National Library of Energy BETA

Sample records for hard black lustrous

  1. Hard, infrared black coating with very low outgassing

    SciTech Connect (OSTI)

    Kuzmenko, P J; Behne, D M; Casserly, T; Boardman, W; Upadhyaya, D; Boinapally, K; Gupta, M; Cao, Y

    2008-06-02

    Infrared astronomical instruments require absorptive coatings on internal surfaces to trap scattered and stray photons. This is typically accomplished with any one of a number of black paints. Although inexpensive and simple to apply, paint has several disadvantages. Painted surfaces can be fragile, prone to shedding particles, and difficult to clean. Most importantly, the vacuum performance is poor. Recently a plasma enhanced chemical vapor deposition (PECVD) process was developed to apply thick (30 {micro}m) diamond-like carbon (DLC) based protective coatings to the interior of oil pipelines. These DLC coatings show much promise as an infrared black for an ultra high vacuum environment. The coatings are very robust with excellent cryogenic adhesion. Their total infrared reflectivity of < 10% at normal incidence approaches that of black paints. We measured outgas rates of <10{sup -12} Torr liter/sec cm{sup 2}, comparable to bare stainless steel.

  2. NEW CONSTRAINTS ON THE BLACK HOLE LOW/HARD STATE INNER ACCRETION FLOW WITH NuSTAR

    SciTech Connect (OSTI)

    Miller, J. M.; King, A. L.; Tomsick, J. A.; Boggs, S. E.; Bachetti, M.; Wilkins, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Kara, E.; Grefenstette, B. W.; Harrison, F. A.; Hailey, C. J.; Stern, D. K; Zhang, W. W.

    2015-01-20

    We report on an observation of the Galactic black hole candidate GRS 1739–278 during its 2014 outburst, obtained with NuSTAR. The source was captured at the peak of a rising ''low/hard'' state, at a flux of ∼0.3 Crab. A broad, skewed iron line and disk reflection spectrum are revealed. Fits to the sensitive NuSTAR spectra with a number of relativistically blurred disk reflection models yield strong geometrical constraints on the disk and hard X-ray ''corona''. Two models that explicitly assume a ''lamp post'' corona find its base to have a vertical height above the black hole of h=5{sub −2}{sup +7} GM/c{sup 2} and h = 18 ± 4 GM/c {sup 2} (90% confidence errors); models that do not assume a ''lamp post'' return emissivity profiles that are broadly consistent with coronae of this size. Given that X-ray microlensing studies of quasars and reverberation lags in Seyferts find similarly compact coronae, observations may now signal that compact coronae are fundamental across the black hole mass scale. All of the models fit to GRS 1739–278 find that the accretion disk extends very close to the black hole—the least stringent constraint is r{sub in}=5{sub −4}{sup +3} GM/c{sup 2}. Only two of the models deliver meaningful spin constraints, but a = 0.8 ± 0.2 is consistent with all of the fits. Overall, the data provide especially compelling evidence of an association between compact hard X-ray coronae and the base of relativistic radio jets in black holes.

  3. U.S. Department of Energy Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    ... Report all quantities of coal or transformed coal received in whole short tons (1 short ... It is a hard, brittle, and black lustrous coal. Often referred to as hard coal, it ...

  4. ULTRAMASSIVE BLACK HOLE COALESCENCE

    SciTech Connect (OSTI)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter E-mail: k.holley@vanderbilt.edu

    2015-01-10

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.

  5. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  6. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  7. Ultrasonic material hardness depth measurement

    DOE Patents [OSTI]

    Good, Morris S.; Schuster, George J.; Skorpik, James R.

    1997-01-01

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part.

  8. Ultrasonic material hardness depth measurement

    DOE Patents [OSTI]

    Good, M.S.; Schuster, G.J.; Skorpik, J.R.

    1997-07-08

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part. 12 figs.

  9. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  10. Black Pine Engineering

    Broader source: Energy.gov [DOE]

    Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make turbomachines (turbines, compressors) that are cheaper and lighter than competing technologies. Using this technology, Black Pine Engineering will sell turbo-compressors which solve the problem of wasted steam in geothermal power plants.

  11. Gluon transversity in the hard exclusive reactions

    SciTech Connect (OSTI)

    Kivel, Nikolay

    2005-06-14

    We discuss contributions of the gluon transversity in several hard exclusive reactions and suggest observables sensitive to such amplitudes.

  12. BLACK HISTORY MONTH

    Broader source: Energy.gov [DOE]

    Black History Month is an annual celebration of achievements by black Americans and a time for recognizing the central role of African Americans in U.S. history. The event grew out of “Negro History Week,” created by historian Carter G. Woodson and other prominent African Americans. Other countries around the world, including Canada and the United Kingdom, also devote a month to celebrating black history.

  13. Leading twist nuclear shadowing phenomena in hard processes with nuclei

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    L. Franfurt; Guzey, V.; Strikman, M.

    2012-01-08

    We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We alsomore » analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.« less

  14. Leading twist nuclear shadowing phenomena in hard processes with nuclei

    SciTech Connect (OSTI)

    Leonid Frankfurt, Vadim Guzey, Mark Strikman

    2012-03-01

    We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We also analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). Detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.

  15. ARM - Black Forest News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Forest News ARM Mobile Facility Completes Field Campaign in Germany January 15, 2008 Microwave Radiometers Put to the Test in Germany September 15, 2007 Zeppelin NT Flies for ...

  16. Kevin Harding | Inventors | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Harding Kevin Harding Principal Engineer Manufacturing Technologies Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) "Optics have grown enormously over the past 30 years and now touch our everyday lives, from internet communications and medical devices to the electronics in our phones." -Kevin Harding

  17. Novel hard compositions and methods of preparation

    DOE Patents [OSTI]

    Sheinberg, H.

    1981-02-03

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value.

  18. Formation of Hard Power Laws in the Energetic Particle Spectra...

    Office of Scientific and Technical Information (OSTI)

    Formation of Hard Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection Citation Details In-Document Search Title: Formation of Hard Power ...

  19. Can reducing black carbon emissions counteract global warming?

    SciTech Connect (OSTI)

    Tami C. Bond; Haolin Sun

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  20. Aspects of hairy black holes

    SciTech Connect (OSTI)

    Anabalón, Andrés; Astefanesei, Dumitru

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  1. Novel hard compositions and methods of preparation

    DOE Patents [OSTI]

    Sheinberg, Haskell

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated.

  2. Novel hard compositions and methods of preparation

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated. 3 figs.

  3. Lumens Placard (Black) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File lumensplacard-black.eps More Documents & Publications Lumens Placard (Black) Lumens Placard (Green) Lumens Placard (Green)

  4. Gasification of black liquor

    DOE Patents [OSTI]

    Kohl, Arthur L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  5. Black hole magnetospheres

    SciTech Connect (OSTI)

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  6. Gasification of black liquor

    DOE Patents [OSTI]

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  7. Hard Diffraction at D-Zero

    SciTech Connect (OSTI)

    Paul Rubinov

    1999-01-21

    Preliminary results from the DO experiment on dijet production with forward rapidity gaps in {anti p}p collisions are presented at center-of-mass {radical}s = 1800 GeV and 630GeV. The number oi events with rapidity gaps at both center-of-mass energies is significantly greater than tne expectatmn from multiplicity fluctuations and is consistent with a hard single diffractive process. We also observe an excess of events which contain jets and two rapidity gaps, a topology which is consistent with hard double pomeron exchange.

  8. Black Pine Circle Project

    ScienceCinema (OSTI)

    Mytko, Christine

    2014-09-15

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  9. Black Pine Circle Project

    SciTech Connect (OSTI)

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  10. Laser ablated hard coating for microtools

    DOE Patents [OSTI]

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  11. Laser ablated hard coating for microtools

    DOE Patents [OSTI]

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  12. MICROMEGAS: High rate and radiation hardness results

    SciTech Connect (OSTI)

    Puill, G.; Derre, J.; Giomataris, Y.; Rebourgeard, P.

    1999-12-01

    In this report, the authors present results of gain studies using various gas mixtures in a novel structure of gaseous detector called MICROMEGAS which is under development at Saclay. The authors in particular studied the maximum of gain achievable with MICROMEGAS before the discharge. They tried various gas mixtures (Argon, Neon, CF{sub 4}) with various proportions of quencher (Isobutane, Cyclohexane, DME). They also studied the radiation hardness of MICROMEGAS using Argon-Isobutane and CF{sub 4}-Isobutane mixtures.

  13. Black Forest Partners | Open Energy Information

    Open Energy Info (EERE)

    Black Forest Partners Jump to: navigation, search Name: Black Forest Partners Place: San Francisco, California Zip: 94111 Product: San Francisco-based project developer focused on...

  14. BlackGold Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BlackGold Biofuels Jump to: navigation, search Name: BlackGold Biofuels Place: Philadelphia, Pennsylvania Zip: 19107 Product: Philadelphia-based developer of a waste...

  15. Black optic display

    DOE Patents [OSTI]

    Veligdan, James T.

    1997-01-01

    An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.

  16. Nanomechanics of hard films on compliant substrates.

    SciTech Connect (OSTI)

    Reedy, Earl David, Jr.; Emerson, John Allen; Bahr, David F.; Moody, Neville Reid; Zhou, Xiao Wang; Hales, Lucas; Adams, David Price; Yeager,John; Nyugen, Thao D.; Corona, Edmundo; Kennedy, Marian S.; Cordill, Megan J.

    2009-09-01

    a result, our understanding of the critical relationship between adhesion, properties, and fracture for hard films on compliant substrates is limited. To address this issue, we integrated nanomechanical testing and mechanics-based modeling in a program to define the critical relationship between deformation and fracture of nanoscale films on compliant substrates. The approach involved designing model film systems and employing nano-scale experimental characterization techniques to isolate effects of compliance, viscoelasticity, and plasticity on deformation and fracture of thin hard films on substrates that spanned more than two orders of compliance magnitude exhibit different interface structures, have different adhesion strengths, and function differently under stress. The results of this work are described in six chapters. Chapter 1 provides the motivation for this work. Chapter 2 presents experimental results covering film system design, sample preparation, indentation response, and fracture including discussion on the effects of substrate compliance on fracture energies and buckle formation from existing models. Chapter 3 describes the use of analytical and finite element simulations to define the role of substrate compliance and film geometry on the indentation response of thin hard films on compliant substrates. Chapter 4 describes the development and application of cohesive zone model based finite element simulations to determine how substrate compliance affects debond growth. Chapter 5 describes the use of molecular dynamics simulations to define the effects of substrate compliance on interfacial fracture of thin hard tungsten films on silicon substrates. Chapter 6 describes the Workshops sponsored through this program to advance understanding of material and system behavior.

  17. Hard turning micro-machine tool

    DOE Patents [OSTI]

    DeVor, Richard E; Adair, Kurt; Kapoor, Shiv G

    2013-10-22

    A micro-scale apparatus for supporting a tool for hard turning comprises a base, a pivot coupled to the base, an actuator coupled to the base, and at least one member coupled to the actuator at one end and rotatably coupled to the pivot at another end. A tool mount is disposed on the at least one member. The at least one member defines a first lever arm between the pivot and the tool mount, and a second lever arm between the pivot and the actuator. The first lever arm has a length that is less than a length of the second lever arm. The actuator moves the tool mount along an arc.

  18. Effect of Nd:YAG laser welding on microstructure and hardness of an Al-Li based alloy

    SciTech Connect (OSTI)

    Cui, Li, E-mail: cuili@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); Li, Xiaoyan, E-mail: xyli@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); He, Dingyong, E-mail: dyhe@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); Chen, Li, E-mail: ouchenxi@163.com [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)] [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China); Gong, Shuili, E-mail: gongshuili@sina.com [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)] [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)

    2012-09-15

    . Highlights: Black-Right-Pointing-Pointer The predominantly equiaxed dendritic structure is developed in the fusion zone. Black-Right-Pointing-Pointer The fusion zone with equiaxed grains shows random orientations and microtexture. Black-Right-Pointing-Pointer The loss in hardness in the fusion zone is due to the decrease in {delta} Prime precipitates. Black-Right-Pointing-Pointer The non-epitaxial growth occurs at fusion boundary. Black-Right-Pointing-Pointer The equilibrium A1{sub 3}Zr phases maybe the nuclei of new grains in the fusion zone.

  19. Vehicle Technologies Office Merit Review 2014: Can hard coatings and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lubricant anti-wear additives work together? | Department of Energy Can hard coatings and lubricant anti-wear additives work together? Vehicle Technologies Office Merit Review 2014: Can hard coatings and lubricant anti-wear additives work together? Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hard coatings and lubricant anti-wear additives working together.

  20. Black Warrior, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    or Black Warrior Spring coordinates Black Warrior is a property in Washoe County and Churchill County, Nevada that is south and east of Black Warrior Peak. References Nevada...

  1. Critical Configurations of Hard Disks on the Torus

    SciTech Connect (OSTI)

    Mason, J.

    2013-04-16

    CCHDT constructs and classifies various arrangements of hard disks of a single radius places on the unit square with periodic boundary conditions. Specifially, a given configuration is evolved to the nearest critical point on a smoothed hard disk energy fuction, and is classified by the adjacency matrix of the canonically labelled contact graph.

  2. Black hole mimickers: Regular versus singular behavior

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2008-07-15

    Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to

  3. High efficiency, radiation-hard solar cells

    SciTech Connect (OSTI)

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  4. Charged rotating dilaton black strings

    SciTech Connect (OSTI)

    Dehghani, M.H.; Farhangkhah, N.

    2005-02-15

    In this paper we, first, present a class of charged rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with zero and Liouville-type potentials. We find that these solutions can present a black hole/string with two regular horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitable. We also compute the conserved and thermodynamic quantities, and show that they satisfy the first law of thermodynamics. Second, we obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. We find that these solutions can present black branes, naked singularities or spacetimes with cosmological horizon if one chooses the parameters of the solutions correctly. Again, we find that the thermodynamic quantities of these solutions satisfy the first law of thermodynamics.

  5. Quantum Criticality and Black Holes

    ScienceCinema (OSTI)

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2009-09-01

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  6. Black Engineer of the Year Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Engineer of the Year Award - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo GovDelivery SlideShare Black Engineer of the Year Award Home...

  7. Exchange-spring mechanism of soft and hard ferrite nanocomposites

    SciTech Connect (OSTI)

    Manjura Hoque, S.; Srivastava, C.; Kumar, V.; Venkatesh, N.; Das, H.N.; Saha, D.K.; Chattopadhyay, K.

    2013-08-01

    Graphical abstract: - Highlights: • Exchange-spring behaviour of soft and hard ferrites was studied. • XRD patterns indicated soft and hard ferrites as fcc and hcp structure. • Hysteresis loops indicate wide difference in coercivity of soft and hard phases. • Nanocomposites produced convex hysteresis loop characteristic of single-phase. - Abstract: The paper reports exchange-spring soft and hard ferrite nanocomposites synthesized by chemical co-precipitation with or without the application of ultrasonic vibration. The composites contained BaFe{sub 12}O{sub 19} as the hard phase and CoFe{sub 2}O{sub 4}/MgFe{sub 2}O{sub 4} as the soft phase. X-ray diffraction patterns of the samples in the optimum calcined condition indicated the presence of soft ferrites as face-centred cubic (fcc) and hard ferrites as hexagonal close packed (hcp) structure respectively. Temperature dependence of magnetization in the range of 20–700 °C demonstrated distinct presence of soft and hard ferrites as magnetic phases which are characterized by wide difference in magnetic anisotropy and coercivity. Exchange-spring mechanism led these nanocomposite systems to exchange-coupled, which ultimately produced convex hysteresis loops characteristic of a single-phase permanent magnet. Fairly high value of coercivity and maximum energy product were observed for the samples in the optimum calcined conditions with a maximum applied field of 1600 kA/m (2 T)

  8. Low hardness organisms: Culture methods, sensitivities, and practical applications

    SciTech Connect (OSTI)

    DaCruz, A.; DaCruz, N.; Bird, M.

    1995-12-31

    EPA Regulations require biomonitoring of permitted effluent and stormwater runoff. Several permit locations were studied, in Virginia, that have supply water and or stormwater runoff which ranges in hardness from 5--30 mg/L. Ceriodaphnia dubia (dubia) and Pimephales promelas (fathead minnow) were tested in reconstituted water with hardnesses from 5--30 mg/L. Results indicated osmotic stresses present in the acute tests with the fathead minnow as well as chronic tests for the dubia and the fathead minnow. Culture methods were developed for both organism types in soft (30 mg) reconstituted freshwater. Reproductivity and development for each organisms type meets or exceeds EPA testing requirements for moderately hard organisms. Sensitivities were measured over an 18 month interval using cadmium chloride as a reference toxicant. Additionally, sensitivities were charted in contrast with those of organisms cultured in moderately hard water. The comparison proved that the sensitivities of both the dubia and the fathead minnow cultured in 30 mg water increased, but were within two standard deviations of the organism sensitivities of those cultured in moderately hard water. Latitude for use of organisms cultured in 30 mg was documented for waters ranging in hardness from 10--100 mg/L with no acclimation period required. The stability of the organism sensitivity was also validated. The application was most helpful in stormwater runoff and in effluents where the hardness was 30 mg/L or less.

  9. A delayed transition to the hard state for 4U 1630-47 at the end of its 2010 outburst

    SciTech Connect (OSTI)

    Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kalemci, Emrah; Migliari, Simone; Kaaret, Philip

    2014-08-10

    Here we report on Swift and Suzaku observations near the end of an outburst from the black hole transient 4U 1630-47 and Chandra observations when the source was in quiescence. 4U 1630-47 made a transition from a soft state to the hard state ∼50 days after the main outburst ended. During this unusual delay, the flux continued to drop, and one Swift measurement found the source with a soft spectrum at a 2-10 keV luminosity of L = 1.07 × 10{sup 35} erg s{sup –1} for an estimated distance of 10 kpc. While such transients usually make a transition to the hard state at L/L{sub Edd} = 0.3%-3%, where L{sub Edd} is the Eddington luminosity, the 4U 1630-47 spectrum remained soft at L/L{sub Edd} = 0.008 M{sub 10}{sup −1}% (as measured in the 2-10 keV band), where M{sub 10} is the mass of the black hole in units of 10 M{sub ☉}. An estimate of the luminosity in the broader 0.5-200 keV bandpass gives L/L{sub Edd} = 0.03 M{sub 10}{sup −1}%, which is still an order of magnitude lower than typical. We also measured an exponential decay of the X-ray flux in the hard state with an e-folding time of 3.39 ± 0.06 days, which is much less than previous measurements of 12-15 days during decays by 4U 1630-47 in the soft state. With the ∼100 ks Suzaku observation, we do not see evidence for a reflection component, and the 90% confidence limits on the equivalent width of a narrow iron Kα emission line are <40 eV for a narrow line and <100 eV for a line of any width, which is consistent with a change of geometry (either a truncated accretion disk or a change in the location of the hard X-ray source) in the hard state. Finally, we report a 0.5-8 keV luminosity upper limit of <2 × 10{sup 32} erg s{sup –1} in quiescence, which is the lowest value measured for 4U 1630-47 to date.

  10. From Pinholes to Black Holes

    SciTech Connect (OSTI)

    Fenimore, Edward E.

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of coded apertures. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  11. Remote hard copy. Volume 3. Systems programming manual

    SciTech Connect (OSTI)

    Simons, R.W.

    1980-03-01

    The software used to operate and maintain the remote hard copy is described. All operating software that runs in the NOVA minicomputers is covered as are various utility and diagnostic programs used for creating and checking this software. 2 figures.

  12. Partial Differential Equations Solver Resilient to Soft and Hard...

    Office of Scientific and Technical Information (OSTI)

    ... inject faults; 5 briefly describes the test case adopted; in 6 we discuss the ... To test the resiliency of our algorithm to both hard and soft faults, we synthetically ...

  13. Comparison of Three Ni-Hard I Alloys

    Office of Scientific and Technical Information (OSTI)

    ... Microstructural characterization of the alloys was performed using optical and ... In this study 150 grit garnet (80-100 m abrasive particle size; Vickers hardness of 13.1 ...

