Powered by Deep Web Technologies
Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ultra Violet Waterworks (UVW)  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794 PREPRINT A Comparison of97l5Ultra Violet

2

Microgap ultra-violet detector  

DOE Patents [OSTI]

A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

Wuest, C.R.; Bionta, R.M.

1994-09-20T23:59:59.000Z

3

Microgap ultra-violet detector  

DOE Patents [OSTI]

A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA)

1994-01-01T23:59:59.000Z

4

High-peak-power surface high-harmonic generation at extreme ultra-violet wavelengths from a tape  

SciTech Connect (OSTI)

Solid-based surface high-harmonic generation from a tape is experimentally studied. By operating at mildly relativistic normalized laser strengths a{sub 0}?0.2, harmonics up to the 17th order are efficiently produced in the coherent wake emission (CWE) regime. CWE pulse properties, such as divergence, energy, conversion efficiency, and spectrum, are investigated for various tape materials and drive laser conditions. A clear correlation between surface roughness and harmonic beam divergence is found. At the measured pulse properties for the 15th harmonic (conversion efficiency ?6.5×10{sup ?7}, divergence ?7?15 mrad), the 100-mJ-level drive laser produces several MWs of extreme ultra-violet pulses. The spooling tape configuration enables multi-Hz operation over thousands of shots, making this source attractive as a seed to the few-Hz laser-plasma-accelerator-driven free-electron laser (FEL). Models indicate that these CWE pulses with MW level powers are sufficient for seed-induced bunching and FEL gain.

Shaw, B. H. [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States) [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States); Applied Science and Technology, University of California, Berkeley, California 94720 (United States); Tilborg, J. van; Sokollik, T.; Schroeder, C. B.; McKinney, W. R.; Artemiev, N. A.; Yashchuk, V. V.; Gullikson, E. M. [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States)] [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States); Leemans, W. P. [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States) [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States); Physics Department, University of California, Berkeley, California 94720 (United States)

2013-07-28T23:59:59.000Z

5

Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications  

SciTech Connect (OSTI)

An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol ethers, and other individual compounds including d-limonene, 1,2,4-trimethylbenzene, and decamethylcyclopentasiloxane. This result implies a reaction efficiency of about 30% per irradiated monolith face, which is in agreement with the maximum efficiency for the system predicted with a simulation model. In these and other experiments, the performance of the system for highly reactive VOCs appeared to be limited by mass transport of reactants to the catalyst surface rather than by photocatalytic activity. Increasing the air flow rate through the UVPCO device decreases the residence time of the air in the monoliths and improves mass transfer to the catalyst surface. The effect of gas velocity was examined in four pairs of experiments in which the air flow rate was varied from approximately 175 m{sup 3}/h to either 300 or 600 m{sup 3}/h. Increased gas velocity caused a decrease in reaction efficiency for nearly all reactive VOCs. For all of the more reactive VOCs, the decrease in performance was less, and often substantially less, than predicted based solely on residence time, again likely due to mass transfer limitations at the low flow rate. The results demonstrate that the UVPCO is capable of achieving high conversion efficiencies for reactive VOCs at air flow rates above the base experimental rate of 175 m{sup 3}/h. The effect of UV power was examined in a series of experiments with the building product mixture in which the number of lamps was varied between nine and three. For the most reactive VOCs in the mixture, the effects of UV power were surprisingly small. Thus, even with only one lamp in each section, there appears to be sufficient photocatalytic activity to decompose most of the mass of reactive VOCs that reach the catalyst surface. For some less reactive VOCs, the trend of decreasing efficiency with decreasing UV intensity was in general agreement with simulation model predictions.

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-10-31T23:59:59.000Z

6

Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements  

SciTech Connect (OSTI)

Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

Niemi, K.; O'Connell, D.; Gans, T. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Oliveira, N. de; Joyeux, D.; Nahon, L. [Synchrotron Soleil, l'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette Cedex (France); Booth, J. P. [Laboratoire de Physique des Plasmas-CNRS, Ecole Polytechnique, 91128 Palaiseau (France)

2013-07-15T23:59:59.000Z

7

Vacuum ultra-violet emission of plasma discharges with high Xe partial pressure using a cathode protective layer with high secondary electron emission  

SciTech Connect (OSTI)

In this work, the mechanism of the vacuum ultra-violet (VUV) emission of plasma discharges, with high Xe partial pressure and high ion-induced secondary electrons emission protective layer, is studied by measuring the VUV light emission directly and comparing it with two-dimensional simulations. From the panel measurement, we find that the high intensity of excimer VUV mainly contributes to the high luminous efficacy of SrCaO-plasma display panels (PDP) at a low sustain voltage. The unchanged Xe excitation efficiency indicates that the electron temperature is not decreased by the high secondary electrons emission protective layer, even though the sustain voltage is much lower. From the two-dimensional simulations, we can find that the ratio of excimer VUV to resonant VUV, which is determined by the collision rate in the discharge, is only significantly affected by the Xe partial pressure, while it is independent of the sustain voltage and the secondary-electrons-emission capability of protective layer. The unchanged average electron energy at the moment when the electric field becomes maximum confirms that the improvement of the VUV production efficiency mainly is attributed to the increase in electron heating efficiency of a PDP with high ion-induced secondary electrons emission protective layer. Combining the experimental and the simulation results, we conclude about the mechanism by which the VUV production is improved for the plasma display panel with a high Xe partial pressure and a cold cathode with high ion-induced secondary electrons emission.

Zhu, Di [School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin (China); Song, Le, E-mail: songle@tju.edu.cn [State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin (China); Zhang, Xiong [School of Electronic Science and Engineering, Southeast University, Nanjing (China); Kajiyama, Hiroshi [Graduate School of Advanced Science of Matter, Hiroshima University, Higashi-hiroshima, Hiroshima (Japan)

2014-02-14T23:59:59.000Z

8

Extreme Ultra-Violet Spectroscopy of the Flaring Solar Chromosphere  

E-Print Network [OSTI]

The extreme ultraviolet portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature and density sensitive line ratios, Doppler shifted emission lines and nonthermal broadening, abundance measurements, differential emission measure profiles, and continuum temperatures and energetics, among others. In this paper I shall review some of the advances made in recent years using these techniques, focusing primarily on studies that have utilized data from Hinode/EIS and SDO/EVE, while also providing some historical background and a summary of future spectroscopic instrumentation.

Milligan, Ryan O

2015-01-01T23:59:59.000Z

9

The ultra-violet spectrum of formaldehyde vapor  

E-Print Network [OSTI]

but with an auxilliary heating coil controlled independently to provide higher local temperatures for generating the formaldehyde gas. Gas pressures near one atmosphere were obtained by a continuous flow process in which formaldehyde was passed through the absorption... the manometer hot. This was necessary to prevent polymer condensation inside the mano? meter. Since formaldehyde gas seems to dissolve in mercury to some extent, it was necessary to calibrate the manometer before and after each experiment. When nitrogen...

Hodges, Sidney Edward

1958-01-01T23:59:59.000Z

10

Curriculum Vitae Kyle E. Harms 1 KYLE EDWARD HARMS  

E-Print Network [OSTI]

Curriculum Vitae ­ Kyle E. Harms ­ 1 KYLE EDWARD HARMS CURRICULUM VITAE ­ August 2013 ADDRESS Navarrete, #12;Curriculum Vitae ­ Kyle E. Harms ­ 2 Stuart J. Davies, Stephen P. Hubbell & James W. Dalling

Harms, Kyle E.

11

Curriculum Vitae Kyle E. Harms 1 KYLE EDWARD HARMS  

E-Print Network [OSTI]

Curriculum Vitae ­ Kyle E. Harms ­ 1 KYLE EDWARD HARMS CURRICULUM VITAE ­ March 2014 ADDRESS. Proceedings of the Royal Society B 280:9pp. #12;Curriculum Vitae ­ Kyle E. Harms ­ 2 63. Baldeck, Claire A

Harms, Kyle E.

12

Curriculum Vitae Kyle E. Harms 1 KYLE EDWARD HARMS  

E-Print Network [OSTI]

Curriculum Vitae ­ Kyle E. Harms ­ 1 KYLE EDWARD HARMS CURRICULUM VITAE ­ December 2012 ADDRESS. Journal of Ecology 100:1174-1182. #12;Curriculum Vitae ­ Kyle E. Harms ­ 2 57. Ferro, Michael L., Matthew

Harms, Kyle E.

13

Curriculum Vitae Kyle E. Harms 1 KYLE EDWARD HARMS  

E-Print Network [OSTI]

Curriculum Vitae ­ Kyle E. Harms ­ 1 KYLE EDWARD HARMS CURRICULUM VITAE ­ January 2014 ADDRESS forest communities. Proceedings of the Royal Society B 280:9pp. #12;Curriculum Vitae ­ Kyle E. Harms ­ 2

Harms, Kyle E.

14

Conservation Assessment for Great-spurred Violet  

E-Print Network [OSTI]

Conservation Assessment for Great-spurred Violet in the Black Hills National Forest, South Dakota Forest Service Rocky Mountain Region Black Hills National Forest Custer, South Dakota April 2003 #12. Reyher, and Carolyn Hull Sieg J. Hope Hornbeck is a Botanist with the Black Hills National Forest

15

The Morality of Collective Harm  

E-Print Network [OSTI]

Andreou, Chrisoula. “Environmental Damage and the Puzzle ofin. 39 Much environmental damage, and resulting harm tocould be defeated. Environmental damage, and resulting harm

Nefsky, Julia

2012-01-01T23:59:59.000Z

16

Instrument Series: Microscopy Ultra-High Vacuum, Low-  

E-Print Network [OSTI]

techniques) to examine the molecular-level details of heterogeneous catalysis and photocatalysis. Among them range of surface analytical techniques at low temperature ­ enables ultra-violet/X-ray photoelectron electron diffraction (LEED). In situ sample preparation ­ offers heating up to 1500 K, cooling down to 50 K

17

Durable silver mirror with ultra-violet thru far infra-red reflection  

DOE Patents [OSTI]

A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

Wolfe, Jesse D. (Discovery Bay, CA)

2010-11-23T23:59:59.000Z

18

Extreme ultra-violet emission from coronal loop structures. Technical report  

SciTech Connect (OSTI)

We calculate the XUV line and broad-band emission from a model active-region loop. The spectrum is found to be sensitive to both the coronal heating rate and to the loop geometry.

Tucker, W.H.

1980-07-01T23:59:59.000Z

19

An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator  

SciTech Connect (OSTI)

Narrow band undulator radiation tuneable over the wavelength range of 150–260?nm has been produced by short electron bunches from a 2?mm long laser plasma wakefield accelerator based on a 20?TW femtosecond laser system. The number of photons measured is up to 9?×?10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1?×?10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130?MeV with the radiation pulse duration in the range of 50–100 fs.

Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

2014-06-30T23:59:59.000Z

20

Compositional changes in red and violet smoke mixes after combustion  

SciTech Connect (OSTI)

Anthraquinone-derived dyes are commonly used in colored dye mixes prepared for signal smoke grenades. Biological studies have shown, however, that a number of these dyes exhibit bacterial mutagenicity. In addition, these dyes are similar in structure to several polycyclic aromatic hydrocarbons which are well-known carcinogens. The grenades contain not only anthraquinone-derived dyes, but also a pyrotechnic fuel and cooling and starting mixes consisting primarily of potassium chlorate and nitrate, sodium bicarbonate, and sulfur. These dyes are volatilized at temperatures up to 550/sup 0/C during the detonation of the grenade, which could subject the dyes to oxidative and pyrolytic reactions that could result in a variety of reaction by-products. As part of a program to investigate possible environmental and occupational risks of the colored smoke dyes and in signal grenades, two colored smoke mixes, red and violet, have been studied both before and after detonation to evaluate any differences in composition due to the combustion process. This report focuses primarily on the separation and identification of the components of the original and combusted red and violet smoke mixes. The conditions for the detonation of the smoke grenades and sampling of the combusted smoke mixes are also discussed.

Buchanan, M.V.; Rubin, I.B.; Moneyhun, J.H.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics  

E-Print Network [OSTI]

Niche of harmful alga Aureococcus anophagefferens revealedc consensus. Harmful Algae 8:3–13. 2. Sunda WG, Graneli E,of the United States. Harmful Algae 8:39–53. 4. Smayda TJ (

Grigoriev, Igor

2011-01-01T23:59:59.000Z

22

The Health Risks: Seafood Contamination, Harmful Algal  

E-Print Network [OSTI]

health products from the sea. What is the central issue? Why should I care? How will OHH researchThe Health Risks: Seafood Contamination, Harmful Algal Blooms and Polluted Beaches Seafood associated public health costs. Announcing a New Interagency Report on Oceans and Human Health Research

23

American Institute of Aeronautics and Astronautics Violet: A High-Agility Nanosatellite for Demonstrating  

E-Print Network [OSTI]

-precision sensors, such as a star tracker and a fiber-optic rate gyroscope, with high-agility kinematics: 10 o /sec ultraviolet telescope, which includes flight-spare Deep Impact CCDs and serves as a representative payload,7,11 . By providing an in-orbit testbed for steering algorithms, the Violet project is designed to uncover some

Peck, Mason A.

24

Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection  

SciTech Connect (OSTI)

Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.

Lai, Y. H.; He, Q. L. [Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China) [Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Cheung, W. Y.; Lok, S. K.; Wong, K. S.; Sou, I. K. [Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China)] [Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China (China); Ho, S. K. [Faculty of Science and Technology, University of Macau, Macau, People's Republic of China (China)] [Faculty of Science and Technology, University of Macau, Macau, People's Republic of China (China); Tam, K. W. [Department of Electrical and Electronics Engineering, University of Macau, Macau, People's Republic of China (China)] [Department of Electrical and Electronics Engineering, University of Macau, Macau, People's Republic of China (China)

2013-04-29T23:59:59.000Z

25

Parametric Evaluation of an Innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) Air Cleaning Technology for Indoor Applications  

E-Print Network [OSTI]

Titan Technologies (Sebastopol, CA). The honeycomb monolithby Titan Technologies (Sebastopol, CA). This system uses

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-01-01T23:59:59.000Z

26

DNA synthesis in pigmented and non-pigmented mutants of Serratia marcescens after ultra-violet irradiation  

E-Print Network [OSTI]

after 60 exposure to Co gamma radiation (1) . They postulated, initially that since the colony-forming-ability after gamma radiation is always greater in the non-pigmented white mutants than in the pigmenting strains, the red pigment may act... breakage, you must have relatively high doses of U. V. (Approximately 2x10 erg/mm ) (31). Therefore, the 5 2 current evidence suggests that at low doses of U. V. , chain breakage may occur too infrequently to be of significant biological importance...

Russo, Salvadore William

1973-01-01T23:59:59.000Z

27

A violet emission in ZnS:Mn,Eu: Luminescence and applications for radiation detection  

SciTech Connect (OSTI)

We prepared manganese and europium co-doped zinc sulfide (ZnS:Mn,Eu) phosphors and used them for radiation detection. In addition to the red fluorescence at 583?nm due to the d-d transition of Mn ions, an intense violet emission at 420?nm is newly observed in ZnS:Mn,Eu phosphors. The emission is related to Eu{sup 2+} doping but only appears at certain Eu{sup 2+} concentrations. It is found that the intensity of the 420?nm violet fluorescence is X-ray does-dependent, while the red fluorescence of 583?nm is not. The ratio of fluorescence intensities at 420?nm and 583?nm has been monitored as a function of X-ray doses that exposed upon the ZnS:Mn,Eu phosphors. Empirical formulas are provided to estimate the doses of applied X-ray irradiation. Finally, possible mechanisms of X-ray irradiation induced fluorescence quenching are discussed. The intense 420?nm emission not only provides a violet light for solid state lighting but also offers a very sensitive method for radiation detection.

Ma, Lun; Chen, Wei, E-mail: weichen@uta.edu [Department of Physics and the SAVANT Center, The University of Texas at Arlington, Arlington, Texas 76019-0059 (United States); Jiang, Ke [Center for Biofrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy., Colorado Springs, Colorado 80918 (United States); Liu, Xiao-tang [Department of Physics and the SAVANT Center, The University of Texas at Arlington, Arlington, Texas 76019-0059 (United States); Department of Applied Chemistry, College of Science, South China Agricultural University, Guangzhou 510642 (China)

2014-03-14T23:59:59.000Z

28

Global Dynamics of Zooplankton and Harmful Algae in Flowing Habitats  

E-Print Network [OSTI]

Global Dynamics of Zooplankton and Harmful Algae in Flowing Habitats Sze-Bi Hsu Feng-Bin Wang Xiao from the dynamics of harmful algae and zooplankton in flowing- water habitats where a main channel. For the system modeling the dynamics of algae and their toxin that contains little limiting nutrient, we

Hsu, Sze-Bi

29

Portugal's Budget Austerity May Do More Harm Than Good  

E-Print Network [OSTI]

Portugal's Budget Austerity May Do More Harm Than Good July 02, 2013 4:00 AM by LAUREN FRAYER severe budget austerity does more harm than good. LAUREN FRAYER, BYLINE: Of all the bailed-out countries. Portuguese Finance Minister Vitor Gaspar took it even further - doubling budget cuts and tax hikes. Last year

Instituto de Sistemas e Robotica

30

IN HARM'S WAY: Lack Of Federal Coal Ash  

E-Print Network [OSTI]

IN HARM'S WAY: Lack Of Federal Coal Ash Regulations Endangers Americans And Their Environment 2010 Thirty-nine New Damage Cases of Contamination from Improperly Disposed Coal Combustion Waste, Editor and Contributing Author #12;IN HARM'S WAY: Lack of Federal Coal Ash Regulations Endangers

Short, Daniel

31

Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer  

DOE Patents [OSTI]

A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.

Cardinale, Gregory F. (Oakland, CA)

2002-01-01T23:59:59.000Z

32

Molecular insights into the niche of harmful brown tides  

E-Print Network [OSTI]

Recurrent brown tide blooms caused by the harmful alga Alureococcus anophagefferens have decimated coastal ecosystems and shellfisheries along the Eastern U.S and South Africa. The exact mechanisms controlling bloom ...

Wurch, Louie L. (Louie Lorne)

2011-01-01T23:59:59.000Z

33

Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics  

E-Print Network [OSTI]

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the ...

Bertrand, Erin Marie

34

Ultra High Energy Behaviour  

E-Print Network [OSTI]

We reexamine the behaviour of particles at Ultra Highe energies in the context of the fact that the LHC has already touched an energy of $7 TeV$ and is likely to attain $14 TeV$ by 2013/2014.Consequences like a possible new shortlived interaction within the Compton scale are discussed.

Burra G. Sidharth

2011-03-18T23:59:59.000Z

35

ULTRA-LIGHTWEIGHT CEMENT  

SciTech Connect (OSTI)

The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

Fred Sabins

2001-10-23T23:59:59.000Z

36

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

37

Inhalation toxicology of red and violet mixtures. Chamber concentration and particle-size distribution report  

SciTech Connect (OSTI)

An inhalation exposure facility was developed at the U.S. EPA, RTP, NC to conduct inhalation exposures of rodents and guinea pigs to dye mixtures used by the U.S. Army in the manufacture of smoke munitions. Initially, an evaluation of the prototype chamber aerosol homogeneity was conducted to determine the uniformity and reproducibility of the concentration and particle size of dye aerosol throughout the breathing zone of the test animals. The three dyes, DR11, SR1, and DB3, were chemically analyzed for purity and optically examined for size and shape. All pure dyes appeared to be stable at room temperature except DB3, which decomposes if not stored at 4 C. The particle size ranges varied for each pure dye and structures were either amorphous (azo dye) or crystalline (anthraquinone dyes). The bulk red and violet dye mixtures were analyzed for composition. The chemical analysis of the relative composition of each dye mixture, collected by cascade impactor sampling, revealed fractionation of the mixtures into component dyes.

Higuchi, M.A.; Davies, D.W.

1991-07-01T23:59:59.000Z

38

Eutrophication and harmful algal blooms: A scientific consensus J. Heisler a,3  

E-Print Network [OSTI]

Eutrophication and harmful algal blooms: A scientific consensus J. Heisler a,3 , P.M. Glibert b between water quality and eutrophication and the occurrence of harmful algal blooms (HABs). This meeting in revised form 21 January 2008 Accepted 1 August 2008 Keywords: Eutrophication Harmful algal blooms HABs

Cochlan, William P.

39

Young Children Selectively Avoid Helping People With Harmful Intentions Amrisha Vaish, Malinda Carpenter, and Michael Tomasello  

E-Print Network [OSTI]

Young Children Selectively Avoid Helping People With Harmful Intentions Amrisha Vaish, Malinda. In Study 1 (N = 54), 3-year-olds watched 1 adult (the actor) harming or helping another adult. Children subsequently helped the harmful actor less often than a third (previously neutral) adult, but helped

Carpenter, M.alinda

40

Ultra Supercritical Steamside Oxidation  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The effective spectral irradiance of ultra-violet radiations from inert-gas-shielded welding processes in relation to the ARC current density  

E-Print Network [OSTI]

THE EFFECTIVE SPECTRAL IRRADIANCE OF ULTRAVIOLET RADIATIONS FROM INERT-GAS-SHIELDED MELDING PROCESSES IN RELATION TO THE ARC CURRENT DENSITY A Thesis by ROBIN KENT DEVORE Submitted to the Graduate College of Texas A&M University in partial... fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1973 Major Subject: Industrial Hygiene THE EFFECTIVE SPECTRAL IRRADIANCE OF ULTRAVIOLET RADIATIONS FROM INERT-GAS-SHIELDED WELDING PROCESSES IN RELATION TO THE ARC CURRENT...

DeVore, Robin Kent

1973-01-01T23:59:59.000Z

42

On the Physical Cause and the Distance of Gamma Ray Bursts and Related Phenomena in the X-Rays and the Ultra-Violet  

E-Print Network [OSTI]

The modified Lorentz transformation of a distance-dependent special theory of relativity - which will be briefly summarized - predicts the possibility of superluminal velocity of very distantly moving material bodies to be connected with the generation of Cerencov radiation off the quantum vacuum. It is shown that vacuum Cerencov radiation due to the superluminal propagation of extraterrestrial spaceprobes in the interstellar space would account for all known properties of gamma ray bursts (GRBs) and the "afterglow" at lower frequencies. Distances and other parameter prove to be calculable and the theoretical results on these grounds to be in good accord with experiment.

Ernst Karl Kunst

2000-04-17T23:59:59.000Z

43

Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics  

SciTech Connect (OSTI)

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.

Gobler, C J; Grigoriev, I V; Berry, D L; Dyhrman, S T; Wilhelm, S W; Salamov, A; Lobanov, A V; Zhang, Y; Collier, J L; Wurch, L L; Kustka, A B; Dill, B D; Shah, M; VerBerkomes, N C; Kuo, A; Terry, A; Pangilinan, J; Lindquist, E A; Lucas, S; Paulsen, I; Hattenrath-Lehmann, T K; Talmage, S; Walker, E A; Koch, F; Burson, A M; Marcoval, M A; Tang, Y; LeCleir, G R; Coyne, K J; Berg, G M; Bertrand, E M; Saito, M A; Gladyshev, V N

2011-03-02T23:59:59.000Z

44

Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics  

SciTech Connect (OSTI)

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.

Grigoriev, Igor; Gobler, Christopher; Salamov, Asaf; Kuo, Alan; Terry, Astrid; Pangillian, Jasmyn; Lindquist, Erika; Lucas, Susan; Berry, Dianna; Dyhrman, Sonya; Wilhelm, Steven; Lobanov, Alexei; Zhang, Yan; Collier, Jackie; Wurch, Louie; Kusta, Adam; Dill, Brian; Shsh, Manesh; VerBerkmoes, Nathan; Paulsen, Ian; Hattenrath-Lehmann, Theresa; Talmage, Stephanie; Walker, Elyse; Koch, Florian; Burson, Amanda; Marcoval, Maria; Tang, Yin-Zhong; LeCleir, Gary; Coyne, Kathyrn; Berg, Gry; Bertrand, Erin; Saito, Mak; Gladyshev, Vadim

2011-02-18T23:59:59.000Z

45

E-Print Network 3.0 - acanthopanax senticosus harms Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

phosphate monobasic Harmful KOH Potassium hydroxide Source: Manning, Sturt - Cornell Tree-Ring Laboratory, Cornell University Collection: Environmental Sciences and Ecology 8...

46

Alcohol-Related Harm and Primary Health Care in British Columbia, Canada.  

E-Print Network [OSTI]

???In recent years there has been a renewed focus on reducing the harms of addictive substances such as alcohol while at the same time restraining… (more)

Slaunwhite, Amanda Kathleen

2015-01-01T23:59:59.000Z

47

0 20 4010 Miles NOAA Harmful Algal Bloom Operational Forecast System  

E-Print Network [OSTI]

0 20 4010 Miles NOAA Harmful Algal Bloom Operational Forecast System Texas Forecast Region Maps to Sargent BCH NOAA Harmful Algal Bloom Operational Forecast System Texas Forecast Region Maps 0 5 102 Bloom Operational Forecast System Texas Forecast Region Maps 0 5 102.5 Miles West Bay #12;Aransas Bay

48

Development of Hyperspectral remote sensing capability for the early detection and monitoring of Harmful Algal Blooms  

E-Print Network [OSTI]

Blooms (HABs) in the western basin of Lake Erie and Saginaw Bay in Lake Huron. The HABs can be very of Harmful Algal Blooms (HABs) in the Great Lakes John Lekki1 , Robert Anderson2 , Quang-Viet Nguyen3 Lakes is to detect and monitor the development of potentially Harmful Algal Blooms (HABs). Two

49

How Perceived Exposure to Environmental Harm Influences Environmental Behavior in Urban China  

E-Print Network [OSTI]

Á Pro-environmental behavior INTRODUCTION Environmental degradation and the impact it has on society attitudes, perceived exposure to environmental harm tends to have more impact on individuals' environmentalREPORT How Perceived Exposure to Environmental Harm Influences Environmental Behavior in Urban

Peterson, M. Nils

50

Using Cell Phones to Detect Harmful Airborne Engineering lab named after company that hopes to commercialize  

E-Print Network [OSTI]

Using Cell Phones to Detect Harmful Airborne Substances Engineering lab named after company focused on using mobile devices, such as cell phones, to detect harmful airborne substances in real detection capabilities with mobile devices, including cell phones that can interface global positioning

51

ENVIRONMENTAL REMEDIAL ACTION – ARE WE DOING MORE HARM THAN GOOD?  

E-Print Network [OSTI]

The International Commission on Radiological Protection (ICRP) (1) has stated that interventions i.e., remedial actions should do more good than harm. This paper examines completed cleanup projects to answer the question posed in the title. Various researchers have published that toxins in the environment only cause a small percentage of cancers i.e., 1-3 percent (2,3). Estimates of hypothetical fatal cancers are inflated because primarily it is assumed that people will change their living habits and move onto or near uncontrolled waste sites. An occupancy factor of 100 % is used and by using large populations exposed to miniscule levels of radiation (4) unreal levels of fatal cancers are predicted. What we observe are technically indefensible numbers of cancers being calculated for these hypothetical people. This and other maximizing assumptions inflate the risk. The inflated risk, along with very conservative criteria, drives the removal of large volumes of soil and debris. An unintended consequence of these costly well-intentioned (5) remedial actions is the real fatalities and injuries that occur to workers doing the construction and to members of the public through transportation activities. Even though some analysis include the estimates of worker risk, there is little or no discussion which highlights the fact that real risk is being traded for hypothetical risk. This paper is an attempt to review this situation and through cited literature and case studies, come to a better understanding of what if any good is really being done. Maybe it is time to consider this transfer of risk from hypothetical victims to the real victims in remedial action decision-making.

Bruce W. Church

52

Why Plaintiffs Should Have to Prove Irreparable Harm in Copyright Preliminary Injunction Cases  

E-Print Network [OSTI]

harm that might find support in Sony is applicable to a caseL.J. 829 (2008)(discussing Sony?s legacy for technologyand interesting than they might Sony, 450 U.S. at 451. Sony

Samuelson, Pamela

2009-01-01T23:59:59.000Z

53

Deep Water Mixing Prevents Harmful Algal Bloom Formation: Implications for Managed Fisheries Refugia  

E-Print Network [OSTI]

bloom initiation and development, they are benign to other aspects of the lower food web and environment. The results from using deep lake water to suppress harmful algal blooms indicate this may be a promising management approach and further studies...

Hayden, Natanya Jeanne

2012-10-19T23:59:59.000Z

54

ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND  

Energy Savers [EERE]

ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND RECOMMENDATIONS 2014 ULTRA-DEEPWATER ADVISORY COMMITTEE COMMITTEE FINDINGS AND RECOMMENDATIONS i Table of Contents Research and...

55

Development of a Low Cost Ultra Specular Advanced Polymer Film...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector This presentation was...

56

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 FuelCell Energy, Inc., in...

57

Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by...

58

Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Preliminary measured drying time of fabric sample using ultrasonic...

59

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum...  

Energy Savers [EERE]

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The...

60

Ultra Clean and Efficient Natural Gas Reciprocating Engine for...  

Broader source: Energy.gov (indexed) [DOE]

Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP...

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...  

Energy Savers [EERE]

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 FuelCell Energy, Inc., in...

62

Ultra-short pulse generator  

DOE Patents [OSTI]

An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

McEwan, T.E.

1993-12-28T23:59:59.000Z

63

ULTRA-DEEPWATER ADVISORY COMMITTEE  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track |Weatherized|Energy-WaterUDAC2ULTRA-DEEPWATER

64

Ultra-Deepwater Production Systems  

SciTech Connect (OSTI)

The report herein is a summary of the work performed on three projects to demonstrate hydrocarbon drilling and production methods applicable to deep and ultra deepwater field developments in the Gulf of Mexico and other like applications around the world. This work advances technology that could lead to more economic development and exploitation of reserves in ultra-deep water or remote areas. The first project is Subsea Processing. Its scope includes a review of the ''state of the art'' in subsea components to enable primary production process functions such as first stage liquids and gas separation, flow boosting, chemical treatment, flow metering, etc. These components are then combined to allow for the elimination of costly surface production facilities at the well site. A number of studies were then performed on proposed field development projects to validate the economic potential of this technology. The second project involved the design and testing of a light weight production riser made of composite material. The proposed design was to meet an actual Gulf of Mexico deepwater development project. The various engineering and testing work is reviewed, including test results. The third project described in this report encompasses the development and testing of a close tolerance liner drilling system, a new technology aimed at reducing deepwater drilling costs. The design and prototype testing in a test well are described in detail.

Ken L. Smith; Marc E. Leveque

2005-05-31T23:59:59.000Z

65

Ultra-wideband directional sampler  

DOE Patents [OSTI]

The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in "real time", and the other two ports operate at a slow millisecond-speed, in "equivalent time". A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus.

McEwan, Thomas E. (Livermore, CA)

1996-01-01T23:59:59.000Z

66

Ultra-wideband directional sampler  

DOE Patents [OSTI]

The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in ``real time``, and the other two ports operate at a slow millisecond-speed, in ``equivalent time``. A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus. 3 figs.

McEwan, T.E.

1996-05-14T23:59:59.000Z

67

Unraveling the fish kill mechanism(s) of the harmful alga Chattonella marina, from the perspective of osmotic disturbance.  

E-Print Network [OSTI]

???The harmful algal bloom (HAB) species, Chattonella marina, has caused severe economic loss to marine fisheries worldwide. In the past three decades, suffocation or respiratory… (more)

Xu, Jingliang (???)

2010-01-01T23:59:59.000Z

68

ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS  

SciTech Connect (OSTI)

This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

DeScioli, Derek

2013-06-01T23:59:59.000Z

69

Ultra wide-bandwidth micro energy harvester  

E-Print Network [OSTI]

An ultra wide-bandwidth resonating thin film PZT MEMS energy harvester has been designed, modeled, fabricated and tested. It harvests energy from parasitic ambient vibration at a wide range of amplitude and frequency via ...

Hajati, Arman

2011-01-01T23:59:59.000Z

70

Ultra-wide bandwidth piezoelectric energy harvesting  

E-Print Network [OSTI]

Here, we present an ultra wide-bandwidth energy harvester by exploiting the nonlinear stiffness of a doubly clamped microelectromechanical systems (MEMSs) resonator. The stretching strain in a doubly clamped beam shows a ...

Hajati, Arman

71

ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS  

SciTech Connect (OSTI)

This poster describes the 3M Ultra-Barrier Solar Film and its application; production scale-up and data; reliability and qualification testing; and improvements in the next generation.

Alan, Nachtigal; Berniard, Tracie; Murray, Bill; Roehrig, Mark; Schubert, Charlene; Spagnola, Joseph; Weigel, Mark

2013-01-01T23:59:59.000Z

72

Changes in Acoustic Impedance of Marine Sediment Covered with Liquid Henning Harms, Wlner Matuschek, Volker Mellert  

E-Print Network [OSTI]

) with different densities and sound speeds as a function of grazing angle. The measurements clearly show of the liqui~, TABLE1, Sound speed and density of the chemicals wed in the experiments. substance lChanges in Acoustic Impedance of Marine Sediment Covered with Liquid Pollutants Henning Harms

Vormann, Matthias

73

NOAA Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps  

E-Print Network [OSTI]

Forecast System Southwest Florida Forecast Region Maps 0 20 4010 Miles #12;Bay-S Pinellas Bay-UPR Bay Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12;Bay Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12

74

Ad Hoc Synchronization Considered Harmful Weiwei Xiong+, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, Zhiqiang Ma*  

E-Print Network [OSTI]

Ad Hoc Synchronization Considered Harmful Weiwei Xiong+, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou Abstract Many synchronizations in existing multi­threaded pro­ grams are implemented in an ad hoc way. The first part of this paper does a comprehensive characteristic study of ad hoc synchronizations

Zhou, Yuanyuan

75

Invasive Species, Harmful Algae & Hypoxia in the Great Lakes: An Ecosystem Approach Introduction  

E-Print Network [OSTI]

Invasive Species, Harmful Algae & Hypoxia in the Great Lakes: An Ecosystem Approach Introduction. Hypoxia has occurred frequently in the summer in western Lake Erie. HABs have been responsible The Laurentian Great Lakes are a major resource to North America, containing 18% of the world's surface

76

Great Lakes & Ohio River Division Harmful Algae Blooms (HAB) Response Plan  

E-Print Network [OSTI]

USACE Great Lakes & Ohio River Division Harmful Algae Blooms (HAB) Response Plan Erich Emery USACE Louisville District 28-29 MAY 2014 #12;Great Lakes & Ohio River Division 2 #12;Lake Erie 3 NOAA processed satellite imagery showing concentrations of cyanobacteria in Western Basin Lake Erie 7/27/2010 #12;Focus

US Army Corps of Engineers

77

Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States  

E-Print Network [OSTI]

Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of cultural eutrophication linked to the pressures of increasing human population including animal and plant on some aspects of the relationship between eutrophication and HABs (Heisler et al., 2008), recognizing

Townsend, David W.

