, were examined by a combination of low-energy electron diffraction (LEED), Auger electron spectroscopy, X-ray photoemission spectroscopy (XPS), scanning tunneling microscopy (STM), and ab initio calculations based on density functional theory (DFT). Although the LEED pattern exhibited c(2 x 8) spots clearly, a uniform periodicity of the c(2 x 8) unit cell was not observed in the STM images. The bright dots that were observed periodically in the STM image were similar to those of the ultra-thin Sn{sub 2}O{sub 3} film on Rh(111) and formed a zigzag arrangement with the numerous point and line defects. The XPS study revealed that the Sn 3d{sub 5/2} peak of the tin oxide film on Rh(100) showed a metallic state as well as an oxide state that was between the SnO{sub 2} and SnO states. The structural models, which were based on the Sn{sub 2}O{sub 3} structure on Rh(111), were determined using DFT total energy calculations. The simulated STM images of the two slightly different honeycomb-chain models well reproduced the zigzag arrangement in the STM image. The STM image and XPS spectrum were interpreted using a combination of the two models.

Zenkyu, R.; Tajima, D.; Yuhara, J. [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan)

2012-03-15T23:59:59.000Z

318

Ultra-High Energy Gamma Rays in Geomagnetic Field and Atmosphere  

E-Print Network (OSTI)

The nature and origin of ultra-high energy (UHE: reffering to > 10^19 eV) cosmic rays are great mysteries in modern astrophysics. The current theories for their explanation include the so-called "top-down" decay scenarios whose main signature is a large ratio of UHE gamma rays to protons. Important step in determining the primary composition at ultra-high energies is the study of air shower development. UHE gamma ray induced showers are affected by the Landau-Pomeranchuk-Migdal (LPM) effect and the geomagnetic cascading process. In this work extensive simulations have been carried out to study the characteristics of air showers from UHE gamma rays. At energies above several times 10^19 eV the shower is affected by geomagnetic cascading rather than by the LPM effect. The properties of the longitudinal development such as average depth of the shower maximum or its fluctuations depend strongly on both primary energy and incident direction. This feature may provide a possible evidence of the UHE gamma ray presence by fluorescence detectors.

H. P. Vankov; N. Inoue; K. Shinozaki

2002-11-04T23:59:59.000Z

319

Tidal Disruptions of White Dwarfs from Ultra-Close Encounters with Intermediate Mass Spinning Black Holes  

E-Print Network (OSTI)

We present numerical relativity results of tidal disruptions of white dwarfs from ultra-close encounters with a spinning, intermediate mass black hole. These encounters require a full general relativistic treatment of gravity. We show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and orientation of the black hole spin. However, the late-time accretion onto the black hole follows the same decay, $\\dot{M}$ ~ t^{-5/3}, estimated from Newtonian gravity disruption studies. We compute the spectrum of the disk formed from the fallback material using a slim disk model. The disk spectrum peaks in the soft X-rays and sustains Eddington luminosity for 1-3 yrs after the disruption. For arbitrary black hole spin orientations, the disrupted material is scattered away from the orbital plane by relativistic frame dragging, which often leads to obscuration of the inner fallback disk by the outflowing debris. The disruption events also yield bursts of gravitational radiation with characteristic frequencies of ~3.2 Hz and strain amplitudes of ~10^{-18} for galactic intermediate mass black holes. The optimistic rate of considered ultra-close disruptions is consistent with no sources found in ROSAT all-sky survey. The future missions like Wide-Field X-ray Telescope (WFXT) could observe dozens of events.

Roland Haas; Roman V. Shcherbakov; Tanja Bode; Pablo Laguna

2012-01-20T23:59:59.000Z

320

HRTEM image simulations for the study of ultra-thin gate oxides  

SciTech Connect

We have performed high resolution transmission electron microscope (HRTEM) image simulations to qualitatively assess the visibility of various structural defects in ultra-thin gate oxides of MOSFET devices, and to quantitatively examine the accuracy of HRTEM in performing gate oxide metrology. Structural models contained crystalline defects embedded in an amorphous 16 {angstrom}-thick gate oxide. Simulated images were calculated for structures viewed in cross-section. Defect visibility was assessed as a function of specimen thickness and defect morphology, composition, size and orientation. Defect morphologies included asperities lying on the substrate surface, as well as ''bridging'' defects connecting the substrate to the gate electrode. Measurements of gate oxide thickness extracted from simulated images were compared to actual dimensions in the model structure to assess TEM accuracy for metrology. The effects of specimen tilt, specimen thickness, objective lens defocus and coefficient of spherical aberration (C{sub s}) on measurement accuracy were explored for nominal 10{angstrom} gate oxide thickness. Results from this work suggest that accurate metrology of ultra-thin gate oxides (i.e. limited to several per cent error) is feasible on a consistent basis only by using a C{sub s}-corrected microscope. However, fundamental limitations remain for characterizing defects in gate oxides using HRTEM, even with the new generation of C{sub s}-corrected microscopes.

Taylor, Seth T.; Mardinly, John; O'Keefe, Michael A.

2001-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

On the significance of the observed clustering of ultra-high energy cosmic rays  

E-Print Network (OSTI)

Three pairs of possibly correlated ultra-high energy cosmic ray events were reported by Hayashida et al (1996). Here we calculate the propagation of the corresponding particles through both the intergalactic and galactic magnetic fields. The large scale disc and halo magnetic components are approximated by the models of Stanev (1997). The intergalactic magnetic field intensity is modulated by the actual density of luminous matter along the corresponding lines of sight, calculated from the CfA redshift catalogue (Huchra et al, 1995). The results indicate that, if the events of each pair had a common source and were simultaneously produced, they either originated inside the galactic halo or otherwise very unlikely events were observed. On the other hand, an estimate of the arrival probability of ultra-high energy cosmic rays, under the assumption that the distribution of luminous matter in the nearby universe traces the distribution of the sources of the particles and intensity of the intergalactic magnetic field, suggests that the pairs are chance clusterings.

Gustavo A. Medina Tanco

1998-01-08T23:59:59.000Z

322

Low-noise pulsed pre-polarization magnet system for ultra-low field NMR  

DOE Green Energy (OSTI)

A liquid cooled, pulsed electromagnet of solenoid configuration suitable for duty in an ultra-low field nuclear magnetic resonance system has been designed, fabricated and successfully operated. The magnet design minimizes Johnson noise, minimizes the hydrogen signal and incorporates minimal metal and no ferromagnetic materials. In addition, an acoustically quiet cooling system permitting 50% duty cycle operation was achieved by designing for single-phase, laminar flow, forced convection cooling. Winding, conductor splicing and epoxy impregnation techniques were successfully developed to produce a coil winding body with integral cooling passageways and adequate structural integrity. Issues of material compatibility, housing, coolant flow system and heat rejection system design will be discussed. Additionally, this pulsed electromagnet design has been extended to produce a boiling liquid cooled version in a paired solenoid configuration suitable for duty in an ultra-low field nuclear magnetic resonance system. This pair of liquid nitrogen cooled coils is currently being tested and commissioned. Issues of material compatibility, thermal insulation, thermal contraction, housing and coolant flow design are discussed.

Sims, James R [Los Alamos National Laboratory; Schilling, Josef B [Los Alamos National Laboratory; Swenson, Charles A [Los Alamos National Laboratory; Gardner, David L [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Ammerman, Curti N [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

323

An Ultra-Compact Marx-Type High-Voltage Generator  

DOE Green Energy (OSTI)

This paper discusses the design of an ultra-compact, Marx-type, high-voltage generator. This system incorporates high-performance components that are closely coupled and integrated into an extremely compact assembly. Low profile, custom ceramic capacitors with coplanar extended electrodes provide primary energy storage. Low-inductance, spark-gap switches incorporate miniature gas cavities imbedded within the central region of the annular shaped capacitors, with very thin dielectric sections separating the energy storage capacitors. Carefully shaped electrodes and insulator surfaces are used throughout to minimize field enhancements, reduce fields at triple-point regions, and enable operation at stress levels closer to the intrinsic breakdown limits of the dielectric materials. Specially shaped resistors and inductors are used for charging and isolation during operation. Forward-coupling ceramic capacitors are connected across successive switch-capacitor-switch stages to assist in switching. Pressurized SF, gas is used for electrical insulation in the spark-gap switches and throughout the unit. The pressure housing is constructed entirely of dielectric materials, with segments that interlock with the low-profile switch bodies to provide an integrated support structure for all of the components. This ultra-compact Marx generator employs a modular design that can be sized as needed for a particular application. Units have been assembled with 4, 10, and 30 stages and operated at levels up to 100 kV per stage.

Goerz, D; Ferriera, T; Nelson, D; Speer, R; Wilson, M

2001-06-15T23:59:59.000Z

324

NETL: News Release - Richardson Announces New Initiative for "Ultra Clean"  

NLE Websites -- All DOE Office Websites (Extended Search)

February 4, 2000 February 4, 2000 Richardson Announces New Initiative for "Ultra Clean" Fuels, Improved Tailpipe Emission Controls Research Effort Follows Proposed New EPA Auto Emission Standards, Looks to Even Cleaner Fuels, Better Pollution Control Devices Six weeks after President Clinton announced the toughest standards ever for reducing air pollutants from auto tailpipes, the U.S. Department of Energy today kicked off a major new research effort targeting $75 million to develop new ways to produce ultra clean fuels and better pollution control devices for tomorrow's cars and trucks. "Driving now accounts for 30 percent of the total air pollution in the United States," said Energy Secretary Bill Richardson. "This initiative points to the day when Americans will breathe cleaner air not only because we supported tougher regulations but also because we invested in better technologies. In addition, if we can develop a low-sulfur, high-performance diesel fuel, we can take an important step toward dramatically improving fuel economy while we cut air pollution."

325

A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion  

E-Print Network (OSTI)

A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion in the development of combustion science. Several aspects of these two-dimensional flame cells are identified for premixed combustion when the other types of idealized flames are inapplicable. 1 #12;Nomenclature fuel

Geddes, Cameron Guy Robinson

326

H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors  

DOE Patents (OSTI)

An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

Liu, Ping (Denver, CO); Tracy, C. Edwin (Golden, CO); Pitts, J. Roland (Lakewood, CO); Lee, Se-Hee (Lakewood, CO)

2011-03-22T23:59:59.000Z

327

The Influence of Atmospheric Stability on Wind Drift from Ultra-Low-volume Aerial Forest Spray Applications  

Science Conference Proceedings (OSTI)

Measurements of drift cloud mass from 11 cases selected from a study of wind-borne droplet drift from ultra low-volume aerial spray applications over northern Ontario forests are presented as a function of atmospheric stability. Six swaths were ...

R. S. Crabbe; M. McCooeye; R. E. Mickle

1994-04-01T23:59:59.000Z

328

Space Environmentally Stable Polyimides and Copolyimides  

Science Conference Proceedings (OSTI)

Polyimides with a unique combination of properties including low color in thin films, atomic oxygen (AO), ultra-violet (UV) radiation resistance, solubility in organic solvents in the imide form, high glass transition (Tg) temperatures and high thermal ...

Watson Kent A.; Connell John W.

2000-05-01T23:59:59.000Z

329

Microwave and millimeter-wave rectifying circuit arrays and ultra-wideband antennas for wireless power transmission and communications  

E-Print Network (OSTI)

In the future, space solar power transmission and wireless power transmission will play an important role in gathering clean and infinite energy from space. The rectenna, i.e., a rectifying circuit combined with an antenna, is one of the most important components in the wireless power transmission system. To obtain high power and high output voltage, the use of a large rectenna array is necessary. Many novel rectennas and rectenna arrays for microwave and millimeter-wave wireless power transmission have been developed. Unlike the traditional rectifying circuit using a single diode, dual diodes are used to double the DC output voltage with the same circuit layout dimensions. The rectenna components are then combined to form rectenna arrays using different interconnections. The rectennas and the arrays are analyzed by using a linear circuit model. Furthermore, to precisely align the mainbeams of the transmitter and the receiver, a retrodirective array is developed to maintain high efficiency. The retrodirective array is able to track the incident wave and resend the signal to where it came from without any prior known information of the source location. The ultra-wideband radio has become one of the most important communication systems because of demand for high data-rate transmission. Hence, ultra-wideband antennas have received much attention in mobile wireless communications. Planar monopole ultra-wideband antennas for UHF, microwave, and millimeter-wave bands are developed, with many advantages such as simple structure, low cost, light weight, and ease of fabrication. Due to the planar structures, the ultra-wideband antennas can be easily integrated with other circuits. On the other hand, with an ultra-wide bandwidth, source power can be transmitted at different frequencies dependent on power availability. Furthermore, the ultra-wideband antenna can potentially handle wireless power transmission and data communications simultaneously. The technologies developed can also be applied to dual-frequency or the multi-frequency antennas. In this dissertation, many new rectenna arrays, retrodirective rectenna arrays, and ultra-wideband antennas are presented for microwave and millimeter-wave applications. The technologies are not only very useful for wireless power transmission and communication systems, but also they could have many applications in future radar, surveillance, and remote sensing systems.