  14. Women of Waste Management Panel Advises Audience: 'Embrace Hard Work' |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Women of Waste Management Panel Advises Audience: 'Embrace Hard Work' Women of Waste Management Panel Advises Audience: 'Embrace Hard Work' March 30, 2015 - 12:00pm Addthis Panelists, from left, included Johnson, Charboneau, and Piketty, and moderator Jody Redeker. Panelists, from left, included Johnson, Charboneau, and Piketty, and moderator Jody Redeker. PHOENIX - A panel of distinguished leaders in nuclear cleanup discussed issues facing women in the workplace in

  15. Close encounters of three black holes

    SciTech Connect (OSTI)

    Campanelli, Manuela; Lousto, Carlos O.; Zlochower, Yosef

    2008-05-15

    We present the first fully relativistic long-term numerical evolutions of three equal-mass black holes in a system consisting of a third black hole in a close orbit about a black-hole binary. These close-three-black-hole systems have very different merger dynamics from black-hole binaries; displaying complex trajectories, a redistribution of energy that can impart substantial kicks to one of the holes, distinctive waveforms, and suppression of the emitted gravitational radiation. In one configuration the binary is quickly disrupted and the individual holes follow complicated trajectories and merge with the third hole in rapid succession, while in another, the binary completes a half-orbit before the initial merger of one of the members with the third black hole, and the resulting two-black-hole system forms a highly elliptical, well separated binary that shows no significant inspiral for (at least) the first t{approx}1000M of evolution.

  16. New stable Re-B phases for ultra-hard materials (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    New stable Re-B phases for ultra-hard materials Citation Details In-Document Search Title: New stable Re-B phases for ultra-hard materials As a distinct class of ultra-hard...

  17. Complexity, action, and black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-04-18

    In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  18. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    SciTech Connect (OSTI)

    Kawate, T.; Nishizuka, N.; Oi, A.; Ohyama, M.; Nakajima, H.

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  19. Proceedings of the Tungsten Workshop for Hard Target Weapons Program

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Hayden, H.W.; Davis, R.M.

    1995-06-01

    The purpose of this meeting was to review and exchange information and provide technical input for improving technologies relevant to the Hard Target Weapons Program. This workshop was attended by representatives from 17 organizations, including 4 Department of Defense (DoD) agencies, 8 industrial companies, and 5 laboratories within DOE. Hard targets are defined as reinforced underground structures that house enemy forces, weapon systems, and support equipment. DOE-ORO and Martin Marietta Energy Systems, Inc. (Energy Systems) have been involved in advanced materials research and development (R&D) for several DOE and DoD programs. These programs are conducted in close collaboration with Eglin AFB, Department of the Army`s Picatinny Arsenal, and other DoD agencies. As part of this ongoing collaboration, Eglin AFB and Oak Ridge National Laboratory planned and conducted this workshop to support the Hard Target Weapons Program. The objectives of this workshop were to (1) review and identify the technology base that exists (primarily due to anti-armor applications) and assess the applicability of this technology to the Hard Target Weapons Program requirements; (2) determine future directions to establish the W materials, processing, and manufacturing technologies suitable for use in fixed, hard target penetrators; and (3) identify and prioritize the potential areas for technical collaboration among the participants.

  20. Multi-clad black display panel

    SciTech Connect (OSTI)

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin

    2002-01-01

    A multi-clad black display panel, and a method of making a multi-clad black display panel, are disclosed, wherein a plurality of waveguides, each of which includes a light-transmissive core placed between an opposing pair of transparent cladding layers and a black layer disposed between transparent cladding layers, are stacked together and sawed at an angle to produce a wedge-shaped optical panel having an inlet face and an outlet face.

  1. Boson shells harboring charged black holes

    SciTech Connect (OSTI)

    Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike

    2010-11-15

    We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.

  2. Black hole birth captured by cosmic voyeurs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black hole birth captured by cosmic voyeurs Black hole birth captured by cosmic voyeurs The RAPTOR system is a network of small robotic observatories that scan the skies for optical anomalies such as flashes emanating from a star in its death throes as it collapses and becomes a black hole. November 21, 2013 Los Alamos National Laboratory astrophysicist Tom Vestrand poses with a telescope array that is part of the RAPTOR (RAPid Telescopes for Optical Response) system. RAPTOR is an intelligent

  3. National Conference of Black Mayors, Inc.

    Broader source: Energy.gov [DOE]

    The cooperative agreement enhances the National Conference of Black Mayors, Inc., members' capacity for energy and environmental planning through computer-based technology, Internet access, and a...

  4. Black Coral Capital | Open Energy Information

    Open Energy Info (EERE)

    Coral Capital Jump to: navigation, search Name: Black Coral Capital Address: 55 Union Street, 3rd Floor Place: Boston, Massachusetts Zip: 02108 Region: Greater Boston Area Product:...

  5. Black Mountain Insulation | Open Energy Information

    Open Energy Info (EERE)

    Mountain Insulation Jump to: navigation, search Name: Black Mountain Insulation Place: United Kingdom Sector: Carbon Product: UK-based manufacturer of sheeps wool insulation which...

  6. Black carbon contribution to global warming

    SciTech Connect (OSTI)

    Chylek, P.; Johnson, B.; Kou, L.; Wong, J.

    1996-12-31

    Before the onset of industrial revolution the only important source of black carbon in the atmosphere was biomass burning. Today, black carbon production is divided between the biomass and fossil fuel burning. Black carbon is a major agent responsible for absorption of solar radiation by atmospheric aerosols. Thus black carbon makes other aerosols less efficient in their role of reflecting solar radiation and cooling the earth-atmosphere system. Black carbon also contributes to the absorption of solar radiation by clouds and snow cover. The authors present the results of black carbon concentrations measurements in the atmosphere, in cloud water, in rain and snow melt water collected during the 1992--1996 time period over the southern Nova Scotia. Their results are put into the global and historical perspective by comparing them with the compilation of past measurements at diverse locations and with their measurements of black carbon concentrations in the Greenland and Antarctic ice cores. Black carbon contribution to the global warming is estimated, and compared to the carbon dioxide warming, using the radiative forcing caused by the black carbon at the top of the atmosphere.

  7. Black Hills Energy (Electric) - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heater: 450 Refrigerator: 30unit Freezer: 30unit Dishwasher: 30unit Television: 25unit CFLLED Bulbs: In-store rebates Summary Black Hills Energy (BHE) offers...

  8. Strengthening Our Partnerships with Historically Black Colleges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Strengthening Our Partnerships with Historically Black Colleges and Universities Secretary Chu Secretary Chu Former Secretary of Energy Last February, President Obama ...

  9. Efficient Nanostructured Silicon (Black Silicon) PV Devices ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traditional AR coatings however, add significant cost to the solar cell manufacturing process. NREL scientists have devised a method and created a nanostructured Si wafer, or black ...

  10. Causticizing for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    Scott Sinquefeld; James Cantrell; Xiaoyan Zeng; Alan Ball; Jeff Empie

    2009-01-07

    The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.

  11. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Jun Wei

    2005-03-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  12. Extraordinary vacuum black string solutions

    SciTech Connect (OSTI)

    Kim, Hyeong-Chan; Lee, Jungjai

    2008-01-15

    In addition to the boosted static solution there are two other classes of stationary stringlike solutions of the vacuum Einstein equation in (4+1) dimensions. Each class is characterized by three parameters of mass, tension, and momentum flow along the fifth coordinate. We analyze the metric properties of one of the two classes, which was previously assumed to be naked singular, and show that the solution spectrum contains black string and wormhole in addition to the known naked singularity as the momentum flow to mass ratio increases. Interestingly, there does not exist new zero momentum solution in these cases.

  13. Sandia National Laboratories: Rad-Hard Electronics and Trusted Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rad-Hard Electronics and Trusted Services Sensors Sandia's Microsystems Center affords access to trusted resources and facilities for research and development, design, layout, fabrication, characterization, packaging, and test Custom Solutions Trusted Electronic Microsystems The Sandia National Laboratories Microsystems Engineering and Sciences Applications (MESA) complex has achieved Defense MicroElectronics Activity (DMEA) Category 1A Trust Accreditation for trusted services including design,

  14. Knoop Hardness - Apparent Yield Stress Relationship in Ceramics

    SciTech Connect (OSTI)

    Swab, Jeffrey J; LaSalvia, Jerry; Wereszczak, Andrew A; Strong, Kevin T; Danna, Dominic; Ragan, Meredith E; Ritt, Patrick J

    2012-01-01

    In Tabor's classical studies of the deformation of metals, the yield stress (Y) and hardness (H) were shown to be related according to H/Y {approx} 3 for complete or fully plastic deformation. Since then it has been anecdotally shown for ceramics that this ratio is <3. Interest exists to explore this further so Hertzian indentation was used to measure the apparent yield stress of numerous ceramics and metals and their results were compared with each material's load-dependent Knoop hardness. The evaluated ceramics included standard reference materials for hardness (silicon nitride and tungsten carbide), silicon carbide, alumina, and glass. Several steel compositions were also tested for comparison. Knoop hardness measurements at 19.6 N (i.e., toward 'complete or fully plastic deformation'), showed that 2 < H/Y < 3 for the metals and 0.8 < H/Y < 1.8 for the glasses and ceramics. Being that H/Y {ne} 3 for the ceramics indicates that Tabor's analysis is either not applicable to ceramics or that full plastic deformation is not achieved with a Knoop indentation or both.

  15. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  16. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  17. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-10-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected/developed that either react with the gasifier environment to form protective surfaces in-situ; and

  18. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  19. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-01-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  20. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  1. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr.; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  2. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

    2005-12-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in-situ; and

  3. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie

    2003-08-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  4. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    Robert E. Moore; William L. Headrick; Alireza Rezaie

    2003-03-31

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  5. Big Island Demonstration Project - Black Liquor

    SciTech Connect (OSTI)

    2006-08-01

    Black liquor is a papermaking byproduct that also serves as a fuel for pulp and paper mills. This project involves the design, construction, and operation of a black liquor gasifier that will be integrated into Georgia-Pacific's Big Island facility in Virginia, a mill that has been in operation for more than 100 years.

  6. Normal Modes of Black Hole Accretion Disks (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    the modes for different values of the mass and angular momentum of the central black hole. ... PARTICLES AND FIELDS; ACCRETION DISKS; ANGULAR MOMENTUM; BLACK HOLES; EIGENFUNCTIONS; ...

  7. Barrow Black Carbon Source and Impact Study Final Campaign Report...

    Office of Scientific and Technical Information (OSTI)

    Barrow Black Carbon Source and Impact Study Final Campaign Report Citation Details In-Document Search Title: Barrow Black Carbon Source and Impact Study Final Campaign Report The ...

  8. Cuttings Analysis At Black Warrior Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Black Warrior Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Black Warrior Area (DOE GTP) Exploration...

  9. Energy and information near black hole horizons (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Energy and information near black hole horizons Citation Details In-Document Search Title: Energy and information near black hole horizons The central challenge in trying to ...

  10. Novel mechanism for vorticity generation in black-hole accretion...

    Office of Scientific and Technical Information (OSTI)

    Novel mechanism for vorticity generation in black-hole accretion disks Prev Next Title: Novel mechanism for vorticity generation in black-hole accretion disks Authors: ...

  11. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released ...

  12. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Laing

    2005-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  13. OPTICAL AND NEAR-INFRARED MONITORING OF THE BLACK HOLE X-RAY BINARY GX 339-4 DURING 2002-2010

    SciTech Connect (OSTI)

    Buxton, Michelle M.; Bailyn, Charles D.; Capelo, Holly L.; Chatterjee, Ritaban; Dincer, Tolga; Kalemci, Emrah; Tomsick, John A.

    2012-06-15

    We present the optical/infrared (O/IR) light curve of the black hole X-ray binary GX 339-4 collected at the SMARTS 1.3 m telescope from 2002 to 2010. During this time the source has undergone numerous state transitions including hard-to-soft state transitions when we see large changes in the near-IR flux accompanied by modest changes in optical flux, and three rebrightening events in 2003, 2005, and 2007 after GX 339-4 transitioned from the soft state to the hard. All but one outburst show similar behavior in the X-ray hardness-intensity diagram. We show that the O/IR colors follow two distinct tracks that reflect either the hard or soft X-ray state of the source. Thus, either of these two X-ray states can be inferred from O/IR observations alone. From these correlations we have constructed spectral energy distributions of the soft and hard states. During the hard state, the near-IR data have the same spectral slope as simultaneous radio data when GX 339-4 was in a bright optical state, implying that the near-IR is dominated by a non-thermal source, most likely originating from jets. Non-thermal emission dominates the near-IR bands during the hard state at all but the faintest optical states, and the fraction of non-thermal emission increases with increasing optical brightness. The spectral slope of the optical bands indicate that a heated thermal source is present during both the soft and hard X-ray states, even when GX 339-4 is at its faintest optical state. We have conducted a timing analysis of the light curve for the hard and soft states and find no evidence of a characteristic timescale within the range of 4-230 days.

  14. The place of hard coal in energy supply pattern of Turkey

    SciTech Connect (OSTI)

    Yilmaz, A.O.; Aydiner, K.

    2009-07-01

    Lignite and hard coal are the major sources of domestic energy sources of Turkey. Hard coal is produced at only one district in the country. Zonguldak Hard Coal Basin is the major power for development of the Turkish steel-making industry. It is the only hard coal basin in the country and it has, to date, supplied approximately 400 million tons of run-of-mine hard coal. This article investigates the potential of hard coal as an energy source and discusses the measures to activate the region for the future energy supply objectives of the country.

  15. SWIFT OBSERVATIONS OF MAXI J1659-152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR

    SciTech Connect (OSTI)

    Kennea, J. A.; Romano, P.; Mangano, V.; Beardmore, A. P.; Evans, P. A.; Curran, P. A.; Markwardt, C. B.; Yamaoka, K.

    2011-07-20

    We report on the detection and follow-up high-cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and the Monitor of All-sky X-ray Image on 2010 September 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of {approx}0.5 Crab by the Swift X-ray, UV/Optical, and the hard X-ray Burst Alert Telescopes. We present temporal and spectral analysis of the Swift observations. The broadband light curves show variability characteristic of black hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black hole binaries, transitioning from its initial detection in the hard state, to the steep power-law state, followed by a slow evolution toward the thermal state, signified by an increasingly dominant thermal component associated with the accretion disk, although this state change did not complete before Swift observations ended. We observe an anti-correlation between the increasing temperature and decreasing radius of the inner edge of the accretion disk, suggesting that the inner edge of the accretion disk infalls toward the black hole as the disk temperature increases. We observed significant evolution in the absorption column during the initial rise of the outburst, with the absorption almost doubling, suggestive of the presence of an evolving wind from the accretion disk. We detect quasi-periodic oscillations that evolve with the outburst, as well as irregular shaped dips that recur with a period of 2.42 {+-} 0.09 hr, strongly suggesting an orbital period that would make MAXI J1659-152 the shortest period black hole binary yet known.

  16. Submicron cubic boron nitride as hard as diamond

    SciTech Connect (OSTI)

    Liu, Guoduan; Kou, Zili E-mail: yanxz@hpstar.ac.cn; Lei, Li; Peng, Fang; Wang, Qiming; Wang, Kaixue; Wang, Pei; Li, Liang; Li, Yong; Wang, Yonghua; Yan, Xiaozhi E-mail: yanxz@hpstar.ac.cn; Li, Wentao; Bi, Yan; Leng, Yang; He, Duanwei

    2015-03-23

    Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.

  17. Secondary hardening steel having improved combination of hardness and toughness

    DOE Patents [OSTI]

    Parker, Earl R.; Zackay, Victor F.; Bhat, Manjeshwar S.; Garrison, Jr., Warren M.

    1979-01-01

    A secondary hardening alloy steel composition consisting essentially of about 0.25-0.5% carbon, about 0.5-1.0% manganese, about 1.5-3.0% nickel, about 0-1.0% chromium, about 1.75-2.5% molybdenum, about 0-0.4% vanadium, and an additive selected from about 1-3% aluminum and a combination of at least about 1% aluminum and at least about 1% silicon for a combined Al+Si content of about 2-4%, the balance being iron and impurity elements. The present steel composition has the following characteristics: it exhibits a flat tempering response, it is hardenable upon tempering to a Rockwell C hardness of at least 50, and it has an improved combination of hardness vs. toughness properties after tempering in the secondary hardening range. A method of preparation is also described.

  18. Early black hole signals at the LHC

    SciTech Connect (OSTI)

    Koch, Ben; Bleicher, Marcus; Stoecker, Horst

    2007-10-26

    The production of mini black holes due to large extra dimensions is a speculative but possible scenario. We survey estimates for di-jet suppression, and multi-mono-jet emission due to black hole production. We further look for a possible sub-scenario which is the formation of a stable or meta-stable black hole remnant (BHR). We show that the beauty of such objects is, that they are relatively easy to observe, even in the early phase of LHC running.

  19. Discovery of superconductivity in hard hexagonal ε-NbN

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zou, Yongtao; Li, Qiang; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; et al

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bondingmore » in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.« less

  20. Department of Energy Research Opportunities for Historically Black Colleges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Universities | Department of Energy Department of Energy Research Opportunities for Historically Black Colleges and Universities Department of Energy Research Opportunities for Historically Black Colleges and Universities Information about the Department's laboratories, funding opportunities, partnerships with Historically Black Colleges and Universities, WDTS Program Mission. Department of Energy Research Opportunities for Historically Black Colleges and Universities (472.61 KB) More

  1. black out | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  2. Spectral line broadening in magnetized black holes

    SciTech Connect (OSTI)

    Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca

    2014-07-01

    We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

  3. Black Emerald Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Black Emerald Group Address: 4 Park Place Place: London, United Kingdom Zip: SW1A 1LP Product: Investment banking firm specializing in...

  4. Hard or Soft Shell? It's Not Just a Taco Question | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hard or Soft Shell? It's Not Just a Taco Question Swapping out hard-shelled nanoparticle models for the soft-shelled variety has led to theoretical results in tune with...

  5. Hard x-ray delay line for x-ray photon correlation spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    Hard x-ray delay line for x-ray photon correlation spectroscopy and jitter-free pump-probe experiments at LCLS Citation Details In-Document Search Title: Hard x-ray delay line for...

  6. Toward TW-Level, Hard X-Ray Pulses at LCLS (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Toward TW-Level, Hard X-Ray Pulses at LCLS Citation Details In-Document Search Title: Toward TW-Level, Hard X-Ray Pulses at LCLS You are accessing a document from the Department ...

  7. Application of hard X-ray microprobe methods to clay-rich materials...

    Office of Scientific and Technical Information (OSTI)

    Application of hard X-ray microprobe methods to clay-rich materials Citation Details In-Document Search Title: Application of hard X-ray microprobe methods to clay-rich materials ...

  8. Distributed seeding for narrow-line width hard x-ray free-electron...

    Office of Scientific and Technical Information (OSTI)

    for narrow-line width hard x-ray free-electron lasers Citation Details In-Document Search Title: Distributed seeding for narrow-line width hard x-ray free-electron lasers We ...

  9. Monte-Carlo simulation of noise in hard X-ray Transmission Crystal...

    Office of Scientific and Technical Information (OSTI)

    Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: ... Title: Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: ...

  10. Hard carbon nanoparticles as high-capacity, high-stability anodic...

    Office of Scientific and Technical Information (OSTI)

    for Na-ion batteries Citation Details In-Document Search Title: Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries Hard carbon ...

  11. The LCLS variable-energy hard X-ray single-shot spectrometer...

    Office of Scientific and Technical Information (OSTI)

    The LCLS variable-energy hard X-ray single-shot spectrometer Citation Details In-Document Search Title: The LCLS variable-energy hard X-ray single-shot spectrometer The engineering ...

  12. Detection of a Spectral Break in the Extra Hard Component of...

    Office of Scientific and Technical Information (OSTI)

    the Extra Hard Component of GRB 090926A Citation Details In-Document Search Title: Detection of a Spectral Break in the Extra Hard Component of GRB 090926A You are accessing a ...

  13. SSRL School 2007 on Hard X-ray Scattering Techniques in MES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15-17, 2007 SSRL School on Hard X-ray Scattering Techniques in Materials and Environmental Sciences Group photo taken at the SSRL School on Hard X-ray Scattering Techniques in...

  14. A single-shot transmissive spectrometer for hard x-ray free electron...

    Office of Scientific and Technical Information (OSTI)

    Results Journal Article: A single-shot transmissive spectrometer for hard x-ray free electron lasers Citation Details ... We report hard x-ray single-shot spectral measurements of ...