78

The evolution of helping and harming on graphs: the return of the inclusive fitness effect  

E-Print Network [OSTI]

The evolution of helping and harming on graphs: the return of the inclusive fitness effect L relatedness between individuals promotes helping behaviour, evolu- tionary graph theory emphasizes., 2006; Ohtsuki & Nowak, 2006). Evolutionary graph theory models allow the effect of space on helping

Alvarez, Nadir

79

APPENDIX C Colorado Statewide Forest Resource Assessment Protect Forests From Harm  

E-Print Network [OSTI]

1 APPENDIX C ­ Colorado Statewide Forest Resource Assessment Data Gaps Protect Forests From Harm o. Enhance Public Benefits from Trees and Forests o Water Supply Need data that will allow assessment Economic Opportunities Need a state level assessment of biomass supply for both wood products

80

Animal carcasses must be handled properly to prevent harm to people, herds, flocks,  

E-Print Network [OSTI]

Animal carcasses must be handled properly to prevent harm to people, herds, flocks, water (Fig. 1): · Diseases can be spread to people and animals. · Carcass fluids can leach into and pollute, or rivers). · Obnoxious gases and odors can be emitted to the atmosphere. · The carcasses can attract

Mukhtar, Saqib

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Deepwater Horizon Study Finds Crude Oil Harmful to Bluefin, Yellowfin Tuna  

E-Print Network [OSTI]

Deepwater Horizon Study Finds Crude Oil Harmful to Bluefin, Yellowfin Tuna This photo from April 24, 2010 shows oil in the Gulf of Mexico, more than 50 miles southeast of Venice on Louisiana's tip sponsored by the National Oceanic and Atmospheric Administration, found that crude oil from the 2010

Grosell, Martin

82

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful  

E-Print Network [OSTI]

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

83

The determination of regionalised wind roses for the UK, for use with the HARM acid depositional model.  

E-Print Network [OSTI]

Metcalfe Dr. Claire Jarvis & Dr. Jim Nicholson #12;Abstract- The Hull acid rain (HARM) depositional model of Geography) is not permitted. #12;1 INTRODUCTION The Hull acid rain (HARM) Lagrangian receptor depositional, 2002, p1 & 6). Other acid rain models that use the Lagrangian receptor technique such as the original

84

Ultra-precision positioning assembly  

DOE Patents [OSTI]

An apparatus and method is disclosed for ultra-precision positioning. A slide base provides a foundational support. A slide plate moves with respect to the slide base along a first geometric axis. Either a ball-screw or a piezoelectric actuator working separate or in conjunction displaces the slide plate with respect to the slide base along the first geometric axis. A linking device directs a primary force vector into a center-line of the ball-screw. The linking device consists of a first link which directs a first portion of the primary force vector to an apex point, located along the center-line of the ball-screw, and a second link for directing a second portion of the primary force vector to the apex point. A set of rails, oriented substantially parallel to the center-line of the ball-screw, direct movement of the slide plate with respect to the slide base along the first geometric axis and are positioned such that the apex point falls within a geometric plane formed by the rails. The slide base, the slide plate, the ball-screw, and the linking device together form a slide assembly. Multiple slide assemblies can be distributed about a platform. In such a configuration, the platform may be raised and lowered, or tipped and tilted by jointly or independently displacing the slide plates.

Montesanti, Richard C. (San Francisco, CA); Locke, Stanley F. (Livermore, CA); Thompson, Samuel L. (Pleasanton, CA)

2002-01-01T23:59:59.000Z

85

Ultra-wideband impedance sensor  

DOE Patents [OSTI]

The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

McEwan, Thomas E. (Livermore, CA)

1999-01-01T23:59:59.000Z

86

Ultra-wideband impedance sensor  

DOE Patents [OSTI]

The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

McEwan, T.E.

1999-03-16T23:59:59.000Z

87

Faculty Position in Ultra High Precision Robotics & Manufacturing  

E-Print Network [OSTI]

, manipulation and metrology systems targeting additive manufacturing; · New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

Candea, George

88

Sun Ultra 2 System at a Glance Product Specifications  

E-Print Network [OSTI]

Sun Ultra 2 System at a Glance Product Specifications Sun Ultra 2 Model 2170 Sun Ultra 2 Models 1200 and 2200 Sun Ultra 2 Models 1300 and 2300 Dimensions and weight 450 mm x 130 mm x 444 mm (Wx Optional SunCDTM 4x or 12x drive Optional 4-mm DDS2 tape Optional 8-mm tape 14-GB 8-mm tape 2.5-GB 0

MacAdam, Keith

89

Ultra-Micro Wave Rotor Investigations Florin Iancu, Janusz Piechna*  

E-Print Network [OSTI]

Nowowiejska Str., 00-665 Warsaw, Poland Abstract Ultra Micro Gas Turbines (UµGT) are expected to be a next of incorporating a wave rotor to an ultra-micro gas turbine and the advantages of wave rotors, topping gas turbines at about 70%. Keywords: PowerMEMS, wave rotor, ultra micro gas turbine, pressure exchanger, efficiency 1

Müller, Norbert

90

Ultra Low Power Bioelectronics Fundamentals, Biomedical Applications,  

E-Print Network [OSTI]

in cells to biomedical implants in the brain to energy-efficient cars. A vision that this book has University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America from the British Library Library of Congress Cataloging-in-Publication Data Sarpeshkar, Rahul Ultra low

Sarpeshkar, Rahul

91

Ultra-wideband radar sensors and networks  

DOE Patents [OSTI]

Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

2013-08-06T23:59:59.000Z

92

Ultra Thin Quantum Well Materials  

SciTech Connect (OSTI)

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

93

2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses  

SciTech Connect (OSTI)

In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

Chou, Jason

2014-04-03T23:59:59.000Z

94

2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses  

ScienceCinema (OSTI)

In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

Chou, Jason

2014-07-22T23:59:59.000Z

95

Cosmic absorption of ultra high energy particles  

E-Print Network [OSTI]

This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering appropriate interactions we derive the mean free path for ultra high energy photons, protons and neutrinos. For photons the relevant processes are the Breit-Wheeler process as well as the double pair production process. For protons the relevant reactions are the photopion production and the Bethe-Heitler process. We discuss the interplay between the energy loss length and mean free path for the Bethe-Heitler process. Neutrino opacity is determined by its scattering off the cosmic background neutrino. We compute for the first time the high energy neutrino horizon as a function of its energy.

Ruffini, R; Xue, S -S

2015-01-01T23:59:59.000Z

96

The origin of ultra high energy cosmic rays  

E-Print Network [OSTI]

We briefly discuss some open problems and recent developments in the investigation of the origin and propagation of ultra high energy cosmic rays (UHECRs).

Pasquale Blasi

2005-12-16T23:59:59.000Z

97

Performance of Ultra Thin White Topping in Oklahoma.  

E-Print Network [OSTI]

??Asphalt pavements would benefit from a low maintenance rehabilitation technique. Modern technology in the form of placement of a thin concrete overlay or ultra thin… (more)

Rotithor, Hari Ganesh

2011-01-01T23:59:59.000Z

98

Ultra Large Castings for Lightweight Vehicle Structures ?AMD...  

Broader source: Energy.gov (indexed) [DOE]

Maryland. merit08mccarty6.pdf More Documents & Publications Ultra Large Castings For Lightweight Vehicle Structures Magnesium Powertrain Cast Components Project (AMD 304)...

99

AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid...  

Broader source: Energy.gov (indexed) [DOE]

and development. The following reports describe results of testing done on a 2010 Civic hybrid electric vehicle with an advanced experimental ultra-lead acid battery, an...

100

Ultra Large Castings for Lightweight Vehicle Structures ?AMD...  

Broader source: Energy.gov (indexed) [DOE]

for reduced investment cost in tooling and dies - Demonstrate improved energy absorption. USAMP AMD 406 Ultra Large Castings for Lightweight Vehicle Structures...

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

E-Print Network 3.0 - accurate laboratory ultraviolet Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are recorded in the visible and near ultra-violet spectral regions so... the ultra-violet radiation balance. The work reportedhere was designed to measure the cross... performed...

102

Ultra-low contact resistance at an epitaxial metal/oxide heterojunctio...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultra-low contact resistance at an epitaxial metaloxide heterojunction through interstitial site doping. Ultra-low contact resistance at an epitaxial metaloxide heterojunction...

103

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn...

104

E-Print Network 3.0 - assuring ultra-clean environments Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aug 21-26, 2004. Co-chair of Symposium on Ultra Clean... Catalysis by Metal Sulfides, Carbides, Nitrides and Phosphides for Ultra- ... Source: Guiltinan, Mark - Department of...

105

Ultra-high vacuum photoelectron linear accelerator  

DOE Patents [OSTI]

An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

Yu, David U.L.; Luo, Yan

2013-07-16T23:59:59.000Z

106

Astronomy with ultra high-energy particles  

E-Print Network [OSTI]

Recent measurements of the properties of cosmic rays above 10^17 eV are summarized and implications on our contemporary understanding of their origin are discussed. Cosmic rays with energies exceeding 10^20 eV have been measured, they are the highest-energy particles in the Universe. Particles at highest energies are expected to be only marginally deflected by magnetic fields and they should point towards their sources on the sky. Recent results of the Pierre Auger Observatory have opened a new window to the Universe - astronomy with ultra high-energy particles.

Joerg R. Hoerandel

2008-03-20T23:59:59.000Z

107

Ultra-wideband radar motion sensor  

DOE Patents [OSTI]

A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

McEwan, T.E.

1994-11-01T23:59:59.000Z

108

Materials development for ultra-supercritical boilers  

SciTech Connect (OSTI)

Progress is reported on a US Department of Energy project to develop high temperature, corrosion resistant alloys for use in ultra-supercritical steam cycles. The aim is to achieve boiler operation at 1,400{sup o}F/5,000 psi steam conditions with 47% net cycle efficiency. Most ferritic steel tested such as T92 and Save 12 showed severe corrosion. Nickel-based alloys, especially IN 740 and CCA 617, showed greatest resistance to oxidation with no evidence of exfoliation. Laboratory and in-plant tests have begun. 2 figs.

NONE

2005-09-30T23:59:59.000Z

109

Two Novel Ultra-Incompressible Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 Page 1Two Novel Ultra-Incompressible

110

Matched Public PUF: Ultra Low Energy Security Platform  

E-Print Network [OSTI]

Matched Public PUF: Ultra Low Energy Security Platform Saro Meguerdichian and Miodrag Potkonjak that cannot be matched with any third such module. Each device enables rapid, low-energy computation of ultra and energy costs and enables a majority of security protocols to be completed in a single or a few clock

Potkonjak, Miodrag

111

Digital Bimodal Function: An Ultra-Low Energy Security Primitive  

E-Print Network [OSTI]

Digital Bimodal Function: An Ultra-Low Energy Security Primitive Teng Xu, James B. Wendt function (DBF) that enables ultra low energy security protocols. DBF allows the computation of legitimate communicating sides to be compact and low-energy while it requires any attacker exponential computational effort

Potkonjak, Miodrag

112

An ultra miniature pinch-focus discharge Leopoldo Soto1  

E-Print Network [OSTI]

Abstract As a way to investigate the minimum energy to produce a pinch plasma focus discharge, an ultra optimized plasma foci. It is interesting note that plasma parameters practically constant in plasma focusAn ultra miniature pinch-focus discharge Leopoldo Soto1 , Cristian Pavez1, 2 , Mario Barbaglia3

Paris-Sud XI, Université de

113

American Institute of Aeronautics and Astronautics Ultra Low Emissions Combustor  

E-Print Network [OSTI]

1 American Institute of Aeronautics and Astronautics T Ultra Low Emissions Combustor with Non Point Reverse Flow (SPRF) combustor concept that can burn gaseous or liquid fuels in premixed or non-premixed modes of combustion with ultra low NOx emissions. The combustor consists of a tube with open and closed

Seitzman, Jerry M.

114

Ultra Safe And Secure Blasting System  

SciTech Connect (OSTI)

The Ultra is a blasting system that is designed for special applications where the risk and consequences of unauthorized demolition or blasting are so great that the use of an extraordinarily safe and secure blasting system is justified. Such a blasting system would be connected and logically welded together through digital code-linking as part of the blasting system set-up and initialization process. The Ultra's security is so robust that it will defeat the people who designed and built the components in any attempt at unauthorized detonation. Anyone attempting to gain unauthorized control of the system by substituting components or tapping into communications lines will be thwarted in their inability to provide encrypted authentication. Authentication occurs through the use of codes that are generated by the system during initialization code-linking and the codes remain unknown to anyone, including the authorized operator. Once code-linked, a closed system has been created. The system requires all components connected as they were during initialization as well as a unique code entered by the operator for function and blasting.

Hart, M M

2009-07-27T23:59:59.000Z

115

Increased European biofuel cultivation could harm human health1 by James Morgan for www.scienceomega.com2  

E-Print Network [OSTI]

Increased European biofuel cultivation could harm human health1 by James Morgan for www that the large-scale production of biofuels in4 Europe could result in increased human mortality and crop losses that many biofuel plant species, including poplar and willow, release more isoprene ­ an6 ozone precursor

South Bohemia, University of

116

"Real-Time Coastal Observing Systems for Ecosystem Dynamics and Harmful Algal Blooms" Resubmitted 4 March 2005  

E-Print Network [OSTI]

Initiation and Prediction in Large European Marine Ecosystems (HABILE) in the North Sea, Fisheries & Oceans"Real-Time Coastal Observing Systems for Ecosystem Dynamics and Harmful Algal Blooms" Resubmitted 4 ________________________________________________________________________ X.1 Introduction X X.2 Processes in the coastal ocean X X.2.1 Physical processes X X.2.2 Biological

Fabrikant, Sara Irina

117

Choose the most appropriate answer 1. A The predicted increase in global population will be particularly harmful in Africa where  

E-Print Network [OSTI]

will be particularly harmful in Africa where lack of food and water is already a serious problem. B-40 years Western countries have changed old programs such as sex education, abortion and the role of women. A Conservative politicians don't want to interfere with individual free choice. Certain religions forbid abortion

Romeo, Alessandro

118

Guidance Document Fume hoods are used when handling toxic or hazardous chemicals. Harmful gases, vapors and fumes  

E-Print Network [OSTI]

Guidance Document FumeHoods Fume hoods are used when handling toxic or hazardous chemicals. Harmful the maximum safe mark (provided by Facilities Management during annual test) Use secondary containment (a hood without permission from EHS. Call EHS or Facilities Management if a hood is not functioning

119

Ultra-accelerated natural sunlight exposure testing  

DOE Patents [OSTI]

Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

Jorgensen, Gary J. (Pine, CO); Bingham, Carl (Lakewood, CO); Goggin, Rita (Englewood, CO); Lewandowski, Allan A. (Evergreen, CO); Netter, Judy C. (Westminster, CO)

2000-06-13T23:59:59.000Z

120

ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS  

SciTech Connect (OSTI)

This slideshow presents work intended to: Scale-up the Generation -1 UBT to 1+meter width full-scale manufacturing; Develop a Generation-2 UBT on the pilot line, targeting improved performance, longer lifetime and lower cost; Transfer Generation-2 UBT from the pilot line to the full-scale manufacturing line in 2014; and Validate service life of Generation-1 UBT for the 25+ year lifetime. 3M has scaled up UBT for production at 1.2 meter width. 3M is conducting extensive lifetime studies including: –Evaluation of customer processing and installation conditions; –Indoor accelerated testing of UBT film and full CIGS modules; –Outdoor testing of UBT film and CIGS modules. Results have been used to improve ultra barrier film performance for flex module applications.

Schubert, Charlene

2013-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Multilayer ultra-high-temperature ceramic coatings  

DOE Patents [OSTI]

A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

2012-03-20T23:59:59.000Z

122

Ultra supercritical turbines--steam oxidation  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

123

Ultra-high resolution computed tomography imaging  

DOE Patents [OSTI]

A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

2002-01-01T23:59:59.000Z

124

Ultra-thin microporous/hybrid materials  

DOE Patents [OSTI]

Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.

Jiang, Ying-Bing (Albuquerque, NM); Cecchi, Joseph L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM)

2012-05-29T23:59:59.000Z

125

assay ultra sensitive: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(UGT) are expected to be a next of incorporating a wave rotor to an ultra-micro gas turbine and the advantages of wave rotors, topping gas turbines at about 70%. Keywords:...

126

Temperature response of the ultra-high throughput mutational spectrometer  

E-Print Network [OSTI]

The Ultra-High Throughput Mutational Spectrometer is an instrument designed to separate mutant from wild type DNA through capillary electrophoresis. Since this technique uses the melting point of the molecule to distinguish ...

Suen, Timothy W. (Timothy Wu)

2005-01-01T23:59:59.000Z

127

ITP Industrial Distributed Energy: Ultra Efficient Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-site Process Reducing Gas, Clean Power, and Heat The project will utilize...

128

Design of wind turbines with Ultra-High Performance Concrete  

E-Print Network [OSTI]

Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations ...

Jammes, François-Xavier

2009-01-01T23:59:59.000Z

129

Synthesis and fluid interaction of ultra long carbon nanotubes  

E-Print Network [OSTI]

The successful integration for carbon nanotubes in future electronic applications relies on advances in their synthesis. In this work optimization of growth parameters was conducted to obtain ultra long carbon nanotubes. ...

Hofmann, Mario

2009-01-01T23:59:59.000Z

130

Tube Waves in Ultra-deep Waters: Preliminary Results  

E-Print Network [OSTI]

waves on borehole seismic data in ultra-deep waters. Finite-difference modeling technique was used for this study. Finite-difference modeling allowed us to model refractions, reflections, diffractions and scattering; actually all events in surface...

Singh, Satyan

2012-02-14T23:59:59.000Z

131

Ultra-weak sector, Higgs boson mass, and the dilaton  

SciTech Connect (OSTI)

The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.

Allison, Kyle [University of Oxford; Hill, Christopher T. [FNAL; Ross, Graham G. [University of Oxford

2014-11-01T23:59:59.000Z

132

Ultra-weak sector, Higgs boson mass, and the dilaton  

E-Print Network [OSTI]

The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.

Kyle Allison; Christopher T. Hill; Graham G. Ross

2014-04-24T23:59:59.000Z

133

Studying coherence in ultra-cold atomic gases  

E-Print Network [OSTI]

This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate and a fermion pair condensate. In each ...

Miller, Daniel E. (Daniel Edward)

2007-01-01T23:59:59.000Z

134

208 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 11, NO. 5, MAY 2001 Novel Low-Cost Ultra-Wideband, Ultra-Short-Pulse  

E-Print Network [OSTI]

-to-peak and a pulse repetition rate of 10 MHz. The measured pulses have good symmetry and low ringing level. Index Terms--Ground penetrating radar, MIC, pulse generator, transmitter, ultra-wideband radar. I. INTRODUCTION ULTRA-wideband (UWB), ultra-short pulses are very at- tractive for radar and wireless

Arslan, Hüseyin

135

UltraDots Inc formely UltraPhotonics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator Jump to: navigation,UTEKUlster County, NewUltraDots

136

EU promises new biofuel rules won't harm the environment http://www.pr-inside.com/eu-promises-new-biofuel-rules-won-t-r385258.htm 1 of 2 1/16/2008 12:32 PM  

E-Print Network [OSTI]

EU promises new biofuel rules won't harm the environment http://www.pr-inside.com/eu-promises-new-biofuel promises new biofuel rules won't harm the environment © AP 2008-01-14 16:21:49 - BRUSSELS, Belgium (AP) - The European Union promised Monday that its new push to promote biofuels will try to prevent harming

137

Ultra-Low NOx Advanced Vortex Combustor  

SciTech Connect (OSTI)

An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

Edmonds, R.G. (Ramgen Power Systems, Inc., Bellevue, WA); Steele, R.C. (Ramgen Power Systems, Inc., Bellevue, WA); Williams, J.T. (Ramgen Power Systems, Inc., Bellevue, WA); Straub, D.L.; Casleton, K.H.; Bining, Avtar (California Energy Commission, Sacramento, CA)

2006-05-01T23:59:59.000Z

138

ULTRA-LOW NOX ADVANCED VORTEX COMBUSTOR  

SciTech Connect (OSTI)

An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

Ryan G. Edmonds; Robert C. Steele; Joseph T. Williams; Douglas L. Straub; Kent H. Casleton; Avtar Bining

2006-05-01T23:59:59.000Z

139

Making Up Self Harmers: an investigation of the concept over time and from the perspective of two different self harm groups   

E-Print Network [OSTI]

This thesis aims to illustrate the processes involves in ‘making up’ the human kind of self harmers. Psychiatric attempts at defining, explaining, and controlling self harm behaviours are shaped by the people who they diagnose as much as they shape...

Mattingley, Helena

2009-11-26T23:59:59.000Z

140

High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel...

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Dramatically Improved Yields in Molecular Scale Electronic Devices Using Ultra-smooth Platinum Electrodes Prepared By  

E-Print Network [OSTI]

Dramatically Improved Yields in Molecular Scale Electronic Devices Using Ultra-smooth Platinum scale electronic devices by using ultra- smooth platinum (Pt) electrodes made with chemical mechanically Terms -- Molecular electronics, CMP, SAM, Langmuir-Blodgett, Device yields. I. INTRODUCTION Molecular

Islam, M. Saif

142

E-Print Network 3.0 - advanced ultra-high speed Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

** This paper describes an ultra high-speed... to be considerably small to prevent huge centrifugal force caused by the ultra high-speed rotation. The stator... system. Keywords:...

143

2008 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Broader source: Energy.gov (indexed) [DOE]

8 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2008 Annual Plan for the Ultra-Deepwater and...

144

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Energy Savers [EERE]

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and...

145

Hot Gas Filtration of Fine and Ultra fine Particles with Liquid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Gas Filtration of Fine and Ultra fine Particles with Liquid Phase Sintered SiC Ceramic DPF Hot Gas Filtration of Fine and Ultra fine Particles with Liquid Phase Sintered SiC...

146

Ultra Energy Efficient Data Center Saves NREL $200,000 | Department...  

Broader source: Energy.gov (indexed) [DOE]

Ultra Energy Efficient Data Center Saves NREL 200,000 Ultra Energy Efficient Data Center Saves NREL 200,000 November 14, 2011 - 5:08pm Addthis The National Renewable Energy...

147

Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic...  

Broader source: Energy.gov (indexed) [DOE]

Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts This presentation...

148

Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission Engines Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission Engines Presentation given at DEER...

149

Ultra-soft fermionic excitation at finite chemical potential  

E-Print Network [OSTI]

It has been suggested previously that an ultra-soft fermionic excitation develops, albeit with a small spectral weight, in a system of massless fermions and scalar bosons with Yukawa interaction at high temperature ($T$). In this paper we study how this excitation is modified at finite chemical potential ($\\mu$). We relate the existence of the ultra-soft mode to symmetries, in particular charge conjugation, and a supersymmetry of the free system which is spontaneously broken by finite temperature and finite density effects, as argued earlier by Lebedev and Smilga. A non vanishing chemical potential breaks both symmetries explicitly, and maximally at zero temperature where the mode ceases to exist. A detailed calculation indicates that the ultra-soft excitation persists as long as $T\\gtrsim \\mu$.

Jean-Paul Blaizot; Daisuke Satow

2014-05-13T23:59:59.000Z

150

Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses  

SciTech Connect (OSTI)

We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 {mu}m thicknesses) irradiated with an ultra-intense laser pulse (up to 10{sup 20} W Dot-Operator cm{sup -2}, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

Fourmaux, S.; Gnedyuk, S.; Lassonde, P.; Payeur, S.; Pepin, H.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Buffechoux, S.; Albertazzi, B. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Capelli, D.; Antici, P. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Dipartimento SBAI, Sapienza, Universita di Roma, Via Scarpa 16, 00161 Roma (Italy); Levy, A.; Fuchs, J. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Lecherbourg, L.; Marjoribanks, R. S. [Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

2013-01-15T23:59:59.000Z

151

Method for laser welding ultra-thin metal foils  

DOE Patents [OSTI]

A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1996-01-01T23:59:59.000Z

152

Method for laser welding ultra-thin metal foils  

DOE Patents [OSTI]

A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

1996-03-26T23:59:59.000Z

153

Charge pumping techniques in ultra-low current transconductor design  

E-Print Network [OSTI]

generated by the interface-trap charge pump. An interface-trap charge-pump has been used as an ultra low current source for biasing an operational transconductance amplifier in both single-ended and fully differential configurations. Source degeneration...

Becker-Gomez, Adriana

2002-01-01T23:59:59.000Z

154

Ultra-Fast Photodiodes for Terahertz Generation E. Rouvalis1  

E-Print Network [OSTI]

Ultra-Fast Photodiodes for Terahertz Generation E. Rouvalis1 , C. C. Renaud1 and A. J. Seeds1 1 Photodiode is realised as a broadband and high-efficiency photomixer while the frequency response advantage-power photomixers is essential. 2. Travelling-Wave Uni-Travelling Carrier Photodiode (TW-UTC-PD). Bandwidth

Haddadi, Hamed

155

Ultra LowVoltage Delay Locked Loop Using Carbon Nanotubes  

E-Print Network [OSTI]

Ultra LowVoltage Delay Locked Loop Using Carbon Nanotubes J.S. Ajit Northeastern University Dept, MA 02115 E-mail: ybk@ece.neu.edu AbstractCarbon Nanotube FET technology is investigated for both the shrinking process to continue, and for the development of novel architectures, is the carbon

Ayers, Joseph

156

Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions  

E-Print Network [OSTI]

Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions Dana S. Balser D. Anish Roshi (Raman (Agnes Scott College) #12;Carbon RRLs Carbon Radio Recombination Lines (RRLs) NGC 2024 (Orion B) IC 1795 (W3) Palmer et al. (1967) #12;Carbon RRLs Photodissociation Regions (PDRs) Hollenbach & Tielens (1997

Balser, Dana S.

157

Design Strategies for Ultra-high Efficiency Photovoltaics  

E-Print Network [OSTI]

Design Strategies for Ultra-high Efficiency Photovoltaics Thesis by Emily Cathryn Warmann, who reminds me that this is fun and interesting. iv #12;Abstract While concentrator photovoltaic cells, the over all module efficiency drops to only 34 to 36%. T

Winfree, Erik

158

The Composition of Ultra High Energy Cosmic Rays Through Hybrid  

E-Print Network [OSTI]

nuclei originating outside the Solar System "Ultra High Energy" E > 1017eV First discovered by interact high in the Earth's atmosphere EASs result in billions of secondary particles Fluorescence) Image produced by 16x16 PMT "Cluster Box" 3.3 m diameter mirrors collect light and focus

159

ULTRA-THIN QUARTZ COMBUSTORS FOR TPV POWER GENERATION  

E-Print Network [OSTI]

ULTRA-THIN QUARTZ COMBUSTORS FOR TPV POWER GENERATION Yong Fan, Yuji Suzuki, and Nobuhide Kasagi in planar quartz combustors with channel height of 0.7/1.0/1.5 mm have been investigated for micro on the wall temperature. Keywords: Quenching distance, Micro combustor, Wall/flame temperature, PLIF 1

Kasagi, Nobuhide

160

An Ultra-Wearable, Wireless, Low Power ECG Monitoring System  

E-Print Network [OSTI]

An Ultra-Wearable, Wireless, Low Power ECG Monitoring System Chulsung Park and Pai H. Chou., Suite 107 San Diego, CA 92121, USA Abstract-- Wearable electrocardiograph (ECG) monitoring systems today performance to gold standard ECG electrodes, has been developed. This paper presents a description

Shinozuka, Masanobu

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of Ultra Clean Fuels from Natural Gas  

SciTech Connect (OSTI)

ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.

Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

2006-02-28T23:59:59.000Z

162

Ultra-cold atomic matter and quantum information My group studies various many-body states of ultra cold atoms and  

E-Print Network [OSTI]

Ultra-cold atomic matter and quantum information My group studies various many-body states of ultra cold atoms and investigates possible applications towards quantum computation. Two subjects studies of nematic Mott states and dimerized valence bond states of spin-one atoms. We also have

Plotkin, Steven S.

163

Double Pair Production by Ultra High Energy Cosmic Ray Photons  

E-Print Network [OSTI]

With use of CompHEP package we've made the detailed estimate of the influence of double e+e- pair production by photons (DPP) on the propagation of ultra high energy electromagnetic cascade. We show that in the models in which cosmic ray photons energy reaches few thousand EeV refined DPP analysis may lead to substantial difference in predicted photon spectrum compared to previous rough estimates.

S. V. Demidov; O. E. Kalashev

2008-12-22T23:59:59.000Z

164

Ultra-Thin Metal Films for Enhanced Solar Absorption  

E-Print Network [OSTI]

This paper presents modelled results for optical absorption in ultra-thin films of nickel, gold and silver over the solar spectrum. It is found in the case of nickel there is an optimum thickness for maximum solar absorption around 10-13nm. This effect is not observed for gold or silver. It is postulated that this is an interference effect occurring due the particular real and imaginary refractive profile of nickel across the solar spectrum.

Ahmad, N; Teng, M; Cryan, M J

2012-01-01T23:59:59.000Z

165

Ultra High Energy Cosmic Rays: present status and future prospects  

E-Print Network [OSTI]

Reasons for the current interest in cosmic rays above 10^19 eV are described. The latest results on the energy spectrum, arrival direction distribution and mass composition of cosmic rays are reviewed, including data that were reported after the meeting in Blois in June 2001. The enigma set by the existence of ultra high-energy cosmic rays remains. Ideas proposed to explain it are discussed and progress with the construction of the Pierre Auger Observatory is outlined.

A. A. Watson

2001-12-20T23:59:59.000Z

166

HemUltraSonicSensor Version 1.2  

E-Print Network [OSTI]

beaucoup plus t^ot. 1.1 Comment utiliser ce manuel Ce manuel introduit le module HemUltraSonicSensor destin´e au robot He- misson. Si ce manuel ne r´epond pas `a l'un des probl`emes auquel vous ^etes confront dom- mages `a un tiers. ­ Ne branchez pas le module pendant que le robot est allum´e. Pour ´eviter

Napp, Nils

167

Ultra-fast outflows (aka UFOs) from AGNs and QSOs  

E-Print Network [OSTI]

During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

Cappi, M; Giustini, M

2013-01-01T23:59:59.000Z

168

Ultra Large Castings For Lightweight Vehicle Structures | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONS |Ultra

169

Manufacturing Ultra-Precision Meso-scale Products by Coining  

SciTech Connect (OSTI)

A method for replicating ultra-precision, meso-scale features onto a near-net-shape metallic blank has been demonstrated. The 'coining' technology can be used to imprint a wide range of features and/or profiles into two opposing surfaces. The instrumented system provides the ability to measure and control the product thickness and total thickness variation (TTV). The coining mechanism relies on kinematic principles to accurately and efficiently produce ultra-precision work pieces without the production of by products such as machining chips, or grinding swarf while preserving surface finish, material structure and overall form. Coining has been developed as a niche process for manufacturing difficult to machine, millimeter size components made from materials that may present hazardous conditions. In the case described in this paper a refractory metal part, tantalum (Ta) was produced with 4 {micro}m peak to valley 50 {micro}m special wavelength sine wave coined into the surface of 50 {micro}m blank. This technique shows promise for use on ductile materials that cannot be precision machined with conventional single crystal diamond tooling and/or has strict requirements on subsurface damage, surface impurities and grain structure. As a production process, it can be used to reduce manufacturing costs where large numbers of ultra-precision, repetitive designs are required and produce parts out of hazardous materials without generating added waste.

Seugling, R M; Davis, P J; Rickens, K; Osmer, J; Brinksmeier, E

2010-02-18T23:59:59.000Z

170

Ultra-bright, ultra-broadband hard x-ray driven by laser-produced energetic electron beams  

SciTech Connect (OSTI)

We propose a new method of obtaining a compact ultra-bright, ultra-broadband hard X-ray source. This X-ray source has a high peak brightness in the order of 10{sup 22} photons/(s mm{sup 2} mrad{sup 2} 0.1\\%BW), an ultrashort duration (10 fs), and a broadband spectrum (flat distribution from 0.1 MeV to 4 MeV), and thus has wide-ranging potential applications, such as in ultrafast Laue diffraction experiments. In our scheme, laser-plasma accelerators (LPAs) provide driven electron beams. A foil target is placed oblique to the beam direction so that the target normal sheath field (TNSF) is used to provide a bending force. Using this TNSF-kick scheme, we can fully utilize the advantages of current LPAs, including their high charge, high energy, and low emittance.

Shi, Yin; Shen, Baifei; Zhang, Xiaomei; Wang, Wenpeng; Ji, Liangliang; Zhang, Lingang; Xu, Jiancai; Yu, Yahong; Zhao, Xueyan; Wang, Xiaofeng; Yi, Longqing; Xu, Tongjun; Xu, Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)] [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

2013-09-15T23:59:59.000Z

171

Thermodynamics of Quantum Ultra-cold Neutron Gas under Gravity of The Earth  

E-Print Network [OSTI]

The stored ultra-cold neutrons have been developed. A high density ultra-cold neutron gas has been recently produced by using the nuclear spallation method. We investigate the thermodynamic properties of the quantum ultra-cold neutron gas in the Earth's gravitational field. We find that the quantum effects increase temperature dependence of the chemical potential and the internal energy in the low temperature region. The density distribution of quantum ultra-cold neutron gas is modified by the Earth's gravitational field.