Ren, Yu-Jiun

2007-05-01T23:59:59.000Z

330

COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR  

SciTech Connect

Coal-fired electric utilities are facing a serious challenge with regards to curbing their NO{sub x} emissions. At issue are the NO{sub x} contributions to the acid rain, ground level ozone, and particulate matter formation. Substantial NO{sub x} control requirements could be imposed under the proposed Ozone Transport Rule, National Ambient Air Quality Standards, and New Source Performance Standards. McDermott Technology, Inc. (MTI), Babcock and Wilcox (B and W), and Fuel Tech are teaming to provide an integrated solution for NO{sub x} control. The system will be comprised of an ultra low-NO{sub x} pulverized coal (PC) burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. This system will be capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu and target ammonia (NH3) slip level targeted below 5 ppmV for commercial units. Our approach combines the best available combustion and post-combustion NO{sub x} control technologies. More specifically, B and W's DRB-4Z TM ultra low-NO{sub x} PC burner technology will be combined with Fuel Tech's NO{sub x}OUT (SNCR) and NO{sub x}OUT Cascade (SNCR/SCR hybrid) systems and jointly evaluated and optimized in a state-of-the-art test facility at MTI. Although the NO{sub x}OUT Cascade (SNCR/SCR hybrid) system will not be tested directly in this program, its potential application for situations that require greater NO{sub x} reductions will be inferred from other measurements (i.e., SNCR NO{sub x} removal efficiency plus projected NO{sub x} reduction by the catalyst based on controlled ammonia slip). Our analysis shows that the integrated ultra low-NO{sub x} burner and SNCR system has the lowest cost when the burner emissions are 0.25 lb NO{sub x}/10{sup 6} Btu or less. At burner NO{sub x} emission level of 0.20 lb NO{sub x}/10{sup 6} Btu, the levelized cost per ton of NO{sub x} removed is 52% lower than the SCR cost.

Hamid Farzan

2001-07-01T23:59:59.000Z

331

NETL: News Release - DOE Takes 2nd Step Toward Ultra-Clean Energy Plant;  

NLE Websites -- All DOE Office Websites (Extended Search)

August 3, 2000 August 3, 2000 DOE Takes 2nd Step Toward Ultra-Clean Energy Plant; Selects Seven More Projects to Join Vision 21 Program The U.S. Department of Energy today added more of the technological "building blocks" to its Vision 21 program - an effort the agency expects to lead to a nearly pollution-free energy plant by the next decade. A Possible Concept for Tomorrow's Vision 21 Plant It's not your father's power plant. The Vision 21 pollution-free energy plant may look significantly different than a traditional power plant - as this artist's concept shows. "We are building the foundation for a new generation of energy facilities capable of efficiently using our most abundant traditional fuels while virtually eliminating environmental concerns," said Secretary of Energy

332

Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines  

SciTech Connect

U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Gordon H. Holcomb

2009-01-01T23:59:59.000Z

333

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

DOE Green Energy (OSTI)

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

334

Analog Readout and Analysis Software for the Ultra-High Rate Germanium (UHRGe) Project  

Science Conference Proceedings (OSTI)

High-resolution high-purity germanium (HPGe) spectrometers are needed for Safeguards applications such as spent fuel assay and uranium hexafluoride cylinder verification. In addition, these spectrometers would be applicable to other high-rate applications such as non-destructive assay of nuclear materials using nuclear resonance fluorescence. Count-rate limitations of today's HPGe technologies, however, lead to concessions in their use and reduction in their efficacy. Large-volume, very high-rate HPGe spectrometers are needed to enable a new generation of nondestructive assay systems. The Ultra-High Rate Germanium (UHRGe) project is developing HPGe spectrometer systems capable of operating at unprecedented rates, 10 to 100 times those available today. This report documents current status of developments in the analog electronics and analysis software.

Fast, James E.; Aguayo Navarrete, Estanislao; Evans, Allan T.; VanDevender, Brent A.; Rodriguez, Douglas C.; Wood, Lynn S.

2011-09-01T23:59:59.000Z

335

A proposal for a generation of two-color ultra-short x-ray pulses  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 A proposal for a generation of two-color ultra-short x-ray pulses * Alexander Zholents Advanced Photon Source, Argonne National Laboratory Argonne, IL 60439 * Work supported by the U. S. Department of Energy, Office of Science, under Contract No. DE- AC02-06CH11357. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare

336

Low energy conversion electron detection in superfluid He3 at ultra-low temperature  

E-Print Network (OSTI)

We report on the first results of the MACHe3 (MAtrix of Cells of Helium 3) prototype experiment concerning the measurement of low energy conversion electrons at ultra-low temperature. For the first time, the feasibility of the detection of low energy electrons is demonstrated in superfluid He3-B cooled down to 100 microK. Low energy electrons at 7.3 keV coming from the K shell conversion of the 14.4 keV nuclear transition of a low activity Co57 source are detected, opening the possibility to use a He3-based detector for the detection of Weakly Interacting Massive Particles (WIMPs) which are expected to release an amount of energy higher-bounded by 5.6 keV.

E. Moulin; C. Winkelmann; J. F. Macias-Perez; Yu. M. Bunkov; H. Godfrin; D. Santos

2005-04-12T23:59:59.000Z

337

HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS  

Science Conference Proceedings (OSTI)

Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

2008-10-08T23:59:59.000Z

338

Transverse self-modulation of ultra-relativistic lepton beams in the plasma wakefield accelerator  

SciTech Connect

The transverse self-modulation of ultra-relativistic, long lepton bunches in high-density plasmas is explored through full-scale particle-in-cell simulations. We demonstrate that long SLAC-type electron and positron bunches can become strongly radially self-modulated over centimeter distances, leading to wake excitation in the blowout regime with accelerating fields in excess of 20 GV/m. We show that particles energy variations exceeding 10 GeV can occur in meter-long plasmas. We find that the self-modulation of positively and negatively charged bunches differs when the blowout is reached. Seeding the self-modulation instability mitigates the effect of the competing hosing instability. This work reveals that a proof-of-principle experiment to test the physics of bunch self-modulation can be performed with available lepton bunches and with existing experimental apparatus and diagnostics.

Vieira, J.; Silva, L. O. [GoLP/Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado Instituto Superior Tecnico, Technical University of Lisbon, Lisboa (Portugal); Fang, Y. [University of Southern California, Los Angeles, California 90089 (United States); Mori, W. B. [University of California, Los Angeles, California 90095 (United States); Muggli, P. [University of Southern California, Los Angeles, California 90089 (United States); Max Planck Institute for Physics, Munich (Germany)

2012-06-15T23:59:59.000Z

339

HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS  

SciTech Connect

We present experimental data of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using the Rutherford Appleton Laboratory Vulcan petawatt laser. These measurements were made using a CCD-based magnetic spectrometer. We present details on the distinct effective temperatures that were obtained for a wide variety of targets as a function of laser intensity. It is found that as the intensity increases from 10{sup 17} W/cm{sup 2} to 10{sup 19} W/cm{sup 2}, a 0.4 dependence on the laser intensity is found. Between 10{sup 19} W/cm{sup 2} and 10{sup 20} W/cm{sup 2}, a gradual rolling off of temperature with intensity is observed.

Chen, H; Wilks, S C; Kruer, W L; Moon, S; Patel, N; Patel, P K; Shepherd, R; Snavely, R

2005-12-08T23:59:59.000Z

340

Ultra high energy neutrino-nucleon cross section from cosmic ray experiments and neutrino telescopes  

E-Print Network (OSTI)

We deduce the cosmogenic neutrino flux by jointly analysing ultra high energy cosmic ray data from HiRes-I and II, AGASA and the Pierre Auger Observatory. We make two determinations of the neutrino flux by using a model-dependent method and a model-independent method. The former is well-known, and involves the use of a power-law injection spectrum. The latter is a regularized unfolding procedure. We then use neutrino flux bounds obtained by the RICE experiment to constrain the neutrino-nucleon inelastic cross section at energies inaccessible at colliders. The cross section bounds obtained using the cosmogenic fluxes derived by unfolding are the most model-independent bounds to date.

V. Barger; Patrick Huber; Danny Marfatia

2006-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

UTag: Long-range Ultra-wideband Passive Radio Frequency Tags  

SciTech Connect

Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

Dowla, F

2007-03-14T23:59:59.000Z

342

Thermal Behaviour of W+C Ion Implanted Ultra High Molecular Weight Polyethylene (UHMWPE)  

SciTech Connect

The aim of this work was to examine thermal behavior of the surface modified Ultra High Molecular Weight Poly Ethylene (UHMWPE ) in order to understand the effect of ion implantation on the properties of this polymer which is widely used especially for biomedical applications. UHMWPE samples were Tungsten and Carbon (W+C) hybrid ion implanted by using Metal Vapour Vacuum Arc (MEVVA) ion implantation technique with a fluence of 10 17 ions/cm2 and extraction voltage of 30 kV. Untreated and surface-treated samples were investigated by Rutherford Back Scattering (RBS) Analysis, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectrometry, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). This study has shown that ion implantation represents a powerful tool on modifying thermal properties of UHMWPE surfaces. This combination of properties can make implanted UHMWPE a preferred material for biomedical applications.

Urkac, E. Sokullu; Oztarhan, A. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Tihminlioglu, F. [Chemical Engineering Department, Izmir Institute of High Technology, Gulbahcekoyu Urla, Izmir (Turkey); Ila, D.; Chhay, B.; Muntele, C. [Center for Irradiation of Materials, Alabama A and M University, Normal, Huntsville AL 35762 (United States); Budak, S. [Department of Electrical Engineering, Alabama A and M University, Normal, AL 35762 (United States); Oks, E.; Nikolaev, A. [High Current Electrnonics, Institute, Tomsk (Russian Federation)

2009-03-10T23:59:59.000Z

343

PARSEC: A Parametrized Simulation Engine for Ultra-High Energy Cosmic Ray Protons  

E-Print Network (OSTI)

We present a new simulation engine for fast generation of ultra-high energy cosmic ray data based on parametrizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in galactic magnetic fields are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

Bretz, Hans-Peter

2013-01-01T23:59:59.000Z

344

Thick-film technology for ultra high vacuum interfaces of micro-structured traps  

E-Print Network (OSTI)

We adopt thick-film technology to produce ultra high vacuum compatible interfaces for electrical signals. These interfaces permit voltages of hundreds of Volts and currents of several Amperes and allow for very compact vacuum setups, useful in quantum optics in general, and especially for quantum information and quantum simulations using miniaturized traps for ions or neutral atoms. Such printed circuits can also be useful as pure in-vacuum devices. We demonstrate a specific interface, which provides eleven current feedthroughs, more than 70 dc feedthroughs and a feedthrough for radio frequencies. We achieve a pressure in the low 1e-11mbar range and demonstrate the full functionality of the interface by trapping chains of cold ytterbium ions, which requires all of the signals mentioned above being present. In addition, a versatile multi-channel device for supplying precise time-dependent voltages has been developed.

Delia Kaufmann; Thomas Collath; M. Tanveer Baig; Peter Kaufmann; Eman Asenwar; Michael Johanning; Christof Wunderlich

2011-07-20T23:59:59.000Z

345

An ultra-thin buffer layer for Ge epitaxial layers on Si  

SciTech Connect

Using an Fe{sub 3}Si insertion layer, we study epitaxial growth of Ge layers on a Si substrate by a low-temperature molecular beam epitaxy technique. When we insert only a 10-nm-thick Fe{sub 3}Si layer in between Si and Ge, epitaxial Ge layers can be obtained on Si. The detailed structural characterizations reveal that a large lattice mismatch of {approx}4% is completely relaxed in the Fe{sub 3}Si layer. This means that the Fe{sub 3}Si layers can become ultra-thin buffer layers for Ge on Si. This method will give a way to realize a universal buffer layer for Ge, GaAs, and related devices on a Si platform.

Kawano, M.; Yamada, S.; Tanikawa, K.; Miyao, M.; Hamaya, K. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan)] [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Sawano, K. [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Tokyo 158-0082 (Japan)] [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Tokyo 158-0082 (Japan)

2013-03-25T23:59:59.000Z

346

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

347

UTag: Long-range Ultra-wideband Passive Radio Frequency Tags  

SciTech Connect

Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

Dowla, F

2007-03-14T23:59:59.000Z

348

Woven graphite fiber structures for use in ultra-light weigth heat exchangers  

Science Conference Proceedings (OSTI)

As part of U.S. Department of Energy efforts to find novel approaches for thermal management and heat recovery, work was undertaken at Oak Ridge National Laboratory (ORNL) to investigate the use of graphite-based materials for heat exchanger and thermal management devices. From this effort, lightweight, robust woven graphite-fiber structures were developed which provide high conductivity paths along the direction of the graphite fibers. These structures were produced and characterized for air permeability/pressure drop and thermal (heat transfer) performance. Results have been shown to be favorable for using such structures in ultra-light weight heat exchanger applications such as vehicle radiators or other areas where light weight, compact, conformable heat transfer devices are needed.