  15. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge April 11, 2014 - 11:20am Addthis Black Pine Engineering's pilot compressor in California. The team won the Clean Energy Trust Clean Energy Challenge, securing its spot as a regional finalist in the National Clean Energy Business Plan Competition. | Photo courtesy of Black Pine Engineering Black Pine Engineering's pilot compressor in

  16. Black Silicon Etching - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Black Silicon Etching Award-winning, efficient, and inexpensive photovoltaic technology National Renewable Energy Laboratory Contact NREL About This Technology Three silicon wafers, showing absorbed light: (left) micron-scale texture, (center) NREL&rsquo;s Black Silicon Etch, and (right) micron-scale texture with an antireflective coating. Three silicon wafers, showing absorbed light: (left) micron-scale texture,

  17. Ductile Binder Phase For Use With Almgb14 And Other Hard Ceramic Materials

    DOE Patents [OSTI]

    Cook, Bruce A.; Russell, Alan; Harringa, Joel

    2005-07-26

    This invention relates to a ductile binder phase for use with AlMgB14 and other hard materials. The ductile binder phase, a cobalt-manganese alloy, is used in appropriate quantities to tailor good hardness and reasonable fracture toughness for hard materials so they can be used suitably in industrial machining and grinding applications.

  18. ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES

    SciTech Connect (OSTI)

    Yu Wenfei; Zhang Wenda, E-mail: wenfei@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2013-06-20

    We found that the black hole candidate MAXI J1659-152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  19. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect (OSTI)

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data

  20. Detecting and correcting hard errors in a memory array

    DOE Patents [OSTI]

    Kalamatianos, John; John, Johnsy Kanjirapallil; Gelinas, Robert; Sridharan, Vilas K.; Nevius, Phillip E.

    2015-11-19

    Hard errors in the memory array can be detected and corrected in real-time using reusable entries in an error status buffer. Data may be rewritten to a portion of a memory array and a register in response to a first error in data read from the portion of the memory array. The rewritten data may then be written from the register to an entry of an error status buffer in response to the rewritten data read from the register differing from the rewritten data read from the portion of the memory array.

  1. Grinding tool for making hemispherical bores in hard materials

    DOE Patents [OSTI]

    Duran, E.L.

    1985-04-03

    A grinding tool for forming hemispherical bores in hard materials such as boron carbide. The tool comprises a hemicircular grinding bit, formed of a metal bond diamond matrix, which is mounted transversely on one end of a tubular tool shaft. The bit includes a spherically curved outer edge surface which is the active grinding surface of the tool. Two coolant fluid ports on opposite sides of the bit enable introduction of coolant fluid through the bore of the tool shaft so as to be emitted adjacent the opposite sides of the grinding bit, thereby providing optimum cooling of both the workpiece and the bit.

  2. Reactive multilayer synthesis of hard ceramic foils and films

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Holt, Joseph B. (San Jose, CA)

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  3. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment...

    Broader source: Energy.gov (indexed) [DOE]

    PROBLEM: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server. PLATFORM: * BlackBerry Enterprise Server Express version...

  4. Rotating black hole thermodynamics with a particle probe

    SciTech Connect (OSTI)

    Gwak, Bogeun; Lee, Bum-Hoon

    2011-10-15

    The thermodynamics of Myers-Perry black holes in general dimensions are studied using a particle probe. When undergoing particle absorption, the changes of the entropy and irreducible mass are shown to be dependent on the particle radial momentum. The black hole thermodynamic behaviors are dependent on dimensionality for specific rotations. For a 4-dimensional Kerr black hole, its black hole properties are maintained for any particle absorption. 5-dimensional black holes can avoid a naked ring singularity by absorbing a particle in specific momenta ranges. Black holes over 6 dimensions become ultraspinning black holes through a specific form of particle absorption. The microscopical changes are interpreted in limited cases of Myers-Perry black holes using Kerr/CFT correspondence. We systematically describe the black hole properties changed by particle absorption in all dimensions.

  5. THE BLACK HOLE FORMATION PROBABILITY

    SciTech Connect (OSTI)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P {sub BH}(M {sub ZAMS}). Although we find that it is difficult to derive a unique P {sub BH}(M {sub ZAMS}) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P {sub BH}(M {sub ZAMS}) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P {sub BH}(M {sub ZAMS}) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  6. Rotating black lens solution in five dimensions

    SciTech Connect (OSTI)

    Chen Yu; Teo, Edward

    2008-09-15

    It has recently been shown that a stationary, asymptotically flat vacuum black hole in five space-time dimensions with two commuting axial symmetries must have an event horizon with either a spherical, ring or lens-space topology. In this paper, we study the third possibility, a so-called black lens with L(n,1) horizon topology. Using the inverse scattering method, we construct a black-lens solution with the simplest possible rod structure, and possessing a single asymptotic angular momentum. Its properties are then analyzed; in particular, it is shown that there must either be a conical singularity or a naked curvature singularity present in the space-time.

  7. Electric field effect in ultrathin black phosphorus

    SciTech Connect (OSTI)

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  8. Black Friday Savings All Year 'Round | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Black Friday Savings All Year 'Round Black Friday Savings All Year 'Round November 21, 2011 - 3:58pm Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy ...

  9. Black River Farm Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Facility Black River Farm Solar Project Sector Solar Facility Type Fixed Tilt Ground-Mount & Roof-Mount Owner EnXco Developer EnXco Energy Purchaser Black River Farm...

  10. Easy and hard testbeds for real-time search algorithms

    SciTech Connect (OSTI)

    Koenig, S.; Simmons, R.G.

    1996-12-31

    Although researchers have studied which factors influence the behavior of traditional search algorithms, currently not much is known about how domain properties influence the performance of real-time search algorithms. In this paper we demonstrate, both theoretically and experimentally, that Eulerian state spaces (a super set of undirected state spaces) are very easy for some existing real-time search algorithms to solve: even real-time search algorithms that can be intractable, in general, are efficient for Eulerian state spaces. Because traditional real-time search testbeds (such as the eight puzzle and gridworlds) are Eulerian, they cannot be used to distinguish between efficient and inefficient real-time search algorithms. It follows that one has to use non-Eulerian domains to demonstrate the general superiority of a given algorithm. To this end, we present two classes of hard-to-search state spaces and demonstrate the performance of various real-time search algorithms on them.

  11. Radiation-hard electrical coil and method for its fabrication

    DOE Patents [OSTI]

    Grieggs, R.J.; Blake, R.D.; Gac, F.D.

    1982-06-29

    A radiation-hard insulated electrical coil and method for making the same are disclosed. In accordance with the method, a conductor, preferably copper, is wrapped with an aluminum strip and then tightly wound into a coil. The aluminum-wrapped coil is then annealed to relax the conductor in the coiled configuration. The annealed coil is then immersed in an alkaline solution to dissolve the aluminum strip, leaving the bare conductor in a coiled configuration with all of the windings closely packed yet uniformly spaced from one another. The coil is then insulated with a refractory insulating material. In the preferred embodiment, the coil is insulated by coating it with a vitreous enamel and subsequently potting the enamelled coil in a castable ceramic concrete. The resulting coil is substantially insensitive to radiation and may be operated continuously in high radiation environments for long periods of time.

  12. Nanofabrication on unconventional substrates using transferred hard masks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Luozhou; Bayn, Igal; Lu, Ming; Nam, Chang -Yong; Schroder, Tim; Stein, Aaron; Harris, Nicholas C.; Englund, Dirk

    2015-01-15

    Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantationmore » are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.« less

  13. Nanofabrication on unconventional substrates using transferred hard masks

    SciTech Connect (OSTI)

    Li, Luozhou; Bayn, Igal; Lu, Ming; Nam, Chang -Yong; Schroder, Tim; Stein, Aaron; Harris, Nicholas C.; Englund, Dirk

    2015-01-15

    Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantation are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.

  14. Method for producing hard-surfaced tools and machine components

    DOE Patents [OSTI]

    McHargue, C.J.

    1981-10-21

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: a tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  15. Apparatus and process for deposition of hard carbon films

    DOE Patents [OSTI]

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-01

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  16. Apparatus and process for deposition of hard carbon films

    DOE Patents [OSTI]

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-03

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  17. Method for producing hard-surfaced tools and machine components

    DOE Patents [OSTI]

    McHargue, Carl J.

    1985-01-01

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: A tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  18. Hardness, elastic, and electronic properties of chromium monoboride

    SciTech Connect (OSTI)

    Han, Lei; Wang, Shanmin; Zhu, Jinlong; Han, Songbai; Li, Wenmin; Chen, Bijuan; Wang, Xiancheng; Yu, Xiaohui E-mail: liubc@jlu.edu.cn Long, Youwen; Cheng, Jinguang; Jin, Changqing; Liu, Baochang E-mail: liubc@jlu.edu.cn; Zhang, Ruifeng E-mail: liubc@jlu.edu.cn; Zhang, Jianzhong; Zhao, Yusheng

    2015-06-01

    We report high-pressure synthesis of chromium monoboride (CrB) at 6 GPa and 1400 K. The elastic and plastic behaviors have been investigated by hydrostatic compression experiment and micro-indentation measurement. CrB is elastically incompressible with a high bulk modulus of 269.0 (5.9) GPa and exhibits a high Vickers hardness of 19.6 (0.7) GPa under the load of 1 kg force. Based on first principles calculations, the observed mechanical properties are attributed to the polar covalent Cr-B bonds interconnected with strong zigzag B-B covalent bonding network. The presence of metallic Cr bilayers is presumably responsible for the weakest paths in shear deformation.

  19. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect (OSTI)

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  20. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released its first map of the sky, including the first measurements of how often black holes flicker on and off. It has also caught pulsars, supernova remnants, and other bizarre cosmic beasts. April 24, 2016 Water telescope's first sky map shows flickering black holes Three new sources of gamma rays spotted by HAWC. Credit:

  1. Gravitational waves found, black-hole models led the way

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gravitational waves found, black-hole models led the way Gravitational waves found, black-hole models led the way Gravitational waves were predicted by Einstein's theory of general relativity in 1916, and now, almost exactly 100 years later, the faint ripples across space-time have been found. February 11, 2016 A simulation of two merging black holes, creating gravitational waves. Photo courtesy of LIGO. A simulation of two merging black holes, creating gravitational waves. Photo courtesy of

  2. Modified carbon black materials for lithium-ion batteries

    DOE Patents [OSTI]

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  3. Semiclassical S-matrix for black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey

    2015-12-01

    In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states.more » The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.« less

  4. SLIM DISKS AROUND KERR BLACK HOLES REVISITED

    SciTech Connect (OSTI)

    Sadowski, Aleksander

    2009-08-01

    We investigate stationary slim accretion disks around Kerr black holes. We construct a new numerical method based on the relaxation technique. We systematically cover the whole parameter space relevant to stellar mass X-ray binaries. We also notice some non-monotonic features in the disk structure, overlooked in previous studies.

  5. Bubbling supertubes and foaming black holes

    SciTech Connect (OSTI)

    Bena, Iosif; Warner, Nicholas P.

    2006-09-15

    We construct smooth BPS three-charge geometries that resolve the zero-entropy singularity of the U(1)xU(1) invariant black ring. This singularity is resolved by a geometric transition that results in geometries without any branes sources or singularities but with nontrivial topology. These geometries are both ground states of the black ring, and nontrivial microstates of the D1-D5-P system. We also find the form of the geometries that result from the geometric transition of N zero-entropy black rings, and argue that, in general, such geometries give a very large number of smooth bound-state three-charge solutions, parametrized by 6N functions. The generic microstate solution is specified by a four-dimensional hyper-Kaehler geometry of a certain signature, and contains a 'foam' of nontrivial two-spheres. We conjecture that these geometries will account for a significant part of the entropy of the D1-D5-P black hole, and that Mathur's conjecture might reduce to counting certain hyper-Kaehler manifolds.

  6. Exploring electronic structure through high-resolution hard x-ray

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopies | Stanford Synchrotron Radiation Lightsource Exploring electronic structure through high-resolution hard x-ray spectroscopies Tuesday, July 23, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Dimosthenis Sokaras, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Modern high brilliance beamlines coupled with recent advances in hard-x-ray optics are establishing high-resolution hard x-ray spectroscopies as a powerful analytical tool for

  7. Hard and low friction nitride coatings and methods for forming the same

    DOE Patents [OSTI]

    Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul

    2007-05-01

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  8. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server

    Broader source: Energy.gov [DOE]

    BlackBerry advisory describes a security issue that the BlackBerry Attachment Service component of the BlackBerry Enterprise Server is susceptible to. The issue relates to a known vulnerability in the PDF distiller component of the BlackBerry Attachment Service that affects how the BlackBerry Attachment Service processes PDF files.

  9. Analysis and Interpretation of Hard X-ray Emission fromthe Bullet...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS; DETECTION; ELECTRONS; GALAXIES; KEV RANGE; SYNCHROTRONS; HARD X ...

  10. Achieving hard X-ray nanofocusing using a wedged multilayer Laue...

    Office of Scientific and Technical Information (OSTI)

    anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers and enrich capabilities and opportunities for hard X-ray microscopy....

  11. Jefferson Lab to Hold Science Camp for Deaf and Hard-of-Hearing Youth, Aug.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15-19 | Jefferson Lab to Hold Science Camp for Deaf and Hard-of-Hearing Youth, Aug. 15-19 Science Camp for Deaf and Hard-of-Hearing Brita Hampton, Jefferson Lab Science Education administrator, signs "Science Camp" in these two photos. She will be conducting a Science Camp for deaf and hard-of-hearing students Aug. 15-19. The registration deadline is Aug. 5. Jefferson Lab to Hold Science Camp for Deaf and Hard-of-Hearing Youth, Aug. 15-19 NEWPORT NEWS, VA, June 14, 2016 -- Science

  12. Jefferson Lab to Hold Science Camp for Deaf and Hard-of-Hearing Youth, Aug.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10-14 | Jefferson Lab to Hold Science Camp for Deaf and Hard-of-Hearing Youth, Aug. 10-14 Jefferson Lab to Hold Science Camp for Deaf and Hard-of-Hearing Youth, Aug. 10-14 The 2015 Science Camp for Deaf and Hard-of-Hearing Students is Full Registration has ended as of July 15, 2015, for Jefferson Lab's 2015 Science Camp for Deaf and Hard-of-Hearing students. All openings have been filled. If you would like to receive information about plans for next year's Science Camp for deaf and

  13. Copy of Development of an Ultra Scalable Low Power Rad-Hard Nonvolatil...

    Office of Scientific and Technical Information (OSTI)

    Nonvolatile Memory for Space Applications. Citation Details In-Document Search Title: Copy of Development of an Ultra Scalable Low Power Rad-Hard Nonvolatile Memory for Space ...

  14. High-temperature hardness of Al/sub 2/O/sub 3/-base ceramics

    SciTech Connect (OSTI)

    Krell, A.; Bakun, O.V.

    1986-07-01

    The hardness of sintered Al/sub 2/O/sub 3/ and Al/sub 2/O/sub 3/ + ZrO/sub 2/ ceramics has been investigated between 20 and 1600/sup 0/C. Starting at room temperature, all structures exhibit a monotonous decrease of hardness which reflects a twofold influence of grain boundaries: up to 1000-1300/sup 0/C grain boundaries restrict dislocation activity and hardness with decreasing grain size. At higher temperatures, grain boundary sliding and separation results in an intensified decrease of hardness which shows a tendency to be promoted by porosity.

  15. Trumpet-puncture initial data for black holes

    SciTech Connect (OSTI)

    Immerman, Jason D.; Baumgarte, Thomas W.

    2009-09-15

    We propose a new approach, based on the puncture method, to construct black hole initial data in the so-called trumpet geometry, i.e. on slices that asymptote to a limiting surface of nonzero areal radius. Our approach is easy to implement numerically and, at least for nonspinning black holes, does not require any internal boundary conditions. We present numerical results, obtained with a uniform-grid finite-difference code, for boosted black holes and binary black holes. We also comment on generalizations of this method for spinning black holes.

  16. THE FAINT 'HEARTBEATS' OF IGR J17091-3624: AN EXCEPTIONAL BLACK HOLE CANDIDATE

    SciTech Connect (OSTI)

    Altamirano, D.; Van der Klis, M.; Wijnands, R.; Kalamkar, M.; Belloni, T.; Stiele, H.; Motta, S.; Munoz-Darias, T.; Linares, M.; Curran, P. A.; Krimm, H.

    2011-12-15

    We report on the first 180 days of Rossi X-Ray Timing Explorer observations of the outburst of the black hole candidate IGR J17091-3624. This source exhibits a broad variety of complex light curve patterns including periods of strong flares alternating with quiet intervals. Similar patterns in the X-ray light curves have been seen in the (up to now) unique black hole system GRS 1915+105. In the context of the variability classes defined by Belloni et al. for GRS 1915+105, we find that IGR J17091-3624 shows the {nu}, {rho}, {alpha}, {lambda}, {beta}, and {mu} classes as well as quiet periods which resemble the {chi} class, all occurring at 2-60 keV count rate levels which can be 10-50 times lower than observed in GRS 1915+105. The so-called {rho} class 'heartbeats' occur as fast as every few seconds and as slow as {approx}100 s, tracing a loop in the hardness-intensity diagram which resembles that previously seen in GRS 1915+105. However, while GRS 1915+105 traverses this loop clockwise, IGR J17091-3624 does so in the opposite sense. We briefly discuss our findings in the context of the models proposed for GRS 1915+105 and find that either all models requiring near Eddington luminosities for GRS 1915+105-like variability fail, or IGR J17091-3624 lies at a distance well in excess of 20 kpc, or it harbors one of the least massive black holes known (<3 M{sub Sun }).

  17. Quasi-black holes: Definition and general properties

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2007-10-15

    Objects that are on the verge of being extremal black holes but actually are distinct in many ways are called quasi-black holes. Quasi-black holes are defined here and treated in a unified way by displaying their properties. Their main properties are as follows: (i) there are infinite redshift whole regions (ii) the spacetimes exhibit degenerate, almost singular, features but their curvature invariants remain perfectly regular everywhere (iii) in the limit under discussion, outer and inner regions become mutually impenetrable and disjoint, although, in contrast to the usual black holes, this separation is of a dynamical nature, rather than purely causal, and (iv) for external faraway observers the spacetime is virtually indistinguishable from that of extremal black holes. In addition, we show that quasi-black holes must be extremal. Connections with black hole and wormhole physics are also drawn.

  18. SPATIALLY RESOLVING A STARBURST GALAXY AT HARD X-RAY ENERGIES: NuSTAR, CHANDRA, AND VLBA OBSERVATIONS OF NGC253

    SciTech Connect (OSTI)

    Wik, D. R.; Lehmer, B. D.; Hornschemeier, A. E.; Yukita, M.; Ptak, A.; Venters, T.; Zhang, W. W.; Zezas, A.; Antoniou, V.; Argo, M. K.; Bechtol, K.; Boggs, S.; Craig, W.; Krivonos, R.; Christensen, F.; Hailey, C.; Harrison, F.; Maccarone, T. J.; Stern, D.

    2014-12-20

    Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR data set, comprised of three ?165 ks observations, allows spatial characterization of the hard X-ray emission in the galaxy NGC253 for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and Very Long Baseline Array monitoring of the local starburst galaxy NGC253. Above ?10 keV, nearly all the emission is concentrated within 100'' of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting of intermediate state black hole X-ray binaries. The global X-ray emission of the galaxydominated by the off-nuclear ULX and nuclear sources, which are also likely ULXsfalls steeply (photon index ? 3) above 10 keV, consistent with other NuSTAR-observed ULXs, and no significant excess above the background is detected at E > 40 keV. We report upper limits on diffuse inverse Compton emission for a range of spatial models. For the most extended morphologies considered, these hard X-ray constraints disfavor a dominant inverse Compton component to explain the ?-ray emission detected with Fermi and H.E.S.S. If NGC253 is typical of starburst galaxies at higher redshift, their contribution to the E > 10 keV cosmic X-ray background is <1%.

  19. Method and apparatus for micromachining using hard X-rays

    DOE Patents [OSTI]

    Siddons, David Peter; Johnson, Erik D.; Guckel, Henry; Klein, Jonathan L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  20. Method and apparatus for micromachining using hard X-rays

    DOE Patents [OSTI]

    Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

  1. Astrophysical black holes in screened modified gravity

    SciTech Connect (OSTI)

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth E-mail: r.a.w.gregory@durham.ac.uk E-mail: jlmuir@umich.edu

    2014-08-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.