Hiromi Kaneko; Akihiro Tohsaki; Atsushi Hosaka

2012-06-29T23:59:59.000Z

172

Photovoltaic performance of ultra-small PbSe quantum dots  

E-Print Network [OSTI]

Y; Alivisatos, AP, Photovoltaic Devices Employing TernaryPhotovoltaic performance of ultra-small PbSe quantum dotsquantum dot, solar cell, photovoltaic, quantum size effect

Ma, Wanli

2014-01-01T23:59:59.000Z

173

Ultraviolet-B Radiation Harms Aquatic Life -Current Results http://www.currentresults.com/Water/Water-Pollution/ultraviolet.php 1 of 2 8/7/2007 1:45 PM  

E-Print Network [OSTI]

Ultraviolet-B Radiation Harms Aquatic Life - Current Results http://www.currentresults.com/Water/Water-Pollution Water E Coli UVB Sunscreen #12;Ultraviolet-B Radiation Harms Aquatic Life - Current Results http://www.currentresults.com/Water/Water-Pollution/ultraviolet.php 2 of 2 8/7/2007 1:45 PM Home | About | Privacy Policy | Terms of Use | Advertise on This Site

Blaustein, Andrew R.

174

E-Print Network 3.0 - arsenic ultrashallow junctions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Sensitivity Si-based VUV Photodiodes Summary: . Keywords- Vacuum Ultra-Violet; photodiode; ultrashallow junctions; series resistance; responsivity; time... to the device...

175

Wide band cryogenic ultra-high vacuum microwave absorber  

DOE Patents [OSTI]

An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

Campisi, Isidoro E. (Newport News, VA)

1992-01-01T23:59:59.000Z

176

Chemical surface deposition of ultra-thin semiconductors  

DOE Patents [OSTI]

A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

McCandless, Brian E. (243 W. Main St., Elkton, MD 21921); Shafarman, William N. (1905 N. Van Buren St., Wilmington, DE 19802)

2003-03-25T23:59:59.000Z

177

Ultra high vacuum broad band high power microwave window  

DOE Patents [OSTI]

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

1997-01-01T23:59:59.000Z

178

Ultra high vacuum broad band high power microwave window  

DOE Patents [OSTI]

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

Nguyen-Tuong, V.; Dylla, H.F. III

1997-11-04T23:59:59.000Z

179

Wide band cryogenic ultra-high vacuum microwave absorber  

DOE Patents [OSTI]

An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

Campisi, I.E.

1992-05-12T23:59:59.000Z

180

Production of Ultra-Cold-Neutrons in Solid ?-Oxygen  

E-Print Network [OSTI]

Our recent neutron scattering measurements of phonons and magnons in solid \\alpha-oxygen have led us to a new understanding of the production mechanismen of ultra-cold-neutrons (UCN) in this super-thermal converter. The UCN production in solid \\alpha-oxygen is dominated by the excitation of phonons. The contribution of magnons to UCN production becomes only slightly important above E >10 meV and at E >4 meV. Solid \\alpha-oxygen is in comparison to solid deuterium less effcient in the down-scattering of thermal or cold neutrons into the UCN energy regime.

E. Gutsmiedl; A. Frei; F. Boehle; A. Maier; S. Paul; H. Schober; A. Orecchini

2010-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Relativistic Positron Creation Using Ultra-Intense Short Pulse Lasers  

SciTech Connect (OSTI)

We measure up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets when illuminated with short ({approx} 1 ps) ultra-intense ({approx} 1 x 10{sup 20} W/cm{sup 2}) laser pulses. Positrons produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. The measurements indicate the laser produced, relativistic positron densities ({approx} 10{sup 16} positrons/cm{sup 3}) are the highest ever created in the laboratory.

Chen, H; Wilks, S; Bonlie, J; Liang, E; Myatt, J; Price, D; Meyerhofer, D; Beiersdorfer, P

2008-08-25T23:59:59.000Z

182

High Efficiency, Ultra-Low Emission, Integrated Process Heater System  

SciTech Connect (OSTI)

The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution relied heavily on computational fluid dynamic predictions of design alternatives. The final design features modular separate radiant cells, each with one and two-side fired vertical tubes. The convection section configuration is vertical tube banks enclosed in the radiant channels. Commercial modular plate air preheaters are used. The predicted performance for the integrated advanced heater and Callidus burner is 95 percent efficiency with 9 ppm NOx emissions firing natural gas, and 12 ppm firing refinery gas. The total erected cost is less than a conventional heater with combustion air preheat.

Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

2006-06-19T23:59:59.000Z

183

Entanglement generation in the ultra-strongly coupled Rabi model  

E-Print Network [OSTI]

We analyze the dynamics of the quantum Rabi model for two qubits interacting through a common bosonic field mode (resonator), focusing on the generation and detection of maximally entangled Bell states. We obtain analytical results for the unitary dynamics of this system in the slow-qubit (or degenerate) regime, considering ultra-strong coupling between qubits and resonator mode, for which the rotating wave approximation is no longer applicable. We also numerically investigate the dynamics beyond the slow-qubit condition in order to study the validity of the model in the presence of less strict conditions.

Matteo Bina; Stefano Maffezzoli Felis; Stefano Olivares

2014-10-23T23:59:59.000Z

184

Ultra-Trace Forensics Science Center (UFSC) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014 EIA Energy40081A UmtedGrishamMARCUgoUltra-Trace

185

Ultra Efficient Combined Heat, Hydrogen, and Power System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONS |Ultra Efficient

186

Ultra-Efficient and Power-Dense Electric Motors  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONS |UltraDepartmentand

187

Ultra-Fast Chemical Conversion Surfaces | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONS |UltraDepartmentand1

188

AUTOMATIC MAPPING FROM ULTRA-LIGHT UAV IMAGERY Christoph Strecha a,b  

E-Print Network [OSTI]

AUTOMATIC MAPPING FROM ULTRA-LIGHT UAV IMAGERY Christoph Strecha a,b , Olivier Küng a,b and Pascal.kueng@pix4d.com) KEY WORDS: UAV, mapping, ortho-image, DSM, Structure and Motion ABSTRACT: This paper presents an affordable, fully automated and accurate mapping solutions based on ultra-light UAV imagery

Fua, Pascal

189

Engineering Time-Reversal Invariant Topological Insulators With Ultra-Cold Atoms N. Goldman,1  

E-Print Network [OSTI]

Engineering Time-Reversal Invariant Topological Insulators With Ultra-Cold Atoms N. Goldman,1 I: February 1, 2010) Topological insulators are a broad class of unconven- tional phases of matter-reversal violations. Here, we lay out an experiment to realize time-reversal invariant topological insulators in ultra

Satija, Indu

190

17 March 2009 Do some ultra-high-energy cosmic rays originate in  

E-Print Network [OSTI]

17 March 2009 Do some ultra-high-energy cosmic rays originate in higher-dimensional space-time? Abstract I speculate that some ultra-high-energy cosmic rays may originate in another universe in flat (non have needed an initial energy of 500 EeV to arrive at earth with 320 EeV. If it originated farther out

Bryan, Ronald

191

Sensitivity of an underwater acoustic array to ultra-high energy neutrinos  

E-Print Network [OSTI]

the maximum energy of protons of cos- mological origin somewhere below 1020 eV, be- cause of the finite (%50Sensitivity of an underwater acoustic array to ultra-high energy neutrinos Nikolai G. Lehtinen the possibility of searching for ultra high energy neutrinos in cosmic rays using acoustic techniques in ocean

Buckingham, Michael

192

The Ultra-micro Wave Rotor Research at Michigan State University Florin Iancu, Janusz Piechna*  

E-Print Network [OSTI]

University of Technology 24 Nowowiejska Str., 00-665 Warsaw, Poland ABSTRACT Ultra Micro Gas Turbines (Uµ concepts of incorporating a wave rotor to an ultra-micro gas turbine and the advantages of wave rotors be estimated at about 70%. 1. INTRODUCTION Starting in 1995, with the MIT "Micro Gas Turbine" project

Müller, Norbert

193

The ultra-thin solar cells that could generate power through windows  

E-Print Network [OSTI]

The ultra-thin solar cells that could generate power through windows By Claire Bates Last updated, generating enough electricity to power the GPS or air conditioning. Solar cells, which convert solar energy into tinted windows Page 1 of 3The ultra-thin solar cells that could generate power through windows | Mail

Rogers, John A.

194

Sun Ultra 80 SPEC CFP95 Sun Forte Inter-Array Padding for Data Localization  

E-Print Network [OSTI]

Sun Ultra 80 SPEC CFP95 Sun Forte 5.5 Inter-Array Padding for Data Localization with Static for data localization to minimize cache conflict misses. In the evaluation on Sun Ultra 80 using SPEC CFP95, the OSCAR multigrain compiler gave us up to 5.5 times speedup against Sun Forte automatic paralleling

Kasahara, Hironori

195

Flame Stability Analysis in an Ultra Compact Combustor Using Large-Eddy Simulation  

E-Print Network [OSTI]

Flame Stability Analysis in an Ultra Compact Combustor Using Large-Eddy Simulation C. Lietz , C Base, Ohio 45433 Large eddy simulation (LES) of an experimental ultra-compact combustor (UCC as a conven- tional combustor path. In order to reduce the penalty due to increased weight of these burners

Raman, Venkat

196

Ultra High-Resolution Global Climate Simulation Project PRINCIPAL INVESTIGATOR: James J. Hack  

E-Print Network [OSTI]

changes in the frequency and intensity of extreme events. This project is developing the scientific a terrestrial carbon modeling capabil- ity. #12;Ultra High-Resolution Global Climate Simulation Project elersUltra High-Resolution Global Climate Simulation Project PRINCIPAL INVESTIGATOR: James J. Hack

197

Table 1. Design specifications of ultra-high speed PM motor. Supply voltage (V) 12  

E-Print Network [OSTI]

) 1500 Rated torque (Nm) 0.0955 Rated speed (r/min) 150,000 Stator Core Permanent Magnet Shaft Coil Analysis of Ultra-High Speed Permanent-Magnet Motor Masaru Kano, and Toshihiko Noguchi Department@vos.nagaokaut.ac.jp Abstract This paper describes a design of an ultra-high speed (UHS) permanent-magnet (PM) synchronous motor

Fujimoto, Hiroshi

198

Eigenvalue bounds in one dimensional Schrodinger's equation with ultra-short potentials  

E-Print Network [OSTI]

The problem of a particle localized in a ultra-short potential in one dimension is considered. By proposing a general solution to Schrodinger;s equation we show that the energy spectra and the probability of the particle have definite bounds for an arbitrary ultra-short potential. These results are relevant for the confinement of particles in nanodevices.

Gabriel Gonzalez

2015-03-03T23:59:59.000Z

199

RAIN AND WIND ESTIMATION FROM SEAWINDS IN HURRICANES AT ULTRA HIGH RESOLUTION  

E-Print Network [OSTI]

function (GMF) which relates wind to backscatter (0 ) is not well understood for extremely high wind speedsRAIN AND WIND ESTIMATION FROM SEAWINDS IN HURRICANES AT ULTRA HIGH RESOLUTION Brent A. Williams method for estimating wind and rain in hurricanes from SeaWinds at ultra-high resolution is developed. We

Long, David G.

200

Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity  

E-Print Network [OSTI]

Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer-grade ultra-high molecular weight polyethylene (UHMWPE) (GUR 1050 resin) were evaluated as a function replacements; Ultra-high molecular weight polyethylene (UHMWPE); Crystallinity; Friction; Wear 1. Introduction

Lin, Zhiqun

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ultra-high pressure water jet: Baseline report  

SciTech Connect (OSTI)

The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

NONE

1997-07-31T23:59:59.000Z

202

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments  

SciTech Connect (OSTI)

Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

Thompson, M C; Badakov, H; Rosenzweig, J B; Travish, G; Hogan, M; Ischebeck, R; Kirby, N; Siemann, R; Walz, D; Muggli, P; Scott, A; Yoder, R

2006-08-04T23:59:59.000Z

203

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments  

SciTech Connect (OSTI)

Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}z = 20 {mu}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {mu}m / OD = 325 {mu}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

Thompson, M. C. [Lawrence Livermore National Laboratory, Livermore, California, 90095 (United States); Badakov, H.; Rosenzweig, J. B.; Travis, G. [UCLA Department of Physics and Astronomy, Los Angeles, California, 90095 (United States); Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D. [Stanford Linear Accelerator Center, Stanford, California, 94309 (United States); Muggli, P. [University of Southern California Los Angeles, California, 90089 (United States); Scott, A. [UCSB Department of Physics, Santa Barbara, California, 93106 (United States); Yoder, R. [Manhattan College, Riverdale, New York, 10471 (United States)

2006-11-27T23:59:59.000Z

204

Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers  

SciTech Connect (OSTI)

This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

2009-08-24T23:59:59.000Z

205

Design Considerations for Large Mass Ultra-Low Background Experiments  

SciTech Connect (OSTI)

Summary The objective of this document is to present the designers of the next generation of large-mass, ultra-low background experiments with lessons learned and design strategies from previous experimental work. Design issues divided by topic into mechanical, thermal and electrical requirements are addressed. Large mass low-background experiments have been recognized by the scientific community as appropriate tools to aid in the refinement of the standard model. The design of these experiments is very costly and a rigorous engineering review is required for their success. The extreme conditions that the components of the experiment must withstand (heavy shielding, vacuum/pressure and temperature gradients), in combination with unprecedented noise levels, necessitate engineering guidance to support quality construction and safe operating conditions. Physical properties and analytical results of typical construction materials are presented. Design considerations for achieving ultra-low-noise data acquisition systems are addressed. Five large-mass, low-background conceptual designs for the one-tonne scale germanium experiment are proposed and analyzed. The result is a series of recommendations for future experiments engineering and for the Majorana simulation task group to evaluate the different design approaches.

Aguayo Navarrete, Estanislao; Reid, Douglas J.; Fast, James E.; Orrell, John L.

2011-07-01T23:59:59.000Z

206

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

207

Ultra-Compact High-Efficiency Luminaire for General Illumination  

SciTech Connect (OSTI)

Cree has developed a new ultra-compact light emitting diode (LED) luminaire capable of providing high efficacy with excellent color quality that can lead to significant energy savings in todayâ??s commercial and retail applications. This success was based on an integrated development effort tailoring the LED component characteristics, optics, thermal management and driver design for the small footprint to achieve an overall system efficiency of â?¥ 70%. A new LED component was designed to provide high brightness and efficacy in a form factor that allowed for a small directional beam with a luminaire housing design able to dissipate the heat effectively using a small physical envelope. A very compact, 90% efficient driver was developed to meet the system performance while not taking away any thermal mass from the heat sink. A 91% efficient secondary optics was designed to maximize efficiency while providing a smooth beam. The reliability of the new LED component was robust under accelerated testing conditions. Luminaires were assembled integrating the novel LED component, secondary optics, heat sink and driver technology to demonstrate the system improvement. Cree has successfully completed this project by developing an ultra-compact LED luminaire that provided 380 lumens at a correlated color temperature (CCT) of 2822 K and color rendering index (CRI) of 94 with an efficacy of 94 lumens per watt (LPW) when operating at 4 W input power (steady state) with an overall system efficiency of 81%. At a higher input power of 9 Watts, the lamp provided 658 lumens at 71 LPW.

Ted Lowes

2012-04-08T23:59:59.000Z

208

Non-filamentated ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification  

SciTech Connect (OSTI)

Ultra-intense and ultra-short laser pulses may be generated up to the exawatt-zetawatt regime due to parametric processes in plasmas. The minimization of unwanted plasma processes leads to operational limits which are discussed here with respect to filamentation. Transverse filamentation, which originally was derived for plane waves, is being investigated for seed pulse propagation in the so called ?-pulse limit. A three-dimensional (3D) three-wave-interaction model is the basis of the present investigation. To demonstrate the applicability of the three-wave-interaction model, the 1D pulse forms are compared with those obtained from 1D particle in cell and Vlasov simulations. Although wave-breaking may occur, the kinetic simulations show that the leading pumped pulse develops a form similar to that obtained from the three-wave-interaction model. In the main part, 2D and 3D filamentation processes of (localized) pulses are investigated with the three-wave-interaction model. It is shown that the leading pulse front can stay filamentation-free, whereas the rear parts show transverse modulations.

Lehmann, G.; Spatschek, K. H. [Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf (Germany)] [Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf (Germany)

2014-05-15T23:59:59.000Z

209

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--II: EXPRESS BRIEFS, VOL. 59, NO. 4, APRIL 2012 193 Universal Principles for Ultra Low Power  

E-Print Network [OSTI]

Universal Principles for Ultra Low Power and Energy Efficient Design Rahul Sarpeshkar, Senior Member, IEEE

Sarpeshkar, Rahul

210

Propagation of ultra-short solitons in stochastic Maxwell's equations  

SciTech Connect (OSTI)

We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.

Kurt, Levent, E-mail: LKurt@gc.cuny.edu [Department of Science, Borough of Manhattan Community College, City University of New York, New York, New York 10007 (United States)] [Department of Science, Borough of Manhattan Community College, City University of New York, New York, New York 10007 (United States); Schäfer, Tobias [Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 (United States)] [Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 (United States)

2014-01-15T23:59:59.000Z

211

Ultra-Accelerated Natural Sunlight Exposure Testing Facilities  

DOE Patents [OSTI]

A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

Lewandowski, Allan A. (Evergreen, CO); Jorgensen, Gary J. (Pine, CO)

2004-11-23T23:59:59.000Z

212

Ultra-accelerated natural sunlight exposure testing facilities  

DOE Patents [OSTI]

A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

Lewandowski, Allan A.; Jorgensen, Gary J.

2003-08-12T23:59:59.000Z

213

Ultra-high pressure water jet: Baseline report; Summary  

SciTech Connect (OSTI)

The Husky{trademark} is an ultra high pressure waterjet cutting tool system. The pump is mounted on a steel tube frame which includes slots for transport by a forklift. The Husky{trademark} features an automatic shutdown for several conditions such as low oil pressure and high oil temperature. Placement of the Husky{trademark} must allow for a three foot clearance on all sides for operation and service access. At maximum continuous operation, the output volume is 7.2 gallons per minute with an output pressure of 40,000 psi. A diesel engine provides power for the system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

NONE

1997-07-31T23:59:59.000Z

214

The Acoustic Detection of Ultra High Energy Neutrinos  

E-Print Network [OSTI]

Attempts have been made to parameterise the thermoacoustic emission of particle cascades induced by EeV neutrinos interacting in the sea. Understanding the characteristic radiation from such an event allows us to predict the pressure pulse observed by underwater acoustic sensors distributed in kilometre scale arrays. We find that detectors encompassing thousands of cubic kilometres are required, with a minimum of 100 hydrophones per kilometre cubed, in order to observe the flux of neutrinos predicted by the attenuation of ultra high energy cosmic rays on cosmic microwave background photons. The pressure threshold of such an array must be in the range 5-10 mPa and the said detector will have to operate for five years or more. Additionally a qualitative analysis of the first acoustic data recorded by the Rona hydrophone array off the north-west coast of Scotland is reported.

J. Perkin

2008-01-07T23:59:59.000Z

215

Ultra-high-speed optical and electronic distributed devices  

SciTech Connect (OSTI)

This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

1995-08-01T23:59:59.000Z

216

Scenarios for the ATF2 Ultra-Low Betas Proposal  

SciTech Connect (OSTI)

The current ATF2 Ultra-Low beta proposal was designed to achieve 20nm vertical IP beam size without considering the multipolar components of the FD magnets. In this paper we describe different scenarios that avoid the detrimental effect of these multipolar errors to the beam size at the interaction point (IP). The simplest approach consists in modifying the optics, but other solutions are studied as the introduction of super-conducting wigglers to reduce the emittance or the replacement of the normal-conducting focusing quadrupole in the Final Doublet (NC-QF1FF) with a super-conducting quadrupole one (SC-QF1FF). These are fully addressed in the paper.

Marin, Eduardo; /CERN; Tomas, Rogelio; /CERN; Bambade, Philip; /Orsay, LAL; Kuroda, Shigeru; /KEK, Tsukuba; Okugi, Toshiyuki; /KEK, Tsukuba; Tauchi, Toshiaki; /KEK, Tsukuba; Terunuma, Nobuhiro; /KEK, Tsukuba; Urakawa, Junji; /KEK, Tsukuba; Parker, Brett; /Brookhaven; Seryi, Andrei; /SLAC; White, Glen; /SLAC; Woodley, Mark; /SLAC

2012-06-29T23:59:59.000Z

217

Ultra Wide Band RFID Neutron Tags for Nuclear Materials Monitoring  

SciTech Connect (OSTI)

Recent advancements in the ultra-wide band Radio Frequency Identification (RFID) technology and solid state pillar type neutron detectors have enabled us to move forward in combining both technologies for advanced neutron monitoring. The LLNL RFID tag is totally passive and will operate indefinitely without the need for batteries. The tag is compact, can be directly mounted on metal, and has high performance in dense and cluttered environments. The LLNL coin-sized pillar solid state neutron detector has achieved a thermal neutron detection efficiency of 20% and neutron/gamma discrimination of 1E5. These performance values are comparable to a fieldable {sup 3}He based detector. In this paper we will discuss features about the two technologies and some potential applications for the advanced safeguarding of nuclear materials.

Nekoogar, F; Dowla, F; Wang, T

2010-01-27T23:59:59.000Z

218

Ultra-low density microcellular polymer foam and method  

DOE Patents [OSTI]

An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.

Simandl, R.F.; Brown, J.D.

1996-03-19T23:59:59.000Z

219

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials  

DOE Patents [OSTI]

An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

2010-03-30T23:59:59.000Z

220

Averaged dynamics of ultra-relativisitc charged particles beams  

E-Print Network [OSTI]

In this thesis, we consider the suitability of using the charged cold fluid model in the description of ultra-relativistic beams. The method that we have used is the following. Firstly, the necessary notions of kinetic theory and differential geometry of second order differential equations are explained. Then an averaging procedure is applied to a connection associated with the Lorentz force equation. The result of this averaging is an affine connection on the space-time manifold. The corresponding geodesic equation defines the averaged Lorentz force equation. We prove that for ultra-relativistic beams described by narrow distribution functions, the solutions of both equations are similar. This fact justifies the replacement of the Lorentz force equation by the simpler {\\it averaged Lorentz force equation}. After this, for each of these models we associate the corresponding kinetic model, which are based on the Vlasov equation and {\\it averaged Vlasov equation} respectively. The averaged Vlasov equation is simpler than the original Vlasov equation. This fact allows us to prove that the differential operation defining the averaged charged cold fluid equation is controlled by the {\\it diameter of the distribution function}, by powers of the {\\it energy of the beam} and by the time of evolution $t$. We show that the Vlasov equation and the averaged Vlasov equation have similar solutions, when the initial conditions are the same. Finally, as an application of the {\\it averaged Lorentz force equation} we re-derive the beam dynamics formalism used in accelerator physics from the Jacobi equation of the averaged Lorentz force equation.

Ricardo Gallego Torromé

2012-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Approaches to fabricating high-efficiency ultra-thin CdTe solar cells.  

E-Print Network [OSTI]

??This thesis is an investigation of the fabrication, characterization and performance of high-efficiency and ultra-thin CdTe solar cells with an aim of reducing the material… (more)

Xia, Wei (1981 - )

2013-01-01T23:59:59.000Z

222

An energy efficient sub-threshold baseband processor architecture for pulsed ultra-wideband communications  

E-Print Network [OSTI]

Ultra-wideband (UWB) communications is currently being explored as a medium for high-data-rate last-meter wireless links. Accordingly, there has been much interest in integrating UWB radios onto battery-operated devices, ...

Sze, Vivienne

2006-01-01T23:59:59.000Z

223

Ultra-Shallow Imaging Using 2D & 3D Seismic Reflection Methods  

E-Print Network [OSTI]

The research presented in this dissertation focuses on the survey design, acquisition, processing, and interpretation of ultra-shallow seismic reflection (USR) data in two and three dimensions. The application of 3D USR methods to image multiple...

Sloan, Steven D.

2008-01-01T23:59:59.000Z

224

PEM fuel cellstack development based on membrane-electrode assemblies of ultra-low platinum loadings  

SciTech Connect (OSTI)

Attempt is made to scale-up single cell technology, based on ultra-low platinum loadings, to develop a polymer electrolyte membrane fuel cell stack for stationary power generation.

Zawodzinski, C.; Wilson, M.S.; Gottesfeld, S.

1995-09-01T23:59:59.000Z

225

Electromagnetically-driven ultra-fast tool servos for diamond turning  

E-Print Network [OSTI]

This thesis presents the design, implementation, and control of a new class of fast tool servos (FTS). The primary thesis contributions include the design and experimental demonstration of: novel ultra-fast electromagnetic ...

Lu, Xiaodong, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

226

Cost-benefit analysis of ultra-low sulfur jet fuel  

E-Print Network [OSTI]

The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

Kuhn, Stephen (Stephen Richard)

2010-01-01T23:59:59.000Z

227

Improved performance of ultra-high molecular weight polyethylene for orthopedic applications  

E-Print Network [OSTI]

A considerable number of total-joint replacement devices used in orthopedic medicine involve articulation between a metallic alloy and ultra-high molecular weight polyethylene (UHMWPE). Though this polymer has excellent wear resistance, the wear...

Plumlee, Kevin Grant

2009-05-15T23:59:59.000Z

228

Methods for increasing the thermal conductivity of ultra-high molecular weight polyethylene (UHMWPE)  

E-Print Network [OSTI]

A two-part study was conducted to determine methods for producing ultra-high molecular weight polyethylene with high thermal conductivity by way of polymer chain orientation. The first portion of this report surveys current ...

Miler, Josef L

2006-01-01T23:59:59.000Z

229

Nuclear astrophysics studies with ultra-peripheral heavy-ion collisions  

E-Print Network [OSTI]

I describe in very simple terms the theoretical tools needed to investigate ultra-peripheral nuclear reactions for nuclear astrophysics purposes. For a more detailed account, see arXiv:0908.4307.

C. A. Bertulani

2009-12-17T23:59:59.000Z

230

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered...  

Broader source: Energy.gov (indexed) [DOE]

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered CHP System Contract: DE-EE0004016 GE Energy, Dresser Inc. 102010 - 92014 Jim Zurlo, Principal Investigator...

231

Laboratory Test Report for ThermaStor Ultra-Aire XT150H Dehumidifier  

SciTech Connect (OSTI)

This report documents the performance of the ThermaStor Ultra-Aire XT150H Dehumidifier. Its performance was measured across a wide range of inlet air conditions and fit to a numerical model.

Christensen, D.; Winkler, J.

2009-12-01T23:59:59.000Z

232

Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering  

E-Print Network [OSTI]

16. Yu. Shvyd’ko, X-Ray Optics, Berlin: Springer-Verlag,Ultra-high Resolution Optics for EUV and Soft X-rayspectral resolution soft x-ray optics. Conventionally in the

Voronov, Dmitry L.

2010-01-01T23:59:59.000Z

233

Vehicle Technologies Office Merit Review 2014: Thermally Stable Ultra-Low Temperature Oxidation Catalysts  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermally stable ultra-low...

234

Bimodal solar system based on a ultra-high-temperature TEC  

SciTech Connect (OSTI)

The paper considers an ecological, solar, bimodal system with ultra-high temperature thermionic energy converter (TEC). The solar bimodal Space Electric Propulsion System (SEPS) characteristics are presented. {copyright} {ital 1996 American Institute of Physics.}

Ogloblin, B.G.; Kirillov, E.Y.; Klimov, A.V.; Shalaev, A.I.; Shumov, D.P. [Central Design Bureau of Machine Building, Krasnogvardeyskaya Square 3, St. Petersburg, (Russia) 195272; Ender, A.Y.; Kuznetsov, V.I.; Sitnov, V.I. [Ioffe Physico-Technical Institute, Politekhnicheskaya St. 26, St. Petersburg, (Russia) 194021

1996-03-01T23:59:59.000Z

235

Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy  

E-Print Network [OSTI]

of an Ultra-Fine Grained Aluminum Alloy, Poster Session,Grained Cryomilled 5083 Aluminum Alloy J.L. WALLEY, E.J.consistent with other MA aluminum alloys and is attributed

Walley, J. L.; Lavernia, E. J.; Gibeling, J. C.

2009-01-01T23:59:59.000Z

236

Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic...  

Broader source: Energy.gov (indexed) [DOE]

Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts Yanbing Guo, Zheng Ren, and Pu-Xian Gao Department of Chemical, Materials and Biomolecular...

237

Photothermal nano-cavities for ultra-sensitive chem-bio detection  

E-Print Network [OSTI]

Nano-cavity photothermal spectroscopy is a novel technique for ultra-sensitive chem-bio detection. We illustrate that through simultaneous localization of optical and thermal interactions in a planar nano-cavity, detection ...

Hu, Juejun

238

An ultra-compact and efficient Li-ion battery charger circuit for biomedical applications  

E-Print Network [OSTI]

This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger for wirelessly powered implantable medical devices. The charger presented here takes advantage of the tanh output current profile of an ...

Do Valle, Bruno Guimaraes

239

Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain  

Broader source: Energy.gov [DOE]

Presentation given by MAHLE Powertrain, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

240

Practical limitations of single-span ultra-high performance concrete beams  

E-Print Network [OSTI]

Since its development in the early 1970's, researchers have continued to push the limits of concrete mixtures through the creation of ultra-high performance concretes. The use of this class of materials has allowed designers ...

Abrams, Daniel Scott

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An analog approach to interference suppression in ultra-wideband receivers  

E-Print Network [OSTI]

Because of the huge bandwidth of Ultra-Wideband (UWB) systems, in-band narrowband interference may hinder receiver performance. In this dissertation, sources of potential narrowband interference that lie within the IEEE 802.15.3a UWB bandwidth...

Fischer, Timothy W.

2007-09-17T23:59:59.000Z

242

Press and Dryer Roll Surgaces and Web Transfer Systems for Ultra High Paper Maching Speeds  

SciTech Connect (OSTI)

The objective of the project was to provide fundamental knowledge and diagnostic tools needed to design new technologies that will allow ultra high speed web transfer from press rolls and dryer cylinders.

T. F. Patterson

2004-03-15T23:59:59.000Z

243

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench-scale. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. The project is on schedule and on budget. Task 4, a bench-scale demonstration of the ultra-fast TSA system is complete. Rapid thermal swing of an adsorbent bed using microchannels has been successfully demonstrated and the separation of a 70% methane and 30% nitrogen was purified to 92% methane. The bench-scale demonstration unit was small relative to the system dead volume for the initial phase of experiments and a purge step was added to sweep the dead volume prior to desorbing the bed and measuring purity. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement.

Anna Lee Tonkovich

2005-07-01T23:59:59.000Z

244

Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper  

SciTech Connect (OSTI)

The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

Dr. VIjay K. Mathur

2009-04-30T23:59:59.000Z

245

Coupling of (ultra-) relativistic atomic nuclei with photons  

SciTech Connect (OSTI)

The coupling of photons with (ultra-) relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare) nuclei (fully stripped of electrons) are accelerated to energies ? 1 TeV per nucleon (according to the state of the art at LHC, for instance) and photon sources like petawatt lasers ? 1 eV-radiation (envisaged by ELI-NP project, for instance), or free-electron laser ? 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical) polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration) is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.

Apostol, M. [Institute of Atomic Physics, Institute for Physics and Nuclear Engineering, Magurele-Bucharest 077125, MG-6, POBox MG-35 (Romania)] [Institute of Atomic Physics, Institute for Physics and Nuclear Engineering, Magurele-Bucharest 077125, MG-6, POBox MG-35 (Romania); Ganciu, M. [National Institute for Lasers, Plasma and Radiation Physics, Magurele-Bucharest 077125, POBox MG-36 (Romania)] [National Institute for Lasers, Plasma and Radiation Physics, Magurele-Bucharest 077125, POBox MG-36 (Romania)

2013-11-15T23:59:59.000Z

246

The 2012 Hubble Ultra Deep Field (UDF12): Observational Overview  

E-Print Network [OSTI]

We present the 2012 Hubble Ultra Deep Field campaign (UDF12), a large 128-orbit Cycle 19 \\HST\\ program aimed at extending previous WFC3/IR observations of the UDF by quadrupling the exposure time in the F105W filter, imaging in an additional F140W filter, and extending the F160W exposure time by 50%. The principal scientific goal of this project is to determine whether galaxies reionized the universe; our observations are designed to provide a robust determination of the star formation density at $z$$\\,\\gtrsim\\,$8, improve measurements of the ultraviolet continuum slope at $z$$\\,\\sim\\,7\\,-\\,$8, facilitate the construction of new samples of $z$$\\,\\sim\\,9\\,-\\,$10 candidates, and enable the detection of sources up to $z$$\\,\\sim\\,$12. For this project we committed to combining these and other WFC3/IR imaging observations of the UDF area into a single homogeneous dataset, to provide the deepest near-infrared observations of the sky currently achievable. In this paper we present the observational overview of the pr...

Koekemoer, Anton M; McLure, Ross J; Dunlop, James S; Robertson, Brant E; Ono, Yoshiaki; Schenker, Matthew A; Ouchi, Masami; Bowler, Rebecca A A; Rogers, Alexander B; Curtis-Lake, Emma; Schneider, Evan; Charlot, Stephane; Stark, Daniel P; Furlanetto, Steven R; Cirasuolo, Michele; Wild, V; Targett, T

2012-01-01T23:59:59.000Z

247

Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect (OSTI)

The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

Anna Lee Tonkovich

2008-08-11T23:59:59.000Z

248

Ultra-wideband VHF SAR -- Design and measurements  

SciTech Connect (OSTI)

CARABAS, an acronym for ``Coherent All Radio Band Sensing``, is an airborne, horizontal-polarization SAR operating across the frequency band 20--90 MHz, conceived, designed and built by FOA in Sweden. The original motivation for designing such a low frequency system was that a large relative or fractional bandwidth could be achieved at low frequencies. For reasons to be explained, a large fractional bandwidth was considered to be of potential benefit for radar detection in severe clutter environments. A feasibility study of a short wave ultra-wideband radar started at FOA in 1985. Actual construction of the CARABAS system commenced 1987, aircraft integration took place during 1991 and the first radar tests were conducted in early 1992. From the fall of 1992 onwards, field campaigns and evaluation studies have been conducted as a joint effort between FOA and MIT Lincoln Laboratory in the US. This article will focus on experiences concerning foliage penetration with the system. First the authors touch upon the CARABAS system characteristics, outline the arguments behind a large-fractional-bandwidth VHF-band SAR approach to foliage penetration, and finally present some early experimental results. The authors refer to other papers, for a fuller explanation of the system, for more details of image calibration and for results concerning underground imaging.