Hemrick, James Gordon [ORNL; Lara-Curzio, Edgar [ORNL; Loveland, Erick R [ORNL; Sharp, Keith W [ORNL; Schartow, Robert [3TEX Incorporated

2011-01-01T23:59:59.000Z

349

Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications  

E-Print Network (OSTI)

We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

Burri, F; Feusi, P; Henneck, R; Kirch, K; Lauss, B; Ruettimann, P; Schmidt-Wellenburg, P; Schnabel, A; Voigt, J; Zenner, J; Zsigmond, G

2013-01-01T23:59:59.000Z

350

Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz  

E-Print Network (OSTI)

The performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10 MJ is described. The solid deuterium converter with a volume of V=160 cm3 (8 mol), which is exposed to a thermal neutron fluence of 4.5x10^13 n/cm2, delivers up to 550 000 UCN per pulse outside of the biological shield at the experimental area. UCN densities of ~ 10/cm3 are obtained in stainless steel bottles of V ~ 10 L resulting in a storage efficiency of ~20%. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.

J. Karch; Yu. Sobolev; M. Beck; K. Eberhardt; G. Hampel; W. Heil; R. Kieser; T. Reich; N. Trautmann; M. Ziegner

2013-08-21T23:59:59.000Z

351

Impulse Radio Ultra-Wideband Communication Over Free-Space Optical Links  

E-Print Network (OSTI)

A composite impulse radio ultra-wideband (IR-UWB) communication system is presented. The proposed system model aims to transmit UWB pulses over several kilometers through free-space optical (FSO) links and depending on the link design, the electrical estimates of the FSO system can be directly used or distributed to end-user through radio-frequency (RF) links over short ranges. However, inhomogeneities on the FSO transmission path cause random fluctuations in the received signal intensity and these effects induced by atmospheric turbulence closely effect the system performance. Several distinct probability distributions based on experimental measurements are used to characterize FSO channels and using these probabilistic models, detection error probability analysis of the proposed system for different link designs are carried out under weak, moderate and strong turbulence conditions. The results of the analysis show that depending on the atmospheric conditions, system performance of the composite link can hav...

Davaslioglu, Kemal

2013-01-01T23:59:59.000Z

352

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

DOE Green Energy (OSTI)

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

353

Demonstration of a solid deuterium source of ultra-cold neutrons  

E-Print Network (OSTI)

Ultra-cold neutrons (UCN), neutrons with energies low enough to be confined by the Fermi potential in material bottles, are playing an increasing role in measurements of fundamental properties of the neutron. The ability to manipulate UCN with material guides and bottles, magnetic fields, and gravity can lead to experiments with lower systematic errors than have been obtained in experiments with cold neutron beams. The UCN densities provided by existing reactor sources limit these experiments. The promise of much higher densities from solid deuterium sources has led to proposed facilities coupled to both reactor and spallation neutron sources. In this paper we report on the performance of a prototype spallation neutron-driven solid deuterium source. This source produced bottled UCN densities of 145 +/-7 UCN/cm3, about three times greater than the largest bottled UCN densities previously reported. These results indicate that a production UCN source with substantially higher densities should be possible.

A. Saunders; J. M. Anaya; T. J. Bowles; B. W. Filippone; P. Geltenbort; R. E. Hill; M. Hino; S. Hoedl; G. E. Hogan; T. M. Ito; K. W. Jones; T. Kawai; K. Kirch; S. K. Lamoreaux; C. -Y. Liu; M. Makela; L. J. Marek; J. W. Martin; C. L. Morris; R. N. Mortensen; A. Pichlmaier; S. J. Seestrom; A. Serebrov; D. Smith; W. Teasdale; B. Tipton; R. B. Vogelaar; A. R. Young; J. Yuan

2003-12-18T23:59:59.000Z

354

A table-top laser-based source of femtosecond, collimated, ultra-relativistic positron beams  

E-Print Network (OSTI)

The generation of ultra-relativistic positron beams with short duration ($\\tau_{e^+} \\leq 30$ fs), small divergence ($\\theta_{e^+} \\simeq 3$ mrad), and high density ($n_{e^+} \\simeq 10^{14} - 10^{15}$ cm$^{-3}$) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and $\\gamma$-rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.

G. Sarri; W. Schumaker; A. Di Piazza; M. Vargas; B. Dromey; M. E. Dieckmann; V. Chvykov; A. Maksimchuk; V. Yanovsky; Z. H. He; B. X. Hou; J. A. Nees; A. G. R. Thomas; C. H. Keit; M. Zepf; K. Krushelnick

2013-04-19T23:59:59.000Z

355

Evidence for ultra-fast heating in intense-laser irradiated reduced-mass targets  

Science Conference Proceedings (OSTI)

We report on an experiment irradiating individual argon droplets of 20 {mu}m diameter with laser pulses of several Joule energy at intensities of 10{sup 19} W/cm{sup 2}. K-shell emission spectroscopy was employed to determine the hot electron energy fraction and the time-integrated charge-state distribution. Spectral fitting indicates that bulk temperatures up to 160 eV are reached. Modelling of the hot-electron relaxation and generation of K-shell emission with collisional hot-electron stopping only is incompatible with the experimental results, and the data suggest an additional ultra-fast (sub-ps) heating contribution. For example, including resistive heating in the modelling yields a much better agreement with the observed final bulk temperature and qualitatively reproduces the observed charge state distribution.

Neumayer, P.; Gumberidze, A.; Hochhaus, D. C. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt am Main (Germany); Aurand, B.; Stoehlker, T. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Costa Fraga, R. A.; Kalinin, A. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Ecker, B. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Kaluza, M. C. [Helmholtz Institute Jena, 07743 Jena (Germany); IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Kuehl, T. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Reuschl, R. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Winters, D.; Winters, N.; Yin, Z. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany)

2012-12-15T23:59:59.000Z

356

Ultra-low field NMR for detection and characterization of 235 UF6  

SciTech Connect

We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

Espy, Michelle A [Los Alamos National Laboratory; Magnelind, Per E [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Urbaitis, Algis V [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

357

Gamma-Ray Bursts, Ultra High Energy Cosmic Rays, and Cosmic Gamma-Ray Background  

E-Print Network (OSTI)

We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in TeV range by synchrotron radiation of ultra-high-energy protons (\\sim 10^{20} eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.

Tomonori Totani

1998-10-14T23:59:59.000Z

358

Electrical activation and spin coherence of ultra low doseantimony implants in silicon  

DOE Green Energy (OSTI)

We implanted ultra low doses (0.2 to 2 x 10{sup 11} cm{sup -2}) of Sb ions into isotopically enriched {sup 28}Si, and probed electrical activation and electron spin relaxation after rapid thermal annealing. Strong segregation of dopants towards both Si{sub 3}N{sub 4} and SiO{sub 2} interfaces limits electrical activation. Pulsed Electron Spin Resonance shows that spin echo decay is sensitive to the dopant profiles, and the interface quality. A spin decoherence time, T{sub 2}, of 1.5 ms is found for profiles peaking 25 nm below a Si/SiO{sub 2} interface, increasing to 2.1 ms when the surface is passivated with hydrogen. These measurements provide benchmark data for the development of devices in which quantum information is encoded in donor electron spins.

Schenkel, T.; Tyryshkin, A.M.; de Sousa, R.; Whaley, K.B.; Bokor,J.; Liddle, J.A.; Persaud, A.; Shangkuan, J.; Chakarov, I.; Lyon, S.A.

2005-07-13T23:59:59.000Z

359

Direct imaging of neural currents using ultra-low field magnetic resonance techniques  

DOE Patents (OSTI)

Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

Volegov, Petr L. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Mosher, John C. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Kraus, Jr., Robert H. (Los Alamos, NM)

2009-08-11T23:59:59.000Z

360

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

DOE Green Energy (OSTI)

This report describes activities for the thirteenth quarter of work performed under this agreement. EnviRes initiated a wire transfer of funds for procurement of a pressure vessel and associated refractory lining. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

DOE Green Energy (OSTI)

Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations. This report describes activities for the thirteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that they were having difficulty with refractory vendors meeting specifications for the lining of the pressure vessel. EnviRes is working to resolve this issue.

Donald P. Malone; William R. Renner

2006-04-01T23:59:59.000Z

362

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

DOE Green Energy (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

Gerald P. Huffman

2003-03-31T23:59:59.000Z

363

Ultra-wideband radios for time-of-flight-ranging and network position estimation  

DOE Patents (OSTI)

This invention provides a novel high-accuracy indoor ranging device that uses ultra-wideband (UWB) RF pulsing with low-power and low-cost electronics. A unique of the present invention is that it exploits multiple measurements in time and space for very accurate ranging. The wideband radio signals utilized herein are particularly suited to ranging in harsh RF environments because they allow signal reconstruction in spite of multipath propagation distortion. Furthermore, the ranging and positioning techniques discussed herein directly address many of the known technical challenges encountered in UWB localization regarding synchronization and sampling. In the method developed, noisy, corrupted signals can be recovered by repeating range measurements across a channel, and the distance measurements are combined from many locations surrounding the target in a way that minimizes the range biases associated to indirect flight paths and through-wall propagation delays.

Hertzog, Claudia A. (Houston, TX); Dowla, Farid U. (Castro Valley, CA); Dallum, Gregory E. (Livermore, CA); Romero, Carlos E. (Livermore, CA)

2011-06-14T23:59:59.000Z

364

Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons  

Science Conference Proceedings (OSTI)

We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

2009-02-04T23:59:59.000Z

365

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

DOE Green Energy (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

Gerald P. Huffman

2004-09-30T23:59:59.000Z

366

Magnetars in the Metagalaxy: An Origin for Ultra High Energy Cosmic Rays in the Nearby Universe  

E-Print Network (OSTI)

I show that the relativistic winds of newly born magnetars with khz initial spin rates, occurring in all normal galaxies, can accelerate ultrarelativistic light ions with an E^{-1} injection spectrum, steepening to E^{-2} at higher energies, with an upper cutoff above 10^{21} eV. Interactions with the CMB yield a spectrum in good accord with the observed spectrum of Ultra-High Energy Cosmic Rays (UHECR), if ~ 5-10% of the magnetars are born with voltages sufficiently high to accelerate the UHECR. The form the spectrum spectrum takes depends on the gravitational wave losses during the magnetars' early spindown - pure electromagnetic spindown yields a flattening of the E^3 J(E) spectrum below 10^{20} eV, while a moderate GZK ``cutoff'' appears if gravitational wave losses are strong enough. I outline the physics such that the high energy particles escape with small energy losses from a magnetar's natal supernova, including Rayleigh-Taylor ``shredding'' of the supernova envelope, expansion of a relativistic blast wave into the interstellar medium, acceleration of the UHE ions through surf-riding in the electromgnetic fields of the wind, and escape of the UHE ions in the rotational equator with negligible radiation loss. The abundance of interstellar supershells and unusually large supernova remnants suggests that most of the initial spindown energy is radiated in khz gravitational waves for several hours after each supernova, with effective strains from sources at typical distances ~ 3 x 10^{-21}. Such bursts of gravitational radiation should correlate with bursts of ultra-high energy particles. The Auger experiment should see such bursts every few years.

Jonathan Arons

2002-08-23T23:59:59.000Z

367

Ultra-thin overcoats for the head/disk interface tribology  

SciTech Connect

Areal density in magnetic storage is increasing at a blistering pace of 60% annually. Recently IBM announced its mobile product with the industry highest areal density of 2.64 Gb/In{sup 2}. The areal density demonstrations have shown up to 5 Gb/In{sup 2} possible. Reaching higher areal density targets dictate that magnetic spacing between heads and disks be reduced. For the example of a 10 Gb/In{sup 2} areal density goal, the magnetic spacing should be {approx}25 nm. In budgeting this magnetic spacing, it is required that disk and slider air bearing surface overcoats thickness be reduced to 5 nm range. Present choice of carbon overcoat in the magnetic storage hard disk drive industry is sputter deposited, hydrogenated carbon (CH{sub x}) with thickness in the range of 12-15 nm on heads and disks. Novel overcoats such as nitrogenated carbon (CN{sub x}) and cathodic arc carbon films are being developed for future applications. Cathodic arc deposition forms ultra-thin amorphous hard carbon films of high sp{sup 3} content, high hardness, and low coefficient of friction. These properties make it of great interest for head/disk interface application, in particular for contact recording. In many cases, the tribological properties of the head disk interface could be improved by factors up to ten applying cathodic arc overcoats to the slider or disk surface. This paper reviews the results of cathodic arc ultra-thin (2-10 nm) carbon overcoats for head/disk interface tribological applications.