  2. Hanford Site Black-tailed Jackrabbit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Revision 0 Hanford Site Black-tailed Jackrabbit Monitoring Report for Fiscal Year 2013 Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management Contractor for the U.S. Department of Energy under Contract DE-AC06-09RL14728 P.O. Box 650 Richland, Washington 99352 Approved for Public Release Further Dissemination Unlimited HNF- 56710 Revision 0 TRADEMARK DISCLAIMER Reference herein to any specific commercial product, process, or service by trade name,

  3. Nanopatterned ferroelectrics for ultrahigh density rad-hard nonvolatile memories.

    SciTech Connect (OSTI)

    Brennecka, Geoffrey L.; Stevens, Jeffrey; Scrymgeour, David; Gin, Aaron V.; Tuttle, Bruce Andrew

    2010-09-01

    Radiation hard nonvolatile random access memory (NVRAM) is a crucial component for DOE and DOD surveillance and defense applications. NVRAMs based upon ferroelectric materials (also known as FERAMs) are proven to work in radiation-rich environments and inherently require less power than many other NVRAM technologies. However, fabrication and integration challenges have led to state-of-the-art FERAMs still being fabricated using a 130nm process while competing phase-change memory (PRAM) has been demonstrated with a 20nm process. Use of block copolymer lithography is a promising approach to patterning at the sub-32nm scale, but is currently limited to self-assembly directly on Si or SiO{sub 2} layers. Successful integration of ferroelectrics with discrete and addressable features of {approx}15-20nm would represent a 100-fold improvement in areal memory density and would enable more highly integrated electronic devices required for systems advances. Towards this end, we have developed a technique that allows us to carry out block copolymer self-assembly directly on a huge variety of different materials and have investigated the fabrication, integration, and characterization of electroceramic materials - primarily focused on solution-derived ferroelectrics - with discrete features of {approx}20nm and below. Significant challenges remain before such techniques will be capable of fabricating fully integrated NVRAM devices, but the tools developed for this effort are already finding broader use. This report introduces the nanopatterned NVRAM device concept as a mechanism for motivating the subsequent studies, but the bulk of the document will focus on the platform and technology development.

  4. Complete multiwavelength evolution of Galactic black hole transients during outburst decay. I. Conditions for 'compact' jet formation

    SciTech Connect (OSTI)

    Kalemci, E.; Diner, T.; Chun, Y. Y.; Tomsick, J. A.; Buxton, M. M.; Bailyn, C. D.

    2013-12-20

    Compact, steady jets are observed in the near infrared and radio bands in the hard state of Galactic black hole transients as their luminosity decreases and the source moves toward a quiescent state. Recent radio observations indicate that the jets turn off completely in the soft state; therefore, multiwavelength monitoring of black hole transients is essential to probe the formation of jets. In this work, we conducted a systematic study of all black hole transients with near infrared and radio coverage during their outburst decays. We characterized the timescales of changes in X-ray spectral and temporal properties and also in near infrared and/or in radio emission. We confirmed that state transitions occur in black hole transients at a very similar fraction of their respective Eddington luminosities. We also found that the near infrared flux increase that could be due to the formation of a compact jet is delayed by a time period of days with respect to the formation of a corona. Finally, we found a threshold disk Eddington luminosity fraction for the compact jets to form. We explain these results with a model such that the increase in the near infrared flux corresponds to a transition from a patchy, small-scale height corona along with an optically thin outflow to a large-scale height corona that allows for collimation of a steady compact jet. We discuss the timescale of jet formation in terms of transport of magnetic fields from the outer parts of the disk, and we also consider two alternative explanations for the multiwavelength emission: hot inner accretion flows and irradiation.

  5. Phenomenological loop quantum geometry of the Schwarzschild black hole

    SciTech Connect (OSTI)

    Chiou, D.-W.

    2008-09-15

    The interior of a Schwarzschild black hole is investigated at the level of phenomenological dynamics with the discreteness corrections of loop quantum geometry implemented in two different improved quantization schemes. In one scheme, the classical black hole singularity is resolved by the quantum bounce, which bridges the black hole interior with a white hole interior. In the other scheme, the classical singularity is resolved and the event horizon is also diffused by the quantum bounce. Jumping over the quantum bounce, the black hole gives birth to a baby black hole with a much smaller mass. This lineage continues as each classical black hole brings forth its own descendant in the consecutive classical cycle, giving the whole extended spacetime fractal structure, until the solution eventually descends into the deep Planck regime, signaling a breakdown of the semiclassical description. The issues of scaling symmetry and no-hair theorem are also discussed.

  6. Multiscalar black holes with contingent primary hair: Mechanics and stability

    SciTech Connect (OSTI)

    Mignemi, Salvatore; Wiltshire, David L.

    2004-12-15

    We generalize a class of magnetically charged black holes nonminimally coupled to two scalar fields previously found by one of us to the case of multiple scalar fields. The black holes possess a novel type of primary scalar hair, which we call a contingent primary hair: although the solutions possess degrees of freedom which are not completely determined by the other charges of the theory, the charges necessarily vanish in the absence of the magnetic monopole. Only one constraint relates the black hole mass to the magnetic charge and scalar charges of the theory. We obtain a Smarr-type thermodynamic relation, and the first law of black hole thermodynamics for the system. We further explicitly show in the two-scalar-field case that, contrary to the case of many other hairy black holes, the black hole solutions are stable to radial perturbations.

  7. The Black Mesa coal/water slurry pipeline system

    SciTech Connect (OSTI)

    Brolick, H.J.

    1994-12-31

    The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 mw steam powered electric generating plant located in Laughlin, Nevada.

  8. Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Year Awards | Department of Energy Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo

  9. Searching for tiny black holes during cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T. . Dept. of Nuclear Engineering)

    1992-09-01

    A previous technical note suggests that cold fusion is a small-scale simulation of events that occur in cold stars far-away in the universe. Therefore, it is expected that tiny black holes might be produced during cold fusion. In this paper, a search for tiny black holes whose traces might have been recorded on nuclear emulsions is described. Several traces suggesting the production and evaporation of tiny black holes have been successfully observed.

  10. Effects of water hardness on the toxicity of manganese to developing brown trout (Salmo trutta)

    SciTech Connect (OSTI)

    Stubblefield, W.A.; Garrison, T.D.; Hockett, J.R.; Brinkman, S.F.; Davies, P.H.; McIntyre, M.W.

    1997-10-01

    Manganese is a common constituent of point and nonpoint discharges from mining and smelting activities. Available data indicate that Mn is acutely toxic at relatively high aqueous concentrations, when compared with trace metals, and its toxicity is affected by water hardness. Little information is available regarding the chronic toxicity of manganese. Early-life-stage (ELS) tests were conducted to determine the toxicity of manganese to brown trout (Salmo trutta) and to evaluate the extent to which water hardness (ranging from 30 to 450 mg/L as CaCO{sub 3}) affects the chronic toxicity of Mn. Water hardness of significantly affected Mn chronic toxicity, with toxicity decreasing with increasing hardness. Decreased survival was the predominant effect noted in the 30-mg/L hardness experiment, while significant effects on growth (as measured by changes in body weight) were observed in both the 150- and 450-mg/L hardness experiments. Twenty-five percent inhibition concentration (IC25) values, based on the combined endpoints (i.e., survival and body weight), were 4.67, 5.59, and 8.68 mg Mn/L (based on measured Mn concentration) at hardness levels of approximately 30, 150, and 450 mg/L as CaCO{sub 3}, respectively.

  11. Tribological properties of hard carbon films on zirconia ceramics

    SciTech Connect (OSTI)

    Erdemir, A.; Bindal, C.; Fenske, G.R.; Wilbur, P.

    1995-12-31

    This study investigated the tribological properties of hard diamondlike carbon (DLC) films on magnesia-partially-stabilized zirconia (MgO-PSZ) substrates over a wide range of loads, speeds, temperatures, and counterface materials. The films were 2 {micro}m-thick and produced on by ion-beam deposition at room temperature. Tribological tests were conducted on a ball-on-disk machine in open air of 30 to 50% relative humidity under contact loads of 1 to 50 N, at sliding velocities of 0.1 to 6 m/s, and at temperatures to 400{degrees}C. A1{sub 2}O{sub 3} and Si{sub 3}N{sub 4} balls were also used and rubbed against the DLC-coated MgO-PSZ disks, primarily to assess and compare their friction and wear performance to that of MgO-PSZ balls. A series of long-duration lifetime tests was run at speeds of 1, 2, and 6 m/s under a 5-N load to assess the durability of these DLC films. Test results showed that the friction coefficients of MgO-PSZ balls sliding against MgO-PSZ disks were in the range of 0.5-0.8, and the average specific wear rates of MgO-PSZ balls ranged from 10{sup {minus}5} to 5 {times} 10{sup {minus}4} mm{sup 3}/N.m, depending on sliding velocity, contact load and ambient temperature. The friction coefficients of MgO-PSZ balls sliding against the DLC-coated-MgO-PSZ disks varied between 0.03 to 0.1. The average specific wear rates of MgO-PSZ balls were reduced by factors of three to four orders of magnitude when rubbed against the DLC coated disks. These DLC films could last 1.5 million to 4 million cycles, depending on sliding velocity. Scanning electron microscopy and micro-laser Raman Spectroscopy were used to elucidate the microstructural and chemical nature of DLC films and worn surfaces.

  12. EFFECT OF ENDOSPERM HARDNESS ON AN ETHANOL PROCESS USING A GRANULAR STARCH HYDROLYZING ENZYME

    SciTech Connect (OSTI)

    P. Wang; W. Liu, D. B; Johnston, K. D; Rausch, S. J; Schmidt, M. E; Tumbleson, V. Singh

    2010-01-01

    Granular starch hydrolyzing enzymes (GSHE) can hydrolyze starch at low temperature (32C). The dry grind process using GSHE (GSH process) has fewer unit operations and no changes in process conditions (pH 4.0 and 32C) compared to the conventional process because it dispenses with the cooking and liquefaction step. In this study, the effects of endosperm hardness, protease, urea, and GSHE levels on GSH process were evaluated. Ground corn, soft endosperm, and hard endosperm were processed using two GSHE levels (0.1 and 0.4 mL per 100 g ground material) and four treatments of protease and urea addition. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from a dry milling pilot plant; classifications were confirmed using scanning electron microscopy. During 72 h of simultaneous granular starch hydrolysis and fermentation (GSHF), ethanol and glucose profiles were determined using HPLC. Soft endosperm resulted in higher final ethanol concentrations compared to ground corn or hard endosperm. Addition of urea increased final ethanol concentrations for soft and hard endosperm. Protease addition increased ethanol concentrations and fermentation rates for soft endosperm, hard endosperm, and ground corn. The effect of protease addition on ethanol concentrations and fermentation rates was most predominant for soft endosperm, less for hard endosperm, and least for ground corn. Samples (soft endosperm, hard endosperm, or corn) with protease resulted in higher (1.0% to 10.5% v/v) ethanol concentration compared to samples with urea. The GSH process with protease requires little or no urea addition. For fermentation of soft endosperm, GSHE dose can be reduced. Due to nutrients (lipids, minerals, and soluble proteins) present in corn that enhance yeast growth, ground corn fermented faster at the beginning than hard and soft endosperm.

  13. Funds Awarded to Historically Black Colleges and Universities...

    Broader source: Energy.gov (indexed) [DOE]

    Research by Historically Black Colleges and Universities and Other Minority Institutions (HBCUOMI), recently announced awards to institutions under the HBCUOMI designation. ...

  14. File:EIA-BlackWarrior-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Black Warrior Basin By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  15. Savannah River National Laboratory Meets with Historically Black...

    Energy Savers [EERE]

    Last week, student and faculty leaders at seven Historically Black Colleges and Universities (HBCUs) spent the day at the Center for Hydrogen Research at Savannah River National ...

  16. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian ...

  17. Black Hawk County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Solutions Places in Black Hawk County, Iowa Cedar Falls, Iowa Dunkerton, Iowa Elk Run Heights, Iowa Evansdale, Iowa Gilbertville, Iowa Hudson, Iowa Janesville, Iowa Jesup,...

  18. Variation of the radiative properties during black carbon aging...

    Office of Scientific and Technical Information (OSTI)

    A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC ...

  19. Black Hills Energy (Gas) - Commercial Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    sq ft. Infiltration Control: 70% of installed cost Doors: 25 or 50 Pool Cover: 250 Spa Cover: 50 Summary Black Hills Energy offers commercial and industrial customers...

  20. BlackLight Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: BlackLight Power Inc Place: Cranbury, New Jersey Zip: 8512 Sector: Hydro, Hydrogen Product: Researching a means of producing energy by catalysing the reaction of...

  1. Black Forest, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Black Forest, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0130484, -104.7008083 Show Map Loading map... "minzoom":false,"mappi...

  2. Black Hole Remnants in the Early Universe (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Title: Black Hole Remnants in the Early Universe Authors: Scardigli, Fabio ; Gruber, Christine ; Taiwan, Natl. Taiwan U. ; Chen, Pisin ; Taiwan, Natl. Taiwan U. KIPAC, Menlo ...

  3. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  4. SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL...

    Office of Scientific and Technical Information (OSTI)

    THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE Citation Details In-Document Search Title: SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY ...

  5. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOE Patents [OSTI]

    Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.

    1989-01-01

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.

  6. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOE Patents [OSTI]

    Prince, J.M.; Dodson, M.G.; Lechelt, W.M.

    1989-07-18

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.

  7. Acoustic analogues of black hole singularities

    SciTech Connect (OSTI)

    Cadoni, Mariano; Mignemi, Salvatore

    2005-10-15

    We search for acoustic analogues of a spherical symmetric black hole with a pointlike source. We show that the gravitational system has a dynamical counterpart in the constrained, steady motion of a fluid with a planar source. The equations governing the dynamics of the gravitational system can be exactly mapped in those governing the motion of the fluid. The different meaning that singularities and sources have in fluid dynamics and in general relativity is also discussed. Whereas in the latter a pointlike source is always associated with a (curvature) singularity in the former the presence of sources does not necessarily imply divergences of the fields.

  8. T-579: BlackBerry Device Software Bug in WebKit Lets Remote Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or instant messages. BlackBerry has described a workaround (disabling the use of JavaScript in the BlackBerry Browser) in their advisory. BlackBerry Device storage space...

  9. T-602: BlackBerry Enterprise Server Input Validation Flaw in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    02: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web Desktop Manager Permits Cross-Site Scripting Attacks T-602: BlackBerry Enterprise Server Input Validation...

  10. A difficult search, why Basin and Range systems are hard to find...

    Open Energy Info (EERE)

    hard to find Authors M.C. Richards and D.D. Blackwell Published Geothermal Resources Council Bulletin, 2002 DOI Not Provided Check for DOI availability: http:crossref.org...

  11. Jet quenching parameter in the gluon plasma with soft and hard components

    SciTech Connect (OSTI)

    Antonov, D.; Pirner, H.-J.

    2008-08-29

    We put forward a model of jet quenching, in which a parton traversing the quark-gluon plasma loses its energy by interacting with hard thermal gluons through the exchanges by soft gluons. The hard gluons are modeled by the Hard Thermal Loop effective theory, the soft gluons by the chromo-magnetic condensate, the interaction mechanism between the two is Landau damping of the soft gluons by the hard ones. Within such a model, we calculate the jet quenching parameter of a gluon in SU(3) quenched QCD and find that, when the temperature varies from T = T{sub c} = 270 MeV to T = 900 MeV, the jet quenching parameter rises from q- circumflex = 0 to approximately 1.8 GeV{sup 2}/fm. We compare our results with the predictions of perturbative QCD and some other nonperturbative calculations.

  12. Hardness as a Function of Composition for N-Type Last Thermoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of H for a true quaternary system. Possible implications of hardness change on fabrication and in-service reliability are also discussed. URL: Link to article - ScienceDirect...

  13. IMPULSIVE PHASE CORONAL HARD X-RAY SOURCES IN AN X3.9 CLASS SOLAR...

    Office of Scientific and Technical Information (OSTI)

    We present the analysis of a pair of unusually energetic coronal hard X-ray (HXR) sources detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager during the impulsive ...

  14. Expectations for the hard x-ray continuum and gamma-ray line...

    Office of Scientific and Technical Information (OSTI)

    x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82 Citation Details In-Document Search Title: Expectations for the hard x-ray continuum and ...

  15. Analysis and Interpretation of Hard X-ray Emission fromthe Bullet...

    Office of Scientific and Technical Information (OSTI)

    Analysis and Interpretation of Hard X-ray Emission fromthe Bullet Cluster (1E0657-56), the Most Distant Cluster of Galaxies Observed by the RXTE Citation Details In-Document Search ...

  16. Closing in on a Short-Hard Burst Progenitor: Constraints From...

    Office of Scientific and Technical Information (OSTI)

    The localization of the short-duration, hard-spectrum gamma-ray burst GRB050509b by the Swift satellite was a watershed event. Never before had a member of this mysterious subclass ...

  17. Toward a Single Mode Free Electron Laser for Coherent Hard X...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Toward a Single Mode Free Electron Laser for Coherent Hard X-Ray Experiments Citation Details In-Document Search Title: Toward a Single Mode Free Electron Laser...

  18. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free...

    Office of Scientific and Technical Information (OSTI)

    Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser: Application to Spin Crossover Dynamics Citation Details In-Document Search Title: Femtosecond X-ray...

  19. Breaking Up (Hydrogen) No Longer As Hard To Do | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breaking Up (Hydrogen) No Longer As Hard To Do Breaking Up (Hydrogen) No Longer As Hard To Do December 29, 2011 - 1:12pm Addthis Researchers at Argonne National Lab have recently developed a process to improve the efficiency of producing hydrogen to run cars such as this prototype, which was developed at the Oakridge National Lab. | Photo courtesy of Oak Ridge National Laboratory. Researchers at Argonne National Lab have recently developed a process to improve the efficiency of producing

  20. Breaking Up - And Making Up - Are Hard To Do | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breaking Up (Hydrogen) No Longer As Hard To Do Breaking Up (Hydrogen) No Longer As Hard To Do December 29, 2011 - 1:12pm Addthis Researchers at Argonne National Lab have recently developed a process to improve the efficiency of producing hydrogen to run cars such as this prototype, which was developed at the Oakridge National Lab. | Photo courtesy of Oak Ridge National Laboratory. Researchers at Argonne National Lab have recently developed a process to improve the efficiency of producing

  1. BLACK HOLE FORAGING: FEEDBACK DRIVES FEEDING

    SciTech Connect (OSTI)

    Dehnen, Walter; King, Andrew, E-mail: wd11@leicester.ac.uk, E-mail: ark@astro.le.ac.uk [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)] [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2013-11-10

    We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy, but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back toward the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (1) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (2) random orientations of successive accretion disk episodes; (3) the possibility of rapid SMBH growth; (4) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible flares and ejection of hypervelocity stars; (5) super-solar abundances of the matter accreting on to the SMBH; and (6) a lower central dark-matter density, and hence annihilation signal, than adiabatic SMBH growth implies. We also suggest a simple subgrid recipe for implementing this process in numerical simulations.

  2. Black holes can have curly hair

    SciTech Connect (OSTI)

    Bronnikov, K. A.; Zaslavskii, O. B.

    2008-07-15

    We study equilibrium conditions between a static, spherically symmetric black hole and classical matter in terms of the radial pressure to density ratio p{sub r}/{rho}=w(u), where u is the radial coordinate. It is shown that such an equilibrium is possible in two cases: (i) the well-known case w{yields}-1 as u{yields}u{sub h} (the horizon), i.e., 'vacuum' matter, for which {rho}(u{sub h}) can be nonzero; (ii) w{yields}-1/(1+2k) and {rho}{approx}(u-u{sub h}){sup k} as u{yields}u{sub h}, where k>0 is a positive integer (w=-1/3 in the generic case k=1). A noninteracting mixture of these two kinds of matter can also exist. The whole reasoning is local, hence the results do not depend on any global or asymptotic conditions. They mean, in particular, that a static black hole cannot live inside a star with nonnegative pressure and density. As an example, an exact solution for an isotropic fluid with w=-1/3 (that is, a fluid of disordered cosmic strings), with or without vacuum matter, is presented.