Hellsten, H.; Froelind, P.O.; Gustavsson, A.; Jonsson, T.; Larsson, B.; Stenstroem, G. [National Defense Research Establishment, Linkoeping (Sweden); Binder, B.T.; Mirkin, M.; Ayasli, S. [Massachusetts Inst. of Technology, Lexington, MA (United States)

1994-12-31T23:59:59.000Z

249

MOVING OBJECTS IN THE HUBBLE ULTRA DEEP FIELD  

SciTech Connect (OSTI)

We identify proper motion objects in the Hubble Ultra Deep Field (UDF) using the optical data from the original UDF program in 2004 and the near-infrared data from the 128 orbit UDF 2012 campaign. There are 12 sources brighter than I = 27 mag that display >3{sigma} significant proper motions. We do not find any proper motion objects fainter than this magnitude limit. Combining optical and near-infrared photometry, we model the spectral energy distribution of each point-source using stellar templates and state-of-the-art white dwarf models. For I {<=} 27 mag, we identify 23 stars with K0-M6 spectral types and two faint blue objects that are clearly old, thick disk white dwarfs. We measure a thick disk white dwarf space density of 0.1-1.7 Multiplication-Sign 10{sup -3} pc{sup -3} from these two objects. There are no halo white dwarfs in the UDF down to I = 27 mag. Combining the Hubble Deep Field North, South, and the UDF data, we do not see any evidence for dark matter in the form of faint halo white dwarfs, and the observed population of white dwarfs can be explained with the standard Galactic models.

Kilic, Mukremin; Gianninas, Alexandros [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Von Hippel, Ted, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: ted.vonhippel@erau.edu [Embry-Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, FL 32114 (United States)

2013-09-01T23:59:59.000Z

250

Ultra-high-energy debris from the collisional Penrose process  

E-Print Network [OSTI]

Soon after the discovery of the Kerr metric, Penrose realized that superradiance can be exploited to extract energy from black holes. The original idea (involving the breakup of a single particle) yields only modest energy gains. A variant of the Penrose process consists of particle collisions in the ergoregion. The collisional Penrose process has been explored recently in the context of dark matter searches, with the conclusion that the ratio $\\eta$ between the energy of post-collision particles detected at infinity and the energy of the colliding particles should be modest ($\\eta \\lesssim 1.5$). Schnittman has shown that these studies underestimated the maximum efficiency by about one order of magnitude (i.e., $\\eta \\lesssim 15$). In this work we reach an even more striking conclusion: particle collisions in the vicinity of rapidly rotating black holes can result in arbitrarily high efficiencies. The astrophysical likelihood of these events deserves further scrutiny, but our study hints at the tantalizing possibility that the collisional Penrose process may power gamma rays and ultra-high-energy cosmic rays.

Emanuele Berti; Richard Brito; Vitor Cardoso

2014-10-30T23:59:59.000Z

251

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

SciTech Connect (OSTI)

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

2010-05-01T23:59:59.000Z

252

Unmanned air vehicle (UAV) ultra-persitence research  

SciTech Connect (OSTI)

Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were considered. Fundamental cost driver analysis was also performed. System development plans were drafted in order to determine where the technological and programmatic critical paths lay. As a result of this effort, UAVs were to be able to provide far more surveillance time and intelligence information per mission while reducing the high cost of support activities. This technology was intended to create unmatched global capabilities to observe and preempt terrorist and weapon of mass destruction (WMD) activities. Various DOE laboratory and contractor personnel and facilities could have been used to perform detailed engineering, fabrication, assembly and test operations including follow-on operational support. Unfortunately, none of the results will be used in the near-term or mid-term future. NGIS UMS and SNL felt that the technical goals for the project were accomplished. NGIS UMS was quite pleased with the results of analysis and design although it was disappointing to all that the political realities would not allow use of the results. Technology and system designs evaluated under this CRADA had previously never been applied to unmanned air vehicles (UAVs). Based upon logistic support cost predictions, because the UAVs would not have had to refuel as often, forward basing support costs could have been reduced due to a decrease in the number and extent of support systems and personnel being required to operate UAVs in remote areas. Basic application of the advanced propulsion and power approach is well understood and industry now understands the technical, safety, and political issues surrounding implementation of these strategies. However, the overall economic impact was not investigated. The results will not be applied/implemented. No near-term benefit to industry or the taxpayer will be encountered as a result of these studies.

Dron, S. B.

2012-03-01T23:59:59.000Z

253

Advanced Ultra-High Speed Motor for Drilling  

SciTech Connect (OSTI)

Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at full speed 10,000 rpm for every 30.48 cm (12 inches) of power section. Operating conditions are 300 voltage AC at the motor leads. Power voltage losses in the cables/wirelines to the motor(s) are expected to be about 10% for 5000 feet carrying 2 amperes. Higher voltages and better insulators can lower these losses and carry more amperes. Cutting elements for such high tip velocities are currently not available, consequently these motors will not be built at this time. However, 7.62 cm (3 inch) OD, low speed, PMSM radial electric motors based on this project design are being built under a 2006 Oklahoma Center for the Advancement of Science and Technology 'proof of concept' grant.

Impact Technologies LLC; University of Texas at Arlington

2007-03-31T23:59:59.000Z

254

Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study  

SciTech Connect (OSTI)

Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

2006-06-30T23:59:59.000Z

255

Superalloys for ultra supercritical steam turbines--oxidation behavior  

SciTech Connect (OSTI)

Goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

Holcomb, G.R.

2008-09-01T23:59:59.000Z

256

Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump  

DOE Patents [OSTI]

An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

Jostlein, Hans

2006-04-04T23:59:59.000Z

257

New ultra-deepwater rig with dual rotaries will reduce costs  

SciTech Connect (OSTI)

The Discoverer Enterprise, a next generation, ultra-deepwater drill ship with a dual rotary system, will decrease drilling and completion costs by reducing bottom hole assembly (BHA) and tubular preparation time. Transocean Offshore received a contract from Amoco Corp. to build the ultra-deep floating rig and is scheduled to spud its first well in July 1998. It will generally work in water deeper than 6,000 ft. The rig design involves a new approach that addresses the overall well-construction process and equipment required to decrease significantly deepwater drilling time. The Discoverer is the first ultra-deepwater rig designed specifically for handling subsea completions and extended well tests. The paper discusses increased deepwater rig demand, rig construction costs, drillship design, well construction, development drilling, and cost justification.

Cole, J.C.; Herrmann, R.P.; Scott, R.J. [Transocean Offshore Inc., Houston, TX (United States); Shaughnessy, J.M. [Amoco Corp., Houston, TX (United States)

1997-05-26T23:59:59.000Z

258

Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment  

E-Print Network [OSTI]

and is in the process of changing from film to digital aerial image acquisition. Cur- rently, only broad land useHierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC, MSC3JER, NMSU, Las Cruces, NM 88003-8003, USA Ultra-high-resolution digital aerial imagery has great

259

Evidence of universality in the dynamical response of nanomechanical ultra-nanocrystalline diamond resonators at millikelvin temperatures  

E-Print Network [OSTI]

independent theory. In particular, polycrystalline diamond is an exciting material for nanomechanical devicesEvidence of universality in the dynamical response of nanomechanical ultra-nanocrystalline diamond fabricated from ultra-nanocrystalline diamond. Frequency shift f/f0 and dissipa- tion Q-1 demonstrate

260

ULTRA-LIGHTWEIGHT AMORPHOUS SILICON SOLAR CELLS DEPOSITED OIN 7.5pn-1 THICK STAINLESS STEEL SUBSTRATES  

E-Print Network [OSTI]

ULTRA-LIGHTWEIGHT AMORPHOUS SILICON SOLAR CELLS DEPOSITED OIN 7.5pn-1 THICK STAINLESS STEEL specific power for space application, we deposited a-Si thin film solar cells on ultra-thin stainless steel-thin stainless steel (SS) substrates (down to 7.5 pm) for space power applications. In this paper, we report our

Deng, Xunming

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

78.1: Ultra Compact Polarization Recycling System for White Light LED based Pico-Projection System  

E-Print Network [OSTI]

78.1: Ultra Compact Polarization Recycling System for White Light LED based Pico-Projection System polarization recycling system, for white light LED based projectors, is proposed. White light LED is applied. In this paper, we propose an ultra compact polarization recycling system for white light LED based projection

262

Figure 1. (a) Worst case SNM scenario. (b) SNM simulation results. Circuit Techniques for Ultra-Low Power Subthreshold SRAMs  

E-Print Network [OSTI]

consumption and energy efficiency are the critical constraints. In particular, ultra- low power SRAM designs port circuits for the design of an ultra-low power sub-threshold SRAMs. I. INTRODUCTION Digital consumption is the primary design constraint [1][2][3]. Subthreshold static CMOS logic can operate while

Kim, Chris H.

263

Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and  

E-Print Network [OSTI]

Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and infrastructure. The development of ultra-high performance concrete of buildings or structures to dynamic loading and fire. Overview of research program on UHPC or CEP (concrete

Li, Mo

264

Ultra Low NOx Catalytic Combustion for IGCC Power Plants  

SciTech Connect (OSTI)

In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

2008-03-31T23:59:59.000Z

265

Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers  

SciTech Connect (OSTI)

Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on processing of advanced nanocrystalline coating systems and development of diffusion barrier interlayer coatings. Among the diffusion interlayer coatings evaluated, the TiN interlayer coating was found to be the optimum one. This report describes the research conducted under the Task 3 workscope.

David W. Gandy; John P. Shingledecker

2011-04-11T23:59:59.000Z

266

THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW  

SciTech Connect (OSTI)

We present the 2012 Hubble Ultra Deep Field campaign (UDF12), a large 128 orbit Cycle 19 Hubble Space Telescope program aimed at extending previous Wide Field Camera 3 (WFC3)/IR observations of the UDF by quadrupling the exposure time in the F105W filter, imaging in an additional F140W filter, and extending the F160W exposure time by 50%, as well as adding an extremely deep parallel field with the Advanced Camera for Surveys (ACS) in the F814W filter with a total exposure time of 128 orbits. The principal scientific goal of this project is to determine whether galaxies reionized the universe; our observations are designed to provide a robust determination of the star formation density at z ?> 8, improve measurements of the ultraviolet continuum slope at z ? 7-8, facilitate the construction of new samples of z ? 9-10 candidates, and enable the detection of sources up to z ? 12. For this project we committed to combining these and other WFC3/IR imaging observations of the UDF area into a single homogeneous dataset to provide the deepest near-infrared observations of the sky. In this paper we present the observational overview of the project and describe the procedures used in reducing the data as well as the final products that were produced. We present the details of several special procedures that we implemented to correct calibration issues in the data for both the WFC3/IR observations of the main UDF field and our deep 128 orbit ACS/WFC F814W parallel field image, including treatment for persistence, correction for time-variable sky backgrounds, and astrometric alignment to an accuracy of a few milliarcseconds. We release the full, combined mosaics comprising a single, unified set of mosaics of the UDF, providing the deepest near-infrared blank-field view of the universe currently achievable, reaching magnitudes as deep as AB ? 30 mag in the near-infrared, and yielding a legacy dataset on this field.

Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ellis, Richard S.; Schenker, Matthew A. [Department of Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Curtis-Lake, Emma; Cirasuolo, Michele; Wild, V.; Targett, T. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Robertson, Brant E.; Schneider, Evan; Stark, Daniel P. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Ono, Yoshiaki; Ouchi, Masami [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa City, Chiba 277-8582 (Japan); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d'Astrophysique de Paris, F-75014, Paris (France); Furlanetto, Steven R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

2013-11-01T23:59:59.000Z

267

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench scale. The project is on schedule and on budget. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement. The system has six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration will be initiated in the next fiscal year. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study.

Anna Lee Tonkovich

2004-07-01T23:59:59.000Z

268

HIGH-ENERGY EMISSION INDUCED BY ULTRA-HIGH-ENERGY PHOTONS AS A PROBE OF ULTRA-HIGH-ENERGY COSMIC-RAY ACCELERATORS EMBEDDED IN THE COSMIC WEB  

SciTech Connect (OSTI)

The photomeson production in ultra-high-energy cosmic-ray (UHECR) accelerators such as {gamma}-ray bursts and active galaxies may lead to ultra-high-energy (UHE) {gamma}-ray emission. We show that the generation of UHE pairs in magnetized structured regions where the sources are embedded is inevitable, and accompanying {approx}> 0.1 TeV synchrotron emission provides an important probe of UHECR acceleration. It would especially be relevant for powerful transient sources, and synchrotron pair echoes may be detected by future CTA via coordinated search for transients of duration {approx}0.1-1 yr for the structured regions of {approx}Mpc. Detections will be useful for knowing structured extragalactic magnetic fields as well as properties of the sources.

Murase, Kohta [Department of Physics, Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH 43210 (United States)

2012-02-15T23:59:59.000Z

269

9/2/08 9:42 AMRice professor: Granite countertops may cause you harm | Chron.com -Houston Chronicle Page 1 of 3http://www.chron.com/disp/story.mpl/moms/5908630.html  

E-Print Network [OSTI]

9/2/08 9:42 AMRice professor: Granite countertops may cause you harm | Chron.com - Houston Be wary of granite that glows Rice professor says countertops may be tainted with uranium By ALLAN TURNER. Some granite countertops, he says, contain high levels of uranium, which, by generating gamma radiation

Llope, William J.

270

Development and Testing of an UltraBattery-Equipped Honda Civic  

SciTech Connect (OSTI)

The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

Donald Karner

2012-04-01T23:59:59.000Z

271

The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow  

E-Print Network [OSTI]

. They indicated that the addition of hydrogen to natural gas or methane resulted in an increase in NOx for most increases, and then decreases with the increase in the fraction of hydrogen. Overall, hydrogen enrichment rights reserved. Keywords: Hydrogen enrichment; NOx; Extinction limit; Ultra-lean premixed flame. 1

Gülder, �mer L.

272

Opportunities for Decay Counting of Environmental Radioisotopes Using Ultra-low-background Detection Systems  

SciTech Connect (OSTI)

Executive Summary We present results from a scoping study whose intent was to define challenge measurements to be pursued on the Ultra-Sensitive Nuclear Measurements Initiative. Potential challenge measurements using new radiation detection technology in the shallow underground laboratory that would have substantial impact in environmental science were the focus of this study.

Runkle, Robert C.; Aalseth, Craig E.; Bailey, Vanessa L.; Bonicalzi, Ricco; Moran, James J.; Seifert, Allen; Warren, Glen A.

2012-08-01T23:59:59.000Z

273

American Institute of Aeronautics and Astronautics Numerical Solutions for Ultra-Micro Wave Rotors (UWR)  

E-Print Network [OSTI]

, 48824 Starting in 1995, with the MIT "Micro Gas Turbine" project, the mechanical engineering research to an ultra-micro gas turbine. It discusses the advantages of wave rotor as topping units for gas turbines. Introduction ltra Micro Gas Turbines (UµGT) are expected to be the next generation of power source for any

Müller, Norbert

274

Beam characterization of a lab bench cold cathode ultra-soft x-ray generator  

E-Print Network [OSTI]

-source. Keywords: Ultra-soft X-rays (USX), USX Cold cathode generator, Gafchromic dosimetry, Aluminium K line. 1 and cell transformation) [1]. USX, however,5 pose significant problems in dosimetry and experimental design References hal-00858423,version1-5Sep2013 Author manuscript, published in "Nuclear Instruments and Methods

Paris-Sud XI, Université de

275

Near perfect solar absorption in ultra-thin-film GaAs photonic crystals  

E-Print Network [OSTI]

Near perfect solar absorption in ultra-thin-film GaAs photonic crystals Sergey Eyderman,*a Alexei Deinegaa and Sajeev Johnab We present designs that enable a significant increase of solar absorption­99.5% solar absorption is demonstrated depending on the photonic crystal architecture used and the nature

John, Sajeev

276

Delayed Linear Expansion of Two Ultra-low Expansion Dental Stones  

E-Print Network [OSTI]

The purpose of this study was to measure the linear setting expansion of two ultra-low expansion dental stones used in definitive cast/ prosthesis fabrication which claim to have very low to no setting expansion. Five specimens of each material...

Oppedisano, Michael

2013-12-20T23:59:59.000Z

277

Ultra-LowEnergy Computingwith Noise: Energy-Performance-Probability Trade-offs*  

E-Print Network [OSTI]

Ultra-LowEnergy Computingwith Noise: Energy-Performance-Probability Trade-offs* Pinar Korkrnaz with a probability p. Thispaper investigates the trade-o$s between the energy, pet$ormance and probability of design trade-offs associated with its speed (or performance), energy and p. The characterizationis

278

Roadmap for Ultra-High Energy Cosmic Ray Physics and Astronomy (whitepaper for Snowmass 2013)  

E-Print Network [OSTI]

We summarize the remarkable recent progress in ultra-high energy cosmic ray physics and astronomy enabled by the current generation of cosmic ray observatories. We discuss the primary objectives for future measurements and describe the plans for near-term enhancements of existing experiments as well as the next generation of observatories.

Anchordoqui, Luis A; Krizmanic, John F; Matthews, Jim; Mitchell, John W; Olinto, Angela V; Paul, Thomas C; Sokolsky, Pierre; Thomson, Gordon B; Weiler, Thomas J

2013-01-01T23:59:59.000Z

279

Absorption in Ultra-Peripheral Nucleus-Atom Collisions in Crystal  

E-Print Network [OSTI]

The Glauber theory description of particle- and nucleus-crystal Coulomb interactions at high-energy is developed. The allowance for the lattice thermal vibrations is shown to produce strong absorption effect which is of prime importance for quantitative understanding of the coherent Coulomb excitation of ultra-relativistic particles and nuclei passing through the crystal.

V. R. Zoller

2004-05-07T23:59:59.000Z

280

Prediction of Ultra-High Aspect Ratio Nanowires from Self-Assembly  

E-Print Network [OSTI]

Prediction of Ultra-High Aspect Ratio Nanowires from Self-Assembly Zhigang Wu and Jeffrey C to investigate the possible self-assembly of nanoscale objects into ultrahigh aspect ratio chains and wires. Self-assembly17,18 from nanosize building blocks is regarded as one of the most promising methods

Wu, Zhigang

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Measuring the fracture toughness of ultra-thin films with application to AlTa coatings  

E-Print Network [OSTI]

1 Measuring the fracture toughness of ultra-thin films with application to AlTa coatings Yong Xiang Abstract An experimental technique is presented for measuring the fracture toughness of brittle thin films with a focused ion beam and the membranes are pressurized until rupture. The fracture stress of the membrane

282

Heat capacity of adsorbed Helium-3 at ultra-low temperatures  

E-Print Network [OSTI]

temperatures the surface 3He heat capacity dominates over the heat capacity of the bulk liquid 3HeHeat capacity of adsorbed Helium-3 at ultra-low temperatures J. Elbs, C. Winkelmann, Yu. M. Bunkov Martyrs, BP 166, 38042 Grenoble cedex 9, France We report on direct measurements of the heat capacity

Boyer, Edmond

283

Light-matter excitations in the ultra-strong coupling regime Aji A. Anappara,1  

E-Print Network [OSTI]

-polariton splitting in solid-state sys- tems [2]. This regime is actively investigated in many research fields-field interaction. The energy of the excitations is affected and a new squeezed ground state is defined containingLight-matter excitations in the ultra-strong coupling regime Aji A. Anappara,1 Simone De Liberato,2

284

Characterization of a liquid-crystal ultrafast pulse shaper for ultra-broadband applications  

E-Print Network [OSTI]

Characterization of a liquid-crystal ultrafast pulse shaper for ultra-broadband applications pulse shaping Spatial light modulators Ultrafast optics Femtosecond pulses a b s t r a c t By combining in revised form 22 January 2014 Accepted 28 January 2014 Available online 6 February 2014 Keywords: Ultrafast

285

LITHIUM PLASMA SOURCES FOR ACCELERATION AND FOCUSING OF ULTRA-RELATIVISTIC ELECTRON BEAMSi  

E-Print Network [OSTI]

LITHIUM PLASMA SOURCES FOR ACCELERATION AND FOCUSING OF ULTRA-RELATIVISTIC ELECTRON BEAMSi P beam focusing (plasma lens). The Li vapor with a density in the 2Ã?1015 cm-3 range is produced in a heat to a focusing strength in excess of 6Ã?105 G/cm. A shorter section of plasma (L25 cm) can be used as an effective

286

Time Reversal with MISO for Ultra-Wideband Communications: Experimental Results (invited paper)  

E-Print Network [OSTI]

TH2B-1 Time Reversal with MISO for Ultra-Wideband Communications: Experimental Results (invited Output (MISO) is enabled by the use of the TR scheme. Two basic problems are investigated experimentally for the first time in electromagnetics. Index Terms -- TR, MISO, UWB, channel reciprocity. I. INTRODUCTION UWB

Qiu, Robert Caiming

287

Ultra-Low Power Data Storage for Sensor Networks GAURAV MATHUR  

E-Print Network [OSTI]

Ultra-Low Power Data Storage for Sensor Networks GAURAV MATHUR Google, Inc. and PETER DESNOYERS and greater energy-efficiency than existing storage solutions. Categories and Subject Descriptors: B.7 General Terms: Design, Measurement, Performance, Experimentation Additional Key Words and Phrases: storage

Shenoy, Prashant

288

Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates  

E-Print Network [OSTI]

conversion (3). Conversely, the thermal resistance of interfaces degrades the performance of materials dissimilar materials may provide a route for the production of thermal barriers with ultra-low thermal and improve the performance of thermal bar- riers (2) and of materials used in thermoelec- tric energy

George, Steven M.

289

Sintering and properties of Ultra High Temperature Ceramics for aerospace applications J.F. Justin  

E-Print Network [OSTI]

thermal shock resistance and makes them ideal for many high-temperature thermal applications : France (2013)" #12;for example, a high thermal conductivity reduces thermal stress within the material-francois.justin@onera.fr ABSTRACT The Ultra High Temperature Ceramics (UHTCs) represent a very interesting family of materials

290

Ultra-sensitive and Wide Bandwidth Thermal Measurements of Graphene at Low Temperatures  

E-Print Network [OSTI]

exhibits one of the highest thermal conductivities of all measured materials[3, 4]. However at lowUltra-sensitive and Wide Bandwidth Thermal Measurements of Graphene at Low Temperatures K.C. Fong. This paper is organized as follows. We first present the thermal model of the electron gas of graphene at low

291

High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings  

E-Print Network [OSTI]

to be reached between 2010 and 2015 are clear: the catalyst of a fuel cell can cost no more than 4 per kilowatt1 High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings C in plasma fuel cell deposition devices. Pt loadings lower than 0.01 mg cm-2 have been realized. The Pt

Paris-Sud XI, Université de

292

High Performance Plasma Sputtered PdPt Fuel Cell Electrodes with Ultra Low Loading  

E-Print Network [OSTI]

: the catalyst of a fuel cell can cost no more than 5/3 per kilowatt [1]. If the catalyst is platinum (~40 g-1High Performance Plasma Sputtered PdPt Fuel Cell Electrodes with Ultra Low Loading M. Mougenot1, 2 potential for the fuel cell technology to overcome the upcoming energy and resources issues in our society

Paris-Sud XI, Université de

293

Recovery and utilization of waste liquids in ultra-clean coal preparation by chemical leaching  

SciTech Connect (OSTI)

Coal with ash lower than 1%, being called an ultra-clean coal, has many potential applications, such as a substitute for diesel fuel, production of carbon electrodes, superior activated carbon and other chemical materials. It is difficult to reduce coal ash to such a level by conventional coal preparation technology. By means of chemical leaching with the proper concentration of alkali and acid solutions, any coal can be deeply deashed to 1% ash level. However, the cost of chemical methods is higher than that of physical ones, additionally, the waste liquids would give rise to environmental pollution if used on a large scale. If the waste liquids from chemical preparation of ultra-clean coal can be recovered and utilized, so as to produce salable by-products, the cost of chemical leaching will be reduced. This processing will also solve the pollution problem of these waste liquids. This paper describes recovery and utilization methods for these liquids used in chemical leaching, including the recoveries of alkali, silica, sodium-salt and aluminium-salt. A preliminary estimate was made regarding its economic benefits. It shows that this research solves the two problems in the chemical preparation of ultra-clean coal. One is the high-cost and the other is environmental pollution. This research demonstrates good potential for the production of ultra-clean coal on an industrial scale.

Xu Zesheng; Shi Zhimin; Yang Qiaowen; Wang Xinguo [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

1997-12-31T23:59:59.000Z

294

AN ABSTRACT OF A DISSERTATION ULTRA-WIDEBAND (UWB) IMPULSE RADIO COMMUNICATION  

E-Print Network [OSTI]

AND PROTOTYPING Qiang (John) Zhang Doctor of Philosophy in Engineering Ultra-Wideband (UWB) radio OF PHILOSOPHY Engineering December 2007 #12;Copyright c Qiang (John) Zhang, 2007 All rights reserved #12 to take on a high-risk hardware project, and providing me with the resources necessary to carry it out. I

Qiu, Robert Caiming

295

Power line communications (PLC) using impulse ultra wideband (UWB) in a microprocessor had been  

E-Print Network [OSTI]

Abstract Power line communications (PLC) using impulse ultra wideband (UWB) in a microprocessor had data to sensors and for on-line testing. Power line communications (PLC), patented in the early 1920's]. As noted in [1]-[2], PLC in a microprocessor faces a totally different set of technical challenges from

Ha, Dong S.

296

Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures  

E-Print Network [OSTI]

Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures Eric Abstract Global burning velocities of methane-air-steam mixtures are measured on prismatic laminar Bunsen flames and lifted turbulent V-flames for various preheating temperatures, equivalence ratios and steam

Paris-Sud XI, Université de

297

Synchronous Ultra-Wide Band Wireless Sensors Networks for oil and gas exploration  

E-Print Network [OSTI]

Synchronous Ultra-Wide Band Wireless Sensors Networks for oil and gas exploration Stefano Savazzi1 of new oil and gas reservoir. Seismic exploration requires a large number (500 ÷ 2000 nodes, MAC and network layer to develop wireless sensors networks tailored for oil (and gas) exploration

Savazzi, Stefano

298

Computation Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers  

SciTech Connect (OSTI)

Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler waterwalls and tubing. Reliable coatings are required for Ultrasupercritical (USC) application to mitigate corrosion since these boilers will operate at a much higher temperatures and pressures than in supercritical (565 C {at} 24 MPa) boilers. Computational modeling efforts have been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanocrystalline coatings that form a protective, continuous scale of either Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. The computational modeling results identified a new series of Fe-25Cr-40Ni with or without 10 wt.% Al nanocrystalline coatings that maintain long-term stability by forming a diffusion barrier layer at the coating/substrate interface. The computational modeling predictions of microstructure, formation of continuous Al{sub 2}O{sub 3} scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. Advanced coatings, such as MCrAl (where M is Fe, Ni, or Co) nanocrystalline coatings, have been processed using different magnetron sputtering deposition techniques. Several coating trials were performed and among the processing methods evaluated, the DC pulsed magnetron sputtering technique produced the best quality coating with a minimum number of shallow defects and the results of multiple deposition trials showed that the process is repeatable. scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. The cyclic oxidation test results revealed that the nanocrystalline coatings offer better oxidation resistance, in terms of weight loss, localized oxidation, and formation of mixed oxides in the Al{sub 2}O{sub 3} scale, than widely used MCrAlY coatings. However, the ultra-fine grain structure in these coatings, consistent with the computational model predictions, resulted in accelerated Al diffusion from the coating into the substrate. An effective diffusion barrier interlayer coating was developed to prevent inward Al diffusion. The fire-side corrosion test results showed that the nanocrystalline coatings with a minimum number of defects have a great potential in providing corrosion protection. The coating tested in the most aggressive environment showed no evidence of coating spallation and/or corrosion attack after 1050 hours exposure. In contrast, evidence of coating spallation in isolated areas and corrosion attack of the base metal in the spalled areas were observed after 500 hours. These contrasting results after 500 and 1050 hours exposure suggest that the premature coating spallation in isolated areas may be related to the variation of defects in the coating between the samples. It is suspected that the cauliflower-type defects in the coating were presumably responsible for coating spallation in isolated areas. Thus, a defect free good quality coating is the key for the long-term durability of nanocrystalline coatings in corrosive environments. Thus, additional process optimization work is required to produce defect-free coatings prior to development of a coating application method for production parts.

J. Shingledecker; D. Gandy; N. Cheruvu; R. Wei; K. Chan

2011-06-21T23:59:59.000Z

299

Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report  

SciTech Connect (OSTI)

This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a ?standard? 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (~600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output.

Rubiolo, Pablo R.; Conway, Lawarence E.; Oriani, Luca; Lahoda, Edward J.; DeSilva, Greg (Westinghouse Science and Technology Department); Hu, Min H.; Hartz, Josh; Bachrach, Uriel; Smith, Larry; Dudek, Daniel F. (Westinghouse Nuclear Services Division); Toman, Gary J, (Electric Power Research Institute); Feng, Dandong; Hejzlar, Pavel; Kazimi, Mujid S. (Massachusetts Institute of Technology)

2006-03-31T23:59:59.000Z

300

Growth of Nanoscale Nickel Ferrite on Carbonaceous Matrix- A Novel Method of Turning Harmful Particulates into a Functional Nanocomposite: An XAFS Study  

SciTech Connect (OSTI)

Particulate matter (PM) emission from residual oil combustion typically consists of carbonaceous material accompanied by inorganic matter notably transition metal sulfates. Often a minor sulfide form is found in the coarse fraction while an oxide form is more common in the fine and ultrafine fractions. A composite comprising of nanoscale nickel ferrite dispersed on carbonaceous matrix has been obtained following liberation of metal sulfates from the fine PM - a novel method of turning harmful particulates into a functional nanocomposite without the need for elaborate preparation using expensive precursors. The nickel ferrite content in the composite varies with the Fe/Ni ratio in particulate, fuel type, and combustion condition. Such variation may lead to the composite exhibiting diverse physical behaviors. Detailed structure and cation distribution in dispersed ferrite have been studied using Fe and Ni K-edges XAFS spectroscopy. Peaks are identified in the radial structure function with specific atom pair correlations within the spinel ferrite from which the relative occupancy of the cations in the octahedral and tetrahedral sites can be discerned. The results show that Ni(II) has strong preference for the octahedral site, while Fe(III) prefers both sites which is consistent with that of an inverted spinel ferrite.

Pattanaik, S.; Huggins, F; Huffman, G

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion  

E-Print Network [OSTI]

411–422. [9] I. Glassman, Combustion, 3rd Edition, AcademicB. Lewis, G. von Elbe, Combustion, Flames and Explosions ofin Ultra-Lean, Hydrogen-Air Combustion Joseph F. Grcar a a

Grcar, Joseph F

2008-01-01T23:59:59.000Z

302

Microfluidic pumping through miniaturized channels driven by ultra-high frequency surface acoustic waves  

SciTech Connect (OSTI)

Surface acoustic waves (SAWs) are an effective means to pump fluids through microchannel arrays within fully portable systems. The SAW-driven acoustic counterflow pumping process relies on a cascade phenomenon consisting of SAW transmission through the microchannel, SAW-driven fluid atomization, and subsequent coalescence. Here, we investigate miniaturization of device design, and study both SAW transmission through microchannels and the onset of SAW-driven atomization up to the ultra-high-frequency regime. Within the frequency range from 47.8 MHz to 754?MHz, we show that the acoustic power required to initiate SAW atomization remains constant, while transmission through microchannels is most effective when the channel widths w???10??, where ? is the SAW wavelength. By exploiting the enhanced SAW transmission through narrower channels at ultra-high frequencies, we discuss the relevant frequency-dependent length scales and demonstrate the scaling down of internal flow patterns and discuss their impact on device miniaturization strategies.

Shilton, Richie J., E-mail: richard.shilton@iit.it [Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Travagliati, Marco [Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Beltram, Fabio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Cecchini, Marco, E-mail: marco.cecchini@nano.cnr.it [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy)

2014-08-18T23:59:59.000Z

303

Precision optical slit for high heat load or ultra high vacuum  

DOE Patents [OSTI]

This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

1995-01-24T23:59:59.000Z

304

Precision optical slit for high heat load or ultra high vacuum  

DOE Patents [OSTI]

This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

Andresen, Nord C. (Hayward, CA); DiGennaro, Richard S. (Albany, CA); Swain, Thomas L. (Richmond, CA)

1995-01-01T23:59:59.000Z

305

Solid oxygen as converter for the production of ultra-cold neutrons  

E-Print Network [OSTI]

We have investigated solid oxygen as a converter material for the production of ultra-cold neutrons. In a first series of experiments the crystal preparation was examined. An optically semi-transparent solid $\\alpha$-oxygen crystal has been prepared. In a second series of experiments such a crystal prepared indentically as in the first series of experiments has been exposed to the cold neutron flux of the MEPHISTO beam line of the FRM II. Ultra-cold neutrons produced inside the oxygen crystal have been extracted and the count rates have been measured at different converter temperatures. The results of these measurements give a clear signal of the superthermal UCN production mechanism in $\\alpha$-oxygen. The mean free loss length of UCN inside the crystal at a temperature of 5\\,K was determined to be in the order of $20\\,\\mathrm{cm}$.

A. Frei; F. Böhle; R. Bozhanova; E. Gutsmiedl; T. Huber; J. Klenke; S. Paul; S. Wlokka

2010-06-15T23:59:59.000Z

306

Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load  

DOE Patents [OSTI]

An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

Dunham, M.E.; Hudson, C.L.

1993-05-11T23:59:59.000Z

307

Integrated production/use of ultra low-ash coal, premium liquids and clean char  

SciTech Connect (OSTI)

This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

Kruse, C.W.

1991-01-01T23:59:59.000Z

308

Shape and flow fluctuations in ultra-central Pb+Pb collisions at the LHC  

E-Print Network [OSTI]

In ultra-central heavy-ion collisions, anisotropic hydrodynamic flow is generated by density fluctuations in the initial state rather than by geometric overlap effects. For a given centrality class, the initial fluctuation spectrum is sensitive to the method chosen for binning the events into centrality classes. We show that sorting events by total initial entropy or by total final multiplicity yields event classes with equivalent statistical fluctuation properties, in spite of viscous entropy production during the fireball evolution. With this initial entropy-based centrality definition we generate several classes of ultra-central Pb+Pb collisions at LHC energies and evolve the events using viscous hydrodynamics with non-zero shear but vanishing bulk viscosity. Comparing the predicted anisotropic flow coefficients for charged hadrons with CMS data we find that both the Monte Carlo Glauber (MC-Glb) and Monte Carlo Kharzeev-Levin-Nardi (MC-KLN) models produce initial fluctuation spectra that are incompatible w...