Bhatia, C.S. [SSD/IBM, San Jose, CA (US); Anders, S.; Brown, I.G. [Lawrence Berkeley National Lab., CA (US)] [and others

1997-05-01T23:59:59.000Z

368

Conceptual Design of an Ultra-Dense Phase Injector and Feed System  

DOE Green Energy (OSTI)

Pratt & Whitney Rocketdyne (PWR) has developed an innovative gasifier concept that uses rocket engine technology to significantly improve gasifier performance, life, and cost compared to current state-of-the-art systems. One key feature of the PWR concept is the use of an ultra-dense phase feed system to provide dry coal to the multi-element injector. This report describes the design of an ultra-dense phase multi-element injector and feed system for use on PWR gasifiers operating at pressures to 1,000 psia. For the design of this injector and feed system, the pulverized coal's Bingham fluid yield stress is approximately 11 Pascals (Pa) with a coefficient of rigidity of 10 centipoise (cp). These values are typical of earlier experimental testing conducted with dried pulverized coal below 18 wt% moisture -- see, e.g., Sprouse and Schuman (1983, 1986). Each individual injector element is designed for a coal flow rate between 3 and 4 tons/hr (0.76 to 1.0 kg/sec) at full flow conditions. Hence, a small 400 to 500 tons/day (4.2 to 5.25 kg/sec) gasifier will require a 6-element injector, a 1,500 tons/day (15.7 kg/sec) gasifier will require an 18-element injector and a 3,000 tons/day (31.5 kg/sec) gasifier will require a 36-element injector. These injectors and feed systems are capable of 'turn-down' below 50% of full-flow operation.

Ken Sprouse; Fred Widman; Alan Darby

2006-03-30T23:59:59.000Z

369

Improved resolution and reduced clutter in ultra-wideband microwave imaging using cross-correlated back projection: experimental and numerical results  

Science Conference Proceedings (OSTI)

Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved ...

S. Jacobsen; Y. Birkelund

2010-01-01T23:59:59.000Z

370

Analytic calculations of the spectra of ultra high energy cosmic ray nuclei. II. The general case of background radiation  

E-Print Network (OSTI)

We discuss the problem of ultra high energy nuclei propagation in extragalactic background radiations. The present paper is the continuation of the accompanying paper I where we have presented three new analytic methods to calculate the fluxes and spectra of Ultra High Energy Cosmic Ray (UHECR) nuclei, both primary and secondary, and secondary protons. The computation scheme in this paper is based on the analytic solution of coupled kinetic equations, which takes into account the continuous energy losses due to the expansion of the universe and pair-production, together with photo-disintegration of the nuclei. This method includes in the most natural way the production of secondary nuclei in the process of photo-disintegration of the primary nuclei during their propagation through extragalactic background radiations. In paper I, in order to present the suggested analytical schemes of calculations, we have considered only the case of the Cosmic Microwave Background (CMB) radiation, in the present paper we gene...

Aloisio, R; Grigorieva, S

2013-01-01T23:59:59.000Z

371

A Method for Constraining Cosmic Magnetic Field Models Using Ultra-High Energy Cosmic Rays: The Field Scan Method  

E-Print Network (OSTI)

The Galactic magnetic field, locally observed to be on the order of a few $\\mu$G, is sufficiently strong to induce deflections in the arrival directions of ultra-high energy cosmic rays. We present a method that establishes measures of self-consistency for hypothesis sets comprised of cosmic magnetic field models and ultra-high energy cosmic ray composition and source distributions. The method uses two independent procedures to compare the backtracked velocity vectors outside the magnetic field model to the distribution of backtracked velocity directions of many isotropic observations with the same primary energies. This allows for an estimate of the statistical consistency between the observed data and simulated isotropic observations. Inconsistency with the isotropic expectation of source correlation in both procedures is interpreted as the hypothesis set providing a self-consistent description of GMF and UHECR properties for the cosmic ray observations.

Michael S. Sutherland; Brian M. Baughman; James J. Beatty

2012-07-06T23:59:59.000Z

372

Detection of ultra high energy neutrinos with an underwater very large volume array of acoustic sensors: A simulation study  

E-Print Network (OSTI)

This thesis investigates the detection of ultra high energy (E > 1 EeV) cosmic neutrinos using acoustic sensors immersed in water. The method is based on the thermoacoustic model describing the production of microsecond bipolar acoustic pulses by neutrino-induced particle cascades. These cascades locally heat the medium which leads to rapid expansion and a short sonic pulse detectable in water with hydrophones over distances of several kilometres. This makes acoustic detection an approach complementary to todays optical Cerenkov and radio Cerenkov detectors, and could help to reduce the respective systematic uncertainties. In this work a complete simulation / reconstruction chain for a submarine acoustic neutrino telescope is developed, and the sensitivity of such a detector to a diffuse flux of ultra highenergy cosmic neutrinos is estimated.

Timo Karg

2006-08-15T23:59:59.000Z

373

Surface Studies of Ultra Strength Drilling Steel after Corrosion Fatigue in Simulated Sour Environment  

Science Conference Proceedings (OSTI)

The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -}, HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the notch in the solution at 20 C. Accumulation of the corrosion products is visible along the crack. The EDX chemical analysis near the crack tip found iron, sulfur and oxygen in the passive layer. The surface of the sample after the fatigue test in the sour environment at 85{sup o}, Fig. 2, C looks different from that fatigued surface at 20 C. The crack propagates across the passive film that covers the surface fairly uniformly. Some spallation of the passive film is observed near the notch. The EDX chemical analysis of the passive film near the crack tip identified mainly iron, carbon and oxygen. It appears that temperature plays a very important role in formation of the passive film. This may be associated with different solubility of H{sub 2}S in the solution, which will be further studied.

M. Ziomek-Moroz; J.A. Hawk; R. Thodla; F. Gui

2012-05-06T23:59:59.000Z

374

Surface Studies of Ultra Strength Drilling Steel after Corrosion Fatigue in Simulated Sour Environment  

SciTech Connect

The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -}, HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the notch in the solution at 20 C. Accumulation of the corrosion products is visible along the crack. The EDX chemical analysis near the crack tip found iron, sulfur and oxygen in the passive layer. The surface of the sample after the fatigue test in the sour environment at 85{sup o}, Fig. 2, C looks different from that fatigued surface at 20 C. The crack propagates across the passive film that covers the surface fairly uniformly. Some spallation of the passive film is observed near the notch. The EDX chemical analysis of the passive film near the crack tip identified mainly iron, carbon and oxygen. It appears that temperature plays a very important role in formation of the passive film. This may be associated with different solubility of H{sub 2}S in the solution, which will be further studied.

M. Ziomek-Moroz; J.A. Hawk; R. Thodla; F. Gui

2012-05-06T23:59:59.000Z

375

Kolmogorov-Smirnov test as a tool to study the distribution of ultra-high energy cosmic ray sources  

E-Print Network (OSTI)

We analyze in detail the two-dimensional Kolmogorov-Smirnov test as a tool to learn about the distribution of the sources of the ultra-high energy cosmic rays. We confront in particular models based on AGN observed in X rays, on galaxies observed in HI and isotropic distributions, discussing how this method can be used not only to reject isotropy but also to support or reject specific source models, extending results obtained recently in the literature.

Diego Harari; Silvia Mollerach; Esteban Roulet

2008-10-31T23:59:59.000Z

376

SiO2 aerogel ultra low k dielectric patterning using different hard mask concepts and stripping processes  

Science Conference Proceedings (OSTI)

The patterning of porous SiO"2 aerogel as ultra low k dielectric has been investigated. Three different concepts were examined to etch this material without damage and to finally integrate it into a copper damascene metallization. Oxygen containing etching ... Keywords: Dielectric thin films, H2/N2 strip, Integrated circuit interconnections, Low dielectric constant, Plasma etching, Porous materials, SiO2 aerogel

F. Blaschta; K. Schulze; S. E. Schulz; T. Gessner

2004-10-01T23:59:59.000Z

377

Engineering and Economic Evaluation of 1300F Series Ultra-Supercritical Pulverized Coal Power Plants: Phase 1  

Science Conference Proceedings (OSTI)

The strategy for lowering the cost of CO2 capture from coal-based power plants includes raising generating efficiency. For pulverized coal (PC) plants this means progressing to ultra-supercritical (USC) steam conditions, arbitrarily defined as having temperatures above 593C (1100F). Currently, USC steam temperatures are limited to approximately 627C (1160F) by the use of ferritic steels, the most advanced commercially available steels. To go to higher temperatures, high-nickel alloys must be used, and th...

2008-09-30T23:59:59.000Z

378

Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves  

SciTech Connect

The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10{sup 18}W/cm{sup 2}) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.

Rax, J.M.

1992-04-01T23:59:59.000Z

379

Layered ultra-thin coherent structures used as electrical resistors having low-temperature coefficient of resistivity  

DOE Patents (OSTI)

A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

Werner, T.R.; Falco, C.M.; Schuller, I.K.

1982-08-31T23:59:59.000Z

380

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

382

Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations  

SciTech Connect

This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

Dr. Pavel V. Tsvetkov

2009-05-20T23:59:59.000Z

383

Means and method for characterizing high power, ultra short laser pulses in a real time, on line manner  

DOE Patents (OSTI)

An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90[degree] angle of incidence. 8 figures.

Veligdan, J.T.

1994-03-08T23:59:59.000Z

384

Development of Ultra High Gradient and High Q{sub 0} Superconducting Radio Frequency Cavities  

SciTech Connect

We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q{sub 0} superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q{sub 0} of 10{sup 10} at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q{sub 0} of 2?10{sup 10} at 2K.

Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Follkie, James E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Harris, Teena M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kushnick, Peter W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Machie, Danny [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Martin, Robert E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Perry, Era A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Slack, Gary L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Williams, R. S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Adolphsen, C. [SLAC, Menlo Park, California, (United States); Li, Z. [SLAC, Menlo Park, California, (United States); Hao, J. K. [Peking University, Beijing (China); Li, Y. M. [Peking University, Beijing (China); Liu, K. X. [Peking University, Beijing (China)

2013-06-01T23:59:59.000Z

385

Application of the Eigen-Emittance Concept to Design Ultra-Bright Electron Beams  

SciTech Connect

Using correlations at the cathode to tailor a beam's eigen-emittances is a recent concept made useful by the symplectic nature of Hamiltonian systems such as beams in accelerators. While introducing correlations does not change the overall 6-dimensional phase space volume, it can change the partitioning of this volume into the longitudinal and two transverse emittances, which become these eigen-emittances if all the initial correlations are unwound and removed. In principle, this technique can be used to generate beams with highly asymmetric emittances, such as those needed for the next generation of very hard X-ray free-electron lasers. This approach is based on linear correlations, and its applicability will be limited by the magnitude of nonlinear effects in photoinjectors which will lead to mixing in phase space that cannot be unwound downstream. Here, we review the eigen-emittance concept and present a linear eigen-emittance design leading to a highly partitioned, and transverse ultra-bright, electron beam. We also present numerical tools to examine the evolution of the eigen-emittances in realistic accelerator structures and results indicating how much partitioning is practical.

Duffy, Leanne D. [Los Alamos National Laboratory; Bishofberger, Kip A. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory; Dragt, Alex [U. Maryland; Russell, Steven J. [Los Alamos National Laboratory; Ryne, Robert D. [LBNL; Yampolsky, Nikolai A. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

386

A Variable, Ultra-Short Pathlength Solution Cell for XAFS Transmission Spectroscopy of the Light Elements  

SciTech Connect

We describe an x-ray absorption spectroscopy (XAS) cell that is suitable for solution-phase studies of the light elements in the series from Na+ and Ca2+. This ultra-short pathlength cell has a pathlength that can be remotely adjusted using a miniature stepper-motor drive and thereby readily provides transmission pathlengths in the range from submicron to several hundred microns. The flexibility to vary the pathlength enables acquisition of high-quality XAS spectra and also allows one to check for potential distortions in the spectra from thickness effects. The primary components are mostly commercially available optical parts. The performance of this device is demonstrated at the Cl K-edge (2.8 keV) for several different aqueous Cl- solutions. This work was supported by the US Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle.

Fulton, John L.; Balasubramanian, Mahalingam; Pham, Van Thai; Deverman, George S.

2012-11-01T23:59:59.000Z

387

Double-slit vacuum polarisation effects in ultra-intense laser fields  

E-Print Network (OSTI)

The influence of the strong laser-driven vacuum on a propagating electromagnetic probe wave has been studied in detail. We investigate two scenarios comprising a focused probe laser beam passing through a region of vacuum polarised by an ultra-intense laser field. By splitting this strong field into two, separated, monochromatic Gaussian pulses counter-propagating in a plane perpendicular to the probe field axis, we demonstrate a leading order light-by-light diffraction effect that generates an interference pattern reminiscent of the classic double-slit experiment. We calculate the total number of probe photons diffracted as well as the number diffracted into regions where the vacuum polarisation signal is higher than the probe background. In addition, we calculate the induced ellipticity and polarisation rotation in the probe beam and show how, in the realistic situation in which the centres of the two strong fields are not exactly aligned, certain ranges of beam separation and observation distance may actually lead to an increase over the idealised case of a single strong laser beam.