  3. HARD X-RAY OBSERVATIONS OF A JET AND ACCELERATED ELECTRONS IN THE CORONA

    SciTech Connect (OSTI)

    Glesener, Lindsay; Lin, R. P.; Krucker, Saem, E-mail: glesener@ssl.berkeley.edu [Space Science Laboratory, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States)

    2012-07-20

    We report the first hard X-ray observation of a solar jet on the limb with flare footpoints occulted, so that faint emission from accelerated electrons in the corona can be studied in detail. In this event on 2003 August 21, RHESSI observed a double coronal hard X-ray source in the pre-impulsive phase at both thermal and nonthermal energies. In the impulsive phase, the first of two hard X-ray bursts consists of a single thermal/nonthermal source coinciding with the lower of the two earlier sources, and the second burst shows an additional nonthermal, elongated source, spatially and temporally coincident with the coronal jet. Analysis of the jet hard X-ray source shows that collisional losses by accelerated electrons can deposit enough energy to generate the jet. The hard X-ray time profile above 20 keV matches that of the accompanying Type III and broadband gyrosynchrotron radio emission, indicating both accelerated electrons escaping outward along the jet path and electrons trapped in the flare loop. The double coronal hard X-ray source, the open field lines indicated by Type III bursts, and the presence of a small post-flare loop are consistent with significant electron acceleration in an interchange reconnection geometry.

  4. Gas Sampling At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Black Warrior Area (DOE GTP) Exploration Activity Details Location Black...

  5. Slim Holes At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Black Warrior Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Black Warrior Area (DOE GTP) Exploration Activity...

  6. Core Analysis At Black Warrior Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Black Warrior Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Black Warrior Area (DOE GTP) Exploration Activity...

  7. 2-M Probe At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Black Warrior Area (DOE GTP) Exploration Activity Details Location Black...

  8. Flow Test At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Black Warrior Area (DOE GTP) Exploration Activity Details Location Black Warrior...

  9. U-228: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis PROBLEM: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities PLATFORM: Adobe Flash Player versions included with BlackBerry PlayBook tablet software versions...

  10. Nonuniform black strings in various dimensions

    SciTech Connect (OSTI)

    Sorkin, Evgeny

    2006-11-15

    The nonuniform black-strings branch, which emerges from the critical Gregory-Laflamme string, is numerically constructed in dimensions 6{<=}D{<=}11 and extended into the strongly nonlinear regime. All the solutions are more massive and less entropic than the marginal string. We find the asymptotic values of the mass, the entropy and other physical variables in the limit of large horizon deformations. By explicit metric comparison we verify that the local geometry around the waist of our most nonuniform solutions is conelike with less than 10% deviation. We find evidence that in this regime the characteristic length scale has a power-law dependence on a parameter along the branch of the solutions, and estimate the critical exponent.

  11. Modeling the black hole excision problem

    SciTech Connect (OSTI)

    Szilagyi, B.; Winicour, J.; Kreiss, H.-O.

    2005-05-15

    We analyze the excision strategy for simulating black holes. The problem is modeled by the propagation of quasilinear waves in a 1-dimensional spatial region with timelike outer boundary, spacelike inner boundary and a horizon in between. Proofs of well-posed evolution and boundary algorithms for a second differential order treatment of the system are given for the separate pieces underlying the finite-difference problem. These are implemented in a numerical code which gives accurate long term simulations of the quasilinear excision problem. Excitation of long wavelength exponential modes, which are latent in the problem, are suppressed using conservation laws for the discretized system. The techniques are designed to apply directly to recent codes for the Einstein equations based upon the harmonic formulation.

  12. Charged black holes in generalized teleparallel gravity

    SciTech Connect (OSTI)

    Rodrigues, M.E.; Houndjo, M.J.S.; Tossa, J.; Momeni, D.; Myrzakulov, R. E-mail: sthoundjo@yahoo.fr E-mail: d.momeni@yahoo.com

    2013-11-01

    In this paper we investigate charged static black holes in 4D for generalized teleparallel models of gravity, based on torsion as the geometric object for describing gravity according to the equivalence principle. As a motivated idea, we introduce a set of non-diagonal tetrads and derive the full system of non linear differential equations. We prove that the common Schwarzschild gauge is applicable only when we study linear f(T) case. We reobtain the Reissner-Nordstrom-de Sitter (or RN-AdS) solution for the linear case of f(T) and perform a parametric cosmological reconstruction for two nonlinear models. We also study in detail a type of the no-go theorem in the framework of this modified teleparallel gravity.

  13. Varying fine structure 'constant' and charged black holes

    SciTech Connect (OSTI)

    Bekenstein, Jacob D.; Schiffer, Marcelo

    2009-12-15

    Speculation that the fine-structure constant {alpha} varies in spacetime has a long history. We derive, in 4-D general relativity and in isotropic coordinates, the solution for a charged spherical black hole according to the framework for dynamical {alpha} J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).. This solution coincides with a previously known one-parameter extension of the dilatonic black hole family. Among the notable properties of varying-{alpha} charged black holes are adherence to a 'no hair' principle, the absence of the inner (Cauchy) horizon of the Reissner-Nordstroem black holes, the nonexistence of precisely extremal black holes, and the appearance of naked singularities in an analytic extension of the relevant metric. The exteriors of almost extremal electrically (magnetically) charged black holes have simple structures which makes their influence on applied magnetic (electric) fields transparent. We rederive the thermodynamic functions of the modified black holes; the otherwise difficult calculation of the electric potential is done by a shortcut. We confirm that variability of {alpha} in the wake of expansion of the universe does not threaten the generalized second law.

  14. Black phosphorus saturable absorber for ultrashort pulse generation

    SciTech Connect (OSTI)

    Sotor, J. Sobon, G.; Abramski, K. M.; Macherzynski, W.; Paletko, P.

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  15. AN EVOLVING COMPACT JET IN THE BLACK HOLE X-RAY BINARY MAXI J1836-194

    SciTech Connect (OSTI)

    Russell, D. M.; Russell, T. D.; Miller-Jones, J. C. A.; Soria, R.; Slaven-Blair, T.; Curran, P. A.; O'Brien, K.; Sivakoff, G. R.; Lewis, F.; Markoff, S.; Altamirano, D.; Homan, J.; Rupen, M. P.; Dhawan, V.; Belloni, T. M.; Cadolle Bel, M.; Casella, P.; Corbel, S.; Gallo, E.; and others

    2013-05-10

    We report striking changes in the broadband spectrum of the compact jet of the black hole transient MAXI J1836-194 over state transitions during its discovery outburst in 2011. A fading of the optical-infrared (IR) flux occurred as the source entered the hard-intermediate state, followed by a brightening as it returned to the hard state. The optical-IR spectrum was consistent with a power law from optically thin synchrotron emission, except when the X-ray spectrum was softest. By fitting the radio to optical spectra with a broken power law, we constrain the frequency and flux of the optically thick/thin break in the jet synchrotron spectrum. The break gradually shifted to higher frequencies as the source hardened at X-ray energies, from {approx}10{sup 11} to {approx}4 Multiplication-Sign 10{sup 13} Hz. The radiative jet luminosity integrated over the spectrum appeared to be greatest when the source entered the hard state during the outburst decay (although this is dependent on the high-energy cooling break, which is not seen directly), even though the radio flux was fading at the time. The physical process responsible for suppressing and reactivating the jet (neither of which are instantaneous but occur on timescales of weeks) is uncertain, but could arise from the varying inner accretion disk radius regulating the fraction of accreting matter that is channeled into the jet. This provides an unprecedented insight into the connection between inflow and outflow, and has implications for the conditions required for jets to be produced, and hence their launching process.

  16. A bias assessment for in-situ ultrasonic hardness testing of steel fasteners

    SciTech Connect (OSTI)

    Ratiu, M.D.; Moisidis, N.T.

    1996-12-31

    The problem of sub-standard and/or mismarked installed fasteners has received broad attention in quality control standard and largely discussed in technical publications and in public press. The Industrial Fastener Institute (IFI, 1988) released a detailed documented inspection program to ensure the delivery and the usage of appropriate fasteners, imposing mandatory traceability of the manufacturer marking and quality certification reports. For the billions of the existing installed bolts without reliable lot identification and/or quality certification, IFI recommends in-situ control using non-destructive testing and/or hardness measurements with portable testers. The ultrasonic indentation hardness (HU) with the Krautkramer portable tester--operating on the ultrasonic contact impedance method described by Kleesattel (Jankowski D.M., 1990)--is one of the more frequent equipment used in the in-situ control of steel products and machine elements. The advantages of the ultrasonic tester--low weight, direct hardness reading, easy to operate--have determined to be included also for the in-situ control of installed fasteners. However, the bias of this method was not analyzed; the practiced calibration of standard blocks is not conclusive for the comparison of the in-situ measured hardness with the standard reference value obtained using laboratory Rockwell hardness (HR) tester. The purpose of this paper is to point out the specific consistent/systematic differences between HU results and the reference standard HR, which defines the ruggedness and the bias of the ultrasonic method.

  17. Investigation of the hard x-ray background in backlit pinhole imagers

    SciTech Connect (OSTI)

    Fein, J. R. Holloway, J. P.; Peebles, J. L.; Keiter, P. A.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Drake, R. P.

    2014-11-15

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-? x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  18. Runaway electron energy measurement using hard x-ray spectroscopy in 'Damavand' tokamak

    SciTech Connect (OSTI)

    Rasouli, C.; Farahbod, A. H.; Rasouli, H.; Lamehi, M.; Iraji, D.; Akhtari, K.; Modarresi, H.

    2009-01-15

    Set of experiments has been developed to study existing runaway electrons in ''Damavand'' tokamak plasma upon characteristics of hard x-ray emissions produced by collision of the runaway electrons with the plasma particles and limiters. As a first step, spatial distribution of hard x-ray emissions on the equatorial plane of the torus was considered. Obtained spectra of hard x-ray emissions for different alignments of shielded detector indicate isotropic emissivity in the equatorial plane. This is in agreement with wide angle cone of bremsstrahlung radiations, deduced from the mean value of energy of the runaway electrons. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. In the second stage in order to investigate time evolution of energy of the runaway electrons, similar technique were applied to obtain hard x-ray energy in every 3 ms intervals, from the beginning to the end of plasma. The mean energy of the runaway electrons increases during the ramp up phase and reaches its maximum between 3 and 9 ms after plasma formation. Also considering the time dependence of the counted photons in each energy range shows that energetic photons are emitted during the ramp up phase of the plasma current in Damavand tokamak.

  19. KCP's Carey honored as 2014 Black Achiever | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) KCP's Carey honored as 2014 Black Achiever Monday, February 10, 2014 - 11:00am KCP's Carey honored as 2014 Black Achiever Anthony Carey is not just focused on developing the next generation of Test Systems for our nation's military; he's also focused on developing the next generation of young leaders. A Technical Manager for the Kansas City Plant, Anthony was honored Jan. 16 at the annual Black Achievers Society of Kansas City event for his leadership both in the

  20. ARM - Field Campaign - Black Carbon at the Mt. Bachelor Observatory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBlack Carbon at the Mt. Bachelor Observatory Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Black Carbon at the Mt. Bachelor Observatory 2016.06.15 - 2016.10.01 Lead Scientist : Daniel Jaffe Abstract Black carbon (BC) is a key component in the earth system and a significant climate forcing agent. Observations at remote sites and in free-tropospheric air are extremely sparse. We propose to utilize one of the ARM SP2 (Single

  1. ARM - Field Campaign - Characterization of Black Carbon Mixing State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCharacterization of Black Carbon Mixing State Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Characterization of Black Carbon Mixing State 2012.11.01 - 2013.06.14 Lead Scientist : Arthur Sedlacek For data sets, see below. Abstract The objective of the proposed experiments was to characterize the mixing state of black carbon produced in biomass burning

  2. Paramont's Black Bear No. 4 mine does it right, again

    SciTech Connect (OSTI)

    Sanda, A.

    2007-07-15

    The Paramont Coal Company Virginia, LLC, a subsidiary of Alpha Natural Resources, recently won the '2007 overall award for excellence in mining and reclamation from the Virginia Division of Mined Land Reclamation and the Virginia Mining Association. Coal People Magazine recently visited Black Bear No. 4 mine where a settling pond was being removed and stream bed placed to drain the area, part of the 451-acre award winning reclamation project. The article recounts discussions with mining engineers about the company's operations with emphasis on the Black Bear No. 4 mine. Black Bear No. 1 mine won five state and national awards last year for conservation and land management practices. 8 photos.

  3. Back reaction on a Reissner-Nordstro''m black hole

    SciTech Connect (OSTI)

    Wang, Bobo; Huang, Chao-guang

    2001-06-15

    The perturbed (''dressed'') metric of the conformally invariant scalar field in a Reissner-Nordstroem (RN) black hole is given by solving the semiclassical Einstein and Maxwell equations according to York's back-reaction approach. Some properties of the ''dressed'' black hole are obtained, such as its ''dressed'' mass, the location of the event horizon, and its surface gravity. It will also be found that the hypersurfaces of r{sub +} and r{sub {minus}} which are the event and Cauchy horizons in the ''naked'' RN black hole, become spacelike in the perturbed geometry.

  4. Modified clock inequalities and modified black hole lifetime

    SciTech Connect (OSTI)

    Yang Rongjia; Zhang Shuangnan

    2009-06-15

    Based on a generalized uncertainty principle, Salecker-Wigner inequalities are modified. When applied to black holes, they give a modified black hole lifetime: T{sub MB}{approx}(M{sup 3}/m{sub p}{sup 3})(1-m{sub p}{sup 2}/M{sup 2})t{sub p}, and the number of bits required to specify the information content of the black hole as the event horizon area in Planck units N{approx}(M{sup 2}/m{sub p}{sup 2})(1-m{sub p}{sup 2}/M{sup 2})

  5. Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-Bonnet black holes

    SciTech Connect (OSTI)

    Pani, Paolo; Cardoso, Vitor

    2009-04-15

    It is generally accepted that Einstein's theory will get some as yet unknown corrections, possibly large in the strong-field regime. An ideal place to look for these modifications is in the vicinities of compact objects such as black holes. Here, we study dilatonic black holes, which arise in the framework of Gauss-Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity theories: they evade the 'no-hair' theorem of general relativity but were proven to be stable against radial perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide some means to distinguish them from black holes in general relativity. We start by extending previous works and establishing the stability of these black holes against axial perturbations. We then look for solutions of the field equations describing slowly rotating black holes and study geodesic motion around this geometry. Depending on the values of mass, dilaton charge, and angular momentum of the solution, one can have differences in the innermost-stable-circular-orbit location and orbital frequency, relative to black holes in general relativity. In the most favorable cases, the difference amounts to a few percent. Given the current state-of-the-art, we discuss the difficulty of distinguishing the correct theory of gravity from electromagnetic observations or even with gravitational-wave detectors.

  6. Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.

  7. Magnetization reversal in CoPt(111) hard/soft bilayers

    SciTech Connect (OSTI)

    Alexandrakis, V.; Niarchos, D.; Wolff, M.

    2009-03-15

    The magnetization reversal in magnetron sputtered CoPt(111) hard/soft bilayers has been studied by polarized neutron reflectometry and magnetization measurements. The stability of the hard layer is tuned by the heat-treatment conditions which are used to crystallize the chemically ordered, high anisotropy, L{sub 1}0 phase. All the samples show the same features in their first order reversal curves but the lateral domain size during the magnetization reversal of the soft layer differs. In samples with strong intergrain coupling it exceeds the coherence length of the neutron beam, resulting in spin-flip scattering. In contrast, the hard layer reversal occurs through the reorientation in small domains.

  8. Aging of niobium and tantalum tritides: Evolution of hardness in comparison with other properties

    SciTech Connect (OSTI)

    Schober, T.; Dieker, C.; Trinkaus, H.

    1989-01-01

    Vickers hardness measurements on niobium and tantalum tritides of initial composition NbT/sub 0.0225/ and TaT/sub 0.097/, respectively, performed over the first 20 months after T charging, are reported and interpreted. For both tritides, the hardness increases monotonically, but in a decelerating rate, with the /sup 3/ He concentration built up upon T transmutation. At given /sup 3/ He concentration, the increase per unit /sup 3/ He concentration is stronger for Nb than for Ta. To interpret the observed hardness evolution, existing hardening theories are adjusted to the present microstructural situations. It is concluded that the microstructure developing on /sup 3/ He precipitation is more disperse in the Nb tritide than in the Ta tritide. These findings are supported by conclusions drawn previously from swelling, acoustic emission, and x-ray diffraction measurements of these materials.

  9. Design and Implementation of a Hall Effect Sensor Array Applied to Recycling Hard Drive Magnets

    SciTech Connect (OSTI)

    Kisner, Roger; Lenarduzzi, Roberto; Killough, Stephen M; McIntyre, Timothy J

    2015-01-01

    Rare earths are an important resource for many electronic components and technologies. Examples abound including Neodymium magnets used in mobile devices and computer hard drives (HDDs), and a variety of renewable energy technologies (e.g., wind turbines). Approximately 21,000 metric tons of Neodymium is processed annually with less than 1% being recycled. An economic system to assist in the recycling of magnet material from post-consumer goods, such as Neodymium Iron Boron magnets commonly found in hard drives is presented. A central component of this recycling measurement system uses an array of 128 Hall Effect sensors arranged in two columns to detect the magnetic flux lines orthogonal to the HDD. Results of using the system to scan planar shaped objects such as hard drives to identify and spatially locate rare-earth magnets for removal and recycling from HDDs are presented. Applications of the sensor array in other identification and localization of magnetic components and assemblies will be presented.

  10. Induced supersolidity in a mixture of normal and hard-core bosons

    SciTech Connect (OSTI)

    Mishra, Tapan; Das, B. P.; Pai, Ramesh V.

    2010-01-01

    We present a scenario where a supersolid is induced in one of the components of a mixture of two species bosonic atoms where there are no long-range interactions. We study a system of normal and hard-core boson mixture with only the former possessing long-range interactions. We consider three cases: the first where the total density is commensurate and the other two where it is incommensurate to the lattice. By suitable choices of the densities of normal and hard-core bosons and the interaction strengths between them, we predict that the charge density wave and the supersolid orders can be induced in the hard-core species as a result of the competing interatomic interactions.

  11. The hard X-ray shortages prompted by the clock bursts in GS 1826-238

    SciTech Connect (OSTI)

    Ji, Long; Zhang, Shu; Chen, YuPeng; Zhang, Shuang-Nan; Li, Jian; Torres, Diego F.; Kretschmar, Peter

    2014-02-10

    We report on a study of GS 1826-238 using all available Rossi X-Ray Timing Explorer observations, concentrating on the behavior of the hard X-rays during type-I bursts. We find a hard X-ray shortage at 30-50 keV prompted by the shower of soft X-rays coming from type-I bursts. This shortage happens with a time delay after the peak of the soft flux of 3.6 ± 1.2 s. The behavior of hard X-rays during bursts indicates cooling and reheating of the corona, during which a large amount of energy is required. We speculate that this energy originates from the feedback of the type-I bursts to the accretion process, resulting in a rapid temporary increase of the accretion rate.

  12. Proceedings of the black liquor research program review fourth meeting held July 28--30, 1987

    SciTech Connect (OSTI)

    Emerson, D. B.; Whitworth, B. A.

    1987-10-01

    Research programs, presented at the black liquor review meeting are described. Research topics include the following: Cooperative Program in Kraft Recovery; Black Liquor Physical Properties; Viscosity of Strong Black Liquor; Ultrafiltration of Kraft Black Liquor; Molecular Weight Distribution of Kraft Lignin; Black Liquor Droplet Formation Project; Fundamental Studies of Black Liquor Combustion; Black Liquor Combustion Sensors; Flash X-ray Imagining of Black Liquor Sprays; Laser Induced Fluorescence For Process Control In The Pulp and Paper Industry; Recovery Boiler Optimization; Black Liquor Gasification and Use of the Products in Combined-Cycle Cogeneration; Black Liquor Steam Plasma Automization; The B and W Pyrosonic 2000R System; Monsteras Boiler Control System; and Cooperative Program Project Reviews. Individual projects are processed separately for the data bases.