Shen, Chun; Heinz, Ulrich

2015-01-01T23:59:59.000Z

309

The ultra-high lime with aluminum process for removing chloride from recirculating cooling water  

E-Print Network [OSTI]

THE ULTRA-HIGH LIME WITH ALUMINUM PROCESS FOR REMOVING CHLORIDE FROM RECIRCULATING COOLING WATER A Dissertation by AHMED IBRAHEEM ALI ABDEL-WAHAB Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...-WAHAB Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: Bill Batchelor (Chair of Committee) Robin L. Autenrieth (Member...

Abdel-wahab, Ahmed Ibraheem Ali

2004-09-30T23:59:59.000Z

310

Current non-conservation effects in ultra-high energy neutrino interactions  

E-Print Network [OSTI]

The overall hardness scale of the ultra-high energy neutrino-nucleon interactions is usually estimated as $Q^2\\sim m_W^2$. The effect of non-conservation of weak currents pushes this scale up to the top quark mass squared and changes dynamics of the scattering process. The Double Leading Log Approximation provides simple and numerically accurate formula for the top-bottom contribution to the total cross section $\\sigma^{\

R. Fiore; V. R. Zoller

2010-10-13T23:59:59.000Z

311

Alternative treaty monitoring approaches using ultra-low background measurement technology  

SciTech Connect (OSTI)

The International Monitoring System (IMS) of the Comprehensive Test Ban Treaty includes a network of stations and laboratories for collection and analysis of radioactive aerosols. Alternative approaches to IMS operations are considered as a method of enhancing treaty verification. Ultra-low background (ULB) detection promises the possibility of improvements to IMS minimum detectable activities (MDAs) well below the current approach, requiring MDAp30 mBq/m3 of air for 140Ba, or about 106 fissions per daily sample.

Miley, Harry S.; Aalseth, Craig E.; Bowyer, Ted W.; Fast, James E.; Hayes, James C.; Hoppe, Eric W.; Hossbach, Todd W.; Keillor, Martin E.; Kephart, Jeremy D.; McIntyre, Justin I.; Seifert, Allen

2009-05-01T23:59:59.000Z

312

Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project  

SciTech Connect (OSTI)

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

Steve Bergin

2005-10-14T23:59:59.000Z

313

Main effects of the Earth's rotation on the stationary states of ultra-cold neutrons  

E-Print Network [OSTI]

The relativistic corrections in the Hamiltonian for a particle in a uniformly rotating frame are discussed. They are shown to be negligible in the case of ultra-cold neutrons (UCN) in the Earth's gravity. The effect, on the energy levels of UCN, of the main term due to the Earth's rotation, i.e. the angular-momentum term, is calculated. The energy shift is found proportional to the energy level itself.

Mayeul Arminjon

2007-11-13T23:59:59.000Z

314

Decomposition of Harmonic and Jet Contributions to Particle-pair Correlations at Ultra-relativistic Energies  

E-Print Network [OSTI]

Methodology is presented for analysis of two-particle azimuthal angle correlation functions obtained in collisions at ultra-relativistic energies. We show that harmonic and di-jet contributions to these correlation functions can be reliably decomposed by two techniques to give an accurate measurement of the jet-pair distribution. Results from detailed Monte Carlo simulations are used to demonstrate the efficacy of these techniques in the study of possible modifications to jet topologies in heavy ion reactions.

N. N. Ajitanand; J. M. Alexander; P. Chung; W. G. Holzmann; M. Issah; Roy A. Lacey; A. Shevel; A. Taranenko; P. Danielewicz

2005-01-25T23:59:59.000Z

315

Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition  

E-Print Network [OSTI]

1 Published as: Applied Physics Letters 100, 173113 (2012) DOI: 10.1063/1.4707376 Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition Bruno Dlubak, Piran R. Kidambi, Robert S... on monolayer graphene, without creating point defects. This enhanced wetting is achieved by greatly increasing the nucleation density through the use of polar traps induced on the graphene surface by an underlying metallic substrate. The resulting Al2O3...

Dlubak, Bruno; Kidambi, Piran R.; Weatherup, Robert S.; Hofmann, Stephan; Robertson, John

2012-04-26T23:59:59.000Z

316

Boundary Effects on Bose-Einstein Condensation in Ultra-Static Space-Times  

E-Print Network [OSTI]

The boundary effects on the Bose-Einstein condensation of an ideal Bose gas on an ultra-static space-time are studied by a Mellin-Barnes type asymptotic analysis of the harmonic sum representing the depletion coefficient. Small $\\beta m$ regime, which is the relevant regime for the relativistic gas, is studied through the heat kernel expansion for both Dirichlet and Neumann boundary conditions. The analysis is made for both charged bosons and neutral bosons.

L. Akant; E. Ertugrul; Y. Gul; O. T. Turgut

2014-07-08T23:59:59.000Z

317

Boundary Effects on Bose-Einstein Condensation in Ultra-Static Space-Times  

E-Print Network [OSTI]

The boundary effects on the Bose-Einstein condensation of an ideal Bose gas on an ultra-static space-time are studied by a Mellin-Barnes type asymptotic analysis of the harmonic sum representing the depletion coefficient. Small $\\beta m$ regime, which is the relevant regime for the relativistic gas, is studied through the heat kernel expansion for both Dirichlet and Neumann boundary conditions. The analysis is made for both charged bosons and neutral bosons.

Akant, L; Gul, Y; Turgut, O T

2015-01-01T23:59:59.000Z

318

Layered ultra-thin coherent structures used as electrical resistors having low temperature coefficient of resistivity  

DOE Patents [OSTI]

A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

Werner, Thomas R. (Argonne, IL); Falco, Charles M. (Tucson, AZ); Schuller, Ivan K. (Woodridge, IL)

1984-01-01T23:59:59.000Z

319

Development of an ultra-safe, ultra-low-emissions natural gas-fueled school bus: Phase 2, prototype hardware development  

SciTech Connect (OSTI)

This report summarizes work done on Phase 2, ``Prototype Hardware Development`` of Southwest Research Institute (SwRI) Project No. 03-6871, ``Development of an Ultra-Safe, Ultra-Low-Emissions Alternative-Fueled School Bus``. A prototype school bus was designed and constructed. This bus incorporated many new technologies to increase the safety of the bus passengers as well as pedestrians boarding and leaving the bus. These technologies emphasized increased visibility between the bus driver and pedestrians or vehicles, and included the use of high intensity discharge lighting, pedestrian and vehicle detection systems, and remote-mounted cameras. Passenger safety was also stressed, with the application of seat belts and improved emergency exits and lighting. A natural gas-fueled engine was developed for powering the bus. The development process focused primarily on improvements to the lean operation of the engine and control system advancements. The control system development included investigations into alternative control algorithms for steady-state and transient operation, various fuel metering devices, as well as new methods for wastegate control, knock and misfire detection, and catalyst monitoring. Both the vehicle and engine systems represent state-of-the-art technologies. Integration of the vehicle and engine is planned for the next phase of the project, followed by a demonstration test of the overall vehicle system.

Kubesh, J. [Southwest Research Inst., San Antonio, TX (United States)

1996-04-01T23:59:59.000Z

320

Thermal up-scattering of very cold and ultra-cold neutrons in solid deuterium  

E-Print Network [OSTI]

The work presented in this thesis forms part of a program at the Paul Scherrer Institute (PSI) to construct a high intensity superthermal ultra-cold neutron (UCN) source based on solid deuterium as UCN production medium. We carried out a set of experiments to gain a better understanding of the properties and the behaviour of solid deuterium as a cold neutron moderator and ultra-cold neutron converter. We present the measurements of the total neutron cross section as obtained by transmission studies with very cold neutrons and ultra-cold neutrons in solid deuterium. The experimental set-up and the methods of data analysis are described and also the procedure of preparing the solid deuterium samples is given. The neutron transmission studies are supported by optical investigation of the crystal and by Raman spectroscopy. We have thus characterised the temperature dependence of the neutron transmission through solid deuterium and we have been able to identify the role that coherent neutron scattering plays for the investigated deuterium samples.

Malgorzata Kasprzak

2004-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

COLLABORATIVE RESEARCH: Parallel Analysis Tools and New Visualization Techniques for Ultra-Large Climate Data Set  

SciTech Connect (OSTI)

ParVis was a project funded under LAB 10-05: “Earth System Modeling: Advanced Scientific Visualization of Ultra-Large Climate Data Sets”. Argonne was the lead lab with partners at PNNL, SNL, NCAR and UC-Davis. This report covers progress from January 1st, 2013 through Dec 1st, 2014. Two previous reports covered the period from Summer, 2010, through September 2011 and October 2011 through December 2012, respectively. While the project was originally planned to end on April 30, 2013, personnel and priority changes allowed many of the institutions to continue work through FY14 using existing funds. A primary focus of ParVis was introducing parallelism to climate model analysis to greatly reduce the time-to-visualization for ultra-large climate data sets. Work in the first two years was conducted on two tracks with different time horizons: one track to provide immediate help to climate scientists already struggling to apply their analysis to existing large data sets and another focused on building a new data-parallel library and tool for climate analysis and visualization that will give the field a platform for performing analysis and visualization on ultra-large datasets for the foreseeable future. In the final 2 years of the project, we focused mostly on the new data-parallel library and associated tools for climate analysis and visualization.

middleton, Don [Co-PI; Haley, Mary

2014-12-10T23:59:59.000Z

322

Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid  

SciTech Connect (OSTI)

The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

2012-08-01T23:59:59.000Z

323

Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications  

SciTech Connect (OSTI)

Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is the key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.

David M. Dean

2012-10-30T23:59:59.000Z

324

Surface Cleaning Techniques: Ultra-Trace ICP-MS Sample Preparation and Assay of HDPE  

SciTech Connect (OSTI)

The world’s most sensitive radiation detection and assay systems depend upon ultra-low background (ULB) materials to reduce unwanted radiological backgrounds. Herein, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB level material and ultra-trace level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc. and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analyses is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). HDPE leaching procedures were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 hour exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultralow level radiation detection applications.

Overman, Nicole R.; Hoppe, Eric W.; Addleman, Raymond S.

2013-06-01T23:59:59.000Z

325

Shape and flow fluctuations in ultra-central Pb+Pb collisions at the LHC  

E-Print Network [OSTI]

In ultra-central heavy-ion collisions, anisotropic hydrodynamic flow is generated by density fluctuations in the initial state rather than by geometric overlap effects. For a given centrality class, the initial fluctuation spectrum is sensitive to the method chosen for binning the events into centrality classes. We show that sorting events by total initial entropy or by total final multiplicity yields event classes with equivalent statistical fluctuation properties, in spite of viscous entropy production during the fireball evolution. With this initial entropy-based centrality definition we generate several classes of ultra-central Pb+Pb collisions at LHC energies and evolve the events using viscous hydrodynamics with non-zero shear but vanishing bulk viscosity. Comparing the predicted anisotropic flow coefficients for charged hadrons with CMS data we find that both the Monte Carlo Glauber (MC-Glb) and Monte Carlo Kharzeev-Levin-Nardi (MC-KLN) models produce initial fluctuation spectra that are incompatible with the measured final anisotropic flow power spectrum, for any choice of the specific shear viscosity. In spite of this failure, we show that the hydrodynamic model can qualitatively explain, in terms of event-by-event fluctuations of the anisotropic flow coefficients and flow angles, the breaking of flow factorization for elliptic, triangular and quadrangular flow measured by the CMS experiment. For elliptic flow, this factorization breaking is large in ultra-central collisions. We conclude that the bulk of the experimentally observed flow factorization breaking effects are qualitatively explained by hydrodynamic evolution of initial-state fluctuations, but that their quantitative description requires a better understanding of the initial fluctuation spectrum.

Chun Shen; Zhi Qiu; Ulrich Heinz

2015-02-16T23:59:59.000Z

326

Determining mutant spectra of three RNA viral samples using ultra-deep sequencing  

SciTech Connect (OSTI)

RNA viruses have extremely high mutation rates that enable the virus to adapt to new host environments and even jump from one species to another. As part of a viral transmission study, three viral samples collected from naturally infected animals were sequenced using Illumina paired-end technology at ultra-deep coverage. In order to determine the mutant spectra within the viral quasispecies, it is critical to understand the sequencing error rates and control for false positive calls of viral variants (point mutantations). I will estimate the sequencing error rate from two control sequences and characterize the mutant spectra in the natural samples with this error rate.

Chen, H

2012-06-06T23:59:59.000Z

327

Hot electron energy coupling in ultra-intense laser matter interaction  

SciTech Connect (OSTI)

We investigate the hydrodynamic response of plasma gradients during the interaction with ultra-intense energetic laser pulses, using one-dimensional kinetic particle simulations. As energetic laser pulses are capable of compressing the preformed plasma over short times, the coupling efficiency as well as the temperature of hot electrons drop, leading to localized heating near the point of absorption. We describe the cause of this drop, explain the electron spectra and identify the parametric region where strong compression occurs. Finally, we discuss implications for fast ignition and other applications.

Kemp, A J; Sentoku, Y; Tabak, M

2008-04-15T23:59:59.000Z

328

Effects of neutron irradiation of ultra-thin HfO{sub 2} films  

SciTech Connect (OSTI)

Neutron irradiation at low fluence decreases the Pb-type and E? defect levels in ultra-thin hafnium dioxide films because electrons can fill existing states. These electrons come from electron-hole pairs generated by neutron interactions with silicon and oxygen. Thus, a low fluence of neutrons “anneals” the sample. However, when neutron fluence increases, more neutrons collide with oxygen atoms and cause them to leave the lattice or to transmute into different atoms. This causes the E? states to increase. As defect-state concentrations increase, leakage currents increase, but since the E? is much lower than the Pb concentration, this is not a dominant factor.

Hsu, K.-W.; Bian, S.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Ren, H. [Applied Materials, Sunnyvale, California 94085 (United States); Agasie, R. J. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Nishi, Y. [Stanford University, Stanford, California 94305 (United States)

2014-01-20T23:59:59.000Z

329

Measurements of ultra-low-energy electron scattering cross sections of atoms and molecules  

SciTech Connect (OSTI)

A new experimental technique for the total cross section measurements of ultra-low energy electron collisions with atoms and molecules utilizing the synchrotron radiation is presented. The technique employs a combination of the penetrating field technique and the threshold photoionization of rare gas atoms using the synchrotron radiation as an electron source in order to produce a high resolution electron beam at very low energy. Absolute total cross sections for electron scattering from He, Ne, Ar, Kr, and Xe in the energy region from extremely low electron energy to 20 eV are presented.

Kitajima, M.; Shigemura, K.; Kurokawa, M. [Department of Chemistry, Tokyo Institute of Technology, 152-8551 Tokyo (Japan); Odagiri, T. [Department of Physics, Sophia University, 102-8554 Tokyo, Japan and Department of Chemistry, Tokyo Institute of Technology, 152-8551 Tokyo (Japan); Kato, H.; Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, 102-8554 Tokyo (Japan); Ito, K. [Photon Factory, Institute of Materials Structure Science, 305-0801 Tsukuba (Japan)

2014-03-05T23:59:59.000Z

330

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources  

SciTech Connect (OSTI)

RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Progress continues to be made in establishing the program administration policies, procedures, and strategic foundation for future research awards. Significant progress was made in development of the draft program solicitations. In addition, RPSEA personnel continued an aggressive program of outreach to engage the industry and ensure wide industry participation in the research award solicitation process.

Russell E. Fray

2007-06-30T23:59:59.000Z

331

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources  

SciTech Connect (OSTI)

RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Significant progress has been made in establishing the program administration policies, procedures, and strategic foundation for future research awards. RPSEA has concluded an industry-wide collaborative effort to identify focus areas for research awards under this program. This effort is summarized in the RPSEA Draft Annual Plan, which is currently under review by committees established by the Secretary of Energy.

Russell E. Fray

2007-05-31T23:59:59.000Z

332

A source of ultra-cold neutrons for the gravitational spectrometer GRANIT  

E-Print Network [OSTI]

We present the status of the development of a dedicated high density ultra-cold neutron (UCN) source dedicated to the gravitational spectrometer GRANIT. The source employs superthermal conversion of cold neutrons to UCN in superfluid helium. Tests have shown that UCN produced inside the liquid can be extracted into vacuum. Furthermore a dedicated neutron selection channel was tested to maintain high initial density and extract only neutrons with a vertical velocity component 20 cm/s for the spectrometer. This new source would have a phase-space density of 0.18 cm-3(m/s)-3 for the spectrometer.

Schmidt-Wellenburg, P; Nesvizhevsky, V V; Plonka, C; Soldner, T; Vezzu, F; Zimmer, O

2007-01-01T23:59:59.000Z

333

A source of ultra-cold neutrons for the gravitational spectrometer GRANIT  

E-Print Network [OSTI]

We present the status of the development of a dedicated high density ultra-cold neutron (UCN) source dedicated to the gravitational spectrometer GRANIT. The source employs superthermal conversion of cold neutrons to UCN in superfluid helium. Tests have shown that UCN produced inside the liquid can be extracted into vacuum. Furthermore a dedicated neutron selection channel was tested to maintain high initial density and extract only neutrons with a vertical velocity component 20 cm/s for the spectrometer. This new source would have a phase-space density of 0.18 cm-3(m/s)-3 for the spectrometer.

P. Schmidt-Wellenburg; P. Geltenbort; V. V. Nesvizhevsky; C. Plonka; T. Soldner; F. Vezzu; O. Zimmer

2007-08-21T23:59:59.000Z

334

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials  

DOE Patents [OSTI]

Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

2013-03-05T23:59:59.000Z

335

Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)  

Reports and Publications (EIA)

On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

2006-01-01T23:59:59.000Z

336

Pseudophasic extraction method for the separation of ultra-fine minerals  

DOE Patents [OSTI]

An improved aqueous-based extraction method for the separation and recovery of ultra-fine mineral particles. The process operates within the pseudophase region of the conventional aqueous biphasic extraction system where a low-molecular-weight, water soluble polymer alone is used in combination with a salt and operates within the pseudo-biphase regime of the conventional aqueous biphasic extraction system. A combination of low molecular weight, mutually immiscible polymers are used with or without a salt. This method is especially suited for the purification of clays that are useful as rheological control agents and for the preparation of nanocomposites.

Chaiko, David J. (Naperville, IL)

2002-01-01T23:59:59.000Z

337

Low loss hollow optical-waveguide connection from atmospheric pressure to ultra-high vacuum  

SciTech Connect (OSTI)

A technique for optically accessing ultra-high vacuum environments, via a photonic-crystal fiber with a long small hollow core, is described. The small core and the long bore enable a pressure ratio of over 10{sup 8} to be maintained between two environments, while permitting efficient and unimpeded delivery of light, including ultrashort optical pulses. This delivery can be either passive or can encompass nonlinear optical processes such as optical pulse compression, deep UV generation, supercontinuum generation, or other useful phenomena.

Ermolov, A.; Mak, K. F.; Tani, F.; Hölzer, P.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany)] [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Russell, P. St. J. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany) [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany)

2013-12-23T23:59:59.000Z

338

Simulation of Ultra High Energy Neutrino Interactions in Ice and Water  

E-Print Network [OSTI]

The CORSIKA program, usually used to simulate extensive cosmic ray air showers, has been adapted to work in a water or ice medium. The adapted CORSIKA code was used to simulate hadronic showers produced by neutrino interactions. The simulated showers have been used to study the spatial distribution of the deposited energy in the showers. This allows a more precise determination of the acoustic signals produced by ultra high energy neutrinos than has been possible previously. The properties of the acoustic signals generated by such showers are described.

S. Bevan; S. Danaher; J. Perkin; S. Ralph; C. Rhodes; L. Thompson; T. Sloan; D. Waters

2007-04-08T23:59:59.000Z

339

Simulation of Ultra High Energy Neutrino Interactions in Ice and Water  

E-Print Network [OSTI]

The CORSIKA program, usually used to simulate extensive cosmic ray air showers, has been adapted to work in a water or ice medium. The adapted CORSIKA code was used to simulate hadronic showers produced by neutrino interactions. The simulated showers have been used to study the spatial distribution of the deposited energy in the showers. This allows a more precise determination of the acoustic signals produced by ultra high energy neutrinos than has been possible previously. The properties of the acoustic signals generated by such showers are described.

Bevan, S; Perkin, J; Ralph, S; Rhodes, C; Thompson, L; Sloan, T; Waters, D

2007-01-01T23:59:59.000Z

340

Jump chaotic behaviour of ultra low loss bulk acoustic wave cavities  

SciTech Connect (OSTI)

We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz bulk acoustic wave cavity (Q>3>10{sup 9}), which only occurs below 20 mK in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lies beyond the standard Duffing model.

Goryachev, Maxim, E-mail: maxim.goryachev@uwa.edu.au; Farr, Warrick G.; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, Serge [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l'Épitaphe 25000 Besançon (France)

2014-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Specifications of the octupole magnets required for the ATF2 ultra-low ß* lattice  

SciTech Connect (OSTI)

The Accelerator Test Facility 2 (ATF2) aims to test the novel chromaticity correction for higher chromaticity lattices as the one of CLIC. To this end the ATF2 ultra-low ß* lattice is designed to vertically focus the beam at the focal point or usually referred to as interaction point (IP), down to 23 nm. However when the measured multipole components of the ATF2 magnets are considered in the simulations, the evaluated spot sizes at the IP are well above the design value. The designed spot size is effectively recovered by inserting a pair of octupole magnets. In this note we address the technical specifications required for these octupole magnets.

Marin, E.; Modena, M.; Tauchi, T.; Terunuma, N.; Tomas, R.; White, G.R.; /KEK, Tsukuba

2014-05-28T23:59:59.000Z

342

The MAJORANA experiment: an ultra-low background search for neutrinoless double-beta decay  

SciTech Connect (OSTI)

The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana Experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to validate whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.

Phillips, D.; Aguayo Navarrete, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

2012-12-01T23:59:59.000Z

343

A focusable, convergent fast-electron beam from ultra-high-intensity laser-solid interactions  

E-Print Network [OSTI]

A novel scheme for the creation of a convergent, or focussing, fast-electron beam generated from ultra-high-intensity laser-solid interactions is described. Self-consistent particle-in-cell simulations are used to demonstrate the efficacy of this scheme in two dimensions. It is shown that a beam of fast-electrons of energy 500 keV - 3 MeV propagates within a solid-density plasma, focussing at depth. The depth of focus of the fast-electron beam is controlled via the target dimensions and focussing optics.

Scott, R H H

2015-01-01T23:59:59.000Z

344

Automatic deployment of a 2-D geophone array for efficient ultra-shallow seismic imaging  

E-Print Network [OSTI]

: Data acquisition and preliminary processing strate- 324gies, Geophysics, 63, 1434?1450. 325Burridge, R., J. Graham, K. Shillcutt, R. Hirsh, and D. Kortenkamp (2003), 326Experiments with an EVA assistant Robot, paper presented at 7th Inter- 327national.... Copyright 2006 by the American Geophysical Union. 0094-8276/06/2006GL025902$05.00 LXXXXX 1of4 103 acquire conventional ultra-shallow 3-D seismic data. The 104 method could be adapted to allow robotic shallow seismic 105 surveys in areas where people cannot...

Tsoflias, Georgios P.; Steeples, Don W.; Czarnecki, Gerard P.; Sloan, Steven D.; Eslick, Robert C.

2006-01-01T23:59:59.000Z

345

Ultra-wideband short-pulse radar with range accuracy for short range detection  

DOE Patents [OSTI]

An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

2014-10-07T23:59:59.000Z

346

advanced light source: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

detectors. A 2.5 m diameter light source illuminated by an ultra--violet light emitting diode is calibrated with an overall uncertainty of 2.1 % at a wavelength of 365 nm....

347

absolute source activity: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

detectors. A 2.5 m diameter light source illuminated by an ultra--violet light emitting diode is calibrated with an overall uncertainty of 2.1 % at a wavelength of 365 nm....

348

Development of Analytical Methods Coupled to Microdialysis Sampling for Studying Biomarkers of Oxidative Stress  

E-Print Network [OSTI]

generation would increase in biological systems due to induced oxidative stress. In one investigation, a capillary electrophoresis (CE) method with ultra-violet (UV) detection was developed employing pH-mediated stacking, an on-column preconcentration...

Hoque, Md Ehsanul

2007-12-18T23:59:59.000Z

349

Corrosion and ion release behavior of ultra-fine grained bulk pure copper fabricated by ECAP in Hanks solution as potential biomaterial for contraception  

E-Print Network [OSTI]

Corrosion and ion release behavior of ultra-fine grained bulk pure copper fabricated by ECAP-fine grained copper ECAP Corrosion behavior Ion release Ultra-fine grained (UFG) bulk pure copper has been revealed that the corrosion current of UFG copper ishigherthan that of the coarse grained copper

Zheng, Yufeng

350

Large Thermoelectric Power Factor in P-type Si (110)/[110] Ultra-Thin-Layers Compared to Differently Oriented Channels  

E-Print Network [OSTI]

The ability of a material to convert heat into electricity is measured by the dimensionless thermoelectric (TE1 Large Thermoelectric Power Factor in P-type Si (110)/[110] Ultra-Thin-Layers Compared the thermoelectric power factor of ultra-thin-body p-type Si layers of thicknesses from W=3nm up to 10nm. We show

351

684 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 3, MARCH 2009 Synthesis Design of Ultra-Wideband Bandpass Filters  

E-Print Network [OSTI]

and fabricated to confirm the theoretical predictions. Index Terms--Bandpass filter, equal-ripple response academic and industrial areas toward ultra-wideband technology. As a key component in the ultra-wideband wireless communication sys- tems, microwave bandpass filters with high performance, com- pact size, and low

Leung, Ka-Cheong

352

Abstract: In this paper, a new multilayer six-port circuit using ultra-wideband directional coupler is presented and implemented. The use of the multilayer  

E-Print Network [OSTI]

Abstract: In this paper, a new multilayer six-port circuit using ultra-wideband directional coupler large bandwidth. To validate this concept, a six-port prototype was fabricated and measured. Simulation and measurement results show the proposed six-port circuit can easily operate over an ultra-wide band from 4 to 7

Boyer, Edmond

353

Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization  

SciTech Connect (OSTI)

Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

2012-07-15T23:59:59.000Z

354

On the electrodynamic model of ultra-relativistic laser-plasma interactions caused by radiation reaction effects  

SciTech Connect (OSTI)

A simple electrodynamic model is developed to define plasma-field structures in self-consistent ultra-relativistic laser-plasma interactions when the radiation reaction effects come into play. An exact analysis of a circularly polarized laser interacting with plasmas is presented. We define fundamental notions, such as nonlinear dielectric permittivity, ponderomotive and dissipative forces acting in a plasma. Plasma-field structures arising during the ultra-relativisitc interactions are also calculated. Based on these solutions, we show that about 50% of laser energy can be converted into gamma-rays in the optimal conditions of laser-foil interaction.

Bashinov, A. V. [Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation)] [Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Kim, A. V. [Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation) [Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation)

2013-11-15T23:59:59.000Z

355

Development of an Ultra High Frequency Gyrotron with a Pulsed Magnet  

SciTech Connect (OSTI)

An ultra-high frequency gyrotron is being developed as a THz radiation source by using a pulsed magnet. We have achieved the highest field intensity of 20.2 T. High frequency operation at the second harmonic will achieve 1.01 THz; the corresponding cavity mode is TE6,11,1. On the other hand, an ultra-high power gyrotron with a pulsed magnet is also being developed as a millimeter to submillimeter wave radiation source. The gyrotron is a large orbit gyrotron (LOG) using an intense relativistic electron beam (IREB). A pulsed power generator 'ETIGO-IV' is applied for generation of the IREB. A prototype relativistic LOG was constructed for fundamental operation. The output of the LOG will achieve 144 GHz and 9 MW; the corresponding cavity mode is TE1,4,1. Cavities for 2nd and 4th harmonic operations were designed by numerical simulation for achievement of higher frequency. The progress of development for prototype high frequency gyrotrons with pulsed magnets is presented.

Idehara, T.; Kamada, M.; Tsuchiya, H.; Hayashi, T.; Agusu, La; Mitsudo, S.; Ogawa, I. [Research Center for Development of Far Infrared Region, University of Fukui, Bunkyo 3-9-1, Fukui-shi 910-8507 (Japan); Manuilov, V. N. [Research Center for Development of Far Infrared Region, University of Fukui, Bunkyo 3-9-1, Fukui-shi 910-8507 (Japan); Radiophysical Department of Nizhny Novgorod State University, 690005, Gagarin av., 23, Nizhny Novgorod (Russian Federation); Naito, K.; Yuyama, T.; Jiang, W.; Yatsui, K. [Extreme Energy-Density Research Institute, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka-shi, Niigata 940-2188 (Japan)

2006-01-03T23:59:59.000Z

356

Controlling Low-Rate Signal Path Microdischarge for an Ultra-Low-Background Proportional Counter  

SciTech Connect (OSTI)

ABSTRACT Pacific Northwest National Laboratory (PNNL) has developed an ultra-low-background proportional counter (ULBPC) made of high purity copper. These detectors are part of an ultra-low-background counting system (ULBCS) in the newly constructed shallow underground laboratory at PNNL (at a depth of ~30 meters water-equivalent). To control backgrounds, the current preamplifier electronics are located outside the ULBCS shielding. Thus the signal from the detector travels through ~1 meter of cable and is potentially susceptible to high voltage microdischarge and other sources of electronic noise. Based on initial successful tests, commercial cables and connectors were used for this critical signal path. Subsequent testing across different batches of commercial cables and connectors, however, showed unwanted (but still low) rates of microdischarge noise. To control this noise source, two approaches were pursued: first, to carefully validate cables, connectors, and other commercial components in this critical signal path, making modifications where necessary; second, to develop a custom low-noise, low-background preamplifier that can be integrated with the ULBPC and thus remove most commercial components from the critical signal path. This integrated preamplifier approach is based on the Amptek A250 low-noise charge-integrating preamplifier module. The initial microdischarge signals observed are presented and characterized according to the suspected source. Each of the approaches for mitigation is described, and the results from both are compared with each other and with the original performance seen with commercial cables and connectors.

Mace, Emily K.; Aalseth, Craig E.; Bonicalzi, Ricco; Day, Anthony R.; Hoppe, Eric W.; Keillor, Martin E.; Myers, Allan W.; Overman, Cory T.; Seifert, Allen

2013-05-01T23:59:59.000Z

357

Welding of HSLA-100 steel using ultra low carbon bainitic weld metal to eliminate preheating  

SciTech Connect (OSTI)

Advanced high strength steels such as the Navy`s HSLA-100 and HSLA-80 contain sufficiently low carbon levels to be weldable without preheating. Unfortunately, commercial filler metals specifically designed to weld these steels without costly preheating have not yet been developed. The objective of this paper is to show that the Navy`s advanced steels can be welded by gas metal-arc (GMAW) and gas tungsten-arc welding (GTAW) without preheating by using filler metal compositions that produce weld metal with an ultra-low carbon bainitic (ULCB) microstructure. Filler metals were fabricated from vacuum induction melted (VIM) ingots containing ultra-low levels of C, O and N. HSLA-100 plate and plate from the VIM ingots were welded by both GMAW and GTAW with Ar-5% CO{sub 2} shielding gas using welding conditions to achieve cooling times from 800 to 500 C (t{sub 8-5}) from 35 to 14 sec. Weld metal tensile, hardness and CVN impact toughness testing as well as microstructural studies using transmission electron microscopy were conducted. The ULCB weld metal was relatively insensitive to cooling rate, resulting in good strength and toughness values over a wide range of t{sub 8-5} cooling times. Filler metal compositions which met the mechanical property requirements for HSLA-100, HSLA-80 and HSLA-65 weld metal were developed.

Devletian, J.H.; Singh, D.; Wood, W.E. [Oregon Graduate Inst. of Science and Technology, Portland, OR (United States)

1996-12-31T23:59:59.000Z

358

A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines  

SciTech Connect (OSTI)

The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were: ? Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines. ? Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions. ? Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

Dennis N. Assanis; Arvind Atreya; Jyh-Yuan Chen; Wai K. Cheng; Robert W. Dibble; Chris Edwards; Zoran S. Filipi; Christian Gerdes; Hong Im; George A. Lavoie; Margaret S. Wooldridge

2009-12-31T23:59:59.000Z

359

Ultra High Energy Cosmic Rays and Gamma Ray Bursts from Axion Stars  

E-Print Network [OSTI]

We propose a model in which ultra high energy cosmic rays and gamma ray bursts are produced by collisions between neutron stars and axion stars. The acceleration of such a cosmic ray is made by the electric field, $\\sim 10^{15} (B/10^{12} {G}) {eV} {cm}^{-1}$, which is induced in an axion star by relatively strong magnetic field $B>10^{12}$ G of a neutron star. On the other hand, similar collisions generate gamma ray bursts when magnetic field is relatively small, e.g. $\\leq 10^{10}$ G. Assuming that the axion mass is $\\sim 10^{-9}$ eV, we can explain huge energies of the gamma ray bursts $\\sim 10^{54}$ erg as well as the ultra high energies of the cosmic rays $\\sim 10^{20}$ eV. We estimate rate of energy release in the collisions and we find that the rate roughly agrees with observations. In addition, we show that these axion stars are plausible candidates for MACHOs. Since the axion star induces oscillating electric current under the magnetic field, observable monochromatic radiations are emitted.

Aiichi Iwazaki

2000-08-29T23:59:59.000Z

360

Residual Dipolar Couplings in Zero-to-Ultra-Low-Field Nuclear Magnetic Resonance  

E-Print Network [OSTI]

Zero-to-ultra-low-field nuclear magnetic resonance (ZULF-NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the interaction averages to zero under isotropic molecular tumbling. Under partial orientational ordering, this information is retained in the form of so-called residual dipolar couplings. We report zero-to-ultra-low-field NMR measurements of residual dipolar couplings in acetonitrile-2-$^{13}$C aligned in stretched polyvinyl acetate gels. This represents the first investigation of dipolar couplings as a perturbation on the indirect spin-spin $J$-coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole c...