B. King; A. Di Piazza; C. H. Keitel

2013-01-29T23:59:59.000Z

388

Ultra-high speed permanent magnet axial gap alternator with multiple stators  

DOE Patents (OSTI)

An ultra-high speed, axial gap alternator that can provide an output to a plurality of loads, the alternator providing magnetic isolation such that operating conditions in one load will not affect operating conditions of another load. This improved alternator uses a rotor member disposed between a pair of stator members, with magnets disposed in each of the rotor member surfaces facing the stator members. The magnets in one surface of the rotor member, which alternate in polarity, are isolated from the magnets in the other surface of the rotor member by a disk of magnetic material disposed between the two sets of magents. In the preferred embodiment, this disk of magnetic material is laminated between two layers of non-magnetic material that support the magnets, and the magnetic material has a peripheral rim that extends to both surfaces of the rotor member to enhance the structural integrity. The stator members are substantially conventional in construction in that equally-spaced and radially-oriented slots are provided, and winding members are laid in these slots. A unit with multiple rotor members and stator members is also described.

Hawsey, Robert A. (Oak Ridge, TN); Bailey, J. Milton (Knoxville, TN)

1991-01-01T23:59:59.000Z

389

High-resolution bent-crystal spectrometer for the ultra-soft x-ray region  

SciTech Connect

A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 /angstrom/. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda/sub 0/ = 8/angstrom/. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic. 43 refs., 23 figs.

Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.; Hulse, R.A.; Walling, R.S.

1988-10-01T23:59:59.000Z

390

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design  

DOE Green Energy (OSTI)

The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine, and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1995-02-01T23:59:59.000Z

391

Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources  

E-Print Network (OSTI)

We investigate the possibility that near future observations of ultra-high-energy cosmic rays (UHECRs) can unveil their local source distribution, which reflects the observed local structures if their origins are astrophysical objects. In order to discuss this possibility, we calculate the arrival distribution of UHE protons taking into account their propagation process in intergalactic space i.e. energy losses and deflections by extragalactic magnetic field (EGMF). For a realistic simulation, we construct and adopt a model of a structured EGMF and UHECR source distribution, which reproduce the local structures actually observed around the Milky Way. The arrival distribution is compared statistically to their source distribution using correlation coefficient. We specially find that UHECRs above $10^{19.8}$eV are best indicators to decipher their source distribution within 100 Mpc, and detection of about 500 events on all the sky allows us to unveil the local structure of UHE universe for plausible EGMF strength and the source number density. This number of events can be detected by five years observation by Pierre Auger Observatory.

Hajime Takami; Katsuhiko Sato

2007-10-03T23:59:59.000Z

392

Implications to Sources of Ultra-high-energy Cosmic Rays from their Arrival Distribution  

E-Print Network (OSTI)

We estimate the local number density of sources of ultra-high-energy cosmic rays (UHECRs) based on the statistical features of their arrival direction distribution. We calculate the arrival distributions of protons above $10^{19}$ eV taking into account their propagation process in the Galactic magnetic field and a structured intergalactic magnetic field, and statistically compare those with the observational result of the Pierre Auger Observatory. The anisotropy in the arrival distribution at the highest energies enables us to estimate the number density of UHECR sources as $\\sim 10^{-4} {\\rm Mpc}^{-3}$ assuming the persistent activity of UHECR sources. We compare the estimated number density of UHECR sources with the number densities of known astrophysical objects. This estimated number density is consistent with the number density of Fanaroff-Reily I galaxies. We also discuss the reproducability of the observed {\\it isotropy} in the arrival distribution above $10^{19}$ eV. We find that the estimated source model cannot reproduce the observed isotropy. However, the observed isotropy can be reproduced with the number density of $10^{-2}$-$10^{-3} {\\rm Mpc}^{-3}$. This fact indicates the existence of UHECR sources with a maximum acceleration energy of $\\sim 10^{19}$ eV whose number density is an order of magnitude more than that injecting the highest energy cosmic rays.

Hajime Takami; Katsuhiko Sato

2008-07-22T23:59:59.000Z

393

Investigation of the State and Uses of Ultra-Wide-Band Radio-Frequency Identification Technology  

SciTech Connect

Radio-frequency identification (RFID) technology has revolutionized the concept of asset tracking. By affixing an RFID tag to a valued asset, one can track the item throughout any facility where RIFD readers are in place, thereby alerting inspectors to theft, misuse, and misplacement of the tracked item. While not yet implemented for tracking very high value assets, RFID technology is already widely used in many industries as the standard for asset tracking. A subset of RFID technology exists called Ultra-Wide-Band (UWB) RFID. While traditional (sometimes called narrow-band) RFID technology transmits a continuous sine-wave signal of a narrow frequency range, UWB technology works by transmitting signals as short pulses of a broad frequency range. This improves performance in several areas, namely, range, precision, and accuracy of motion detection. Because of the nature of the technology, it also performs well in close proximity to metal, which sets it apart from traditional RFID. The purpose of this paper is to investigate the current state of UWB RFID technology and research the areas where it already is being used. This is accomplished through study of publicly known uses of the technology as well as personal exploration of RFID hardware and software. This paper presents the findings in a general manner to facilitate their usefulness for diverse applications.

Hickerson, Jonathan W [ORNL; Younkin, James R [ORNL

2010-01-01T23:59:59.000Z

394

COST-EFFECTIVE CONTROL OF NOX WITH INTEGRATED ULTRA LOW-NOX BURNERS AND SNCR  

Science Conference Proceedings (OSTI)

The objective of this project is to develop an environmentally acceptable and cost-effective NO{sub x} control system that can achieve less than 0.15 lb NO{sub x}/10{sup 6} Btu for a wide range of coal-burning commercial boilers. The system will be comprised of an ultra low-NO{sub x} PC burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. In addition to the above stated NO{sub x} limit of 0.15 lb NO{sub x}/10{sup 6} Btu, ammonia (NH{sub 3}) slip levels will be targeted below 5 ppmV for commercial units. Testing will be performed in the 100 million Btu/hr Clean Environment Development Facility (CEDF) in Alliance, Ohio. Finally, by amendment action, a limited mercury measurement campaign was conducted to determine if the partitioning and speciation of mercury in the flue gas from a Powder River Basin coal is affected by the addition of Chlorides to the combustion zone.

Hamid Farzan

2001-10-01T23:59:59.000Z

395

Variable stars in the ultra-faint dwarf spheroidal galaxy Ursa Major I  

E-Print Network (OSTI)

We have performed the first study of the variable star population of Ursa Major I (UMa I), an ultra-faint dwarf satellite recently discovered around the Milky Way by the Sloan Digital Sky Survey. Combining time series observations in the B and V bands from four different telescopes, we have identified seven RR Lyrae stars in UMa I, of which five are fundamental-mode (RRab) and two are first-overtone pulsators (RRc). Our V, B-V color-magnitude diagram of UMa I reaches V~23 mag (at a signal-to-noise ratio of ~ 6) and shows features typical of a single old stellar population. The mean pulsation period of the RRab stars = 0.628, {\\sigma} = 0.071 days (or = 0.599, {\\sigma} = 0.032 days, if V4, the longest period and brightest variable, is discarded) and the position on the period-amplitude diagram suggest an Oosterhoff-intermediate classification for the galaxy. The RR Lyrae stars trace the galaxy horizontal branch at an average apparent magnitude of = 20.43 +/- 0.02 mag (average on 6 stars and discarding V4), ...

Garofalo, Alessia; Clementini, Gisella; Ripepi, Vincenzo; Dall'Ora, Massimo; Moretti, Maria Ida; Coppola, Giuseppina; Musella, Ilaria; Marconi, Marcella

2013-01-01T23:59:59.000Z

396

Simulation of Ultra-High Energy Photon Propagation in the Geomagnetic Field  

E-Print Network (OSTI)

The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. We present a new Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented.

P. Homola; D. Gora; D. Heck; H. Klages; J. Pekala; M. Risse; B. Wilczynska; H. Wilczynski

2003-11-19T23:59:59.000Z

397

Fluidic assembly for an ultra-high-speed chromosome flow sorter  

DOE Patents (OSTI)

A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system, a nozzle with an orifice having a small ratio of length to diameter, and mechanism for vibrating the nozzle along its axis at high frequencies. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separate low pressure reservoirs are transferred into separate high pressure buffer reservoirs through a valve arrangement which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected to high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

Gray, Joe W. (Livermore, CA); Alger, Terry W. (Livermore, CA); Lord, David E. (Livermore, CA)

1982-01-01T23:59:59.000Z

398

High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region  

DOE R&D Accomplishments (OSTI)

A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

1988-10-00T23:59:59.000Z

399

The UCLA/SLAC Ultra-High Gradient Cerenkov Wakefield Accelerator Experiment  

SciTech Connect

An experiment is planned to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range. This new UCLA/SLAC/USC collaboration will take advantage of the unique SLAC FFTB electron beam and its demonstrated ultra-short pulse lengths and high currents (e.g., {delta}{sub z} = 20 {micro}m at Q = 3 nC). The electron beam will be focused down and sent through varying lengths of fused silica capillary tubing with two different sizes: ID = 200 {micro}m/OD = 325 {micro}m and ID = 100 {micro}m/OD = 325 {micro}m. The pulse length of the electron beam will be varied in order to alter the accelerating gradient and probe the breakdown threshold of the dielectric structures. In addition to breakdown studies, we plan to collect and measure coherent Cerenkov radiation emitted from the capillary tube to gain information about the strength of the accelerating fields.

Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; /UCLA; Hogan, M.; Ischebec, R.; Siemann, R.; Walz, D.; /SLAC; Scott, A.; /UC, Santa Barbara; Yoder, R.; /Manhattan Coll., Riverdale

2006-01-25T23:59:59.000Z

400

Are gamma-ray bursts the sources of ultra-high energy cosmic rays?  

E-Print Network (OSTI)

We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.

Philipp Baerwald; Mauricio Bustamante; Walter Winter

2014-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

Science Conference Proceedings (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

402

Breaking the Attosecond, Angstrom and TV/M Field Barriers with Ultra-Fast Electron Beams  

Science Conference Proceedings (OSTI)

Recent initiatives at UCLA concerning ultra-short, GeV electron beam generation have been aimed at achieving sub-fs pulses capable of driving X-ray free-electron lasers (FELs) in single-spike mode. This use of very low Q beams may allow existing FEL injectors to produce few-100 attosecond pulses, with very high brightness. Towards this end, recent experiments at the LCLS have produced {approx}2 fs, 20 pC electron pulses. We discuss here extensions of this work, in which we seek to exploit the beam brightness in FELs, in tandem with new developments in cryogenic undulator technology, to create compact accelerator-undulator systems that can lase below 0.15 {angstrom}, or be used to permit 1.5 {angstrom} operation at 4.5 GeV. In addition, we are now developing experiments which use the present LCLS fs pulses to excite plasma wakefields exceeding 1 TV/m, permitting a table-top TeV accelerator for frontier high energy physics applications.

Rosenzweig, James; Andonian, Gerard; Fukasawa, Atsushi; Hemsing, Erik; Marcus, Gabriel; Marinelli, Agostino; Musumeci, Pietro; O'Shea, Brendan; O'Shea, Finn; Pellegrini, Claudio; Schiller, David; Travish, Gil; /UCLA; Bucksbaum, Philip; Hogan, Mark; Krejcik, Patrick; /SLAC; Ferrario, Massimo; /INFN, Rome; Full, Steven; /Penn State U.; Muggli, Patric; /Southern California U.

2012-06-22T23:59:59.000Z

403

Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report  

DOE Green Energy (OSTI)

The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used to develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.

Dodge, L.; Bourn, G.; Callahan, T.; Grogan, J.; Leone, D.; Naegeli, D.; Shouse, K.; Thring, R.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1998-09-01T23:59:59.000Z

404

A graphite-moderated pulsed spallation ultra-cold neutron source  

E-Print Network (OSTI)

Proposals exist and efforts are under way to construct pulsed spallation ultra-cold neutron (UCN) sources at accelerator laboratories around the world. At the Paul Scherrer Institut (PSI), Switzerland, and at the Los Alamos National Laboratory (LANL), U.S.A., it is planned to use solid deuterium (SD_2) for the UCN production from cold neutrons. The philosophies about how the cold neutrons are obtained are quite different, though. The present proposal describes a third approach which applies a temperature optimized graphite moderator in combination with the SD_2 and qualitatively combines advantages of the different schemes. The scheme described here allows to build a powerful UCN source. Assuming a pulsed 2 mA, 590 MeV proton beam with an average current of 10 microA, one obtains UCN densities in excess of 2000 cm^{-3}, UCN fluxes of about 10^6 cm^{-2} s^{-1}, and total numbers of UCN in excess of 2*10^9 every 800 s.