  13. Hard X-ray spatial array diagnostics on Joint Texas Experimental Tokamak

    SciTech Connect (OSTI)

    Huang, D. W.; Chen, Z. Y. Luo, Y. H.; Tong, R. H.; Yan, W.; Jin, W.; Zhuang, G.

    2014-11-15

    A spatially distributed hard X-ray detection array has been developed to diagnose the loss of runaway electron with toroidal and poloidal resolution. The hard X-ray radiation in the energy ranges of 0.31 MeV resulted from runaway electrons can be measured. The detection array consists of 12 CdTe detectors which are arranged surrounding the tokamak. It is found that most runaway electrons which transport to plasma boundary tend to loss on limiters. The application of electrode biasing probe resulted in enhancement of local runaway loss. Resonant magnetic perturbations enhanced the runaway electrons diffusion and showed an asymmetric poloidal loss rate.

  14. On the origins of hardness of Cu–TiN nanolayered composites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pathak, S.; Li, N.; Maeder, X.; Hoagland, R. G.; Baldwin, J. K.; Michler, J.; Misra, A.; Wang, J.; Mara, N. A.

    2015-07-18

    We investigated the mechanical response of physical vapor deposited Cu–TiN nanolayered composites of varying layer thicknesses from 5 nm to 200 nm. Both the Cu and TiN layers were found to consist of single phase nanometer sized grains. The grain sizes in the Cu and TiN layers, measured using transmission electron microscopy and X-ray diffraction, were found to be comparable to or smaller than their respective layer thicknesses. Indentation hardness testing revealed that the hardness of such nanolayered composites exhibits a weak dependence on the layer thickness but is more correlated to their grain size.

  15. FPIX2: A radiation-hard pixel readout chip for BTeV

    SciTech Connect (OSTI)

    David C. Christian et al.

    2000-12-11

    A radiation-hard pixel readout chip, FPIX2, is being developed at Fermilab for the recently approved BTeV experiment. Although designed for BTeV, this chip should also be appropriate for use by CDF and DZero. A short review of this development effort is presented. Particular attention is given to the circuit redesign which was made necessary by the decision to implement FPIX2 using a standard deep-submicron CMOS process rather than an explicitly radiation-hard CMOS technology, as originally planned. The results of initial tests of prototype 0.25{micro} CMOS devices are presented, as are plans for the balance of the development effort.

  16. Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm

    SciTech Connect (OSTI)

    Kosch, Sebastian E-mail: ashgriz@mie.utoronto.ca; Ashgriz, Nasser E-mail: ashgriz@mie.utoronto.ca

    2015-04-15

    We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation of the presented droplet generator.

  17. Science Bowl 2012: A Long, Hard-Fought Battle for First | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Science Bowl 2012: A Long, Hard-Fought Battle for First Science Bowl 2012: A Long, Hard-Fought Battle for First May 1, 2012 - 5:53pm Addthis Zaroug Jafeel, Mathew Arbesfeld, Julia Leung, and Alan Zhou from the Lexington High School team concentrate to answer question in the final match of the National Science Bowl April 30. The Lexington team won first place in the high school competition. | Photo by Dennis Brack, Energy Department Office of Science Zaroug Jafeel, Mathew Arbesfeld,

  18. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography

    SciTech Connect (OSTI)

    Colston, Bill W.; Everett, Mathew J.; Da Silva, Luiz B. Otis, Linda L. Stroeve, Pieter Nathel, Howard

    1998-06-01

    We have developed a prototype optical coherent tomography (OCT) system for the imaging of hard and soft tissue in the oral cavity. High-resolution images of {ital in vitro} porcine periodontal tissues have been obtained with this system. The images clearly show the enamel{endash}cementum and the gingiva{endash}tooth interfaces, indicating OCT is a potentially useful technique for diagnosis of periodontal diseases. To our knowledge, this is the first application of OCT for imaging biologic hard tissue. {copyright} 1998 Optical Society of America

  19. Pulse energy measurement at the hard x-ray laser in Japan

    SciTech Connect (OSTI)

    Kato, M.; Tanaka, T.; Saito, N.; Kurosawa, T.; Richter, M.; Sorokin, A. A.; Tiedtke, K.; Kudo, T.; Yabashi, M.; Tono, K.; Ishikawa, T.

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  20. Hardness-based plasticity and fracture model for quench-hardenable boron steel (22MnB5)

    SciTech Connect (OSTI)

    Greve, L. Medricky, M. Andres, M.; Eller, T. K.

    2013-12-16

    A comprehensive strain hardening and fracture characterization of different grades of boron steel blanks has been performed, providing the foundation for the implementation into the modular material model (MMM) framework developed by Volkswagen Group Research for an explicit crash code. Due to the introduction of hardness-based interpolation rules for the characterized main grades, the hardening and fracture behavior is solely described by the underlying Vickers hardness. In other words, knowledge of the hardness distribution within a hot-formed component is enough to set up the newly developed computational model. The hardness distribution can be easily introduced via an experimentally measured hardness curve or via hardness mapping from a corresponding hot-forming simulation. For industrial application using rather coarse and computationally inexpensive shell element meshes, the user material model has been extended by a necking/post-necking model with reduced mesh-dependency as an additional failure mode. The present paper mainly addresses the necking/post-necking model.

  1. Generic features of Einstein-Aether black holes

    SciTech Connect (OSTI)

    Tamaki, Takashi; Miyamoto, Umpei

    2008-01-15

    We reconsider spherically symmetric black hole solutions in Einstein-Aether theory with the condition that this theory has identical parametrized post-Newtonian parameters as those for general relativity, which is the main difference from the previous research. In contrast with previous study, we allow superluminal propagation of a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having a spin-0 'horizon' inside an event horizon. We allow a singularity at a spin-0 horizon since it is concealed by the event horizon. If we allow such a configuration, the kinetic term of the Aether field can be large enough for black holes to be significantly different from Schwarzschild black holes with respect to Arnowitt-Deser-Misner mass, innermost stable circular orbit, Hawking temperature, and so on. We also discuss whether or not the above features can be seen in more generic vector-tensor theories.

  2. MLK Day/Black History Month DOE Celebration

    Broader source: Energy.gov [DOE]

    Join us as the Department honors both Dr. King and Black History Month with a dialogue on the history of civil rights for all. Secretary Ernest Moniz will open our program.

  3. The Role of Circulation Features on Black Carbon Transport into...

    Office of Scientific and Technical Information (OSTI)

    Carbon Transport into the Arctic in the Community Atmosphere Model Version 5 (CAM5) Citation Details In-Document Search Title: The Role of Circulation Features on Black Carbon ...

  4. Black hole evaporation in a noncommutative charged Vaidya model

    SciTech Connect (OSTI)

    Sharif, M. Javed, W.

    2012-06-15

    We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.

  5. Black Hills Energy (Gas) - Residential Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    70% of cost Duct Repair and Sealing: 70% of cost Doors: 25 Summary Black Hills Energy (BHE) offers a variety of rebates for residential Colorado customers who purchase and...

  6. Paleoecology of the Devonian-Mississippian black-shale sequence...

    Office of Scientific and Technical Information (OSTI)

    The black shales contain abundant evidence of life from upper parts of the water column such as fish fossils, conodonts, algae and other phytoplankton; however, there is a lack of ...

  7. Atmospheric Radiation Measurement (ARM) Data from Black Forest...

    Office of Scientific and Technical Information (OSTI)

    ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility (AMF) to other sites as determined. In 2007 the AMF operated in the Black Forest ...

  8. Black Diamond, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Black Diamond is a city in King County, Washington. It falls under Washington's 8th congressional district.12...

  9. Black Branes in Flux Compactifications (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Black Branes in Flux Compactifications Citation Details ... Report Number(s): SLAC-PUB-15462 arXiv:1306.3982 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article ...

  10. Celebrating Black History Month with DOE's Christopher Smith | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Black History Month with DOE's Christopher Smith Celebrating Black History Month with DOE's Christopher Smith February 16, 2011 - 12:08pm Addthis Christopher A. Smith Christopher A. Smith Assistant Secretary for Fossil Energy Throughout the month of February, we've been introducing remarkable African Americans who are working to advance the President's clean energy agenda. This week we're highlighting Christopher Smith, the Department's Deputy Assistant Secretary for Oil and

  11. Funds Awarded to Historically Black Colleges and Universities for Fossil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Research | Department of Energy Funds Awarded to Historically Black Colleges and Universities for Fossil Energy Research Funds Awarded to Historically Black Colleges and Universities for Fossil Energy Research October 7, 2014 - 10:26am Addthis Washington, D.C. - The U.S. Department of Energy (DOE) has selected four research projects that will provide educational and research training opportunities for minority students while advancing key technical areas in fossil fuel utilization.

  12. Black holes in supergravity: the non-BPS branch

    SciTech Connect (OSTI)

    Gimon, Eric; Gimon, Eric G.; Larsen, Finn; Simon, Joan

    2007-10-25

    We construct extremal, spherically symmetric black hole solutions to 4D supergravity with charge assignments that preclude BPS-saturation. In particular, we determine the ground state energy as a function of charges and moduli. We find that the mass of the non-BPS black hole remains that of a marginal bound state of four basic constituents throughout the entire moduli space and that there is always a non-zero gap above the BPS bound.

  13. Historically Black Colleges and Universities Receive Funds for Fossil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Research | Department of Energy Historically Black Colleges and Universities Receive Funds for Fossil Energy Research Historically Black Colleges and Universities Receive Funds for Fossil Energy Research August 15, 2013 - 1:18pm Addthis Washington, D.C. - Five fossil energy-related projects that will help maintain the nation's energy portfolio while also providing educational and research training opportunities for tomorrow's scientists and engineers have been selected for funding by

  14. Students, Faculty from Historically Black Colleges and Universities Share

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research with EM Laboratory in Successful Exchange | Department of Energy Students, Faculty from Historically Black Colleges and Universities Share Research with EM Laboratory in Successful Exchange Students, Faculty from Historically Black Colleges and Universities Share Research with EM Laboratory in Successful Exchange February 5, 2013 - 12:00pm Addthis South Carolina State University students William Dumpson, left, and Alejandra Chirino, center, talk with Savannah River National

  15. Choice of an equivalent black body solar temperature

    SciTech Connect (OSTI)

    Parrott, J.E. )

    1993-09-01

    In the course of modeling the performance of photovoltaic solar cells for space use, it became desirable to set up a black body spectrum equivalent to the standard Air Mass Zero (AMO) solar spectrum. A method of calculating the equivalent black body solar surface temperature, based on irradiance and photon number flux derived from the AMO spectrum, is presented. It does not require knowledge of the angle subtended by the sun at the earth's surface. The value obtained is 5730 +/- 90 K.

  16. Drum drying of black liquor using superheated steam impinging jets

    SciTech Connect (OSTI)

    Shiravi, A.H.; Mujumdar, A.S.; Kubes, G.J. [McGill Univ., Montreal, Quebec (Canada)

    1997-05-01

    A novel drum dryer for black liquor utilizing multiple impinging jets of superheated steam was designed and built to evaluate the performance characteristics and effects of various operating parameters thereon. Appropriate ranges of parameters such as steam jet temperature and velocity were examined experimentally to quantify the optimal operating conditions for the formation of black liquor film on the drum surface as well as the drying kinetics.

  17. Carbon black and carbon black-conducting polymer composites for environmental applications

    SciTech Connect (OSTI)

    Rajeshwar, K.; Wampler, W.A.; Goeringer, S.; Gerspacher, M.; Richardson, S.

    1996-10-01

    The preparation and use of the title materials for the treatment of Cr(VI) in aqueous media will be described. The carcinogenic Cr(VI) will be shown to be efficiently reduced to the less toxic specie Cr(III). The preparation and process variables will be described using a furnace black (N135) and polypyrrole as model candidates. Other aspects to be discussed include reaction kinetics, mechanism and thermodynamics. Finally, the practical implications of this new Cr(VI) pollution abatement approach are discussed.

  18. Controlled Sculpture of Black Phosphorus Nanoribbons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; Parkin, William M.; Liang, Liangbo; Kharche, Neerav; Ling, Xi; Huang, Shengxi; Dresselhaus, Mildred S.; Meunier, Vincent; et al

    2016-05-18

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation propertiesmore » with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.« less

  19. Mechanical properties of reconstituted Australian black coal

    SciTech Connect (OSTI)

    Jasinge, D.; Ranjith, P.G.; Choi, S.K.; Kodikara, J.; Arthur, M.; Li, H.

    2009-07-15

    Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstituted coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.

  20. Thermodynamics of Sultana-Dyer black hole

    SciTech Connect (OSTI)

    Majhi, Bibhas Ranjan

    2014-05-01

    The thermodynamical entities on the dynamical horizon are not naturally defined like the usual static cases. Here I find the temperature, Smarr formula and the first law of thermodynamics for the Sultana-Dyer metric which is related to the Schwarzschild spacetime by a time dependent conformal factor. To find the temperature (T), the chiral anomaly expressions for the two dimensional spacetime are used. This shows an application of the anomaly method to study Hawking effect for a dynamical situation. Moreover, the analysis singles out one expression for temperature among two existing expressions in the literature. Interestingly, the present form satisfies the first law of thermodynamics. Also, it relates the Misner-Sharp energy (Ē) and the horizon entropy ( S-bar ) by an algebraic expression Ē = 2 S-bar T which is the general form of the Smarr formula. This fact is similar to the usual static black hole cases in Einstein's gravity where the energy is identified as the Komar conserved quantity.

  1. Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    The commercialization of an innovative telemetry communications system developed through a U.S. Department of Energy research program will help U.S. producers tap previously hard-to-reach natural gas resources deep underground, resulting in access to additional supplies that will help enhance national energy security.

  2. Stochastic interactions of two Brownian hard spheres in the presence of depletants

    SciTech Connect (OSTI)

    Karzar-Jeddi, Mehdi; Fan, Tai-Hsi; Tuinier, Remco; Taniguchi, Takashi

    2014-06-07

    A quantitative analysis is presented for the stochastic interactions of a pair of Brownian hard spheres in non-adsorbing polymer solutions. The hard spheres are hypothetically trapped by optical tweezers and allowed for random motion near the trapped positions. The investigation focuses on the long-time correlated Brownian motion. The mobility tensor altered by the polymer depletion effect is computed by the boundary integral method, and the corresponding random displacement is determined by the fluctuation-dissipation theorem. From our computations it follows that the presence of depletion layers around the hard spheres has a significant effect on the hydrodynamic interactions and particle dynamics as compared to pure solvent and uniform polymer solution cases. The probability distribution functions of random walks of the two interacting hard spheres that are trapped clearly shift due to the polymer depletion effect. The results show that the reduction of the viscosity in the depletion layers around the spheres and the entropic force due to the overlapping of depletion zones have a significant influence on the correlated Brownian interactions.

  3. Study of runaway electrons with Hard X-ray spectrometry of tokamak plasmas

    SciTech Connect (OSTI)

    Shevelev, A.; Chugunov, I.; Khilkevitch, E.; Gin, D.; Doinikov, D.; Naidenov, V.; Kiptily, V.; Collaboration: EFDA-JET Contributors

    2014-08-21

    Hard-X-ray spectrometry is a tool widely used for diagnostic of runaway electrons in existing tokamaks. In future machines, ITER and DEMO, HXR spectrometry will be useful providing information on runaway electron energy, runaway beam current and its profile during disruption.

  4. Hyperspherical approach for the trinucleon system with hard-core potential

    SciTech Connect (OSTI)

    Das, T.K.; Coelho, H.T. ); Torreao, J.R.A. )

    1992-06-01

    In this work we present a method for solving the hard-core (HC) three-body problem by the hyperspherical approach. We restrict ourselves to the totally symmetric {ital S} state of the dominant trinucleon system interacting via a central spin-dependent HC potential, but the method can be generalized to include other states.

  5. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    SciTech Connect (OSTI)

    Malek, Ali; Balawender, Robert

    2015-02-07

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  6. Process for casting hard-faced, lightweight camshafts and other cylindrical products

    DOE Patents [OSTI]

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.; Wilson, Rick D.

    1996-01-01

    A process for casting a hard-faced cylindrical product such as an automobile camshaft includes the steps of: (a) preparing a composition formed from a molten base metal and an additive in particle form and having a hardness value greater than the hardness value of the base metal; (b) introducing the composition into a flask containing a meltable pattern of a cylindrical product such as an automobile camshaft to be manufactured and encased in sand to allow the composition to melt the pattern and assume the shape of the pattern within the sand; and (c) rotating the flask containing the pattern about the longitudinal axes of both the flask and the pattern as the molten base metal containing the additive in particle form is introduced into the flask to cause particles of the additive entrained in the molten base metal to migrate by centrifugal action to the radial extremities of the pattern and thereby provide a cylindrical product having a hardness value greater at it's radial extremities than at its center when the molten base metal solidifies.

  7. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    SciTech Connect (OSTI)

    Furniss, A.; Sutter, P. M.; Primack, J. R.; Dominguez, A.

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV flux and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.

  8. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Furniss, A.; Sutter, P. M.; Primack, J. R.; Dominguez, A.

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV fluxmore » and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.« less

  9. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    SciTech Connect (OSTI)

    Furniss, A.; Sutter, P. M.; Primack, J. R.; Dominguez, A.

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as VHE-like sources) are distributed along underdense lines of sight at the 2.4#27; level. There is also a less suggestive correlation for the Fermi hard source population (1.7#27;). A correlation between 10-500 GeV flux and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4#27; and 2.6#27;, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity #28;(E, z) #24; 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.

  10. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.; Storey, John M.; Romanov, Alexander; Hodson, Elke L.; Cresko, Joe; Morozova, Irina; Ignatieva, Yulia; Cabaniss, John

    2015-10-02

    Development of reliable source emission inventories is needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This paper develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile.more » Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30–65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert

  11. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation

    SciTech Connect (OSTI)

    Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.; Storey, John M.; Romanov, Alexander; Hodson, Elke L.; Cresko, Joe; Ignatieva, Yulia; Cabaniss, John

    2015-10-02

    Development of reliable source emission inventories is needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This paper develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile. Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30–65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert, and

  12. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Wei; Bommier, Clement; Jian, Zelang; Li, Xin; Carter, Rich; Vail, Sean; Lu, Yuhao; Lee, Jong -Jan; Ji, Xiulei

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m²/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-offmore » of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.« less

  13. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent

    SciTech Connect (OSTI)

    Luo, Wei; Bommier, Clement; Jian, Zelang; Li, Xin; Carter, Rich; Vail, Sean; Lu, Yuhao; Lee, Jong -Jan; Ji, Xiulei

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m²/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-off of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.

  14. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent

    SciTech Connect (OSTI)

    Luo, Wei; Bommier, Clement; Jian, Zelang; Li, Xin; Carter, Rich; Vail, Sean; Lu, Yuhao; Lee, Jong -Jan; Ji, Xiulei

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-off of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.

  15. Stellar black holes and the origin of cosmic acceleration

    SciTech Connect (OSTI)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh; Balogh, Michael L.

    2009-08-15

    The discovery of cosmic acceleration has presented a unique challenge for cosmologists. As observational cosmology forges ahead, theorists have struggled to make sense of a standard model that requires extreme fine-tuning. This challenge is known as the cosmological constant problem. The theory of gravitational aether is an alternative to general relativity that does not suffer from this fine-tuning problem, as it decouples the quantum field theory vacuum from geometry, while remaining consistent with other tests of gravity. In this paper, we study static black hole solutions in this theory and show that it manifests a UV-IR coupling: Aether couples the space-time metric close to the black hole horizon, to metric at infinity. We then show that using the trans-Planckian ansatz (as a quantum gravity effect) close to the black hole horizon, leads to an accelerating cosmological solution, far from the horizon. Interestingly, this acceleration matches current observations for stellar-mass black holes. Based on our current understanding of the black hole accretion history in the Universe, we then make a prediction for how the effective dark energy density should evolve with redshift, which can be tested with future dark energy probes.

  16. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    SciTech Connect (OSTI)

    Doganov, Rostislav A.; zyilmaz, Barbaros; Koenig, Steven P.; Yeo, Yuting; Watanabe, Kenji; Taniguchi, Takashi

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitridean atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400?K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  17. Topological black holes in Lovelock-Born-Infeld gravity

    SciTech Connect (OSTI)

    Dehghani, M. H.; Alinejadi, N.; Hendi, S. H.