Blanchard, John W; King, Jonathan P; Ledbetter, Micah P; Levine, Emma H; Bajaj, Vikram S; Budker, Dmitry; Pines, Alexander

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Laser Based Techniques for Ultra Trace Isotope Production, Spectroscopy and Detection  

SciTech Connect (OSTI)

A variety of research activities in the field of fundamental and applied nuclear physics has evolved in the last years using resonantly tuned radiation from powerful lasers. The technique of resonance ionization spectroscopy has delivered outstanding results and found broad acceptance in the last years as a particularly efficient and highly selective method for rare and exotic radioisotope studies. It is used for production, spectroscopy and detection of these species and provides complete isobaric, high isotopic and even some isomeric selection, which altogether is needed for on-line investigation of short lived species far off stability as well as for ultra trace determination. Good overall efficiency pushes the experimental limits of detection in elemental trace analysis down to below 106 atoms per sample, and additionally isotopic selectivity as high as 3 ? 1012 has been demonstrated. The widespread potential of resonance ionization techniques is discussed, focusing on the experimental arrangements for applications in selective on-line isotope production, spectroscopy of rare radioisotopes and ultra trace determination of radiotoxic isotopes like 238Pu to 244Pu, 135,137Cs, 89,90Sr or 41Ca in environmental, technical and biomedical samples.

Wendt, K.; Blaum, K; Geppert, C; Muller, P; Nortershauser, W.; Schmitt, Annette; Schumann, P; Trautmann, Norbert; Bushaw, Bruce A.

2006-06-26T23:59:59.000Z

362

Are Ultra Long Gamma Ray Bursts powered by a black hole spinning down?  

E-Print Network [OSTI]

Gamma-ray bursts (GRBs) are violent explosions, coming from cosmological distances. They are detected in gamma-rays (also X-rays, UV, optical, radio) almost every day, and have typical durations of a few seconds to a few minutes. Some GRBs have been reported with extraordinary duration of 10^4 sec. These are called Ultra Long GRBs. It has been debated whether these form a new distinct class of events or whether they are similar to long GRBs. According to Blandford & Znajek (1977), the spin energy of a rotating black hole can be extracted electromagnetically, should the hole be endowed with a magnetic field supported by electric currents in a surrounding disk. We argue that this can be the case for the central engines of GRBs and we show that the duration of the burst depends on the magnetic flux accumulated on the event horizon of the black hole. We thus estimate the surface magnetic field of a possible progenitor star, and we conclude that an Ultra Long GRB may originate from a progenitor star with a rel...

Nathanail, Antonios

2015-01-01T23:59:59.000Z

363

H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors  

DOE Patents [OSTI]

An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.

Liu, Ping (Denver, CO); Tracy, C. Edwin (Golden, CO); Pitts, J. Roland (Lakewood, CO); Lee, Se-Hee (Lakewood, CO)

2011-03-22T23:59:59.000Z

364

relation functional proposed by Perdew, Burke, and Ernzerhof (PBE) [20] was adopted. To account for the valencecore interaction, ultra-  

E-Print Network [OSTI]

for the valence­core interaction, ultra- soft pseudopotentials [21] were chosen for Nb 4p and 4d states and norm)2), and lithium ethoxide (LiOC2H5) were used as precursors of inorganic components. Niobium ethoxide, titanium] K. Tanabe, M. Misono, Y. Ono, H. Hattori, New Solid Acids and Bases: Their Catalytic Properties

Van Vliet, Krystyn J.

365

Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback  

E-Print Network [OSTI]

Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback Lucas- dynamical electronic device. It consists of a transistor-based nonlinearity, commercially of such a device, we explore the dynamics of an electronic circuit that consists of a simple transistor

Illing, Lucas

366

Quark-gluon plasma in the early Universe and in ultra-relativistic heavy-ion collisions  

SciTech Connect (OSTI)

We briefly give an elementary introduction to the expansion of the Early Universe till when the phase transition of the quark-gluon plasma to a hadronic matter takes place. Then we describe some main element of the study of QGP by mean of ultra-relativistic heavy-ion collisions (uRHIC's)

Greco, V. [Department of Physics and Astronomy, University of Catania, Catania, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy)

2014-05-09T23:59:59.000Z

367

Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports  

E-Print Network [OSTI]

Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports Guillaume 420, 650-653 (2002). 7. C. M. Smith et al., "Low-loss hollow-core silica/air photonic bandgap fibre yong@its.caltech.edu. Abstract: We demonstrate a new class of hollow-core Bragg fibers

Huang, Yanyi

368

A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion  

E-Print Network [OSTI]

A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion in the development of combustion science. Several aspects of these two-dimensional flame cells are identified for premixed combustion when the other types of idealized flames are inapplicable. 1 #12;Nomenclature fuel

Geddes, Cameron Guy Robinson

369

The Universe Viewed in Gamma-Rays 1 Toward Ultra Short Gamma Ray Burst Ground Based De-  

E-Print Network [OSTI]

The Universe Viewed in Gamma-Rays 1 Toward Ultra Short Gamma Ray Burst Ground Based De- tection- liminary data taking started in November 2002. 1. Introduction Gamma-ray bursts observed with space Tcherenkovlightfromoneshower Few 100MeV gamma-rays Fig. 1. In an imaging telescope, -ray bursts should appear as a Cherenkov

Enomoto, Ryoji

370

Ultra Low-Cost 3.2Gb/s Optical-Rate Reed Solomon Decoder IC Design  

E-Print Network [OSTI]

decoder by using a novel Just-in-Time Folding Modified Euclidean Algorithm (JIT-FMEA). The JIT- FMEA VLSI called Just-in-Time Folding Modified Euclidean Algorithm (JIT-FMEA), which can construes an ultra low of JIT-FMEA architecture can overcome the critical paths of the bottleneck in a RS decoding procedure

Hung, Shih-Hao

371

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

Gerald P. Huffman

2003-03-31T23:59:59.000Z

372

Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

Abbasi, R. [Univ. of Utah, Salt Lake City, UT (United States); Takai, H. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Allen, C. [Univ. of Kansas, Lawrence, KS (United States); Beard, L. [Purdue Univ., West Lafayette, IN (United States); Belz, J. [Univ. of Utah, Salt Lake City, UT (United States); Besson, D. [Univ. of Kansas, Lawrence, KS (United States). Moscow Engineering and Physics Inst. (Russian Federation); Byrne, M. [Univ. of Utah, Salt Lake City, UT (United States); Abou Bakr Othman, M. [Univ. of Utah, Salt Lake City, UT (United States); Farhang-Boroujeny, B. [Univ. of Utah, Salt Lake City, UT (United States); Gardner, A. [Univ. of Utah, Salt Lake City, UT (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT (United States); Hanlon, W. [Univ. of Utah, Salt Lake City, UT (United States); Hanson, J. [Univ. of Kansas, Lawrence, KS (United States); Jayanthmurthy, C. [Univ. of Utah, Salt Lake City, UT (United States); Kunwar, S. [Univ. of Kansas, Lawrence, KS (United States); Larson, S. L. [Utah State Univ., Logan, UT (United States); Myers, I. [Univ. of Utah, Salt Lake City, UT (United States); Prohira, S. [Univ. of Kansas, Lawrence, KS (United States); Ratzlaff, K. [Univ. of Kansas, Lawrence, KS (United States); Sokolsky, P. [Univ. of Utah, Salt Lake City, UT (United States); Thomson, G. B. [Univ. of Utah, Salt Lake City, UT (United States); Von Maluski, D. [Univ. of Utah, Salt Lake City, UT (United States)

2014-12-01T23:59:59.000Z

373

UTag: Long-range Ultra-wideband Passive Radio Frequency Tags  

SciTech Connect (OSTI)

Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

Dowla, F

2007-03-14T23:59:59.000Z

374

Gamma-Ray Bursts, Ultra High Energy Cosmic Rays, and Cosmic Gamma-Ray Background  

E-Print Network [OSTI]

We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in TeV range by synchrotron radiation of ultra-high-energy protons (\\sim 10^{20} eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.

Tomonori Totani

1999-04-13T23:59:59.000Z

375

Scaling of Anisotropic Flows in Intermediate Energy and Ultra-relativistic Heavy Ion Collisions  

E-Print Network [OSTI]

Anisotropic flows ($v_2$ and $v_4$) of hadrons and light nuclear clusters are studied by a partonic transport model and nucleonic transport model, respectively, in ultra-relativistic and intermediate energy heavy ion collisions. Both number-of-constituent-quark scaling of hadrons, especially for $\\phi$ meson which is composed of strange quarks, and number-of-nucleon scaling of light nuclear clusters are discussed and explored for the elliptic flow ($v_2$). The ratios of $v_4/v_2^2$ of hadrons and nuclear clusters are, respectively, calculated and they show different constant values which are independent of transverse momentum. The above phenomena can be understood, respectively, by the coalescence mechanism in quark-level or nucleon-level.

Y. G. Ma

2006-11-30T23:59:59.000Z

376

Short range, ultra-wideband radar with high resolution swept range gate  

DOE Patents [OSTI]

A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.

McEwan, Thomas E. (Livermore, CA)

1998-05-26T23:59:59.000Z

377

Redshifts of Emission Line Objects in the Hubble Ultra Deep Field  

E-Print Network [OSTI]

We present redshifts for 115 emission line objects in the Hubble Ultra Deep Field (HUDF) identified through the GRism ACS Program for Extragalactic Science (GRAPES) project using the slitless grism spectroscopy mode of the ACS Camera on the Hubble Space Telescope (HST). The sample was selected by an emission line search on all extracted 1-dimensional GRAPES spectra. We identify the emission lines using line wavelength ratios where multiple lines are detected in the grism wavelength range (5800A 25 mag). Such emission lines would likely remain undiscovered without our deep survey. The emission line objects fall into 3 categories: 1) Most are low to moderate redshift galaxies (0 star forming galaxies with strong HII regions; 2) 9 are high redshift (4 < z < 7) Lyman-alpha emitters; and 3) at least 3 are candidate AGNs.

Chun Xu; Norbert Pirzkal; Sangeeta Malhotra; James E. Rhoads; Bahram Mobasher; Emanuele Daddi; Caryl Gronwall; Nimish P. Hathi; Nino Panagia; Henry C. Ferguson; Anton M. Koekemoer; Martin Kuemmel; Leonidas A. Moustakas; Anna Pasquali; Sperello di Serego Alighieri; Joel Vernet; Jeremy R. Walsh; Rogier Windhorst; Haojing Yan

2007-01-30T23:59:59.000Z

378

The Ultra Luminous X-ray sources in the High Velocity System of NGC 1275  

E-Print Network [OSTI]

We report the results of a study of X-ray point sources coincident with the High Velocity System (HVS) projected in front of NGC 1275. A very deep X-ray image of the core of the Perseus cluster made with the Chandra Observatory has been used. We find a population of Ultra-Luminous X-ray sources (ULX; 7 sources with LX [0.5-7 keV] > 7x10^39 erg/s). As with the ULX populations in the Antennae and Cartwheel galaxies, those in the HVS are associated with a region of very active star formation. Several sources have possible optical counterparts found on HST images, although the X-ray brightest one does not. Absorbed power-law models fit the X-ray spectra, with most having a photon index between 2 and 3.

O. Gonzalez-Martin; A. C. Fabian; J. S. Sanders

2006-01-09T23:59:59.000Z

379

Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports  

SciTech Connect (OSTI)

We grow ultra-high mass density carbon nanotube forests at 450 °C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 ?m and a mass density of 1.6 g cm{sup ?3}. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ?22 k?), suggesting Co-Mo is useful for applications requiring forest growth on conductors.

Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei; D'Arsié, Lorenzo; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)] [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 0FS (United Kingdom)] [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 0FS (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy) [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy); Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, Trieste I-34149 (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy)] [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy)

2013-08-12T23:59:59.000Z

380

Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications  

E-Print Network [OSTI]

We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

Burri, F; Feusi, P; Henneck, R; Kirch, K; Lauss, B; Ruettimann, P; Schmidt-Wellenburg, P; Schnabel, A; Voigt, J; Zenner, J; Zsigmond, G

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Analog Readout and Analysis Software for the Ultra-High Rate Germanium (UHRGe) Project  

SciTech Connect (OSTI)

High-resolution high-purity germanium (HPGe) spectrometers are needed for Safeguards applications such as spent fuel assay and uranium hexafluoride cylinder verification. In addition, these spectrometers would be applicable to other high-rate applications such as non-destructive assay of nuclear materials using nuclear resonance fluorescence. Count-rate limitations of today's HPGe technologies, however, lead to concessions in their use and reduction in their efficacy. Large-volume, very high-rate HPGe spectrometers are needed to enable a new generation of nondestructive assay systems. The Ultra-High Rate Germanium (UHRGe) project is developing HPGe spectrometer systems capable of operating at unprecedented rates, 10 to 100 times those available today. This report documents current status of developments in the analog electronics and analysis software.

Fast, James E.; Aguayo Navarrete, Estanislao; Evans, Allan T.; VanDevender, Brent A.; Rodriguez, Douglas C.; Wood, Lynn S.

2011-09-01T23:59:59.000Z

382

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

SciTech Connect (OSTI)

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

383

Neutrino Physics and Dark Matter Physics with Ultra-Low-Energy Germanium Detector  

SciTech Connect (OSTI)

The status and plans of the TEXONO Collaboration on the development of ultra-low-energy germanium detectors with sub-keV sensitivities are reported. We survey the scientific goals which include the observation of neutrino-nucleus coherent scattering, the studies of neutrino magnetic moments, as well as the searches of WIMP dark matter. In particular, an energy threshold of 220{+-}10 eV at an efficiency of 50% were achieved with a four-channel prototype detectors each of an active mass of 5 g. New limits were set for WIMPs with mass between 3-6 GeV. The prospects of the realization of full-scale experiments are discussed. This detector technique makes the unexplored sub-keV energy window accessible for new neutrino and dark matter experiments.

Shin-Ted, Lin [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)

2008-10-10T23:59:59.000Z

384

Ultra-wideband radios for time-of-flight-ranging and network position estimation  

DOE Patents [OSTI]

This invention provides a novel high-accuracy indoor ranging device that uses ultra-wideband (UWB) RF pulsing with low-power and low-cost electronics. A unique of the present invention is that it exploits multiple measurements in time and space for very accurate ranging. The wideband radio signals utilized herein are particularly suited to ranging in harsh RF environments because they allow signal reconstruction in spite of multipath propagation distortion. Furthermore, the ranging and positioning techniques discussed herein directly address many of the known technical challenges encountered in UWB localization regarding synchronization and sampling. In the method developed, noisy, corrupted signals can be recovered by repeating range measurements across a channel, and the distance measurements are combined from many locations surrounding the target in a way that minimizes the range biases associated to indirect flight paths and through-wall propagation delays.

Hertzog, Claudia A. (Houston, TX); Dowla, Farid U. (Castro Valley, CA); Dallum, Gregory E. (Livermore, CA); Romero, Carlos E. (Livermore, CA)

2011-06-14T23:59:59.000Z

385

Electrical activation and spin coherence of ultra low doseantimony implants in silicon  

SciTech Connect (OSTI)

We implanted ultra low doses (0.2 to 2 x 10{sup 11} cm{sup -2}) of Sb ions into isotopically enriched {sup 28}Si, and probed electrical activation and electron spin relaxation after rapid thermal annealing. Strong segregation of dopants towards both Si{sub 3}N{sub 4} and SiO{sub 2} interfaces limits electrical activation. Pulsed Electron Spin Resonance shows that spin echo decay is sensitive to the dopant profiles, and the interface quality. A spin decoherence time, T{sub 2}, of 1.5 ms is found for profiles peaking 25 nm below a Si/SiO{sub 2} interface, increasing to 2.1 ms when the surface is passivated with hydrogen. These measurements provide benchmark data for the development of devices in which quantum information is encoded in donor electron spins.

Schenkel, T.; Tyryshkin, A.M.; de Sousa, R.; Whaley, K.B.; Bokor,J.; Liddle, J.A.; Persaud, A.; Shangkuan, J.; Chakarov, I.; Lyon, S.A.

2005-07-13T23:59:59.000Z

386

HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS  

SciTech Connect (OSTI)

Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

2008-10-08T23:59:59.000Z

387

Ultra-high-resolution alpha spectrometry for nuclear forensics and safeguards applications  

SciTech Connect (OSTI)

We will present our work on the development of ultra-high-resolution detectors for alpha particle spectrometry. These detectors, based on superconducting transition-edge sensors, offer energy resolution that is five to ten times better than conventional silicon detectors. Using these microcalorimeter detectors, the isotopic composition of mixed-actinide samples can be determined rapidly without the need for actinide separation chemistry to isolate each element, or mass spectrometry to separate isotopic signatures that can not be resolved using traditional alpha spectrometry (e.g. Pu-239/Pu-240, or Pu-238/Am-241). This paper will cover the detector and measurement system, actinide source preparation, and the quantitative isotopic analysis of a number of forensics- and safeguards-relevant radioactive sources.

Bacrania, Minesh K [Los Alamos National Laboratory; Croce, Mark [Los Alamos National Laboratory; Bond, Evelyn [Los Alamos National Laboratory; Dry, Donald [Los Alamos National Laboratory; Moody, W. Allen [Los Alamos National Laboratory; Lamont, Stephen [Los Alamos National Laboratory; Rabin, Michael [Los Alamos National Laboratory; Rim, Jung [Los Alamos National Laboratory; Smith, Audrey [Los Alamos National Laboratory; Beall, James [NIST-BOULDER; Bennett, Douglas [NIST-BOULDER; Kotsubo, Vincent [NIST-BOULDER; Horansky, Robert [NIST-BOULDER; Hilton, Gene [NIST-BOULDER; Schmidt, Daniel [NIST-BOULDER; Ullom, Joel [NIST-BOULDER; Cantor, Robin [STAR CRYOELECTRONICS

2010-01-01T23:59:59.000Z

388

GRABGAM: A Gamma Analysis Code for Ultra-Low-Level HPGe SPECTRA  

SciTech Connect (OSTI)

The GRABGAM code has been developed for analysis of ultra-low-level HPGe gamma spectra. The code employs three different size filters for the peak search, where the largest filter provides best sensitivity for identifying low-level peaks and the smallest filter has the best resolution for distinguishing peaks within a multiplet. GRABGAM basically generates an integral probability F-function for each singlet or multiplet peak analysis, bypassing the usual peak fitting analysis for a differential f-function probability model. Because F is defined by the peak data, statistical limitations for peak fitting are avoided; however, the F-function does provide generic values for peak centroid, full width at half maximum, and tail that are consistent with a Gaussian formalism. GRABGAM has successfully analyzed over 10,000 customer samples, and it interfaces with a variety of supplementary codes for deriving detector efficiencies, backgrounds, and quality checks.

Winn, W.G.

1999-07-28T23:59:59.000Z

389

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

SciTech Connect (OSTI)

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

390

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

391

Ultra High Energy Cosmic Rays: the present position and the need for mass composition measurements  

E-Print Network [OSTI]

The present situation with regard to experimental data on ultra high-energy cosmic rays is briefly reviewed. Whilst detailed knowledge of the shape of the energy spectrum is still lacking, it is clear that events above 10^20 eV do exist. Evidence for clustering of the directions of some of the highest energy events remains controversial. Clearly, more data are needed and these will come from the southern branch of the Pierre Auger Observatory in the next few years. What is evident is that our knowledge of the mass composition of cosmic rays is deficient at all energies above 10^18 eV. It must be improved if we are to discover the origin of the highest energy cosmic rays. The major part of the paper is concerned with this problem: it is argued that there is no compelling evidence to support the common assumption that cosmic rays of the highest energies are protons.

A. A. Watson

2003-12-18T23:59:59.000Z

392

Ultra-fast photoluminescence as a diagnostic for laser damage initiation  

SciTech Connect (OSTI)

Using high-sensitivity confocal time-resolved photoluminescence (CTP) techniques, we report an ultra-fast photoluminescence (40ps-5ns) from impurity-free surface flaws on fused silica, including polished, indented or fractured surfaces of fused silica, and from laser-heated evaporation pits. This fast photoluminescence (PL) is not associated with slower point defect PL in silica which has characteristic decay times longer than 5ns. Fast PL is excited by the single photon absorption of sub-band gap light, and is especially bright in fractures. Regions which exhibit fast PL are strongly absorptive well below the band gap, as evidenced by a propensity to damage with 3.5eV ns-scale laser pulses, making CTP a powerful non-destructive diagnostic for laser damage in silica. The use of CTP to provide insights into the nature of damage precursors and to help develop and evaluate new damage mitigation strategies will be presented.

Laurence, T A; Bude, J D; Shen, N; Miller, P E; Steele, W A; Guss, G; Adams, J J; Wong, L L; Feit, M D; Suratwala, T I

2009-10-30T23:59:59.000Z

393

Evidence for ultra-fast heating in intense-laser irradiated reduced-mass targets  

SciTech Connect (OSTI)

We report on an experiment irradiating individual argon droplets of 20 {mu}m diameter with laser pulses of several Joule energy at intensities of 10{sup 19} W/cm{sup 2}. K-shell emission spectroscopy was employed to determine the hot electron energy fraction and the time-integrated charge-state distribution. Spectral fitting indicates that bulk temperatures up to 160 eV are reached. Modelling of the hot-electron relaxation and generation of K-shell emission with collisional hot-electron stopping only is incompatible with the experimental results, and the data suggest an additional ultra-fast (sub-ps) heating contribution. For example, including resistive heating in the modelling yields a much better agreement with the observed final bulk temperature and qualitatively reproduces the observed charge state distribution.

Neumayer, P.; Gumberidze, A.; Hochhaus, D. C. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt am Main (Germany); Aurand, B.; Stoehlker, T. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Costa Fraga, R. A.; Kalinin, A. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Ecker, B. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Kaluza, M. C. [Helmholtz Institute Jena, 07743 Jena (Germany); IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Kuehl, T. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Reuschl, R. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Winters, D.; Winters, N.; Yin, Z. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany)

2012-12-15T23:59:59.000Z

394

NLO corrections to ultra-high energy neutrino-nucleon scattering, shadowing and small x  

E-Print Network [OSTI]

We reconsider the Standard Model interactions of ultra-high energy neutrinos with matter. The next to leading order QCD corrections are presented for charged-current and neutral-current processes. Contrary to popular expectations, these corrections are found to be quite substantial, especially for very large (anti-) neutrino energies. Hence, they need to be taken into account in any search for new physics effects in high-energy neutrino interactions. In our extrapolation of the parton densities to kinematical regions as yet unexplored directly in terrestrial accelerators, we are guided by double asymptotic scaling in the large Q^2 and small Bjorken x region and to models of saturation in the low Q^2 and low x regime. The sizes of the consequent uncertainties are commented upon. We also briefly discuss some variables which are insensitive to higher order QCD corrections and are hence suitable in any search for new physics.

Rahul Basu; Debajyoti Choudhury; Swapan Majhi

2002-10-22T23:59:59.000Z

395

Direct imaging of neural currents using ultra-low field magnetic resonance techniques  

DOE Patents [OSTI]

Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

Volegov, Petr L. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Mosher, John C. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Kraus, Jr., Robert H. (Los Alamos, NM)

2009-08-11T23:59:59.000Z

396

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

SciTech Connect (OSTI)

This report describes activities for the thirteenth quarter of work performed under this agreement. EnviRes initiated a wire transfer of funds for procurement of a pressure vessel and associated refractory lining. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2006-01-01T23:59:59.000Z

397

A Pilot Survey for KX QSOs in the UKIDSS Ultra Deep Survey Field  

E-Print Network [OSTI]

We have undertaken a pilot survey for faint QSOs in the UKIDSS Ultra Deep Survey Field using the KX selection technique. These observations exploit the very deep near-infrared and optical imaging of this field from UKIRT and Subaru to select candidate QSOs based on their VJK colours and morphologies. We determined redshifts for 426 candidates using the AAOmega spectrograph on the AAT in service time. We identify 17 QSOs (M_BKX selection) to constrain the surface density of QSOs with KKX QSOs at faint limits in the face of the significant contamination by compact, foreground galaxies. The brightest examples from our combined QSO sample will be used in conjunction with a large VLT VIMOS spectroscopic survey of high redshift galaxies in this region to study the structures inhabited by gas, galaxies and growing super-massive black holes at high redshifts in the UKIDSS UDS.

Ian Smail; Rob Sharp; A. M. Swinbank; M. Akiyama; Y. Ueda; S. Foucaud; O. Almaini; S. Croom

2008-06-16T23:59:59.000Z

398

A magnetically shielded room with ultra low residual field and gradient  

SciTech Connect (OSTI)

A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.

Altarev, I.; Chesnevskaya, S.; Gutsmiedl, E.; Kuchler, F.; Lins, T.; Marino, M.; McAndrew, J.; Niessen, B.; Paul, S.; Petzoldt, G.; Singh, J.; Stoepler, R.; Stuiber, S.; Sturm, M.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Babcock, E. [Jülich Center for Neutron Science, Lichtenbergstrasse 1, D-85748 Garching (Germany); Beck, D.; Sharma, S. [Physics Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Burghoff, M.; Fan, I. [Physikalisch-Technische Bundesanstalt Berlin, D-10587 Berlin (Germany); and others

2014-07-15T23:59:59.000Z

399

Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope  

E-Print Network [OSTI]

We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Tele- scopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometres as well as 16 highly significant UHECR shower candidates.

Fujii, T; Bertaina, M; Casolino, M; Dawson, B; Horvath, P; Hrabovsky, M; Jiang, J; Mandat, D; Matalon, A; Matthews, J N; Motloch, P; Palatka, M; Pech, M; Privitera, P; Schovanek, P; Takizawa, Y; Thomas, S B; Travnicek, P; Yamazaki, K

2015-01-01T23:59:59.000Z

400

Ultra-low field NMR for detection and characterization of 235 UF6  

SciTech Connect (OSTI)

We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

Espy, Michelle A [Los Alamos National Laboratory; Magnelind, Per E [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Urbaitis, Algis V [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thermodynamic stability and unusual strength of ultra-incompressible rhenium nitrides  

SciTech Connect (OSTI)

We report on a comprehensive study of thermodynamic and mechanical properties as well as a bond-deformation mechanism on ultra-incompressible Re{sub 2} N and Re{sub 3} N. The introduction of nitrogen into the rhenium lattice leads to thermodynamic instability in Re{sub 2} N at ambient conditions and enhanced incompressibility and strength for both rhenium nitrides. Rhenium nitrides, however, show substantially lower ideal shear strength than hard ReB{sub 2} and superhard c -BN, suggesting that they cannot be intrinsically superhard. An intriguing soft “ionic bond mediated plastic deformation” mechanism is revealed to underline the physical origin of their unusual mechanical strength. These results suggest a need to reformulate the design concept of intrinsically superhard transition-metal nitrides, borides, and carbides.

Zhang, R. F.; Lin, Zhijun; Mao, Ho-kwang; Zhao, Yusheng

2011-01-01T23:59:59.000Z

402

A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector  

E-Print Network [OSTI]

We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

T. I. Banks; S. J. Freedman; J. Wallig; N. Ybarrolaza; A. Gando; Y. Gando; H. Ikeda; K. Inoue; Y. Kishimoto; M. Koga; T. Mitsui; K. Nakamura; I. Shimizu; J. Shirai; A. Suzuki; Y. Takemoto; K. Tamae; K. Ueshima; H. Watanabe; B. D. Xu; H. Yoshida; S. Yoshida; A. Kozlov; C. Grant; G. Keefer; A. Piepke; T. Bloxham; B. K. Fujikawa; K. Han; K. Ichimura; H. Murayama; T. O'Donnell; H. M. Steiner; L. A. Winslow; D. A. Dwyer; R. D. McKeown; C. Zhang; B. E. Berger; C. E. Lane; J. Maricic; T. Miletic; M. Batygov; J. G. Learned; S. Matsuno; M. Sakai; G. A. Horton-Smith; K. E. Downum; G. Gratta; Y. Efremenko; O. Perevozchikov; H. J. Karwowski; D. M. Markoff; W. Tornow; K. M. Heeger; J. A. Detwiler; S. Enomoto; M. P. Decowski

2014-07-01T23:59:59.000Z

403

Demonstration of a solid deuterium source of ultra-cold neutrons  

E-Print Network [OSTI]

Ultra-cold neutrons (UCN), neutrons with energies low enough to be confined by the Fermi potential in material bottles, are playing an increasing role in measurements of fundamental properties of the neutron. The ability to manipulate UCN with material guides and bottles, magnetic fields, and gravity can lead to experiments with lower systematic errors than have been obtained in experiments with cold neutron beams. The UCN densities provided by existing reactor sources limit these experiments. The promise of much higher densities from solid deuterium sources has led to proposed facilities coupled to both reactor and spallation neutron sources. In this paper we report on the performance of a prototype spallation neutron-driven solid deuterium source. This source produced bottled UCN densities of 145 +/-7 UCN/cm3, about three times greater than the largest bottled UCN densities previously reported. These results indicate that a production UCN source with substantially higher densities should be possible.

A. Saunders; J. M. Anaya; T. J. Bowles; B. W. Filippone; P. Geltenbort; R. E. Hill; M. Hino; S. Hoedl; G. E. Hogan; T. M. Ito; K. W. Jones; T. Kawai; K. Kirch; S. K. Lamoreaux; C. -Y. Liu; M. Makela; L. J. Marek; J. W. Martin; C. L. Morris; R. N. Mortensen; A. Pichlmaier; S. J. Seestrom; A. Serebrov; D. Smith; W. Teasdale; B. Tipton; R. B. Vogelaar; A. R. Young; J. Yuan

2003-12-18T23:59:59.000Z

404

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

Gerald P. Huffman

2004-09-30T23:59:59.000Z

405

Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass  

SciTech Connect (OSTI)

A mechanically flexible and wavelength-tunable laser with an ultra-thin glass membrane as substrate is demonstrated. The optically pumped hybrid device has a distributed feedback cavity that combines a colloidal quantum dot gain film with a grating-patterned polymeric underlayer, all on a 30-?m thick glass sheet. The total thickness of the structure is only 75??m. The hybrid laser has an average threshold fluence of 450?±?80??J/cm{sup 2} (for 5-ns excitation pulses) at an emitting wavelength of 607?nm. Mechanically bending the thin-glass substrate enables continuous tuning of the laser emission wavelength over an 18-nm range, from 600?nm to 618?nm. The correlation between the wavelength tunability and the mechanical properties of the thin laser structure is verified theoretically and experimentally.

Foucher, C.; Guilhabert, B.; Laurand, N.; Dawson, M. D. [Institute of Photonics, SUPA, University of Strathclyde, Glasgow (United Kingdom)

2014-04-07T23:59:59.000Z

406

Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines  

SciTech Connect (OSTI)

U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Gordon H. Holcomb

2009-01-01T23:59:59.000Z

407

Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons  

SciTech Connect (OSTI)

We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

2009-02-04T23:59:59.000Z

408

Short range, ultra-wideband radar with high resolution swept range gate  

DOE Patents [OSTI]

A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.

McEwan, T.E.

1998-05-26T23:59:59.000Z

409

Black Hole Formation and Classicalization in Ultra-Planckian 2 -> N Scattering  

E-Print Network [OSTI]

We establish a connection between the ultra-Planckian scattering amplitudes in field and string theory and unitarization by black hole formation in these scattering processes. Using as a guideline an explicit microscopic theory in which the black hole represents a bound-state of many soft gravitons at the quantum critical point, we were able to identify and compute a set of perturbative amplitudes relevant for black hole formation. These are the tree-level N-graviton scattering S-matrix elements in a kinematical regime (called classicalization limit) where the two incoming ultra-Planckian gravitons produce a large number N of soft gravitons. We compute these amplitudes by using the Kawai-Lewellen-Tye relations, as well as scattering equations and string theory techniques. We discover that this limit reveals the key features of the microscopic corpuscular black hole N-portrait. In particular, the perturbative suppression factor of a N-graviton final state, derived from the amplitude, matches the non-perturbative black hole entropy when N reaches the quantum criticality value, whereas final states with different value of N are either suppressed or excluded by non-perturbative corpuscular physics. Thus we identify the microscopic reason behind the black hole dominance over other final states including non-black hole classical object. In the parameterization of the classicalization limit the scattering equations can be solved exactly allowing us to obtain closed expressions for the high-energy limit of the open and closed superstring tree-level scattering amplitudes for a generic number N of external legs. We demonstrate matching and complementarity between the string theory and field theory in different large-s and large-N regimes.

G. Dvali; C. Gomez; R. S. Isermann; D. Lust; S. Stieberger

2015-02-07T23:59:59.000Z

410

Conceptual Design of an Ultra-Dense Phase Injector and Feed System  

SciTech Connect (OSTI)

Pratt & Whitney Rocketdyne (PWR) has developed an innovative gasifier concept that uses rocket engine technology to significantly improve gasifier performance, life, and cost compared to current state-of-the-art systems. One key feature of the PWR concept is the use of an ultra-dense phase feed system to provide dry coal to the multi-element injector. This report describes the design of an ultra-dense phase multi-element injector and feed system for use on PWR gasifiers operating at pressures to 1,000 psia. For the design of this injector and feed system, the pulverized coal's Bingham fluid yield stress is approximately 11 Pascals (Pa) with a coefficient of rigidity of 10 centipoise (cp). These values are typical of earlier experimental testing conducted with dried pulverized coal below 18 wt% moisture -- see, e.g., Sprouse and Schuman (1983, 1986). Each individual injector element is designed for a coal flow rate between 3 and 4 tons/hr (0.76 to 1.0 kg/sec) at full flow conditions. Hence, a small 400 to 500 tons/day (4.2 to 5.25 kg/sec) gasifier will require a 6-element injector, a 1,500 tons/day (15.7 kg/sec) gasifier will require an 18-element injector and a 3,000 tons/day (31.5 kg/sec) gasifier will require a 36-element injector. These injectors and feed systems are capable of 'turn-down' below 50% of full-flow operation.