Klaus Kirch

2001-09-05T23:59:59.000Z

405

Precision Measurement Of The Neutron's Beta Asymmetry Using Ultra-Cold Neutrons  

Science Conference Proceedings (OSTI)

A measurement of A{beta}, the correlation between the electron momentum and neutron (n) spin (the beta asymmetry) in n beta-decay, together with the n lifetime, provides a method for extracting fundamental parameters for the charged-current weak interaction of the nucleon. In particular when combined with decay measurements, one can extract the Vud element of the CKM matrix, a critical element in CKM unitarity tests. By using a new SD2 super-thermal source at LANSCE, large fluxes of UCN (ultra-cold neutrons) are expected for the UCNA project. These UCN will be 100% polarized using a 7 T magnetic field, and directed into the {beta} spectrometer. This approach, together with an expected large reduction in backgrounds, will result in an order of magnitude reduction in the critical systematic corrections associated with current n {beta}-asymmetry measurements. This paper will give an overview of the UCNA A{beta} measurement as well as an update on the status of the experiment.

Makela, M. [Los Alamos National Lab., P.O. Box 1663, Los Alamos, NM 87545 (United States); Back, H. O. [North Carolina State University Raleigh, NC 27695 (United States); Melconian, D. [University of Washington, Department of Physics, Box 351560 Seattle, WA 98195 (United States); Plaster, B. [California Institute of Technology, Kellogg Radiation Lab, Pasadena, CA 91125 (United States)

2006-07-11T23:59:59.000Z

406

TeV Burst of Gamma-Ray Bursts and Ultra High Energy Cosmic Rays  

E-Print Network (OSTI)

Some recent experiments detecting very high energy (VHE) gamma-rays above 10-20 TeV independently reported VHE bursts for some of bright gamma-ray bursts (GRBs). If these signals are truly from GRBs, these GRBs must emit a much larger amount of energy as VHE gamma-rays than in the ordinary photon energy range of GRBs (keV-MeV). We show that such extreme phenomena can be reasonably explained by synchrotron radiation of protons accelerated to \\sim 10^{20-21} eV, which has been predicted by Totani (1998a). Protons seem to carry about (m_p/m_e) times larger energy than electrons, and hence the total energy liberated by one GRB becomes as large as \\sim 10^{56} (\\Delta \\Omega / 4 \\pi) ergs. Therefore a strong beaming of GRB emission is highly likely. Extension of the VHE spectrum beyond 20 TeV gives a nearly model-independent lower limit of the Lorentz factor of GRBs, as $\\gamma \\gtilde 500$. Furthermore, our model gives the correct energy range and time variability of ordinary keV-MeV gamma-rays of GRBs by synchrotron radiation of electrons. Therefore the VHE bursts of GRBs strongly support the hypothesis that ultra high energy cosmic rays observed on the Earth are produced by GRBs.

Tomonori Totani

1998-10-14T23:59:59.000Z

407

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

DOE Green Energy (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

Gerald P. Huffman

2003-03-31T23:59:59.000Z

408

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

DOE Green Energy (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2005-03-31T23:59:59.000Z

409

Atcitty_Ultra-HighSIC_RD100v8.2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

R R & D 1 0 0 * 2 0 1 1 * E N T R Y S U B M I S S I O N 1. DEVELOPER INFORMATION A. Primary submitting organization GeneSiC Semiconductor Inc. Contact Name: Dr. Ranbir Singh Address: 43670 Trade Center Place, Suite 155 City/State: Dulles, VA Zip/Postal Code: 20166 Country: USA Phone: 703-996-8200 x105 Fax: 703-373-6918 Email: ranbir.singh@genesicsemi.com Web URL: www.genesicsemi.com B. Joint submitters Sandia National Laboratories Describe role of joint submitter in development of technology: Reviewing/Mentoring Address: PO Box 5800 MS 0614 City: Albuquerque State: NM Zip/Postal: 87185 Country: USA Web URL: www.sandia.gov Contact Name: Dr. Stanley Atcitty Phone: 505-284-2701 Fax: 505-844-6972 Email: satcitt@sandia.gov ULTRA HIGH VOLTAGE SILICON CARBIDE THYRISTOR 3 S A N D I A N A T I O N A L L

410

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

DOE Green Energy (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2004-03-31T23:59:59.000Z

411

CANDELS Multiwavelength catalogs: Source Identification and Photometry in the CANDELS UKIDSS Ultra-Deep Survey Field  

E-Print Network (OSTI)

We present the multiwavelength - ultraviolet to mid-infrared - catalog of the UKIDSS Ultra-Deep Survey (UDS) field observed as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). Based on publicly available data, the catalog includes: the CANDELS data from the Hubble Space Telescope (near-infrared WFC3 F125W and F160W data and visible ACS F606W and F814W data), u-band data from CFHT/Megacam, B, V, Rc, i' and z' band data from Subaru/Suprime-Cam, Y and Ks band data from VLT/HAWK-I, J, H and K bands data from UKIDSS (Data Release 8), and Spitzer/IRAC data (3.6, 4.5 from SEDS, 5.8 and 8.0um from SpUDS). The present catalog is F160W-selected and contains 35932 sources over an area of 201.7 square arcmin and includes radio and X-ray detected sources and spectroscopic redshifts available for 210 sources.

Galametz, Audrey; Fontana, Adriano; Ferguson, Henry C; Ashby, M L N; Barro, Guillermo; Castellano, Marco; Dahlen, Tomas; Donley, Jennifer L; Faber, Sandy M; Grogin, Norman; Guo, Yicheng; Huang, Kuang-Han; Kocevski, Dale D; Koekemoer, Anton M; Lee, Kyoung-Soo; McGrath, Elizabeth J; Peth, Michael; Willner, S P; Almaini, Omar; Cooper, Michael; Cooray, Asantha Roshan; Conselice, Christopher J; Dickinson, Mark; Dunlop, James S; Fazio, G G; Foucaud, Sebastien; Gardner, Jonathan P; Giavalisco, Mauro; Hathi, N P; Hartley, Will G; Koo, David C; Lai, Kamson; de Mello, Duilia F; McLure, Ross J; Lucas, Ray A; Paris, Diego; Pentericci, Laura; Santini, Paola; Simpson, Chris; Sommariva, Veronica; Targett, Thomas; Weiner, Benjamin J; Wuyts, Stijn

2013-01-01T23:59:59.000Z

412

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

DOE Green Energy (OSTI)

This report describes activities for the sixteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that the vendor for the pressure vessel for above atmospheric testing now plans to deliver it by November 20, 2006 instead of October 20, 2006 as previously reported. MEFOS performed a hazardous operation review of pressurized testing. The current schedule anticipates above atmospheric pressure testing to begin during the week of April 16, 2007. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 3 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2006-09-30T23:59:59.000Z

413

Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project  

DOE Green Energy (OSTI)

The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

Stephen P. Bergin

2006-06-30T23:59:59.000Z

414

The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames  

Science Conference Proceedings (OSTI)

This paper describes a mechanism for the stabilization of ultra lean premixed methane/air flames by pulsed nonequilibrium plasma enhancement. It is shown that the pulsed discharge plasma produces a cool ({proportional_to}500-600 K) stream of relatively stable intermediate species including hydrogen (H{sub 2}) and carbon monoxide (CO), which play a central role in enhancing flame stability. This stream is readily visualized by ultraviolet emission from electronically excited hydroxyl (OH) radicals. The rotational and vibrational temperature of this ''preflame'' are determined from its emission spectrum. Qualitative imaging of the overall flame structure is obtained by planar laser-induced fluorescence measurements of OH. Preflame nitric oxide (NO) concentrations are determined by gas sampling chromatography. A simple numerical model of this plasma enhanced premixed flame is proposed that includes the generation of the preflame through plasma activation, and predicts the formation of a dual flame structure that arises when the preflame serves to pilot the combustion of the surrounding non-activated premixed flow. The calculation represents the plasma through its ability to produce an initial radical yield, which serves as a boundary condition for conventional flame simulations. The simulations also capture the presence of the preflame and the dual flame structure, and predict preflame levels of NO comparable to those measured. A subsequent pseudo-sensitivity analysis of the preflame shows that flame stability is most sensitive to the concentrations of H{sub 2} and CO in the preflame. As a consequence of the role of H{sub 2} and CO in enhancing the flame stability, the blowout limit extensions of methane/air and hydrogen/air mixtures in the absence/presence of a discharge are investigated experimentally. For methane/air mixtures, the blowout limit of the current burner is extended by {proportional_to}10% in the presence of a discharge while comparable studies carried out in lean hydrogen/air flames fail to extend this limit. (author)

Kim, Wookyung; Godfrey Mungal, M.; Cappelli, Mark A. [Mechanical Engineering Department, Stanford University, Bldg. 520, Stanford, CA 94305-3032 (United States)

2010-02-15T23:59:59.000Z

415

2012 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum  

E-Print Network (OSTI)

Message from the Secretary Fueling our Nation's economy by making the most of America's natural gas and oil resources continues to be an important part of our Nation's overall strategy for energy security and a clean energy economy. The Department continues its work toward safe and responsible · development of fossil fuels, while giving American families and communities high confidence that air and water quality, and public health and safety will not be compromised. The EPACT Section 999 program (including the NETL Complementary Research program) coordinates with DOE's ongoing natural gas research and development program within Fossil Energy. The natural gas program is the locus of the Department of Energy's (DOE) natural gas R&D work and is focused on a collaborative interagency effort with the Environmental Protection Agency, and the Department of the Interior. A federal R&D plan is being developed for this collaboration, focusing on high priority recommendations of the Secretary of Energy Advisory Board (SEAB) Natural Gas Subcommittee to safely and prudently develop the Nation's unconventional sale gas and tight oil resources. Each agency will focus on specific core research competencies. In the 2012 Annual Plan, and in light of the interagency collaborative work being carried out in DOE's natural gas R&D program onshore, we will focus on supporting the implementation of the priority collaborative research and development initiative. Offshore, we will deepen the collaboration and coordination with the DOl Bureau of Safety and Environmental Enforcement. A number of initiatives, analyses, and recommendations underpin the 2012 Annual Plan. These include coordination with the high priority work being carried out by DOE, EPA, and DOl related to recommendations from the Secretary of Energy Advisory Board regarding shale gas production, insights from our work with the DOl's Ocean Energy Safety Advisory Committee, recommendations from the DOE Ultra-Deepwater Advisory Committee and recommendations

unknown authors

2012-01-01T23:59:59.000Z

416

Fluidic assembly for an ultra-high-speed chromosome flow sorter  

DOE Patents (OSTI)

A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system of high pressure in the range of 250 to 1000 psi for greater flow velocity, a nozzle with an orifice having a small ratio of length to diameter for laminar flow rates well above the critical Reynolds number for the high flow velocity, and means for vibrating the nozzle along its axis at high frequencies in a range of about 300 kHz to 800 kHz ae described. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separte low pressure reservoirs are transferred into separate high pressure buffer reservoirs through valve means which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected ato high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder for breaking up the coherency of the laser, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

Gray, J.W.; Alger, T.W.; Lord, D.E.

1978-11-26T23:59:59.000Z

417

HOW MANY ULTRA-HIGH ENERGY COSMIC RAYS COULD WE EXPECT FROM CENTAURUS A?  

Science Conference Proceedings (OSTI)

The Pierre Auger Observatory has associated a few ultra-high energy cosmic rays (UHECRs) with the direction of Centaurus A. This source has been deeply studied in radio, infrared, X-ray, and {gamma}-rays (MeV-TeV) because it is the nearest radio-loud active galactic nucleus. Its spectral energy distribution or spectrum shows two main peaks, the low-energy peak, at an energy of 10{sup -2} eV, and the high-energy peak, at about 150 keV. There is also a faint very high energy (VHE; E {>=} 100 GeV) {gamma}-ray emission fully detected by the High Energy Stereoscopic System experiment. In this work, we describe the entire spectrum: the two main peaks with a synchrotron/synchrotron self-Compton model, and the VHE emission with a hadronic model. We consider p{gamma} and pp interactions. For the p{gamma} interaction, we assume that the target photons are those produced at 150 keV in leptonic processes. On the other hand, for the pp interaction we consider as targets the thermal particle densities in the lobes. Requiring a satisfactory description of the spectra at very high energies with p{gamma} interaction, we obtain an excessive luminosity in UHECRs (even exceeding the Eddington luminosity). However, when considering the pp interaction to describe the {gamma}-spectrum, the number of UHECRs obtained is in agreement with Pierre Auger observations. We also calculate the possible neutrino signal from pp interactions on a Km{sup 3} neutrino telescope using Monte Carlo simulations.

Fraija, N.; Gonzalez, M. M.; Perez, M. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.U., A. Postal 70-264, 04510 Mexico D.F. (Mexico); Marinelli, A., E-mail: nifraija@astro.unam.mx, E-mail: magda@astro.unam.mx, E-mail: jguillen@astro.unam.mx, E-mail: antonio.marinelli@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.U., A. Postal 70-264, 04510 Mexico D.F. (Mexico)

2012-07-01T23:59:59.000Z

418

Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection  

DOE Green Energy (OSTI)

In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

Grant, Marion B.

