Sample records for hard x-ray free-electron

  1. Low-Charge, Hard X-Ray Free Electron Laser Driven with an X-Band Injector and Accelerator

    SciTech Connect (OSTI)

    Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-04-17T23:59:59.000Z

    After the successful operation of the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS), soft and hard x-ray free electron lasers (FELs) are being built, designed, or proposed at many accelerator laboratories. Acceleration employing lower frequency rf cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic rf system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency rf acceleration process. In this paper, a hard x-ray FEL design using an all X-band accelerator at 11.424 GHz (from photocathode rf gun to linac end) is presented, without the assistance of any harmonic rf linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient, and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (rms), low-charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macroparticle 3D simulation employing several computer codes is presented in this paper, where space charge, wakefields, and incoherent and coherent synchrotron radiation effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low-charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

  2. Fundamental physics at an X-ray free electron laser

    E-Print Network [OSTI]

    A. Ringwald

    2001-12-19T23:59:59.000Z

    X-ray free electron lasers (FELs) have been proposed to be constructed both at SLAC in the form of the so-called Linac Coherent Light Source as well as at DESY, where the so-called XFEL laboratory is part of the design of the electron-positron linear collider TESLA. In addition to the immediate applications in condensed matter physics, chemistry, material science, and structural biology, X-ray FELs may be employed also to study some physics issues of fundamental nature. In this context, one may mention the boiling of the vacuum (Schwinger pair creation in an external field), horizon physics (Unruh effect), and axion production. We review these X-ray FEL opportunities of fundamental physics and discuss the necessary technological improvements in order to achieve these goals.

  3. Femtosecond Xray Absorption Spectroscopy at a Hard Xray Free Electron Laser: Application to Spin Crossover Dynamics

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    Femtosecond Xray Absorption Spectroscopy at a Hard Xray Free Electron Laser: Application to Spin Rennes 1, F35042, Rennes, France ABSTRACT: X-ray free electron lasers (XFELs) deliver short ( operated in femtosecond laser slicing mode15 ). The development of new X-ray facilities such as X-ray free

  4. Terawatt x-ray free-electron-laser optimization by transverse electron distribution shaping

    E-Print Network [OSTI]

    Emma, C; Wu, J; Fang, K; Chen, S; Serkez, S; Pellegrini, C

    2014-01-01T23:59:59.000Z

    33rd International Free Electron Laser Conference, Shanghai,TERAWATT X-RAY FREE-ELECTRON-LASER … Phys. Rev. ST Accel.23rd International Free Electron Laser Conference and 8th

  5. The History of X-ray Free-Electron Lasers

    SciTech Connect (OSTI)

    Pellegrini, C.; /UCLA /SLAC; ,

    2012-06-28T23:59:59.000Z

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  6. High-intensity double-pulse X-ray free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. -J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; et al

    2015-03-06T23:59:59.000Z

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore »in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  7. X-ray amplification from a Raman Free Electron Laser I.A. Andriyash,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    X-ray amplification from a Raman Free Electron Laser I.A. Andriyash, E. d'Humi`eres, V 5107, F33400 Talence, France We demonstrate that a mm-scale free electron laser can operate in the X and health applications. Large scale X-ray free electron laser (XFEL) projects have been launched, and start

  8. Pair Creation and an X-ray Free Electron Laser

    E-Print Network [OSTI]

    R. Alkofer; M. B. Hecht; C. D. Roberts; S. M. Schmidt; D. V. Vinnik

    2001-08-17T23:59:59.000Z

    Using a quantum kinetic equation coupled to Maxwell's equation we study the possibility that focused beams at proposed X-ray free electron laser facilities can generate electric field strengths large enough to cause spontaneous electron-positron pair production from the QED vacuum. Our approach yields the time and momentum dependence of the single particle distribution function. Under conditions reckoned achievable at planned facilities, repeated cycles of particle creation and annihilation take place in tune with the laser frequency. However, the peak particle number density is insensitive to this frequency and one can anticipate the production of a few hundred particle pairs per laser period. Field-current feedback and quantum statistical effects are small and can be neglected in this application of non-equilibrium quantum mean field theory.

  9. Multicolor operation and spectral control in a gain-modulated x-ray free-electron laser

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    The Physics of Free Electron Lasers (Springer, Berlin, [33]Gain-Modulated X-Ray Free-Electron Laser A. Marinelli, 1, *emission x-ray free-electron laser can be controlled by

  10. Numerical simulations of X-rays Free Electron Lasers (XFEL)

    E-Print Network [OSTI]

    Paolo Antonelli; Agissilaos Athanassoulis; Zhongyi Huang; Peter A. Markowich

    2014-06-17T23:59:59.000Z

    We study a nonlinear Schr\\"odinger equation which arises as an effective single particle model in X-ray Free Electron Lasers (XFEL). This equation appears as a first-principles model for the beam-matter interactions that would take place in an XFEL molecular imaging experiment in \\cite{frat1}. Since XFEL is more powerful by several orders of magnitude than more conventional lasers, the systematic investigation of many of the standard assumptions and approximations has attracted increased attention. In this model the electrons move under a rapidly oscillating electromagnetic field, and the convergence of the problem to an effective time-averaged one is examined. We use an operator splitting pseudo-spectral method to investigate numerically the behaviour of the model versus its time-averaged version in complex situations, namely the energy subcritical/mass supercritical case, and in the presence of a periodic lattice. We find the time averaged model to be an effective approximation, even close to blowup, for fast enough oscillations of the external field. This work extends previous analytical results for simpler cases \\cite{xfel1}.

  11. Sensing the wavefront of x-ray free-electron lasers using aerosol spheres

    SciTech Connect (OSTI)

    Loh, N.Duane; Starodub, Dimitri; Lomb, Lukas; Hampton, Christina Y.; Martin, Andrew V.; Sierra, Raymond G.; Barty, Anton; Aquila, Andrew; Schulz, Joachim; Steinbrener, Jan; Shoeman, Robert L.; Kassemeyer, Stephan; Bostedt, Christoph; Bozek, John; Epp, Sascha W.; Erk, Benjamin; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Rudek, Benedikt; Foucar, Lutz

    2014-04-22T23:59:59.000Z

    Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10 21 W/m2 can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wave-front sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, the paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.

  12. Density gradient free electron collisionally excited X-ray laser

    DOE Patents [OSTI]

    Campbell, Edward M. (Pleasanton, CA); Rosen, Mordecai D. (Berkeley, CA)

    1989-01-01T23:59:59.000Z

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  13. Density gradient free electron collisionally excited x-ray laser

    DOE Patents [OSTI]

    Campbell, E.M.; Rosen, M.D.

    1984-11-29T23:59:59.000Z

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  14. High-brightness X-ray free-electron laser with an optical undulator by pulse shaping

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    codes: (140.2600) Free-electron lasers (FELs); (140.3300)The Development of X-Ray Free-Electron Lasers,” IEEE J. Sel.and M.N. Rosenbluth, “Free-Electron Lasers with Variable

  15. The European X-ray Free-Electron Laser: A Progress Report | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC, Redtail Conference Room (901-108) M. Altarelli, European XFEL GmbH, Hamburg, Germany The present status of the construction of the European X-ray Free-Electron Laser in...

  16. The First Angstrom X-Ray Free-Electron Laser

    SciTech Connect (OSTI)

    Galayda, John; /SLAC

    2012-08-24T23:59:59.000Z

    The Linac Coherent Light Source produced its first x-ray laser beam on 10 April 2009. Today it is routinely producing x-ray pulses with energy >2 mJ across the operating range from 820-8,200 eV. The facility has begun operating for atomic/molecular/optical science experiments. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented. Early results from the preparations for the start of the second user run is also reported.

  17. X-ray Free-Electron Lasers - Present and Future Capabilities [Invited

    SciTech Connect (OSTI)

    Galayda, John; Ratner, John Arthur:a Daniel F.; White, William E.; /SLAC

    2011-11-16T23:59:59.000Z

    The Linac Coherent Light Source is now in operation as an X-ray free-electron laser (FEL) user facility. It produces coherent pulses of 550-10,000 eV X-rays of duration adjustable from <10 fsto500 fs. Typical peak power is in excess of 20 GW. The facility will soon be joined by several X-ray FELs under construction around the world. This article will provide an abridged history of free-electron lasers, a description of some basic physics regarding free-electron laser light amplification, and an overview of the rapidly growing list of examples in which lasers will be used in the control and operation of X-ray FELs.

  18. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell Cathode Materials. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell...

  19. Feasibility considerations of a soft-x-ray distributed feedback laser pumped by an x-ray free electron laser

    E-Print Network [OSTI]

    André, Jean-Michel; Jonnard, Philippe

    2014-01-01T23:59:59.000Z

    We discuss the feasibility of a soft-x-ray distributed feedback laser (DFL) pumped by an x-ray free electron laser (X-FEL). The DFL under consideration is a Mg/SiC bi-layered Bragg reflector pumped by a single X-FEL bunch at 57.4 eV, stimulating the Mg L2,3 emission at 49 eV corresponding to the 3s-3d â??2p1/2,3/2 transition. Based on a model developed by Yariv and Yeh and an extended coupled-wave theory, we show that it would be possible to obtain a threshold gain compatible with the pumping provided by available X-FEL facilities.

  20. Constraints on photon pulse duration from longitudinal electron beam diagnostics at a soft X-ray free-electron laser

    E-Print Network [OSTI]

    -ray free-electron laser C. Behrens1 , N. Gerasimova1 , Ch. Gerth1 , B. Schmidt1 , E.A. Schneidmiller1 , S, Ukraine (Dated: February 28, 2012) The successful operation of X-ray free-electron lasers (FELs), like the Linac Coherent Light Source or the Free-Electron Laser in Hamburg (FLASH), makes unprecedented research

  1. Dominant Secondary Nuclear Photoexcitation with the X-ray Free Electron Laser

    E-Print Network [OSTI]

    Jonas Gunst; Yuri A. Litvinov; Christoph H. Keitel; Adriana Pálffy

    2014-02-27T23:59:59.000Z

    The new regime of resonant nuclear photoexcitation rendered possible by x-ray free electron laser beams interacting with solid state targets is investigated theoretically. Our results unexpectedly show that secondary processes coupling nuclei to the atomic shell in the created cold high-density plasma can dominate direct photoexcitation. As an example we discuss the case of $^{93m}$Mo isomer depletion for which nuclear excitation by electron capture as secondary process is shown to be orders of magnitude more efficient than the direct laser-nucleus interaction. General arguments revisiting the role of the x-ray free electron laser in nuclear experiments involving solid-state targets are further deduced.

  2. High-gain X-ray free electron laser by beat-wave terahertz undulator

    SciTech Connect (OSTI)

    Chang, Chao; Hei, DongWei [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an City 710024 (China) [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an City 710024 (China); Institute of Energy, Tsinghua University, Beijing 100084 (China); Pellegrin, Claudio; Tantawi, Sami [SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309 (United States)] [SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309 (United States)

    2013-12-15T23:59:59.000Z

    The THz undulator has a higher gain to realize a much brighter X-ray at saturation, compared with the optical undulator under the same undulator strength and beam quality. In order to fill the high-power THz gap and realize the THz undulator, two superimposed laser pulses at normal incidence to the electron-beam moving direction form an equivalent high-field THz undulator by the frequency difference to realize the high-gain X-ray Free electron laser. The pulse front tilt of lateral fed lasers is used to realize the electron-laser synchronic interaction. By PIC simulation, a higher gain and a larger X-ray radiation power by the beat wave THz undulator could be realized, compared with the optical undulator for the same electron beam parameters.

  3. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    SciTech Connect (OSTI)

    Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Heimann, P. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kelez, N. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W. [Institute for Experimental Physics and CFEL, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); and others

    2012-04-15T23:59:59.000Z

    The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

  4. Pair Production from Vacuum at the Focus of an X-Ray Free Electron Laser

    E-Print Network [OSTI]

    A. Ringwald

    2001-03-16T23:59:59.000Z

    There are definite plans for the construction of X-ray free electron lasers (FEL), both at DESY, where the so-called XFEL is part of the design of the electron-positron linear collider TESLA, as well as at SLAC, where the so-called Linac Coherent Light Source (LCLS) has been proposed. Such an X-ray laser would allow for high-field science applications: One could make use of not only the high energy and transverse coherence of the X-ray beam, but also of the possibility of focusing it to a spot with a small radius, hopefully in the range of the laser wavelength. Along this route one obtains very large electric fields, much larger than those obtainable with any optical laser of the same power. In this letter we discuss the possibility of obtaining an electric field so high that electron-positron pairs are spontaneously produced in vacuum (Schwinger pair production). We find that if X-ray optics can be improved to approach the diffraction limit of focusing, and if the power of the planned X-ray FELs can be increased to the terawatt region, then there is ample room for an investigation of the Schwinger pair production mechanism.

  5. Aerosol Imaging with a Soft X-ray Free Electron Laser

    SciTech Connect (OSTI)

    Bogan, Michael J.; /SLAC /LLNL, Livermore; Boutet, Sebastien; /SLAC; Chapman, Henry N.; /DESY /Hamburg U.; Marchesini, Stefano; /LBL, Berkeley; Barty, Anton; Benner, W.Henry /LLNL, Livermore; Rohner, Urs; /LLNL, Livermore /TOFWERK AG; Frank, Matthias; Hau-Riege, Stefan P.; /LLNL, Livermore; Bajt, Sasa; /DESY; Woods, Bruce; /LLNL, Livermore; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; /Uppsala U.; Schulz, Joachim; /DESY

    2011-08-22T23:59:59.000Z

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10{sub 12} photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  6. Boiling the Vacuum with an X-Ray Free Electron Laser

    E-Print Network [OSTI]

    A. Ringwald

    2003-04-15T23:59:59.000Z

    X-ray free electron lasers will be constructed in this decade, both at SLAC in the form of the so-called Linac Coherent Light Source as well as at DESY, where the so-called TESLA XFEL laboratory uses techniques developed for the design of the TeV energy superconducting electron-positron linear accelerator TESLA. Such X-ray lasers may allow also for high-field science applications by exploiting the possibility to focus their beams to a spot with a small radius, hopefully in the range of the laser wavelength. Along this route one obtains very large electric fields, much larger than those obtainable with any optical laser of the same power. We consider here the possibility of obtaining an electric field so high that electron-positron pairs are spontaneously produced in vacuum (Schwinger pair production) and review the prospects to verify this non-perturbative production mechanism for the first time in the laboratory.

  7. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; Cupane, Antonio; Cammarata, Marco

    2015-04-02T23:59:59.000Z

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations withmore »a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.« less

  8. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01T23:59:59.000Z

    Zholents, K. Holdack, Free Electron Laser Conference, FEL06,26th International Free Electron Laser Conference, Trieste,27th International Free Electron Laser Conference, Stanford,

  9. Relativistic X-Ray Free Electron Lasers in the Quantum Regime

    E-Print Network [OSTI]

    Bengt Eliasson; Padma Kant Shukla

    2012-03-02T23:59:59.000Z

    We present a nonlinear theory for relativistic X-ray free electron lasers in the quantum regime, using a collective Klein-Gordon (KG) equation (for relativistic electrons), which is coupled with the Maxwell-Poisson equations for the electromagnetic and electrostatic fields. In our model, an intense electromagnetic wave is used as a wiggler which interacts with a relativistic electron beam to produce coherent tunable radiation. The KG-Maxwell-Poisson model is used to derive a general nonlinear dispersion relation for parametric instabilities in three-space-dimensions, including an arbitrarily large amplitude electromagnetic wiggler field. The nonlinear dispersion relation reveals the importance of quantum recoil effects and oblique scattering of the radiation that can be tuned by varying the beam energy.

  10. Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    SciTech Connect (OSTI)

    Poletto, L., E-mail: poletto@dei.unipd.it; Frassetto, F.; Miotti, P. [CNR - Institute of Photonics and Nanotechnologies (CNR-IFN), via Trasea 7, I-35131 Padova (Italy); Di Cicco, A.; Iesari, F. [Physics Division, School of Science and Technology, Università di Camerino, I-62032 Camerino (Italy); Finetti, P. [ELETTRA - Sincrotrone Trieste, Basovizza Area Science Park, S. S. 14 - km 163,5, I-34149, Basovizza (TS) (Italy); Grazioli, C. [Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy); CNR-Istituto Officina dei Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste (Italy); Kivimäki, A. [CNR-Istituto Officina dei Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste (Italy); Stagira, S. [Politecnico di Milano – Department of Physics, I-20133 Milano (Italy); Coreno, M. [ELETTRA - Sincrotrone Trieste, Basovizza Area Science Park, S. S. 14 - km 163,5, I-34149, Basovizza (TS) (Italy); CNR – Istituto di Struttura della Materia (CNR-ISM), UOS Basovizza, I-34149 Trieste (Italy)

    2014-10-15T23:59:59.000Z

    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25–800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented.

  11. Obtaining attosecond X-ray pulses using a self-amplified spontaneous emission free electron laser

    E-Print Network [OSTI]

    Zholents, A.A.; Penn, G.

    2005-01-01T23:59:59.000Z

    Handbook, Vol- ume 6: Free Electron Lasers (North-Holland,spontaneous emission free electron laser A.A. Zholents, G.spontaneous emission free electron laser A. A. Zholents and

  12. Subnanometer-Scale Measurements of the Interaction of Ultrafast Soft X-Ray Free-Electron-Laser Pulses with Matter

    E-Print Network [OSTI]

    von der Linde, D.

    lengths greater than 3 A° . This experiment demonstrates that with intense ultrafast pulses, structuralSubnanometer-Scale Measurements of the Interaction of Ultrafast Soft X-Ray Free-Electron-Laser Pulses with Matter Stefan P. Hau-Riege,1,* Henry N. Chapman,1 Jacek Krzywinski,2 Ryszard Sobierajski,2

  13. Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-ray Free Electron Lasers

    SciTech Connect (OSTI)

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC; ,

    2012-02-15T23:59:59.000Z

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  14. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    SciTech Connect (OSTI)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10T23:59:59.000Z

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  15. R&D for a Soft X-Ray Free Electron Laser Facility

    SciTech Connect (OSTI)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stöhr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-06-08T23:59:59.000Z

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating structure. Demonstration experiments in advanced seeding techniques, such as EEHG, and other optical manipulations to enhance the FEL process are required to reduce technical risk in producing temporally coherent and ultrashort x-ray output using optical seed lasers. Success of EEHG in particular would result in reduced development and cost of laser systems and accelerator hardware for seeded FELs. With a 1.5-2.5 GeV linac, FELs could operate in the VUV-soft x-ray range, where the actual beam energy will be determined by undulator technology; for example, to use the lower energy would require the use of advanced designs for which undulator R&D is needed. Significant reductions in both unit costs and accelerator costs resulting from the lower electron beam energy required to achieve lasing at a particular wavelength could be obtained with undulator development. Characterization of the wakefields of the vacuum chambers in narrow-gap undulators will be needed to minimize risk in ability to deliver close to transform limited pulses. CW superconducting RF technology for an FEL facility with short bunches at MHz rate and up to mA average current will require selection of design choices in cavity frequency and geometry, higher order mode suppression and power dissipation, RF power supply and distribution, accelerating gradient, and cryogenics systems. R&D is needed to define a cost and performance optimum. Developments in laser technology are proceeding at rapid pace, and progress in high-power lasers, harmonic generation, and tunable sources will need to be tracked.

  16. Multiple pulse thermal damage thresholds of materials for x-ray free electron laser optics investigated with an ultraviolet laser

    SciTech Connect (OSTI)

    Hau-Riege, Stefan P.; London, Richard A.; Bionta, Richard M.; Soufli, Regina; Ryutov, Dmitri; Shirk, Michael; Baker, Sherry L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94539 (United States); Smith, Patrick M.; Nataraj, Pradeep [Kovio, Inc., 1145 Sonora Court, Sunnyvale, California 94086 (United States)

    2008-11-17T23:59:59.000Z

    Optical elements to be used for x-ray free electron lasers (XFELs) must withstand multiple high-fluence pulses. We have used an ultraviolet laser to study the damage of two candidate materials, crystalline Si and B{sub 4}C-coated Si, emulating the temperature profile expected to occur in optics exposed to XFEL pulses. We found that the damage threshold for 10{sup 5} pulses is {approx}20% to 70% lower than the melting threshold.

  17. Development, characterization and experimental performance of x-ray optics for the LCLS free-electron laser

    SciTech Connect (OSTI)

    Soufli, R; Pivovaroff, M J; Baker, S L; Robinson, J C; Gullikson, E M; Mc Carville, T J; Stefan, P M; Aquila, A L; Ayers, J; McKernan, M A; Bionta, R M

    2008-09-10T23:59:59.000Z

    This manuscript discusses the development of reflective optics for the x-ray offset mirror systems of the Linac Coherent Light Source (LCLS), a 0.15-1.5 nm free-electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC). The unique properties (such as the high peak brightness) of the LCLS FEL beam translate to strict limits in terms of materials choice, thus leading to an x-ray mirror design consisting of a reflective coating deposited on a silicon substrate. Furthermore, the physics requirements for these mirrors result in stringent surface figure and finish specifications that challenge the state-of-the-art in x-ray substrate manufacturing, thin film deposition, and metrology capabilities. Recent experimental results on the development, optimization, and characterization of the LCLS soft x-ray mirrors are presented in this manuscript, including: precision surface metrology on the silicon substrates, and the development of boron carbide reflective coatings with reduced stress and thickness variation < 0.14 nm rms across the 175-mm clear aperture area of the LCLS soft x-ray mirrors.

  18. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01T23:59:59.000Z

    wavelength seed, and ultrafast pulses. Understanding gainedlasers to produce ultrafast x-ray pulses at the ALS in a “is home to the PULSE Institute for ultrafast energy science,

  19. VISA: A Milestone on the Path Towards X-Ray Free Electron Lasers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    duration of 100 to 1000 times shorter. We can, however, be confident that the X-ray SASE-FEL, by opening to our exploration a totally new range of physical parameters, will lead to...

  20. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas; Seiboth, Frank; Feng, Yiping; Alonso-Mori, Roberto; Chollet, Matthieu; Lemke, Henrik T.; Sokaras, Dimosthenis; Weng, Tsu-Chien; et al

    2015-05-01T23:59:59.000Z

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  1. Microscopic linear liquid streams in vacuum: Injection of solvated biological samples into X-ray free electron lasers

    SciTech Connect (OSTI)

    Doak, R. B.; DePonte, D. P.; Nelson, G.; Camacho-Alanis, F.; Ros, A.; Spence, J. C. H.; Weierstall, U. [Arizona State University, Tempe, AZ 85287-1504 (United States); Centre for Free-Electron Laser Science, DESY, D-22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287-1504 (United States)

    2012-11-27T23:59:59.000Z

    Microscopic linear liquid free-streams offer a means of gently delivering biological samples into a probe beam in vacuum while maintaining the sample species in a fully solvated state. By employing gas dynamic forces to form the microscopic liquid stream (as opposed to a conventional solid-walled convergent nozzle), liquid free-streams down to 300 nm diameter have been generated. Such 'Gas Dynamic Virtual Nozzles' (GDVN) are ideally suited to injecting complex biological species into an X-ray Free Electron Laser (XFEL) to determine the structure of the biological species via Serial Femtosecond Crystallography (SFX). GDVN injector technology developed for this purpose is described.

  2. Experimental Demonstration of a Soft X-ray Self-seeded Free-electron Laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ratner, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Abela, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Amann, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Behrens, C. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Bohler, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Bouchard, G. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Bostedt, C. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Boyes, M. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Chow, K. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Cocco, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Decker, F. J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Ding, Y. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Eckman, C. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Emma, P. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Fairley, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Feng, Y. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Field, C. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Flechsig, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Gassner, G. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Hastings, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Heimann, P. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Kelez, N. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Krzywinski, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Lutman, A. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Marinelli, A. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Marcus, G. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Maxwell, T. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Moeller, S. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Morton, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Nuhn, H. D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Rodes, N. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Schlotter, W. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Serkez, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stevens, T. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Turner, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Walz, D. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Welch, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Wu, J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States)

    2015-02-06T23:59:59.000Z

    The Linac Coherent Light Source (LCLS) has added self-seeding capability to the soft x-ray range using a grating monochromator system. We report demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10-4, and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50 fold higher brightness to users.

  3. Accelerator Design Study for a Soft X-Ray Free Electron Laser at the Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Kur, E.

    2010-01-01T23:59:59.000Z

    and Experiment”, Free Electron Laser Conference, FEL06,from Shot-Noise, Free Electron Laser Conference FEL08for FERMI@elettra, Free Electron Laser Conference FEL07

  4. Femtosecond diffractive imaging with a soft-X-ray free-electron laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. CategoryFebruaryFebruary 17,Time-Delay X-ray Holography

  5. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Drell, Persis [SLAC Director] [SLAC Director

    2011-03-22T23:59:59.000Z

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  6. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Drell, Persis [SLAC Director

    2011-06-08T23:59:59.000Z

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  7. A camera for coherent diffractive imaging and holography with a soft-X-ray free electron laser

    SciTech Connect (OSTI)

    Bajt, S; Chapman, H N; Spiller, E; Alameda, J; Woods, B; Frank, M; Bogan, M J; Barty, A; Boutet, S; Marchesini, S; Hau-Riege, S P; Hajdu, J; Shapiro, D

    2007-09-24T23:59:59.000Z

    We describe a camera to record coherent scattering patterns with a soft-X-ray free-electron laser. The camera consists of a laterally-graded multilayer mirror which reflects the diffraction pattern onto a CCD detector. The mirror acts as a bandpass filter both for wavelength and angle, which isolates the desired scattering pattern from non-sample scattering or incoherent emission from the sample. The mirror also solves the particular problem of the extreme intensity of the FEL pulses, which are focused to greater than 10{sup 14} W/cm{sup 2}. The strong undiffracted pulse passes through a hole in the mirror and propagates on to a beam dump at a distance behind the instrument rather than interacting with a beamstop placed near the CCD. The camera concept is extendable for the full range of the fundamental wavelength of the FLASH FEL (i.e. between 6 nm and 60 nm) and into the water window. We have fabricated and tested various multilayer mirrors for wavelengths of 32 nm, 16 nm, 13.5 nm, and 4.5 nm. At the shorter wavelengths mirror roughness must be minimized to reduce scattering from the mirror. We have recorded over 30,000 diffraction patterns at the FLASH free-electron laser with no observable mirror damage or degradation of performance.

  8. Damage Threshold of Platinum Coating used for Optics for Self-Seeding of Soft X-ray Free Electron Laser

    SciTech Connect (OSTI)

    Krzywinski, Jacek; Cocco, Daniele; Moeller, Stefan; Ratner, Daniel

    2015-01-01T23:59:59.000Z

    We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2.1 deg. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. We have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm2. The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm2 and 0.75 J/cm2 respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.

  9. Damage Threshold of Platinum Coating used for Optics for Self-Seeding of Soft X-ray Free Electron Laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krzywinski, Jacek; Cocco, Daniele; Moeller, Stefan; Ratner, Daniel

    2015-01-01T23:59:59.000Z

    We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2.1 deg. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. Wemore »have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm2. The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm2 and 0.75 J/cm2 respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.« less

  10. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser

    E-Print Network [OSTI]

    Zastrau, Ulf; Foerster, Eckhart; Galtier, Eric Ch; Gamboa, Eliseo; Glenzer, Siegfried H; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja

    2014-01-01T23:59:59.000Z

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution $\\Delta E/E = 1.1\\cdot 10^{-4}$ and wave-number resolution of $\\Delta k/k = 3\\cdot 10^{-3}$, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to $5.2/$\\AA\\ in 100 separate bins, with only 0.34\\% wavenumber blurring. The dispersion of 0.418~eV/$13.5\\,\\mu$m agrees with predictions within 1.3\\%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic HAPG spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1~eV and a significant range of wavenumbers must be covered in one exposure.

  11. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser

    SciTech Connect (OSTI)

    Zastrau, Ulf, E-mail: ulf.zastrau@uni-jena.de [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Fletcher, Luke B.; Galtier, Eric Ch.; Gamboa, Eliseo; Glenzer, Siegfried H.; Heimann, Philipp; Nagler, Bob; Schropp, Andreas; Lee, Hae Ja [Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Förster, Eckhart [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena (Germany); Marschner, Heike; Wehrhan, Ortrud [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2014-09-15T23:59:59.000Z

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ?E/E = 1.1 ×?10{sup ?4} and wave-number resolution of ?k/k = 3 ×?10{sup ?3}, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5??m agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

  12. Damage Threshold of Platinum Coating used for Optics for Self-Seeding of Soft X-ray Free Electron Laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krzywinski, Jacek; Cocco, Daniele; Moeller, Stefan; Ratner, Daniel

    2015-01-01T23:59:59.000Z

    We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2.1 deg. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. We have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm2. The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm2 and 0.75 J/cm2 respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.

  13. Method and apparatus for micromachining using hard X-rays

    DOE Patents [OSTI]

    Siddons, David Peter (Shoreham, NY); Johnson, Erik D. (Ridge, NY); Guckel, Henry (Madison, WI); Klein, Jonathan L. (Madison, WI)

    1997-10-21T23:59:59.000Z

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  14. Method and apparatus for micromachining using hard X-rays

    DOE Patents [OSTI]

    Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

    1997-10-21T23:59:59.000Z

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

  15. A revised partiality model and post-refinement algorithm for X-ray free-electron laser data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ginn, Helen Mary; Brewster, Aaron S.; Hattne, Johan; Evans, Gwyndaf; Wagner, Armin; Grimes, Jonathan M.; Sauter, Nicholas K.; Sutton, Geoff; Stuart, David Ian

    2015-06-01T23:59:59.000Z

    Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definitionmore »of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating theRsplitvalue) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will generally increase the utility of the method for difficult cases.« less

  16. Constraints on jet X-ray emission in low/hard state X-ray binaries

    E-Print Network [OSTI]

    Thomas J. Maccarone

    2005-03-31T23:59:59.000Z

    We show that the combination of the similarities between the X-ray properties of low luminosity accreting black holes and accreting neutron stars, combined with the differences in their radio properties argues that the X-rays from these systems are unlikely to be formed in the relativistic jets. Specifically, the spectra of extreme island state neutron stars and low/hard state black holes are known to be indistinguishable, while the power spectra from these systems are known to show only minor differences beyond what would be expected from scaling the characteristic variability frequencies by the mass of the compact object. The spectral and temporal similarities thus imply a common emission mechanism that has only minor deviations from having all key parameters scaling linearly with the mass of the compact object, while we show that this is inconsistent with the observations that the radio powers of neutron stars are typically about 30 times lower than those of black holes at the same X-ray luminosity. We also show that an abrupt luminosity change would be expected when a system makes a spectral state transition from a radiatively inefficient jet dominated accretion flow to a thin disk dominated flow, but that such a change is not seen.

  17. Theoretical computation of the polarization characteristics of an X-ray Free-Electron Laser with planar undulator

    E-Print Network [OSTI]

    Geloni, Gianluca; Saldin, Evgeni

    2015-01-01T23:59:59.000Z

    We show that radiation pulses from an X-ray Free-Electron Laser (XFEL) with a planar undulator, which are mainly polarized in the horizontal direction, exhibit a suppression of the vertical polarization component of the power at least by a factor $\\lambda_w^2/(4 \\pi L_g)^2$, where $\\lambda_w$ is the length of the undulator period and $L_g$ is the FEL field gain length. We illustrate this fact by examining the XFEL operation under the steady state assumption. In our calculations we considered only resonance terms: in fact, non resonance terms are suppressed by a factor $\\lambda_w^3/(4 \\pi L_g)^3$ and can be neglected. While finding a situation for making quantitative comparison between analytical and experimental results may not be straightforward, the qualitative aspects of the suppression of the vertical polarization rate at XFELs should be easy to observe. We remark that our exact results can potentially be useful to developers of new generation FEL codes for cross-checking their results.

  18. X-ray-optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser

    SciTech Connect (OSTI)

    Schorb, S.; Cryan, J. P.; Glownia, J. M.; Bionta, M. R.; Coffee, R. N.; Swiggers, M.; Carron, S.; Castagna, J.-C.; Bozek, J. D.; Messerschmidt, M.; Schlotter, W. F.; Bostedt, C. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, P.O. Box 20450, Stanford, California 94309 (United States); Gorkhover, T. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Erk, B.; Boll, R.; Schmidt, C.; Rudenko, A. [Max-Planck Advanced-Study-Group at CFEL, Notkestr. 85, 22607 Hamburg (Germany); Max-Planck-Institut f. Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Rolles, D. [Max-Planck Advanced-Study-Group at CFEL, Notkestr. 85, 22607 Hamburg (Germany); Max-Planck-Institut f. med. Forschung, Jahnstr. 29, 69120 Heidelberg (Germany); Rouzee, A. [Max-Born-Institut, Max-Born-Str. 2, 12489 Berlin (Germany)

    2012-03-19T23:59:59.000Z

    X-ray-optical pump-probe experiments at the Linac Coherent Light Source (LCLS) have so far been limited to a time resolution of 280 fs fwhm due to timing jitter between the accelerator-based free-electron laser (FEL) and optical lasers. We have implemented a single-shot cross-correlator for femtosecond x-ray and infrared pulses. A reference experiment relying only on the pulse arrival time information from the cross-correlator shows a time resolution better than 50 fs fwhm (22 fs rms) and also yields a direct measurement of the maximal x-ray pulse length. The improved time resolution enables ultrafast pump-probe experiments with x-ray pulses from LCLS and other FEL sources.

  19. all-sky hard x-ray: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sky coverage each orbit, and full sky coverage each 50 days, hard x-ray studies of gamma-ray bursts, AGN, galactic transients, x-ray binaries and accretion-powered pulsars can be...

  20. E-Print Network 3.0 - astronomical hard x-ray Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search results for: astronomical hard x-ray Page: << < 1 2 3 4 5 > >> 1 Reverse Drift Bursts in the 0.8-4.5 GHz Band and their Relation to X-Rays Summary: and causing radio...

  1. Quantized hard-x-ray phase vortices nucleated by aberrated nanolenses

    SciTech Connect (OSTI)

    Pavlov, Konstantin M. [School of Science and Technology, University of New England, Armidale, New South Wales 2351 (Australia); School of Physics, Monash University, Victoria 3800 (Australia); Paganin, David M. [School of Physics, Monash University, Victoria 3800 (Australia); Vine, David J. [ARC Centre of Excellence for Coherent X-ray Science, School of Physics, The University of Melbourne, Parkville, Victoria 3010 (Australia); Schmalz, Jelena A. [School of Science and Technology, University of New England, Armidale, New South Wales 2351 (Australia); Suzuki, Yoshio; Uesugi, Kentaro; Takeuchi, Akihisa; Yagi, Naoto [SPring-8/JASRI (Japan Synchrotron Radiation Research Institute), Hyogo 679-5198 (Japan); Kharchenko, Alexander; Blaj, Gabriel [PANalytical B.V., P.O. Box 13, 7600 AA Almelo (Netherlands); Jakubek, Jan [Institute of Experimental and Applied Physics, Czech Technical University in Prague, 166 36 Prague 6 (Czech Republic); Altissimo, Matteo [Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria 3168 (Australia); Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton South, Victoria 3169 (Australia); Clark, Jesse N. [London Centre for Nanotechnology, University College, Gower St, London WC1E 6BT (United Kingdom)

    2011-01-15T23:59:59.000Z

    Quantized x-ray phase vortices, namely, screw-type topological defects in the wave fronts of a coherent monochromatic scalar x-ray wave field, may be spontaneously nucleated by x-ray lenses. Phase retrieval is used to reconstruct the phase and amplitude of the complex disturbance created by aberrated gold nanolenses illuminated with hard x rays. A nanoscale quantized x-ray vortex-antivortex dipole is observed, manifest both as a pair of opposite-helicity branch points in the Riemann sheets of the multivalued x-ray phase map of the complex x-ray field and in the vorticity of the associated Poynting vector field.

  2. Toward TW-Level, Hard X-Ray Pulses at LCLS

    SciTech Connect (OSTI)

    Fawley, W.M.; Frisch, J.; Huang, Z.; Jiao, Y.; Nuhn, H.-D.; /SLAC; Pellegrini, C.; /SLAC /UCLA; Reiche, S.; /PSI, Villigen; Wu, J,; /SLAC

    2011-12-13T23:59:59.000Z

    Coherent diffraction imaging of complex molecules such as proteins requires a large number (e.g., {approx} 10{sup 13}/pulse) of hard X-ray photons within a time scale of {approx} 10 fs or less. This corresponds to a peak power of {approx} 1 TW, much larger than that currently generated by LCLS or other proposed X-ray free electron lasers (FELs). We study the feasibility of producing such pulses using a LCLS-like, low charge electron beam, as will be possible in the LCLS-II upgrade project, employing a configuration beginning with a SASE amplifier, followed by a 'self-seeding' crystal monochromator, and finishing with a long tapered undulator. Our results suggest that TW-level output power at 8.3 keV is possible from a total undulator system length around 200 m. In addition power levels larger than 100 GW are generated at the third harmonic. We present a tapering strategy that extends the original 'resonant particle' formalism by optimizing the transport lattice to maximize optical guiding and enhance net energy extraction. We discuss the transverse and longitudinal coherence properties of the output radiation pulse and the expected output pulse energy sensitivity, both to taper errors and to power fluctuations on the monochromatized SASE seed.

  3. Hard X-ray Microscopic Images of the Human Hair

    SciTech Connect (OSTI)

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Lee, Won-Soo [Department of Dermatology and Institute of Hair and Cosmetic Medicine, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Yon, Hwa Shik [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2007-01-19T23:59:59.000Z

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  4. Investigation of the hard x-ray background in backlit pinhole imagers

    SciTech Connect (OSTI)

    Fein, J. R., E-mail: jrfein@umich.edu; Holloway, J. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143 (United States); Peebles, J. L. [Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States); Keiter, P. A.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Drake, R. P. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143 (United States)

    2014-11-15T23:59:59.000Z

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-? x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  5. Hard X-rays from Emission Line Galaxies and the X-ray Background: A Test for Advection Dominated Accretion with Radio Sources

    E-Print Network [OSTI]

    Insu Yi; Stephen P. Boughn

    1997-10-14T23:59:59.000Z

    Recent studies of the cosmic X-ray background (XRB) have suggested the possible existence of a population of relatively faint sources with hard X-ray spectra; however, the emission mechanism remains unclear. If the hard X-ray emission is from the radiatively inefficient, advection dominated accretion flows (ADAFs) around massive black holes in galactic nuclei, X-ray luminosity and radio luminosity satisfy the approximate relation $L_R\\sim 7\\times 10^{35}(\

  6. Accelerator Design Study for a Soft X-Ray Free Electron Laser at the Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Kur, E.

    2010-01-01T23:59:59.000Z

    074401. Kramer D. et al. , 2004, The BESSY Soft X-ray FreeTechnical Design Report, BESSY, Berlin http://www.bessy.de.Project [Moncton et al. ], BESSY FEL [Kramer et al. ], LBNL

  7. Free-Electron Laser Generation of VUV and X-Ray Radiation using a Conditioned Beam and Ion-Channel Focusing

    E-Print Network [OSTI]

    Yu, L.-H.