Ken Sprouse; Fred Widman; Alan Darby

2006-03-30T23:59:59.000Z

411

Single-molecule Fluorescence Spectroelectrochemistry of Cresyl Violet. |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShiftMethodSimwYpes(tm)SingleB.EMSL

412

System Identification and Signal Processing for PID Control of B0 Shim Systems in Ultra-High Field Magnetic Resonance Applications  

E-Print Network [OSTI]

System Identification and Signal Processing for PID Control of B0 Shim Systems in Ultra-High Field identification; parameter optimization; smoothing filters; phase-locked loop; Hurwitz criterion; PID controllers

413

Effective Analysis of NGS Metagenomic Data with Ultra-Fast Clustering Algorithms (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)  

ScienceCinema (OSTI)

San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

Li, Weizhong [San Diego Supercomputer Center

2013-01-22T23:59:59.000Z

414

Surface Studies of Ultra Strength Drilling Steel after Corrosion Fatigue in Simulated Sour Environment  

SciTech Connect (OSTI)

The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -}, HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the notch in the solution at 20 C. Accumulation of the corrosion products is visible along the crack. The EDX chemical analysis near the crack tip found iron, sulfur and oxygen in the passive layer. The surface of the sample after the fatigue test in the sour environment at 85{sup o}, Fig. 2, C looks different from that fatigued surface at 20 C. The crack propagates across the passive film that covers the surface fairly uniformly. Some spallation of the passive film is observed near the notch. The EDX chemical analysis of the passive film near the crack tip identified mainly iron, carbon and oxygen. It appears that temperature plays a very important role in formation of the passive film. This may be associated with different solubility of H{sub 2}S in the solution, which will be further studied.

M. Ziomek-Moroz; J.A. Hawk; R. Thodla; F. Gui

2012-05-06T23:59:59.000Z

415

Concept of momentum-less bodies and a suggestion for its experimental verification using ultra-cold atoms  

E-Print Network [OSTI]

General Principle of Relativity unequivocally supports the notion of momentum-less energy for bodies (energy-quanta) moving at the {\\em same} or {\\em constant} speed relative to all the reference systems. In this communication, we point out that whether energy-quantum is a momentum-less body or not is verifiable using ultra-cold atoms trapped in an optical lattice, perhaps with some minor modifications to the existing such experimental setups.

Sanjay M. Wagh

2008-04-02T23:59:59.000Z

416

Spectral photoresponse of ZnSe/GaAs(001) heterostructures with CdSe ultra-thin quantum well insertions  

SciTech Connect (OSTI)

We present a study of the spectral photoresponse (SPR) of ZnSe/GaAs(001) heterostructures for different ZnSe film thickness with and without CdSe ultra-thin quantum well (UTQW) insertions. We observe a significant increase of the SPR of heterostructures containing 3 monolayer thick CdSe UTQW insertions; these results encourage their use in photodetectors and solar cells.

Valverde-Chávez, D. A.; Sutara, F.; Hernández-Calderón, I. [Physics Department, Cinvestav-IPN, Av. IPN 2508, 07360 México, DF (Mexico)

2014-05-15T23:59:59.000Z

417

Modeling target bulk heating resulting from ultra-intense short pulse laser irradiation of solid density targets  

SciTech Connect (OSTI)

Isochoric heating of solid-density matter up to a few tens of eV is of interest for investigating astrophysical or inertial fusion scenarios. Such ultra-fast heating can be achieved via the energy deposition of short-pulse laser generated electrons. Here, we report on experimental measurements of this process by means of time- and space-resolved optical interferometry. Our results are found in reasonable agreement with a simple numerical model of fast electron-induced heating.

Antici, P. [Dipartimento SBAI, Università di Roma ‘‘La Sapienza,’’ Via Scarpa 14-16, 00161 Roma (Italy) [Dipartimento SBAI, Università di Roma ‘‘La Sapienza,’’ Via Scarpa 14-16, 00161 Roma (Italy); INRS-EMT, Varennes, Québec (Canada); Istituto Nazionale di Fisica Nucleare, Via E. Fermi, 40-00044 Frascati (Italy); LULI, École Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Gremillet, L. [CEA, DAM, DIF, F-91297 Arpajon (France)] [CEA, DAM, DIF, F-91297 Arpajon (France); Grismayer, T. [GoLP/Instituto de Plasmas e Fusão Nuclear-Laboratório Associado, Instituto Superior Técnico, 1049-001 Lisboa (Portugal)] [GoLP/Instituto de Plasmas e Fusão Nuclear-Laboratório Associado, Instituto Superior Técnico, 1049-001 Lisboa (Portugal); Mora, P. [Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau (France)] [Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau (France); Audebert, P.; Man?ic, A.; Fuchs, J. [LULI, École Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France)] [LULI, École Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Borghesi, M.; Cecchetti, C. A. [School of Mathematics and Physics, The Queen's University, Belfast (United Kingdom)] [School of Mathematics and Physics, The Queen's University, Belfast (United Kingdom)

2013-12-15T23:59:59.000Z

418

Development of Ultra-low Platinum Alloy C th d C t l t f PEM F l C ll  

E-Print Network [OSTI]

Fuel Cells 2010 DOE Hydrogen Program Fuel Cell Project Kick-Off P I : Branko N PopovP. I.: Branko N of the catalyst layers which increases the cell resistance. ¾¾ Pt catalyst accelerates the rate of carbonDevelopment of Ultra-low Platinum Alloy C th d C t l t f PEM F l C ll Cathode Catalyst for PEM

419

Layered ultra-thin coherent structures used as electrical resistors having low-temperature coefficient of resistivity  

DOE Patents [OSTI]

A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

Werner, T.R.; Falco, C.M.; Schuller, I.K.

1982-08-31T23:59:59.000Z

420

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect (OSTI)

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations  

SciTech Connect (OSTI)

This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

Dr. Pavel V. Tsvetkov

2009-05-20T23:59:59.000Z

422

Synthesis and evaluation of ultra-pure rare-earth-coped glass for laser refrigeration  

SciTech Connect (OSTI)

Significant progress has been made in synthesizing and characterizing ultra-pure, rare-earth doped ZIBLAN (ZrF{sub 4}-InF{sub 3}BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF) glass capable of laser refrigeration. The glass was produced from fluorides which were purified and subsequently treated with hydrofluoric gas at elevated temperatures to remove impurities before glass formation. Several Yb3 +-doped samples were studied with degrees of purity and composition with successive iterations producing an improved material. We have developed a non-invasive, spectroscopic technique, two band differential luminescence thermometry (TBDLT), to evaluate the intrinsic quality of the ytterbium doped ZIBLAN used for laser cooling experiments. TBDLT measures local temperature changes within an illuminated volume resulting solely from changes in the relative thermal population of the excited state levels. This TBDLT technique utilizes two commercially available band pass filters to select and integrate the 'difference regions' of interest in the luminescence spectra. The goal is to determine the minimum temperature to which the ytterbium sample can cool on the local scale, unphased by surface heating. This temperature where heating and cooling are exactly balanced is the zero crossing temperature (ZCT) and can be used as a measure for the presence of impurities and the overall quality of the laser cooling material. Overall, favorable results were obtained from 1 % Yb3+-doped glass, indicating our glasses are desirable for laser refrigeration.

Patterson, Wendy M [Los Alamos National Laboratory; Hehlen, Markus P [Los Alamos National Laboratory; Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2009-01-01T23:59:59.000Z

423

Precision Measurement Of The Neutron's Beta Asymmetry Using Ultra-Cold Neutrons  

SciTech Connect (OSTI)

A measurement of A{beta}, the correlation between the electron momentum and neutron (n) spin (the beta asymmetry) in n beta-decay, together with the n lifetime, provides a method for extracting fundamental parameters for the charged-current weak interaction of the nucleon. In particular when combined with decay measurements, one can extract the Vud element of the CKM matrix, a critical element in CKM unitarity tests. By using a new SD2 super-thermal source at LANSCE, large fluxes of UCN (ultra-cold neutrons) are expected for the UCNA project. These UCN will be 100% polarized using a 7 T magnetic field, and directed into the {beta} spectrometer. This approach, together with an expected large reduction in backgrounds, will result in an order of magnitude reduction in the critical systematic corrections associated with current n {beta}-asymmetry measurements. This paper will give an overview of the UCNA A{beta} measurement as well as an update on the status of the experiment.

Makela, M. [Los Alamos National Lab., P.O. Box 1663, Los Alamos, NM 87545 (United States); Back, H. O. [North Carolina State University Raleigh, NC 27695 (United States); Melconian, D. [University of Washington, Department of Physics, Box 351560 Seattle, WA 98195 (United States); Plaster, B. [California Institute of Technology, Kellogg Radiation Lab, Pasadena, CA 91125 (United States)

2006-07-11T23:59:59.000Z

424

Engineering Time-Reversal Invariant Topological Insulators With Ultra-Cold Atoms  

E-Print Network [OSTI]

Topological insulators are a broad class of unconventional materials that are insulating in the interior but conduct along the edges. This edge transport is topologically protected and dissipationless. Until recently, all existing topological insulators, known as quantum Hall states, violated time-reversal symmetry. However, the discovery of the quantum spin Hall effect demonstrated the existence of novel topological states not rooted in time-reversal violations. Here, we lay out an experiment to realize time-reversal topological insulators in ultra-cold atomic gases subjected to synthetic gauge fields in the near-field of an atom-chip. In particular, we introduce a feasible scheme to engineer sharp boundaries where the "edge states" are localized. Besides, this multi-band system has a large parameter space exhibiting a variety of quantum phase transitions between topological and normal insulating phases. Due to their unprecedented controllability, cold-atom systems are ideally suited to realize topological states of matter and drive the development of topological quantum computing.

N. Goldman; I. Satija; P. Nikolic; A. Bermudez; M. A. Martin-Delgado; M. Lewenstein; I. B. Spielman

2010-06-01T23:59:59.000Z

425

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

Gerald P. Huffman

2003-03-31T23:59:59.000Z

426

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2004-03-31T23:59:59.000Z

427

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2005-03-31T23:59:59.000Z

428

On the ultra high energy cosmic rays and the origin of the cosmic microwave background radiation  

E-Print Network [OSTI]

Some inconsistencies to the assumption of a cosmological origin of the cosmic microwave background CMB, such as the absence of gravitational lensing in the WMAP data, open the doors to some speculations such as a local origin to the CMB. We argue here that this assumption agrees with the absence of the GZK cutoff (at least according to AGASA data) in the energy spectrum of the cosmic ray due to the cosmic interaction with the CMB at $6\\times 10^{19} eV$ or above. Within 50 Mpc from Earth, the matter and light distributions are close to an anisotropic distribution, where the local cluster and local super-clusters of galaxies can be identified. In contrast, the ultra high energy comic rays data is consistent to an almost isotropic distribution, and there is no correlation between their arrival direction and astronomical sources within our local cluster. This means that the events above the GZK cutoff come from distances above 50 Mpc, without an apparent energy loss. This scenario is plausible under the assumption of the CMB concentrated only within 3-4 Mpc from Earth. In other words, the CMB has a local origin linked only to the local super-cluster of galaxies. In addition, the galactic and extragalactic energy spectra index within the energy equipartition theorem strongly constrains the dark matter and dark energy hypothesis, essential in the Big Bang cosmology.

C. E. Navia; C. R. A. Augusto; K. H. Tsui

2007-07-12T23:59:59.000Z

429

Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations  

SciTech Connect (OSTI)

Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath theMoon?s surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequencywindow for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHEneutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a samplingfrequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth?s ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, thedetection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit onthe UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A.G.; Falcke, H.; Singh, K.; Stappers, B.; Strom, R.G.; al Yahyaoui, R.

2010-04-02T23:59:59.000Z

430

Hadronic Multiparticle Production at Ultra-High Energies and Extensive Air Showers  

E-Print Network [OSTI]

Studies of the nature of cosmic ray particles at the highest energies are based on the measurement of extensive air showers. Most cosmic ray properties can therefore only be obtained from the interpretation of air shower data and are thus depending on predictions of hadronic interaction models at ultra-high energies. We discuss different scenarios of model extrapolations from accelerator data to air shower energies and investigate their impact on the corresponding air shower predictions. To explore the effect of different extrapolations by hadronic interaction models we developed an ad hoc model. This ad hoc model is based on the modification of the output of standard hadronic interaction event generators within the air shower simulation process and allows us to study the impact of changing interaction features on the air shower development. In a systematic study we demonstrate the resulting changes of important air shower observables and also discuss them in terms of the predictions of the Heitler model of air shower cascades. It is found that the results of our ad hoc modifications are, to a large extend, independent of the choice of the underlying hadronic interaction model.

Ralf Ulrich; Ralph Engel; Michael Unger

2010-10-20T23:59:59.000Z

431

IceCube-Plus: An Ultra-High Energy Neutrino Telescope  

E-Print Network [OSTI]

While the first kilometer-scale neutrino telescope, IceCube, is under constructi on, alternative plans exist to build even larger detectors that will, however, b e limited by a much higher neutrino energy threshold of 10 PeV or higher rather than 10 to 100 GeV. These future projects detect radio and acoustic pulses as w ell as air showers initiated by ultra-high energy neutrinos. As an alternative, we here propose an expansion of IceCube, using the same strings, placed on a gri d with a spacing of order 500 m. Unlike other proposals, the expanded detector uses methods that are understood and calibrated on atmospheric neutrinos. Atmosp heric neutrinos represent the only background at the energies under consideratio n and is totally negligible. Also, the cost of such a detector is understood. We conclude that supplementing the 81 IceCube strings with a modest number of addi tional strings spaced at large distances can almost double the effective volume of the detector. Doubling the number of strings on a 800 m ...

Halzen, F; Halzen, Francis; Hooper, Dan

2004-01-01T23:59:59.000Z

432

IceCube-Plus: An Ultra-High Energy Neutrino Telescope  

E-Print Network [OSTI]

While the first kilometer-scale neutrino telescope, IceCube, is under construction, alternative plans exist to build even larger detectors that will, however, b e limited by a much higher neutrino energy threshold of 10 PeV or higher rather than 10 to 100 GeV. These future projects detect radio and acoustic pulses as w ell as air showers initiated by ultra-high energy neutrinos. As an alternative, we here propose an expansion of IceCube, using the same strings, placed on a gri d with a spacing of order 500 m. Unlike other proposals, the expanded detector uses methods that are understood and calibrated on atmospheric neutrinos. Atmosp heric neutrinos represent the only background at the energies under consideratio n and is totally negligible. Also, the cost of such a detector is understood. We conclude that supplementing the 81 IceCube strings with a modest number of addi tional strings spaced at large distances can almost double the effective volume of the detector. Doubling the number of strings on a 800 m grid can deliver a d etector that this a factor of 5 larger for horizontal muons at modest cost.

Francis Halzen; Dan Hooper

2003-12-22T23:59:59.000Z

433

Development of Ultra High Gradient and High Q{sub 0} Superconducting Radio Frequency Cavities  

SciTech Connect (OSTI)

We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q{sub 0} superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q{sub 0} of 10{sup 10} at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q{sub 0} of 2?10{sup 10} at 2K.

Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Follkie, James E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Harris, Teena M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kushnick, Peter W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Machie, Danny [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Martin, Robert E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Perry, Era A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Slack, Gary L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Williams, R. S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Adolphsen, C. [SLAC, Menlo Park, California, (United States); Li, Z. [SLAC, Menlo Park, California, (United States); Hao, J. K. [Peking University, Beijing (China); Li, Y. M. [Peking University, Beijing (China); Liu, K. X. [Peking University, Beijing (China)

2013-06-01T23:59:59.000Z

434

The potential application of ultra-nanocrystalline diamond films for heavy ion irradiation detection  

SciTech Connect (OSTI)

The potential of utilizing the ultra-nanocrystalline (UNCD) films for detecting the Au-ion irradiation was investigated. When the fluence for Au-ion irradiation is lower than the critical value (f{sub c}= 5.0 Multiplication-Sign 10{sup 12} ions/cm{sup 2}) the turn-on field for electron field emission (EFE) process of the UNCD films decreased systematically with the increase in fluence that is correlated with the increase in sp{sup 2}-bonded phase ({pi}{sup *}-band in EELS) due to the Au-ion irradiation. The EFE properties changed irregularly, when the fluence for Au-ion irradiation exceeds this critical value. The transmission electron microscopic microstructural examinations, in conjunction with EELS spectroscopic studies, reveal that the structural change preferentially occurred in the diamond-to-Si interface for the samples experienced over critical fluence of Au-ion irradiation, viz. the crystalline SiC phase was induced in the interfacial region and the thickness of the interface decreased. These observations implied that the UNCD films could be used as irradiation detectors when the fluence for Au-ion irradiation does not exceed such a critical value.

Chen, Huang-Chin [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300 (China); Chen, Shih-Show [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Department of Information Technology and Mobile Communication, Taipei College of Maritime Technology, Tamsui, New-Taipei, Taiwan 251 (China); Wang, Wei-Cheng; Lin, I-Nan; Chang, Ching-Lin [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300 (China); Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

2013-06-15T23:59:59.000Z

435

Chemical reactions studied at ultra-low temperature in liquid helium clusters  

SciTech Connect (OSTI)

Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope {sup 4}He is used, the helium droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O{sub 2}. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.

Huisken, Friedrich; Krasnokutski, Serge A. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the University of Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany)

2012-11-27T23:59:59.000Z

436

Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report  

SciTech Connect (OSTI)

The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used to develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.

Dodge, L.; Bourn, G.; Callahan, T.; Grogan, J.; Leone, D.; Naegeli, D.; Shouse, K.; Thring, R.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1998-09-01T23:59:59.000Z

437

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design  

SciTech Connect (OSTI)

The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine, and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1995-02-01T23:59:59.000Z

438

Ultra-deep catalog of X-ray groups in the ECDF-S  

E-Print Network [OSTI]

Ultra-deep observations of ECDF-S with Chandra and XMM-Newton enable a search for extended X-ray emission down to an unprecedented flux of $2\\times10^{-16}$ ergs s$^{-1}$ cm$^{-2}$. We present the search for the extended emission on spatial scales of 32$^{\\prime\\prime}$ in both Chandra and XMM data, covering 0.3 square degrees and model the extended emission on scales of arcminutes. We present a catalog of 46 spectroscopically identified groups, reaching a redshift of 1.6. We show that the statistical properties of ECDF-S, such as logN-logS and X-ray luminosity function are broadly consistent with LCDM, with the exception that dn/dz/d$\\Omega$ test reveals that a redshift range of $0.2

Finoguenov, A; Cooper, M; Allevato, V; Cappelluti, N; Choi, A; Heymans, C; Bauer, F E; Ziparo, F; Ranalli, P; Silverman, J; Brandt, W N; Xue, Y Q; Mulchaey, J; Howes, L; Schmid, C; Wilman, D; Comastri, A; Hasinger, G; Mainieri, V; Luo, B; Tozzi, P; Rosati, P; Capak, P; Popesso, P

2015-01-01T23:59:59.000Z

439

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

SciTech Connect (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

440

The Role and Detectability of the Charm Contribution to Ultra High Energy Neutrino Fluxes  

E-Print Network [OSTI]

It is widely believed that charm meson production and decay may play an important role in high energy astrophysical sources of neutrinos, especially those that are baryon-rich, providing an environment conducive to pp interactions. Using slow-jet supernovae (SJS) as an example of such a source, we study the detectability of high-energy neutrinos, paying particular attention to those produced from charmed-mesons. We highlight important distinguishing features in the ultra-high energy neutrino flux which would act as markers for the role of charm in the source. In particular, charm leads to significant event rates at higher energies, after the conventional (pi, K) neutrino fluxes fall off. We calculate event rates both for a nearby single source and for diffuse SJS fluxes for an IceCube-like detector. By comparing muon event rates for the conventional and prompt fluxes in different energy bins, we demonstrate the striking energy dependence in the rates induced by the presence of charm. We also show that it lead...

Gandhi, Raj; Watanabe, Atsushi

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Comparison of direct and indirect positron-generation by an ultra-intense femtosecond laser  

SciTech Connect (OSTI)

An extensive comparison of the properties of positron beams produced by an ultra-intense femtosecond laser in direct and indirect schemes has been performed with two-dimensional particle-in-cell and Monte Carlo simulations. It is shown that the positron beam generated in the indirect scheme has a higher yield (10{sup 10}), a higher temperature (28.8 MeV), a shorter pulse duration (5 ps), and a smaller divergence (8°) than in the direct case (10{sup 9} yield, 4.4 MeV temperature, 40 ps pulse duration, and 60° divergence). In addition, it was found that the positron/gamma ratio in the indirect scheme is one order of magnitude higher than that in the direct one, which represents a higher signal/noise ratio in positron detection. Nevertheless, the direct generation method still has its own unique advantage, the so-called target normal sheath acceleration, which can result in quasi-monoenergetic positron beams that may serve in some specialized applications.

Yan, Yonghong [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China) [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Bo; Wu, Yuchi; Dong, Kegong; Gu, Yuqiu [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)] [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Zeen [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)] [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

2013-10-15T23:59:59.000Z

442

Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors  

DOE Patents [OSTI]

An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

Frank, Matthias (Berkeley, CA); Mears, Carl A. (Oakland, CA); Labov, Simon E. (Berkeley, CA); Benner, W. Henry (Danville, CA)

1999-01-01T23:59:59.000Z

443

Magnetized Sources of Ultra-high Energy Nuclei and Extragalactic Origin of the Ankle  

E-Print Network [OSTI]

It has recently been suggested that ultra-high energy cosmic rays could have an extragalactic origin down to the "second knee" at ~4x10^{17}eV. In this case the "ankle" or "dip" at ~5x10^{18}eV would be due to pair production of extragalactic protons on the cosmic microwave background which requires an injection spectrum of about E^{-2.6}. It has been pointed out that for injection of a mixed composition of nuclei a harder injection spectrum \\~E^{-2.2} is required to fit the spectra at the highest energies and a galactic component is required in this case to fit the spectrum below the ankle, unless the proton fraction is larger than 85%. Here we perform numerical simulations and find that for sufficiently magnetized sources, observed spectra above 10^{19}eV approach again the case of pure proton injection due to increased path-lengths and more efficient photo-disintegration of nuclei around the sources. This decreases secondary fluxes at a given energy and thus requires injection spectra ~E^{-2.6}, as steep as for pure proton injection. In addition, the ankle may again be sufficiently dominated by protons to be interpreted as a pair production dip.

Guenter Sigl; Eric Armengaud

2005-07-28T23:59:59.000Z

444

The isotropy problem of Sub-ankle Ultra-high energy cosmic rays  

E-Print Network [OSTI]

We study the time dependent propagation of sub-ankle ultra-high energy cosmic rays (UHECRs) originating from point-like Galactic sources. We show that drift in the Galactic magnetic field (GMF) may play an important role in the propagation of UHECRs and their measured anisotropy, particularly when the transport is anisotropic. To fully account for the discreteness of UHECR sources in space and time, a Monte Carlo method is used to randomly place sources in the Galaxy. The low anisotropy measured by Auger is not generally characteristic of the theoretical models, given that the sources are distributed in proportion to the star formation rate, but it can possibly be understood as a) intermittency effects due to the discrete nature of the sources or, with extreme parameters, b) a cancellation of drift current along a current sheet with the outward radial diffusive flux. We conclude that it is possible to interpret the Galactic sub-ankle CR flux as being due entirely to intermittent discrete Galactic sources dist...

Kumar, Rahul

2013-01-01T23:59:59.000Z

445

Development of ultra-thin polyethylene balloons for high altitude research upto mesosphere  

E-Print Network [OSTI]

Ever since its inception four decades back, Balloon Facility of Tata Institute of Fundamental Research (TIFR), Hyderabad has been functioning with the needs of its user scientists at its focus. During the early nineties, when the X-ray astronomy group at TIFR expressed the need for balloons capable of carrying the X-ray telescopes to altitudes up to 42 km, the balloon group initiated research and development work on indigenous balloon grade films in various thickness not only for the main experiment but also in parallel, took up the development of thin films in thickness range 5 to 6 microns for fabrication of sounding balloons required for probing the stratosphere up to 42 km as the regular 2000 grams rubber balloon ascents could not reach altitudes higher than 38 km. By the year 1999, total indigenisation of sounding balloon manufacture was accomplished. The work on balloon grade ultra-thin polyethylene film in thickness range 2.8 to 3.8 microns for fabrication of balloons capable of penetrating mesosphere ...

Kumar, B Suneel; Ojha, D K; Peter, G Stalin; Vasudevan, R; Anand, D; Kulkarni, P M; Reddy, V Anmi; Rao, T V; Sreenivasan, S

2014-01-01T23:59:59.000Z

446

Utilization of Illinois slags for the production of ultra-lightweight aggregates  

SciTech Connect (OSTI)

The objective of this program is to demonstrate that solid residues (slag) from the gasification of Illinois coals can be utilized to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are made by pyroprocessing perlite ores and have unit weights in the range of 3--15 lb/ft[sup 3]. In a previous project, Praxis Engineers demonstrated at the pilot scale that lightweight aggregates with unit weights of 40--55 lb/ ft[sup 3] can be produced from Illinois coal slags, which is suitable for making lightweight cement concrete and precast blocks. These tests also indicated that a product with a unit weight of less than 25 lb/ft[sup 3] could be produced from slag. This project is aimed at testing the potential for producing ULWA from Illinois coal slags. Target applications include loose fill insulation, insulating concrete, lightweight precast products such as concrete blocks and rooftiles, and filtration media. Laboratory- and pilot-scale testing is being conducted in Phase I to identify operating conditions for the expansion of Illinois slags to produce ULWA. Following this, a large batch of expanded slag will be produced, for evaluation in various applications in Phase II.

Choudhry, V. (Praxis Engineers, Inc., Milpitas, CA (United States)); Zimmerle, T. (Silbrico Corporation (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

1993-01-01T23:59:59.000Z

447

Rho0 Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions with STAR  

SciTech Connect (OSTI)

Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR collaboration presents a measurement of {rho}{sup 0} and direct {pi}{sup +}{pi}{sup -} photoproduction in ultra-peripheral relativistic heavy ion collisions at {radical}s{sub NN} = 200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross-section of {sigma}(AuAu {yields} Au*Au* {rho}{sup 0}) = 530 {+-} 19 (stat.) {+-} 57 (syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The {rho}{sup 0} transverse momentum spectrum (p{sub T}{sup 2}) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find {sigma}{sub inc}/{sigma}{sub coh} = 0.29 {+-} 0.03 (stat.) {+-} 0.08 (syst.). The ratio of direct {pi}{sup +}{pi}{sup -} production is comparable to that observed in {gamma}p collisions at HERA, and appears to be independent of photon energy. Finally, the measured {rho}{sup 0} spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.

STAR Coll

2007-12-20T23:59:59.000Z

448

Ion heating dynamics in solid buried layer targets irradiated by ultra-short intense laser pulses  

SciTech Connect (OSTI)

We investigate bulk ion heating in solid buried layer targets irradiated by ultra-short laser pulses of relativistic intensities using particle-in-cell simulations. Our study focuses on a CD{sub 2}-Al-CD{sub 2} sandwich target geometry. We find enhanced deuteron ion heating in a layer compressed by the expanding aluminium layer. A pressure gradient created at the Al-CD{sub 2} interface pushes this layer of deuteron ions towards the outer regions of the target. During its passage through the target, deuteron ions are constantly injected into this layer. Our simulations suggest that the directed collective outward motion of the layer is converted into thermal motion inside the layer, leading to deuteron temperatures higher than those found in the rest of the target. This enhanced heating can already be observed at laser pulse durations as low as 100 fs. Thus, detailed experimental surveys at repetition rates of several ten laser shots per minute are in reach at current high-power laser systems, which would allow for probing and optimizing the heating dynamics.

Huang, L. G. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800 Shanghai (China) [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800 Shanghai (China); Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany) [Germany; University of Chinese Academy of Sciences, 100049 Beijing (China); Bussmann, M.; Kluge, T. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany)] [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Lei, A. L. [Shanghai Institute of Laser Plasma, 201800 Shanghai (China)] [Shanghai Institute of Laser Plasma, 201800 Shanghai (China); Yu, W. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800 Shanghai (China)] [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800 Shanghai (China); Cowan, T. E. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany) [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany)

2013-09-15T23:59:59.000Z

449

Development of the Ultra-Clean Dry Cleanup Process for Coal-Based Syngases  

SciTech Connect (OSTI)

The Siemens Westinghouse Power Corporation (SWPC) has proposed a novel scheme for polishing sulfur species, halides, and particulate from syngas to meet stringent cleaning requirements, the ''Ultra-Clean syngas polishing process.'' The overall development objective for this syngas polishing process is to economically achieve the most stringent cleanup requirements for sulfur species, halide species and particulate expected for chemical and fuel synthesis applications (total sulfur species < 60 ppbv, halides < 10 ppbv, and particulate < 0.1 ppmw). A Base Program was conducted to produce ground-work, laboratory test data and process evaluations for a conceptual feasibility assessment of this novel syngas cleaning process. Laboratory testing focused on the identification of suitable sulfur and halide sorbents and operating temperatures for the process. This small-scale laboratory testing was also performed to provide evidence of the capability of the process to reach its stringent syngas cleaning goals. Process evaluations were performed in the Base Program to identify process alternatives, to devise process flow schemes, and to estimate process material & energy balances, process performance, and process costs. While the work has focused on sulfur, halide, and particulate control, considerations of ammonia, and mercury control have also been included.

Newby, R.A.; Slimane, R.B.; Lau, F.S.; Jain, S.C.

2002-09-20T23:59:59.000Z

450

Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas  

SciTech Connect (OSTI)

Using a one-dimensional self-consistent fluid model, we investigate standing relativistic bright solitons in hot electron-positron plasmas. The positron dynamics is taken into account. A set of nonlinear coupled differential equations describing the evolution of electromagnetic waves in fully relativistic two-fluid plasma is derived analytically and solved numerically. As a necessary condition for the existence of standing solitons the system should be relativistic. For the case of ultra-relativistic plasma, we investigate non-drifting bright solitary waves. Detailed discussions of the acceptable solutions are presented. New single hump non-trivial symmetric solutions for the scalar potential were found, and single and multi-nodal symmetric and anti-symmetric solutions for the vector potential are presented. It is shown that for a fixed value of the fluid velocity excited modes with more zeros in the profile of the vector potential show a higher magnitude for the scalar potential. An increase in the plasma fluid velocity also increases the magnitude of the scalar potential. Furthermore, the Hamiltonian and the first integral of the system are given.

Heidari, E., E-mail: ehphys75@iaubushehr.ac.ir [Department of Sciences, Bushehr Branch, Islamic Azad University, Bushehr (Iran, Islamic Republic of); Aslaninejad, M. [Plasma Physics Research Centre, Science and Research Branch, Islamic Azad University, P.O. Box 14665-678, Tehran (Iran, Islamic Republic of)] [Plasma Physics Research Centre, Science and Research Branch, Islamic Azad University, P.O. Box 14665-678, Tehran (Iran, Islamic Republic of); Eshraghi, H. [Physics Department, Iran University of Science and Technology (IUST), P.O. Box 1684613114, Tehran (Iran, Islamic Republic of)] [Physics Department, Iran University of Science and Technology (IUST), P.O. Box 1684613114, Tehran (Iran, Islamic Republic of); Rajaee, L. [Department of Physics, Faculty of Science, University of Qom, Qom (Iran, Islamic Republic of)] [Department of Physics, Faculty of Science, University of Qom, Qom (Iran, Islamic Republic of)

2014-03-15T23:59:59.000Z

451

The BetaCage, an ultra-sensitive screener for surface contamination  

E-Print Network [OSTI]

Material screening for identifying low-energy electron emitters and alpha-decaying isotopes is now a prerequisite for rare-event searches (e.g., dark-matter direct detection and neutrinoless double-beta decay) for which surface radiocontamination has become an increasingly important background. The BetaCage, a gaseous neon time-projection chamber, is a proposed ultra-sensitive (and nondestructive) screener for alpha- and beta-emitting surface contaminants to which existing screening facilities are insufficiently sensitive. Sensitivity goals are 0.1 betas per keV-m$^2$-day and 0.1 alphas per m$^2$-day, with the former limited by Compton scattering of photons in the screening samples and (thanks to tracking) the latter expected to be signal-limited; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We report on details of the background simulations and detector design that provide the discrimination, shielding, and radiopurity necessary to reach our sensitivity goals for a chamber with a 95$\\times$95 cm$^2$ sample area positioned below a 40 cm drift region and monitored by crisscrossed anode and cathode planes consisting of 151 wires each.

R. Bunker; Z. Ahmed; M. A. Bowles; S. R. Golwala; D. R. Grant; M. Kos; R. H. Nelson; R. W. Schnee; A. Rider; B. Wang; A. Zahn

2014-04-23T23:59:59.000Z

452

The BetaCage, an ultra-sensitive screener for surface contamination  

SciTech Connect (OSTI)

Material screening for identifying low-energy electron emitters and alpha-decaying isotopes is now a prerequisite for rare-event searches (e.g., dark-matter direct detection and neutrinoless double-beta decay) for which surface radiocon-tamination has become an increasingly important background. The BetaCage, a gaseous neon time-projection chamber, is a proposed ultra-sensitive (and nondestructive) screener for alpha-and beta-emitting surface contaminants to which existing screening facilities are insufficiently sensitive. Sensitivity goals are 0.1 betas keV{sup ?1} m{sup ?2} day{sup ?1} and 0.1 alphas m{sup ?2} day{sup ?1}, with the former limited by Compton scattering of photons in the screening samples and (thanks to tracking) the latter expected to be signal-limited; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We report on details of the background simulations and detector design that provide the discrimination, shielding, and radiopurity necessary to reach our sensitivity goals for a chamber with a 95 × 95 cm{sup 2} sample area positioned below a 40 cm drift region and monitored by crisscrossed anode and cathode planes consisting of 151 wires each.

Bunker, R.; Bowles, M. A.; Schnee, R. W.; Wang, B. [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States)] [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States); Ahmed, Z.; Golwala, S. R.; Nelson, R. H.; Rider, A.; Zahn, A. [California Institute of Technology, Pasadena, CA 91125 (United States)] [California Institute of Technology, Pasadena, CA 91125 (United States); Grant, D. R. [University of Alberta, Edmonton, AB, T6G 2R3 (Canada)] [University of Alberta, Edmonton, AB, T6G 2R3 (Canada); Kos, M. [Department of Physics, Syracuse University, Syracuse, NY 13244, USA and Pacific Northwest National Laboratory, Richland, WA 99352 (United States)] [Department of Physics, Syracuse University, Syracuse, NY 13244, USA and Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

2013-08-08T23:59:59.000Z

453

Reduction of Radioactive Backgrounds in Electroformed Copper for Ultra-Sensitive Radiation Detectors  

SciTech Connect (OSTI)

Abstract Ultra-pure construction materials are required for the next generation of neutrino physics, dark matter and environmental science applications. These new efforts require materials with purity levels at or below 1 uBq/kg 232Th and 238U. Yet radiometric analysis lacks sensitivity below ~10 uBq/kg for the U and Th decay chains. This limits both the selection of clean materials and the validation of purification processes. Copper is an important high-purity material for low-background experiments due to the ease with which it can be purified by electrochemical methods. Electroplating for purification into near-final shapes, known as electroforming, is one such method. Continued refinement of the copper electroforming process is underway, for the first time guided by an ICP-MS based assay method that can measure 232Th and 238U near the desired purity levels. An assay of electroformed copper at 10 uBq/kg for 232Th has been achieved and is described. The implications of electroformed copper at or better than this purity on next-generation low-background experiments are discussed.