2012-04-30T23:59:59.000Z

419

Harm Reduction Journal BioMed Central  

E-Print Network (OSTI)

Needle and syringe sharing practices of injecting drug users participating in an outreach HIV prevention program in Tehran, Iran: A cross-sectional study

Mohsen Vazirian; Bijan Nassirimanesh; Saman Zamani; Masako Ono; Masahiro Kihara; Shahrzad Mortazavi Ravari; Mohammad Mehdi Gouya

2005-01-01T23:59:59.000Z

420

Harm Reduction Journal BioMed Central  

E-Print Network (OSTI)

Sterile syringe access and disposal among injection drug users newly enrolled in methadone maintenance treatment: a cross-sectional survey

Jennifer Mcneely; Julia H Arnsten; Marc N Gourevitch; Marc N Gourevitch

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Harm Reduction Journal BioMed Central  

E-Print Network (OSTI)

The impact of citrate introduction at UK syringe exchange programmes: a retrospective cohort study in Cheshire and

Merseyside Uk; Caryl M Beynon; Jim Mcveigh; Martin Ch; Michelle Wareing; Mark A Bellis

2007-01-01T23:59:59.000Z

422

Harm Reduction Journal BioMed Central  

E-Print Network (OSTI)

The Washington Needle Depot: fitting healthcare to injection drug users rather than injection drug users to healthcare: moving from a syringe exchange to syringe distribution model

Dan Small; Andrea Glickman; Galen Rigter; Thia Walter; Open Access

2010-01-01T23:59:59.000Z

423

Harm Reduction Journal BioMed Central  

E-Print Network (OSTI)

Vulnerability to HIV infection among sex worker and non-sex worker female injecting drug users in Dhaka, Bangladesh: evidence from the baseline survey of a cohort study

Tasnim Azim; Ezazul I Chowdhury; Masud Reza; Munir Ahmed; Mohammed T Uddin; Repon Khan; Giasuddin Ahmed; Motiur Rahman; Irona Kh; Sharful I Khan; Steffanie A Strathdee Open Access

2006-01-01T23:59:59.000Z

424

Venkat Vishwanath Steve Crusan and Kevin Harms  

E-Print Network (OSTI)

of these. #12;ALCF-1 I/O Infrastructure 2 40K Nodes 160K Cores 0.55 PFlops 640 I/P Compute Resource Eureka Analysis Cluster Storage System ALCF uses the GPFS filesystem for production I Tukey Analysis Cluster Storage System ALCF-2 I/O Infrastructure 1536 GB/s 1536 GB/s Storage System

Kemner, Ken

425

Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals  

Science Conference Proceedings (OSTI)

The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

Nabeel, A.; Khan, T.A.; Sharma, D.K. [Jamia Millia Islamia, New Delhi (India). Dept. of Chemistry

2009-07-01T23:59:59.000Z

426

Ultra-wideband coaxial hybrid coupler for load resilient ion cyclotron range of frequency heating at fusion plasmas  

Science Conference Proceedings (OSTI)

We designed a high power and ultra-wideband two-section 3 dB coaxial hybrid coupler for load resilient ion cyclotron range of frequency heating by configuring asymmetric impedance matching using a three-dimensional simulation code, hfss. By adjusting the characteristic impedances of main and coupled lines of the hybrid coupler, we realized that the bandwidth of the proposed circuit is not only wider than that of a conventional three-section coupler, but also that the bandwidth is almost twice as wide compared to the conventional two-section hybrid coupler while maintaining the identical overall size.

Kim, H. J.; Bae, Y. S.; Yang, H. L.; Kwak, J.-G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Wang, S. J. [Korea Atomic Energy Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, B. K.; Choi, J. J. [Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of)

2012-06-25T23:59:59.000Z

427

Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field  

SciTech Connect

Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

2008-07-15T23:59:59.000Z

428

Ultra High p-doping Material Research for GaN Based Light Emitters  

Science Conference Proceedings (OSTI)

The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

Vladimir Dmitriev

2007-06-30T23:59:59.000Z

429

Final Report for Project ``Theory of ultra-relativistic heavy-ion collisions''  

SciTech Connect

In the course of this project the Ohio State University group led by the PI, Professor Ulrich Heinz, developed a comprehensive theoretical picture of the dynamical evolution of ultra-relativistic heavy-ion collisions and of the numerous experimental observables that can be used to diagnose the evolving and short-lived hot and dense fireball created in such collisions. Starting from a qualitative understanding of the main features based on earlier research during the last decade of the twentieth century on collisions at lower energies, the group exploited newly developed theoretical tools and the stream of new high-quality data from the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (which started operations in the summer of the year 2000) to arrive at an increasingly quantitative description of the experimentally observed phenomena. Work done at Ohio State University (OSU) was instrumental in the discovery during the years 2001-2003 that quark-gluon plasma (QGP) created in nuclear collisions at RHIC behaves like an almost perfect liquid with minimal viscosity. The tool of relativistic fluid dynamics for viscous liquids developed at OSU in the years 2005-2007 opened the possibility to quantitatively determine the value of the QGP viscosity empirically from experimental measurements of the collective flow patterns established in the collisions. A first quantitative extraction of the QGP shear viscosity, with controlled theoretical uncertainty estimates, was achieved during the last year of this project in 2010. OSU has paved the way for a transition of the field of relativistic heavy-ion physics from a qualitative discovery stage to a new stage of quantitative precision in the description of quark-gluon plasma properties. To gain confidence in the precision of our theoretical understanding of quark-gluon plasma dynamics, one must test it on a large set of experimentally measured observables. This achievement report demonstrates that we have, at different times, systematically investigated both so-called ``soft" and ``hard, penetrating" probes of the fireball medium: hadron yields and momentum spectra and their anisotropies, two-particle momentum correlations, high-energy partons fragmenting into jets, heavy quarks and heavy-flavor mesons, and electromagnetic probes (photons and dileptons). Our strongest emphasis, and our most significant achievements, has, however, always remained on understanding the bulk behavior of the heavy-ion fireball medium, for which soft probes provide the most abundantly available data and thus the most stringent constraints.

Ulrich W. Heinz

2012-11-09T23:59:59.000Z

430

Extension-Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect

The purpose of this project is to develop a cost effective technology for upgrading coal mine methane to natural gas pipeline quality. Nitrogen rejection is the most costly step with conventional technology and emerging competitive technology. Significant cost reductions to this step will allow for the cost effective capture and utilization of this otherwise potent greenhouse gas. The proposed approach is based on the microchannel technology platform that Velocys is developing to commercialize compact and cost efficient chemical processing technology. For this application, ultra fast thermal swing adsorption is enabled by the very high rates of heat transfer enabled by microchannels. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. Initial performance results for the Velocys TSA technology were promising. Velocys has also completed initial discussions with several prospective users of the technology and received positive market feedback. Some of the factors that create an attractive opportunity for the technology include the sustained high prices for natural gas, the emerging system of carbon credits, and continued focus on reducing coal mine emissions. While market interest has been confirmed, improvements and optimization are necessary to move the technology to a point that will enable commercial investment in the technology scale-up. In particular, prospective industry collaborators are interested in seeing validation that the technology can meet real-world conditions, including handling impurities, meeting purity and recovery targets (which requires low dead volume), and meeting cost and manufacturability goals. In this quarter, the system adsorbent has been selected--a granular mesoporous carbon. An overall change to the system to move to a phase change fluid for heating and cooling has been projected to significantly reduce the thermal lag of adsorption and desorption unit. Modeling work using the properties of powder carbon has shown that the overall system performance can be achieved, thus negating the need for structured adsorbents. A revised testing protocol for powder adsorbents has been initiated.

Anna Lee Tonkovich

2006-04-01T23:59:59.000Z

431

Ultra-Clean Diesel Fuel: U.S. Production and Distribution Capability  

DOE Green Energy (OSTI)

Diesel engines have potential for use in a large number of future vehicles in the US. However, to achieve this potential, proponents of diesel engine technologies must solve diesel's pollution problems, including objectionable levels of emissions of particulates and oxides of nitrogen. To meet emissions reduction goals, diesel fuel quality improvements could enable diesel engines with advanced aftertreatment systems to achieve the necessary emissions performance. The diesel fuel would most likely have to be reformulated to be as clean as low sulfur gasoline. This report examines the small- and large-market extremes for introduction of ultra-clean diesel fuel in the US and concludes that petroleum refinery and distribution systems could produce adequate low sulfur blendstocks to satisfy small markets for low sulfur (30 parts per million) light duty diesel fuel, and deliver that fuel to retail consumers with only modest changes. Initially, there could be poor economic returns on under-utilized infrastructure investments. Subsequent growth in the diesel fuel market could be inconsistent with U.S. refinery configurations and economics. As diesel fuel volumes grow, the manufacturing cost may increase, depending upon how hydrodesulfurization technologies develop, whether significantly greater volumes of the diesel pool have to be desulfurized, to what degree other properties like aromatic levels have to be changed, and whether competitive fuel production technologies become economic. Low sulfur (10 parts per million) and low aromatics (10 volume percent) diesel fuel for the total market could require desulfurization, dearomatization, and hydrogen production investments amounting to a third of current refinery market value. The refinery capital cost component alone would be 3 cents per gallon of diesel fuel. Outside of refineries, the gas-to-liquids (GTL) plant investment cost would be 3 to 6 cents per gallon. With total projected investments of $11.8 billion (6 to 9 cents per gallon) for the U.S. Gulf Coast alone, financing, engineering, and construction and material availability are major issues that must be addressed, for both refinery and GTL investments.

Hadder, G.R.

2001-02-15T23:59:59.000Z

432

The ultra-high lime with aluminum process for removing chloride from recirculating cooling water  

E-Print Network (OSTI)

Chloride is a deleterious ionic species in cooling water systems because it is important in promoting corrosion. Chloride can be removed from cooling water by precipitation as calcium chloroaluminate using ultra-high lime with aluminum process (UHLA). The research program was conducted to study equilibrium characteristics and kinetics of chloride removal by UHLA process, study interactions between chloride and sulfate or silica, and develop a model for multicomponent removal by UHLA. Kinetics of chloride removal with UHLA was investigated. Chloride removal was found to be fast and therefore, removal kinetics should not be a limitation to applying the UHLA process. Equilibrium characteristics of chloride removal with UHLA were characterized. Good chloride removal was obtained at reasonable ranges of lime and aluminum doses. However, the stoichiometry of chloride removal with UHLA deviated from the theoretical stoichiometry of calcium chloroaluminate precipitation. Equilibrium modeling of experimental data and XRD analysis of precipitated solids indicated that this deviation was due to the formation of other solid phases such as tricalcium hydroxyaluminate and tetracalcium hydroxyaluminate. Effect of pH on chloride removal was characterized. Optimum pH for maximum chloride removal was pH 12 ± 0.2. Results of equilibrium experiments at different temperatures indicated that final chloride concentrations slightly increased when water temperature increased at temperatures below 40oC. However, at temperatures above 40oC, chloride concentration substantially increased with increasing water temperature. An equilibrium model was developed to describe chemical behavior of chloride removal from recycled cooling water using UHLA. Formation of a solid solution of calcium chloroaluminate, tricalcium hydroxyaluminate, and tetracalcium hydroxyaluminate was found to be the best mechanism to describe the chemical behavior of chloride removal with UHLA. Results of experiments that studied interactions between chloride and sulfate indicated that sulfate is preferentially removed over chloride. Final chloride concentration increased with increasing initial sulfate concentration. Silica was found to have only a small effect on chloride removal. The equilibrium model was modified in order to include sulfate and silica reactions along with chloride in UHLA process and it was able to accurately predict the chemical behavior of simultaneous removal of chloride, sulfate, and silica with UHLA.

Abdel-wahab, Ahmed Ibraheem Ali

2005-05-01T23:59:59.000Z

433

Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)  

Science Conference Proceedings (OSTI)

This report summarizes work carried out by the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Team for the period of January 1, 2011 through June 30, 2011. It discusses highlights, overall progress, period goals, and collaborations and lists papers and presentations. To learn more about our project, please visit our UV-CDAT website (URL: http://uv-cdat.org). This report will be forwarded to the program manager for the Department of Energy (DOE) Office of Biological and Environmental Research (BER), national and international collaborators and stakeholders, and to researchers working on a wide range of other climate model, reanalysis, and observation evaluation activities. The UV-CDAT executive committee consists of Dean N. Williams of Lawrence Livermore National Laboratory (LLNL); Dave Bader and Galen Shipman of Oak Ridge National Laboratory (ORNL); Phil Jones and James Ahrens of Los Alamos National Laboratory (LANL), Claudio Silva of Polytechnic Institute of New York University (NYU-Poly); and Berk Geveci of Kitware, Inc. The UV-CDAT team consists of researchers and scientists with diverse domain knowledge whose home institutions also include the National Aeronautics and Space Administration (NASA) and the University of Utah. All work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Working directly with BER climate science analysis projects, this consortium will develop and deploy data and computational resources useful to a wide variety of stakeholders, including scientists, policymakers, and the general public. Members of this consortium already collaborate with other institutions and universities in researching data discovery, management, visualization, workflow analysis, and provenance. The UV-CDAT team will address the following high-level visualization requirements: (1) Alternative parallel streaming statistics and analysis pipelines - Data parallelism, Task parallelism, Visualization parallelism; (2) Optimized parallel input/output (I/O); (3) Remote interactive execution; (4) Advanced intercomparison visualization; (5) Data provenance processing and capture; and (6) Interfaces for scientists - Workflow data analysis and visualization construction tools, and Visualization interfaces.