    2008-01-01T23:59:59.000Z

    a) Accelerator Conditioner Free-Electron Laser L ---~>~ . Free Electron Laser Conference, Santain the Proceedings Free-Electron Laser Generation of VUV and

  8. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    SciTech Connect (OSTI)

    Chaturvedi, Smita; Rajendra, Ranguwar; Ballav, Nirmalya; Kulkarni, Sulabha, E-mail: s.kulkarni@iiserpune.ac.in [Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India); Sarkar, Indranil [DESY Photon Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg (Germany); Shirolkar, Mandar M. [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jeng, U-Ser; Yeh, Yi-Qi [National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Science Park, Hsinchu 3007-6, Taiwan (China)

    2014-09-08T23:59:59.000Z

    We have investigated bismuth ferrite nanoparticles (?75?nm and ?155?nm) synthesized by a chemical method, using soft X-ray (1253.6?eV) and hard X-ray (3500, 5500, and 7500?eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg K? (1253.6?eV) source showed that iron and bismuth were present in both Fe{sup 3+} and Bi{sup 3+} valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi{sup 0} valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  9. Hard x-ray or gamma ray laser by a dense electron beam

    SciTech Connect (OSTI)

    Son, S. [18 Caleb Lane, Princeton, New Jersey 08540 (United States); Joon Moon, Sung [8 Benjamin Rush Ln., Princeton, New Jersey 08540 (United States)

    2012-06-15T23:59:59.000Z

    A dense electron beam propagating through a laser undulator can radiate a coherent x-ray or gamma ray. This lasing scheme is studied with the Landau damping theory. The analysis suggests that, with currently available physical parameters, coherent gamma rays of up to 50 keV can be generated. The electron quantum diffraction suppresses the free electron laser action, which limits the maximum radiation.

  10. Hard X-ray observations of Cygnus X-1 with the Miso telescope

    SciTech Connect (OSTI)

    Perotti, F.; Della Ventura, A.; Villa, G.

    1984-01-01T23:59:59.000Z

    The black hole candidate Cygnus X-1 was observed in the hard X-ray - soft gamma-ray energy range by the Miso telescope on two different occasions: in September 1979 and May 1980. Two hard X-ray states of the source have beem measured: in 1979 the observed spectrum confirms the superlow state measured in the same period by the HEAO-3 satellite, while in 1980 the Miso X-ray data are consistent with the so-called low state of Cygnus X-1. In both occasions, no gamma-ray excess has been observed above 200 keV. 9 references.

  11. HARD X-RAY OBSERVATIONS OF A JET AND ACCELERATED ELECTRONS IN THE CORONA

    SciTech Connect (OSTI)

    Glesener, Lindsay; Lin, R. P.; Krucker, Saem, E-mail: glesener@ssl.berkeley.edu [Space Science Laboratory, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States)

    2012-07-20T23:59:59.000Z

    We report the first hard X-ray observation of a solar jet on the limb with flare footpoints occulted, so that faint emission from accelerated electrons in the corona can be studied in detail. In this event on 2003 August 21, RHESSI observed a double coronal hard X-ray source in the pre-impulsive phase at both thermal and nonthermal energies. In the impulsive phase, the first of two hard X-ray bursts consists of a single thermal/nonthermal source coinciding with the lower of the two earlier sources, and the second burst shows an additional nonthermal, elongated source, spatially and temporally coincident with the coronal jet. Analysis of the jet hard X-ray source shows that collisional losses by accelerated electrons can deposit enough energy to generate the jet. The hard X-ray time profile above 20 keV matches that of the accompanying Type III and broadband gyrosynchrotron radio emission, indicating both accelerated electrons escaping outward along the jet path and electrons trapped in the flare loop. The double coronal hard X-ray source, the open field lines indicated by Type III bursts, and the presence of a small post-flare loop are consistent with significant electron acceleration in an interchange reconnection geometry.

  12. DEDUCING ELECTRON PROPERTIES FROM HARD X-RAY OBSERVATIONS

    E-Print Network [OSTI]

    Piana, Michele

    of the accelerated electron distribution. Keywords: Sun: flares; Sun: X-rays; Sun: acceleration; Sun: energetic distribution 31 4.5 Low-energy cutoffs in the electron distribution 32 4.6 Temperature distribution of thermal-ray emission process(es) in question with the electron distribution function, which is in turn a function

  13. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system, and applications

    SciTech Connect (OSTI)

    Allaria, Enrico; Callegari, Carlo; Cocco, Daniele; Fawley, William M.; Kiskinova, Maya; Masciovecchio, Claudio; Parmigiani, Fulvio

    2010-04-05T23:59:59.000Z

    FERMI@Elettra is comprised of two free electron lasers (FELs) that will generate short pulses (tau ~;; 25 to 200 fs) of highly coherent radiation in the XUV and soft X-ray region. The use of external laser seeding together with a harmonic upshift scheme to obtain short wavelengths will give FERMI@Elettra the capability to produce high quality, longitudinal coherent photon pulses. This capability together with the possibilities of temporal synchronization to external lasers and control of the output photon polarization will open new experimental opportunities not possible with currently available FELs. Here we report on the predicted radiation coherence properties and important configuration details of the photon beam transport system. We discuss the several experimental stations that will be available during initial operations in 2011, and we give a scientific perspective on possible experiments that can exploit the critical parameters of this new light source.

  14. Using X-ray free-electron lasers for probing of complex interaction dynamics of ultra-intense lasers with solid matter

    SciTech Connect (OSTI)

    Kluge, T., E-mail: t.kluge@hzdr.de; Huang, L. G.; Metzkes, J.; Bussmann, M. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany)] [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Gutt, C. [Universität Siegen, D-57068 Siegen (Germany)] [Universität Siegen, D-57068 Siegen (Germany); Schramm, U.; Cowan, T. E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany) [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany)

    2014-03-15T23:59:59.000Z

    We demonstrate the potential of X-ray free-electron lasers (XFEL) to advance the understanding of complex plasma dynamics by allowing for the first time nanometer and femtosecond resolution at the same time in plasma diagnostics. Plasma phenomena on such short timescales are of high relevance for many fields of physics, in particular in the ultra-intense ultra-short laser interaction with matter. Highly relevant yet only partially understood phenomena become directly accessible in experiment. These include relativistic laser absorption at solid targets, creation of energetic electrons and electron transport in warm dense matter, including the seeding and development of surface and beam instabilities, ambipolar expansion, shock formation, and dynamics at the surfaces or at buried layers. In this paper, we focus on XFEL plasma probing for high power laser matter interactions based on quantitative calculations using synthesized data and evaluate the feasibility of various imaging and scattering techniques with special focus on the small angle X-ray scattering technique.

  15. Optimal focusing for a linac-based hard x-ray source

    SciTech Connect (OSTI)

    Liu, C.; Krafft, G.; Talman, R.

    2011-03-28T23:59:59.000Z

    In spite of having a small average beam current limit, a linac can have features that make it attractive as an x-ray source: high energy, ultralow emittance and energy spread, and flexible beamline optics. Unlike a storage ring, in which an (undulator) radiation source is necessarily short and positioned at an electron beam waist, in a linac the undulator can be long and the electron beam can be adjusted to have a (virtual) waist far downstream toward the x-ray target. Using a planned CEBAF beamline as an example, this paper shows that a factor of 2000 in beam current can be overcome to produce a monochromatic hard x-ray source comparable with, or even exceeding, the performance of an x-ray line at a third generation storage ring. Optimal electron beam focusing conditions for x-ray flux density and brilliance are derived, and are verified by simulations using the SRW code.

  16. Hard X-rays from Ultra-Compact HII Regions in W49A

    E-Print Network [OSTI]

    Tsujimoto, M; Feigelson, E D; Getman, K V; Broos, P S

    2006-01-01T23:59:59.000Z

    We report the Chandra detection of hard X-ray emission from the Welch ring in W49A, an organized structure of ultra-compact (UC) HII regions containing a dozen nascent early-type stars. Two UC HII regions are associated with hard X-ray emission in a deep Advanced CCD Imaging Spectrometer image exposed for 96.7 ks. One of the two X-ray sources has no near-infrared counterpart and is extended by ~5 arcsec, or ~0.3 pc, at a distance of ~11.4 kpc, which is spatially aligned with the cometary radio continuum emission associated with the UC HII region. The X-ray spectrum of the emission, when fit with a thermal model, indicates a heavily absorbed plasma with extinction of \\~5x10^{23}/cm^{2}, temperature of ~7 keV, and X-ray luminosity in the 3.0-8.0 keV band of ~3x10^{33} ergs/s. Both the luminosity and the size of the emission resemble the extended hard emission found in UC HII regions in Sagittarius B2, yet they are smaller by an order of magnitude than the emission found in massive star clusters such as NGC 3603...

  17. Hard X-rays and Fluorescent Iron Emission from the Embedded Infrared Cluster in NGC 2071

    E-Print Network [OSTI]

    Stephen L. Skinner; Audrey E. Simmons; Marc Audard; Manuel Guedel

    2006-12-19T23:59:59.000Z

    We present first results of XMM-Newton X-ray observations of the infrared cluster lying near the NGC 2071 reflection nebula in the Orion B region. This cluster is of interest because it is one of the closest regions known to harbor embedded high-mass stars. We report the discovery of hard X-ray emission from the dense central NGC 2071-IR subgroup which contains at least three high-mass young stellar objects (NGC 2071 IRS-1, IRS-2, and IRS-3). A prominent X-ray source is detected within 1 arcsecond of the infrared source IRS-1, which is thought to drive a powerful bipolar molecular outflow. The X-ray spectrum of this source is quite unusual compared to the optically thin plasma spectra normally observed in young stellar objects (YSOs). The spectrum is characterized by a hard broad-band continuum plus an exceptionally broad emission line at approximately 6.4 keV from neutral or near-neutral iron. The fluorescent Fe line likely originates in cold material near the embedded star (i.e. a disk or envelope) that is irradiated by the hard heavily-absorbed X-ray source.

  18. Science Highlight December 2010 Electrochemical Surface Science: Hard X-rays Probe Fuel Cell Model Catalyst

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Science Highlight ­ December 2010 Electrochemical Surface Science: Hard X-rays Probe Fuel Cell. Proton exchange membrane fuel cells (PEMFCs) are promising power sources since they can generate distribution network. Large-scale deployment of fuel cells, however, has been hampered by cost and performance

  19. Hard X-ray Sources from Miniature Plasma Focus Devices Vernica Raspa1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hard X-ray Sources from Miniature Plasma Focus Devices Verónica Raspa1 , Patricio Silva, José been obtained. Introduction The plasma focus (PF) device is a known source of dense transient high temperature plasmas, and it has been studied since late 50`s [1] . A plasma focus is a particular pinch

  20. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect (OSTI)

    Southworth, S.; Gemmell, D.

    1996-08-01T23:59:59.000Z

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  1. PUBLISHED VERSION Study of runaway electrons with Hard X-ray spectrometry of tokamak plasmas

    E-Print Network [OSTI]

    and DEMO, HXR spectrometry will be useful providing information on runaway electron energy, runaway beam as high as tens of MeV and the runaway current is more than 1 MA. The final runaway energy can becomePUBLISHED VERSION Study of runaway electrons with Hard X-ray spectrometry of tokamak plasmas

  2. A Hard X-ray KB-FZP Microscope for Tomography with Sub-100-nm Resolution

    E-Print Network [OSTI]

    Braun, Paul

    Bielefeld, Germany, 7 BESSY GmbH, Albert-Einstein-Str.15, 12489 Berlin, Germany 8 Department of Physics. INTRODUCTION Synchrotron-based hard X-ray tomography is nowadays a standard technique for structural analyses sciences, biomedicine, planetary science etc.. The high coherence of third generation synchrotron sources

  3. Optical identification of hard X-ray source IGRJ18257-0707

    E-Print Network [OSTI]

    R. A. Burenin; I. F. Bikmaev; M. G. Revnivtsev; J. A. Tomsick; S. Yu. Sazonov; M. N. Pavlinskiy; R. A. Sunyaev

    2008-10-14T23:59:59.000Z

    We present the results of the optical identification of hard X-ray source IGRJ18257-0707 trough the spectroscopic observations of its optical counterpart with RTT150 telescope. Accurate position of the X-ray source, determined using Chandra observations, allowed us to associate this source with the faint optical object (m_R=~20.4), which shows broad H_\\alpha emission line in its optical spectrum. Therefore we conclude that the source IGRJ18257-0707 is a type 1 Seyfert galaxy at redshift z=0.037.

  4. Hard X-rays from Ultra-Compact HII Regions in W49A

    E-Print Network [OSTI]

    M. Tsujimoto; T. Hosokawa; E. D. Feigelson; K. V. Getman; P. S. Broos

    2006-11-03T23:59:59.000Z

    We report the Chandra detection of hard X-ray emission from the Welch ring in W49A, an organized structure of ultra-compact (UC) HII regions containing a dozen nascent early-type stars. Two UC HII regions are associated with hard X-ray emission in a deep Advanced CCD Imaging Spectrometer image exposed for 96.7 ks. One of the two X-ray sources has no near-infrared counterpart and is extended by ~5 arcsec, or ~0.3 pc, at a distance of ~11.4 kpc, which is spatially aligned with the cometary radio continuum emission associated with the UC HII region. The X-ray spectrum of the emission, when fit with a thermal model, indicates a heavily absorbed plasma with extinction of \\~5x10^{23}/cm^{2}, temperature of ~7 keV, and X-ray luminosity in the 3.0-8.0 keV band of ~3x10^{33} ergs/s. Both the luminosity and the size of the emission resemble the extended hard emission found in UC HII regions in Sagittarius B2, yet they are smaller by an order of magnitude than the emission found in massive star clusters such as NGC 3603. Three possibilities are discussed for the cause of the hard extended emission in the Welch ring: an ensemble of unresolved point sources, shocked interacting winds of the young O stars, and a wind-blown bubble interacting with ambient cold matter.

  5. PHYSICAL REVIEW A 87, 023407 (2013) Multiphoton above-threshold ionization in superintense free-electron x-ray laser fields

    E-Print Network [OSTI]

    Chu, Shih-I

    2013-01-01T23:59:59.000Z

    . INTRODUCTION With the recent development of free-electron lasers (FELs), particularly the "fourthPHYSICAL REVIEW A 87, 023407 (2013) Multiphoton above-threshold ionization in superintense free-electron successfully used to investigate the multiphoton processes of a hydrogen atom exposed to superintense free-electron

  6. Metal Photocathodes for Free Electron Laser Applications

    E-Print Network [OSTI]

    Greaves, Corin Michael Ricardo

    2012-01-01T23:59:59.000Z

    an Undulator of a Free Electron Laser. Electrons tra- verseand et al. “X-ray free-electron lasers”. In: Journal ofiii List of Tables iv 1 The Free Electron Laser (FEL)

  7. A Low-Charge, Hard X-Ray FEL Driven with an X-band Injector and Accelerator

    SciTech Connect (OSTI)

    Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-02-17T23:59:59.000Z

    After the successful operation of FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source), soft and hard X-ray Free Electron Lasers (FELs) are being built, designed or proposed at many accelerator laboratories. Acceleration employing lower frequency RF cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic RF system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency RF acceleration process. In this paper, a hard X-ray FEL design using an all X-band accelerator at 11.424 GHz (from photo-cathode RF gun to linac end) is presented, without the assistance of any harmonic RF linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (RMS), low charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macro-particle 3-D simulation employing several computer codes is presented in this paper, where space charge, wakefields, incoherent and coherent synchrotron radiation (ISR and CSR) effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

  8. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    SciTech Connect (OSTI)

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.; Skinner, G. K.; Barthelmy, S.; Gehrels, N. [NASA/Goddard Space Flight Center, Astrophysics Science Division, Greenbelt, MD 20771 (United States); Mushotzky, R. F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Evans, P. A., E-mail: whbaumga@alum.mit.edu [X-Ray and Observational Astronomy Group/Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom)

    2013-08-15T23:59:59.000Z

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8{sigma}, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 50% of the sky and 1.34 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site.

  9. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; et al

    2014-04-17T23:59:59.000Z

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore »the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  10. NuSTAR DETECTION OF HARD X-RAY PHASE LAGS FROM THE ACCRETING PULSAR GS 0834–430

    E-Print Network [OSTI]

    Miyasaka, Hiromasa

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed ...

  11. Maximizing Spectral Flux from Self-Seeding Hard X-ray FELs

    E-Print Network [OSTI]

    Yang, Xi

    2013-01-01T23:59:59.000Z

    Fully coherent x-rays can be generated by self-seeding x-ray free-electron lasers (XFELs). Self-seeding by a forward Bragg diffraction (FBD) monochromator has been recently proposed [1] and demonstrated [2]. Characteristic time To of FBD determines the power, spectral, and time characteristics of the FBD seed [3]. Here we show that for a given electron bunch with duration sigma_e the spectral flux of the self-seeding XFEL can be maximized, and the spectral bandwidth can be respectively minimized by choosing To ~ sigma_e/pi and by optimizing the electron bunch delay tau_e. The choices of To and tau_e are not unique. In all cases, the maximum value of the spectral flux and the minimum bandwidth are primarily determined by sigma_e. Two-color seeding takes place To >> sigma_e/\\pi. The studies are performed, for a Gaussian electron bunch distribution with the parameters, close to those used in the short-bunch (sigma_e ~ 5 fs) and long-bunch (sigma_e ~ 20 fs) operation modes of the LCLS XFEL.

  12. Resolving the Hard X-ray Emission of GX 5-1 with INTEGRAL

    E-Print Network [OSTI]

    A. Paizis; K. Ebisawa; T. Tikkanen; J. Rodriguez; J. Chenevez; E. Kuulkers; O. Vilhu; T. J. -L. Courvoisier

    2005-07-15T23:59:59.000Z

    We present the study of one year of INTEGRAL data on the neutron star low mass X-ray binary GX 5-1. Thanks to the excellent angular resolution and sensitivity of INTEGRAL, we are able to obtain a high quality spectrum of GX 5-1 from ~5 keV to ~100 keV, for the first time without contamination from the nearby black hole candidate GRS 1758-258 above 20 keV. During our observations, GX 5-1 is mostly found in the horizontal and normal branch of its hardness intensity diagram. A clear hard X-ray emission is observed above ~30 keV which exceeds the exponential cut-off spectrum expected from lower energies. This spectral flattening may have the same origin of the hard components observed in other Z sources as it shares the property of being characteristic to the horizontal branch. The hard excess is explained by introducing Compton up-scattering of soft photons from the neutron star surface due to a thin hot plasma expected in the boundary layer. The spectral changes of GX 5-1 downward along the "Z" pattern in the hardness intensity diagram can be well described in terms of monotonical decrease of the neutron star surface temperature. This may be a consequence of the gradual expansion of the boundary layer as the mass accretion rate increases.

  13. A Full-Field KB-FZP Microscope for Hard X-Ray Imaging with Sub-100 nm Resolution

    E-Print Network [OSTI]

    Braun, Paul

    , Germany, 6 BESSY GmbH, Albert-Einstein-Str.15, 12489 Berlin, Germany A full-field hard X-ray microscope was performed at the Advanced Photon Source (APS), a synchrotron radiation source of the third generation

  14. In Orbit Timing Calibration of the Hard X-Ray Detector on Board Suzaku

    E-Print Network [OSTI]

    Yukikatsu Terada; Teruaki Enoto; Ryouhei Miyawaki; Yoshitaka Ishisaki; Tadayasu Dotani; Ken Ebisawa; Masanobu Ozaki; Yoshihiro Ueda; Lucien Kuiper; Manabu Endo; Yasushi Fukazawa; Tsuneyoshi Kamae; Madoka Kawaharada; Motohide Kokubun; Yoshikatsu Kuroda; Kazuo Makishima; Kazunori Masukawa; Tsunefumi Mizuno; Toshio Murakami; Kazuhiro Nakazawa; Atsushi Nakajima; Masaharu Nomach; Naoki Shibayama; Tadayuki Takahashi; Hiromitsu Takahashi; Makoto S. Tashiro; Toru Tamagawa; Shin Watanabe; Makio Yamaguchi; Kazutaka Yamaoka; Daisuke Yonetoku

    2007-11-17T23:59:59.000Z

    The hard X-ray detector (HXD) on board the X-ray satellite Suzaku is designed to have a good timing capability with a 61 $\\mu$s time resolution. In addition to detailed descriptions of the HXD timing system, results of in-orbit timing calibration and performance of the HXD are summarized. The relative accuracy of time measurements of the HXD event was confirmed to have an accuracy of $1.9\\times 10^{-9}$ s s$^{-1}$ per day, and the absolute timing was confirmed to be accurate to 360 $\\mu$s or better. The results were achieved mainly through observations of the Crab pulsar, including simultaneous ones with RXTE, INTEGRAL, and Swift.

  15. MCNP Simulation to Hard X-Ray Emission of KSU Dense Plasma Focus Machine

    E-Print Network [OSTI]

    Mohamed, Amgad E

    2015-01-01T23:59:59.000Z

    The MCNP program used to simulate the hard x-ray emission from KSU dense plasma focus device, an electron beam spectrum of maximum energy 100 keV was used to hit anode target. The bremsstrahlung radiation was measured using the F2 tally functions on the chamber walls and on a virtual sphere surrounding the machine, the radiation spectrum was recorded for various anode materials like tungsten, stainless steel and molybdenum. It was found that tungsten gives the best and the most intense radiation for the same electron beam. An aluminum filter of thickness 2mm and 4mm was used to cutoff the lower energy band from the x-ray spectrum. It was found that the filters achieved the mission and there is no distinct difference in between.

  16. Hard x-ray emission spectroscopy: a powerful tool for the characterization of magnetic semiconductors

    E-Print Network [OSTI]

    Rovezzi, Mauro

    2014-01-01T23:59:59.000Z

    This review aims to introduce the x-ray emission spectroscopy (XES) and resonant inelastic x-ray scattering (RIXS) techniques to the materials scientist working with magnetic semiconductors (e.g. semiconductors doped with 3d transition metals) for applications in the field of spin-electronics. We focus our attention on the hard part of the x-ray spectrum (above 3 keV) in order to demonstrate a powerful element- and orbital-selective characterization tool in the study of bulk electronic structure. XES and RIXS are photon-in/photon-out second order optical processes described by the Kramers-Heisenberg formula. Nowadays, the availability of third generation synchrotron radiation sources permits to apply such techniques also to dilute materials, opening the way for a detailed atomic characterization of impurity-driven materials. We present the K{\\ss} XES as a tool to study the occupied valence states (directly, via valence-to-core transitions) and to probe the local spin angular momentum (indirectly, via intra-at...

  17. Hard x-ray observations of Cygnus X-1 with the MISO telescope

    SciTech Connect (OSTI)

    Perotti, F.; Della Ventura, A.; Villa, G.; Bassani, L.; Butler, R.C.

    1986-01-01T23:59:59.000Z

    The results of hard x-ray, soft gamma-ray observations of the galactic black hole candidate, Cyg X-1, taken with the MISO telescope in October 1979 and May 1980 are presented, confirming the superlow state measured during September-October 1979 by the HEAO 3 satellite. The 1980 observation coincides with a low- to high-state transition and is consistent with HEAO 3 observations taken at the same epoch. No gamma-ray counting-rate excess above 200 keV was recorded in either observation. Apart from these two measurements, the observation of the Crab Nebula as an a posteriori calibration source is also described. 15 references.

  18. Phase-matched generation of coherent soft and hard X-rays using IR lasers

    DOE Patents [OSTI]

    Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

    2013-06-11T23:59:59.000Z

    Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

  19. Note: Experiments in hard x-ray chemistry: In situ production of molecular hydrogen and x-ray induced combustion

    SciTech Connect (OSTI)

    Pravica, Michael; Bai Ligang; Liu Yu; Galley, Martin; Robinson, John [High Pressure Science and Engineering Center (HiPSEC) and Department of Physics, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada 89154-4002 (United States); Park, Changyong [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Ave., Argonne, Illinois 60437 (United States); Hatchett, David [Department of Chemistry, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada 89154-4003 (United States)

    2012-03-15T23:59:59.000Z

    We have successfully loaded H{sub 2} into a diamond anvil cell at high pressure using the synchrotron x-ray induced decomposition of NH{sub 3}BH{sub 3}. In a second set of studies, radiation-assisted release of O{sub 2} from KCLO{sub 3}, H{sub 2} release from NH{sub 3}BH{sub 3}, and reaction of these gases in a mixture of the reactants to form liquid water using x-rays at ambient conditions was observed. Similar observations were made using a KCLO{sub 3} and NaBH{sub 4} mixture. Depending on reaction conditions, an explosive or far slower reaction producing water was observed.

  20. Fluctuation X-Ray Scattering

    SciTech Connect (OSTI)

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25T23:59:59.000Z

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  1. Nonthermal Hard X-ray Emission and Iron Kalpha Emission from a Superflare on II Pegasi

    E-Print Network [OSTI]

    R. A. Osten; S. Drake; J. Tueller; J. Cummings; M. Perri; A. Moretti; S. Covino

    2006-09-07T23:59:59.000Z

    We report on an X-ray flare detected on the active binary system II~Pegasi with the Swift telescope. The trigger had a 10-200 keV luminosity of 2.2$\\times10^{32}$ erg s$^{-1}$-- a superflare, by comparison with energies of typical stellar flares on active binary systems. The trigger spectrum indicates a hot thermal plasma with T$\\sim$180 $\\times10^{6}$K. X-ray spectral analysis from 0.8--200 keV with the X-Ray Telescope and BAT in the next two orbits reveals evidence for a thermal component (T$>$80 $\\times10^{6}$K) and Fe K 6.4 keV emission. A tail of emission out to 200 keV can be fit with either an extremely high temperature thermal plasma (T$\\sim3\\times10^{8}$K) or power-law emission. Based on analogies with solar flares, we attribute the excess continuum emission to nonthermal thick-target bremsstrahlung emission from a population of accelerated electrons. We estimate the radiated energy from 0.01--200 keV to be $\\sim6\\times10^{36}$ erg, the total radiated energy over all wavelengths $\\sim10^{38}$ erg, the energy in nonthermal electrons above 20 keV $\\sim3\\times10^{40}$ erg, and conducted energy $energy in electrons $>$ 20 keV when compared to the upper and lower bounds on the thermal energy content of the flare. This marks the first occasion in which evidence exists for nonthermal hard X-ray emission from a stellar flare. We investigate the emission mechanism responsible for producing the 6.4 keV feature, and find that collisional ionization from nonthermal electrons appears to be more plausible than the photoionization mechanism usually invoked on the Sun and pre-main sequence stars.

  2. CONSTRAINING THE HARD X-RAY PROPERTIES OF THE QUIET SUN WITH NEW RHESSI OBSERVATIONS

    SciTech Connect (OSTI)

    Hannah, I. G. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Hudson, H. S.; Hurford, G. J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Lin, R. P., E-mail: iain@astro.gla.ac.u, E-mail: hudson@ssl.berkeley.ed, E-mail: hurford@ssl.berkeley.ed, E-mail: rplin@ssl.berkeley.ed [Physics Department and Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2010-11-20T23:59:59.000Z

    We present new RHESSI upper limits in the 3-200 keV energy range for solar hard X-ray emission in the absence of flares and active regions, i.e., the quiet Sun, using data obtained between 2005 July and 2009 April. These new limits, substantially deeper than any previous ones, constrain several physical processes that could produce hard X-ray emission. These include cosmic-ray effects and the generation of axions within the solar core. The data also limit the properties of 'nanoflares', a leading candidate to explain coronal heating. We find it unlikely for nanoflares involving nonthermal effects to heat the corona because such events would require a steep electron spectrum E {sup -}{delta} with index {delta}>5 extending to very low energies (<1 keV), into the thermal energy range. We also use the limits to constrain the parameter space of an isothermal model and coronal thin-target emission models (power-law and kappa distributions).

  3. 0.2 Hz Plasma-Focus-based source of fast neutrons and hard x rays for applications

    SciTech Connect (OSTI)

    Moreno, C.; Raspa, V.; Di Lorenzo, F.; Lazarte, A.; Knoblauch, P. [Laboratorio Plasma Focus - Instituto de Fisica del Plasma - Departamento de Fisica, FCEyN - Universidad de Buenos Aires - PLADEMA (Argentina); Clausse, A. [PLADEMA - UNICEN - CNEA (Argentina)

    2006-12-04T23:59:59.000Z

    A small chamber Plasma Focus that operates at 0.2 Hz for several minutes is used as a source of hard x rays and fast neutrons. The device is powered by a microprocessor controlled capacitor charging power supply. The x rays are used for introspective imaging of metallic pieces, static and in motion, that allows for the detection of internal defects as small as 1 mm. The x ray radiation is able to produce clear images of objects placed behind several millimeters of iron and steel. The fast neutrons allow for the detection of hydrogenated substances and can discriminate between different concentrations of water located near the device.

  4. Swift J2218.4+1925: a new hard X-ray selected Polar observed with XMM-Newton

    E-Print Network [OSTI]

    Bernardini, Federico; Mukai, Koji; Falanga, Maurizio

    2014-01-01T23:59:59.000Z

    Swift J2218.4+1925, a hard X-ray source detected by Swift BAT, has been proposed as a candidate magnetic cataclysmic variable of the polar type from optical spectroscopy. Using XMM-Newton we perform detailed timing and spectral analysis with simultaneous X-ray ($0.3-10$ keV) and optical B band data. We complement the spectral study with archival hard X-ray (14-70 keV) spectra collected by Swift BAT as well as with optical, near and mid-infrared photometry from $SDSS$, $2MASS$ and $WISE$ archive, respectively. A strong periodic X-ray signal at 2.16 h, consistent with the recently determined spectroscopic orbital period, adds Swift J2218.4+1925 to the small group of hard X-ray polars and locates it at the low edge of the orbital period gap. The X-ray pulse profile shows the typical bright and faint phases seen in polars ($\\sim 70%$ and $\\sim 30%$ of the orbit, respectively). A pronounced dip centred on the bright phase is also detected. It is stronger at lower energies and is mainly produced by photoelectric ab...

  5. Polarimetry in the hard X-ray domain with INTEGRAL SPI

    SciTech Connect (OSTI)

    Chauvin, M.; Roques, J. P.; Jourdain, E. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Clark, D. J., E-mail: maxime.chauvin@irap.omp.eu [Createc Ltd., Unit 8, Derwent Mill Commercial Park, Cockermouth, Cumbria CA13 0HT (United Kingdom)

    2013-06-01T23:59:59.000Z

    We present recent improvements in polarization analysis with the INTEGRAL SPI data. The SPI detector plane consists of 19 independent Ge crystals and can operate as a polarimeter. The anisotropy characteristics of Compton diffusions can provide information on the polarization parameters of the incident flux. By including the physics of the polarized Compton process in the instrument simulation, we are able to determine the instrument response for a linearly polarized emission at any position angle. We compare the observed data with the simulation sets by a minimum ?{sup 2} technique to determine the polarization parameters of the source (angle and fraction). We have tested our analysis procedure with Crab Nebula observations and find a position angle similar to those previously reported in the literature, with a comfortable significance. Since the instrument response depends on the incident angle, each exposure in the SPI data requires its own set of simulations, calculated for 18 polarization angles (from 0° to 170° in steps of 10°) and unpolarized emission. The analysis of a large number of observations for a given source, required to obtain statistically significant results, represents a large amount of computing time, but it is the only way to access this complementary information in the hard X-ray regime. Indeed, major scientific advances are expected from such studies since the observational results will help to discriminate between the different models proposed for the high energy emission of compact objects like X-ray binaries and active galactic nuclei or gamma-ray bursts.

  6. Development of Hard X-ray Imaging Optics with Two Pairs of Elliptical and Hyperbolic Mirrors

    SciTech Connect (OSTI)

    Matsuyama, S.; Fujii, M.; Wakioka, T.; Mimura, H.; Handa, S.; Kimura, T. [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishino, Y.; Tamasaku, K.; Makina, Y.; Ishikawa, T. [SPring-8/RIKEN, 1-1-1 Kouto, Sayoucho, Sayogun, Hyogo 679-5148 (Japan); Yamauchi, K. [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Research Center for Ultra-Precision Science and Technology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-06-23T23:59:59.000Z

    To form a magnified hard X-ray image with a 50 nm resolution, we have studied total reflection mirror optics with two pairs of elliptical and hyperbolic mirrors, which is called 'Advanced Kirkpatrick-Baez system'. A designed optical system has 200x and 300x magnifications in vertical and horizontal directions. Also diffraction limit size in the optical system is 40 nmx45 nm. We fabricated a pair of elliptical and hyperbolic mirrors for horizontal imaging with a figure accuracy of 2 nm using elastic emission machining (EEM), microstitching interferometry (MSI) and relative-angle-determinable stitching interferometry (RADSI). One-dimensional tests for forming a demagnified image of a slit were carried out at an X-ray energy of 11.5 keV at BL29XUL (EH2) of SPring-8. As a result, a shape beam with a FWHM of 78 nm was observed. This demonstrates that we realized one-dimensional Wolter optics that has a spatial resolution of 78 nm.

  7. Solar Hard X-ray Source Sizes in a Beam-Heated and Ionised Chromosphere

    E-Print Network [OSTI]

    O'Flannagain, A; Gallagher, P T

    2014-01-01T23:59:59.000Z

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) have shown that HXR source sizes are 3-6 times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionisation (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionised plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionised region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to...

  8. XMM-Newton view of a hard X-ray transient IGR J17497-2821

    E-Print Network [OSTI]

    Alam, Md Shah; Mondal, Aditya S; Dewangan, Gulab C; Jhingan, Sanjay; Raychaudhuri, Biplab

    2015-01-01T23:59:59.000Z

    We present spectral and energy dependent timing characteristics of the hard X-ray transient IGR J17497-2821 based on XMM-Newton observations performed five and nine days after its outburst on 2006 September 17. We find that the source spectra can be well described by a hard (Gamma ~ 1.50) powerlaw and a weak multicolour disk blackbody with inner disk temperature kT_{in} ~ 0.2 KeV. A broad iron K - alpha line with FWHM ~ 27000 Km/s, consistent with that arising from an accretion disk truncated at large radius, was also detected. The power density spectra of IGR J17497 - 2821, derived from the high resolution (30 micro second) timing mode XMM-Newton observations, are characterised by broadband noise components that are well modelled by three Lorentzians. The shallow power law slope, low disk luminosity and the shape of the broadband power density spectrum indicate that the source was in the hard state. The rms variability in the softer energy bands (0.3-2 KeV) found to be ~ 1.3 times that in 2-5 and 5-10 KeV en...

  9. Simulation of free-electron lasers seeded with broadband radiation

    E-Print Network [OSTI]

    Bajlekov, Svetoslav

    2012-01-01T23:59:59.000Z

    The European X-Ray Free-Electron Laser Technical DesignSimulation of free-electron lasers seeded with broadbandcoherence of free-electron laser (FEL) radiation can be

  10. Suzaku Spectroscopy Study of Hard X-Ray Emission in the Arches Cluster

    E-Print Network [OSTI]

    M. Tsujimoto; Y. Hyodo; K. Koyama

    2006-11-03T23:59:59.000Z

    We present the results of a Suzaku study of the Arches cluster. A high S/N spectrum in the 3-12 keV band was obtained with the XIS. We found that the spectrum consists of a thermal plasma, a hard power-law tail, and two Gaussian lines. The plasma component (kT~2.2 keV) is established from the presence of CaXIX and FeXXV K alpha lines as well as the absence of FeXXVI K alpha line. The two Gaussian lines represent the K alpha and beta lines from iron at lower ionization stages. Both the line centers and the intensity ratio of these two lines are consistent with the neutral iron. The hard power-law tail (index~0.7) was found to have no pronounced iron K edge feature. In comparison with the published Chandra spectra, we conclude that the thermal component is from the ensemble of point-like sources plus thermal diffuse emission concentrated at the cluster center, while the Gaussian and the hard tail components are from the non-thermal diffuse emission extended in a larger scale. In the band-limited XIS images, the distribution of the 7.5-10.0 keV emission resembles that of the 6.4 keV emission. This strongly suggests that the power-law emission is related to the 6.4 and 7.1 keV lines in the underlying physics. We discuss two ideas to explain both the hard continuum and the lines: (1) X-ray photoionization that produces fluorescence lines and the Thomson scattering continuum and (2) non-thermal electron impact ionization of iron atoms and bremsstrahlung continuum. But whichever scenario is adopted, the photon or particle flux from the Arches cluster is too low to account for the observed line and continuum intensity.

  11. Research on Pinches driven by SPEED 2 Generator: Hard X-ray and Neutron Emission in Plasma Focus Configuration.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Research on Pinches driven by SPEED 2 Generator: Hard X-ray and Neutron Emission in Plasma Focus works developed in SPEED2 at Düsseldorf were done in a plasma focus configuration for soft X considers experiments in different pinch configurations (plasma focus, gas puffed plasma focus, gas embedded

  12. Ultra hard x rays from krypton clusters heated by intense laser fields R. C. Issac,a)

    E-Print Network [OSTI]

    Strathclyde, University of

    Ultra hard x rays from krypton clusters heated by intense laser fields R. C. Issac,a) G. Vieux, B of ultrashort laser pulses with krypton clusters at intensity up to 1.3 1018 Wcm 2 has been investigated. This is ascribed to the presence of a hot electron population, similar to that found in laser­solid interactions

  13. Inner-Shell Multiple Ionization of Polyatomic Molecules With an Intense X-Ray Free-Electron Laser Studied By Coincident Ion Momentum Imaging

    SciTech Connect (OSTI)

    Erk, B. [Max Planck Advanced Study Group and Deutsches Elektronen-Synchrotron, Hamburg (Germany); Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Rolles, D. [Max Planck Advanced Study Group and Deutsches Elektronen-Synchrotron, Hamburg (Germany); Max Planck Inst. for Medical Rearch, Heidelburg (Germany); Foucar, L. [Max Planck Society, Hamburg (Germany); Max Planck Inst. for Medical Rearch, Heidelburg (Germany); Rudek, B. [Max Planck Advanced Study Group and Deutsches Elektronen-Synchrotron, Hamburg (Germany); Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Epp, S. W. [Max Planck Society, Hamburg (Germany). Max Planck Inst. for Nuclear Physics; Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Cryle, M. [Max Planck Inst. for Medical Rearch, Heidelburg (Germany); Bostedt, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Schorb, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Technical Univ. Berlin (Germany). Inst. for Optic and Atomic Physics; Bozek, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Rouzee, A. [Max Born Inst., Berlin (Germany); Hundertmark, A. [Max Born Inst., Berlin (Germany); Marchenko, T. [Laboratory of Chemical Physics, Paris (France); Simon, M. [Laboratory of Chemical Physics, Paris (France); Filsinger, F. [Fritz Haber Inst. for Max Planck Gesellschaft, Berlin (Germany); Christensen, L. [Aarhus Univ. (Denmark). Dept. of Physics and Astronomy; De, S. [Aarhus Univ. (Denmark). Dept. of Chemistry; Saha Inst. of Nuclear Physics, Kolkata (India); Trippel, S. [Center for Free-Electron Laser Science (CFEL), Hamburg (Germany); Küpper, J. [Center for Free-Electron Laser Science (CFEL) and Univ. of Hamburg, Hamburg (Germany). Dept. of Physics, Center for Ultrafast Imaging; Stapelfeldt, H. [Aarhus Univ. (Denmark). Dept. of Chemistry; Wada, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Hiroshima Univ., Higashi-Hiroshima (Japan), Dept. of Physical Science; Ueda, K. [Tohoku Univ., Sendai (Japan). IMRAM; Swiggers, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Messerschmidt, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Schröter, C. D. [Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Moshammer, R. [Max Planck Society, Hamburg (Germany). Max Planck Inst. for Nuclear Physics; Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Schlichting, I. [Max Planck Society, Hamburg (Germany); Max Planck Inst. for Medical Rearch, Heidelburg (Germany); Ullrich, J. [Max Planck Society, Hamburg (Germany). Max Planck Inst. for Nuclear Physics; Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); National Institute for Physics and Technology, Braunschweig (Germany); Rudenko, A. [Max Planck Society, Hamburg (Germany). Max Planck Inst. for Nuclear Physics; Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Kansas State Univ., Manhattan, KS (United States). Dept. of Physics

    2013-08-28T23:59:59.000Z

    The ionization and fragmentation of two selenium containing hydrocarbon molecules, methylselenol (CH3SeH) and ethylselenol (C2H5SeH), by intense (>1017 W cm-2 ) 5 fs x-ray pulses with photon energies of 1.7 and 2 keV has been studied by means of coincident ion momentum spectroscopy. Measuring charge states and ion kinetic energies, we find signatures of charge redistribution within the molecular environment. Furthermore, by analyzing fragment ion angular correlations, we can determine the laboratory-frame orientation of individual molecules and thus investigate the fragmentation dynamics in the molecular frame. This allows distinguishing protons originating from different molecular sites along with identifying the reaction channels that lead to their emission.