Hoppe, Eric W.; Aalseth, Craig E.; Farmer, Orville T.; Hossbach, Todd W.; Liezers, Martin; Miley, Harry S.; Overman, Nicole R.; Reeves, James H.

2014-02-08T23:59:59.000Z

454

DETECTION OF AN ULTRA-BRIGHT SUBMILLIMETER GALAXY BEHIND THE SMALL MAGELLANIC CLOUD  

SciTech Connect (OSTI)

We report the discovery of a new ultra-bright submillimeter galaxy (SMG) behind the Small Magellanic Cloud (SMC). This SMG is detected as a 43.3 {+-} 8.4 mJy point source (MM J01071-7302, hereafter MMJ0107) in the 1.1 mm continuum survey of the SMC by AzTEC on the ASTE telescope. MMJ0107 is also detected in the radio (843 MHz), Herschel/SPIRE, Spitzer MIPS 24 {mu}m, all IRAC bands, Wide-field Infrared Survey Explorer, and near-infrared (J, H, K{sub S} ). We find an optical (U, B, V) source, which might be the lensing object, at a distance of 1.''4 from near-infrared and IRAC sources. Photometric redshift estimates for the SMG using representative spectral energy distribution templates show the redshifts of 1.4-3.9. We estimate total far-infrared luminosity of (0.3-2.2) Multiplication-Sign 10{sup 14} {mu}{sup -1} L{sub Sun} and a star formation rate of 5600-39, 000 {mu}{sup -1} M{sub Sun} yr{sup -1}, where {mu} is the gravitational magnification factor. This apparent extreme star formation activity is likely explained by a highly magnified gravitational lens system.

Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo; Habe, Asao [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Tamura, Yoichi; Kohno, Kotaro [Institute of Astronomy, University of Tokyo, Osawa, Mitaka, Tokyo 181-0015 (Japan); Oogi, Taira [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Ezawa, Hajime; Komugi, Shinya; Mizuno, Norikazu; Muller, Erik; Kawamura, Akiko [Chile Observatory, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Oshima, Tai [Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Scott, Kimberly S. [North American ALMA Science Center, National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Austermann, Jason E. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Tosaki, Tomoka [Joetsu University of Education, Joetsu, Niigata 943-8512 (Japan); Onishi, Toshikazu [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, 599-8531 Osaka (Japan); Fukui, Yasuo [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Matsuo, Hiroshi [Advanced Technology Center, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Aretxaga, Itziar [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), 72000 Puebla (Mexico); and others

2013-09-10T23:59:59.000Z

455

Ultra Stable Capacitor charging Power Supply of Klystron-Modulator for PAL XFEL  

SciTech Connect (OSTI)

The PAL (Pohang Accelerator Laboratory) 2.5-GeV linac is planed to be converted to a SASE-XFEL facility (PAL XFEL) that supplies coherent X-rays down to 0.3-nm wavelength. The electron beams has to have an emittance of 1.0 mm-mrad, a peak current of 3 kA, and a low energy spread of 1.0 MeV. In order to provide reasonably stable SASE output, the RF stability of 0.02% rms is required for both RF phase and amplitude. This stability is mainly determined by a low level RF drive system and klystron-modulators. The stability level of the modulator has to be improved 10 times better to meet the pulse stability of 0.02%. This is a technologically challenging issue for PAL XFEL. An inverter technology is to be applied to charge the PFN of a new modulator. Therefore, a new inverter system should provide very stable charging performances. This paper presents the development of an ultra stable klystron-modulator with an inverter power.

Son, Y. G.; Kwon, S. J.; Jang, S. D.; Suh, J. H.; Oh, J. S. [Pohang Accelerator Laboratory, San-31, Hyoja-Dong, Pohang, Kyungbuk 790-784, S. (Korea, Republic of)

2007-01-19T23:59:59.000Z

456

TeV Burst of Gamma-Ray Bursts and Ultra High Energy Cosmic Rays  

E-Print Network [OSTI]

Some recent experiments detecting very high energy (VHE) gamma-rays above 10-20 TeV independently reported VHE bursts for some of bright gamma-ray bursts (GRBs). If these signals are truly from GRBs, these GRBs must emit a much larger amount of energy as VHE gamma-rays than in the ordinary photon energy range of GRBs (keV-MeV). We show that such extreme phenomena can be reasonably explained by synchrotron radiation of protons accelerated to \\sim 10^{20-21} eV, which has been predicted by Totani (1998a). Protons seem to carry about (m_p/m_e) times larger energy than electrons, and hence the total energy liberated by one GRB becomes as large as \\sim 10^{56} (\\Delta \\Omega / 4 \\pi) ergs. Therefore a strong beaming of GRB emission is highly likely. Extension of the VHE spectrum beyond 20 TeV gives a nearly model-independent lower limit of the Lorentz factor of GRBs, as $\\gamma \\gtilde 500$. Furthermore, our model gives the correct energy range and time variability of ordinary keV-MeV gamma-rays of GRBs by synchrotron radiation of electrons. Therefore the VHE bursts of GRBs strongly support the hypothesis that ultra high energy cosmic rays observed on the Earth are produced by GRBs.

Tomonori Totani

1998-11-25T23:59:59.000Z

457

Breaking the Attosecond, Angstrom and TV/M Field Barriers with Ultra-Fast Electron Beams  

SciTech Connect (OSTI)

Recent initiatives at UCLA concerning ultra-short, GeV electron beam generation have been aimed at achieving sub-fs pulses capable of driving X-ray free-electron lasers (FELs) in single-spike mode. This use of very low Q beams may allow existing FEL injectors to produce few-100 attosecond pulses, with very high brightness. Towards this end, recent experiments at the LCLS have produced {approx}2 fs, 20 pC electron pulses. We discuss here extensions of this work, in which we seek to exploit the beam brightness in FELs, in tandem with new developments in cryogenic undulator technology, to create compact accelerator-undulator systems that can lase below 0.15 {angstrom}, or be used to permit 1.5 {angstrom} operation at 4.5 GeV. In addition, we are now developing experiments which use the present LCLS fs pulses to excite plasma wakefields exceeding 1 TV/m, permitting a table-top TeV accelerator for frontier high energy physics applications.

Rosenzweig, James; Andonian, Gerard; Fukasawa, Atsushi; Hemsing, Erik; Marcus, Gabriel; Marinelli, Agostino; Musumeci, Pietro; O'Shea, Brendan; O'Shea, Finn; Pellegrini, Claudio; Schiller, David; Travish, Gil; /UCLA; Bucksbaum, Philip; Hogan, Mark; Krejcik, Patrick; /SLAC; Ferrario, Massimo; /INFN, Rome; Full, Steven; /Penn State U.; Muggli, Patric; /Southern California U.

2012-06-22T23:59:59.000Z

458

Calculating the Loss factor of the LCLS Beam Line Elements for Ultra-Shrot Bunches  

SciTech Connect (OSTI)

The Linac Coherent Light Source (LCLS) is a SASE 1.5-15 {angstrom} x-ray Free-Electron Laser (FEL) facility. Since an ultra-short intense bunch is used in the LCLS operation one might suggest that wake fields, generated in the vacuum chamber, may have an effect on the x-ray production because these fields can change the beam particle energies thereby increasing the energy spread in a bunch. At LCLS a feedback system precisely controls the bunch energy before it enters a beam transport line after the linac. However, in the transport line and later in the undulator section the bunch energy and energy spread are not under feedback control and may change due to wake field radiation, which depends upon the bunch current or on a bunch length. The linear part of the energy spread can be compensated in the upstream linac; the energy loss in the undulator section can be compensated by varying the K-parameter of the undulators, however we need a precise knowledge of the wake fields in this part of the machine. Resistive wake fields are known and well calculated. We discuss an additional part of the wake fields, which comes from the different vacuum elements like bellows, BPMs, transitions, vacuum ports, vacuum valves and others. We use the code 'NOVO' together with analytical estimations for the wake potential calculations.

Novokhatski, A.; /SLAC

2009-10-17T23:59:59.000Z

459

White organic light-emitting diodes with an ultra-thin premixed emitting layer  

E-Print Network [OSTI]

We described an approach to achieve fine color control of fluorescent White Organic Light-Emitting Diodes (OLED), based on an Ultra-thin Premixed emitting Layer (UPL). The UPL consists of a mixture of two dyes (red-emitting 4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene or fvin and green-emitting 4-di(4'-tert-butylbiphenyl-4-yl)aminobenzaldehyde or fcho) premixed in a single evaporation cell: since these two molecules have comparable structures and similar melting temperatures, a blend can be evaporated, giving rise to thin films of identical and reproducible composition compared to those of the pre-mixture. The principle of fine color tuning is demonstrated by evaporating a 1-nm-thick layer of this blend within the hole-transport layer (4,4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (\\alpha-NPB)) of a standard fluorescent OLED structure. Upon playing on the position of the UPL inside the hole-transport layer, as well as on the premix composition, two independent parameters are available to finel...

Jeon, T; Tondelier, Denis; Bonnassieux, Yvan; Forget, Sebastien; Chenais, Sebastien; Ishow, Elena

2014-01-01T23:59:59.000Z

460

Ultra-Compact H II Regions and the Early Lives of Massive Stars  

E-Print Network [OSTI]

We review the phenomenon of ultra-compact H II regions (UCHIIs) as a key phase in the early lives of massive stars. This most visible manifestation of massive star formation begins when the Lyman continuum output from the massive young stellar object becomes sufficient to ionize the surroundings from which it was born. Knowledge of this environment is gained through an understanding of the morphologies of UCHII regions and we examine the latest developments in deep radio and mid-IR imaging. SPITZER data from the GLIMPSE survey are an important new resource in which PAH emission and the ionizing stars can be seen. We review the role played by strong stellar winds from the central stars in sweeping out central cavities and causing the limb-brightened appearance. A range of evidence from velocity structure, proper motions, the molecular environment and recent hydrodynamical modeling indicates that cometary UCHII regions require a combination of champagne flow and bow shock motion. Finally, we discuss the class of hyper-compact H II regions or broad recombination line objects. They are likely to mark the transition soon after the breakout of the Lyman continuum radiation from the young star. Models for these objects are presented, including photo-evaporating disks and ionized accretion flows that are gravitationally trapped. Evolutionary scenarios tracing young massive stars passage through these ionized phases are discussed.

M. G. Hoare; S. E. Kurtz; S. Lizano; E. Keto; P. Hofner

2006-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hard X-rays from Ultra-Compact HII Regions in W49A  

E-Print Network [OSTI]

We report the Chandra detection of hard X-ray emission from the Welch ring in W49A, an organized structure of ultra-compact (UC) HII regions containing a dozen nascent early-type stars. Two UC HII regions are associated with hard X-ray emission in a deep Advanced CCD Imaging Spectrometer image exposed for 96.7 ks. One of the two X-ray sources has no near-infrared counterpart and is extended by ~5 arcsec, or ~0.3 pc, at a distance of ~11.4 kpc, which is spatially aligned with the cometary radio continuum emission associated with the UC HII region. The X-ray spectrum of the emission, when fit with a thermal model, indicates a heavily absorbed plasma with extinction of \\~5x10^{23}/cm^{2}, temperature of ~7 keV, and X-ray luminosity in the 3.0-8.0 keV band of ~3x10^{33} ergs/s. Both the luminosity and the size of the emission resemble the extended hard emission found in UC HII regions in Sagittarius B2, yet they are smaller by an order of magnitude than the emission found in massive star clusters such as NGC 3603...

Tsujimoto, M; Feigelson, E D; Getman, K V; Broos, P S

2006-01-01T23:59:59.000Z

462

Are gamma-ray bursts the sources of ultra-high energy cosmic rays?  

E-Print Network [OSTI]

We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.

Philipp Baerwald; Mauricio Bustamante; Walter Winter

2014-07-07T23:59:59.000Z

463

GENERATION OF HIGH-ENERGY PHOTONS AT ULTRA-RELATIVISTIC SHOCK BREAKOUT IN SUPERNOVAE  

SciTech Connect (OSTI)

We present theoretical expectations for non-thermal emission due to the bulk Comptonization at the ultra-relativistic shock breakout. We calculate the transfer of photons emitted from the shocked matter with a Monte Carlo code fully taking into account special relativity. As a hydrodynamical model, we use the self-similar solution of Nakayama and Shigeyama. Our calculations reveal that the spectral shape exhibits a double peak or a single peak depending on the shock temperature at breakout; if it is significantly smaller than the rest energy of an electron, the spectrum has a double peak. We also include a few sample light curves, and estimate the total radiation energy. In comparison with observations of ?-ray bursts, a part of the higher energy component in the spectra and the total energy can be reproduced by some parameter sets. Meanwhile, the lower energy counterpart in the Band function is not reproduced by our results and the duration seems too short to represent an entire ?-ray burst. Therefore the subsequent phase will constitute the lower energy part of the spectrum.

Ohtani, Yukari [Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Suzuki, Akihiro [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Shigeyama, Toshikazu [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2013-11-10T23:59:59.000Z

464

CANDELS MULTIWAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS UKIDSS ULTRA-DEEP SURVEY FIELD  

SciTech Connect (OSTI)

We present the multiwavelength-ultraviolet to mid-infrared-catalog of the UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-Deep Survey field observed as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). Based on publicly available data, the catalog includes the CANDELS data from the Hubble Space Telescope (near-infrared WFC3 F125W and F160W data and visible ACS F606W and F814W data); u-band data from CFHT/Megacam; B, V, R{sub c} , i', and z' band data from Subaru/Suprime-Cam; Y and K{sub s} band data from VLT/HAWK-I; J, H, and K band data from UKIDSS (Data Release 8); and Spitzer/IRAC data (3.6, 4.5 {mu}m from SEDS; 5.8 and 8.0 {mu}m from SpUDS). The present catalog is F160W-selected and contains 35, 932 sources over an area of 201.7 arcmin{sup 2} and includes radio- and X-ray-detected sources and spectroscopic redshifts available for 210 sources.

Galametz, Audrey; Grazian, Andrea; Fontana, Adriano; Castellano, Marco [INAF-Osservatorio di Roma, I-00040, Monteporzio (Italy)] [INAF-Osservatorio di Roma, I-00040, Monteporzio (Italy); Ferguson, Henry C.; Dahlen, Tomas; Grogin, Norman; Huang, Kuang-Han; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD (United States)] [Space Telescope Science Institute, Baltimore, MD (United States); Ashby, M. L. N.; Willner, S. P. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)] [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Barro, Guillermo; Faber, Sandy M.; Guo, Yicheng [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States)] [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); Donley, Jennifer L. [Los Alamos National Laboratory, Los Alamos, NM (United States)] [Los Alamos National Laboratory, Los Alamos, NM (United States); Kocevski, Dale D. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY (United States)] [Department of Physics and Astronomy, University of Kentucky, Lexington, KY (United States); Lee, Kyoung-Soo [Department of Physics, Purdue University, West Lafayette, IN (United States)] [Department of Physics, Purdue University, West Lafayette, IN (United States); McGrath, Elizabeth J. [Department of Physics and Astronomy, Colby College, Waterville, ME (United States)] [Department of Physics and Astronomy, Colby College, Waterville, ME (United States); Peth, Michael [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States)] [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States); Almaini, Omar, E-mail: audrey.galametz@oa-roma.inaf.it [The School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom)] [The School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom); Collaboration: CANDELS team; and others

2013-06-01T23:59:59.000Z

465

Search for Ultra High-Energy Neutrinos with AMANDA-II  

SciTech Connect (OSTI)

A search for diffuse neutrinos with energies in excess of 10{sup 5} GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10{sup 7} GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E{sup 2} {Phi}{sub 90%CL} < 2.7 x 10{sup -7} GeV cm{sup -2}s{sup -1} sr{sup -1} valid over the energy range of 2 x 10{sup 5} GeV to 10{sup 9} GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.

IceCube Collaboration; Klein, Spencer; Ackermann, M.

2007-11-19T23:59:59.000Z

466

Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project  

SciTech Connect (OSTI)

The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

Stephen P. Bergin

2006-06-30T23:59:59.000Z

467

Performance and cost of automotive fuel cell systems with ultra-low platinum loadings.  

SciTech Connect (OSTI)

An automotive polymer-electrolyte fuel cell (PEFC) system with ultra-low platinum loading (0.15 mg-Pt cm{sup -2}) has been analyzed to determine the relationship between its design-point efficiency and the system efficiency at part loads, efficiency over drive cycles, stack and system costs, and heat rejection. The membrane electrode assemblies in the reference PEFC stack use nanostructured, thin-film ternary catalysts supported on organic whiskers and a modified perfluorosulfonic acid membrane. The analyses show that the stack Pt content can be reduced by 50% and the projected high-volume manufacturing cost by >45% for the stack and by 25% for the system, if the design-point system efficiency is lowered from 50% to 40%. The resulting penalties in performance are a <1% reduction in the system peak efficiency; a 2-4% decrease in the system efficiency on the urban, highway, and LA92 drive cycles; and a 6.3% decrease in the fuel economy of the modeled hybrid fuel-cell vehicle on the combined cycle used by EPA for emission and fuel economy certification. The stack heat load, however, increases by 50% at full power (80 kW{sub e}) but by only 23% at the continuous power (61.5 kW{sub e}) needed to propel the vehicle on a 6.5% grade at 55 mph. The reduced platinum and system cost advantages of further lowering the design-point efficiency from 40% to 35% are marginal. The analyses indicate that thermal management in the lower efficiency systems is very challenging and that the radiator becomes bulky if the stack temperature cannot be allowed to increase to 90-95 C under driving conditions where heat rejection is difficult.

Ahluwalia, R.; Wang, X.; Kwon, K.; Rousseau, A.; Kalinoski, J.; James, B.; Marcinkoski, J. (Energy Systems); ( NE); (Directed Technologies Inc.); (ED)

2011-05-15T23:59:59.000Z

468

Nuclear photonics at ultra-high counting rates and higher multipole excitations  

SciTech Connect (OSTI)

Next-generation {gamma} beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 10{sup 13}{gamma}/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses ({approx}120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a {gamma} pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 10{sup 18}{gamma}/s, thus introducing major challenges in view of pile-up. Novel {gamma} optics will be applied to monochromatize the {gamma} beam to ultimately {Delta}E/E{approx}10{sup -6}. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding {gamma} detectors, e.g. based on advanced scintillator technology (e.g. LaBr{sub 3}(Ce)) allow for measurements with count rates as high as 10{sup 6}-10{sup 7}{gamma}/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr{sub 3} detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.

Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhaeuser, R.; Guenther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N. [Fakultaet f. Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Fakultaet f. Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching, Germany and Max-Planck-Institute f. Quantum Optics, Garching (Germany); IFIN-HH, Bucharest-Magurele (Romania); Physik Department E12,Technische Universitaet Muenchen, Garching (Germany); Max-Planck-Institute f. Quantum Optics, Garching (Germany); Institut Laue-Langevin, Grenoble (France); Physik Department E12,Technische Universitaet Muenchen, Garching (Germany); Institut f. Kernphysik, Technische Universitaet Darmstadt (Germany)

2012-07-09T23:59:59.000Z

469

The Design of an Ultra-Low Background Thermosyphon for the Majorana Demonstrator  

SciTech Connect (OSTI)

The MAJORANA DEMONSTRATOR (MJD) is an ultra-low background neutrinoless double-beta decay (0???) experiment that will deploy up to 40 kg of high purity germanium detectors (HPGe). The goal of this experiment is to demonstrate the feasibility of building a detector array with less than 1 event/ton-year in a 4 keV region of interest around the 0??? signal. HPGe diodes, when used as ionizing radiation detectors, need to be maintained at a temperature close to that of liquid nitrogen (77 K). This work describes the R&D results of a cryogenic system capable of meeting the requirements of low background and the cooling capacity required to successfully operate such a detector system. The MJD germanium detector modules will operate at liquid nitrogen temperature to provide adequate cooling for a full range of HPGe impurity concentrations. This paper shows the experimental results obtained using a two-phase horizontal thermosyphon using liquid nitrogen as the MJD’s cooling system. The cold test shows that the proposed thermosyphon has sufficient cooling power to handle the heat load of an MJD module. Results for the temperature gradient across the thermosyphon, cooling capacity, and design considerations demonstrate that the thermosyphon can effectively remove the calculated heat load of each module of the experiment. The thermosyphon will be bolted to a cold plate from which detector strings will hang. The thermal conductivity of a mockup of the MJD bolted thermal joint is experimentally determined to be below 0.1 K/W.

Aguayo Navarrete, Estanislao; Busch, Matthew; Daniels, Randy; Fast, James E.; Green, Matthew P.; Reid, Douglas J.

2013-05-01T23:59:59.000Z

470

A search for ultra-compact dwarf galaxies in the Centaurus galaxy cluster  

E-Print Network [OSTI]

Aim: To extend the investigations of ultra-compact dwarf galaxies (UCDs) beyond the well studied Fornax and Virgo clusters. Methods: We measured spectroscopic redshifts of about 400 compact object candidates with 19.2 < V < 22.4 mag in the central region of the Centaurus galaxy cluster (d=43Mpc), using VIMOS@VLT. The luminosity range of the candidates covers that of bright globular clusters (GCs) and of UCDs in Fornax and Virgo. Results: We confirm the cluster membership of 27 compact objects, covering an absolute magnitude range -12.2 < M_V < -10.9 mag. We do not find counterparts to the two very large and bright UCDs in Fornax and Virgo with M_V=-13.5 mag, possibly due to survey incompleteness. The compact objects' distribution in magnitude and space is consistent with that of the GC population. Their kinematics and spatial distribution associate them to the central galaxies rather than to the overall cluster potential. The compact objects have a mean metallicity consistent with that of the metal-rich globular cluster sub-population. Compact objects with high S/N spectra exhibit solar [alpha/Fe] abundances, consistent with typical dwarf elliptical galaxy values and unlike galactic bulge globular clusters. HST based size estimates for a sub-sample of eight compact objects reveal the existence of one very large object with half-light radius r_h around 30 pc, having M_V=-11.6 mag (~10^7 M_sun). This source shows super-solar [alpha/Fe] abundances. Seven further sources are only marginally larger than typical GCs with r_h in the range 4 to 10 pc. Conclusions: We consider the largest compact object found to be the only bona-fide UCD detected in our study. In order to improve our understanding of UCDs in Centaurus, a significant increase of our survey completeness is necessary.

S. Mieske; M. Hilker; A. Jordan; L. Infante; M. Kissler-Patig

2007-06-19T23:59:59.000Z

471

Hard X-rays from Ultra-Compact HII Regions in W49A  

E-Print Network [OSTI]

We report the Chandra detection of hard X-ray emission from the Welch ring in W49A, an organized structure of ultra-compact (UC) HII regions containing a dozen nascent early-type stars. Two UC HII regions are associated with hard X-ray emission in a deep Advanced CCD Imaging Spectrometer image exposed for 96.7 ks. One of the two X-ray sources has no near-infrared counterpart and is extended by ~5 arcsec, or ~0.3 pc, at a distance of ~11.4 kpc, which is spatially aligned with the cometary radio continuum emission associated with the UC HII region. The X-ray spectrum of the emission, when fit with a thermal model, indicates a heavily absorbed plasma with extinction of \\~5x10^{23}/cm^{2}, temperature of ~7 keV, and X-ray luminosity in the 3.0-8.0 keV band of ~3x10^{33} ergs/s. Both the luminosity and the size of the emission resemble the extended hard emission found in UC HII regions in Sagittarius B2, yet they are smaller by an order of magnitude than the emission found in massive star clusters such as NGC 3603. Three possibilities are discussed for the cause of the hard extended emission in the Welch ring: an ensemble of unresolved point sources, shocked interacting winds of the young O stars, and a wind-blown bubble interacting with ambient cold matter.

M. Tsujimoto; T. Hosokawa; E. D. Feigelson; K. V. Getman; P. S. Broos

2006-11-03T23:59:59.000Z

472

HOW MANY ULTRA-HIGH ENERGY COSMIC RAYS COULD WE EXPECT FROM CENTAURUS A?  

SciTech Connect (OSTI)

The Pierre Auger Observatory has associated a few ultra-high energy cosmic rays (UHECRs) with the direction of Centaurus A. This source has been deeply studied in radio, infrared, X-ray, and {gamma}-rays (MeV-TeV) because it is the nearest radio-loud active galactic nucleus. Its spectral energy distribution or spectrum shows two main peaks, the low-energy peak, at an energy of 10{sup -2} eV, and the high-energy peak, at about 150 keV. There is also a faint very high energy (VHE; E {>=} 100 GeV) {gamma}-ray emission fully detected by the High Energy Stereoscopic System experiment. In this work, we describe the entire spectrum: the two main peaks with a synchrotron/synchrotron self-Compton model, and the VHE emission with a hadronic model. We consider p{gamma} and pp interactions. For the p{gamma} interaction, we assume that the target photons are those produced at 150 keV in leptonic processes. On the other hand, for the pp interaction we consider as targets the thermal particle densities in the lobes. Requiring a satisfactory description of the spectra at very high energies with p{gamma} interaction, we obtain an excessive luminosity in UHECRs (even exceeding the Eddington luminosity). However, when considering the pp interaction to describe the {gamma}-spectrum, the number of UHECRs obtained is in agreement with Pierre Auger observations. We also calculate the possible neutrino signal from pp interactions on a Km{sup 3} neutrino telescope using Monte Carlo simulations.

Fraija, N.; Gonzalez, M. M.; Perez, M. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.U., A. Postal 70-264, 04510 Mexico D.F. (Mexico); Marinelli, A., E-mail: nifraija@astro.unam.mx, E-mail: magda@astro.unam.mx, E-mail: jguillen@astro.unam.mx, E-mail: antonio.marinelli@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.U., A. Postal 70-264, 04510 Mexico D.F. (Mexico)

2012-07-01T23:59:59.000Z

473

On the efficiency of the Ultra Steep Spectrum technique in finding High-z Radiogalaxies  

E-Print Network [OSTI]

In the last three decades, the Ultra Steep spectrum tecnique has been exploited by many groups since it was demonstrated that radio sources with very steep spectra (Alpha 2). Though more than 150 HzRGs have been discovered up to now with this tecnique, little is known about its real effectiveness, as most of the ongoing searches still have incomplete follow-up programs. By selecting a new appropriate sample of USS sources from the MRC survey, the true searching efficiency of the USS tecnique has been quantitatively demonstrated for the first time in this paper. Moreover it was compared with that of an optical search of HzRGs based on a simple cut of the galaxies r-band magnitude distribution. When no bias other than the radio-spectrum steepness is applied, the USS tecnique may be up to 4 times more efficient in selecting HzRGs with respect to an optical search. Nevertheless, when the search is limited to objects fainter than the POSS-II plates (r~21), the USS tecnique is still 2.5 times more efficient (epsilonUSS =0.52 vs. epsilon_OPT= 0.19). For an optical search to reach a comparable efficiency it is necessary to select objects fainter than r=23, but this implies that about half of the HzRGs are lost because of the imposed magnitude bias. The advantage of the USS tecnique is that a ~0.5 search efficiency is already reached at the POSS-II plates limit, where all the optical identification work is done without telescopes. However, this tecnique has the drawback that up to 40% of the HzRGs of the sample are lost simply because of the applied spectral index bias.

M. Pedani

2003-05-22T23:59:59.000Z

474

Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection  

SciTech Connect (OSTI)

In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

Grant, Marion B.

2012-04-30T23:59:59.000Z

475

Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals  

SciTech Connect (OSTI)

The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

Nabeel, A.; Khan, T.A.; Sharma, D.K. [Jamia Millia Islamia, New Delhi (India). Dept. of Chemistry

2009-07-01T23:59:59.000Z

476

The Microwave Air Yield Beam Experiment (MAYBE): measurement of GHz radiation for Ultra-High Energy Cosmic Rays detection  

E-Print Network [OSTI]

We present first measurements by MAYBE of microwave emission from an electron beam induced air plasma, performed at the electron Van de Graaff facility of the Argonne National Laboratory. Coherent radio Cherenkov, a major background in a previous beam experiment, is not produced by the 3 MeV beam, which simplifies the interpretation of the data. Radio emission is studied over a wide range of frequencies between 3 and 12 GHz. This measurement provides further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

M. Monasor; M. Bohacova; C. Bonifazi; G. Cataldi; S. Chemerisov; J. R. T. De Mello Neto; P. Facal San Luis; B. Fox; P. W. Gorham; C. Hojvat; N. Hollon; R. Meyhandan; L. C. Reyes; B. Rouille D'Orfeuil; E. M. Santos; J. Pochez; P. Privitera; H. Spinka; V. Verzi; C. Williams; J. Zhou

2011-08-31T23:59:59.000Z

477

Simulation of nanostructure-based and ultra-thin film solar cell devices beyond the classical picture  

E-Print Network [OSTI]

In this paper, an optoelectronic device simulation framework valid for arbitrary spatial variation of electronic potentials and optical modes, and for transport regimes ranging from ballistic to diffusive, is used to study non-local photon absorption, photocurrent generation and carrier extraction in ultra-thin film and nanostructure-based solar cell devices at the radiative limit. Among the effects that are revealed by the microscopic approach and which are inaccessible to macroscopic models is the impact of structure, doping or bias induced nanoscale potential variations on the local photogeneration rate and the photocarrier transport regime.

Aeberhard, Urs

2014-01-01T23:59:59.000Z

478

A facile method for nickel catalyst immobilization on ultra fine Al{sub 2}O{sub 3} powders  

SciTech Connect (OSTI)

A pure nickel coating has been successfully plated on the surface of ultra fine Al{sub 2}O{sub 3} particles via a facile electroless plating method. Coating morphology and crystallite size can be tailored by pH values. Dense coating with the maximum crystallite size of 24 nm was obtained at pH 11.0 and porous coating with the minimum crystallite size of 15 nm was obtained at pH value 12.5. The plated powders have been demonstrated to be an effective catalyst for growing boron nitride nanotubes.

Zhang, T. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)] [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wen, G., E-mail: wgw@hitwh.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Huang, X.X.; Zhong, B.; Zhang, X.D.; Bai, H.W.; Yu, H.M. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)] [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

2010-07-15T23:59:59.000Z

479

Point-like gamma ray sources as signatures of distant accelerators of ultra high energy cosmic rays  

E-Print Network [OSTI]

We discuss the possibility of observing distant accelerators of ultra high energy cosmic rays in synchrotron gamma rays. Protons propagating away from their acceleration sites produce extremely energetic electrons during photo-pion interactions with cosmic microwave background photons. If the accelerator is embedded in a magnetized region, these electrons will emit high energy synchrotron radiation. The resulting synchrotron source is expected to be point-like and detectable in the GeV-TeV energy range if the magnetic field is at the nanoGauss level.

S. Gabici; F. A. Aharonian

2005-05-22T23:59:59.000Z

480

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).

Arnis Judzis; Alan Black; Homer Robertson

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "harmful ultra violet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

An ultra-thin diamond membrane as a transmission particle detector and vacuum window for external microbeams  

SciTech Connect (OSTI)

Several applications of external microbeam techniques demand a very accurate and controlled dose delivery. To satisfy these requirements when post-sample ion detection is not feasible, we constructed a transmission single-ion detector based on an ultra-thin diamond membrane. The negligible intrinsic noise provides an excellent signal-to-noise ratio and enables a hit-detection efficiency of close to 100%, even for energetic protons, while the small thickness of the membrane limits beam spreading. Moreover, because of the superb mechanical stiffness of diamond, this membrane can simultaneously serve as a vacuum window and allow the extraction of an ion microbeam into the atmosphere.

Grilj, V.; Skukan, N.; Jakši?, M. [Division of Experimental Physics, Ru?er Boškovi? Institute, 10000 Zagreb (Croatia)] [Division of Experimental Physics, Ru?er Boškovi? Institute, 10000 Zagreb (Croatia); Pomorski, M. [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191 (France)] [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191 (France); Kada, W. [Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan)] [Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Iwamoto, N.; Kamiya, T.; Ohshima, T. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan)] [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan)

2013-12-09T23:59:59.000Z

482

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions  

E-Print Network [OSTI]

We systematically investigate the pion transverse momentum spectrum, elliptic flow, and Hanbury-Brown-Twiss (HBT) interferometry in the granular source model of quark-gluon plasma droplets in ultra-relativistic heavy ion collisions. The granular source model can well reproduce the experimental results of the Au-Au collisions at $\\sqrt{s_{NN}}=$ 200 GeV and the Pb-Pb collisions at $\\sqrt{s_{NN}} =$ 2.76 TeV with different centralities. We examine the parameters of the granular source models with an uniform and Woods-Saxon initial energy distributions in a droplet. The parameters exhibit certain regularities for collision centrality and energy.

Yang, Jing; Zhang, Wei-Ning

2015-01-01T23:59:59.000Z

483

Repetitive Ultra-low Stress Induced Nanocrystallization in Amorphous Cu?Zr?Al Alloy Evidenced by in situ Nanoindentation  

E-Print Network [OSTI]

?Zr?Al Alloy Evidenced by in situ Nanoindentation Y. Liu a , J. Jian b , J.H. Lee b , C. Wang cd , Q.P. Cao cd , C. Gutierrez e , H. Wang ab , J.Z. Jiang cd & X. Zhang ae a Department of Materials Science and Engineering, Texas A&M University, College Station.... To cite this article: Y. Liu, J. Jian, J.H. Lee, C. Wang, Q.P. Cao, C. Gutierrez, H. Wang, J.Z. Jiang & X. Zhang (2014) Repetitive Ultra-low Stress Induced Nanocrystallization in Amorphous Cu?Zr?Al Alloy Evidenced by in situ Nanoindentation, Materials...

Liu, Y.; Jian, J.; Lee, J. H.; Wang, C.; Cao, Q. P.; Gutierrez, C.; Wang, H.; Jiang, J. Z.; Zhang, X.

2014-05-12T23:59:59.000Z

484

Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field  

SciTech Connect (OSTI)

Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

2008-07-15T23:59:59.000Z