    2008-05-15

    In this paper, we present topological black holes of third order Lovelock gravity in the presence of cosmological constant and nonlinear electromagnetic Born-Infeld field. Depending on the metric parameters, these solutions may be interpreted as black hole solutions with inner and outer event horizons, an extreme black hole or naked singularity. We investigate the thermodynamics of asymptotically flat solutions and show that the thermodynamic and conserved quantities of these black holes satisfy the first law of thermodynamic. We also endow the Ricci flat solutions with a global rotation and calculate the finite action and conserved quantities of these class of solutions by using the counterterm method. We compute the entropy through the use of the Gibbs-Duhem relation and find that the entropy obeys the area law. We obtain a Smarr-type formula for the mass as a function of the entropy, the angular momenta, and the charge, and compute temperature, angular velocities, and electric potential and show that these thermodynamic quantities coincide with their values which are computed through the use of geometry. Finally, we perform a stability analysis for this class of solutions in both the canonical and the grand-canonical ensemble and show that the presence of a nonlinear electromagnetic field and higher curvature terms has no effect on the stability of the black branes, and they are stable in the whole phase space.

  18. Planck-Size Black Hole Remnants as Dark Matter

    SciTech Connect (OSTI)

    Chen, P

    2004-09-13

    While there exist various candidates, the nature of dark matter remains unresolved. Recently it was argued that the generalized uncertainty principle (GUP) may prevent a black hole from evaporating completely, and as a result there should exist a Planck-size black hole remnant (BHR) at the end of its evaporation. If a sufficient amount of small black holes can be produced in the early universe, then the resultant BHRs can be an interesting candidate for DM. We demonstrate that this is indeed the case for the hybrid inflation model. By assuming BHR as DM, our notion imposes a constraint on the hybrid inflation potential. We show that such a constraint is not so fine-tuned. Possible observational signatures are briefly discussed.

  19. Safeguards Approaches for Black Box Processes or Facilities

    SciTech Connect (OSTI)

    Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

    2013-09-25

    The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

  20. Black holes in a box: Toward the numerical evolution of black holes in AdS space-times

    SciTech Connect (OSTI)

    Witek, Helvi; Nerozzi, Andrea; Cardoso, Vitor; Herdeiro, Carlos; Sperhake, Ulrich; Zilhao, Miguel

    2010-11-15

    The evolution of black holes in ''confining boxes'' is interesting for a number of reasons, particularly because it mimics the global structure of anti-de Sitter geometries. These are nonglobally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data are supplemented by boundary conditions at the timelike conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirrorlike boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is observed only in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing boundary conditions, both of the Newman-Penrose scalars {Psi}{sub 4} and {Psi}{sub 0} are nontrivial in our setup, and we show that the numerical data verifies the expected relations between them.

  1. Extending synchrotron-based atomic physics experiments into the hard X-ray region

    SciTech Connect (OSTI)

    LeBrun, T.

    1996-12-31

    The high-brightness, hard x-ray beams available from third-generation synchrotron sources are opening new opportunities to study the deepest inner shells of atoms, an area where little work has been done and phenomena not observed in less tightly bound inner-shells are manifested. In addition scattering processes which are weak at lower energies become important, providing another tool to investigate atomic structure as well as an opportunity to study photon/atom interactions beyond photoabsorption. In this contribution the authors discuss some of the issues related to extending synchrotron-based atomic physics experiments into the hard x-ray region from the physical and the experimental point of view. They close with a discussion of a technique, resonant Raman scattering, that may prove invaluable in determining the spectra of the very highly-excited states resulting from the excitation of deep inner shells.

  2. The structural origin of the hard-sphere glass transition in granular packing

    SciTech Connect (OSTI)

    Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie

    2015-09-28

    Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a ‘hidden’ polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleation process, similar to that of the random first-order transition theory. In conclusion, our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.

  3. Analytical Expressions for the Hard-Scattering Production of Massive Partons

    SciTech Connect (OSTI)

    Wong, Cheuk-Yin

    2016-01-01

    We obtain explicit expressions for the two-particle differential cross section $E_c E_\\kappa d\\sigma (AB \\to c\\kappa X) /d\\bb c d \\bb \\kappa$ and the two-particle angular correlation function \\break $d\\sigma(AB$$ \\to$$ c\\kappa X)/d\\Delta \\phi \\, d\\Delta y$ in the hard-scattering production of massive partons in order to exhibit the ``ridge" structure on the away side in the hard-scattering process. The single-particle production cross section $d\\sigma(AB \\to cX) /dy_c c_T dc_T $ is also obtained and compared with the ALICE experimental data for charm production in $pp$ collisions at 7 TeV at LHC.

  4. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian K.; Kalbfleisch, Sebastian; Li, Li; et al

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  5. Silicon-on-insulator field effect transistor with improved body ties for rad-hard applications

    DOE Patents [OSTI]

    Schwank, James R.; Shaneyfelt, Marty R.; Draper, Bruce L.; Dodd, Paul E.

    2001-01-01

    A silicon-on-insulator (SOI) field-effect transistor (FET) and a method for making the same are disclosed. The SOI FET is characterized by a source which extends only partially (e.g. about half-way) through the active layer wherein the transistor is formed. Additionally, a minimal-area body tie contact is provided with a short-circuit electrical connection to the source for reducing floating body effects. The body tie contact improves the electrical characteristics of the transistor and also provides an improved single-event-upset (SEU) radiation hardness of the device for terrestrial and space applications. The SOI FET also provides an improvement in total-dose radiation hardness as compared to conventional SOI transistors fabricated without a specially prepared hardened buried oxide layer. Complementary n-channel and p-channel SOI FETs can be fabricated according to the present invention to form integrated circuits (ICs) for commercial and military applications.

  6. The structural origin of the hard-sphere glass transition in granular packing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie

    2015-09-28

    Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a ‘hidden’ polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleationmore » process, similar to that of the random first-order transition theory. In conclusion, our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.« less

  7. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; et al

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information onmore » hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.« less

  8. Doug Hollett, Director Geothermal Technologies Office Hot Rocks and Hard Places

    Broader source: Energy.gov (indexed) [DOE]

    Hot Rocks and Hard Places Geothermal Resources Council Annual Meeting - September 30, 2013 Courtesy GRC Courtesy CPike/ACEP Courtesy RAM Power 2 Identify New Geothermal Opportunities * Lowered risk and cost * New prospecting workflow/"Play Fairway" Accelerate a Commercial Pathway to EGS * Frontier Observatory for Research in Geothermal Energy (FORGE) * Reservoir characterization/creation technologies Overcome Deployment Barriers * Regulatory Roadmap: Streamlining * National Geothermal

  9. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray, and its applications in electrochemistry | Stanford Synchrotron Radiation Lightsource Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard X-ray, and its applications in electrochemistry Friday, December 14, 2012 - 3:30pm SSRL, Bldg. 137, room 322 Zhi Liu The synchrotron based ambient pressure x-ray photoelectron spectroscopy (AP-XPS) endstation[1] pioneered at ALS based on differentially pumped electron energy analyzer has been recognized by scientific communities as

  10. Self-standing quasi-mosaic crystals for focusing hard X-rays

    SciTech Connect (OSTI)

    Camattari, Riccardo; Guidi, Vincenzo; Bellucci, Valerio; Neri, Ilaria; Frontera, Filippo; Jentschel, Michael

    2013-05-15

    A quasi mosaic bent crystal for high-resolution diffraction of X and {gamma} rays has been realized. A net curvature was imprinted to the crystal thanks to a series of superficial grooves to keep the curvature without external devices. The crystal highlights very high diffraction efficiency due to quasi mosaic curvature. Quasi mosaic crystals of this kind are proposed for the realization of a high-resolution focusing Laue lens for hard X-rays.

  11. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    DOE Patents [OSTI]

    Wallace, Steven A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness.

  12. Greybody factors for Myers–Perry black holes

    SciTech Connect (OSTI)

    Boonserm, Petarpa; Chatrabhuti, Auttakit Ngampitipan, Tritos; Visser, Matt

    2014-11-15

    The Myers–Perry black holes are higher-dimensional generalizations of the usual (3+1)-dimensional rotating Kerr black hole. They are of considerable interest in Kaluza–Klein models, specifically within the context of brane-world versions thereof. In the present article, we shall consider the greybody factors associated with scalar field excitations of the Myers–Perry spacetimes, and develop some rigorous bounds on these greybody factors. These bounds are of relevance for characterizing both the higher-dimensional Hawking radiation, and the super-radiance, that is expected for these spacetimes.

  13. Black liquor gasification phase 2D final report

    SciTech Connect (OSTI)

    Kohl, A.L.; Stewart, A.E.

    1988-06-01

    This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.

  14. We the Geeks: Celebrating Black History Month | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Geeks: Celebrating Black History Month We the Geeks: Celebrating Black History Month February 24, 2014 - 9:40am Addthis President Barack Obama talks with Evan Jackson, 10, Alec Jackson, 8, and Caleb Robinson, 8, from McDonough, Ga., while looking at exhibits at the White House Science Fair in the State Dining Room, April 22, 2013. The sports-loving grade-schoolers created a new product concept to keep athletes cool and helps players maintain safe body temperatures on the field. | Official

  15. Black and gray Helmholtz-Kerr soliton refraction

    SciTech Connect (OSTI)

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    2011-01-15

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative lensing operations on soliton arrays at planar boundaries.

  16. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    SciTech Connect (OSTI)

    Rasouli, C.; Pourshahab, B.; Rasouli, H.; Hosseini Pooya, S. M.; Orouji, T.

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  17. Improved quantum hard-sphere ground-state equations of state

    SciTech Connect (OSTI)

    Solis, M. A.; Llano, M. de; Clark, J. W.; Baker, George A. Jr.

    2007-09-15

    The London ground-state energy formula as a function of number density for a system of identical boson hard spheres, corrected for the reduced mass of a pair of particles in a 'sphere-of-influence' picture, and generalized to fermion hard-sphere systems with two and four intrinsic degrees of freedom, has a double-pole at the ultimate regular (or periodic, e.g., face-centered-cubic) close-packing density usually associated with a crystalline branch. Improved fluid branches are constructed based upon exact, field-theoretic perturbation-theory low-density expansions for many-boson and many-fermion systems, extrapolated to intermediate densities via Pade and other approximants, but whose ultimate density is irregular or random closest close-packing as suggested in studies of a classical system of hard spheres. Results show substantially improved agreement with the best available Green-function Monte Carlo and diffusion Monte Carlo simulations for bosons, as well as with ladder, variational Fermi hypernetted chain, and so-called L-expansion data for two-component fermions.

  18. SP2 Deployment at Boston College-Aerodyne-Led Coated Black Carbon...

    Office of Scientific and Technical Information (OSTI)

    Coated Black Carbon Study (BC4) Final Campaign Summary Citation Details In-Document Search Title: SP2 Deployment at Boston College-Aerodyne-Led Coated Black Carbon Study (BC4) ...

  19. Stability of Hořava-Lifshitz black holes in the context of AdS...

    Office of Scientific and Technical Information (OSTI)

    Stability of Hoava-Lifshitz black holes in the context of AdSCFT Citation Details In-Document Search Title: Stability of Hoava-Lifshitz black holes in the context of AdSCFT ...

  20. V-069: BlackBerry Tablet OS Adobe Flash Player and Samba Multiple...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: BlackBerry Tablet OS Adobe Flash Player and Samba Multiple Vulnerabilities V-069: BlackBerry Tablet OS Adobe Flash Player and Samba Multiple Vulnerabilities January 15, 2013 -...

  1. BLACK HOLE MASS ESTIMATES AND RAPID GROWTH OF SUPERMASSIVE BLACK HOLES IN LUMINOUS z ∼ 3.5 QUASARS

    SciTech Connect (OSTI)

    Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui; Green, Richard; Wang, Ran; Bian, Fuyan

    2015-02-01

    We present new near-infrared (IR) observations of the Hβ λ4861 and Mg II λ2798 lines for 32 luminous quasars with 3.2 < z < 3.9 using the Palomar Hale 200 inch telescope and the Large Binocular Telescope. We find that the Mg II FWHM is well correlated with the Hβ FWHM, confirming itself as a good substitute for the Hβ FWHM in the black hole mass estimates. The continuum luminosity at 5100 Å well correlates with the continuum luminosity at 3000 Å and the broad emission line luminosities (Hβ and Mg II). With simultaneous near-IR spectroscopy of the Hβ and Mg II lines to exclude the influences of flux variability, we are able to evaluate the reliability of estimating black hole masses based on the Mg II line for high redshift quasars. With the reliable Hβ line based black hole mass and Eddington ratio estimates, we find that the z ∼ 3.5 quasars in our sample have black hole masses 1.90 × 10{sup 9} M {sub ☉} ≲ M {sub BH} ≲ 1.37 × 10{sup 10} M {sub ☉}, with a median of ∼5.14 × 10{sup 9} M {sub ☉} and are accreting at Eddington ratios between 0.30 and 3.05, with a median of ∼1.12. Assuming a duty cycle of 1 and a seed black hole mass of 10{sup 4} M {sub ☉}, we show that the z ∼ 3.5 quasars in this sample can grow to their estimated black hole masses within the age of the universe at their redshifts.

  2. WBA-15-0009 - In the Matter of Sandra Black | Department of Energy

    Energy Savers [EERE]

    9 - In the Matter of Sandra Black WBA-15-0009 - In the Matter of Sandra Black On December 31, 2015, OHA denied an Appeal involving a Complaint filed by Sandra Black against Savannah River Nuclear Solutions, LLC (SRNS) under the DOE's Contractor Employee Protection Program, 10 CFR Part 708. In her Complaint, Black alleged SRNS terminated her for engaging in protected activities, specifically citing her participation in a Government Accountability Office review as a protected disclosure. An OHA

  3. NREL's Black Silicon Increases Solar Cell Efficiency by Reducing Reflected Sunlight (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    A fact sheet detailing the R&D 100 Award-winning Black Silicon Nanocatalytic Wet-Chemical Etch technology.

  4. Dissipative effects in the worldline approach to black hole dynamics

    SciTech Connect (OSTI)

    Goldberger, Walter D.; Rothstein, Ira Z.

    2006-05-15

    We derive a long wavelength effective point-particle description of four-dimensional Schwarzschild black holes. In this effective theory, absorptive effects are incorporated by introducing degrees of freedom localized on the worldline that mimic the interaction between the horizon and bulk fields. The correlation functions of composite operators in this worldline theory can be obtained by standard matching calculations. For example, we obtain the low frequency two-point function of multipole worldline operators by relating them to the long wavelength graviton black hole absorptive cross section. The effective theory is then used to predict the leading effects of absorption in several astrophysically motivated examples, including the dynamics of nonrelativistic black hole binary inspirals and the motion of a small black hole in an arbitrary background geometry. Our results can be written compactly in terms of absorption cross sections, and can be easily applied to the dissipative dynamics of any compact object, e.g. neutron stars. The relation of our methodology to that developed in the context of the AdS/CFT correspondence is discussed.

  5. Entanglement entropy of two black holes and entanglement entropic force

    SciTech Connect (OSTI)

    Shiba, Noburo

    2011-03-15

    We study the entanglement entropy S{sub C} of the massless free scalar field on the outside region C of two black holes A and B whose radii are R{sub 1} and R{sub 2} and how it depends on the distance r(>>R{sub 1},R{sub 2}) between two black holes. If we can consider the entanglement entropy as thermodynamic entropy, we can see the entropic force acting on the two black holes from the r dependence of S{sub C}. We develop the computational method based on that of Bombelli et al. to obtain the r dependence of S{sub C} of scalar fields whose Lagrangian is quadratic with respect to the scalar fields. First, we study S{sub C} in (d+1)-dimensional Minkowski spacetime. In this case the state of the massless free scalar field is the Minkowski vacuum state, and we replace two black holes by two imaginary spheres and take the trace over the degrees of freedom residing in the imaginary spheres. We obtain the leading term of S{sub C} with respect to 1/r. The result is S{sub C}=S{sub A}+S{sub B}+(1/r{sup 2d-2})G(R{sub 1},R{sub 2}), where S{sub A} and S{sub B} are the entanglement entropy on the inside region of A and B, respectively, and G(R{sub 1},R{sub 2}){<=}0. We do not calculate G(R{sub 1},R{sub 2}) in detail, but we show how to calculate it. In the black hole case we use the method used in the Minkowski spacetime case with some modifications. We show that S{sub C} can be expected to be the same form as that in the Minkowski spacetime case. But in the black hole case, S{sub A} and S{sub B} depend on r, so we do not fully obtain the r dependence of S{sub C}. Finally, we assume that the entanglement entropy can be regarded as thermodynamic entropy and consider the entropic force acting on two black holes. We argue how to separate the entanglement entropic force from other forces and how to cancel S{sub A} and S{sub B} whose r dependences are not obtained. Then we obtain the physical prediction, which can be tested experimentally in principle.

  6. SWIFT J1644+57: A WHITE DWARF TIDALLY DISRUPTED BY A 10{sup 4} M{sub Sun} BLACK HOLE?

    SciTech Connect (OSTI)

    Krolik, Julian H.; Piran, Tsvi E-mail: tsvi@phys.huji.ac.il

    2011-12-20

    We propose that the remarkable object Swift J1644+57, in which multiple recurring hard X-ray flares were seen over a span of several days, is a system in which a white dwarf was tidally disrupted by an intermediate-mass black hole. Disruption of a white dwarf rather than a main-sequence star offers a number of advantages in understanding the multiple, and short, timescales seen in the light curve of this system. In particular, the short internal dynamical timescale of a white dwarf offers a more natural way of understanding the short rise times ({approx}100 s) observed. The relatively long intervals between flares ({approx}5 Multiplication-Sign 10{sup 4} s) may also be readily understood as the period between successive pericenter passages of the remnant white dwarf. In addition, the expected jet power is larger when a white dwarf is disrupted. If this model is correct, the black hole responsible must have a mass {approx}< 10{sup 5} M{sub Sun }.

  7. Two-Bunch Self-Seeding for Narrow-Bandwidth Hard X-Ray Free-Electron...

    Office of Scientific and Technical Information (OSTI)

    one of the most promising methods to accomplish this. In the hard x-ray regime with high- energy electrons, this method requires a large magnetic chicane to match the path length...

  8. Two-Bunch Self-Seeding for Narrow-Bandwidth Hard X-Ray Free-Electron...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Two-Bunch Self-Seeding for Narrow-Bandwidth Hard X-Ray Free-Electron Lasers Citation Details In-Document Search Title: Two-Bunch Self-Seeding for Narrow-Bandwidth...

  9. RELATIONSHIP BETWEEN THE KINETIC POWER AND BOLOMETRIC LUMINOSITY OF JETS: LIMITATION FROM BLACK HOLE X-RAY BINARIES, ACTIVE GALACTIC NUCLEI, AND GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Ma, Renyi; Hou, Shujin; Xie, Fu-Guo E-mail: fgxie@shao.ac.cn

    2014-01-01

    The correlation between the kinetic power P {sub jet} and intrinsic bolometric luminosity L {sub jet} of jets may reveal the underlying jet physics in various black hole systems. Based on the recent work by Nemmen et al., we re-investigate this correlation with additional sources of black hole X-ray binaries (BXBs) in hard/quiescent states and low-luminosity active galactic nuclei (LLAGNs). The new sample includes 29 sets of data from 7 BXBs and 20 LLAGNs, with P {sub jet} and L {sub jet} being derived from spectral modeling of the quasi-simultaneous multi-band spectra under the accretion jet scenario. Compared to previous works, the range of luminosity is now enlarged to more than 20 decades, i.e., from ∼10{sup 31} erg s{sup –1} to ∼10{sup 52} erg s{sup –1}, which allows for better constraining of the correlation. One notable result is that the jets in BXBs and LLAGNs almost follow the same P {sub jet}-L {sub jet} correlation that was obtained from blazars and gamma-ray bursts. The slope indices we derived are 1.03 ± 0.01 for the whole sample, 0.85 ± 0.06 for the BXB subsample, 0.71 ± 0.11 for the LLAGN subsample, and 1.01 ± 0.05 for the LLAGN-blazar subsample, respectively. The correlation index around unit implies the independence of jet efficiency on the luminosity or kinetic power. Our results may further support the hypothesis that similar physical processes exist in the jets of various black hole systems.