  14. Inner-Shell Multiple Ionization of Polyatomic Molecules With an Intense X-Ray Free-Electron Laser Studied By Coincident Ion Momentum Imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Erk, B.; Rolles, D.; Foucar, L.; Rudek, B.; Epp, S. W.; Cryle, M.; Bostedt, C.; Schorb, S.; Bozek, J.; Rouzee, A.; et al

    2013-08-28T23:59:59.000Z

    The ionization and fragmentation of two selenium containing hydrocarbon molecules, methylselenol (CH3SeH) and ethylselenol (C2H5SeH), by intense (>1017 W cm-2 ) 5 fs x-ray pulses with photon energies of 1.7 and 2 keV has been studied by means of coincident ion momentum spectroscopy. Measuring charge states and ion kinetic energies, we find signatures of charge redistribution within the molecular environment. Furthermore, by analyzing fragment ion angular correlations, we can determine the laboratory-frame orientation of individual molecules and thus investigate the fragmentation dynamics in the molecular frame. This allows distinguishing protons originating from different molecular sites along with identifying the reactionmore »channels that lead to their emission.« less

  15. Synchrotron-based imaging and tomography with hard X-rays C. Rau a,b,c,e,*, V. Crecea a,d

    E-Print Network [OSTI]

    Braun, Paul

    Synchrotron-based imaging and tomography with hard X-rays C. Rau a,b,c,e,*, V. Crecea a,d , W. Liu, 33501 Bielefeld, Germany h BESSY GmbH, Albert-Einstein-Str.15, 12489 Berlin, Germany i Department Hard X-ray imaging with synchrotron radiation is a powerful tool to study opaque materials on the micro

  16. Optical Identification of the ASCA Medium Sensitivity Survey in the Northern Sky: Nature of Hard X-ray-selected Luminous Active Galactic Nuclei

    E-Print Network [OSTI]

    Masayuki Akiyama; Yoshihiro Ueda; Kouji Ohta; Tadayuki Takahashi; Toru Yamada

    2003-07-09T23:59:59.000Z

    We present the results of optical spectroscopic identifications of a bright subsample of 2-10keV hard X-ray selected sources from the ASCA Medium Sensitivity Survey in the northern sky. The flux limit of the subsample is 3*10^-13 erg s^-1 cm^-2 in the 2-10keV band. All but one of the 87 hard X-ray selected sources are optically identified, with AGNs, 7 clusters of galaxies, and 1 galactic star. It is the largest complete sample of hard X-ray selected AGNs at the bright flux limit. Amounts of absorption to their nuclei are estimated to be hydrogen column densities (N_H) of up to ~3*10^23 cm^-2 from their X-ray spectra. Optical properties of X-ray absorbed AGNs with N_H > 1*10^22 cm^-2 indicate the effects of dust absorption: at redshifts, z0.6, the X-ray absorbed AGNs have a large hard X-ray to optical flux ratio (log f2-10keV/fR > +1). However, three X-ray absorbed z>0.6 AGNs show strong broad lines. In combination with hard X-ray selected AGN samples from the ASCA Large Sky Survey, the ASCA Deep Survey in the Lockman Hole and Chandra Deep Field North, the luminosity distributions of absorbed and less-absorbed AGNs are compared.

  17. Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

    E-Print Network [OSTI]

    Antier, S; Limousin, O; Caroli, E; da Silva, R M Curado; Blondel, C; Chipaux, R; Honkimaki, V; Horeau, B; Laurent, P; Maia, J M; Meuris, A; Del Sordo, S; Stephen, J B

    2015-01-01T23:59:59.000Z

    Since the initial exploration of soft gamma-ray sky in the 60's, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars and black holes are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical process. This is why most of the projects for the next generation of space missions covering the tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The hard X-ray imaging spectrometer module, developed in CEA with the generic name of Caliste module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe cr...

  18. Hard X-ray Emission During Flares and Photospheric Field Changes

    E-Print Network [OSTI]

    Burtseva, O; Petrie, G J D; Pevtsov, A A

    2015-01-01T23:59:59.000Z

    We study the correlation between abrupt permanent changes of magnetic field during X-class flares observed by the GONG and HMI instruments, and the hard X-ray (HXR) emission observed by RHESSI, to relate the photospheric field changes to the coronal restructuring and investigate the origin of the field changes. We find that spatially the early RHESSI emission corresponds well to locations of the strong field changes. The field changes occur predominantly in the regions of strong magnetic field near the polarity inversion line (PIL). The later RHESSI emission does not correspond to significant field changes as the flare footpoints are moving away from the PIL. Most of the field changes start before or around the start time of the detectable HXR signal, and they end at about the same time or later than the detectable HXR flare emission. Some of the field changes propagate with speed close to that of the HXR footpoint at a later phase of the flare. The propagation of the field changes often takes place after the...

  19. Radiation Pressure Supported AGN Tori with Hard X-Ray and Stellar Heating

    E-Print Network [OSTI]

    Jiming Shi; Julian H. Krolik

    2008-02-13T23:59:59.000Z

    The dynamics and structure of toroidal obscuration around AGN remain uncertain and controversial. In this paper we extend earlier work on the dynamical role of infrared radiation pressure by adding the effects of two kinds of distributed heating: Compton-heating due to hard X-rays from the nucleus and local starlight heating. We find numerical solutions to the axisymmetric hydrostatic equilibrium, energy balance, and photon diffusion equations including these effects. Within the regime of typical parameters, the two different sources of additional heating have very similar effects: the density profile within the torus becomes shallower both radially and vertically, but for plausible heating rates, there is only minor change (relative to the source-free case) in the distribution of column density with solid angle. The most interesting consequence of distributed heating is that it selects out a relatively narrow range of parameters permitting an equilibrium, particularly $(L/L_E)/\\tau_T$. We discuss the implications of both the narrowness of the permitted range and its approximate coincidence with the range inferred from observations.

  20. KAPPA DISTRIBUTION MODEL FOR HARD X-RAY CORONAL SOURCES OF SOLAR FLARES

    SciTech Connect (OSTI)

    Oka, M.; Ishikawa, S.; Saint-Hilaire, P.; Krucker, S.; Lin, R. P. [Space Sciences Laboratory, University of California Berkeley (United States)] [Space Sciences Laboratory, University of California Berkeley (United States)

    2013-02-10T23:59:59.000Z

    Solar flares produce hard X-ray emission, the photon spectrum of which is often represented by a combination of thermal and power-law distributions. However, the estimates of the number and total energy of non-thermal electrons are sensitive to the determination of the power-law cutoff energy. Here, we revisit an 'above-the-loop' coronal source observed by RHESSI on 2007 December 31 and show that a kappa distribution model can also be used to fit its spectrum. Because the kappa distribution has a Maxwellian-like core in addition to a high-energy power-law tail, the emission measure and temperature of the instantaneous electrons can be derived without assuming the cutoff energy. Moreover, the non-thermal fractions of electron number/energy densities can be uniquely estimated because they are functions of only the power-law index. With the kappa distribution model, we estimated that the total electron density of the coronal source region was {approx}2.4 Multiplication-Sign 10{sup 10} cm{sup -3}. We also estimated without assuming the source volume that a moderate fraction ({approx}20%) of electrons in the source region was non-thermal and carried {approx}52% of the total electron energy. The temperature was 28 MK, and the power-law index {delta} of the electron density distribution was -4.3. These results are compared to the conventional power-law models with and without a thermal core component.

  1. Fast Spectral Fitting of Hard X-Ray Bremsstrahlung from Truncated Power-Law Electron Spectra

    E-Print Network [OSTI]

    J. C. Brown; J. Kasparova; A. M. Massone; M. Piana

    2008-02-05T23:59:59.000Z

    Hard X-Ray bremsstrahlung continuum spectra, such as from solar flares, are commonly described in terms of power-law fits, either to the photon spectra themselves or to the electron spectra responsible for them. In applications various approximate relations between electron and photon spectral indices are often used for energies both above and below electron low-energy cutoffs. We examine the form of the exact relationships in various situations, and for various cross-sections, showing that empirical relations sometimes used can be highly misleading and consider how to improve fitting procedures. We obtain expressions for photon spectra from single, double and truncated power-law electron spectra for a variety of cross-sections and for the thin and thick target models and simple analytic expressions for the Bethe-Heitler cases. We show that above a low-energy cutoff the Kramers and Bethe-Heitler results match reasonably well with results for exact cross-sections up to energies around 100 keV; that below the low-energy cutoff, Kramers and other constant spectral index forms commonly used are very poor approximations to accurate results; but that our analytical forms are a very good match. Analytical forms of the Bethe-Heitler photon spectra from general power-law electron spectra are an excellent match to exact results for both thin and thick targets and they enable much faster spectral fitting than evaluation of the full spectral integrations.

  2. Reactive ZnO/Ti/ZnO interfaces studied by hard x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Knut, Ronny, E-mail: Ronny.Knut@physics.gu.se; Lindblad, Rebecka; Rensmo, Håkan; Karis, Olof [Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala (Sweden); Grachev, Sergey; Faou, Jean-Yvon; Søndergård, Elin [Unité Mixte CNRS/Sain-Gobain Recherche, 39 Quai Lucien Lefranc, 93303 Aubervilliers (France); Gorgoi, Mihaela [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, D-12489 Berlin (Germany)

    2014-01-28T23:59:59.000Z

    The chemistry and intermixing at buried interfaces in sputter deposited ZnO/Ti/ZnO thin layers were studied by hard x-ray photoelectron spectroscopy. The long mean free path of the photoelectrons allowed for detailed studies of the oxidation state, band bending effects, and intrinsic doping of the buried interfaces. Oxidation of the Ti layer was observed when ZnO was deposited on top. When Ti is deposited onto ZnO, Zn Auger peaks acquire a metallic character indicating a strong reduction of ZnO at the interface. Annealing of the stack at 200?°C results in further reduction of ZnO and oxidation of Ti. Above 300?°C, oxygen transport from the bulk of the ZnO layer takes place, leading to re-oxidation of ZnO at the interface and further oxidation of Ti layer. Heating above 500?°C leads to an intermixing of the layers and the formation of a Zn{sub x}TiO{sub y} compound.

  3. Measurements of hard x-ray emission from runaway electrons in DIII-D

    SciTech Connect (OSTI)

    James, A. N. [University of California, San Diego; Austin, M. E. [University of Texas, Austin; Eidietis, N. W. [General Atomics, San Diego; Evans, T.E. [General Atomics, San Diego; Jernigan, T. C. [Oak Ridge National Laboratory (ORNL)

    2012-01-01T23:59:59.000Z

    The spatial distribution of runaway electron (RE) strikes to the wall during argon pellet-initiated rapid shutdown of diverted and limited plasma shapes in DIII-D is studied using a new array of hard x-ray (HXR) scintillators. Two plasma configurations were investigated: an elongated diverted H-mode and a low-elongation limited L-mode. HXR emission from MeV level REs generated during the argon pellet injection is observed during the thermal quench (TQ) in diverted discharges from REs lost into the divertor. In limiter discharges, this prompt TQ loss is reduced, suggesting improved TQ confinement of REs in this configuration. During the plateau phase when the plasma current is carried by REs, toroidally symmetric HXR emission from remaining confined REs is seen. Transient HXR bursts during this RE current plateau suggest the presence of a small level of wall losses due to the presence of an unidentified instability. Eventually, an abrupt final loss of the remaining RE current occurs. This final loss HXR emission shows a strong toroidal peaking and a consistent spatiotemporal evolution that suggests the development of a kink instability.

  4. NuSTAR DETECTION OF HARD X-RAY PHASE LAGS FROM THE ACCRETING PULSAR GS 0834–430

    SciTech Connect (OSTI)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix; Bellm, Eric C.; Grefenstette, Brian W.; Madsen, Kristin K.; Walton, Dominic J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, Matteo; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); Boggs, Steven E.; Craig, William W.; Tomsick, John A. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Chakrabarty, Deepto [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chenevez, Jerome; Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Natalucci, Lorenzo [Istituto di Astrofisica e Planetologia Spaziali, INAF, Via Fosso del Cavaliere 100, Roma I-00133 (Italy); Pottschmidt, Katja [CRESST, UMBC, and NASA GSFC, Code 661, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wilms, Jörn, E-mail: miyasaka@srl.caltech.edu [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr. 7, D-96049 Bamberg (Germany); and others

    2013-09-20T23:59:59.000Z

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ?12.29 s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.

  5. Characterizations of MCP performance in the hard x-ray range (6–25 keV)

    SciTech Connect (OSTI)

    Wu, Ming, E-mail: minwu@sandia.gov; Rochau, Greg [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Moy, Ken [Special Technology Laboratories, NSTec, Santa Barbara, California 93111-2335 (United States); Kruschwitz, Craig [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2014-11-15T23:59:59.000Z

    MCP detector performance at hard x-ray energies from 6 to 25 keV was recently investigated using NSLS beamline X15A at BNL. Measurements were made with an NSTec Gen-II (H-CA-65) framing camera, based on a Photonis MCP with ?10 ?m in diameter pores, ?12 ?m center-center spacing, an L/D ratio of 46, and a bias angle of 8°. The MCP characterizations were focused on (1) energy and angle dependent sensitivity, (2) energy and angle dependent spatial resolution, (3) energy dependent gain performance, and (4) energy dependent dynamic range. These measurement corroborated simulation results using a Monte Carlo model that included hard x-ray interactions and the subsequent electron cascade in the MCP.

  6. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    SciTech Connect (OSTI)

    Crist, C.E. [Sandia National Labs., Albuquerque, NM (United States); Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D. [Lawrence Livermore National Lab., CA (United States); Krogh, M. [AlliedSignal FM and T, Kansas City, MO (United States)

    1998-11-01T23:59:59.000Z

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse.

  7. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

  8. Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

    E-Print Network [OSTI]

    S. Antier; P. Ferrando; O. Limousin; E. Caroli; R. M. Curado da Silva; C. Blondel; R. Chipaux; V. Honkimaki; B. Horeau; P. Laurent; J. M. Maia; A. Meuris; S. Del Sordo; J. B. Stephen

    2015-05-05T23:59:59.000Z

    Since the initial exploration of soft gamma-ray sky in the 60's, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars and black holes are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical process. This is why most of the projects for the next generation of space missions covering the tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The hard X-ray imaging spectrometer module, developed in CEA with the generic name of Caliste module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility. These results, obtained at 200-300 keV, demonstrate their capability to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. Applying a selection to our data set, equivalent to select 90 degrees Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78. The polarization angle and fraction are derived with accuracies of approximately 1 degree and 5%. The modulation factor remains larger than 0.4 when essentially no selection is made at all on the data. These results prove that the Caliste-256 modules have performances allowing them to be excellent candidates as detectors with polarimetric capabilities, in particular for future space missions.

  9. A New Multilayer-Based Grating for Hard X-ray Grating Interferometry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    built utilizing the new micro-multilayer grating provides a projection view of the blood vessels. A new kind of x-ray multilayer grating that could open a pathway for...

  10. Frontiers in X-Ray Science

    SciTech Connect (OSTI)

    Linda Young

    2011-02-23T23:59:59.000Z

    The year 2010 marked the fiftieth anniversary of the optical laser and the first anniversary of the world's first hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS) at SLAC. This exciting, new accelerator-based source of x-rays provides peak brilliances roughly a billion times greater than currently available from synchrotron sources such as the Advanced Photon Source at Argonne, and thus explores a qualitatively different parameter space. This talk will describe the first experiments at the LCLS aimed at understanding the nature of high intensity x-ray interactions, related applications in ultrafast imaging on the atomic scale and sketch nascent plans for the extension of both linac and storage-ring based photon sources.

  11. The soft and hard X-rays thermal emission from star cluster winds with a supernova explosion

    E-Print Network [OSTI]

    Castellanos-Ramirez, A; Esquivel, A; Toledo-Roy, J C; Olivares, J; Velazquez, P F

    2015-01-01T23:59:59.000Z

    Massive young star clusters contain dozens or hundreds of massive stars that inject mechanical energy in the form of winds and supernova explosions, producing an outflow which expands into their surrounding medium, shocking it and forming structures called superbubbles. The regions of shocked material can have temperatures in excess of 10$^6$ K, and emit mainly in thermal X-rays (soft and hard). This X-ray emission is strongly affected by the action of thermal conduction, as well as by the metallicity of the material injected by the massive stars. We present three-dimensional numerical simulations exploring these two effects, metallicity of the stellar winds and supernova explosions, as well as thermal conduction.

  12. Ultra-bright, ultra-broadband hard x-ray driven by laser-produced energetic electron beams

    SciTech Connect (OSTI)

    Shi, Yin; Shen, Baifei; Zhang, Xiaomei; Wang, Wenpeng; Ji, Liangliang; Zhang, Lingang; Xu, Jiancai; Yu, Yahong; Zhao, Xueyan; Wang, Xiaofeng; Yi, Longqing; Xu, Tongjun; Xu, Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)] [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2013-09-15T23:59:59.000Z

    We propose a new method of obtaining a compact ultra-bright, ultra-broadband hard X-ray source. This X-ray source has a high peak brightness in the order of 10{sup 22} photons/(s mm{sup 2} mrad{sup 2} 0.1\\%BW), an ultrashort duration (10 fs), and a broadband spectrum (flat distribution from 0.1 MeV to 4 MeV), and thus has wide-ranging potential applications, such as in ultrafast Laue diffraction experiments. In our scheme, laser-plasma accelerators (LPAs) provide driven electron beams. A foil target is placed oblique to the beam direction so that the target normal sheath field (TNSF) is used to provide a bending force. Using this TNSF-kick scheme, we can fully utilize the advantages of current LPAs, including their high charge, high energy, and low emittance.

  13. Analysis and Interpretation of Hard X-ray Emission fromthe Bullet Cluster (1E0657-56), the Most Distant Cluster of Galaxies Observed by the RXTE

    SciTech Connect (OSTI)

    Petrosian, Vahe; /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept.; Madejski, Greg; /SLAC; Luli, Kevin; /Stanford U., Phys. Dept.

    2006-08-16T23:59:59.000Z

    Evidence for non-thermal activity in clusters of galaxies is well established from radio observations of synchrotron emission by relativistic electrons. New windows in the Extreme Ultraviolet and Hard X-ray ranges have provided for more powerful tools for the investigation of this phenomenon. Detection of hard X-rays in the 20 to 100 keV range have been reported from several clusters of galaxies, notably from Coma and others. Based on these earlier observations we identified the relatively high redshift cluster 1E0657-56 (also known as RX J0658-5557) as a good candidate for hard X-ray observations. This cluster, also known as the bullet cluster, has many other interesting and unusual features, most notably that it is undergoing a merger, clearly visible in the X-ray images. Here we present results from a successful RXTE observations of this cluster. We summarize past observations and their theoretical interpretation which guided us in the selection process. We describe the new observations and present the constraints we can set on the flux and spectrum of the hard X-rays. Finally we discuss the constraints one can set on the characteristics of accelerated electrons which produce the hard X-rays and the radio radiation.

  14. Variable Hard X-ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2-10

    E-Print Network [OSTI]

    Whalen, Thomas J; Reines, Amy E; Greene, Jenny E; Sivakoff, Gregory R; Johnson, Kelsey E; Alexander, David M; Goulding, Andy D

    2015-01-01T23:59:59.000Z

    We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2-10. Recent observations suggest that this galaxy hosts an actively accreting black hole with mass ~10^6 M_sun. The presence of an AGN in a low-mass starburst galaxy marks a new environment for active galactic nuclei (AGNs), with implications for the processes by which "seed" black holes may form in the early Universe. In this paper, we analyze four epochs of X-ray observations of Henize 2-10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on detailed analysis of the source and background, we find that the hard (2-10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms th...

  15. Regularized energy-dependent solar flare hard x-ray spectral index

    E-Print Network [OSTI]

    Eduard P. Kontar; Alexander L. MacKinnon

    2005-06-05T23:59:59.000Z

    The deduction from solar flare X-ray photon spectroscopic data of the energy dependent model-independent spectral index is considered as an inverse problem. Using the well developed regularization approach we analyze the energy dependency of spectral index for a high resolution energy spectrum provided by Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The regularization technique produces much smoother derivatives while avoiding additional errors typical of finite differences. It is shown that observations imply a spectral index varying significantly with energy, in a way that also varies with time as the flare progresses. The implications of these findings are discussed in the solar flare context.

  16. How Can X-ray Transient Absorption Spectroscopy Aide Solar Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are from optimized on structural, energetic and dynamic parameters. Intense X-ray pulses from synchrotrons and X-ray free electrons lasers coupled with ultrafast lasers...

  17. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    E-Print Network [OSTI]

    Baptiste, Kenneth

    2009-01-01T23:59:59.000Z

    The Bessy Soft X-Ray Free Electron Laser, ISBN 3-9809534-0-26th International Free Electron Laser Conference, Trieste,Proceedings of 21st Free-Electron Laser Conference (FEL’99),

  18. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    of the visible free- electron laser oscillator experiment”,based VUV and X-ray free electron lasers”, Appl. Phys. BDesign of a free-electron laser driven by the LBNL laser-

  19. Nonlinear X-ray Compton Scattering

    E-Print Network [OSTI]

    Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

    2015-01-01T23:59:59.000Z

    X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

  20. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell Cathode Materials

    SciTech Connect (OSTI)

    Davis, Jacob N.; Miara, Lincoln J.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Gopalan, Srikanth; Pal, Uday B.; Woicik, Joseph C.; Basu, Soumendra N.; Ludwig, Karl F.

    2012-12-01T23:59:59.000Z

    Commonly, SOFCs are operated at high temperatures (above 800°C). At these temperatures expensive housing is needed to contain an operating stack as well as coatings to contain the oxidation of the metallic interconnects. Lowering the temperature of an operating device would allow for more conventional materials to be used, thus lowering overall cost. Understanding the surface chemical states of cations in the surface of the SOFC cathode is vital to designing a system that will perform well at lower temperatures. The samples studied were grown by pulsed laser deposition (PLD) at the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). 20% strontium doped lanthanum manganite (LSM-20) was grown on YSZ and NGO (neodymium gallate). The films on YSZ have a fiber texture. LSM-20 on NGO is heteroepitaxial. Lanthanum strontium cobalt ferrite (LSCF-6428) films were grown on LAO and YSZ with a GDC barrier layer. Total X-ray Reflection Fluorescence (TXRF) was used to depth profile the samples. In a typical experiment, the angle of the incident beam is varied though the critical angle. Below the critical angle, the x-ray decays as an evanescent wave and will only penetrate the top few nanometers. TXRF experiments done on LSM films have suggested strontium segregates to the surface and form strontium enriched nanoparticles (1). It should be pointed out that past studies have focused on 30% strontium A-site doping, but this project uses 20% strontium doped lanthanum manganite. XANES and EXAFS data were taken as a function of incoming angle to probe composition as a function of depth. XANES spectra can be difficult to analyze fully. For other materials density functional theory calculations compared to near edge measurements have been a good way to understand the 3d valence electrons (2).

  1. Experimental comparison of grating- and propagation-based hard X-ray phase tomography of soft tissue

    SciTech Connect (OSTI)

    Lang, S.; Schulz, G.; Müller, B. [Biomaterials Science Center, University of Basel, Basel (Switzerland); Zanette, I., E-mail: irene.zanette@tum.de [Physik-Department und Institut für Medizintechnik, Technische Universität München, Garching (Germany); European Synchrotron Radiation Facility, Grenoble (France); Dominietto, M. [Biomaterials Science Center, University of Basel, Basel (Switzerland); Institute for Biomedical Engineering, ETH Zürich, Zürich (Switzerland); Langer, M. [European Synchrotron Radiation Facility, Grenoble (France); Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-LYON, Université de Lyon 1, Villeurbane (France); Rack, A.; Le Duc, G. [European Synchrotron Radiation Facility, Grenoble (France); David, C. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, Villigen (Switzerland); Mohr, J. [Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Pfeiffer, F. [Physik-Department und Institut für Medizintechnik, Technische Universität München, Garching (Germany); Weitkamp, T. [European Synchrotron Radiation Facility, Grenoble (France); Synchrotron Soleil, Gif-sur-Yvette (France)

    2014-10-21T23:59:59.000Z

    When imaging soft tissues with hard X-rays, phase contrast is often preferred over conventional attenuation contrast due its superior sensitivity. However, it is unclear which of the numerous phase tomography methods yields the optimized results at given experimental conditions. Therefore, we quantitatively compared the three phase tomography methods implemented at the beamline ID19 of the European Synchrotron Radiation Facility: X-ray grating interferometry (XGI), and propagation-based phase tomography, i.e., single-distance phase retrieval (SDPR) and holotomography (HT), using cancerous tissue from a mouse model and an entire heart of a rat. We show that for both specimens, the spatial resolution derived from the characteristic morphological features is about a factor of two better for HT and SDPR compared to XGI, whereas the XGI data generally exhibit much better contrast-to-noise ratios for the anatomical features. Moreover, XGI excels in fidelity of the density measurements, and is also more robust against low-frequency artifacts than HT, but it might suffer from phase-wrapping artifacts. Thus, we can regard the three phase tomography methods discussed as complementary. The application will decide which spatial and density resolutions are desired, for the imaging task and dose requirements, and, in addition, the applicant must choose between the complexity of the experimental setup and the one of data processing.

  2. Electronic structure of Al- and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Gabás, M.; Ramos Barrado, José R. [Lab. de Materiales and Superficies, Dpto. de Física Aplicada I, Universidad de Málaga, 29071 Málaga (Spain); Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, I-34149 Trieste (Italy); Barrett, N. T. [CEA, DSM/IRAMIS/SPCSI, F-91191 Gif-sur-Yvette Cedex (France); Sacchi, M. [Synchrotron SOLEIL, BP 48, 91192 Gif-sur-Yvette, France and Institut des NanoSciences de Paris, UPMC Paris 06, CNRS UMR 7588, 4 Place Jussieu, 75005 Paris (France)

    2014-01-01T23:59:59.000Z

    Al- and Ga-doped sputtered ZnO films (AZO, GZO) are semiconducting and metallic, respectively, despite the same electronic valence structure of the dopants. Using hard X-ray photoelectron spectroscopy we observe that both dopants induce a band in the electronic structure near the Fermi level, accompanied by a narrowing of the Zn 3d/O 2p gap in the valence band and, in the case of GZO, a substantial shift in the Zn 3d. Ga occupies substitutional sites, whereas Al dopants are in both substitutional and interstitial sites. The latter could induce O and Zn defects, which act as acceptors explaining the semiconducting character of AZO and the lack of variation in the optical gap. By contrast, mainly substitutional doping is consistent with the metallic-like behavior of GZO.

  3. VARIABILITY AND SPECTRAL MODELING OF THE HARD X-RAY EMISSION OF GX 339-4 IN A BRIGHT LOW/HARD STATE

    SciTech Connect (OSTI)

    Droulans, R.; Belmont, R.; Malzac, J.; Jourdain, E. [CESR, Universite de Toulouse, UPS, 9 avenue du Colonel Roche, F-31028 Toulouse (France)

    2010-07-10T23:59:59.000Z

    We study the high-energy emission of the Galactic black hole candidate GX 339-4 using INTEGRAL/SPI and simultaneous RXTE/PCA data. By the end of 2007 January, when it reached its peak luminosity in hard X-rays, the source was in a bright hard state. The SPectrometer on INTEGRAL (SPI) data from this period show a good signal-to-noise ratio, allowing a detailed study of the spectral energy distribution up to several hundred keV. As a main result, we report on the detection of a variable hard spectral feature ({>=}150 keV) which represents a significant excess with respect to the cutoff power-law shape of the spectrum. The SPI data suggest that the intensity of this feature is positively correlated with the 25-50 keV luminosity of the source and the associated variability timescale is shorter than 7 hr. The simultaneous Proportional Counter Array data, however, show no significant change in the spectral shape, indicating that the source is not undergoing a canonical state transition. We analyzed the broadband spectra in the lights of several physical models, assuming different heating mechanisms and properties of the Comptonizing plasma. For the first time, we performed quantitative model fitting with the new versatile Comptonization code BELM, accounting self-consistently for the presence of a magnetic field. We show that a magnetized medium subject to pure non-thermal electron acceleration provides a framework for a physically consistent interpretation of the observed 4-500 keV emission. Moreover, we find that the spectral variability might be triggered by the variations of only one physical parameter, namely the magnetic field strength. Therefore, it appears that the magnetic field is likely to be a key parameter in the production of the Comptonized hard X-ray emission.

  4. X-ray spectral components in the hard state of GRS 1915+105: origin of the 0.5 - 10 Hz QPO

    E-Print Network [OSTI]

    A. R. Rao; S. Naik; S. V. Vadawale; S. K. Chakrabarti

    2000-07-26T23:59:59.000Z

    We investigate the origin of the ubiquitous 0.5 - 10 Hz QPO in the Galactic microquasar GRS 1915+105. Using the archival X-ray data from RXTE, we make a wide band X-ray spectral fitting to the source during a low-hard state observed in 1999 June. We resolve the X-ray spectra into three components, namely a multi-color disk component, a Comptonised component and a power-law at higher energies. This spectral description is favored compared to other normally used spectra like a cut-off power law, hard components with reflection etc. We find that the 0.5 - 10 Hz QPO is predominantly due to variations in the Comptonised component. We use this result to constrain the location of the various spectral components in the source.

  5. Dawn of x-ray nonlinear optics | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dawn of x-ray nonlinear optics Wednesday, July 8, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: David Reis, PULSE Program Description X-ray free electron lasers...

  6. Nanofabrication of Diffractive X-ray Optics for Synchrotrons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the soft x-ray range and down to 15 nm in the multi keV range. For use at x-ray free-electron laser (XFEL) sources, diffractive optics must be capable of withstanding extreme...

  7. Suzaku Spectroscopy Study of Hard X-Ray Emission in the Arches Cluster

    E-Print Network [OSTI]

    Tsujimoto, M; Koyama, K

    2006-01-01T23:59:59.000Z

    We present the results of a Suzaku study of the Arches cluster. A high S/N spectrum in the 3-12 keV band was obtained with the XIS. We found that the spectrum consists of a thermal plasma, a hard power-law tail, and two Gaussian lines. The plasma component (kT~2.2 keV) is established from the presence of CaXIX and FeXXV K alpha lines as well as the absence of FeXXVI K alpha line. The two Gaussian lines represent the K alpha and beta lines from iron at lower ionization stages. Both the line centers and the intensity ratio of these two lines are consistent with the neutral iron. The hard power-law tail (index~0.7) was found to have no pronounced iron K edge feature. In comparison with the published Chandra spectra, we conclude that the thermal component is from the ensemble of point-like sources plus thermal diffuse emission concentrated at the cluster center, while the Gaussian and the hard tail components are from the non-thermal diffuse emission extended in a larger scale. In the band-limited XIS images, the...

  8. Revealing a hard X-ray spectral component reverberating within one light hour of the central Supermassive Black Hole in Ark 564

    E-Print Network [OSTI]

    Giustini, M; Reeves, J N; Miller, L; Legg, E; Kraemer, S B; George, I M

    2015-01-01T23:59:59.000Z

    Ark 564 (z=0.0247) is an X-ray bright NLS1. By using advanced X-ray timing techniques, Legg et al. (2012) discovered an excess of "delayed" emission in the hard X-ray band (4-7.5 keV) following about 1000 seconds after "flaring" light in the soft X-ray band (0.4-1 keV). We report on the X-ray spectral analysis of eight XMM-Newton and one Suzaku observation of Ark 564. High-resolution spectroscopy was performed with the RGS in the soft X-ray band, while broad-band spectroscopy was performed with the EPIC-pn and XIS/PIN instruments. We analysed time-averaged, flux-selected, and time-resolved spectra. Despite the large variability in flux, the broad band spectral shape of Ark 564 is not dramatically varying and can be reproduced either by a superposition of a power law and a blackbody emission, or by a Comptonized power law emission model. High resolution spectroscopy revealed the presence of ionised gas along the line of sight at the systemic redshift of the source, with a low column density and a range of ioni...

  9. On the Properties of Inner Cool Disks in the Hard State of Black Hole X-Ray Transient Systems

    E-Print Network [OSTI]

    Ronald E. Taam; B. F. Liu; F. Meyer; E. Meyer-Hofmeister

    2008-07-22T23:59:59.000Z

    The formation of a cool disk in the innermost regions of black hole X-ray transient systems in the low hard state is investigated. Taking into account the combined cooling associated with the Compton and conductive energy transport processes in a corona, the radial structure of a disk is described for a range of mass accretion rates. The mass flow in an optically thick inner region can be maintained by the condensation of matter from a corona with the disk temperature and luminosity varying continuously as a function of the accretion rate. Although such a disk component can be present, the contribution of the optically thick disk component to the total luminosity can be small since the mass flow due to condensation in the optically thick disk underlying the corona can be significantly less than the mass flow rate in the corona. The model is applied to the observations of the low quiescent state of the black hole source GX 339-4 at luminosities of around $0.01 L_{Edd}$ and is able to explain the temperature of the thermal component at the observed luminosities. Since conductive cooling dominates Compton cooling at low mass accretion rates, the luminosity corresponding to the critical mass accretion rate above which a weak thermal disk component can be present in the low hard state is estimated to be as low as $0.001 L_{Edd}$.

  10. XES Nanoprobe for Hard X-Ray Region: Mitigating Degradation in Ni-ZEBRA Batteries Research Team: Mark Bowden, Kyle Alvine, Nancy Hess, Guosheng Li, Tamas Varga

    E-Print Network [OSTI]

    XES Nanoprobe for Hard X-Ray Region: Mitigating Degradation in Ni-ZEBRA Batteries Research Team scientific understanding of link between Ni-NiCl2 ZEBRA battery cycle degradation and FeS additive Chemical battery performance by poisoning Ni surfaces ­ optimizing Ni/NiCl2 distributions and conductive pathways

  11. Femtosecond X-ray protein nanocrystallography

    SciTech Connect (OSTI)

    Chapman, Henry N.; Fromme, Petra; Barty, Anton; White, Thomas A.; Kirian, Richard A.; Aquila, Andrew; Hunter, Mark S.; Schulz, Joachim; DePonte, Daniel P.; Weierstall, Uwe; Doak, R. Bruce; Maia, Filipe R. N. C.; Martin, Andrew V.; Schlichting, Ilme; Lomb, Lukas; Coppola, Nicola; Shoeman, Robert L.; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Holl, Peter; Liang, Mengning; Barthelmess, Miriam; Caleman, Carl; Boutet, Sebastien; Bogan, Michael J.; Krzywinski, Jacek; Bostedt, Christoph; Bajt, Sasa; Gumprecht, Lars; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Homke, Andre; Reich, Christian; Pietschner, Daniel; Struder, Lothar; Hauser, Gunter; Gorke, Hubert; Ullrich, Joachim; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kuhnel, Kai-Uwe; Messerschmidt, Marc; Bozek, John D.; Hau-Riege, Stefan P.; Frank, Matthias; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Williams, Garth J.; Hajdu, Janos; Timneanu, Nicusor; Seibert, M. Marvin; Andreasson, Jakob; Rocker, Andrea; Jonsson, Olof; Svenda, Martin; Stern, Stephan; Nass, Karol; Andritschke, Robert; Schroter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schmidt, Kevin E.; Wang, Xiaoyu; Grotjohann, Ingo; Holton, James M.; Barends, Thomas R. M.; Neutze, Richard; Marchesini, Stefano; Fromme, Raimund; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Bjorn; Spence, John C. H.

    2011-01-01T23:59:59.000Z

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200?nm to 2??m in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

  12. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field...

  13. Center for X-Ray Optics, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  14. Single shot spatial and temporal coherence properties of the SLAC linac coherent light source in the hard x-ray regime

    SciTech Connect (OSTI)

    Gutt, C.; Wochner, P.; Fischer, B.; Conrad, H.; Castro-Colin, M.; Lee, S.; Lehmkuhler, F.; Steinke, I.; Sprung, M.; Roseker, W.; Zhu, D.; Lemke, H.; Bogle, S.; Fuoss, P. H.; Stephenson, G. B.; Cammarata, M.; Fritz, D. M.; Robert, A.; Grubel, G. (Materials Science Division); (Deutsches Elektronen-Synchrotron); (Max-Planck-Institut fur Intelligene Systeme); (LCLS, SLAC Nat. Accelerator Lab.)

    2012-01-01T23:59:59.000Z

    We measured the transverse and longitudinal coherence properties of the Linac Coherent Light Source (LCLS) at SLAC in the hard x-ray regime at 9 keV photon energy on a single shot basis. Speckle patterns recorded in the forward direction from colloidal nanoparticles yielded the transverse coherence properties of the focused LCLS beam. Speckle patterns from a gold nanopowder recorded with atomic resolution allowed us to measure the shot-to-shot variations of the spectral properties of the x-ray beam. The focused beam is in the transverse direction fully coherent with a mode number close to 1. The average number of longitudinal modes behind the Si(111) monochromator is about 14.5 and the average coherence time {tau}{sub c} = (2.0 {+-} 1.0) fs. The data suggest a mean x-ray pulse duration of (29 {+-} 14) fs behind the monochromator for (100 {+-} 14) fs long electron pulses.

  15. Fifth-Generation Free-Electron Laser Light Sources

    SciTech Connect (OSTI)

    Pellegrini, Claudio (UCLA) [UCLA

    2011-03-02T23:59:59.000Z

    During the past few years, the Linac Coherent Light Source (LCLS) and the Free-Electron Laser in Hamburg (FLASH) have demonstrated the outstanding capability of free-electron lasers (FELs) as sources of coherent radiation in the soft and hard x-ray region. The high intensity, tens of GW, short pulses (few to less than 100 femtoseconds, and the unique transverse coherence properties are opening a new window to study the structure and dynamics of atomic and molecular systems. The LCLS, FLASH, and the other FELs now under construction are only the beginning of the development of these light sources. The next generations will reach new levels of performance: terawatt, atto-second, ultra-small line-width, high repetition rate, full longitudinal and transverse coherence. These future developments and the R&D needed to successfully build and operate the next generation of FEL light sources will be discussed.