Williams, D N

2011-07-20T23:59:59.000Z

434

Estimation of Cosmic Induced Contamination in Ultra-low Background Detector Materials  

SciTech Connect

Executive Summary This document presents the result of investigating a way to reliably determine cosmic induced backgrounds for ultra-low background materials. In particular, it focuses on those radioisotopes produced by the interactions with cosmic ray particles in the detector materials that act as a background for experiments looking for neutrinoless double beta decay. This investigation is motivated by the desire to determine background contributions from cosmic ray activation of the electroformed copper that is being used in the construction of the MAJORANA DEMONSTRATOR. The most important radioisotope produced in copper that contributes to the background budget is 60Co, which has the potential to deposit energy in the region of interest of this experiment. Cobalt-60 is produced via cosmic ray neutron collisions in the copper. This investigation aims to provide a method for determining whether or not the copper has been exposed to cosmic radiation beyond the threshold which the Majorana Project has established as the maximum exposure. This threshold is set by the Project as the expected contribution of this source of background to the overall background budget. One way to estimate cosmic ray neutron exposure of materials on the surface of the Earth is to relate it to the cosmic ray muon exposure. Muons are minimum-ionizing particles and the available technologies to detect muons are easier to implement than those to detect neutrons. We present the results of using a portable, ruggedized muon detector, the µ-Witness made by our research group, for determination of muon exposure of materials for the MAJORANA DEMONSTRATOR. From the muon flux measurement, this report presents a method to estimate equivalent sea-level exposure, and then infer the neutron exposure of the tracked material and thus the cosmogenic activation of the copper. This report combines measurements of the muon flux taken by the µ-Witness detector with Geant4 simulations in order to assure our understanding of the µ-Witness prototype. As a proof of concept, we present the results of using this detector with electroformed copper during its transport from Pacific Northwest National Laboratory, where the copper is grown, to the underground lab in Lead, South Dakota, where the experiment is being deployed. The development of a code to be used with the Majorana parts tracking database, designed to aid in estimating the cosmogenic activation, is also presented.

Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Berguson, Timothy J.; Greene, Austen T.

2012-08-01T23:59:59.000Z

435

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

DOE Green Energy (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure hydrogen and carbon nanotubes using binary Fe-based catalysts containing Mo, Ni, or Pd in a single step non-oxidative reaction. (7) Partial dehydrogenation of liquid hydrocarbons (cyclohexane and methyl cyclohexane) has been performed using catalysts consisting of Pt and other metals on stacked-cone carbon nanotubes. (8) An understanding of the catalytic reaction mechanisms of the catalysts developed in the CFFS C1 program is being achieved by structural characterization using multiple techniques, including XAFS and Moessbauer spectroscopy, XRD, TEM, NMR, ESR, and magnetometry.

Gerald P. Huffman

2003-09-30T23:59:59.000Z

436

On the Possible Association of Ultra High Energy Cosmic Rays with Nearby Active Galaxies  

SciTech Connect

Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of cosmic rays (CRs) with energies >57 EeV that suggests a correlation with the positions of active galactic nuclei (AGN) located within {approx}75 Mpc. However, this analysis does not take into account AGN morphology. A detailed study of the sample of AGN whose positions correlate with the CR events shows that most of them are classified as Seyfert 2 and low-ionization nuclear emission-line region (LINER) galaxies which do not differ from other local AGN of the same types. Therefore, the claimed correlation between the CR events observed by the Pierre Auger Observatory and local active galaxies should be considered as resulting from a chance coincidence, if the production of the highest energy CRs is not episodic in nature, but operates in a single object on long ({ge} Myr) timescales. Additionally, most of the selected sources do not show significant jet activity, and hence--in the framework of the jet paradigm--there are no reasons for expecting them to accelerate CRs up to the highest energies, {approx}10{sup 20} eV, at all. If the extragalactic magnetic fields and the sources of these CRs are coupled with matter, it is possible that the deflection angle is larger than expected in the case of a uniform source distribution due to effectively larger fields. A future analysis has to take into account AGN morphology and may yield a correlation with a larger deflection angle and/or more distant sources. We further argue that Cen A alone could be associated with at least 4 events due to its large radio extent, and Cen B can be associated with more than 1 event due to its proximity to the Galactic plane and, correspondingly, the stronger Galactic magnetic field the ultra high energy CRs (UHECRs) encounter during propagation. If the UHECRs associated with these events are indeed accelerated by Cen A and Cen B, their deflection angles may provide information on the structure of the magnetic field in the direction of these putative sources. Future -ray observations (by, e.g., Gamma-Ray Large Area Space Telescope [GLAST], High Energy Stereoscopic System [HESS]) may provide additional clues to the nature of the accelerators of the UHECRs in the local Universe.

Moskalenko, Igor V.; Stawarz, Lukasz; Porter, Troy A.; Cheung, Chi C.

2008-05-14T23:59:59.000Z

437

ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)  

DOE Data Explorer (OSTI)

Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

Jason Tomlinson; Mike Jensen

438

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

DOE Green Energy (OSTI)

Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe-M (M=Ni, Mo, Pd) catalysts exhibit excellent activity for dehydrogenation of gaseous alkanes, yielding pure hydrogen and carbon nanotubes in one reaction. A fluidized-bed/fixed-bed methane reactor was developed for continuous hydrogen and nanotube production. (6) A process for co-production of hydrogen and methyl formate from methanol has been developed. (7) Pt nanoparticles on stacked-cone carbon nanotubes easily strip hydrogen from liquids such as cyclohexane, methylcyclohexane, tetralin and decalin, leaving rechargeable aromatic phases. (8) Hydrogen volume percentages produced during reforming of methanol in supercritical water in the output stream are {approx}98%, while CO and CO2 percentages are <2 %.

Gerald P. Huffman

2006-03-30T23:59:59.000Z

439

Extension-Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

Science Conference Proceedings (OSTI)

The purpose of this project is to develop a cost effective technology for upgrading coal mine methane to natural gas pipeline quality. Nitrogen rejection is the most costly step with conventional technology and emerging competitive technology. Significant cost reductions to this step will allow for the cost effective capture and utilization of this otherwise potent greenhouse gas. The proposed approach is based on the microchannel technology platform that Velocys is developing to commercialize compact and cost efficient chemical processing technology. For this application, ultra fast thermal swing adsorption is enabled by the very high rates of heat transfer enabled by microchannels. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. Initial performance results for the Velocys TSA technology were promising. Velocys has also completed initial discussions with several prospective users of the technology and received positive market feedback. Some of the factors that create an attractive opportunity for the technology include the sustained high prices for natural gas, the emerging system of carbon credits, and continued focus on reducing coal mine emissions. While market interest has been confirmed, improvements and optimization are necessary to move the technology to a point that will enable commercial investment in the technology scale-up. In particular, prospective industry collaborators are interested in seeing validation that the technology can meet real-world conditions, including handling impurities, meeting purity and recovery targets (which requires low dead volume), and meeting cost and manufacturability goals.

Anna Lee Tonkovich

2005-10-01T23:59:59.000Z

440

ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)  

SciTech Connect

Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

Jason Tomlinson; Mike Jensen

2012-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Digital Pulse-Shape Discrimination Applied to an Ultra-Low-Background Gas-Proportional Counting System: First Results  

SciTech Connect

Abstract A new ultra-low-background proportional counter (ULBPC) design was recently developed at Pacific Northwest National Laboratory (PNNL). This design, along with an ultra-low-background counting system (ULBCS) which provides passive and active shielding with radon exclusion, has been developed to complement a new shallow underground laboratory (~30 meters water-equivalent) constructed at PNNL. After these steps to mitigate dominant backgrounds (cosmic rays, external gamma-rays, radioactivity in materials), remaining background events do not exclusively arise from ionization of the proportional counter gas. Digital pulse-shape discrimination (PSD) is thus employed to further improve measurement sensitivity. In this work, a template shape is generated for each individual sample measurement of interest, a "self-calibrating" template. Differences in event topology can also cause differences in pulse shape. In this work, the temporal region analyzed for each event is refined to maximize background discrimination while avoiding unwanted sensitivity to event topology. This digital PSD method is applied to sample and background data, and initial measurement results from a biofuel methane sample are presented in the context of low-background measurements currently being developed.

Aalseth, Craig E.; Day, Anthony R.; Fuller, Erin S.; Hoppe, Eric W.; Keillor, Martin E.; Mace, Emily K.; Myers, A. W.; Overman, Cory T.; Panisko, Mark E.; Seifert, Allen; Warren, Glen A.; Williams, Richard M.

2013-05-01T23:59:59.000Z

442

Proton- and x-ray beams generated by ultra-fast CO(2) lasers for medical applications  

DOE Green Energy (OSTI)

Recent progress in using picosecond CO{sub 2} lasers for Thomson scattering and ion-acceleration experiments underlines their potentials for enabling secondary radiation- and particle-sources. These experiments capitalize on certain advantages of long-wavelength CO{sub 2} lasers, such as higher number of photons per energy unit, and favorable scaling of the electrons ponderomotive energy and critical plasma density. The high-flux x-ray bursts produced by Thomson scattering of the CO{sub 2} laser off a counter-propagating electron beam enabled high-contrast, time-resolved imaging of biological objects in the picosecond time frame. In different experiments, the laser, focused on a hydrogen jet, generated monoenergetic proton beams via the radiation-pressure mechanism. The strong power-scaling of this regime promises realization of proton beams suitable for laser-driven proton cancer therapy after upgrading the CO{sub 2} laser to sub-PW peak power. This planned improvement includes optimizing the 10-{mu}m ultra-short pulse generation, assuring higher amplification in the CO{sub 2} gas under combined isotopic- and power-broadening effects, and shortening the postamplification pulse to a few laser cycles (150-200 fs) via chirping and compression. These developments will move us closer to practical applications of ultra-fast CO{sub 2} lasers in medicine and other areas.

Pogorelsky, I.; Polyanskiy, M.; Yakimenko, V.; Ben-Zvi, I.; Shkolnikov, P. Najmudin, Z.; Palmer, C.A.J.; Dover, N.P.; Oliva, P; Carpinelli, M.

2011-07-01T23:59:59.000Z

443

Ultra-low emissions gas turbine combustion system program. Progress report, July 1, 1993--February 28, 1994  

SciTech Connect

The Santa Barbara County Air Pollution Control District (SBCAPCD) has arranged a consortium to develop ultra-low emissions combustor technology applicable to gas turbines. The goal of the program is to develop and demonstrate a safe, efficient, and cost-effective method to meet a 9 ppmv NO{sub x} emission limit for gas turbines. Currently this emission limit can only be met with the selective catalytic reduction (SCR) technology (a post combustion cleanup process that is capital intensive and maintenance intensive). In coordination with a comprehensive technical advisory committee, SBCAPCD has evaluated different potential low emissions technologies and decided upon a lean premix approach to retrofit existing turbines and to integrate with new engines. This technology will provide a low cost alternative to the expensive controls and will substantially reduce NO{sub x} emissions from gas turbines. The design, fabrication and testing of the ultra-low NO{sub x} combustor system is currently being performed by Allison Gas Turbine Division, General Motors Corporation. This project continues to be overseen by a technical advisory committee to ensure timely and cost-effective product delivery.

Talwar, M.

1994-02-01T23:59:59.000Z

444

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

DOE Green Energy (OSTI)

This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

2005-05-01T23:59:59.000Z

445

Dynamical K edge and line variations in the X-ray spectrum of the ultra-compact binary 4U 0614+091  

E-Print Network (OSTI)

We observed the ultra-compact binary candidate 4U 0614+091 for a total of 200 ks with the high-energy transmission gratings on board the Chandra X-ray Observatory. The source is found at various intensity levels with ...

Schulz, Norbert S.

446

High spectral resolution test and calibration of an ultra-narrowband Faraday anomalous dispersion optical filter for use in daytime mesospheric resonance  

E-Print Network (OSTI)

Fiber Beam(s) 1 Beam 2 Beam 4 Beam 3 Telescope Fig. 1. Optical arrangement of the Faraday filter test the telescope is injected into the lidar receiver optical fiber, and thus to the Faraday filter, following daylight operations with the lidar. Ultra-narrow bandpass filters enable optical observations

Chu, Xinzhao

447

Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries  

SciTech Connect

The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

Atreya, Arvind

2013-04-15T23:59:59.000Z

448

Ultra-Efficient and Power Dense Electric Motors for U. S. Industry  

SciTech Connect

The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commercially viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tes