  16. SN 2010jl: Optical to hard X-ray observations reveal an explosion embedded in a ten solar mass cocoon

    SciTech Connect (OSTI)

    Ofek, Eran O.; Gal-Yam, Avishay; Arcavi, Iair [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Zoglauer, Andreas; Boggs, Steven E.; Barriére, Nicolas M. [Space Sciences Laboratory, Department of Physics, University of California, 7 Gauss Way, Berkeley, CA 94720 (United States); Reynolds, Stephen P. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Fryer, Chris L.; Even, Wesley [CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Harrison, Fiona A.; Kulkarni, Shrinivas R.; Bellm, Eric; Grefenstette, Brian [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Cenko, S. Bradley; Bloom, Joshua S.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Christensen, Finn [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Craig, William W.; Hailey, Charles J. [Columbia Astrophysics Laboratory, 538 West 120th Street, New York, NY 10027 (United States); Laher, Russ [Spitzer Science Center, MS 314-6, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2014-01-20T23:59:59.000Z

    Some supernovae (SNe) may be powered by the interaction of the SN ejecta with a large amount of circumstellar matter (CSM). However, quantitative estimates of the CSM mass around such SNe are missing when the CSM material is optically thick. Specifically, current estimators are sensitive to uncertainties regarding the CSM density profile and the ejecta velocity. Here we outline a method to measure the mass of the optically thick CSM around such SNe. We present new visible-light and X-ray observations of SN 2010jl (PTF 10aaxf), including the first detection of an SN in the hard X-ray band using NuSTAR. The total radiated luminosity of SN 2010jl is extreme—at least 9 × 10{sup 50} erg. By modeling the visible-light data, we robustly show that the mass of the circumstellar material within ?10{sup 16} cm of the progenitor of SN 2010jl was in excess of 10 M {sub ?}. This mass was likely ejected tens of years prior to the SN explosion. Our modeling suggests that the shock velocity during shock breakout was ?6000 km s{sup –1}, decelerating to ?2600 km s{sup –1} about 2 yr after maximum light. Furthermore, our late-time NuSTAR and XMM spectra of the SN presumably provide the first direct measurement of SN shock velocity 2 yr after the SN maximum light—measured to be in the range of 2000-4500 km s{sup –1} if the ions and electrons are in equilibrium, and ? 2000 km s{sup –1} if they are not in equilibrium. This measurement is in agreement with the shock velocity predicted by our modeling of the visible-light data. Our observations also show that the average radial density distribution of the CSM roughly follows an r {sup –2} law. A possible explanation for the ? 10 M {sub ?} of CSM and the wind-like profile is that they are the result of multiple pulsational pair instability events prior to the SN explosion, separated from each other by years.

  17. Design and Start-to-End Simulation of an X-Band RF Driven Hard X-Ray FEL with LCLS Injector

    SciTech Connect (OSTI)

    Sun, Yipeng; /SLAC

    2012-08-20T23:59:59.000Z

    In this note, it is briefly discussed the accelerator design and start-to-end 3D macro particles simulation (using ELEGANT and GENESIS) of an X-band RF driven hard X-ray FEL with LCLS injector. A preliminary design and LiTrack 1D simulation studies were presented before in an older publication [1]. In numerical simulations this X-band RF driven hard X-ray FEL achieves/exceeds LCLS-like performance in a much shorter overall length of 350 m, compared with 1200 m in the LCLS case. One key feature of this design is that it may achieve a higher final beam current of 5 kA plus a uniform energy profile, mainly due to the employment of stronger longitudinal wake fields in the last X-band RF linac [2].

  18. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    E-Print Network [OSTI]

    Brorby, Matthew; Feng, Hua

    2015-01-01T23:59:59.000Z

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high mass X-ray binary (HMXB), with a luminosity of 1.3-23x10^38 erg s^-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7x10^40 erg s^-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high flux state are hard, best described by a disk plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes (StMBH) accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate mass black hole. Determining the spectral properties of HMXBs in BCDs has important im...

  19. FREE-ELECTRON LASERS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    Variable-Wiggler Free-Electron-Laser Oscillat.ion. Phys. :_.The Los Alamos Free Electron Laser: Accelerator Perfoemance.First Operation of a Free-Electron Laser. Phys . __ Rev~.

  20. FREE ELECTRON LASERS

    E-Print Network [OSTI]

    Colson, W.B.

    2008-01-01T23:59:59.000Z

    1984). Colson, W. B. , "Free electron laser theory," Ph.D.aspects of the free electron laser," Laser Handbook i,Quant. Elect. Bendor Free Electron Laser Conference, Journal

  1. A multi-crystal wavelength dispersive x-ray spectrometer

    SciTech Connect (OSTI)

    Alonso-Mori, Roberto; Montanez, Paul; Delor, James; Bergmann, Uwe [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kern, Jan [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States); Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis [SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States)

    2012-07-15T23:59:59.000Z

    A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.

  2. Fast and Furious: Shock heated gas as the origin of spatially resolved hard X-ray emission in the central 5 kpc of the galaxy merger NGC 6240

    SciTech Connect (OSTI)

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido; Zezas, Andreas [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pellegrini, Silvia [Dipartimento di Astronomia, Universitá di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Max, Claire [Center for Adaptive Optics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); U, Vivian, E-mail: jfwang@northwestern.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-01-20T23:59:59.000Z

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ? 6 keV (?70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ?2200 km s{sup –1}. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H{sub 2}(1-0) S(1) line emission and H? filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L {sub 0.5-8} {sub keV} = 5.3 × 10{sup 41} erg s{sup –1}, the diffuse hard X-ray emission is ?100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M {sub hot} = 1.8 × 10{sup 8} M {sub ?}) and thermal energy (E {sub th} = 6.5 × 10{sup 57} erg). The total iron mass in the highly ionized plasma is M {sub Fe} = 4.6 × 10{sup 5} M {sub ?}. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  3. NuSTAR STUDY OF HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF PWN G21.5–0.9

    E-Print Network [OSTI]

    Nynka, Melania

    We present NuSTAR high-energy X-ray observations of the pulsar wind nebula (PWN)/supernova remnant G21.5–0.9. We detect integrated emission from the nebula up to ~40 keV, and resolve individual spatial features over a broad ...

  4. LCLS - The X-ray Laser Has Turned On

    SciTech Connect (OSTI)

    Bergmann, Uwe (Linac Coherent Light Source) [Linac Coherent Light Source

    2010-11-03T23:59:59.000Z

    On April 10, 2009 the Linac Coherent Light Source (LCLS), the world's first hard x-ray free electron laser, was brought to lasing. Producing an x-ray beam with over a billion times higher peak brightness that then most powerful existing syncrotron sources, it marked the beginning of a new era of science. The LCLS pulses arrive at a rate of 60 - 120 Hz in an energy range from 480 eV to 10 keV, with pulse lengths as short as a few fs to about 300 fs. Since October 2009, users have been performing experiments at the LCLS, and currently three of the six planned instruments are available. Although we stand only at the beginning of LCLS science, there is no doubt about the strong sense of early excitement.

  5. Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82

    SciTech Connect (OSTI)

    The, Lih-Sin [Department of Physics and Astronomy, Clemson University, SC 29634 (United States); Burrows, Adam, E-mail: tlihsin@clemson.edu, E-mail: burrows@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-05-10T23:59:59.000Z

    The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass of the ejecta, the {sup 56}Ni yield and spatial distribution, its kinetic energy and expansion speed, and the mechanism of explosion. Such signatures and their time behavior 'X-ray' the bulk debris field in direct fashion, and do not depend on the ofttimes problematic and elaborate UV, optical, and near-infrared spectroscopy and radiative transfer that have informed the study of these events for decades. However, to date no hard photons have ever been detected from a Type Ia supernova in explosion. With the advent of the supernova SN 2014J in M82, at a distance of ?3.5 Mpc, this situation may soon change. Both NuSTAR and INTEGRAL have the potential to detect SN 2014J, and, if spectra and light curves can be measured, would usefully constrain the various explosion models published during the last ?30 yr. In support of these observational campaigns, we provide predictions for the hard X-ray continuum and gamma-line emissions for 15 Type Ia explosion models gleaned from the literature. The model set, containing as it does deflagration, delayed detonation, merger detonation, pulsational delayed detonation, and sub-Chandrasekhar helium detonation models, collectively spans a wide range of properties, and hence signatures. We provide a brief discussion of various diagnostics (with examples), but importantly make the spectral and line results available electronically to aid in the interpretation of the anticipated data.

  6. A novel hohlraum with ultrathin depleted-uranium-nitride coating layer for low hard x-ray emission and high radiation temperature

    E-Print Network [OSTI]

    Guo, Liang; Xing, Peifeng; Li, Sanwei; Yi, Taimin; Kuang, Longyu; Li, Zhichao; Li, Renguo; Wu, Zheqing; Jing, Longfei; Zhang, Wenhai; Zhan, Xiayu; Yang, Dong; Jiang, Bobi; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Li, Yongsheng; Liu, Jie; Huo, Wenyi; Lan, Ke

    2014-01-01T23:59:59.000Z

    An ultra-thin layer of uranium nitrides (UN) has been coated on the inner surface of the depleted uranium hohlraum (DUH), which has been proved by our experiment can prevent the oxidization of Uranium (U) effectively. Comparative experiments between the novel depleted uranium hohlraum and pure golden (Au) hohlraum are implemented on Shenguang III prototype laser facility. Under the laser intensity of 6*10^14 W/cm2, we observe that, the hard x-ray (> 1.8 keV) fraction of this uranium hohlraum decreases by 61% and the peak intensity of total x-ray flux (0.1 keV ~ 5 keV) increases by 5%. Two dimensional radiation hydrodynamic code LARED are exploited to interpret the above observations. Our result for the first time indicates the advantage of the UN-coated DUH in generating the uniform x-ray field with a quasi Planckian spectrum and thus has important implications in optimizing the ignition hohlraum design.

  7. Measurement of coherence length and incoherent source size of hard x-ray undulator beamline at Pohang Light Source-II

    SciTech Connect (OSTI)

    Park, So Yeong; Hong, Chung Ki [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of)] [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Lim, Jun, E-mail: limjun@postech.ac.kr [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of)] [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of)

    2014-04-15T23:59:59.000Z

    We measured the spatial coherence length and incoherent source size of a hard x-ray undulator beamline at Pohang Light Source-II, the stored electron energy of which has been increased from 2.5 GeV to 3 GeV. The coherence length was determined by single-slit measurement of the visibility of the Fresnel diffraction pattern. The correlated incoherent source size was cross-checked for three different optics: the single slit, beryllium parabolic compound refractive lenses, and the Fresnel zone plate. We concluded that the undulator beamline has an effective incoherent source size (FWHM) of 540 ?m (horizontal) × 50 ?m (vertical)

  8. Experimental study for the feasibility of using hard x-rays for micro-XRF analysis of multilayered metals

    SciTech Connect (OSTI)

    Polese, C., E-mail: claudia.polese@lnf.infn.it; Dabagov, S. B.; Esposito, A.; Hampai, D.; Gorghinian, A.; Liedl, A. [LNF - INFN, Via E. Fermi 40, I-00044 Frascati (Italy); Ferretti, M. [ITABC - CNR, Via Salaria km 29.300, 00016 Montelibretti (Italy)

    2014-07-15T23:59:59.000Z

    Application of polycapillary optical systems to improve a spatial resolution for the ?-XRF analysis by focusing a primary x-ray beam and/or by collecting fluorescence emission is well known. The challenge is to optimize them in combination with x-ray source for exciting K-lines above 20 keV that could allow characterization of many materials composed by heavy elements. To pursue this goal, preliminary studies on possible polycapillary lens employment in thickness determination for multilayer metal materials will be presented in this work. In this paper, the results of first attempts of integrating PyMCA with Monte Carlo simulation code (XMI-MSIM) that takes into account the secondary fluorescence effects on quantitative analysis of homogeneous matrices, in particular, metal alloys, are presented.

  9. Combined Application of QEM-SEM and Hard X-ray Microscopy to Determine Mineralogical Associations and Chemcial Speciation of Trace Metals

    SciTech Connect (OSTI)

    M Grafe; M Landers; R Tappero; P Austin; B Gan; A Grabsch; C Klauber

    2011-12-31T23:59:59.000Z

    We describe the application of quantitative evaluation of mineralogy by scanning electron microscopy in combination with techniques commonly available at hard X-ray microprobes to define the mineralogical environment of a bauxite residue core segment with the more specific aim of determining the speciation of trace metals (e.g., Ti, V, Cr, and Mn) within the mineral matrix. Successful trace metal speciation in heterogeneous matrices, such as those encountered in soils or mineral residues, relies on a combination of techniques including spectroscopy, microscopy, diffraction, and wet chemical and physical experiments. Of substantial interest is the ability to define the mineralogy of a sample to infer redox behavior, pH buffering, and mineral-water interfaces that are likely to interact with trace metals through adsorption, coprecipitation, dissolution, or electron transfer reactions. Quantitative evaluation of mineralogy by scanning electron microscopy coupled with micro-focused X-ray diffraction, micro-X-ray fluorescence, and micro-X-ray absorption near edge structure (mXANES) spectroscopy provided detailed insights into the composition of mineral assemblages and their effect on trace metal speciation during this investigation. In the sample investigated, titanium occurs as poorly ordered ilmenite, as rutile, and is substituted in iron oxides. Manganese's spatial correlation to Ti is closely linked to ilmenite, where it appears to substitute for Fe and Ti in the ilmenite structure based on its mXANES signature. Vanadium is associated with ilmenite and goethite but always assumes the +4 oxidation state, whereas chromium is predominantly in the +3 oxidation state and solely associated with iron oxides (goethite and hematite) and appears to substitute for Fe in the goethite structure.

  10. Characterization and Application of Hard X-Ray Betatron Radiation Generated by Relativistic Electrons from a Laser-Wakefield Accelerator

    E-Print Network [OSTI]

    Schnell, Michael; Uschmann, Ingo; Jansen, Oliver; Kaluza, Malte Christoph; Spielmann, Christian

    2015-01-01T23:59:59.000Z

    The necessity for compact table-top x-ray sources with higher brightness, shorter wavelength and shorter pulse duration has led to the development of complementary sources based on laser-plasma accelerators, in contrast to conventional accelerators. Relativistic interaction of short-pulse lasers with underdense plasmas results in acceleration of electrons and in consequence in the emission of spatially coherent radiation, which is known in the literature as betatron radiation. In this article we report on our recent results in the rapidly developing field of secondary x-ray radiation generated by high-energy electron pulses. The betatron radiation is characterized with a novel setup allowing to measure the energy, the spatial energy distribution in the far-field of the beam and the source size in a single laser shot. Furthermore, the polarization state is measured for each laser shot. In this way the emitted betatron x-rays can be used as a non-invasive diagnostic tool to retrieve very subtle information of t...

  11. Developing a Compton Polarimeter to Measure Polarization of Hard X-Rays in the 50-300 keV Energy Range

    E-Print Network [OSTI]

    J. S. Legere; P. Bloser; J. R. Macri; M. L. McConnell; T. Narita; J. M. Ryan

    2005-08-14T23:59:59.000Z

    This paper discusses the latest progress in the development of GRAPE (Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead, to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the high-Z crystal or not. A Compton scattered photon that is immediately photo absorbed by the high-Z crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern for the Compton scattering of the polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized beam, the level of polarization of the measured beam can then be determined. The complete array is mounted on a flat-panel multi-anode photomultiplier tube (MAPMT) that can measure the deposited energies resulting from the photon interactions. The design of the detector allows for a large field-of-view (>pi steradian), at the same time offering the ability to be close-packed with multiple modules in order to reduce deadspace. We plan to present in this paper the latest laboratory results obtained from GRAPE using partially polarized radiation sources.

  12. Gamma-Ray and Hard X-Ray Emission from Pulsar-Aided Supernovae as a Probe of Particle Acceleration in Embryonic Pulsar Wind Nebulae

    E-Print Network [OSTI]

    Murase, Kohta; Kiuchi, Kenta; Bartos, Imre

    2014-01-01T23:59:59.000Z

    It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ~1-10 months after the explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein-Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescope...

  13. Reliable before-fabrication forecasting of expected surface slope distributions for x-ray optics

    E-Print Network [OSTI]

    Yashchuk, Yekaterina V.

    2013-01-01T23:59:59.000Z

    of x-ray optics for the LCLS free-electron laser,” Proc.beamlines and diagnostics at LCLS,” Nucl. Instrum. Methods A

  14. Magnetism studies using resonant, coherent, x-ray scattering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetism studies using resonant, coherent, x-ray scattering Monday, September 10, 2012 - 10:00am SLAC, Bldg. 137, Room 226 Keoki Seu Seminar: With the advent of free electron...

  15. Diffraction Properties of Periodic Lattices under Free Electron Laser Radiation

    SciTech Connect (OSTI)

    Rajkovic, I.; Busse, G.; Hallmann, J.; More, R.; Petri, M.; Quevedo, W. [Max Planck Institute for Biophysical Chemistry, 37070 Goettingen (Germany); Krasniqi, F.; Rudenko, A. [Max-Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany); Tschentscher, T. [European XFEL GmbH, Albert-Einstein-Ring 19, 22671 Hamburg (Germany); Stojanovic, N.; Duesterer, S.; Treusch, R. [HASYLAB at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Tolkiehn, M. [Institut fuer Roentgenphysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Techert, S. [Max Planck Institute for Biophysical Chemistry, 37070 Goettingen (Germany); Max-Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany)

    2010-03-26T23:59:59.000Z

    In this Letter, we report the pioneering use of free electron laser radiation for the investigation of periodic crystalline structures. The diffraction properties of silver behenate single nanocrystals (5.8 nm periodicity) with the dimensions of 20 nmx20 nmx20 {mu}m and as powder with grain sizes smaller than 200 nm were investigated with 8 nm free electron laser radiation in single-shot modus with 30 fs long free electron laser pulses. This work emphasizes the possibility of using soft x-ray free electron laser radiation for these crystallographic studies on a nanometer scale.

  16. Research on pinches driven by SPPED 2 generator hard X-ray and neutron emission in plasma focus configuration

    E-Print Network [OSTI]

    Sánchez-Soto, L L; Silva, P; Sylvester, G S; Zambra, M; Pavez, C; Raspa, V; Castillo, F; Kies, W; Soto, Leopoldo; Moreno, Jose; Silva, Patricio; Sylvester, Gustavo; Zambra, Marcelo; Pavez, Cristian; Raspa, Veronica; Castillo, Fermin; Kies, Walter

    2004-01-01T23:59:59.000Z

    SPEED2 is a generator based on Marx technology and was designed in the University of Dusseldorf. SPEED2 consists on 40 +/- Marx modules connected in parallel (4.1 mF equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt~1013 A/s). Currently the SPEED2 is operating at the Comision Chilena de Energia Nuclear, CCHEN, Chile, being the most powerful and energetic device for dense transient plasma in the Southern Hemisphere. Most of the previous works developed in SPEED2 at Dusseldorf were done in a plasma focus configuration for soft X-ray emission and the neutron emission from SPEED2 was not completely studied. The research program at CCHEN considers experiments in different pinch configurations (plasma focus, gas puffed plasma focus, gas embedded Z-pinch, wire arrays) at current of hundred of kiloamperes to mega-amperes, using the SPEED2 generator. The Chilean operation has begun implementing and developing diagnostics in a conventional plasma focus configuration oper...

  17. Quantum effects with an X-ray free electron laser

    E-Print Network [OSTI]

    C. D. Roberts; S. M. Schmidt; D. V. Vinnik

    2002-06-03T23:59:59.000Z

    A quantum kinetic equation coupled with Maxwell's equation is used to estimate the laser power required at an XFEL facility to expose intrinsically quantum effects in the process of QED vacuum decay via spontaneous pair production. A 9 TW-peak XFEL laser with photon energy 8.3 keV could be sufficient to initiate particle accumulation and the consequent formation of a plasma of spontaneously produced pairs. The evolution of the particle number in the plasma will exhibit non-Markovian aspects of the strong-field pair production process and the plasma's internal currents will generate an electric field whose interference with that of the laser leads to plasma oscillations.

  18. Performance study of a soft X-ray harmonic generation FEL seeded with an EUV laser pulse

    E-Print Network [OSTI]

    Gullans, M.; Wurtele, J.S.; Penn, G.; Zholents, A.A.

    2007-01-01T23:59:59.000Z

    X-ray Harmonic Generation FEL Seeded with an EUV Laser PulseX-ray harmonic generation FEL seeded with an EUV laser pulseof a free electron laser (FEL) using a low-power extreme

  19. X-ray Observations of Mrk 231

    E-Print Network [OSTI]

    T. J. Turner

    1998-08-10T23:59:59.000Z

    This paper presents new X-ray observations of Mrk 231, an active galaxy of particular interest due to its large infrared luminosity and the presence of several blueshifted broad absorption line (BAL) systems, a phenomenon observed in a small fraction of QSOs. A ROSAT HRI image of Mrk 231 is presented, this shows an extended region of soft X-ray emission, covering several tens of kpc, consistent with the extent of the host galaxy. An ASCA observation of Mrk 231 is also presented. Hard X-rays are detected but the data show no significant variability in X-ray flux. The hard X-ray continuum is heavily attenuated and X-ray column estimates range from ~ 2 x 10^{22} - 10^{23} cm^{-2} depending on whether the material is assumed to be neutral or ionized, and on the model assumed for the extended X-ray component. These ASCA data provide only the second hard X-ray spectrum of a BAL AGN presented to date. The broad-band spectral-energy-distribution of the source is discussed. While Mrk 231 is X-ray weak compared to Seyfert 1 galaxies, it has an optical-to-X-ray spectrum typical of a QSO.

  20. The Accreting Black Hole Swift J1753.5-0127 from Radio to Hard X-Ray

    E-Print Network [OSTI]

    Tomsick, John A; Kolehmainen, Mari; Miller-Jones, James; Fuerst, Felix; Yamaoka, Kazutaka; Akitaya, Hiroshi; Corbel, Stephane; Coriat, Mickael; Done, Chris; Gandhi, Poshak; Harrison, Fiona A; Huang, Kuiyun; Kaaret, Philip; Kalemci, Emrah; Kanda, Yuka; Migliari, Simone; Miller, Jon M; Moritani, Yuki; Stern, Daniel; Uemura, Makoto; Urata, Yuji

    2015-01-01T23:59:59.000Z

    (abridged) We report on multi-wavelength measurements of Swift J1753.5-0127 in the hard state at L=2.7e36 erg/s (assuming d=3 kpc) in 2014. The radio emission is optically thick synchrotron, presumably from a compact jet. We take advantage of the low extinction and model the near-IR to UV emission with a multi-temperature disk model. Assuming a BH mass of M_BH=5 Msun and a system inclination of 40 deg, the fits imply an inner radius for the disk of Rin/Rg>212 d_3 (5Msun/M_BH). The outer radius is R_out/R_g=90,000 d_3 (5Msun/M_BH), which corresponds to 6.6e10 d_3 cm, consistent with the expected size of the disk. The 0.5-240 keV spectrum measured by Swift/XRT, Suzaku, and NuSTAR is relatively well characterized by a power-law with a photon index of Gamma=1.722+/-0.003, but a significant improvement is seen when a second continuum component is added. Reflection is a possibility, but no iron line is detected, implying a low iron abundance. We are able to fit the entire SED with a multi-temperature disk component...

  1. Catalac free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  2. Analytic model of bunched beams for harmonic generation in the low-gain free electron laser regime

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Analytic model of bunched beams for harmonic generation in the low-gain free electron laser regime employs free electron lasers (FELs) with two undulators: the first uses a seed laser to modulate Many proposed x-ray free electron lasers (FELs) are designed to produce radiation starting from

  3. Beam conditioning for free electron lasers: Consequences and methods A. Wolski, G. Penn, A. Sessler, and J. Wurtele*

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Beam conditioning for free electron lasers: Consequences and methods A. Wolski, G. Penn, A. Sessler cases [VISA, a soft x-ray free-electron laser (FEL), LCLS, and a ``Greenfield'' FEL] are examined short-wavelength free-electron lasers (FELs) demands electron beams with very small transverse emittance

  4. annular beam free-electron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and X-ray regions is predicted. KeywordsFree-electron laser, Higher energy beam, Lower energy beam, Two-beam M. Zahedian; B. Maraghechi; M. H. Rouhani 6 Analytic model of...

  5. 2011 X-Ray Science Gordon Research Conference (August 7-12, 2011, Colby, College. Waterville, ME)

    SciTech Connect (OSTI)

    Gregory Stephenson

    2011-08-12T23:59:59.000Z

    The 2011 Gordon Research Conference on X-ray Science will feature forefront x-ray-based science enabled by the rapid improvements in synchrotron and x-ray laser sources. Across the world, x-ray sources are playing an increasingly important role in physics, materials, chemistry, and biology, expanding into ever broadening areas of science and engineering. With the first hard x-ray free electron laser source beginning operation and with other advanced x-ray sources operational and planned, it is a very exciting and pivotal time for exchange ideas about the future of x-ray science and applications. The Conference will provide the forum for this interaction. An international cast of speakers will illuminate sessions on ultrafast science, coherence, imaging, in situ studies, extreme conditions, new developments in optics, sources, and detectors, inelastic scattering, nanoscience, life science, and energy sciences. The Conference will bring together investigators at the forefront of these areas, and will provide a venue for young scientists entering a career in x-ray research to present their research in poster format, hold discussions in a friendly setting, and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with ample time for discussion as well as opportunities for informal gatherings in the afternoons and evenings, will provide an avenue for scientists from different disciplines to exchange ideas about forefront x-ray techniques and will promote cross-fertilization between the various research areas represented.

  6. Absorbed XFEL dose in the components of the LCLS X-Ray Optics

    SciTech Connect (OSTI)

    Hau-Riege, S

    2005-09-27T23:59:59.000Z

    We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

  7. arXiv:astro-ph/0612563v119Dec2006 Hard X-rays and Fluorescent Iron Emission from the Embedded

    E-Print Network [OSTI]

    Guedel, Manuel

    results of XMM-Newton X-ray observations of the infrared cluster lying near the NGC 2071 reflection nebula winds. One of the closest regions known to contain young high-mass stars is the infrared cluster near (Anthony-Twarog 1982; Brown et al. 1994). Near-infrared observations by Lada et al. (1991) revealed more

  8. CHANDRA X-RAY SPECTROSCOPY OF THE FOCUSED WIND IN THE CYGNUS X-1 SYSTEM. I. THE NONDIP SPECTRUM IN THE LOW/HARD STATE

    E-Print Network [OSTI]

    Hanke, Manfred

    We present analyses of a 50 ks observation of the supergiant X-ray binary system Cygnus X-1 (Cyg X-1)/HDE226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). Cyg X-1 was in its spectrally ...

  9. Diffusion, convection, and solidification in cw-mode free electron laser nitrided titanium

    SciTech Connect (OSTI)

    Hoeche, Daniel; Mueller, Sven [II. Physikalisches Institut, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Shinn, Michelle [Free Electron Laser Group, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Schaaf, Peter [Institut fuer Werkstofftechnik, FG Werkstoffe der Elektrotechnik, TU Ilmenau, Postfach 10 05 65, 98684 Ilmenau (Germany)

    2009-04-15T23:59:59.000Z

    Titanium sheets were irradiated by free electron laser radiation in cw mode in pure nitrogen. Due to the interaction, nitrogen diffusion occurs and titanium nitride was synthesized in the tracks. Overlapping tracks have been utilized to create coatings in order to improve the tribological properties of the sheets. Caused by the local heating and the spatial dimension of the melt pool, convection effects were observed and related to the track properties. Stress, hardness, and nitrogen content were investigated with x-ray diffraction, nanoindention, and resonant nuclear reaction analysis. The measured results were correlated with the scan parameters, especially to the lateral track shift. Cross section micrographs were prepared and investigated by means of scanning electron microscopy. They show the solidification behavior, phase formation, and the nitrogen distribution. The experiments give an insight into the possibilities of materials processing using such a unique heat source.

  10. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01T23:59:59.000Z

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/?I) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ?F,more »in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  11. Chest x-Rays

    Broader source: Energy.gov [DOE]

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  12. Technical Report Ultrafast X-ray Science at the Sub-Picosecond Pulse Source

    E-Print Network [OSTI]

    Wechsler, Risa H.

    1 Technical Report Ultrafast X-ray Science at the Sub-Picosecond Pulse Source Kelly J. Gaffney ultrafast phenomena. These techniques involve excitation of a sample with an ultrafast laser pump pulse, USA The ultrafast, high brightness x-ray free electron laser (XFEL) sources of the future have

  13. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    SciTech Connect (OSTI)

    Boutet, Sebastien; Williams, Garth J.; /SLAC; ,

    2011-08-16T23:59:59.000Z

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  14. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1991-01-01T23:59:59.000Z

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  15. Free electron laser

    DOE Patents [OSTI]

    Villa, Francesco (Alameda, CA)

    1990-01-01T23:59:59.000Z

    A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

  16. Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance

    E-Print Network [OSTI]

    Yashchuk, V. V.

    2010-01-01T23:59:59.000Z

    Optics for the ALS and the LCLS/FEL: Design, Metrology, andwas performed in support of the AMO/LCLS project at SLAC. *Coherent Light Source (LCLS) x-ray free electron laser (FEL)

  17. Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance

    E-Print Network [OSTI]

    Yashchuk, V. V.

    2010-01-01T23:59:59.000Z

    Optics for the ALS and the LCLS/FEL: Design, Metrology, andLCLS) x-ray free electron laser (FEL) at the Stanford LinearKB mirrors used at the SLAC/FEL AMO beamline. Two mirrors

  18. atmospheric electron-induced x-ray: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opacity to X-rays, and the wind flow parameters, such as mass loss rate and terminal speed. L. M. Oskinova; R. Ignace; J. C. Brown; J. P. Cassinelli 2001-04-25 5 Hard X-ray...

  19. all-sky x-ray image: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sky coverage each orbit, and full sky coverage each 50 days, hard x-ray studies of gamma-ray bursts, AGN, galactic transients, x-ray binaries and accretion-powered pulsars can be...

  20. Circular free-electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Kurnit, Norman A. (Santa Fe, NM); Cooper, Richard K. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  1. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16T23:59:59.000Z

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  2. Optimization for Single-Spike X-Ray FELs at LCLS with a Low Charge Beam

    SciTech Connect (OSTI)

    Wang, L.; Ding, Y.; Huang, Z.; /SLAC

    2011-12-14T23:59:59.000Z

    The Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron radiation sources. At the low charge operation mode (20 pC), the x-ray pulse length can be <10 fs. In this paper we report our numerical optimization and simulations to produce even shorter x-ray pulses by optimizing the machine and undulator setup at 20 pC charge. In the soft x-ray regime, with combination of slotted-foil or undulator taper, a single spike x-ray pulse is achievable with peak FEL power of a few 10s GW. Linac Coherent Light Source (LCLS), the world's first hard x-ray Free electron laser (FEL), has started operation since 2009. With nominal operation charge of 250 pC, the generated x-ray pulse length is from 70 fs to a few hundred fs. This marks the beginning of a new era of ultrashort x-ray sciences. In addition, a low charge (20pC) operation mode has also been established. Since the collective effects are reduced at the low charge mode, we can increase the compression factor and still achieve a few kA peak current. The expected electron beam and x-ray pulses are less than 10 fs. There are growing interests in even shorter x-ray pulses, such as fs to sub-fs regime. One of the simple solutions is going to even lower charge. As discussed, single-spike x-ray pulses can be generated using 1 pC charge. However, this charge level is out of the present LCLS diagnostic range. 20 pC is a reasonable operation charge at LCLS, based on the present diagnostic system. At 20 pC in the soft x-ray wavelength regime, we have experimentally demonstrated that FEL can work at undercompression or over-compression mode, such as 1 degree off the full-compression; at full-compression, however, there is almost no lasing. In hard x-ray wavelength regime, we observed that there are reasonable photons generated even at full-compression mode, although the photon number is less than that from under-compression or over-compression mode. Since we cannot measure the x-ray pulse length at this time scale, the machine is typically optimized for generating maximum photons, not minimum pulse length. In this paper, we study the methods of producing femtosecond (or single-spike) x-ray pulses at LCLS with 20 pC charge, based on start-to-end simulations. Figure 1 shows a layout of LCLS. The compression in the second bunch compressor (BC2) determines the final e-beam bunch length. However, the laser heater, dog-leg after the main linac (DL2) and collective effects also affect the final bunch length. To adjust BC2 compression, we can either change the L2 phase or BC2 R{sub 56}. In this paper we only tune L2 phase while keep BC2 R{sub 56} fixed. For the start-to-end simulations, we used IMPACT-T and ELEGANT tracking from the photocathode to the entrance of the undulator, after that the FEL radiation was simulated with GENESIS. IMPACT-T tracks about 10{sup 6} particles in the injector part until 135 MeV, including 3D space charge force. The output particles from IMPACT-T are smoothed and increased to 12 x 10{sup 6} to reduce high-frequency numerical noise for subsequent ELEGANT simulations, which include linear and nonlinear transport effects, a 1D transient model of CSR, and longitudinal space charge effects, as well as geometric and resistive wake fields in the accelerator. In GENESIS part, the longitudinal wake field from undulator chamber and longitudinal space field are also included.

  3. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-Ray Diagnostics X-Ray

  4. Rf Feedback free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  5. X-ray emission properties of galaxies in Abell 3128

    E-Print Network [OSTI]

    Russell J. Smith

    2003-07-15T23:59:59.000Z

    We use archival Chandra X-ray Observatory data to investigate X-ray emission from early-type galaxies in the rich z=0.06 cluster Abell 3128. By combining the X-ray count-rates from an input list of optically-selected galaxies, we obtain a statistical detection of X-ray flux, unbiased by X-ray selection limits. Using 87 galaxies with reliable Chandra data, X-ray emission is detected for galaxies down to M_B ~ -19.0, with only an upper limit determined for galaxies at M_B ~ -18.3. The ratio of X-ray to optical luminosities is consistent with recent determinations of the low-mass X-ray binary content of nearby elliptical galaxies. Taken individually, in contrast, we detect significant (3sigma) flux for only six galaxies. Of these, one is a foreground galaxy, while two are optically-faint galaxies with X-ray hardness ratios characteristic of active galactic nuclei. The remaining three detected galaxies are amongst the optically-brightest cluster members, and have softer X-ray spectra. Their X-ray flux is higher than that expected from X-ray binaries, by a factor 2-10; the excess suggests these galaxies have retained their hot gaseous haloes. The source with the highest L_X / L_B ratio is of unusual optical morphology with prominent sharp-edged shells. Notwithstanding these few exceptions, the cluster population overall exhibits X-ray properties consistent with their emission being dominated by X-ray binaries. We conclude that in rich cluster environments, interaction with the ambient intra-cluster medium acts to strip most galaxies of their hot halo gas.

  6. Isochronous Beamlines for Free Electron Lasers

    E-Print Network [OSTI]

    Berz, M.

    2010-01-01T23:59:59.000Z

    for the los alamos free- electron laser. IEEE Journal of1: A schematic layout of a free electron laser. Figure 2: ABeamIines for Free Electron Lasers M. Berz July 1990

  7. Hole Coupling Resonator for Free Electron Lasers

    E-Print Network [OSTI]

    Xie, M.

    2011-01-01T23:59:59.000Z

    a Highly Stable Infrared Free Electron Laser at LBL", theseTwelfth International Free Electron Laser Conference, Paris,Coupling Resonator for Free Electron Lasers M. Xie and K. -

  8. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect (OSTI)

    Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-20T23:59:59.000Z

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  9. X-ray pump optical probe cross-correlation study of GaAs

    SciTech Connect (OSTI)

    Durbin, S.M.; Clevenger, T.; Graber, T.; Henning, R. (Purdue); (UC)

    2012-09-10T23:59:59.000Z

    Ultrafast dynamics in atomic, molecular and condensed-matter systems are increasingly being studied using optical-pump, X-ray probe techniques where subpicosecond laser pulses excite the system and X-rays detect changes in absorption spectra and local atomic structure. New opportunities are appearing as a result of improved synchrotron capabilities and the advent of X-ray free-electron lasers. These source improvements also allow for the reverse measurement: X-ray pump followed by optical probe. We describe here how an X-ray pump beam transforms a thin GaAs specimen from a strong absorber into a nearly transparent window in less than 100 ps, for laser photon energies just above the bandgap. We find the opposite effect - X-ray induced optical opacity - for photon energies just below the bandgap. This raises interesting questions about the ultrafast many-body response of semiconductors to X-ray absorption, and provides a new approach for an X-ray/optical cross-correlator for synchrotron and X-ray free-electron laser applications.

  10. Inverse free electron laser accelerator for advanced light sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duris, J. P.; Musumeci, P.; Li, R. K.

    2012-06-01T23:59:59.000Z

    We discuss the inverse free electron laser (IFEL) scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  11. Laser Phase Errors in Seeded Free Electron Lasers

    SciTech Connect (OSTI)

    Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

    2012-04-17T23:59:59.000Z

    Harmonic seeding of free electron lasers has attracted significant attention as a method for producing transform-limited pulses in the soft x-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality and impede production of transform-limited pulses. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

  12. Design Alternatives for a Free Electron Laser Facility

    SciTech Connect (OSTI)

    Jacobs, K; Bosch, R A; Eisert, D; Fisher, M V; Green, M A; Keil, R G; Kleman, K J; Kulpin, J G; Rogers, G C; Wehlitz, R; Chiang, T; Miller, T J; Lawler, J E; Yavuz, D; Legg, R A

    2012-07-01T23:59:59.000Z

    The University of Wisconsin-Madison is continuing design efforts for a vacuum ultraviolet/X-ray Free Electron Laser facility. The design incorporates seeding the FEL to provide fully coherent photon output at energies up to {approx}1 keV. The focus of the present work is to minimize the cost of the facility while preserving its performance. To achieve this we are exploring variations in the electron beam driver for the FEL, in undulator design, and in the seeding mechanism. Design optimizations and trade-offs between the various technologies and how they affect the FEL scientific program will be presented.

  13. Tunable X-ray source

    DOE Patents [OSTI]

    Boyce, James R. (Williamsburg, VA)

    2011-02-08T23:59:59.000Z

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  14. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

    1991-01-01T23:59:59.000Z

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  15. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31T23:59:59.000Z

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  16. In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO{sub 2}/TiN cells

    SciTech Connect (OSTI)

    Sowinska, Malgorzata, E-mail: sowinska@ihp-microelectronics.com; Bertaud, Thomas; Walczyk, Damian; Calka, Pauline; Walczyk, Christian [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Thiess, Sebastian [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Alff, Lambert [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Schroeder, Thomas [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Brandenburgische Technische Universität, Konrad-Zuse-Strasse 1, 03046 Cottbus (Germany)

    2014-05-28T23:59:59.000Z

    In this study, direct experimental materials science evidence of the important theoretical prediction for resistive random access memory (RRAM) technologies that a critical amount of oxygen vacancies is needed to establish stable resistive switching in metal-oxide-metal samples is presented. In detail, a novel in-operando hard X-ray photoelectron spectroscopy technique is applied to non-destructively investigates the influence of the current compliance and direct current voltage sweep cycles on the Ti/HfO{sub 2} interface chemistry and physics of resistive switching Ti/HfO{sub 2}/TiN cells. These studies indeed confirm that current compliance is a critical parameter to control the amount of oxygen vacancies in the conducting filaments in the oxide layer during the RRAM cell operation to achieve stable switching. Furthermore, clear carbon segregation towards the Ti/HfO{sub 2} interface under electrical stress is visible. Since carbon impurities impact the oxygen vacancy defect population under resistive switching, this dynamic carbon segregation to the Ti/HfO{sub 2} interface is suspected to negatively influence RRAM device endurance. Therefore, these results indicate that the RRAM materials engineering needs to include all impurities in the dielectric layer in order to achieve reliable device performance.

  17. X-ray spectrometry

    SciTech Connect (OSTI)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-04-01T23:59:59.000Z

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references.

  18. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

    2002-01-01T23:59:59.000Z

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  19. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    E-Print Network [OSTI]

    Hao, Yajiang; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01T23:59:59.000Z

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.

  20. Self-detection of x-ray Fresnel transmittivity using photoelectron-induced gas ionization

    E-Print Network [OSTI]

    Stoupin, Stanislav

    2015-01-01T23:59:59.000Z

    Electric response of an x-ray mirror enclosed in a gas flow ionization chamber was studied under the conditions of total external reflection for hard x-rays. It is shown that the electric response of the system as a function of the incidence angle is defined by x-ray Fresnel transmittivity and photon-electron attenuation properties of the mirror material. A simple interpretation of quantum yield of the system is presented. The approach provides non-invasive in-situ diagnostics of hard x-ray optics, easy access to complementary x-ray transmittivity data in x-ray reflectivity experiments and can also pave the way to novel schemes for angle and energy resolving x-ray detectors.

  1. Free-Electron Laser FLASH Injector Laser

    E-Print Network [OSTI]

    FLASH. Free-Electron Laser in Hamburg FLASH Injector Laser Laser 1 Laser 2 Next steps Siegfried | FLASH Meeting | 16-Nov-2009 FLASH. Free-Electron Laser in Hamburg Laser 1 System Overview fround trip A 541 (2005) 467­477 #12;Siegfried Schreiber | FLASH Meeting | 16-Nov-2009 FLASH. Free-Electron Laser

  2. Achromatic and Isochronous Electron Beam Transport for Free Electron Lasers

    E-Print Network [OSTI]

    Bengtsson, J.

    2011-01-01T23:59:59.000Z

    Beamlines for Free Electron Lasers," LBL-28880 Preprint (Thirteenth mtemational Free Electron Laser Conference, SantaTransport for Tunable Free Electron Lasers 1. Bengtsson and

  3. Three Dimensioanl Free Electron Laser Dispersion Relation Including Betatron Oscillations

    E-Print Network [OSTI]

    Chin, Y.H.

    2011-01-01T23:59:59.000Z

    Three-Dimensional Free Electron Laser Dispersion RelationInternational Free Electron Laser Conference, Santa Fe, NM,International Free Electron Laser Conference, held in Santa

  4. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    SciTech Connect (OSTI)

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.; Zastrau, Ulf [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)] [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Blinne, Alexander [Institute for Theoretical Physics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)] [Institute for Theoretical Physics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Feigl, Torsten [Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Straße 7, 07745 Jena (Germany)] [Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Straße 7, 07745 Jena (Germany); Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Förster, Eckhart [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany) [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz Institute, Fröbelstieg 3, 07743 Jena (Germany)

    2013-09-15T23:59:59.000Z

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  5. RECENT X-RAY VARIABILITY OF {eta} CARINAE: THE QUICK ROAD TO RECOVERY

    SciTech Connect (OSTI)

    Corcoran, M. F.; Hamaguchi, K. [CRESST and X-ray Astrophysics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pittard, J. M. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Russell, C. M. P.; Owocki, S. P. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Parkin, E. R. [Institut d'Astrophysique et de Geophysique, Universite de Liege, 17, Allee du 6 Aout, B5c, B-4000 Sart Tilman (Belgium); Okazaki, A. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan)

    2010-12-20T23:59:59.000Z

    We report continued monitoring of the superluminous binary system {eta} Car by the Proportional Counter Array on the Rossi X-ray Timing Observatory (RXTE) through the 2009 X-ray minimum. The RXTE campaign shows that the minimum began on 2009 January 16, consistent with the phasings of the two previous minima, and overall, the temporal behavior of the X-ray emission was similar to that observed by RXTE in the previous two cycles. However, important differences did occur. The 2-10 keV X-ray flux and X-ray hardness decreased in the 2.5 year interval leading up to the 2009 minimum compared to the previous cycle. Most intriguingly, the 2009 X-ray minimum was about 1 month shorter than either of the previous two minima. During the egress from the 2009 minimum the X-ray hardness increased markedly as it had during egress from the previous two minima, although the maximum X-ray hardness achieved was less than the maximum observed after the two previous recoveries. We suggest that the cycle-to-cycle variations, especially the unexpectedly early recovery from the 2009 X-ray minimum, might have been the result of a decline in {eta} Car's wind momentum flux produced by a drop in {eta} Car's mass loss rate or wind terminal velocity (or some combination), though if so the change in wind momentum flux required to match the X-ray variation is surprisingly large.

  6. Demonstration of Successful X-ray Thomson Scattering Using Picosecond K-(alpha) X-ray Sources for the Characterization of Dense Heated Matter

    SciTech Connect (OSTI)

    Kritcher, A; Neumayer, P; Lee, H J; Doeppner, T; Falcone, R; Glenzer, S; Morse, E C

    2008-05-05T23:59:59.000Z

    We discuss the first successful K-{alpha} x-ray Thomson scattering experiment from solid density plasmas for use as a diagnostic in determining the temperature, density, and ionization state of warm dense matter with picosecond resolution. The development of this source as a diagnostic and stringent requirements for successful K-{alpha} x-ray Thomson scattering are addressed. Data for the experimental techniques described in this paper [1] suggest the capability of single shot characterization of warm dense matter and the ability to use this scattering source at future Free Electron Lasers (FEL) where comparable scattering signal levels are predicted.

  7. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

    2000-01-01T23:59:59.000Z

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  8. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    SciTech Connect (OSTI)

    Hattne, Hattne

    2014-03-04T23:59:59.000Z

    Diffraction patterns from thermolysin microcrystals and one dark run, collected in December 2011. This data was used for metrology calibration and general cctbx.xfel development.

  9. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01T23:59:59.000Z

    2007). 41. P. Emma for the LCLS commissioning team, PAC2009Test Facility for the LCLS”, SLAC-TN-07-005, (2007). John N.Professional/Academic Director, LCLS Strategic Projects

  10. Design Studies for a VUV--Soft X-ray Free-Electron Laser Array

    E-Print Network [OSTI]

    Corlett, J.

    2010-01-01T23:59:59.000Z

    bunch arrival time in the LCLS, and another system that willFERMI@Elettra and 100 fs for LCLS, both requiring about 200-

  11. Femtosecond diffractive imaging with a soft-X-ray free-electron laser (CXIDB ID 3)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chapman, H. N.

    The diffraction pattern of this entry corresponds to the one shown in **figure 2a** of the corresponding citation.

  12. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hattne, Hattne

    Diffraction patterns from thermolysin microcrystals and one dark run, collected in December 2011. This data was used for metrology calibration and general cctbx.xfel development.

  13. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01T23:59:59.000Z

    Advanced Light Source Accelerator Physics Group - LBNLlasers. Studied accelerator physics issues associated withInstructor: o Fund. of Accelerator Physics and Technology,

  14. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01T23:59:59.000Z

    Electron Laser Conference, Trieste, Italy (2004) p. 558. 11.Committees of: Sincrotrone Trieste, Italy Pohang Light

  15. De novo protein crystal structure determination from X-ray free-electron laser data

    SciTech Connect (OSTI)

    Barends, Thomas, R.M.

    2013-11-25T23:59:59.000Z

    Serial femtosecond crystallography (SFX) data of microcrystals of a lysozyme gadolinium derivative. The data was used to demonstrate de-novo phasing by single anomalous dispersion.

  16. De novo protein crystal structure determination from X-ray free-electron laser data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Barends, Thomas, R.M.

    Serial femtosecond crystallography (SFX) data of microcrystals of a lysozyme gadolinium derivative. The data was used to demonstrate de-novo phasing by single anomalous dispersion.

  17. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01T23:59:59.000Z

    CW superconducting RF (SCRF) linac technology, and opticalCollider and the DOE-funded SCRF R&D program. SLAC can apply

  18. Femtosecond dark-field imaging with an X-ray free electron laser (CXIDB ID 19)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Martin, A. V.

    This data was collected as part of the same experiment as the data deposited in [ID16](id-16.html). Experiment details are given in [Loh, N.D. et al.](http://dx.doi.org/10.1038/nature11222)

  19. Femtosecond diffractive imaging with a soft-X-ray free-electron laser

    E-Print Network [OSTI]

    Loss, Daniel

    Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park the sample explodes and turns into a plasma. Here we report the first experimental demonstration-resolution scattering signals for such samples in conventional experiments11,12 . Damage is caused by energy deposited

  20. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingth Lomonosov1

  1. The World's First Free-Electron X-ray Laser | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive LiquidSavings for Specific U.S.TheTheFirst

  2. VISA: A Milestone on the Path Towards X-Ray Free Electron Lasers | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize Available Resources Print As soonof

  3. The European X-ray Free-Electron Laser: A Progress Report | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand Water |1Benefits ofEffects

  4. Time-resolved protein nanocrystallography using an X-ray free-electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis ofwasSynchrotron Radiation

  5. Feasibility considerations of a soft-x-ray distributed feedback laser pumped by an X-FEL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Feasibility considerations of a soft-x-ray distributed feedback laser pumped by an X-FEL Jean feedback laser (DFL) pumped by an x- ray free electron laser (X-FEL). The DFL under consideration is a Mg/SiC bi-layered Bragg reflector pumped by a single X-FEL bunch at 57.4 eV, stimulating the Mg L2

  6. Beam Dynamics Study of X-Band Linac Driven X-Ray FELS

    SciTech Connect (OSTI)

    Adolphsen, C.; Limborg-Deprey, C.; Raubenheimer, T.O.; Wu, J.; /SLAC; Sun, Y.; /SLAC

    2011-12-13T23:59:59.000Z

    Several linac driven X-ray Free Electron Lasers (XFELs) are being developed to provide high brightness photon beams with very short, tunable wavelengths. In this paper, three XFEL configurations are proposed that achieve LCLS-like performance using X-band linac drivers. These linacs are more versatile, efficient and compact than ones using S-band or C-band rf technology. For each of the designs, the overall accelerator layout and the shaping of the bunch longitudinal phase space are described briefly. During the last 40 years, the photon wavelengths from linac driven FELs have been pushed shorter by increasing the electron beam energy and adopting shorter period undulators. Recently, the wavelengths have reached the X-ray range, with FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source) successfully providing users with soft and hard X-rays, respectively. FLASH uses a 1.2 GeV L-band (1.3 GHz) superconducting linac driver and can deliver 10-70 fs FWHM long photon pulses in a wavelength range of 44 nm to 4.1 nm. LCLS uses the last third of the SLAC 3 km S-band (2.856 GHz) normal-conducting linac to produce 3.5 GeV to 15 GeV bunches to generate soft and hard X-rays with good spatial coherence at wavelengths from 2.2 nm to 0.12 nm. Newer XFELs (at Spring8 and PSI) use C-band (5.7 GHz) normal-conducting linac drivers, which can sustain higher acceleration gradients, and hence shorten the linac length, and are more efficient at converting rf energy to bunch energy. The X-band (11.4 GHz) rf technology developed for NLC/GLC offers even higher gradients and efficiencies, and the shorter rf wavelength allows more versatility in longitudinal bunch phase space compression and manipulation. In the following sections, three different configurations of X-band linac driven XFELs are described that operate from 6 to 14 GeV. The first (LOW CHARGE DESIGN) has an electron bunch charge of only 10 pC; the second (OPTICS LINEARIZATION DESIGN) is based on optics linearization of the longitudinal phase space in the first stage bunch compressor and can operate with either a high (250 pC) or low (20 pC) bunch charge; and the third (LCLS INJECTOR DESIGN) is similar to LCLS but uses an X-band linac after the first stage bunch compressor at 250 MeV to achieve a final beam energy up to 14 GeV. Compared with LCLS, these X-band linacs are at least a factor of three shorter.

  7. A Chandra Deep X-ray Exposure on the Galactic Plane and Near Infrared Identification

    E-Print Network [OSTI]

    K. Ebisawa; A. Paizis; T. J. -L. Couvoisier; P. Dubath; M. Tsujimoto; K. Hamaguchi; V. Beckmann; A. Bamba; A. Senda; M. Ueno; H. Kaneda; Y. Maeda; G. Sato; S. Yamauchi; R. Cutri; E. Nishihara

    2004-07-09T23:59:59.000Z

    Using the Chandra ACIS-I instruments, we have carried out a deep X-ray observation on the Galactic plane region at (l,b) ~ (28.5, 0.0), where no discrete X-ray sources have been known previously. We have detected, as well as strong diffuse emission, 274 new point X-ray sources (4 sigma confidence) within two partially overlapping fields (~250 arcmin^2 in total) down to the flux limit ~3 x 10^{-15} $ erg s^{-1} cm^{-2} (2 -- 10 keV) and ~ 7 x 10^{-16} erg s^{-1} cm^{-2} (0.5 -- 2 keV). We clearly resolved point sources and the Galactic diffuse emission, and found that ~ 90 % of the flux observed in our field of view originates from diffuse emission. Many point sources are detected either in the soft X-ray band (below 2 keV) or in the hard band (above 2 keV), and only a small number of sources are detected in both energy bands. On the other hand, most soft X-ray sources are considered to be nearby X-ray active stars. We have carried out a follow-up near-infrared (NIR) observation using SOFI at ESO/NTT. Most of the soft X-ray sources were identified, whereas only a small number of hard X-ray sources had counterparts in NIR. Using both X-ray and NIR information, we can efficiently classify the point X-ray sources detected in the Galactic plane. We conclude that most of the hard X-ray sources are background Active Galactic Nuclei seen through the Milky Way, whereas majority of the soft X-ray sources are nearby X-ray active stars.

  8. Internal-conversion process in superintense ultrashort x-ray pulses

    SciTech Connect (OSTI)

    Kis, Daniel; Kalman, Peter; Keszthelyi, Tamas; Szivos, Janos [Budapest University of Technology and Economics, Institute of Nuclear Technics, Department of Nuclear Energy, Muegyetem rkpt. 9, H-1111 Budapest (Hungary); Budapest University of Technology and Economics, Institute of Physics, Department of Theoretical Physics, Budafoki ut 8. F. I. I. 10, H-1521 Budapest (Hungary)

    2010-01-15T23:59:59.000Z

    The electron-nucleus interaction in a super-intense few-cycle x-ray pulse is investigated. The super-intense few-cycle x-ray pulse-induced internal conversion (IC) process is discussed in detail. The x-ray laser-pulse induced IC coefficient is calculated, and in particular, it is derived in the case of a pulse of Gaussian shape and for a bound-free electron transition. The IC coefficient of the IC process induced by a super-intense few-cycle soft-x-ray laser pulse in the case of the {sup 99m}Tc isomer is determined numerically. The results obtained for the IC coefficient show significant carrier angular frequency, carrier-envelope phase, and pulse-length dependencies. The infinite pulse-length limit and experimental aspects are also discussed.

  9. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; et al

    2006-01-01T23:59:59.000Z

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore »resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  10. High-resolution ab initio Three-dimensional X-ray Diffraction Microscopy

    SciTech Connect (OSTI)

    Chapman, H N; Barty, A; Marchesini, S; Noy, A; Cui, C; Howells, M R; Rosen, R; He, H; Spence, J H; Weierstall, U; Beetz, T; Jacobsen, C; Shapiro, D

    2005-08-19T23:59:59.000Z

    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.

  11. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-01-01T23:59:59.000Z

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  12. Quiet Sun X-rays as Signature for New Particles

    E-Print Network [OSTI]

    K. Zioutas; K. Dennerl; L. DiLella; D. H. H. Hoffmann; J. Jacoby; Th. Papaevangelou

    2004-03-08T23:59:59.000Z

    We have studied published data from the Yohkoh solar X-ray mission, with the purpose of searching for signals from radiative decays of new, as yet undiscovered massive neutral particles. This search is based on the prediction that solar axions of the Kaluza-Klein type should result in the emission of X-rays from the Sun direction beyond the limb with a characteristic radial distribution. These X-rays should be observed more easily during periods of quiet Sun. An additional signature is the observed emission of hard X-rays by SMM, NEAR and RHESSI. The recent observation made by RHESSI of a continuous emission from the non-flaring Sun of X-rays in the 3 to ~15 keV range fits the generic axion scenario. This work also suggests new analyses of existing data, in order to exclude instrumental effects; it provides the rationale for targeted observations with present and upcoming (solar) X-ray telescopes, which can provide the final answer on the nature of the signals considered here. Such measurements become more promising during the forthcoming solar cycle minimum with an increased number of quiet Sun periods.

  13. An X-ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies

    E-Print Network [OSTI]

    James Chiang

    2002-02-12T23:59:59.000Z

    Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, & Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubi\\'nski, & Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the hard X-ray continuum above $\\sim 50$ keV in type 1 Seyfert galaxies. Forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft $\\gamma$-ray telescopes, in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

  14. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E. (Manteca, CA)

    2008-02-12T23:59:59.000Z

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  15. Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopya)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levantino, M.; Lemke, H. T.; Schirò, G.; Glownia, M.; Cupane, A.; Cammarata, M.

    2015-07-01T23:59:59.000Z

    We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM) time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (~70 fs) relaxation preceding a slower (~400 fs) one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix.

  16. An X-ray Imaging Study of the Stellar Population in RCW49

    E-Print Network [OSTI]

    M. Tsujimoto; E. D. Feigelson; L. K. Townsley; P. S. Broos; K. V. Getman; J. Wang; G. P. Garmire; D. Baba; T. Nagayama; M. Tamura; E. B. Churchwell

    2007-05-04T23:59:59.000Z

    We present the results of a high-resolution X-ray imaging study of the stellar population in the Galactic massive star-forming region RCW49 and its central OB association Westerlund 2. We obtained a 40 ks X-ray image of a 17'x17' field using the Chandra X-ray Observatory and deep NIR images using the Infrared Survey Facility in a concentric 8'3x8'3 region. We detected 468 X-ray sources and identified optical, NIR, and Spitzer Space Telescope MIR counterparts for 379 of them. The unprecedented spatial resolution and sensitivity of the X-ray image, enhanced by optical and infrared imaging data, yielded the following results: (1) The central OB association Westerlund 2 is resolved for the first time in the X-ray band. X-ray emission is detected from all spectroscopically-identified early-type stars in this region. (2) Most (86%) X-ray sources with optical or infrared identifications are cluster members in comparison with a control field in the Galactic Plane. (3) A loose constraint (2--5 kpc) for the distance to RCW49 is derived from the mean X-ray luminosity of T Tauri stars. (4) The cluster X-ray population consists of low-mass pre--main-sequence and early-type stars as obtained from X-ray and NIR photometry. About 30 new OB star candidates are identified. (5) We estimate a cluster radius of 6'--7' based on the X-ray surface number density profiles. (6) A large fraction (90%) of cluster members are identified individually using complimentary X-ray and MIR excess emission. (7) The brightest five X-ray sources, two Wolf-Rayet stars and three O stars, have hard thermal spectra.

  17. X-ray Synchrotron Radiation in a Plasma Wiggler

    SciTech Connect (OSTI)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27T23:59:59.000Z

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  18. On the Nature of the X-ray Emission from M32

    E-Print Network [OSTI]

    M. Loewenstein; K. Hayashida; T. Toneri; D. S. Davis

    1998-02-03T23:59:59.000Z

    We have obtained the first broad-band X-ray spectra of the nearby compact elliptical galaxy M32 by using the ASCA satellite. The extracted spectra and X-ray luminosity are consistent with the properties of the hard spectral component measured in giant elliptical galaxies believed to originate from X-ray binaries. Two ASCA observations were performed two weeks apart; a 25% flux decrease and spectral softening occurred in the interval. We have also analyzed archival ROSAT HRI data, and discovered that the X-ray emission is dominated by a single unresolved source offset from the nucleus of M32. We argue that this offset, combined with the extremely rapid large magnitude variations, and hard X-ray spectrum combine to weakly favor a (single) X-ray binary over an AGN origin for the X-rays from M32. The nuclear black hole in M32 must be fuel-starved and/or accreting from a radiatively inefficient advection-dominated disk: the product of the accretion rate and the radiative efficiency must be less than 1e-10 solar masses per year if the X-ray source is indeed an X-ray binary.

  19. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21T23:59:59.000Z

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  20. Interferometric phase detection at x-ray energies via Fano resonance control

    E-Print Network [OSTI]

    K. P. Heeg; C. Ott; D. Schumacher; H. -C. Wille; R. Röhlsberger; T. Pfeifer; J. Evers

    2014-11-06T23:59:59.000Z

    Modern x-ray light sources promise access to structure and dynamics of matter in largely unexplored spectral regions. However, the desired information is encoded in the light intensity and phase, whereas detectors register only the intensity. This phase problem is ubiquitous in crystallography and imaging, and impedes the exploration of quantum effects at x-ray energies. Here, we demonstrate phase-sensitive measurements characterizing the quantum state of a nuclear two-level system at hard x-ray energies. The nuclei are initially prepared in a superposition state. Subsequently, the relative phase of this superposition is interferometrically reconstructed from the emitted x-rays. Our results form a first step towards x-ray quantum state tomography, and provide new avenues for structure determination and precision metrology via x-ray Fano interference.

  1. Thin optic surface analysis for high resolution X-ray telescopes

    E-Print Network [OSTI]

    Akilian, Mireille

    2004-01-01T23:59:59.000Z

    The art of glass developed throughout the years has covered artifacts ranging from crude ornaments to high precision optics used in flat panel displays, hard disk drives, and x-ray telescopes. Methods for manufacturing ...

  2. The nature of the Vela X-ray "jet"

    E-Print Network [OSTI]

    V. V. Gvaramadze

    1999-12-02T23:59:59.000Z

    The nature of the Vela X-ray "jet", recently discovered by Markwardt & \\"Ogelman (1995), is examined. It is suggested that the "jet" arises along the interface of domelike deformations of the Rayleigh-Taylor unstable shell of the Vela supernova remnant; thereby the "jet" is interpreted as a part of the general shell of the remnant. The origin of deformations as well as the general structure of the remnant are discussed in the framework of a model based on a cavity explosion of a supernova star. It is suggested that the shell deformations viewed at various angles appear as filamentary structures visible throughout the Vela supernova remnant at radio, optical, and X-ray wavelengths. A possible origin of the nebula of hard X-ray emission detected by Willmore et al. (1992) around the Vela pulsar is proposed.

  3. Chandra Multiwavelength Project X-ray Point Source Catalog

    E-Print Network [OSTI]

    Minsun Kim; Dong-Woo Kim; Belinda J. Wilkes; Paul J. Green; Eunhyeuk Kim; Craig S. Anderson; Wayne A. Barkhouse; Nancy R. Evans; Zeljko Ivezic; Margarita Karovska; Vinay L. Kashyap; Myung Gyoon Lee; Peter Maksym; Amy E. Mossman; John D. Silverman; Harvey D. Tananbaum

    2006-11-28T23:59:59.000Z

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6,800 X-ray sources detected in 149 Chandra observations covering \\~10 deg^2. The full ChaMP catalog sample is seven times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124 ksec, corresponding to a deepest X-ray flux limit of f_{0.5-8.0} = 9 x 10^{-16} erg/cm2/sec. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines, and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in 8 different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability and positional uncertainty. To quantitatively assess those parameters, we performed extensive simulations. In particular, we present a set of empirical equations: the flux limit as a function of effective exposure time, and the positional uncertainty as a function of source counts and off axis angle. The false source detection rate is ~1% of all detected ChaMP sources, while the detection probability is better than ~95% for sources with counts >30 and off axis angle <5 arcmin. The typical positional offset between ChaMP X-ray source and their SDSS optical counterparts is 0.7+-0.4 arcsec, derived from ~900 matched sources.

  4. EIGENMODE ANALYSIS OF OPTICAL GUIDING IN FREE ELECTRON LASERS

    E-Print Network [OSTI]

    Xie, M.

    2010-01-01T23:59:59.000Z

    of Optical Guiding in Free Electron Lasers", Department ofGuided Mode Solutions in Free Electron Lasers", "High GainResonator in Free Electron Lasers", to be published. P.

  5. An Efficient Microwave Power Source: Free-electron Laser Afterburner

    E-Print Network [OSTI]

    Wang, C.

    2008-01-01T23:59:59.000Z

    1. Block diagram of the free-electron laser afterburner. The2. The particular free-electron laser afterburner with aMicrowave Power Source: Free-Electron Laser Afterburner c.

  6. The Multi-Cavity Free-Electron Laser

    E-Print Network [OSTI]

    Krishnagopal, S.

    2008-01-01T23:59:59.000Z

    The Multi-Cavity Free-Electron Laser S. Krishnagopal, G.414 The Multi-Cavity Free-Electron Laser S. Krishnagopal, G.of Multi-Cavity Free-Electron Lasers Parameters A(,um) '

  7. Resonator Modes in High Gain Free Electron Lasers

    E-Print Network [OSTI]

    Xie, M.

    2010-01-01T23:59:59.000Z

    of Optical Guiding in Free Electron Lasers", Department ofModes in High Gain Free Electron Lasers M. Xie. D.A.O.International Free Electron Laser Conference. Naples. FL.

  8. Hole-Coupled Resonators Tunable Infrared Free Electron Lasers

    E-Print Network [OSTI]

    Xie, M.

    2011-01-01T23:59:59.000Z

    International Free Electron Laser Conference, Kobe, Japan,in Mark III Free Electron Laser", These Proceedings. B.Ozcan and R.H, Pantell, "Free Electron Laser in a Confocal

  9. Resurrection of beam conditioning for free electron lasers

    E-Print Network [OSTI]

    Xie, Ming

    2003-01-01T23:59:59.000Z

    t z , Undulators and Free-Electron Lasers, (Clarendon Press,a fatal flaw in a Free Electron Laser ( F E L ) beamO N Operation of free electron lasers in shorter wavelength

  10. Free-Electron Laser Targets Fat | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser Targets Fat April 10, 2006 Free-Electron Laser Scientists Rox Anderson, right, and Free-Electron Laser Scientist Steve Benson, left, discuss laser beam...

  11. Free-Electron Lasers: Present Status and Future Prospects

    E-Print Network [OSTI]

    Kim, K.-J.

    2008-01-01T23:59:59.000Z

    1977). C. Brau, "Free-Electron Lasers", Science 239, 115 (T. Marshall, "Free-Electron Lasers", MacMillan (1985);C Brau, "Free- Electron Lasers", Academic Press (1990). W.B.

  12. X-Ray Binary Systems in the Small Magellanic Cloud

    E-Print Network [OSTI]

    P. Kahabka; W. Pietsch

    1997-06-09T23:59:59.000Z

    We present the result of a systematic search for spectrally hard and soft X-ray binary systems in the Small Magellanic Cloud (SMC). This search has been applied to ROSAT PSPC data (0.1-2.4 keV) collected during 9 pointed observations towards this galaxy covering a time span of 2 years from October 91 till October 93. Selection criteria have been defined in order to confine the sample of candidates. Finally 7 spectrally hard and 4 spectrally soft sources were selected from the list as candidates for binaries in the SMC. The sample is luminosity limited (>3.10**35 erg/s). SMC X-1 has been observed during a full binary orbit starting with a low-state covering an X-ray eclipse and emerging into a bright long-duration flare with two short-duration flares separated by 10 hours. The Be type transient SMC X-2 has been redetected with ROSAT. Variability has been found in the sources RX J0051.8-7231 and RX J0052.1-731 already discovered with Einstein. RX J0101.0-7206 has been discovered at the north-eastern boundary of the giant SMC HII region N66 during an X-ray outburst and half a year later during a quiescent phase. A variable source, RX J0049.1-7250, located north-east of the SMC supernova remnant N19 and which may either be an X-ray binary or an AGN turns out to be strongly absorbed. It may be located behind the SMC. If it is an X-ray binary then it radiates at the Eddington limit in the X-ray bright state. Another variable and hard X-ray source RX J0032.9-7348 has been discovered at the south-eastern border of the body of the SMC. A high mass X-ray binary nature is favored for this source. We searched for CAL87 like systems in the SMC catalog and found none. A new candidate supersoft source RX J0103.8-7254 has been detected. We cannot exclude that it is a foreground object.

  13. Exploring electronic structure through high-resolution hard x...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Modern high brilliance beamlines coupled with recent advances in hard-x-ray optics are establishing high-resolution hard x-ray spectroscopies as a powerful analytical...

  14. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    E-Print Network [OSTI]

    Struminsky, Alexei

    2015-01-01T23:59:59.000Z

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV {\\gamma}-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these {\\gamma}-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and {\\pi}0-decay {\\gamma}-ray emissions are used as tracers of electron and proton acceleration, respectively. Bursts of hard X-ray were observed by ACS SPI during impulsive phase of 13 events. Bursts of hard X-ray >100 keV were not found during time intervals, when prolonged hard {\\gamma}-emission was registered by LAT/FermiGRO. Those events showing prolonged high-energy gamma-ray emission not accompanied by >100 keV hard X-ray emission are interpreted as an indication of either different acceleration processes for protons and electrons or as the presence of a proton population accelerated du...

  15. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  16. APS X-rays Reveal Picasso's Secret

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed APS X-rays Reveal Picasso's Secret OCTOBER 15, 2012 Bookmark and Share X-rays reveal that Picasso's "Old Guitarist," at...

  17. Spectral analysis of X-ray binaries

    E-Print Network [OSTI]

    Fridriksson, Joel Karl

    2011-01-01T23:59:59.000Z

    In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

  18. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03T23:59:59.000Z

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  19. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

    1994-01-01T23:59:59.000Z

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  20. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08T23:59:59.000Z

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  1. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    SciTech Connect (OSTI)

    Bionta, M. R., E-mail: mina.bionta@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); The Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Hartmann, N. [The Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Institute of Applied Physics, University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland); Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E. [The Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Nicholson, D. J. [The Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Cryan, J. P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Baker, K. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Kane, D. J. [Mesa Photonics, LLC., 1550 Pacheco St., Santa Fe, New Mexico 87505 (United States); and others

    2014-08-15T23:59:59.000Z

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses.

  2. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals

    SciTech Connect (OSTI)

    Frank, Matthias; Carlson, David B.; Hunter, Mark; Williams, Garth J.; Messerschmidt, Marc; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Chu, Kaiqin; Graf, Alexander; Hau-Riege, Stefan; Kirian, Rick; Padeste, Celestino; Pardini, Tommaso; Pedrini, Bill; Segelke, Brent; Seibert, M. M.; Spence , John C.; Tsai, Ching-Ju; Lane, Steve M.; Li, Xiao-Dan; Schertler, Gebhard; Boutet, Sebastien; Coleman, Matthew A.; Evans, James E.

    2014-02-28T23:59:59.000Z

    Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.

  3. X-ray spectroscopy of low-mass X-ray binaries

    E-Print Network [OSTI]

    Juett, Adrienne Marie, 1976-

    2004-01-01T23:59:59.000Z

    I present high-resolution X-ray grating spectroscopy of neutron stars in low-mass X-ray binaries (LMXBs) using instruments onboard the Chandra X-ray Observatory and the X-ray Multi-Mirror Mission (XMM-Newton). The first ...

  4. Extending The Methodology Of X-ray Crystallography To Allow X-ray

    E-Print Network [OSTI]

    Miao, Jianwei "John"

    , the radiation damage. While the radiation damage problem can be mitigated somewhat by using cryogenic techniques resolution without serious radiation damage to the specimens. Although X-ray crystallography becomesExtending The Methodology Of X-ray Crystallography To Allow X-ray Microscopy Without X-ray Optics

  5. Ultrafast time dynamics studies of periodic lattices with free electron laser radiation

    SciTech Connect (OSTI)

    Quevedo, W.; Busse, G.; Hallmann, J.; More, R.; Petri, M.; Rajkovic, I. [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Krasniqi, F.; Rudenko, A. [Max Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany); Tschentscher, T. [European XFEL GmbH, Albert-Einstein-Ring 19, 22671 Hamburg (Germany); Stojanovic, N.; Duesterer, S.; Treusch, R.; Tolkiehn, M. [HASYLAB at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Techert, S. [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Max Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany)

    2012-11-01T23:59:59.000Z

    It has been proposed that radiation from free electron laser (FEL) at Hamburg (FLASH) can be used for ultrafast time-resolved x-ray diffraction experiments based on the near-infrared (NIR) pump/FEL probe scheme. Here, investigation probing the ultrafast structural dynamics of periodic nano-crystalline organic matter (silver behenate) with such a scheme is reported. Excitation with a femtosecond NIR laser leads to an ultrafast lattice modification which time evolution has been studied through the scattering of vacuum ultraviolet FEL pulses. The found effect last for 6 ps and underpins the possibility for studying nanoperiodic dynamics down to the FEL source time resolution. Furthermore, the possibility of extending the use of silver behenate (AgBh) as a wavelength and temporal calibration tool for experiments with soft x-ray/FEL sources is suggested.

  6. Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility

    E-Print Network [OSTI]

    Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

    2002-01-01T23:59:59.000Z

    Accurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

  7. X-ray holography of biological specimens

    SciTech Connect (OSTI)

    Solem, J.C.

    1984-01-01T23:59:59.000Z

    The author reviews the reasons for x-ray imaging of biological specimens and the techniques presently being used for x-ray microscopy. The author points out the advantages of x-ray holography and the difficulties of obtaining the requisite coherence with conventional sources. The author discusses the problems of radiation damage and the remarkable fact that short pulse x-ray sources circumvent these problems and obtain high-resolution images of specimens in the living state. Finally, the author reviews some of the efforts underway to develop high-intensity coherent x-ray sources for the laboratory. 14 references, 5 figures, 2 tables.

  8. Chandra Deep X-ray Observation of a Typical Galactic Plane Region and Near-Infrared Identification

    E-Print Network [OSTI]

    K. Ebisawa; M. Tsujimoto; A. Paizis; K. Hamaguchi; A. Bamba; R. Cutri; H. Kaneda; Y. Maeda; G. Sato; A. Senda; M. Ueno; S. Yamauchi; V. Beckmann; T. J. -L. Courvoisier; P. Dubath; E. Nishihara

    2005-07-07T23:59:59.000Z

    Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a deep hard X-ray observation of the Galactic plane region at (l,b) ~ (28.5, 0.0), where no discrete X-ray source had been reported previously. We have detected 274 new point X-ray sources (4 sigma confidence) as well as strong Galactic diffuse emission within two partially overlapping ACIS-I fields (~250 arcmin^2in total). Sum of all the detected point source fluxes accounts for only ~ 10 % of the total X-ray flux in the field of view. Even hypothesizing a new population of much dimmer and numerous Galactic point sources, the total observed X-ray flux cannot be explained. Therefore, we conclude that X-ray emission from the Galactic plane has truly diffuse origin. Only 26 point sources were detected both in the soft and hard bands, indicating that there are two distinct classes of the X-ray sources distinguished by the spectral hardness ratio. Surface number density of the hard sources is only slightly higher than that measured at the high Galactic latitude regions, indicating that majority of the hard sources are background AGNs. Following up the Chandra observation, we have performed a near-infrared (NIR) survey with SOFI at ESO/NTT. Almost all the soft X-ray sources have been identified in NIR and their spectral types are consistent with main-sequence stars, suggesting most of them are nearby X-ray active stars. On the other hand, only 22 % of the hard sources had NIR counterparts, which are presumably Galactic. From X-ray and NIR spectral study, they are most likely to be quiescent cataclysmic variables. We have also carried out a precise spectral study of the Galactic diffuse X-ray emission excluding the point sources.

  9. Transverse Coherence of the LCLS X-Ray Beam

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.

  10. Combination free electron and gaseous laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Stein, William E. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  11. X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution

    SciTech Connect (OSTI)

    Beye, M. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); European XFEL GmbH, 22607 Hamburg (Germany); Hays, G.; Jong, S. de; Lee, S.; Coffee, R.; Holmes, M. R.; Fry, A. R.; White, W. E.; Bostedt, C.; Schlotter, W. F. [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Reid, A. H. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Radboud University Nijmegen, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Rupp, D. [Technische Universitaet Berlin, 10623 Berlin (Germany); LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Lee, W.-S.; Scherz, A. O. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chuang, Y.-D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Cryan, J. P.; Glownia, J. M. [PULSE, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Foehlisch, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany); Durr, H. A. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2012-03-19T23:59:59.000Z

    We measured the relative arrival time between an optical pulse and a soft x-ray pulse from a free-electron laser. This femtosecond cross-correlation measurement was achieved by observing the change in optical reflectivity induced through the absorption of a fraction of the x-ray pulse. The main x-ray pulse energy remained available for an independent pump-probe experiment where the sample may be opaque to soft x-rays. The method was employed to correct the two-pulse delay data from a canonical pump-probe experiment and demonstrate 130 {+-} 20 fs (FWHM) temporal resolution. We further analyze possible timing jitter sources and point to future improvements.

  12. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    SciTech Connect (OSTI)

    Nam, Daewoong [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan) [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Park, Jaehyun; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)] [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Gallagher-Jones, Marcus [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan) [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom)

    2013-11-15T23:59:59.000Z

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10{sup ?2} Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  13. Soft X-ray techniques to study mesoscale magnetism

    E-Print Network [OSTI]

    Kortright, Jeffrey B.

    2003-01-01T23:59:59.000Z

    X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.

  14. Two-element free-electron lasers

    SciTech Connect (OSTI)

    Shih, C.; Yariv, A.

    1980-02-01T23:59:59.000Z

    The interaction between the electrons and the radiation in a free-electrons laser leads to a shift and a spread of the electron velocity distribution. The electron dynamics of a two-element system are studied in the small signal region. It is found that the efficiency and gain can be increased through introduction of an adjustable drift distance between two identical wigglers.

  15. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    E-Print Network [OSTI]

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01T23:59:59.000Z

    synchronization of ultrafast x-ray pulses produced in theAccurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

  16. Controlling X-rays With Light

    SciTech Connect (OSTI)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02T23:59:59.000Z

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  17. Testing a model of variability of X-ray reprocessing features in Active Galactic Nuclei

    E-Print Network [OSTI]

    P. T. Zycki; A. Rozanska

    2001-02-13T23:59:59.000Z

    A number of recent results from X-ray observations of Active Galactic Nuclei involving the Fe K alpha line (reduction of line variability compared to the X-ray continuum variability, the X-ray ``Baldwin effect'') were attributed to a presence of a hot, ionized skin of an accretion disc, suppressing emission of the line. The ionized skin appears as a result of the thermal instability of X-ray irradiated plasma. We test this hypothesis by computing the Thomson thickness of the hot skin on top of the 'alpha P_tot' Shakura-Sunyaev disc, by simultaneously solving the vertical structure of both the hot skin and the disc. We then compute a number of relations between observable quantities, e.g. the hard X-ray flux, amplitude of the observed reprocessed component, relativistic smearing of the K alpha line, the r.m.s. variability of the hard X-rays. These relations can be compared to present and future observations. We point out that this mechanism is unlikely to explain the behaviour of the X-ray source in MCG-6-30-15, where there is a number of arguments against the existence of a thick hot skin, but it can work for some other Seyfert 1 galaxies.

  18. Optimization of future high-resolution X-ray instrumentation in astrophysics

    E-Print Network [OSTI]

    Zajczyk, Anna; Dowkontt, Paul; Guo, Qingzhen; Kislat, Fabian; Krawczynski, Henric; De Geronimo, Gianluigi; Li, Shaorui; Beilicke, Matthias

    2015-01-01T23:59:59.000Z

    Cadmium Zinc Telluride and Cadmium Telluride are the detector materials of choice for the detection of X-rays in the X-ray energy band E >= 5keV with excellent spatial and spectral resolution and without cryogenic cooling. Owing to recent breakthroughs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolution between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of X-ray telescopes will require pixelated X-ray detectors with pixels on a grid with a lattice constant of <= 250um. Additional detector requirements include a low energy threshold of less than 5keV and an energy resolution of less than one keV. The science drivers for a high angular-resolution X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, active galactic nuclei feedback, and the behaviour of matter at very high densities. In this...

  19. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  20. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

    2002-01-01T23:59:59.000Z

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  1. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; et al

    2015-05-01T23:59:59.000Z

    The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  2. X-ray populations in galaxies

    E-Print Network [OSTI]

    G. Fabbiano

    2005-11-09T23:59:59.000Z

    Today's sensistive, high resolution Chandra X-ray observations allow the study of many populations of X-ray sources. The traditional astronomical tools of photometric diagrams and luminosity functions are now applied to these populations, and provide the means for classifying the X-ray sources and probing their evolution. While overall stellar mass drives the amount of X-ray binaries in old stellar population, the amount of sources in star-forming galaxies is related to the star formation rate. Shart-lived, luminous, high mass binaries (HNXBs) dominate these young populations.

  3. X-ray laser microscope apparatus

    DOE Patents [OSTI]

    Suckewer, Szymon (Princeton, NJ); DiCicco, Darrell S. (Plainsboro, NJ); Hirschberg, Joseph G. (Coral Gables, FL); Meixler, Lewis D. (East Windsor, NJ); Sathre, Robert (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ)

    1990-01-01T23:59:59.000Z

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  4. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dell'Angela, M.; Anniyev, T.; Beye, M.; Coffee, R.; Föhlisch, A.; Gladh, J.; Kaya, S.; Katayama, T.; Krupin, O.; Nilsson, A.; et al

    2015-03-01T23:59:59.000Z

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  5. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W., E-mail: khill@pppl.gov; Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lu, J. [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Beiersdorfer, P.; Chen, H.; Magee, E. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15T23:59:59.000Z

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/?E of order 10?000 and spatial resolution better than 10 ?m. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  6. fLasHThe Free-Electron Laser new technologies for new science: Soon X-ray free-electron lasers

    E-Print Network [OSTI]

    , how molecular machines really work. Accelerators | photon Science | particle physics Deutsches in the accel- erator tunnel. The photon beam transport system in the hall delivers the FEL pulses ­ as short the feasibility of a superconducting linear electron-positron collider for elementary particle phy- sics

  7. X-ray spectroscopy of neutron star low-mass X-ray binaries

    E-Print Network [OSTI]

    Krauss, Miriam Ilana

    2007-01-01T23:59:59.000Z

    In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

  8. Chaos in free electron laser oscillators

    E-Print Network [OSTI]

    C. Bruni; R. Bachelard; D. Garzella; G. L. Orlandi; M. E. Couprie

    2009-09-04T23:59:59.000Z

    The chaotic nature of a storage-ring Free Electron Laser (FEL) is investigated. The derivation of a low embedding dimension for the dynamics allows the low-dimensionality of this complex system to be observed, whereas its unpredictability is demonstrated, in some ranges of parameters, by a positive Lyapounov exponent. The route to chaos is then explored by tuning a single control parameter, and a period-doubling cascade is evidenced, as well as intermittence.

  9. Laser Heater and seeded Free Electron Laser

    E-Print Network [OSTI]

    Dattoli, G; Sabia, E

    2014-01-01T23:59:59.000Z

    In this paper we consider the effect of laser heater on a seeded Free Electron Laser. We develop a model embedding the effect of the energy modulation induced by the heater with those due to the seeding. The present analysis is compatible with the experimental results obtained at FERMI displaying secondary maxima with increasing heater intensity. The treatment developed in the paper confirms and extends previous analyses and put in evidence further effects which can be tested in future experiments.

  10. Inverse free-electron laser accelerator

    SciTech Connect (OSTI)

    Pellegrini, C.; Campisi, R.

    1982-01-01T23:59:59.000Z

    We first describe the basic physical properties of an inverse free-electron laser and make an estimate of the order of magnitude of the accelerating field obtainable with such a system; then apply the general ideas to the design of an actual device and through this example we give a more accurate evaluation of the fundamental as well as the technical limitations that this acceleration scheme imposes.

  11. Phased Contrast X-Ray Imaging

    ScienceCinema (OSTI)

    Erin Miller

    2012-12-31T23:59:59.000Z

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  12. X-ray source populations in galaxies

    E-Print Network [OSTI]

    G. Fabbiano

    2005-11-16T23:59:59.000Z

    Today's sensitive, high-resolution X-ray observations allow the study of populations of X-ray sources, in the luminosity range of Galactic X-ray binaries, in galaxies as distant as 20-30 Mpc. The traditional astronomical tools of photometric diagrams and luminosity functions are now applied to these populations, providing a direct probe of the evolved binary component of different stellar populations. The study of the X-ray populations of E and S0 galaxies has revamped the debate on the formation and evolution of low-mass X-ray binaries (LMXBs) and on the role of globular clusters in these processes. While overall stellar mass drives the amount of X-ray binaries in old stellar populations, the amount of sources in star forming galaxies is related to the star formation rate. Short-lived, luminous, high-mass binaries (HMXBs) dominate these young populations. The most luminous sources in these systems are the debated ULXs, which have been suggested to be ~100-1000 Msol black holes, but could alternatively include a number of binaries with stellar mass black holes. Very soft sources have also been discovered in many galaxies and their nature is currently being debated. Observations of the deep X-ray sky, and comparison with deep optical surveys, are providing the first evidence of the X-ray evolution of galaxies.

  13. SWIFT X-RAY OBSERVATIONS OF CLASSICAL NOVAE. II. THE SUPER SOFT SOURCE SAMPLE

    SciTech Connect (OSTI)

    Schwarz, Greg J. [American Astronomical Society, 2000 Florida Avenue, NW, Suite 400, Washington, DC 20009-1231 (United States); Ness, Jan-Uwe [XMM-Newton Science Operations Centre, ESAC, Apartado 78, 28691 Villanueva de la Canada, Madrid (Spain); Osborne, J. P.; Page, K. L.; Evans, P. A.; Beardmore, A. P. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Walter, Frederick M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Andrew Helton, L. [SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N211-3, Moffett Field, CA 94035 (United States); Woodward, Charles E. [Minnesota Institute of Astrophysics, 116 Church Street S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Bode, Mike [Astrophysics Research Institute, Liverpool John Moores University, Birkenhead CH41 1LD (United Kingdom); Starrfield, Sumner [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Drake, Jeremy J., E-mail: Greg.Schwarz@aas.org [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 3, Cambridge, MA 02138 (United States)

    2011-12-01T23:59:59.000Z

    The Swift gamma-ray burst satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the X-Ray Telescope (0.3-10 keV) instrument count rates and the UltraViolet and Optical Telescope (1700-8000 A) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with Super Soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than three years after the outburst begins. Previous relationships, such as the nuclear burning duration versus t{sub 2} or the expansion velocity of the eject and nuclear burning duration versus the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.

  14. Transverse Coherence of a VUV Free Electron Laser

    E-Print Network [OSTI]

    Transverse Coherence of a VUV Free Electron Laser Dissertation zur Erlangung des Doktorgrades des The transverse coherence is of paramount importance for many applications of a free electron laser (FEL). In this thesis, the first direct measurement of the transverse coherence of a free electron laser at vacuum

  15. A PLASMA CHANNEL BEAM CONDITIONER FOR A FREE ELECTRON LASER

    E-Print Network [OSTI]

    Wurtele, Jonathan

    A PLASMA CHANNEL BEAM CONDITIONER FOR A FREE ELECTRON LASER G. Penn , A.M. Sessler, J.S. Wurtele of free electron lasers (FELs) can be dramatically improved. Under certain con- ditions, the FEL can transverse action and energy, has been shown to be advantageous for free electron laser (FEL) performance [1

  16. Macro-temporal structure of storage ring free electron lasers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    997 Macro-temporal structure of storage ring free electron lasers P. Elleaume Département de laser. Abstract. 2014 I derive simple dimensionless equations governing the storage ring free electron Ring Free Electron Laser (1) (S.R.L.), the S.R.L. was thought to be pseudo-continuous except for some

  17. Pinpointing the base of the AGN jets through general relativistic X-ray reverberation studies

    E-Print Network [OSTI]

    D. Emmanoulopoulos

    2014-11-03T23:59:59.000Z

    Many theoretical models of Active Galactic Nuclei (AGN) predict that the X-ray corona, lying above the black hole, constitutes the base of the X-ray jet. Thus, by studying the exact geometry of the close black hole environment, we can pinpoint the launching site of the jet. Detection of negative X-ray reverberation time delays (i.e. soft band X-ray variations lagging behind the corresponding hard band X-ray variations) can yield significant information about the geometrical properties of the AGN, such as the location of the X-ray source, as well as the physical properties of the the black hole, such as its mass and spin. In the frame-work of the lamp-post geometry, I present the first systematic X-ray time-lag modelling results of an ensemble of 12 AGN, using a fully general relativistic (GR) ray tracing approach for the estimation of the systems' response functions. By combing these state-of-the art GR response models with statistically innovative fitting routines, I derive the geometrical layout of the close BH environment for each source, unveiling the position of the AGN jet-base.

  18. X-ray Modeling of \\eta\\ Carinae and WR140 from SPH Simulations

    E-Print Network [OSTI]

    Russell, Christopher M P; Okazaki, Atsuo T; Madura, Thomas I; Owocki, Stanley P

    2011-01-01T23:59:59.000Z

    The colliding wind binary (CWB) systems \\eta\\ Carinae and WR140 provide unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, including RXTE. To interpret these RXTE X-ray light curves, we model the wind-wind collision using 3D smoothed particle hydrodynamics (SPH) simulations. Adiabatic simulations that account for the absorption of X-rays from an assumed point source at the apex of the wind-collision shock cone by the distorted winds can closely match the observed 2-10keV RXTE light curves of both \\eta\\ Car and WR140. This point-source model can also explain the early recovery of \\eta\\ Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4 reduction in the mass loss rate of \\eta\\ Car. Our more recent models relax the point-source approximation and account for the spatially extended emission along the wind-wind interaction shock front. For WR140, the computed X-ray light curve again matches the ...

  19. A Lack of Radio Emission from Neutron Star Low Mass X-ray Binaries

    E-Print Network [OSTI]

    Michael P. Muno; Tomaso Belloni; Vivek Dhawan; Edward H. Morgan; Ronald A. Remillard; Michael P. Rupen

    2004-11-11T23:59:59.000Z

    We report strict upper limits to the radio luminosities of three neutron star low-mass X-ray binaries obtained with the Very Large Array while they were in hard X-ray states as observed with the Rossi X-ray Timing Explorer: 1E 1724-307, 4U 1812-12, and SLX 1735-269. We compare these upper limits to the radio luminosities of several black hole binaries in very similar hard states, and find that the neutron star systems are as faint as or fainter than all of the black hole candidates. The differences in luminosities can partly be attributed to the lower masses of the neutron star systems, which on theoretical and observational grounds are expected to decrease the radio luminosities as M^0.8. However, there still remains a factor of 30 scatter in the radio luminosities of black hole and neutron star X-ray binaries, particularly at X-ray luminosities of a few percent Eddington. We find no obvious differences in the X-ray timing and spectral properties that can be correlated with the radio luminosity. We discuss the implications of these results on current models for the relationship between accretion and jets.

  20. An X-ray source population study of the Andromeda galaxy M 31

    E-Print Network [OSTI]

    W. Pietsch

    2005-11-01T23:59:59.000Z

    XMM-Newton EPIC observations reveal the population of X-ray sources of the bright Local Group spiral galaxy M 31, a low-star-formation-rate galaxy like the Milky Way, down to a 0.2-4.5 keV luminosity of 4.4E34 erg/s. With the help of X-ray hardness ratios and optical and radio information different source classes can be distinguished. The survey detected 856 sources in an area of 1.24 square degrees. Sources within M 31 are 44 supernova remnants (SNR) and candidates, 18 super-soft sources (SSS), 16 X-ray binaries (XRBs) and candidates, as well as 37 globular cluster sources (GlC) and candidates, i.e. most likely low mass XRBs within the GlC. 567 hard sources may either be XRBs or Crab-like SNRs in M 31 or background AGN. 22 sources are new SNR candidates in M 31 based on X-ray selection criteria. Time variability information can be used to improve the source classification. Two GlC sources show type I X-ray bursts as known from Galactic neutron star low mass XRBs. Many of the M 31 SSS detected with XMM-Newton, Chandra and ROSAT, could be identified with optical novae. Soft X-ray light curves can be determined in M 31 center observations for several novae at a time opening a new area of nova research.

  1. An inverse free electron laser accelerator experiment

    SciTech Connect (OSTI)

    Wernick, I.; Marshall, T.C.

    1992-01-01T23:59:59.000Z

    A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation ([lambda] = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1[sub w1] = 1.43cm) and then absorbed ([approximately] 40%) in a second undulator, having a tapered period (1[sub w2] = 1.8 [minus] 2.25cm), which results in the acceleration of a subgroup ([approximately] 9%) of electrons to [approximately] 1MeV.

  2. An inverse free electron laser accelerator experiment

    SciTech Connect (OSTI)

    Wernick, I.; Marshall, T.C.

    1992-12-31T23:59:59.000Z

    A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation ({lambda} = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1{sub w1} = 1.43cm) and then absorbed ({approximately} 40%) in a second undulator, having a tapered period (1{sub w2} = 1.8 {minus} 2.25cm), which results in the acceleration of a subgroup ({approximately} 9%) of electrons to {approximately} 1MeV.

  3. Free electron laser designs for laser amplification

    DOE Patents [OSTI]

    Prosnitz, Donald (Walnut Creek, CA); Szoke, Abraham (Fremont, CA)

    1985-01-01T23:59:59.000Z

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  4. Free Electron Lasers using `Beam by Design'

    E-Print Network [OSTI]

    Henderson, J R; McNeil, B W J

    2015-01-01T23:59:59.000Z

    Several methods have been proposed in the literature to improve Free Electron Laser output by transforming the electron phase-space before entering the FEL interaction region. By utilising `beam by design' with novel undulators and other beam changing elements, the operating capability of FELs may be further usefully extended. This paper introduces two new such methods to improve output from electron pulses with large energy spreads and the results of simulations of these methods in the 1D limit are presented. Both methods predict orders of magnitude improvements to output radiation powers.

  5. Free electron laser with masked chicane

    DOE Patents [OSTI]

    Nguyen, Dinh C. (Los Alamos, NM); Carlsten, Bruce E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.

  6. Do X-ray Binary Spectral State Transition Luminosities Vary?

    E-Print Network [OSTI]

    Thomas J. Maccarone

    2003-08-02T23:59:59.000Z

    We tabulate the luminosities of the soft-to-hard state transitions of all X-ray binaries for which there exist good X-ray flux measurements at the time of the transition, good distance estimates, and good mass estimates for the compact star. We show that the state transition luminosities are at about 1-4% of the Eddington rate, markedly smaller than those typically quoted in the literature, with a mean value of 2%. Only the black hole candidate GRO J~1655-40 and the neutron star systems Aql X-1 and 4U 1728-34 have measured state transition luminosities inconsistent with this value at the 1$\\sigma$ level. GRO J~1655-40, in particular, shows a state transition luminosity below the mean value for the other sources at the $4\\sigma$ level. This result, combined with the known inner disk inclination angle (the disk is nearly parallel to the line of sight) from GRO J~1655-40's relativistic jets suggest that the hard X-ray emitting region in GRO J~1655-40 can have a velocity of no more than about $\\beta=0.68$, with a most likely value of about $\\beta=0.52$, and a minimum speed of $\\beta=0.45$, assuming that the variations in state transition luminosities are solely due to relativistic beaming effects. The variance in the state transition luminosities suggests an emission region with a velocity of $\\sim0.2c$. The results are discussed in terms of different emission models for the low/hard state. We also discuss the implications for measuring the dimensionless viscosity parameter $\\alpha$. We also find that if its state transitions occur at typical luminosities, then GX 339-4 is likely to be at a distance of at least 7.6 kpc, much further than typically quoted estimates.

  7. Electron beam-based sources of ultrashort x-ray pulses.

    SciTech Connect (OSTI)

    Zholents, A.; Accelerator Systems Division (APS)

    2010-09-30T23:59:59.000Z

    A review of various methods for generation of ultrashort x-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. The importance of the time-resolved studies of matter at picosecond (ps), femtosecond (fs), and atttosecond (as) time scales using x-rays has been widely recognized including by award of a Nobel Prize in 1999 [Zewa]. Extensive reviews of scientific drivers can be found in [BES1, BES2, BES3, Lawr, Whit]. Several laser-based techniques have been used to generate ultrashort x-ray pulses including laser-driven plasmas [Murn, Alte, Risc, Rose, Zamp], high-order harmonic generation [Schn, Rund, Wang, Arpi], and laser-driven anode sources [Ande]. In addition, ultrafast streak-camera detectors have been applied at synchrotron sources to achieve temporal resolution on the picosecond time scale [Wulf, Lind1]. In this paper, we focus on a different group of techniques that are based on the use of the relativistic electron beam produced in conventional accelerators. In the first part we review several techniques that utilize spontaneous emission of electrons and show how solitary sub-ps x-ray pulses can be obtained at existing storage ring based synchrotron light sources and linacs. In the second part we consider coherent emission of electrons in the free-electron lasers (FELs) and review several techniques for a generation of solitary sub-fs x-ray pulses. Remarkably, the x-ray pulses that can be obtained with the FELs are not only significantly shorter than the ones considered in Part 1, but also carry more photons per pulse by many orders of magnitude.

  8. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-Ray ImagingX-Ray

  9. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tiedtke, K.; Sorokin, A. A.; Jastrow, U.; Jurani?, P.; Kreis, S.; Gerken, N.; Richter, M.; Arp, U.; Feng, Y.; Nordlund, D.; et al

    2014-01-01T23:59:59.000Z

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray opticalmore »elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content.« less

  10. Availability Performance and Considerations for LCLS X-Ray FEL at SLAC

    SciTech Connect (OSTI)

    Allen, W.B.; Brachmann, A.; Colocho, W.; Stanek, M.; Warren, J.; /SLAC; ,

    2011-08-16T23:59:59.000Z

    The Linac Coherent Light Source (LCLS) is an X-ray Free Electron Laser (FEL) facility located at the SLAC National Accelerator Laboratory. LCLS has been in operation since spring 2009, and it has completed its 3rd user run. LCLS is the first in its class of X-ray FEL user facilities, and presents different availability challenges compared to storage ring light sources. This paper presents recent availability performance of the FEL as well as factors to consider when defining the operational availability figure of merit for user runs. During LCLS [1] user runs, an availability of 95% has been set as a goal. In run III, LCLS photon and electron beam systems achieved availabilities of 94.8% and 96.7%, respectively. The total availability goal can be distributed among subsystems to track performance and identify areas that need attention in order to maintain and improve hardware reliability and operational availability. Careful beam time accounting is needed to understand the distribution of down time. The LCLS complex includes multiple experimental hutches for X-ray science, and each user program has different requirements of a set of parameters that the FEL can be configured to deliver. Since each user may have different criteria for what is considered 'acceptable beam', the quality of the beam must be considered to determine the X-ray beam availability.

  11. High resolution x-ray lensless imaging by differential holographic encoding

    SciTech Connect (OSTI)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02T23:59:59.000Z

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  12. Airborne Tactical Free-Electron Laser

    SciTech Connect (OSTI)

    Roy Whitney; George Neil

    2007-02-01T23:59:59.000Z

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  13. X-Ray Luminosity and Spectral Variability in the TEV BL Lac 1ES2344+514

    E-Print Network [OSTI]

    P. Giommi; P. Padovani; E. Perlman

    1998-02-02T23:59:59.000Z

    The results of a series of five \\sax observations of the TeV BL Lac object 1ES2344+514 are briefly presented. Large amplitude luminosity variability, associated to impressive spectral changes in the hard X-rays, have been found. The shape of the lightcurve depends on energy, with the flare starting and ending in the hard band, but with maximum intensity possibly reached earlier in the soft X-rays. The luminosity and spectral changes may be due to a shift of the peak of the synchrotron emission from the soft X-rays to the hard X-ray band similar to that detected during \\sax observations of MKN 501.

  14. Monte Carlo study for optimal conditions in single-shot imaging with femtosecond x-ray laser pulses

    SciTech Connect (OSTI)

    Park, Jaehyun; Ishikawa, Tetsuya; Song, Changyong [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)] [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Joti, Yasumasa [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-12-23T23:59:59.000Z

    Intense x-ray pulses from x-ray free electron lasers (XFELs) enable the unveiling of atomic structure in material and biological specimens via ultrafast single-shot exposures. As the radiation is intense enough to destroy the sample, a new sample must be provided for each x-ray pulse. These single-particle delivery schemes require careful optimization, though systematic study to find such optimal conditions is still lacking. We have investigated two major single-particle delivery methods: particle injection as flying objects and membrane-mount as fixed targets. The optimal experimental parameters were searched for via Monte Carlo simulations to discover that the maximum single-particle hit rate achievable is close to 40%.

  15. Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors

    SciTech Connect (OSTI)

    Soufli, R; Baker, S L; Robinson, J C; Gullikson, E M; McCarville, T J; Pivovaroff, M J; Stefan, P; Hau-Riege, S P; Bionta, R

    2009-04-23T23:59:59.000Z

    The development and properties of reflective coatings for the x-ray offset mirror systems of the Linac Coherent Light Source (LCLS) free-electron laser (FEL) are discussed in this manuscript. The uniquely high instantaneous dose of the LCLS FEL beam translates to strict limits in terms of materials choice, thus leading to an x-ray mirror design consisting of a reflective coating deposited on a silicon substrate. Coherent wavefront preservation requirements for these mirrors result in stringent surface figure and finish specifications. DC-magnetron sputtered B{sub 4}C and SiC thin film coatings with optimized stress, roughness and figure properties for the LCLS x-ray mirrors are presented. The evolution of microstructure, morphology, and stress of these thin films versus deposition conditions is discussed. Experimental results on the performance of these coatings with respect to FEL damage are also presented.

  16. Enhanced X-ray variability from V1647 Ori, the young star in outburst illuminating McNeil's Nebula

    E-Print Network [OSTI]

    Grosso, N; Ozawa, H; Richmond, M; Simon, T; Weintraub, D A; Hamaguchi, K; Frank, A

    2005-01-01T23:59:59.000Z

    We report a ~38 ks X-ray observation of McNeil's Nebula obtained with XMM on 2004 April 4. V1647 Ori, the young star in outburst illuminating McNeil's Nebula, is detected with XMM and appears variable in X-rays. We investigate the hardness ratio variability and time variations of the event energy distribution with quantile analysis, and show that the large increase of the count rate from V1647 Ori observed during the second half of the observation is not associated with any large plasma temperature variations as for typical X-ray flares from young low-mass stars. X-ray spectral fitting shows that the bulk (~75%) of the intrinsic X-ray emission in the 0.5-8 keV energy band comes from a soft plasma component (0.9 keV) reminiscent of the X-ray spectrum of the classical T Tauri star TW Hya, for which X-ray emission is believed to be generated by an accretion shock onto the photosphere of a low-mass star. The hard plasma component (4.2 keV) contributes ~25% of the total X-ray emission, and can be understood only i...

  17. Using X-Ray Computed Tomography in Pore Structure Characterization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Using X-Ray Computed Tomography in Pore Structure Characterization for...

  18. Manipulating X-rays with Tiny Mirrors | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for controlling X-rays. MEMS, or microelectromechanical systems, allow shrinking the optics to the microscale creating ultrafast devices for reflecting X-rays at precise times...

  19. Fuel Injection and Spray Research Using X-Ray Diagnostics

    Broader source: Energy.gov (indexed) [DOE]

    temperature ambient (plastic windows) 5 Radiography - Monochromatic x-rays - Absorption of x-rays by the fuel - Ensemble averaged (flux limited) - Room temperature ambient...

  20. Fuel Injection and Spray Research Using X-Ray Diagnostics

    Broader source: Energy.gov (indexed) [DOE]

    by ECN using several different techniques - Silicone molds (Valencia) - X-ray absorption tomography (CAT) - X-Ray phase contrast imaging (Argonne) - Microscopy (Sandia) ...

  1. X-ray induced optical reflectivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Durbin, Stephen M.

    2012-01-01T23:59:59.000Z

    The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity.Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4), a semiconductor(gallium arsenide,GaAs), and a metal (gold,Au), obtained with ?100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

  2. Columbia University X-Ray Measurements

    E-Print Network [OSTI]

    Columbia University X-Ray Measurements of the Levitated Dipole Experiment J. L. Ellsworth, J. Kesner MIT Plasma Science and Fusion Center D.T. Garnier, A.K. Hansen, M.E. Mauel Columbia University

  3. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15T23:59:59.000Z

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  4. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, Clinton M. (Pleasanton, CA)

    1994-01-01T23:59:59.000Z

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  5. X-ray grid-detector apparatus

    DOE Patents [OSTI]

    Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

    1998-01-27T23:59:59.000Z

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  6. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, C.M.

    1994-12-20T23:59:59.000Z

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  7. Principles of X-ray Navigation

    SciTech Connect (OSTI)

    Hanson, John Eric; /SLAC

    2006-03-17T23:59:59.000Z

    X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a part in 10{sup 9}. By observing these pulsations, a satellite can keep accurate time autonomously. They have demonstrated the acquisition and tracking of the Crab nebula pulsar by simulating the operation of a phase-locked loop.

  8. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, R.D.; Huang, Z.

    1998-10-20T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  9. Compton backscattered collmated X-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    2000-01-01T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  10. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    1998-01-01T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  11. Wiggler, undulator, and free-electron laser-radiation sources development at the National Synchrotron Light Source

    SciTech Connect (OSTI)

    Hsieh, H.; Krinsky, S.; Luccio, A.; Pellegrini, C.; van Steenbergen, A.

    1982-01-01T23:59:59.000Z

    An overview is presented of the special radiation sources development at the NSLS for incorporation in a 2.5 GeV X-ray storage ring and a 700 MeV vuv storage ring. This includes a superconducting high field multipole wiggler, lambda/sub c/ = 0.5A; a permanent magnet wiggler, lambda/sub c/ = 2.0A; a maximum photon energy undulator (5 to 7 keV); an undulator for a soft X-ray line or continuum spectrum and a free electron laser source tunable in the 2500 to 4500A region. Source characteristics and status of development are given. In addition, the incorporation of a backscattered Compton photon source is being studied and relevant parameters are presented.

  12. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect (OSTI)

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R. [and others

    1997-12-01T23:59:59.000Z

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  13. Rippled beam free electron laser amplifier

    DOE Patents [OSTI]

    Carlsten, Bruce E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  14. Short pulse free electron laser amplifier

    DOE Patents [OSTI]

    Schlitt, Leland G. (Livermore, CA); Szoke, Abraham (Fremont, CA)

    1985-01-01T23:59:59.000Z

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  15. Accelerator Design Study for a Soft X-Ray Free Electron Laser at the Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Kur, E.

    2010-01-01T23:59:59.000Z

    and Phase Diagnostics, SLAC Report LCLS-TN-00-12. Emma P.al. 2009, First Results of the LCLS Laser-Heater System, PACLinac Coherent Light Source (LCLS) Conceptual Design Report,

  16. Multicolor operation and spectral control in a gain-modulated x-ray free-electron laser

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    Coherent Light Source (LCLS, at SLAC) [1], SACLA (RIKEN) [experimental demonstration at LCLS. FIG. 1 (color online).demonstrated experimentally at LCLS. The experimental beam

  17. Multiphoton above-threshold ionization in superintense free-electron x-ray laser fields: Beyond the dipole approximation

    E-Print Network [OSTI]

    Zhou, Zhongyuan; Chu, Shih-I

    2013-02-13T23:59:59.000Z

    been used to study multiphoton ionization processes of a hydrogen atom interacting with XUV laser fields [11,12]. It is shown that the photoelectron angular distributions (PADs) are quite different from those of the dipole approximation when the pulse... the dipole ones for laser pulses with a duration of five OCs [11]. This approach has also been used to investigate the multiphoton ionization processes of a hydrogen atom in excited states [13] and a hydrogen molecular ion H2+ [14]. The predicted PADs...

  18. Multicolor operation and spectral control in a gain-modulated x-ray free-electron laser

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    PRL 111, 134801 (2013) PHYSICAL REVIEW LETTERS week ending2013 PHYSICAL REVIEW LETTERS PRL 111, 134801 (2013) where uPHYSICAL REVIEW LETTERS PRL 111, 134801 (2013) i u expði u

  19. Reversible electron beam heating for suppression of microbunching instabilities at free-electron lasers

    E-Print Network [OSTI]

    Behrens, Christopher; Xiang, Dao

    2011-01-01T23:59:59.000Z

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future X-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., "heating" the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) in front and behind a magnetic bunch compressor chicane. The additional energy spread will be introduced in the first TDS, which suppresses the microbunching instability, and then will be eliminated in the second T...

  20. Analogy between free electron laser and channeling by crystal planes

    E-Print Network [OSTI]

    X. Artru

    2005-03-21T23:59:59.000Z

    The trapping of electrons in the ponderomotive potential wells, which governs a free electron laser or inverse free electron laser at high gain, is analogous to the channeling of charged particles by atomic planes of a crystal. A bent crystal is analogous to a period-tapered free electron laser. This analogy is different from the well-known one between channeling and undulator radiations.

  1. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser

    SciTech Connect (OSTI)

    Hadmack, M. R.; Kowalczyk, J. M. D.; Lienert, B. R.; Madey, J. M. J.; Szarmes, E. B. [Department of Physics and Astronomy, University of Hawai'i at Manoa, Honolulu, Hawaii 96822 (United States); Jacobson, B. T. [RadiaBeam Technologies, Santa Monica, California 90404 (United States)

    2013-06-15T23:59:59.000Z

    An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.

  2. Radial x-ray diffraction of tungsten tetraboride to 86 GPa under nonhydrostatic compression

    E-Print Network [OSTI]

    Lin, Jung-Fu "Afu"

    Radial x-ray diffraction of tungsten tetraboride to 86 GPa under nonhydrostatic compression Lun December 2012; published online 16 January 2013) Investigations of the equation of state of tungsten moduli and hardness exceed- ing or closing that of diamond. Tungsten tetraboride (WB4) is a candidate

  3. Jefferson Lab's Free-Electron Laser explores promise of carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the collaboration's FEL experiment (image not actual size). Jefferson Lab's Free-Electron Laser explores promise of carbon nanotubes By James Schultz January 27, 2003...

  4. High Gradient Inverse Free Electron Laser (IFEL) Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gradient High energy gain Inverse Free Electron Laser P. Musumeci UCLA Department of Physics and Astronomy On Behalf of the RUBICON collaboration ATF user meeting, BNL, October 6...

  5. Differential phase contrast X-ray imaging system and components

    DOE Patents [OSTI]

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01T23:59:59.000Z

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  6. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05T23:59:59.000Z

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  7. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm S. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

    1997-01-01T23:59:59.000Z

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  8. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18T23:59:59.000Z

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  9. Radiographic X-Ray Pulse Jitter

    SciTech Connect (OSTI)

    Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

    2011-01-15T23:59:59.000Z

    The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

  10. Oscillations During Thermonuclear X-ray Bursts

    E-Print Network [OSTI]

    Tod E. Strohmayer

    2001-01-12T23:59:59.000Z

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290 Hz) has been claimed.

  11. Discovery of Extremely Embedded X-ray Sources in the R Coronae Australis Star Forming Core

    E-Print Network [OSTI]

    Kenji Hamaguchi; Michael F. Corcoran; Rob Petre; Nicholas E. White; Beate Stelzer; Ko Nedachi; Naoto Kobayashi; Alan T. Tokunaga

    2005-03-02T23:59:59.000Z

    With the XMM-Newton and Chandra observatories, we detected two extremely embedded X-ray sources in the R Corona Australis (R CrA) star forming core, near IRS 7. These sources, designated as XB and XA, have X-ray absorption columns of ~3e23 cm-2 equivalent to AV ~180 mag. They are associated with the VLA centimeter radio sources 10E and 10W, respectively. XA is the counterpart of the near-infrared source IRS 7, whereas XB has no K-band counterpart above 19.4 mag. This indicates that XB is younger than typical Class I protostars, probably a Class 0 protostar or in an intermediate phase between Class 0 and Class I. The X-ray luminosity of XB varied between 29X-ray brightness by a factor of two in 30 ksec during an XMM-Newton observation. The XMM-Newton spectra indicate emission from a hot plasma with kT ~3-4 keV and also show fluorescent emission from cold iron. Though the X-ray spectrum from XB is similar to flare spectra from Class I protostars in luminosity and temperature, the light curve does not resemble the lightcurves of magnetically generated X-ray flares because the variability timescale of XB is too long and because variations in X-ray count rate were not accompanied by variations in spectral hardness. The short-term variation of XB may be caused by the partial blocking of the X-ray plasma, while the month-long flux enhancement may be driven by mass accretion.

  12. X-ray and Optical Variations in the Classical Be Star gamma Cas

    E-Print Network [OSTI]

    Richard D. Robinson; Myron A. Smith; Gregory W. Henry

    2002-05-16T23:59:59.000Z

    gamma Cas (B0.5e) is known to be a unique X-ray source because ot its moderate L_x, hard X-ray spectrum, and light curve punctuated by ubiquitous flares and slow undulations. Its X-ray peculiarities have led to a controversy concerning their origin: either from wind infall onto a putative degenerate companion, as for typical Be/X-ray binaries, or from the Be star per se. Recent progress has been made to address this: (1) the discovery that gamma Cas is an eccentric binary system (P = 203.59 d) with unknown secondary type, (2) the accumulation of RXTE data at 9 epochs in 1996-2000, and (3) the collation of robotic telescope B, V-band photometric observations over 4 seasons. The latter show a 3%, cyclical flux variation with cycle lengths 55-93 days. We find that X-ray fluxes at all 9 epochs show random variations with orbital phase. This contradicts the binary accretion model, which predicts a substantial modulation. However,these fluxes correlate well with the cyclical optical variations. Also, the 6 flux measurements in 2000 closely track the interpolated optical variations between the 2000 and 2001 observing seasons. Since the optical variations represent a far greater energy than that emitted as X-rays, the optical variability cannot arise from X-ray reprocessing. However, the strong correlation between the two suggests that they are driven by a common mechanism. We propose that this mechanism is a cyclical magnetic dynamo excited by a Balbus-Hawley instability located within the inner part of the circumstellar disk. In our model, variations in the field strength directly produce the changes in the magnetically related X-ray activity. Turbulence associated with the dynamo results in changes to the density distribution within the disk and creates the observed optical variations.

  13. X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336342

    E-Print Network [OSTI]

    Limburg, Karin E.

    , Chicago, IL 60637, USA 3 Cornell High Energy Synchrotron Source and School of Applied and EngineeringX-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336­342 Published online in Wiley InterScience (www to establish a breakthrough in high-resolution, simultaneous area mapping of multiple trace elements

  14. In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high of these batteries for commercial use. The two primary obstacles are the solubility of long chain lithium

  15. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  16. Low-Mass X-Ray Binary MAXI J1421-613 Observed by MAXI GSC and Swift XRT

    E-Print Network [OSTI]

    Serino, Motoko; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A; Fukushima, Kosuke; Nagayama, Takahiro

    2015-01-01T23:59:59.000Z

    Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC and the Swift XRT follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is $\\approx$ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm$^{-2}$ s$^{-1}$. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc...

  17. Bomb Detection Using Backscattered X-Rays

    SciTech Connect (OSTI)

    Jacobs, J.; Lockwood, G.; Selph, M; Shope, S.; Wehlburg, J.

    1998-10-01T23:59:59.000Z

    Bomb Detection Using Backscattered X-rays* Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sides of the package. This poses a problem if the pachge is placed so that only one side is accessible, such as against a wall. There is also a threat to persomel and property since exTlosive devices may be "booby trapped." We have developed a method to x-ray a paclage using backscattered x-rays. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. When an object is subjected to x-rays, some of them iare scattered back towards the source. The backscattenng of x-rays is propordoml to the atomic number (Z) of the material raised to the 4.1 power. This 24"' dependence allows us to easily distinguish between explosives, wires, timer, batteries, and other bomb components. Using transmission radiography-to image the contents of an unknown package poses some undesirable risks. The object must have an x-ray film placed on the side opposite the x-ray source; this cannot be done without moving the package if it has been placed firmly against a wall or pillar. Therefore it would be extremely usefid to be able to image the contents of a package from only one side, without ever having to disturb the package itself. where E is the energy of the incoming x-ray. The volume of x-rays absorbed is important because it is, of course, directly correlated to the intensity of x-mys that will be scattered. Most of the x-rays that scatter will do so in a genemlly forward direction; however, a small percentage do scatter in a backward direction. Figure 1 shows a diagram of the various fates of x-rays directed into an object. The package that was examined in this ex~enment was an attache case made of pressed fiberboardwith a vinyl covering. It was approxirmtely 36 cm wide by 51 cm long by 13 cm deep. The case was placed on an aluminum sheet under the x-ray source. Because of the laborato~ setup, the attache case was rastered in the y-coordinate direction, while the x-ray source mstered in the x-coordinate direction. However, for field use, the x-ray source would of course raster in both the x- and y-coordinate directions, while the object under interrogation would remain stationary and undisturbed. A mobile system for use by law enforcement agencies or bomb disposal squads needs to be portable and somewhat durable. A 300 kV x-ray source should be sufficient for the task requirements and can be mounted on a mobile system. A robotic carriage could be used to transport the x-ray source and the CCD camera to the proximity of the suspect package. The controlling and data analyzing elements of the system' could then be maintained at a &tie distance from the possible explosive. F@re 8 shows a diagram of a conceptual design of a possible system for this type of use. The use of backscattered x-rays for interrogation of packages that may contain explosive devices has been shown to be feasible inthelaboratory. Usinga 150kVx-ray source anddetectors consisting of plastic scintillating material, all bomb components including the wiring were detectable. However, at this time the process requires more time than is desirable for the situations in which it will most likely be needed. Further development of the technology using CCD cameras, rather than the plastic stint illator detectors, shows promise of leading to a much faster system, as well as one with better resolution. Mounting the x- ray source and the CCD camera on a robotic vehicle while keeping the controlling and analyzing components and the opemting personnel a safe distance away from the suspect package will allow such a package to be examined at low risk to human life.

  18. The X-ray/submillimetre link

    E-Print Network [OSTI]

    O. Almaini

    2000-01-07T23:59:59.000Z

    It is widely believed that most of the cosmic X-ray background (XRB) is produced by a vast, hitherto undetected population of obscured AGN. Deep X-ray surveys with Chandra and XMM will soon test this hypothesis. Similarly, recent sub-mm surveys with SCUBA have revealed an analogous population of exceptionally luminous, dust-enshrouded {\\em star-forming} galaxies at high redshift. There is now growing evidence for an intimate link between these obscured populations. There are currently large uncertainties in the models, but several independent arguments lead to the conclusion that a significant fraction of the SCUBA sources ($10-30% $) will contain quasars. Recent observational studies of SCUBA survey sources appear to confirm these predictions, although the relative roles of AGN and star-forming activity in heating the dust are unclear. Forthcoming surveys combining X-ray and sub-mm observations will provide a very powerful tool for disentangling these processes.

  19. X-ray atlas of rheumatic diseases

    SciTech Connect (OSTI)

    Dihlmann, W.

    1986-01-01T23:59:59.000Z

    This atlas comprises instructive X-rays of the various inflammatory rheumatic joint diseases in all stages at the extremities and the spinal column. In addition, the complex pattern of the wide range of arthroses, also known as degenerative rheumatic disease is included. Besides the instructive pointers to X-ray diagnosis, the book is also a guide to differential diagnosis. Hence, this book is actually an X-ray atlas of joint diseases in general. Selected Contents: Introduction: What Does ''Rheumatism'' Actually Mean./Radiographic Methodology in Rheumatic Diseases of the Locomotor System/The Mosaic of Arthritis/Adult Rheumatoid Arthritis/Seronegative Spondylarthritis/Classic Collagen Diseases/Enthesiopathies/Gout-Pseudogout

  20. Combined microstructure x-ray optics

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.

    1989-02-01T23:59:59.000Z

    Multilayers are man-made microstructures which vary in depth and are now of sufficient quality to be used as x-ray, soft x-ray and extreme ultraviolet optics. Gratings are man-made in plane microstructures which have been used as optic elements for most of this century. Joining of these two optical microstructures to form combined microstructure optical microstructures to form combined microstructure optical elements has the potential for greatly enhancing both the throughput and the resolution attainable in these spectral ranges. The characteristics of these new optic elements will be presented and compared to experiment with emphasis on the unique properties of these combined microstructures. These results reported are general in nature and not limited to the soft x-ray or extreme ultraviolet spectral domains and also apply to neutrons. 19 refs., 7 figs., 4 tabs.

  1. X-ray reflectivity and surface roughness

    SciTech Connect (OSTI)

    Ocko, B.M.

    1988-01-01T23:59:59.000Z

    Since the advent of high brightness synchrotron radiation sources there has been a phenomenal growth in the use of x-rays as a probe of surface structure. The technique of x-ray reflectivity is particularly relevant to electrochemists since it is capable of probing the structure normal to an electrode surface in situ. In this paper the theoretical framework for x-ray reflectivity is reviewed and the results from previous non-electrochemistry measurements are summarized. These measurements are from the liquid/air interface (CCl/sub 4/), the metal crystal vacuum interface (Au(100)), and from the liquid/solid interface(liquid crystal/silicon). 34 refs., 5 figs.

  2. A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC

    SciTech Connect (OSTI)

    Pernet, Pierre-Louis; /Ecole Polytechnique, Lausanne /SLAC

    2012-01-06T23:59:59.000Z

    With the advent of X-ray Free Electron Lasers (FELs), new methods have been developed to extend capabilities at short wavelengths beyond Self-Amplified Spontaneous Emission (SASE). In particular, seeding of a FEL allows for temporal control of the radiation pulse and increases the peak brightness by orders of magnitude. Most recently, Gennady Stupakov and colleagues at SLAC proposed a new technique: Echo-Enabled Harmonic Generation (EEHG). Here a laser microbunches the beam in an undulator and the beam is sheared in a chicane. This process is repeated with a second laser, undulator and chicane. The interplay between these allows a seeding of the X-ray laser up to the 100th harmonic of the first laser. After introducing the physics of FELs and the EEHG seeding technique, we describe contributions to the experimental effort. We will present detailed studies of the experiment including the choice of parameters and their optimization, the emittance effect, spontaneous emission in the undulators, the second laser phase effect, and measurements of the jitter between RF stations. Finally, the status and preliminary results of the Echo-7 experiment will be outlined.

  3. Strongly aligned gas-phase molecules at Free-Electron Lasers

    E-Print Network [OSTI]

    Kierspel, Thomas; Mullins, Terry; Robinson, Joseph; Aquila, Andy; Barty, Anton; Bean, Richard; Boll, Rebecca; Boutet, Sébastien; Bucksbaum, Philip; Chapman, Henry N; Christensen, Lauge; Fry, Alan; Hunter, Mark; Koglin, Jason E; Liang, Mengning; Mariani, Valerio; Morgan, Andrew; Natan, Adi; Petrovic, Vladimir; Rolles, Daniel; Rudenko, Artem; Schnorr, Kirsten; Stapelfeldt, Henrik; Stern, Stephan; Thøgersen, Jan; Yoon, Chun Hong; Wang, Fenglin; Trippel, Sebastian; Küpper, Jochen

    2015-01-01T23:59:59.000Z

    We demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the Linac Coherent Light Source. Chirped laser pulses, i. e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2,5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of $\\left$ = 0.85 was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.

  4. Radiobiological studies using gamma and x rays.

    SciTech Connect (OSTI)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

    2013-02-01T23:59:59.000Z

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  5. Theoretical standards in x-ray spectroscopies

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    We propose to extend our state-of-the-art, ab initio XAFS (X-ray absorption fine structure) codes, FEFF. Our current work has been highly successful in achieving accurate, user-friendly XAFS standards, exceeding the performance of both tabulated standards and other codes by a considerable margin. We now propose to add the capability to treat more complex materials. This includes multiple-scattering, polarization dependence, an approximate treatment of XANES (x-ray absorption near edge structure), and other improvements. We also plan to adapt FEFF to other spectroscopies, e.g. photoelectron diffraction (PD) and diffraction anomalous fine structure (DAFS).

  6. Energy resolved X-ray grating interferometry

    SciTech Connect (OSTI)

    Thuering, T.; Stampanoni, M. [Swiss Light Source, Paul Scherrer Institut, Villigen PSI (Switzerland) [Swiss Light Source, Paul Scherrer Institut, Villigen PSI (Switzerland); Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (Switzerland); Barber, W. C.; Iwanczyk, J. S. [DxRay, Inc., Northridge, California 91324 (United States)] [DxRay, Inc., Northridge, California 91324 (United States); Seo, Y.; Alhassen, F. [UCSF Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143 (United States)] [UCSF Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143 (United States)

    2013-05-13T23:59:59.000Z

    Although compatible with polychromatic radiation, the sensitivity in X-ray phase contrast imaging with a grating interferometer is strongly dependent on the X-ray spectrum. We used an energy resolving detector to quantitatively investigate the dependency of the noise from the spectral bandwidth and to consequently optimize the system-by selecting the best energy band matching the experimental conditions-with respect to sensitivity maximization and, eventually, dose. Further, since theoretical calculations of the spectrum are usually limited due to non-ideal conditions, an energy resolving detector accurately quantifies the spectral changes induced by the interferometer including flux reduction and beam hardening.

  7. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-Ray

  8. Experimental Verification of the Chemical Sensitivity of Two-Site Double Core-Hole States Formed by an X-ray FEL

    E-Print Network [OSTI]

    Salen, P; Schmidt, H T; Thomas, R D; Larsson, M; Feifel, R; Piancastelli, M N; Fang, L; Murphy, B; Osipov, T; Berrah, N; Kukk, E; Ueda, K; Bozek, J D; Bostedt, C; Wada, S; Richter, R; Feyer, V; Prince, K C

    2012-01-01T23:59:59.000Z

    We have performed X-ray two-photon photoelectron spectroscopy (XTPPS) using the Linac Coherent Light Source (LCLS) X-ray free-electron laser (FEL) in order to study double core-hole (DCH) states of CO2, N2O and N2. The experiment verifies the theory behind the chemical sensitivity of two-site (ts) DCH states by comparing a set of small molecules with respect to the energy shift of the tsDCH state and by extracting the relevant parameters from this shift.

  9. Quasi-free electron energy in near critical point helium

    E-Print Network [OSTI]

    Findley, Gary L.

    Quasi-free electron energy in near critical point helium Yevgeniy Lushtak a,b , Samantha B, Monroe, LA 71209 Abstract We present for the first time the quasi-free electron energy V0() in helium from low density to the density of the triple point liquid (gaseous helium/liquid helium I

  10. TEMPERATURE MEASUREMENT SYSTEM OF NOVOSIBIRSK FREE ELECTRON LASER

    E-Print Network [OSTI]

    Kozak, Victor R.

    TEMPERATURE MEASUREMENT SYSTEM OF NOVOSIBIRSK FREE ELECTRON LASER B.A.Gudkov, P.A.Selivanov, V all sensors are recorded to the database every 30 seconds. INTRODUCTION A high-power free electron laser (FEL), based on the microtron-recuperator[1], is under construction now at Budker Institute

  11. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    SciTech Connect (OSTI)

    Hau-Riege, S; London, R A; Bionta, R M; McKernan, M A; Baker, S L; Krzywinski, J; Sobierajski, R; Nietubyc, R; Pelka, J B; Jurek, M; Klinger, D; Juha, L; Chalupsky, J; Cihelka, J; Hajkova, V; Koptyaev, S; Velyhan, A; Krasa, J; Kuba, J; Tiedtke, K; Toleikis, S; Tschentscher, T; Wabnitz, H; Bergh, M; Caleman, C; Sokolowski-Tinten, K; Stojanovic, N; Zastrau, U; Tronnier, A; Meyer-ter-Vehn, J

    2007-12-03T23:59:59.000Z

    We exposed samples of B4C, amorphous C, chemical-vapor-deposition (CVD)-diamond C, Si, and SiC to single 25 fs-long pulses of 32.5 nm free-electron-laser radiation at fluences of up to 2.2 J/cm{sup 2}. The samples were chosen as candidate materials for x-ray free electron laser (XFEL) optics. We found that the threshold for surface-damage is on the order of the fluence required for thermal melting. For larger fluences, the crater depths correspond to temperatures on the order of the critical temperature, suggesting that the craters are formed by two-phase vaporization [1]. XFELs have the promise of producing extremely high-intensity ultrashort pulses of coherent, monochromatic radiation in the 1 to 10 keV regime. The expected high output fluence and short pulse duration pose significant challenges to the optical components, including radiation damage. It has not been possible to obtain direct experimental verification of the expected damage thresholds since appropriate x-ray sources are not yet available. FLASH has allowed us to study the interaction of high-fluence short-duration photon pulses with materials at the shortest wavelength possible to date. With these experiments, we have come closer to the extreme conditions expected in XFEL-matter interaction scenarios than previously possible.

  12. Bandpass x-ray diode and x-ray multiplier detector

    DOE Patents [OSTI]

    Wang, C.L.

    1982-09-27T23:59:59.000Z

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  13. SLAC All Access: X-ray Microscope

    ScienceCinema (OSTI)

    Nelson, Johanna; Liu, Yijin

    2014-06-13T23:59:59.000Z

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  14. Catalog of supersoft X-ray sources

    E-Print Network [OSTI]

    J. Greiner

    2000-05-11T23:59:59.000Z

    This catalog comprises an up-to-date (December 1999) list of luminous (>10^36 erg/s), binary supersoft X-ray sources. This electronic version (including the accompannying Web-pages) supersedes the printed version of Greiner (1996).

  15. ASCA Discovery of Diffuse 6.4 keV Emission Near the Sgr C Complex: A New X-ray Reflection Nebula

    E-Print Network [OSTI]

    H. Murakami; K. Koyama; M. Tsujimoto; Y. Maeda; M. Sakano

    2000-12-14T23:59:59.000Z

    We present an ASCA discovery of diffuse hard X-ray emission from the Sgr C complex with its peak in the vicinity of the molecular cloud core. The X-ray spectrum is characterized by a strong 6.4-keV line and large absorption. These properties suggest that Sgr C is a new X-ray reflection nebula which emits fluorescent and scattered X-rays via irradiation from an external X-ray source. We found no adequately bright source in the immediate Sgr C vicinity to fully account for the fluorescence. The irradiating source may be the Galactic nucleus Sgr A*, which was brighter in the past than it is now as is suggested from observations of the first X-ray reflection nebula Sgr B2.

  16. A kpc-scale X-ray jet in the BL Lac source S5 2007+777

    E-Print Network [OSTI]

    Rita M. Sambruna; Davide Donato; C. C. Cheung; F. Tavecchio; L. Maraschi

    2008-05-07T23:59:59.000Z

    X-ray jets in AGN are commonly observed in FRII and FRI radio-galaxies, but rarely in BL Lacs, most probably due to their orientation close to the line of sight and the ensuing foreshortening effects. Only three BL Lacs are known so far to contain a kpc-scale X-ray jet. In this paper, we present the evidence for the existence of a fourth extended X-ray jet in the classical radio-selected source S5 2007+777, which for its hybrid FRI/II radio morphology has been classified as a HYMOR (HYbrid MOrphology Radio source). Our Chandra ACIS-S observations of this source revealed an X-ray counterpart to the 19"-long radio jet. Interestingly, the X-ray properties of the kpc-scale jet in S5 2007+777 are very similar to those observed in FRII jets. First, the X-ray morphology closely mirrors the radio one, with the X-rays being concentrated in the discrete radio knots. Second, the X-ray continuum of the jet/brightest knot is described by a very hard power law, with photon index Gamma_x~1, although the uncertainties are large. Third, the optical upper limit from archival HST data implies a concave radio-to-X-ray SED. If the X-ray emission is attributed to IC/CMB with equipartition, strong beaming (delta=13) is required, implying a very large scale (Mpc) jet. The beaming requirement can be somewhat relaxed assuming a magnetic field lower than equipartition. Alternatively, synchrotron emission from a second population of very high-energy electrons is viable. Comparison to other HYMOR jets detected with Chandra is discussed, as well as general implications for the origin of the FRI/II division.

  17. The relation between X-ray spectral index and the Eddington ratio in AGNs

    E-Print Network [OSTI]

    W. Bian

    2005-08-26T23:59:59.000Z

    Using the H$\\beta$ linewidth, we obtained the virial central supermassive black hole masses and then the Eddington ratios in a sample of broad-line AGNs and NLS1s observed by ASCA. Combined with the data from ROSAT and Chandra observations, We found a strong correlation between hard/soft X-ray photon index and the Eddington ratio. Such a correlation can be understood by a two-zone accretion flow model, in which zone is a thin disk and the inner zone is an advection-dominated accretion flow (ADAF) disk. The relation between X-ray photon index and the Eddington ratio may account for NLS1s with not too steep X-ray photon index founded by SDSS. If this relation is directly related to the accretion disk, it may also exist in the accretion disk of different scales (such as microquasar).

  18. X-ray Spontaneous Emission Control By 1D-PBG Structure

    SciTech Connect (OSTI)

    Andre, Jean-Michel; Jonnard, Philippe [Laboratoire de Chimie Physique-Matiere et Rayonnement, CNRS, Universite Paris 6, UMR 7614, 11 rue Pierre et Marie Curie, F-75231 Paris CEDEX 05 (France)

    2010-04-06T23:59:59.000Z

    The control of the decay rate of an excited atom through the photonic mode density (PMD) was pointed out at radiofrequency by Purcell in 1946. Nowadays the development of sophisticated photonic band structures makes it possible to monitor the PMD at shorter radiation wavelengths and then to manipulate the spontaneous emission of atoms in the hard region of the electromagnetic spectrum especially in the visible domain. In this communication we study the possibility of monitoring the x-ray emission by means of one-dimensional photonic band structures such as periodic multilayer systems. Enhancement or inhibition of soft x-ray emissions seems now to be feasible by means of the state-of-the art in x-ray optics.

  19. Rise time measurement for ultrafast X-ray pulses

    DOE Patents [OSTI]

    Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

    2005-04-05T23:59:59.000Z

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  20. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05T23:59:59.000Z

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  1. X-ray microscopy using grazing-incidence reflections optics

    SciTech Connect (OSTI)

    Price, R.H.

    1983-06-30T23:59:59.000Z

    The role of Kirkpatrick-Baez microscopes as the workhorse of the x-ray imaging devices is discussed. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  2. X-ray microscopy using grazing-incidence reflection optics

    SciTech Connect (OSTI)

    Price, R.H.

    1981-08-06T23:59:59.000Z

    The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  3. Possibility of corrector plate tuning of x-ray focusing

    SciTech Connect (OSTI)

    Talman, Richard

    2009-05-01T23:59:59.000Z

    Schemes for focusing a hard x-ray beam to a small spot are described. The theoretical minimum spot size, assuming perfect mirror shape, is shown to be 4 nm FWHM, independent of x-ray wavelength. This is less than the 10 nm previously said to be the minimum achievable diffraction-limited x-ray spot size. While providing the penetrating power only possible with x rays, this approaches the resolution needed to image individual atoms or atomic layers. However, the perfect mirror assumption is physically unrealistic. This paper discusses the compensation of mirror shape errors by a corrector plate and shows that the tolerances for corrector plate shape are far looser than are tolerances for mirror shape. The full eventual success of achieving theoretical minimum resolution will require mirror shape precision considerably better than has been achieved at this time, though far looser than would be required for simpleminded paraboloidal focusing. Two variants of the scheme, subject to the same mathematical treatment, are described. (i) The ''corrector plate'' name is copied from the similarly functioning element of the same name in a Schmidt camera. The focusing is achieved using glancing, yet coherent, reflection from a high-Z paraboloidal mirror. The strategy is to obtain dominant focusing from reflection and to compensate with weak refractive focusing. The reflective focusing is strong and achromatic but insufficiently accurate. The refractive focusing is weak and chromatic but highly accurate. The corrector plate improves resolution the way eyeglasses help a person to see. It can, for example, be ''fitted'' the same trial-and-error way an optometrist establishes a prescription for glasses. Dimensional tolerances for the compensator are far looser than would be needed for a mirror to achieve the same resolution. Unlike compound refractive lenses, attenuation will be small, at least for wavelengths longer than 1 A, because the compensation layer is thin. (ii) For this variant, the corrector plate is a washer-shaped refractive or Fresnel lens, and the mirror is (theoretically) a perfect cone. All focusing is provided by the lens. Even though the cone provides no focusing, it improves the resolution by increasing the numerical aperture of the device. Compared to a paraboloidal shape, it is assumed that the conical shape can be more accurately fabricated. Of the two variants, only the first variant is, in principle, capable of achieving the theoretical minimum resolution. Configurations are suggested, in both case (i) and case (ii), that use currently possible construction precisions to produce resolutions better than have been achieved to date. However, both results will remain well above the theoretical minimum until fabrication techniques have been developed that provide greater precision than is possible at this time.

  4. X-Ray Synchrotron Emitting Fe-Rich Ejecta in SNR RCW 86

    E-Print Network [OSTI]

    Jeonghee Rho; Kristy K. Dyer; Kazimierz J. Borkowski; Stephen P. Reynolds

    2002-07-31T23:59:59.000Z

    Supernova remnants may exhibit both thermal and nonthermal X-ray emission. We present Chandra observations of RCW 86. Striking differences in the morphology of X-rays below 1 keV and above 2 keV point to a different physical origin. Hard X-ray emission is correlated fairly well with the edges of regions of radio emission, suggesting that these are the locations of shock waves at which both short-lived X-ray emitting electrons, and longer-lived radio-emitting electrons, are accelerated. Soft X-rays are spatially well-correlated with optical emission from nonradiative shocks, which are almost certainly portions of the outer blast wave. These soft X-rays are well fit with simple thermal plane-shock models. Harder X-rays show Fe K alpha emission and are well described with a similar soft thermal component, but a much stronger synchrotron continuum dominating above 2 keV, and a strong Fe K alpha line. Quantitative analysis of this line and the surrounding continuum shows that it cannot be produced by thermal emission from a cosmic-abundance plasma; the ionization time is too short, as shown both by the low centroid energy (6.4 keV) and the absence of oxygen lines below 1 keV. Instead, a model of a plane shock into Fe-rich ejecta, with a synchrotron continuum, provides a natural explanation. This requires that reverse shocks into ejecta be accelerating electrons to energies of order 50 TeV. We show that maximum energies of this order can be produced by radiation-limited diffusive shock acceleration at the reverse shocks.

  5. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L. (Princeton, NJ); Fraenkel, Ben (Jerusalem, IL); Gorman, James L. (Bordentown, NJ); Hill, Kenneth W. (Lawrenceville, NJ); Roquemore, A. Lane (Cranbury, NJ); Stodiek, Wolfgang (Princeton, NJ); von Goeler, Schweickhard E. (Princeton, NJ)

    2001-01-01T23:59:59.000Z

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  6. The spectral energy distribution of quiescent black hole X-ray binaries: new constraints from Spitzer

    E-Print Network [OSTI]

    E. Gallo; S. Migliari; S. Markoff; J. Tomsick; C. Bailyn; S. Berta; R. Fender; J. Miller-Jones

    2007-06-30T23:59:59.000Z

    (Abridged) Among the various issues that remain open in the field of accretion onto black hole X-ray binaries (BHBs) is the way the gas accretes at very low Eddington ratios, in the so-called quiescent regime. While there is general agreement that the X-rays are produced by a population of high-energy electrons near to the BH, the controversy comes about in modeling the contribution from inflowing vs. outflowing particles, and their relative energy budget. Recent Spitzer observations of three quiescent BHBs have shown evidence for excess emission with respect to the tail of the companion star between 8-24 micron. We suggest that synchrotron emission from a partially self-absorbed outflow might be responsible for the observed mid-IR excess, in place of, or in addition to, thermal emission from circumbinary material. If so, then the jet synchrotron luminosity exceeds the measured 2-10 keV luminosity by a factor of a few in these systems. In turn, the mechanical power stored in the jet exceeds the bolometric X-ray luminosity at least by 4 orders of magnitude. We then compile the broadband spectral energy distribution (SED) of A0620-00, the lowest Eddington-ratio stellar mass BH with a known radio counterpart, by means of simultaneous radio, optical and X-ray observations, and the archival Spitzer data. We are able to fit the SED of A0620-00 with a `maximally jet-dominated' model in which the radio through the soft X-rays are dominated by synchrotron emission, while the hard X-rays are dominated by inverse Compton at the jet base. The fitted parameters land in a range of values that is reminiscent of the Galactic Center super-massive BH Sgr A*. Most notably, the inferred ratio of the jet acceleration rate to local cooling rates is two orders of magnitude weaker with respect to higher luminosity, hard state sources.

  7. A Study of the Populations of X-ray Sources in the Small Magellanic Cloud with ASCA

    E-Print Network [OSTI]

    Jun Yokogawa; Kensuke Imanishi; Masahiro Tsujimoto; Mamiko Nishiuchi; Katsuji Koyama; Fumiaki Nagase; Robin H. D. Corbet

    2000-02-08T23:59:59.000Z

    The Advanced Satellite for Cosmology and Astrophysics (ASCA) has made multiple observations of the Small Magellanic Cloud (SMC). X-ray mosaic images in the soft (0.7--2.0 keV) and hard (2.0--7.0 keV) bands are separately constructed, and the latter provides the first hard X-ray view of the SMC. We extract 39 sources from the two-band images with a criterion of S/N>5, and conduct timing and spectral analyses for all of these sources. Coherent pulsations are detected from 12 X-ray sources; five of which are new discoveries. Most of the 12 X-ray pulsars are found to exhibit long-term flux variabilities, hence they are likely to be X-ray binary pulsars (XBPs). On the other hand, we classify four supernova remnants (SNRs) as thermal SNRs, because their spectra exhibit emission lines from highly ionized atoms. We find that XBPs and thermal SNRs in the SMC can be clearly separated by their hardness ratio (the ratio of the count rate between the hard and soft bands). Using this empirical grouping, we find many XBP candidates in the SMC, although no pulsations have yet been detected from these sources. Possible implications on the star-formation history and evolution of the SMC are presented by a comparison of the source populations in the SMC and our Galaxy.

  8. Fundamental Parameters of Low Mass X-ray Binaries II: X-Ray Persistent Systems

    E-Print Network [OSTI]

    Jorge Casares; Phil Charles

    2005-06-24T23:59:59.000Z

    The determination of fundamental parameters in X-ray luminous (persistent) X-ray binaries has been classically hampered by the large optical luminosity of the accretion disc. New methods, based on irradiation of the donor star and burst oscillations, provide the opportunity to derive dynamical information and mass constraints in many persistent systems for the first time. These techniques are here reviewed and the latest results presented.

  9. X-ray and Optical Variations in the Classical Be Star gamma Cas

    E-Print Network [OSTI]

    Robinson, R D; Henry, G W; Robinson, Richard D.; Smith, Myron A.; Henry, Gregory W.

    2002-01-01T23:59:59.000Z

    gamma Cas (B0.5e) is known to be a unique X-ray source because ot its moderate L_x, hard X-ray spectrum, and light curve punctuated by ubiquitous flares and slow undulations. Its X-ray peculiarities have led to a controversy concerning their origin: either from wind infall onto a putative degenerate companion, as for typical Be/X-ray binaries, or from the Be star per se. Recent progress has been made to address this: (1) the discovery that gamma Cas is an eccentric binary system (P = 203.59 d) with unknown secondary type, (2) the accumulation of RXTE data at 9 epochs in 1996-2000, and (3) the collation of robotic telescope B, V-band photometric observations over 4 seasons. The latter show a 3%, cyclical flux variation with cycle lengths 55-93 days. We find that X-ray fluxes at all 9 epochs show random variations with orbital phase. This contradicts the binary accretion model, which predicts a substantial modulation. However,these fluxes correlate well with the cyclical optical variations. Also, the 6 flux mea...

  10. Ignition feedback regenerative free electron laser (FEL) amplifier

    DOE Patents [OSTI]

    Kim, Kwang-Je (Burr Ridge, IL); Zholents, Alexander (Walnut Creek, CA); Zolotorev, Max (Oakland, CA)

    2001-01-01T23:59:59.000Z

    An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

  11. X-ray properties of UV-selected star forming galaxies at z~1 in the Hubble Deep Field North

    E-Print Network [OSTI]

    Laird, E S; Adelberger, K L; Steidel, C C; Reddy, N A

    2005-01-01T23:59:59.000Z

    We present an analysis of the X-ray emission from a large sample of ultraviolet (UV) selected, star forming galaxies with 0.74X-ray emission in the 2 Ms Chandra observation we are able to examine the properties of galaxies for which the emission in both UV and X-ray is expected to be predominantly due to star formation. Stacking the X-ray flux from 216 galaxies in the soft and hard bands produces significant detections. The derived mean 2-10 keV rest-frame luminosity is 2.97+/-0.26x10^(40) erg/s, corresponding to an X-ray derived star formation rate (SFR) of 6.0+/-0.6 Msolar/yr. Comparing the X-ray value with the mean UV derived SFR, uncorrected for attenuation, we find that the average UV attenuation correction factor is \\~3. By binning the galaxy sample according to UV magnitude and colour, correlations between UV and X-ray emission are also examined. We find a strong positive correlation between ...

  12. Ultra-Short Electron Bunch and X-Ray Temporal Diagnostics with an X-Band Transverse Deflector

    SciTech Connect (OSTI)

    Ding, Y.; Emma, P.; Frisch, J.; Huang, Z.; Loos, H.; Krejcik, P.; Wang, M-H.; /SLAC; Behrens, C.; /DESY

    2011-12-13T23:59:59.000Z

    The measurement of ultra-short electron bunches on the femtosecond time scale constitutes a very challenging problem. In X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS), generation of sub-ten femtosecond X-ray pulses is possible, and some efforts have been put into both ultra-short electron and X-ray beam diagnostics. Here we propose a single-shot method using a transverse rf deflector (X-band) after the undulator to reconstruct both the electron bunch and X-ray temporal profiles. Simulation studies show that about 1 fs (rms) time resolution may be achievable in the LCLS and is applicable to a wide range of FEL wavelengths and pulse lengths. The jitter, resolution and other related issues will be discussed. The successful operation of the Linac Coherent Light Source (LCLS), with its capability of generating free-electron laser (FEL) X-ray pulses from a few femtoseconds (fs) up to a few hundred fs, opens up vast opportunities for studying atoms and molecules on this unprecedented ultrashort time scale. However, tremendous challenges remain in the measurement and control of these ultrashort pulses with femtosecond precision, for both the electron beam (e-beam) and the X-ray pulses. For ultrashort e-beam bunch length measurements, a standard method has been established at LCLS using an S-band radio-frequency (rf) deflector, which works like a streak camera for electrons and is capable of resolving bunch lengths as short as {approx} 10 fs rms. However, the e-beam with low charges of 20 pC at LCLS, which is expected to be less than 10 fs in duration, is too short to be measured using this transverse deflector. The measurement of the electron bunch length is helpful in estimating the FEL X-ray pulse duration. However, for a realistic beam, such as that with a Gaussian shape or even a spiky profile, the FEL amplification varies along the bunch due to peak current or emittance variation. This will cause differences between the temporal shape or duration of the electron bunch and the X-ray pulse. Initial experiments at LCLS have revealed that characterization of the X-ray pulse duration on a shot-by-shot basis is critical for the interpretation of the data. However, a reliable x-ray pulse temporal diagnostic tool is not available so far at the LCLS. We propose a novel method in this paper to characterize the FEL X-ray pulse duration and shape. A transverse rf deflector is used in conjunction with an e-beam energy spectrometer, located after the FEL undulator. By measuring the difference in the e-beam longitudinal phase space between FEL-on and FEL-off, we can obtain the time-resolved energy loss and energy spread induced from the FEL radiation, allowing the FEL X-ray temporal shape to be reconstructed.

  13. Soft x-ray capabilities for investigating the strongly correlated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray, aiming to understand their sciences for applying a new material. In particular, soft x-ray capabilities have been used to obtain microscopic-level understanding of the...

  14. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    times science has used high-brilliance x-rays to look so closely at these reactions. Lead author Dr. David Mueller at the ALS using x-rays to characterize working fuel cells....

  15. A World's Top-10 X-ray Crystal Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A World's Top-10 X-ray Crystal Structure October 7, 2014 Bookmark and Share Philip Coppens An x-ray crystal structure solved by Philip Coppens has been chosen as one of the world's...

  16. Beyond Chandra - the X-ray Surveyor

    E-Print Network [OSTI]

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01T23:59:59.000Z

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  17. X-ray radiography for container inspection

    DOE Patents [OSTI]

    Katz, Jonathan I. (Clayton, MO); Morris, Christopher L. (Los Alamos, NM)

    2011-06-07T23:59:59.000Z

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  18. X-ray mammography with synchrotron radiation

    SciTech Connect (OSTI)

    Burattini, E. (CNR and INFN-Laboratori Nazionali di Frascati, Frascati, Rome (Italy)); Gambaccini, M.; Marziani, M.; Rimondi, O. (Dipartimento di Fisica dell'Universita and Sezione INFN di Ferrara, Ferrara (Italy)); Indovina, P.L. (Dipartimento di Scienze Fisiche dell'Universita and Sezione INFN di Napoli, Naples (Italy)); Pocek, M.; Simonetti, G. (Istituto di Radiologia, Ospedale Sant'Eugenio, Universita di Tor Vergata, Rome (Italy)); Benassi, M.; Tirelli, C. (Istituto Nazionale del Cancro, Regina Elena, Rome (Italy)); Passariello, R. (Cattedra di Radiologia, Universita dell'Aquila, L'Aquila (Italy))

    1992-01-01T23:59:59.000Z

    For the first time in the literature, radiographs of breast phantoms were obtained using several monochromatic synchrotron radiation x-ray beams of selected energy in the range from 14 to 26 keV. In addition, after optimization of the photon energy as a function of the phantom thickness, several mammographs were obtained on surgically removed human breast specimens containing cancer nodules. Comparison between radiographs using a conventional x-ray unit and those obtained of the same specimens utilizing synchrotron monochromatic beams clearly shows that higher contrast and better resolution can be achieved with synchrotron radiation. These results demonstrate the possibility of obtaining radiographs of excised human breast tissue containing a greater amount of radiological information using synchrotron radiation.

  19. Wiggler plane focusing in a linear free electron laser

    DOE Patents [OSTI]

    Scharlemann, Ernst T. (Livermore, CA)

    1988-01-01T23:59:59.000Z

    Free electron laser apparatus that provides a magnetic centering force to turn or focus a non-axial electron toward the longitudinal axis as desired. The focusing effect is provided by wiggler magnet pole faces that are approximately parabolically shaped.

  20. Free electron laser using Rf coupled accelerating and decelerating structures

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  1. Jefferson Lab's upgraded Free-Electron Laser produces first ligh...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Navy's goals and expectations and we expect no less from the upgraded FEL." The Free-Electron Laser upgrade project is funded by the Department of Defense's Office of...

  2. Microsoft PowerPoint - High Gradient Inverse Free Electron Laser...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hi h G di t Hi h i High Gradient High energy gain Inverse Free Electron Laser at BNL P. Musumeci UCLA Department of Physics and Astronomy ATF user meeting April 2-3 2009 Outline...

  3. Model atmospheres and X-ray spectra of iron-rich bursting neutron stars. II. Iron rich Comptonized Spectra

    E-Print Network [OSTI]

    A. Majczyna; J. Madej; P. C. Joss; A. Rozanska

    2004-12-28T23:59:59.000Z

    This paper presents the set of plane-parallel model atmosphere equations for a very hot neutron star (X-ray burst source). The model equations assume both hydrostatic and radiative equilibrium, and the equation of state of an ideal gas in local thermodynamic equilibrium (LTE). The equation of radiative transfer includes terms describing Compton scattering of photons on free electrons in fully relativistic thermal motion, for photon energies approaching m_e *c^2. Model equations take into account many bound-free and free-free energy-dependent opacities of hydrogen, helium, and the iron ions, and also a dozen bound-bound opacities for the highest ions of iron. We solve model equations by partial linearisation and the technique of variable Eddington factors. Large grid of H-He-Fe model atmospheres of X-ray burst sources has been computed for 10^7 neutron stars from observational data.

  4. X-rays from Supernova Remnants

    E-Print Network [OSTI]

    B. Aschenbach

    2002-08-28T23:59:59.000Z

    A summary of X-ray observations of supernova remnants is presented including the explosion fragment A of the Vela SNR, Tycho, N132D, RX J0852-4622, the Crab Nebula and the 'bulls eye', and SN 1987A, high-lighting the progress made with Chandra and XMM-Newton and touching upon the questions which arise from these observations and which might inspire future research.

  5. Single electron beam rf feedback free electron laser

    DOE Patents [OSTI]

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11T23:59:59.000Z

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  6. Bright X-ray galaxies in SDSS filaments

    E-Print Network [OSTI]

    Tugay, A V

    2013-01-01T23:59:59.000Z

    Eighteen bright X-ray emitting galaxies were found in nearby filaments within SDSS region. Basic X-ray spectral parameters were estimated for these galaxies using power law model with photoelectric absorption. A close pair of X-ray galaxies was found.

  7. Small Angle X-ray Scattering (SAXS) Laboratory Learning Experiences

    E-Print Network [OSTI]

    Meagher, Mary

    .A. & Svergun D.I. (1987). Structure Analysis by Small-Angle X-Ray and Neutron Scattering. NY: Plenum PressSmall Angle X-ray Scattering (SAXS) Laboratory Learning Experiences o - Use of small angle X-ray scattering instrumentation o - Programs that you will use SAXS (BRUKER AXS) PRIMUS (Konarev, Volkov, Koch

  8. Femtosecond laser-electron x-ray source

    DOE Patents [OSTI]

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20T23:59:59.000Z

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  9. Exact and variational solutions of 3D Eigenmodes in high gain Free Electron Lasers

    E-Print Network [OSTI]

    Xie, M.

    2011-01-01T23:59:59.000Z

    Motz, Undulators and Free-Electron Lasers, (Clarendon Press,in High . Gain Free Electron Lasers MingXie Accelerator andin High Gain Free Electron Lasers Ming Xie Accelerator and

  10. Physically Transparent Formulation of a Free-Electron Laser in the Linear Gain Regime

    E-Print Network [OSTI]

    Barletta, W.A.

    2008-01-01T23:59:59.000Z

    in High-Gain, High-Power Free-Electron Lasers: Physics andFormulation of a Free-Electron Laser in the Linear GainFormulation of a Free-Electron Laser in the Linear Gain

  11. Design Overview of a Highly Stable Infrared Free Electron Laser at LBL

    E-Print Network [OSTI]

    Kim, K.-J.

    2011-01-01T23:59:59.000Z

    Twelfth International Free Electron Laser Conference, Paris,Stable Infrared Free Electron Laser at LBL K. -J. Kim, M.Stable Infrared Free Electron Laser at LBL* K. -J. Kim, M.

  12. Standing-Wave Free-Electron Laser Two-Beam Accelerator

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01T23:59:59.000Z

    the 11th International Free-Electron Laser Conference, Nuc!.A Standing-Wave Free-Electron Laser Two-Beam Accelerator30418 Standing-Wave Free-Electron Laser Two-Beam Accelerator

  13. Free-electron laser driven by the LBNL laser-plasma accelerator

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    Free-electron laser driven by the LBNL laser-plasmaA design of a compact free-electron laser (FEL), generatingare considered. Keywords: Free-electron laser, laser-plasma

  14. Sensitivity Studies of a Standing-Wave Free-Electron Laser

    E-Print Network [OSTI]

    Rangarahan, G.

    2008-01-01T23:59:59.000Z

    Proc. 12th Int. Free Electron Laser Conf. , Nuel. Instr. andof a Standing-Wave Free-Electron Laser G. Rangarajan and A.of a Standing-Wave Free-Electron Laser Govindan Rangarajan

  15. THE FREE ELECTRON LASER AS A POWER SOURCE FOR A HIGH-GRADIENT ACCELERATING STRUCTURE

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    18-23, 1982 THE FREE ELECTRON LASER AS A POWER SOURCE FOR AAC03-76SF00098 THE FREE ELECTRON LASER AS A POWER SOURCE FORVariable Parameter Free Electron Laser", to be pub 1 i shed

  16. The Evolution and Limits of Spectral Bandwidth in Free Electron Lasers

    E-Print Network [OSTI]

    Kim, K.-J.

    2010-01-01T23:59:59.000Z

    Spectral Bandwidth in Free Electron Lasers". In the sentenceBandwidth in Free Electron Lasers K. -J. Kim November 1990of Spectral Bandwidth in Free Electron Lasers* Kwang-Je Kim

  17. A NEW VERSION OF A FREE ELECTRON LASER TWO BEAM ACCELERATOR

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    Radiation in Free Electron Laser Two-Beam Accelerator",Power 35 GHz Testing of a Free-Electron Laser and Two-BeamA New Version of a Free Electron Laser Two-Beam Accelerator

  18. Discrete Cavity Model of a Standing-Wave Free-Electron Laser

    E-Print Network [OSTI]

    Rangarajan, G.

    2008-01-01T23:59:59.000Z

    Presented at the 1991 Free Electron Laser Conference, Santaof a Standing-Wave Free-Electron Laser G. Rangarajan, A.of a Standing-Wave Free-Electron Laser Govindan Rangarajan

  19. The Evolution and Limits of Spectral Bandwidth in Free Electron Lasers

    E-Print Network [OSTI]

    Kim, K.-J.

    2011-01-01T23:59:59.000Z

    Spectral Bandwidth in Free Electron Lasers". In the sentenceBandwidth in Free Electron Lasers K. -J. Kim November 1990of Spectral Bandwidth in Free Electron Lasers* Kwang-Je Kim

  20. Sensitivity of nonlinear harmonic generation to electron beam quality in free-electron lasers

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    Jr. , Principles of Free-electron Lasers (Chapman & Hall,experiment," in Free Electron Laser Challenges II, Harold E.Beam Quality in Free-Electron Lasers* Sandra G . Biedron*f,

  1. Macroparticle Theory of a Standing Wave Free-Electron Laser Two-Beam Accelerator

    E-Print Network [OSTI]

    Takayama, K.

    2008-01-01T23:59:59.000Z

    Motz, Undulators and Free-Electron Laser (Clarendon Press,of a Standing Wave Free-Electron Laser Two-Beam Acceleratorof a Standing Wave Free-Electron Laser Two-Beam Accelerator

  2. FREE ELECTRON LASERS FOR THE PRODUCTION OF INFRARED AND MILLIMETER WAVES

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    Hughes Low-Voltage Free-Electron Laser Program," in Proc.of the 1985 Free Electron Laser Conference, Lake Tahoe,Mark III Infrared Free-Electron Laser," in Proc. of the 1985

  3. OPTIMIZATION OF THE PARAMETERS OF A STORAGE RING FOR A HIGH POWER XUV FREE ELECTRON LASER

    E-Print Network [OSTI]

    Jackson, A.

    2010-01-01T23:59:59.000Z

    A.M. Sessler. 'free Electron Laser . LBL -l 8905 (JanuaryFOR A HIGH POWER XUV FREE ELECTRON LASER. A. Jackson, J.for a High Power XUV Free Electron Laser," (LBL'19771, June,

  4. Stability of Resonator Configurations in the Presence of Free-Electron Laser Interactions

    E-Print Network [OSTI]

    Krishnagopal, S.

    2008-01-01T23:59:59.000Z

    and R.H.Pantell, 'The Free-Electron Laser In A ConfocalInternational Free-Electron Laser Conference, Kobe, Japan,in the Presence of Free-Electron Laser Interactions S.

  5. Phase stability of a standing-wave free-electron laser

    E-Print Network [OSTI]

    Sharp, W.M.

    2008-01-01T23:59:59.000Z

    of a Standing-Wave Free-Electron Laser", proceeding of theCoupled-Cavity Free- Electron Laser Two-Beam Accelerator",of a Standing-Wave Free-Electron Laser W. M. Sharp Lawrence

  6. Part 2: Coherent emission from Free Electron Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawr, Whit. Several laser-based techniques have been used to generate ultrashort x-ray pulses including laser-driven plasmas Murn, Alte, Risc, Rose, Zamp, high-order harmonic...

  7. Longitudinally Coherent Single-Spike Radiation from a Self-Amplified Spontaneous Emission Free-Electron Laser

    E-Print Network [OSTI]

    Marcus, Gabriel Andrew

    2012-01-01T23:59:59.000Z

    of Free Electron Laser Operation . . . . . . . . . Undulatorfitting formula for free-electron lasers with strong space-modes in high-gain free-electron lasers,” Phys. Rev. ST

  8. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B.L.; Gullikson, E.M.; Davis, J.C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  9. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION

    SciTech Connect (OSTI)

    Harrison, Fiona A.; Cook, W. Rick; Forster, Karl; Grefenstette, Brian W.; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Craig, William W.; Pivovaroff, Michael J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J.; Koglin, Jason E.; Mori, Kaya [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Boggs, Steven E. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Stern, Daniel; Kim, Yunjin [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Giommi, Paolo; Perri, Matteo [ASI Science Data Center, c/o ESRIN, via G. Galilei, I-00044 Frascati (Italy); Kitaguchi, Takao, E-mail: fiona@srl.caltech.edu [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monteporzio (Italy); and others

    2013-06-20T23:59:59.000Z

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the {approx}10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z {approx}< 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element {sup 44}Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 Degree-Sign inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  10. SWIFT X-RAY AND ULTRAVIOLET MONITORING OF THE CLASSICAL NOVA V458 VUL (NOVA VUL 2007)

    SciTech Connect (OSTI)

    Ness, J.-U. [European Space Astronomy Centre, P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Drake, J. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beardmore, A. P.; Evans, P. A.; Osborne, J. P.; Page, K. L. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Boyd, D. [BAA VSS, 5 Silver Lane, West Challow, Wantage, OX12 9TX (United Kingdom); Bode, M. F. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Brady, S. [AAVSO, 5 Melba Drive, Hudson, NH 03051 (United States); Gaensicke, B. T.; Steeghs, D. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kitamoto, S.; Takei, D. [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); Knigge, C. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Miller, I. [BAA VSS, Furzehill House, Ilston, Swansea SA2 7LE (United Kingdom); Rodriguez-Gil, P. [Isaac Newton Group, PO Ap. de Correos 321, 38700 Sta. Cruz de la Palma (Spain); Schwarz, G. [Department of Geology and Astronomy, West Chester University, West Chester, PA 19383 (United States); Staels, B. [CBA Flanders, Alan Guth Observatory, Koningshofbaan 51, Hofstade, Aalst (Belgium); Tsujimoto, M. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Wesson, R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: juness@sciops.esa.int (and others)

    2009-05-15T23:59:59.000Z

    We describe the highly variable X-ray and UV emission of V458 Vul (Nova Vul 2007), observed by Swift between 1 and 422 days after outburst. Initially bright only in the UV, V458 Vul became a variable hard X-ray source due to optically thin thermal emission at kT = 0.64 keV with an X-ray band unabsorbed luminosity of 2.3 x 10{sup 34} erg s{sup -1} during days 71-140. The X-ray spectrum at this time requires a low Fe abundance (0.2{sup +0.3} {sub -0.1} solar), consistent with a Suzaku measurement around the same time. On day 315 we find a new X-ray spectral component which can be described by a blackbody with temperature of kT = 23{sup +9} {sub -5} eV, while the previous hard X-ray component has declined by a factor of 3.8. The spectrum of this soft X-ray component resembles those typically seen in the class of supersoft sources (SSS) which suggests that the nova ejecta were starting to clear and/or that the white dwarf photosphere is shrinking to the point at which its thermal emission reaches into the X-ray band. We find a high degree of variability in the soft component with a flare rising by an order of magnitude in count rate in 0.2 days. In the following observations on days 342.4-383.6, the soft component was not seen, only to emerge again on day 397. The hard component continued to evolve, and we found an anticorrelation between the hard X-ray emission and the UV emission, yielding a Spearman rank probability of 97%. After day 397, the hard component was still present, was variable, and continued to fade at an extremely slow rate but could not be analyzed owing to pile-up contamination from the bright SSS component.

  11. Proceedings of the workshop on X-ray computed microtomography

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This report consists of vugraphs from the nine presentations at the conference. Titles of the presentations are: CMT: Applications and Techniques; Computer Microtomography Using X-rays from Third Generation Synchrotron X-ray; Approaches to Soft-X-ray Nanotomography; Diffraction Enhanced Tomography; X-ray Computed Microtomography Applications at the NSLS; XCMT Applications in Forestry and Forest Products; 3DMA: Investigating Three Dimensional Pore Geometry from High Resolution Images; X-ray Computed Microtomography Studies of Volcanic Rock; and 3-D Visualization of Tomographic Volumes.

  12. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect (OSTI)

    Haugh, M. J.

    2011-07-28T23:59:59.000Z

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  13. Absorbed XFEL Dose in the Components of the LCLS X-Ray Optics

    SciTech Connect (OSTI)

    Hau-Riege, Stefan

    2010-12-03T23:59:59.000Z

    There is great concern that the short, intense XFEL pulse of the LCLS will damage the optics that will be placed into the beam. We have analyzed the extent of the problem by considering the anticipated materials and position of the optical components in the beam path, calculated the absorbed dose as a function of photon energy, and compared these doses with the expected doses required (i) to observe rapid degradation due to thermal fatigue, (ii) to reach the melting temperature, or (iii) to actually melt the material. We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

  14. Apparatus for monitoring X-ray beam alignment

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1991-10-08T23:59:59.000Z

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  15. X-ray server : an outline resource for simulations of x-ray diffraction and scattering.

    SciTech Connect (OSTI)

    Stepanov, S.; Biosciences Division

    2004-01-01T23:59:59.000Z

    X-ray Server is a public project operational at the APS since 1997 with the goals to explore novel network technologies for providing wide scientific community with access to personal research results, establishing scientific collaborations, and refining scientific software. The Server provides Web-based access to a number of programs developed by the author in the field of X-ray diffraction and scattering. The software code operates directly on the Server available for use without downloading. Currently seven programs are accessible that have been used more than 85,000 times. This report discusses the Server philosophy, provides an overview of the physical models and algorithms beneath the codes and demonstrates some applications of the programs. It is shown with examples and statistics how the Server goals are achieved. The plans for further X-ray Server development are outlined.

  16. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    SciTech Connect (OSTI)

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01T23:59:59.000Z

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  17. HgMn Stars as apparent X-ray emitters

    E-Print Network [OSTI]

    Hubrig, S; Mathys, G

    1998-01-01T23:59:59.000Z

    In the ROSAT all-sky survey 11 HgMn stars were detected as soft X-ray emitters (Berghoefer, Schmitt & Cassinelli 1996). Prior to ROSAT, X-ray observations with the Einstein Observatory had suggested that stars in the spectral range B5-A7 are devoid of X-ray emission. Since there is no X-ray emitting mechanism available for these stars (also not for HgMn stars), the usual argument in the case of an X-ray detected star of this spectral type is the existence of an unseen low-mass companion which is responsible for the X-ray emission. The purpose of the present work is to use all available data for our sample of X-ray detected HgMn stars and conclude on the nature of possible companions.

  18. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    E-Print Network [OSTI]

    Moffet, Ryan C.

    2011-01-01T23:59:59.000Z

    2-ID-B intermediate-energy scanning X-ray microscope at theW. D. , Morrison, G. R. et al. Scanning transmission X-rayX-ray spectromicroscopy with the scanning transmission X-ray

  19. The (anti)correlation of the sub-mm and X-ray background sources

    E-Print Network [OSTI]

    P. Severgnini

    2000-05-22T23:59:59.000Z

    The connection between the sub-mm and the hard X-ray backgrounds is studied by comparing data at 2-10 keV and at 850um for a sample of 34 sources at fluxes (or limiting fluxes) which resolve most of the background in the two bands. These data were obtained with new SCUBA observations and by correlating data sets available from the literature. None of the 11 hard X-ray (2-10 keV) sources has a counterpart at 850um, with the exception of a faint Chandra source, which is a candidate type 2 QSO at high redshift. These data indicate that 2-10 keV sources brighter than 10^-15 erg s-1 cm-2, which make at least 75% of the background in this band, contribute for less than 7% to the submillimetric background. Out of the 24 SCUBA sources 23 are undetected by Chandra. These data indicate that most of these SCUBA sources must be powered either by starburst activity, or by an AGN which is obscured by a column Nh > 10^25 cm-2, with a reflection efficiency in the hard X-rays significantly lower than 1% in most cases.

  20. X-Ray spectra from protons illuminating a neutron star

    E-Print Network [OSTI]

    B. Deufel; C. P. Dullemond; H. C. Spruit

    2001-08-28T23:59:59.000Z

    We consider the interaction of a slowly rotating unmagnetized neutron star with a hot (ion supported, ADAF) accretion flow. The virialized protons of the ADAF penetrate into the neutron star atmosphere, heating a surface layer. Detailed calculations are presented of the equilibrium between heating by the protons, electron thermal conduction, bremsstrahlung and multiple Compton scattering in this layer. Its temperature is of the order 40-70 keV. Its optical depth increases with the incident proton energy flux, and is of the order unity for accretion at $10^{-2}$--$10^{-1}$ of the Eddington rate. At these rates, the X-ray spectrum produced by the layer has a hard tail extending to 100 keV, and is similar to the observed spectra of accreting neutron stars in their hard states. The steep gradient at the base of the heated layer gives rise to an excess of photons at the soft end of the spectrum (compared to a blackbody) through an `inverse photosphere effect'. The differences with respect to previous studies of similar problems are discussed, they are due mostly to a more accurate treatment of the proton penetration process and the vertical structure of the heated layer.

  1. X-ray generation using carbon nanotubes

    E-Print Network [OSTI]

    Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.

    2015-01-06T23:59:59.000Z

    of these sys- tems are illustrated in Figure 2(b) also outlines the principle mode of operation. Here, sealed in an inexpensive and eas- ily fabricated evacuated glass or ceramic envelope, the elec- trons are liberated from a metallic filament, often made... - ment of CNT-based FE sources is provided in [152]. Here we provide a condensed review of the progress, as it pertains to X-ray sources, since then. CNTs have some of the highest attainable aspect ratios, high thermal conductivity, low chemical...

  2. The BMW X-ray Cluster Survey

    E-Print Network [OSTI]

    Alberto Moretti; Luigi Guzzo; Sergio Campana; Stefano Covino; Davide Lazzati; Marcella Longhetti; Emilio Molinari; Maria Rosa Panzera; Gianpiero Tagliaferri; Ian Dell'Antonio

    2001-03-21T23:59:59.000Z

    We describe the main features of the BMW survey of serendipitous X-ray clusters, based on the still unexploited ROSAT-HRI archival observations. The sky coverage, surface density and first deep optical CCD images of the candidates indicate that this sample can represent an excellent complement to the existing PSPC deep cluster surveys and will provide us with a fully independent probe of the evolution of the cluster abundance, in addition to significantly increasing the number of clusters known at z>0.6.

  3. The BMW X-ray Cluster Survey

    E-Print Network [OSTI]

    Moretti, A; Campana, S; Covino, S; Lazzati, D; Longhetti, M; Molinari, E; Panzera, M R; Tagliaferri, G; Dell'Antonio, I P; Moretti, Alberto; Guzzo, Luigi; Campana, Sergio; Covino, Stefano; Lazzati, Davide; Longhetti, Marcella; Molinari, Emilio; Panzera, Maria Rosa; Tagliaferri, Gianpiero; Antonio, Ian Dell'

    2001-01-01T23:59:59.000Z

    We describe the main features of the BMW survey of serendipitous X-ray clusters, based on the still unexploited ROSAT-HRI archival observations. The sky coverage, surface density and first deep optical CCD images of the candidates indicate that this sample can represent an excellent complement to the existing PSPC deep cluster surveys and will provide us with a fully independent probe of the evolution of the cluster abundance, in addition to significantly increasing the number of clusters known at z>0.6.

  4. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLendingX-Ray Imaging in

  5. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLendingX-Ray Imaging

  6. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLendingX-Ray

  7. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless ImagingLensless X-Ray

  8. Small Angle X-ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9Morgan ManagingW.tepidumAngle X-ray Scattering

  9. SMB, X-ray Absorption Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome to theAbsorption Spectroscopy X-ray

  10. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; et al

    2015-02-04T23:59:59.000Z

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free ?silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncoveredmore »from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science« less

  11. XMM-Newton observations of M31: X-ray properties of radio sources and SNR candidates

    E-Print Network [OSTI]

    Sergey Trudolyubov; William Priedhorsky

    2004-04-29T23:59:59.000Z

    We present the results of the ongoing XMM-Newton survey of M31. 17 X-ray sources detected in the survey have bright radio counterparts, and 15 X-ray sources coincide with SNR candidates from optical and radio surveys. 15 out of 17 sources with radio counterparts, not SNR candidates, have spectral properties similar to that observed for background radio galaxies/quasars or Crab-like supernova remnants located in M31. The remaining two sources, XMMU J004046.8+405525 and XMMU J004249.1+412407, have soft X-ray spectra, and are associated with spatially resolved H-alpha emission regions, which makes them two new SNR candidates in M31. The observed absorbed X-ray luminosities of SNR candidates in our sample range from 1e35 to 5e36 ergs/s, assuming the distance of 760 kpc. Most of the SNR candidates detected in our survey have soft X-ray spectra. The spectra of the brightest sources show presence of emission lines and can be fit by thermal plasma models with kT~0.1-0.4 keV. The results of spectral fitting of SNR candidates suggest that most of them should be located in a relatively low density regions. We show that X-ray color-color diagrams can be useful tool for distinguishing between intrinsically hard background radio sources and Crab-like SNR and thermal SNR in M31 with soft spectra.

  12. The Origin and Properties of X-ray-emitting Gas in the Halos of both Starburst and Normal Spiral Galaxies

    E-Print Network [OSTI]

    David K. Strickland

    2004-10-12T23:59:59.000Z

    I discuss the empirical properties of diffuse X-ray emitting gas in the halos of both nearby starburst galaxies and normal spiral galaxies, based on high resolution X-ray spectral imaging with the Chandra X-ray Observatory. Diffuse thermal X-ray emission can provide us with unique observational probes of outflow and accretion processes occurring in star-forming galaxies, and their interaction with the inter-galactic medium. I consider both the spatial distribution of the diffuse X-ray emission in and around edge-on starburst galaxies with superwinds (e.g. surface brightness profiles, distribution with respect to H-alpha and radio emission), and its spectral properties (e.g. thermal or non-thermal nature, abundance ratios, temperatures and soft and hard X-ray luminosities). These results are discussed in the context of current theoretical models of supernova-driven superwinds, and compared to the more limited data on extra-planar hot gas around edge-on normal galaxies.

  13. X-ray emission from Saturn

    E-Print Network [OSTI]

    Ness, J U; Wolk, S J; Dennerl, K; Burwitz, V

    2004-01-01T23:59:59.000Z

    We report the first unambiguous detection of X-ray emission originating from Saturn with a Chandra observation, duration 65.5 ksec with ACIS-S3. Beyond the pure detection we analyze the spatial distribution of X-rays on the planetary surface, the light curve, and some spectral properties. The detection is based on 162 cts extracted from the ACIS-S3 chip within the optical disk of Saturn. We found no evidence for smaller or larger angular extent. The expected background level is 56 cts, i.e., the count rate is (1.6 +- 0.2) 10^-3 cts/s. The extracted photons are rather concentrated towards the equator of the apparent disk, while both polar caps have a relative photon deficit. The inclination angle of Saturn during the observation was -27 degrees, so that the northern hemisphere was not visible during the complete observation. In addition, it was occulted by the ring system. We found a small but significant photon excess at one edge of the ring system. The light curve shows a small dip twice at identical phases,...

  14. UNVEILING THE NATURE OF IGR J17177–3656 WITH X-RAY, NEAR-INFRARED, AND RADIO OBSERVATIONS

    E-Print Network [OSTI]

    Paizis, A.

    We report on the first broadband (1-200 keV) simultaneous Chandra-INTEGRAL observations of the recently discovered hard X-ray transient IGR J17177–3656 that took place on 2011 March 22, about two weeks after the source ...

  15. Measurements of the LCLS Laser Heater and its impact on the x-ray FEL Performance

    SciTech Connect (OSTI)

    Huang, Zhirong; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Iverson, R.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Ratner, D.; Stupakov, G.; Turner, J.; Welch, J.; White, W.; Wu, J.; Xiang, D.

    2009-12-17T23:59:59.000Z

    The very bright electron beam required for an x-ray free-electron laser (FEL), such as the Linac Coherent Light Source (LCLS), is susceptible to a microbunching instability in the magnetic bunch compressors, prior to the FEL undulator. The uncorrelated electron energy spread in the LCLS can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the FEL performance. To this end, a 'laser-heater' system has been installed in the LCLS injector, which modulates the energy of a 135-MeV electron bunch with an IR laser beam in a short undulator, enclosed within a four-dipole chicane. In this paper, we report detailed measurements of laser heater-induced energy spread, including the unexpected self-heating phenomenon when the laser energy is very low. We discuss the suppression of the microbunching instability with the laser heater and its impact on the x-ray FEL performance. We also present the analysis of these experimental results and develop a three-dimensional longitudinal space charge model to explain the self-heating effect.

  16. X-ray beam-shaping via deformable mirrors: analytical computation of the required mirror profile

    E-Print Network [OSTI]

    Spiga, Daniele; Svetina, Cristian; Zangrando, Marco; 10.1016/j.nima.2012.10.117

    2013-01-01T23:59:59.000Z

    X-ray mirrors with high focusing performances are in use in both mirror mod- ules for X-ray telescopes and in synchrotron and FEL (Free Electron Laser) beamlines. A degradation of the focus sharpness arises in general from geo- metrical deformations and surface roughness, the former usually described by geometrical optics and the latter by physical optics. In general, technological developments are aimed at a very tight focusing, which requires the mirror profile to comply with the nominal shape as much as possible and to keep the roughness at a negligible level. However, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators as done at the EIS-TIMEX beamline of FERMI@Elettra. The resulting profile can be characterized with a Long Trace Profilometer and correlated with the expected optical quality via a wavefront propagation code. However, if the roughness contribution can be neglected, the com- putation can be performed via a ray-tracin...

  17. The variability properties of X-ray steep and X-ray flat quasars

    E-Print Network [OSTI]

    Fabrizio Fiore; Ari Laor; Martin Elvis; Fabrizio Nicastro; Emanuele Giallongo

    1998-03-20T23:59:59.000Z

    We have studied the variability of 6 low redshift, radio quiet `PG' quasars on three timescales (days, weeks, and months) using the ROSAT HRI. The quasars were chosen to lie at the two extreme ends of the ROSAT PSPC spectral index distribution and hence of the H$\\beta$ FWHM distribution. The observation strategy has been carefully designed to provide even sampling on these three basic timescales and to provide a uniform sampling among the quasars We have found clear evidence that the X-ray steep, narrow H_beta, quasars systematically show larger amplitude variations than the X-ray flat broad H_beta quasars on timescales from 2 days to 20 days. On longer timescales we do not find significant differences between steep and flat quasars, although the statistics are poorer. We suggest that the above correlation between variability properties and spectral steepness can be explained in a scenario in which the X-ray steep, narrow line objects are in a higher L/L_Edd state with respect to the X-ray flat, broad line objects. We evaluated the power spectrum of PG1440+356 (the brigthest quasar in our sample) between 2E-7 and 1E-3 Hz, where it goes into the noise. The power spectrum is roughly consistent with a 1/f law between 1E-3 and 2E-6 Hz. Below this frequency it flattens significantly.

  18. Interpreting the X-ray state transitions of Cygnus X-1

    E-Print Network [OSTI]

    ?echura, Jan; Hadrava, Petr

    2015-01-01T23:59:59.000Z

    We present a novel method for interpreting observations of high-mass X-ray binaries (HMXBs) based on a combination of spectroscopic data and numerical results from a radiation hydrodynamic model of stellar winds. We calculate synthetic Doppler tomograms of predicted emission in low/hard and high/soft X-ray states and compare them with Doppler tomograms produced using spectra of Cygnus X-1, a prototype of HMXBs. Emission from HMXBs is determined by local conditions within the circumstellar medium, namely density, temperature, and ionization state. These quantities depend strongly on the X-ray state of the systems. By increasing intensity of an X-ray emission produced by the compact companion in the HMXB model, we achieved a complete redistribution of the circumstellar medium in the vicinity of the modelled system. These changes (which simulate the transitions between two major spectral states) are also apparent in the synthetic Doppler tomograms which are in good agreement with the observations.

  19. Performance of CID camera X-ray imagers at NIF in a harsh neutron environment

    SciTech Connect (OSTI)

    Palmer, N. E. [LLNL; Schneider, M. B. [LLNL; Bell, P. M. [LLNL; Piston, K. W. [LLNL; Moody, J. D. [LLNL; James, D. L. [LLNL; Ness, R. A. [LLNL; Haugh, M. J. [NSTec; Lee, J. J. [NSTec; Romano, E. D. [NSTec

    2013-09-01T23:59:59.000Z

    Charge-injection devices (CIDs) are solid-state 2D imaging sensors similar to CCDs, but their distinct architecture makes CIDs more resistant to ionizing radiation.1–3 CID cameras have been used extensively for X-ray imaging at the OMEGA Laser Facility4,5 with neutron fluences at the sensor approaching 109 n/cm2 (DT, 14 MeV). A CID Camera X-ray Imager (CCXI) system has been designed and implemented at NIF that can be used as a rad-hard electronic-readout alternative for time-integrated X-ray imaging. This paper describes the design and implementation of the system, calibration of the sensor for X-rays in the 3 – 14 keV energy range, and preliminary data acquired on NIF shots over a range of neutron yields. The upper limit of neutron fluence at which CCXI can acquire useable images is ~ 108 n/cm2 and there are noise problems that need further improvement, but the sensor has proven to be very robust in surviving high yield shots (~ 1014 DT neutrons) with minimal damage.

  20. Workshops on Science Enabled by a Coherent, CW, Synchrotron X-ray Source, June 2011

    SciTech Connect (OSTI)

    Brock, Joel

    2012-01-03T23:59:59.000Z

    In June of 2011 we held six two-day workshops called "XDL-2011: Science at the Hard X-ray Diffraction Limit". The six workshops covered (1) Diffraction-based imaging techniques, (2) Biomolecular structure from non-crystalline materials, (3) Ultra-fast science, (4) High-pressure science, (5) Materials research with nano-beams and (6) X-ray photon correlation spectroscopy (XPCS), In each workshop, invited speaker from around the world presented examples of novel experiments that require a CW, diffraction-limited source. During the workshop, each invited speaker provided a one-page description of the experiment and an illustrative graphic. The experiments identified by the workshops demonstrate the broad and deep scientific case for a CW coherent synchrotron x-ray source. The next step is to perform detailed simulations of the best of these ideas to test them quantitatively and to guide detailed x-ray beam-line designs. These designs are the first step toward developing detailed facility designs and cost estimates.

  1. Results of the free electron laser oscillation experiments on the ACO storage ring

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    989 Results of the free electron laser oscillation experiments on the ACO storage ring P. Elleaume. Abstract. 2014 A storage ring free-electron laser oscillator has been operated above threshold at a visible] or from a free electron laser. The free electron laser (F.E.L.) is a very promising source of coherent

  2. Nuclear Instruments and Methods in Physics Research A 483 (2002) 482487 Anomalous free electron laser interaction

    E-Print Network [OSTI]

    Jerby, Eli

    2002-01-01T23:59:59.000Z

    Road, Ramat Aviv 69978, Israel Abstract Free electron lasers (FELs) are considered, typically, as fast: 41.60 Cr Keywords: Free electron laser 1. Introduction Free electron lasers (FELs) and cyclotronNuclear Instruments and Methods in Physics Research A 483 (2002) 482­487 Anomalous free electron

  3. democrite-00023911,version1-18Mar2005 Analogy between free electron laser

    E-Print Network [OSTI]

    Boyer, Edmond

    democrite-00023911,version1-18Mar2005 Analogy between free electron laser and channeling by crystal, which governs a free electron laser or inverse free electron laser at high gain, is analogous-tapered free electron laser. This analogy is different from the well-known one between channeling and undulator

  4. ASCA Discovery of a Be X-Ray Pulsar in the SMC: AX J0051-733

    E-Print Network [OSTI]

    Kensuke Imanishi; Jun Yokogawa; Masahiro Tsujimoto; Katsuji Koyama

    1999-10-27T23:59:59.000Z

    ASCA observed the central region of the Small Magellanic Cloud, and found a hard X-ray source, AX J0051-733, at the position of the ROSAT source RX J0050.8-7316, which has an optical counterpart of a Be star. Coherent X-ray pulsations of 323.1 +/- 0.3 s were discovered from AX J0051-733. The pulse profile shows several sub-peaks in the soft (0.7-2.0 keV) X-ray band, but becomes nearly sinusoidal in the harder (2.0-7.0 keV) X-ray band. The X-ray spectrum was found to be hard, and is well fitted by a power-law model with a photon index of 1.0 +/- 0.4. The long-term flux history was examined with the archival data of Einstein observatory and ROSAT; a flux variability with a factor > 10 was found.

  5. Sub-mm and X-ray background: two unrelated phenomena?

    E-Print Network [OSTI]

    P. Severgnini; R. Maiolino; M. Salvati; D. Axon; A. Cimatti; F. Fiore; R. Gilli; F. La Franca; A. Marconi; G. Matt; G. Risaliti; C. Vignali

    2000-06-16T23:59:59.000Z

    Obscured AGNs are thought to contribute a large fraction of the hard X-ray background (2-10 keV), and have also been proposed as the powerhouse of a fraction of the SCUBA sources which make most of the background at 850um, thus providing a link between the two spectral windows. We have tackled this issue by comparing data at 2-10 keV and at 850um for a sample of 34 sources at fluxes (or limiting fluxes) which resolve most of the background in the two bands. We present here new SCUBA observations, and new correlations between separate data sets retrieved from the literature. Similar correlations presented by others are added for completeness. None of the 11 hard X-ray (2-10 keV) sources has a counterpart at 850um, with the exception of a Chandra source in the SSA13 field, which is a candidate type 2, heavily absorbed QSO at high redshift. The ratios F(850um)/F(5keV) (mostly upper limits) of the X-ray sources are significantly lower than the value observed for the cosmic background. In particular, we obtain that 2-10 keV sources brighter than 10^-15 erg s^-1 cm^-2, which make at least 75% of the background in this band, contribute for less than 7% to the submillimeter background. Out of the 24 SCUBA sources, 23 are undetected by Chandra. The ratios F(850um)/F(5keV) (mostly lower limits) of these SCUBA sources indicate that most of them must be powered either by starburst activity, or by an AGN which is obscured by a column Nh > 10^25 cm^-2, with a reflection efficiency in the hard X rays significantly lower than 1% in most cases. However, AGNs of this type could not contribute significantly to the 2-10 keV background.

  6. Estimating the kinetic luminosity function of jets from Galactic X-ray binaries

    E-Print Network [OSTI]

    S. Heinz; H. -J. Grimm

    2005-08-11T23:59:59.000Z

    By combining the recently derived X-ray luminosity function for Galactic X-ray binaries (XRBs) by Grimm et al. (2002) and the radio-X-ray-mass relation of accreting black holes found by Merloni et al. (2003), we derive predictions for the radio luminosity function and radio flux distribution (logN/logS) for XRBs. Based on the interpretation that the radio-X-ray-mass relation is an expression of an underlying relation between jet power and nuclear radio luminosity, we derive the kinetic luminosity function for Galactic black hole jets, up to a normalization constant in jet power. We present estimates for this constant on the basis of known ratios of jet power to core flux for AGN jets and available limits for individual XRBs. We find that, if XRB jets do indeed fall on the same radio flux--kinetic power relation as AGN jets, the estimated mean kinetic luminosity of typical low/hard state jets is of the order of ~ 2x10^37 ergs/s, with a total integrated power output of W \\~ 5.5x10^38 ergs/s. We find that the power carried in transient jets should be of comparable magnitude to that carried in low/hard state jets. Including neutron star systems increases this estimate to W ~ 9x10^38 ergs/s. We estimate the total kinetic energy output from low/hard state jets over the history of the Galaxy to be E_{XRB} ~ 7x10^56 ergs.

  7. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, Andrew M. (2708 Rembrandt Pl., Modesto, CA 95356); Seppala, Lynn G. (7911 Mines Rd., Livermore, CA 94550)

    1991-01-01T23:59:59.000Z

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  8. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  9. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17T23:59:59.000Z

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  10. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26T23:59:59.000Z

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  11. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    SciTech Connect (OSTI)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11T23:59:59.000Z

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  12. Efficiency enhancement of a two-beam free-electron laser

    SciTech Connect (OSTI)

    Rouhani, M. H.; Maraghechi, B.; Saberi, H. [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of)

    2009-12-15T23:59:59.000Z

    A local and nonlinear simulation of two-beam and tapered free-electron laser (FEL) is presented self-consistently. The slippage of the electromagnetic wave with respect to the electron beam is ignored and the relativistic electron beams are assumed to be cold. The fundamental resonance and the third harmonic radiation of the beam with lower energy are considered, in which the third harmonic is at the fundamental resonance of the beam with higher energy. The wiggler field is set to decrease linearly when the radiation of the third harmonic saturates. The optimum starting point of tapering and the slope of the reduction in the amplitude of wiggler are found by successive run of the code. Using the slowly varying envelope approximation, a set of nonlinear equations is derived which describes this system. These equations are solved numerically by the Runge-Kutta method. This method can be used to improve the efficiency of the two-beam FEL in the extreme ultraviolet and x-ray regions of spectrum.

  13. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    E-Print Network [OSTI]

    Wang, Guanglei; Deng, Haixiao; Zhang, Weiqing; Wu, Guorong; Dai, Dongxu; Wang, Dong; Zhao, Zhentang; Yang, Xueming

    2015-01-01T23:59:59.000Z

    The beam energy spread at the entrance of undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs). In this paper, the dependences of high harmonic micro-bunching in the high-gain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG) and phase-merging enhanced harmonic generation (PEHG) schemes on the electron energy spread distribution are studied. Theoretical investigations and multi-dimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the performance of HGHG-FELs, while they almost have no influence on EEHG and PEHG schemes. A numerical example demonstrates that, with about 84keV RMS uniform and/or saddle slice energy spread, the 30th harmonic radiation can be directly generated by a single-stage seeding scheme for a soft x-ray FEL f...

  14. XTREME OPTICS: the behavior of cavity optics for the Jefferson Lab free-electron laser

    SciTech Connect (OSTI)

    Michelle D. Shinn; Christopher Behre; Stephen Benson; David Douglas; Fred Dylla; Christopher Gould; Joseph Gubeli; David Hardy; Kevin Jordan; George Neil; and Shukui Zhanga

    2006-09-25T23:59:59.000Z

    The cavity optics within high power free-electron lasers based on energy-recovering accelerators are subjected to extreme conditions associated with illumination from a broad spectrum of radiation, often at high irradiances. This is especially true for the output coupler, where absorption of radiation by both the mirror substrate and coating places significant design restrictions to properly manage heat load and prevent mirror distortion. Besides the fundamental lasing wavelength, the mirrors are irradiated with light at harmonics of the fundamental, THz radiation generated by the bending magnets downstream of the wiggler, and x-rays produced when the electron beam strikes accelerator diagnostic components (e.g., wire scanners and view screens) or from inadvertent beam loss. The optics must reside within high vacuum at ~ 10-8 Torr and this requirement introduces its own set of complications. This talk discusses the performance of numerous high reflector and output coupler optics assemblies and provides a detailed list of lessons learned gleaned from years of experience operating the Upgrade IR FEL, a 10 kW-class, sub-ps laser with output wavelength from 1 to 6 microns.

  15. The Chandra Local Volume Survey I: The X-ray Point Source Populations of NGC 55, NGC 2403, and NGC 4214

    E-Print Network [OSTI]

    Binder, B; Eracleous, M; Plucinsky, P P; Gaetz, T J; Anderson, S F; Skillman, E D; Dalcanton, J J; Kong, A K H; Weisz, D R

    2015-01-01T23:59:59.000Z

    We present comprehensive X-ray point source catalogs of NGC~55, NGC~2403, and NGC~4214 as part of the Chandra Local Volume Survey. The combined archival observations have effective exposure times of 56.5 ks, 190 ks, and 79 ks for NGC~55, NGC~2403, and NGC~4214, respectively. When combined with our published catalogs for NGC 300 and NGC 404, our survey contains 629 X-ray sources total down to a limiting unabsorbed luminosity of $\\sim5\\times10^{35}$ erg s$^{-1}$ in the 0.35-8 keV band in each of the five galaxies. We present X-ray hardness ratios, spectral analysis, radial source distributions, and an analysis of the temporal variability for the X-ray sources detected at high significance. To constrain the nature of each X-ray source, we carried out cross-correlations with multi-wavelength data sets. We searched overlapping Hubble Space Telescope observations for optical counterparts to our X-ray detections to provide preliminary classifications for each X-ray source as a likely X-ray binary, background AGN, su...

  16. X-ray conversion of ultra-short laser pulses on a solid sample: Role of electron waves excited in the pre-plasma

    SciTech Connect (OSTI)

    Baffigi, F., E-mail: federica.baffigi@ino.it; Cristoforetti, G.; Fulgentini, L.; Giulietti, A.; Koester, P.; Labate, L.; Gizzi, L. A. [Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica, CNR Campus, Via G. Moruzzi 1, 56124, Pisa (Italy)

    2014-07-15T23:59:59.000Z

    Flat silicon samples were irradiated with 40 fs, 800?nm laser pulses at an intensity at the best focus of 2·10{sup 18} Wcm{sup ?2}, in the presence of a pre-plasma on the sample surface. X-ray emission in the spectral range from 2 to 30?keV was detected inside and outside the plane of incidence, while varying pre-plasma scale length, laser intensity, and polarization. The simultaneous detection of 2? and 3?/2 emission allowed the contributions to the X-ray yield to be identified as originating from laser interaction with either the near-critical density (n{sub c}) region or with the n{sub c}/4 region. In the presence of a moderate pre-plasma, our measurements reveal that, provided the pre-plasma reaches a scale-length of a few laser wavelengths, X-ray emission is dominated by the contribution from the interaction with the under dense plasma, where electron plasma waves can grow, via laser stimulated instabilities, and, in turn, accelerate free electrons to high energies. This mechanism leads also to a clear anisotropy in the angular distribution of the X-ray emission. Our findings can lead to an enhancement of the conversion efficiency of ultra short laser pulses into X-rays.

  17. Ultra-short wavelength x-ray system

    DOE Patents [OSTI]

    Umstadter, Donald (Ann Arbor, MI); He, Fei (Ann Arbor, MI); Lau, Yue-Ying (Potomac, MD)

    2008-01-22T23:59:59.000Z

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  18. Legacy of the X-Ray Laser Program

    SciTech Connect (OSTI)

    Nilsen, J.

    1993-08-06T23:59:59.000Z

    The X-Ray Laser Program has evolved from a design effort focusing on developing a Strategic Defense Initiative weapon that protects against Soviet ICBMs to a scientific project that is producing new technologies for industrial and medical research. While the great technical successes and failures of the X-ray laser itself cannot be discussed, this article presents the many significant achievements made as part of the X-ray laser effort that are now being used for other applications at LLNL.

  19. Sum rules for polarization-dependent x-ray absorption

    SciTech Connect (OSTI)

    Ankudinov, A.; Rehr, J.J. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1995-01-01T23:59:59.000Z

    A complete set of sum rules is obtained for polarization-dependent x-ray-absorption fine structure and x-ray circular magnetic dichroism (CMD), analogous to those for CMD derived by Thole [ital et] [ital al]. These sum rules relate x-ray-absorption coefficients to the ground-state expectation values of various operators. Problems with applying these sum rules are discussed.

  20. A laser triggered vacuum spark x-ray lithography source

    E-Print Network [OSTI]

    Keating, Richard Allen

    1987-01-01T23:59:59.000Z

    ionized state or the physical processes occurring 15 in a high temperature plasma. There are many advantages to the use of the vacuum spark as an x-ray source; the simplicity of the machine is one. The x-ray output is within the range usable for x-ray... spark apparatus ha- been studied here to determine its applicability to x-ray lithography. A capacitor which stored approximately 3 KJ supplied most of the energy for the plasma. A Nd-YAG laser was used to supply electrons and metallic atoms...