  10. I A STUDY OF THE WORKABILITY OF URANIUM BY MEANS OF TENSILE-IMPACT, HARDNESS, AND DROP-HAMMER

    Office of Legacy Management (LM)

    A STUDY OF THE WORKABILITY OF URANIUM BY MEANS OF TENSILE-IMPACT, HARDNESS, AND DROP-HAMMER I EVALUATIONS AT ELEVATED TEMPERATURES PROPOSAL TO NATIONAL LEAD COMPANY OF OHIO A STUDY OF THE WORKABILITY OF URANIUM BY MEANS OF TENSILE-IMPACT, HARDNESS, AND DROP-HAMMER EVALUATIONS AT ELEVATED TEMPERATURES PROPOSAL TO NATIONAL LEAD COMPANY OF OHIO Southern Research Institute Birmingham, Alabama January 30, 1963 Proposal No. 2152 Copy of original document Iccated in FEMP Archives. .L TABLEOFCONTENTS

  11. Improving Hardness and Toughness of Boride Composites Based on AIMgB14

    SciTech Connect (OSTI)

    Justin Steven Peters

    2007-12-01

    The search for new super-hard materials has usually focused on strongly bonded, highly symmetric crystal structures similar to diamond. The two hardest single-phase materials, diamond and cubic boron nitride (cBN), are metastable, and both must be produced at high temperatures and pressures, which makes their production costly. In 2000, a superhard composite based on a low-symmetry, boron-rich compound was reported. Since then, many advances have been made in the study of this AlMgB{sub 14}-TiB{sub 2} composite. The composite has been shown to exhibit hardness greater than either of its constituent phases, relying on its sub-micron microstructure to provide hardening and strengthening mechanisms. With possible hardness around 40 GPa, an AlMgB{sub 14} - 60 vol% TiB{sub 2} approaches the hardness of cBN, yet is amenable to processing under ambient pressure conditions. There are interesting aspects of both the AlMgB{sub 14} and TiB{sub 2} phases. AlMgB{sub 14} is comprised of a framework of boron, mostly in icosahedral arrangements. It is part of a family of 12 known compounds with the same boron lattice, with the metal atoms replaced by Li, Na, Y or a number of Lanthanides. Another peculiar trait of this family of compounds is that every one contains a certain amount of intrinsic vacancies on one or both of the metal sites. These vacancies are significant, ranging from 3 to 43% of sites depending on the composition. TiB{sub 2} is a popular specialty ceramic material due to its high hardness, moderate toughness, good corrosion resistance, and high thermal and electrical conductivity. The major drawback is the difficulty of densification of pure TiB2 ceramics. A combination of sintering aids, pressure, and temperatures of 1800 C are often required to achieve near full density articles. The AlMgB{sub 14} - TiB{sub 2} composites can achieve 99% density from hot-pressing at 1400 C. This is mostly due to the preparation of powders by a high-energy milling technique known

  12. Scientists to Meet in Carlsbad, NM for Hard Rock Lab Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists From Nine Countries to Converge On Carlsbad for Technical Meeting CARLSBAD, N.M., February 7, 2000 - Scientists from nine countries will converge on this southeastern New Mexico city February 7-10 to share their views during the 13 th Äspö Hard Rock Laboratory Task Force Meeting on Modelling of Groundwater Flow and Transport of Solutes. "Carlsbad is quickly becoming recognized as the international center for repository technology," said Dr. Inés Triay, manager of the U.S.

  13. Phase-matched generation of coherent soft and hard X-rays using IR lasers

    DOE Patents [OSTI]

    Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

    2013-06-11

    Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

  14. A fast new method for measuring hard-to-diagnose 3D plasmas in fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities | Princeton Plasma Physics Lab A fast new method for measuring hard-to-diagnose 3D plasmas in fusion facilities By John Greenwald March 12, 2013 Tweet Widget Google Plus One Share on Facebook A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code. (Photo by Graphic by Sam Lazerson) A simulated plasma in the Large Helical Device showing the thin blue saddle coils that

  15. Ground-State Properties of a One-Dimensional System of Hard Rods

    SciTech Connect (OSTI)

    Mazzanti, F.; Astrakharchik, G. E.; Boronat, J.; Casulleras, J.

    2008-01-18

    A quantum Monte Carlo simulation of a system of bosonic hard rods in one dimension is presented and discussed. The calculation is exact since the analytical form of the wave function is known and is in excellent agreement with predictions obtained from asymptotic expansions valid at large distances. The analysis of the static structure factor and the pair distribution function indicates that a solidlike and a gaslike phases exist at high and low densities, respectively. The one-body density matrix decays following a power law at large distances and produces a divergence in the low density momentum distribution at k=0 which can be identified as a quasicondensate.

  16. Br-rich Tips of Calcified Crab Claws are Less Hard but More Fracture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resistant: A Comparison of Mineralized and Heavy-element Biological Materials Br-rich Tips of Calcified Crab Claws are Less Hard but More Fracture Resistant: A Comparison of Mineralized and Heavy-element Biological Materials figure 1 Figure 1. The heavy element biomaterial is the darker material at the tip of the shore crab claws. Figure "b" shows the same claw as "a" but after bead blasting. The claw tips are less eroded by the bead blasting than surrounding calcified

  17. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect (OSTI)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and

  18. All or nothing: On the small fluctuations of two-dimensional string theoretic black holes

    SciTech Connect (OSTI)

    Gilbert, Gerald; Raiten, Eric

    1992-10-01

    A comprehensive analysis of small fluctuations about two-dimensional string-theoretic and string-inspired black holes is presented. It is shown with specific examples that two-dimensional black holes behave in a radically different way from all known black holes in four dimensions. For both the SL(2,R)/U(1) black hole and the two-dimensional black hole coupled to a massive dilaton with constant field strength, it is shown that there are a {\\it continuous infinity} of solutions to the linearized equations of motion, which are such that it is impossible to ascertain the classical linear response. It is further shown that the two-dimensional black hole coupled to a massive, linear dilaton admits {\\it no small fluctuations at all}. We discuss possible implications of our results for the Callan-Giddings-Harvey-Strominger black hole.

  19. MULTIWAVELENGTH OBSERVATIONS OF THE BLACK HOLE TRANSIENT XTE J1752-223 DURING ITS 2010 OUTBURST DECAY

    SciTech Connect (OSTI)

    Chun, Y. Y.; Dincer, T.; Kalemci, E.; Guever, T.; Tomsick, J. A.; Buxton, M. M.; Brocksopp, C.; Corbel, S.; Cabrera-Lavers, A.

    2013-06-10

    Galactic black hole transients show many interesting phenomena during outburst decays. We present simultaneous X-ray (RXTE, Swift, and INTEGRAL), and optical/near-infrared (O/NIR) observations (SMARTS) of the X-ray transient XTE J1752-223 during its outburst decay in 2010. The multiwavelength observations over 150 days in 2010 cover the transition from soft to hard spectral state. We discuss the evolution of radio emission with respect to the O/NIR light curve which shows several flares. One of those flares is bright and long, starting about 60 days after the transition in X-ray timing properties. During this flare, the radio spectral index becomes harder. Other smaller flares occur along with the X-ray timing transition, and also right after the detection of the radio core. We discuss the significances of these flares. Furthermore, using the simultaneous broadband X-ray spectra including INTEGRAL, we find that a high energy cut-off with a folding energy near 250 keV is necessary around the time that the compact jet is forming. The broadband spectrum can be fitted equally well with a Comptonization model. In addition, using photoelectric absorption edges in the XMM-Newton Reflection Grating Spectrometer X-ray spectra and the extinction of red clump giants in the direction of the source, we find a lower limit on the distance of >5 kpc.

  20. T-668: Vulnerability in a BlackBerry Enterprise Server component could allow information disclosure and partial denial of service

    Broader source: Energy.gov [DOE]

    This advisory describes a security issue in the BlackBerry Administration API component. Successful exploitation of the vulnerability could result in information disclosure and partial denial of service (DoS). The BlackBerry Administration API is a BlackBerry Enterprise Server component that is installed on the server that hosts the BlackBerry Administration Service. The BlackBerry Administration API contains multiple web services that receive API requests from client applications. The BlackBerry Administration API then translates requests into a format that the BlackBerry Administration Service can process.

  1. PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE-BULGE RELATIONS AT LOW MASS

    SciTech Connect (OSTI)

    Greene, Jenny E.; Peng, Chien Y.; Kim, Minjin; Kuo, Cheng-Yu; Braatz, James A.; Impellizzeri, C. M. Violette; Condon, James J.; Lo, K. Y.; Henkel, Christian; Reid, Mark J.

    2010-09-20

    The black hole (BH)-bulge correlations have greatly influenced the last decade of efforts to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M{sub BH{approx}}>10{sup 8} M{sub sun}) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L < L* galaxies. This study transcends prior limitations to probe BHs that are an order of magnitude lower in mass, using BH mass measurements derived from the dynamics of H{sub 2}O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al., yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B and C spectrograph on the Dupont telescope and the Dual Imaging Spectrograph on the 3.5 m telescope at Apache Point. We also perform bulge-to-disk decomposition of a subset of five of these galaxies with Sloan Digital Sky Survey imaging. The maser galaxies as a group fall below the M{sub BH}-{sigma}{sub *} relation defined by elliptical galaxies. We show, now with very precise BH mass measurements, that the low-scatter power-law relation between M{sub BH} and {sigma}{sub *} seen in elliptical galaxies is not universal. The elliptical galaxy M{sub BH}-{sigma}{sub *} relation cannot be used to derive the BH mass function at low mass or the zero point for active BH masses. The processes (perhaps BH self-regulation or minor merging) that operate at higher mass have not effectively established an M{sub BH}-{sigma}{sub *} relation in this low-mass regime.

  2. Evaluation of methods to predict safe welding conditions and maximum HAZ hardness in steel welding

    SciTech Connect (OSTI)

    Tronskar, J.P.

    1995-02-01

    During the last ten years new structural steels of improved weldability have been introduced. In particular, structural steels for the fabrication of offshore structures have been greatly improved in this respect throughout this period. These steels have lean chemical compositions which are generally outside the range for which the existing HAZ hardness criteria and the International Institute of Welding carbon equivalent (CEIIW) formula were originally developed. This paper presents the results from investigations of the weldability of three normalized (R{sub e} min 350 MPa) and three quenched and tempered (R{sub e} min 500 MPa) offshore structural steels. Weldability testing was conducted to study the relative performance of the different steels and to obtain a comparison between the capability of the different methods to predict safe welding conditions to avoid cold cracking in steel welding. It has become a widespread practice in welding high-strength steels to incorporate maximum HAZ hardness restrictions in fabrication specifications, particularly so in the offshore industry. This paper presents some of the more successful approaches proposed to date and compares their performance.

  3. In-Orbit Performance of the Hard X-Ray Detector on Borad Suzaku

    SciTech Connect (OSTI)

    Kokubun, Motohide; Makishima, Kazuo; Takahashi, Tadayuki; Murakami, Toshio; Tashiro, Makoto; Fukazawa, Yasushi; Kamae, Tuneyoshi; M.Madejski, Greg; Nakazawa, Kazuhiro; Yamaoka, Kazutaka; Terada, Yukikatsu; Yonetoku, Daisuke; Watanabe, Shin; Tamagawa, Toru; Mizuno, Tsunefumi; Kubota, Aya; Isobe, Naoki; Takahashi, Isao; Sato, Goro; Takahashi, Hiromitsu; Hong, Soojing; /Tokyo U. /Wako, RIKEN /JAXA, Sagamihara /Kanazawa U. /Saitama U. /Hiroshima U. /Aoyama Gakuin U. /Nihon U., Narashino /SLAC

    2007-10-26

    The in-orbit performance and calibration of the Hard X-ray Detector (HXD) on board the X-ray astronomy satellite Suzaku are described. Its basic performances, including a wide energy bandpass of 10-600 keV, energy resolutions of {approx}4 keV (FWHM) at 40 keV and {approx}11% at 511 keV, and a high background rejection efficiency, have been confirmed by extensive in-orbit calibrations. The long-term gains of PIN-Si diodes have been stable within 1% for half a year, and those of scintillators have decreased by 5-20%. The residual non-X-ray background of the HXD is the lowest among past non-imaging hard X-ray instruments in energy ranges of 15-70 and 150-500 keV. We provide accurate calibrations of energy responses, angular responses, timing accuracy of the HXD, and relative normalizations to the X-ray CCD cameras using multiple observations of the Crab Nebula.

  4. Solubilities of Solutes in Ionic Liquids from a SimplePerturbed-Hard-Sphere Theory

    SciTech Connect (OSTI)

    Qin, Yuan; Prausnitz, John M.

    2005-09-20

    In recent years, several publications have provided solubilities of ordinary gases and liquids in ionic liquids. This work reports an initial attempt to correlate the experimental data using a perturbed-hard-sphere theory; the perturbation is based on well-known molecular physics when the solution is considered as a dielectric continuum. For this correlation, the most important input parameters are hard-sphere diameters of the solute and of the cation and anion that constitute the ionic liquid. In addition, the correlation uses the solvent density and the solute's polarizability and dipole and quadrupole moments, if any. Dispersion-energy parameters are obtained from global correlation of solubility data. Results are given for twenty solutes in several ionic liquids at normal temperatures; in addition, some results are given for gases in two molten salts at very high temperatures. Because the theory used here is much simplified, and because experimental uncertainties (especially for gaseous solutes) are often large, the accuracy of the correlation presented here is not high; in general, predicted solubilities (Henry's constants) agree with experiment to within roughly {+-} 70%. As more reliable experimental data become available, modifications in the characterizing parameters are likely to improve accuracy. Nevertheless, even in its present form, the correlation may be useful for solvent screening in engineering design.

  5. Free Energy Calculations of Crystalline Hard Sphere Complexes Using Density Functional Theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gunawardana, K. G.S.H.; Song, Xueyu

    2014-12-22

    Recently developed fundamental measure density functional theory (FMT) is used to study binary hard sphere (HS) complexes in crystalline phases. By comparing the excess free energy, pressure and phase diagram, we show that the fundamental measure functional yields good agreements to the available simulation results of AB, AB2 and AB13 crystals. Additionally, we use this functional to study the HS models of five binary crystals, Cu5Zr(C15b), Cu51Zr14(β), Cu10Zr7(φ), CuZr(B2) and CuZr2 (C11b), which are observed in the Cu-Zr system. The FMT functional gives well behaved minimum for most of the hard sphere crystal complexes in the two dimensional Gaussian space,more » namely a crystalline phase. However, the current version of FMT functional (white Bear) fails to give a stable minimum for the structure Cu10Zr7(φ). We argue that the observed solid phases for the HS models of the Cu-Zr system are true thermodynamic stable phases and can be used as a reference system in perturbation calculations.« less

  6. Free Energy Calculations of Crystalline Hard Sphere Complexes Using Density Functional Theory

    SciTech Connect (OSTI)

    Gunawardana, K. G.S.H.; Song, Xueyu

    2014-12-22

    Recently developed fundamental measure density functional theory (FMT) is used to study binary hard sphere (HS) complexes in crystalline phases. By comparing the excess free energy, pressure and phase diagram, we show that the fundamental measure functional yields good agreements to the available simulation results of AB, AB2 and AB13 crystals. Additionally, we use this functional to study the HS models of five binary crystals, Cu5Zr(C15b), Cu51Zr14(?), Cu10Zr7(?), CuZr(B2) and CuZr2 (C11b), which are observed in the Cu-Zr system. The FMT functional gives well behaved minimum for most of the hard sphere crystal complexes in the two dimensional Gaussian space, namely a crystalline phase. However, the current version of FMT functional (white Bear) fails to give a stable minimum for the structure Cu10Zr7(?). We argue that the observed solid phases for the HS models of the Cu-Zr system are true thermodynamic stable phases and can be used as a reference system in perturbation calculations.

  7. Hard x-ray transmission crystal spectrometer at the OMEGA-EP laser facility

    SciTech Connect (OSTI)

    Seely, J. F.; Szabo, C. I.; Feldman, U.; Hudson, L. T.; Henins, A.; Audebert, P.; Brambrink, E.

    2010-10-15

    The transmission crystal spectrometer (TCS) is approved for taking data at the OMEGA-EP laser facility since 2009 and will be available for the OMEGA target chamber in 2010. TCS utilizes a Cauchois type cylindrically bent transmission crystal geometry with a source to crystal distance of 600 mm. Spectral images are recorded by image plates in four positions, one IP on the Rowland circle and three others at 200, 400, and 600 mm beyond the Rowland circle. An earlier version of TCS was used at LULI on experiments that determined the x-ray source size from spectral line broadening on one IP positioned behind the Rowland circle. TCS has recorded numerous backlighter spectra at EP for point projection radiography and for source size measurements. Hard x-ray source size can be determined from the source broadening of both K shell emission lines and from K absorption edges in the bremsstrahlung continuum, the latter being a new way to measure the spatial extent of the hard x-ray bremsstrahlung continuum.

  8. Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Yu, Xiaohui; Zhang, Jianzhong; Wang, Liping; Leinenweber, Kurt; He, Duanwei; Zhao, Yusheng

    2015-11-09

    Here, we report synthesis of single-crystal VN and CrN through high-pressure ionexchange reaction routes. The final products are stoichiometric and have crystallite sizes in the range of 50-120 mu m. We also prepared VN and TiN crystals using high-pressure sintering of nitride powders. On the basis of single-crystal indentation testing, the determined asymptotic Vickers hardness for TiN, VN, and CrN is 18 (1), 10 (1), and 16 (1) GPa, respectively. Moreover, the relatively low hardness in VN indicates that the metallic bonding prevails due to the overfilled metallic a bonds, although the cation-anion covalent hybridization in this compound is muchmore » stronger than that in TiN and CrN. All three nitrides are intrinsically excellent metals at ambient pressure. In particular, VN exhibits superconducting transition at T-c approximate to 7.8 K, which is slightly lower than the reported values for nitrogen-deficient or crystallinedisordered samples due to unsuppressed "spin fluctuation" in the well-crystallized stoichiometric VN. The magnetostructural transition in CrN correlates with a metal metal transition at T-N = 240(5) K and is accompanied by a similar to 40% drop in electrical resistivity. Additionally, more detailed electronic properties are presented with new insights into these nitrides.« less

  9. Instability of black hole formation in gravitational collapse

    SciTech Connect (OSTI)

    Joshi, Pankaj S.; Malafarina, Daniele

    2011-01-15

    We consider here the classic scenario given by Oppenheimer, Snyder, and Datt, for the gravitational collapse of a massive matter cloud, and examine its stability under the introduction of small tangential stresses. We show, by offering an explicit class of physically valid tangential stress perturbations, that an introduction of tangential pressure, however small, can qualitatively change the final fate of collapse from a black hole final state to a naked singularity. This shows instability of black hole formation in collapse and sheds important light on the nature of cosmic censorship hypothesis and its possible formulations. The key effect of these perturbations is to alter the trapped surface formation pattern within the collapsing cloud and the apparent horizon structure. This allows the singularity to be visible, and implications are discussed.

  10. Void morphology in polyethylene/carbon black composites

    SciTech Connect (OSTI)

    Marr, D.W.M.; Wartenberg, M.; Schwartz, K.B.

    1996-12-31

    A combination of small angle neutron scattering (SANS) and contrast matching techniques is used to determine the size and quantity of voids incorporated during fabrication of polyethylene/carbon black composites. The analysis used to extract void morphology from SANS data is based on the three-phase model of microcrack determination via small angle x-rayscattering (SAXS) developed by W.Wu{sup 12} and applied to particulate reinforced composites.

  11. Method of comparison equations for Schwarzschild black holes

    SciTech Connect (OSTI)

    Casadio, Roberto; Luzzi, Mattia

    2006-10-15

    We employ the method of comparison equations to study the propagation of a massless minimally coupled scalar field on the Schwarzschild background. In particular, we show that this method allows us to obtain explicit approximate expressions for the radial modes with energy below the peak of the effective potential which are fairly accurate over the whole region outside the horizon. This case can be of particular interest, for example, for the problem of black hole evaporation.

  12. Global solutions for higher-dimensional stretched small black holes

    SciTech Connect (OSTI)

    Chen, C.-M.; Gal'tsov, Dmitri V.; Ohta, Nobuyoshi; Orlov, Dmitry G.

    2010-01-15

    Small black holes in heterotic string theory have a vanishing horizon area at the supergravity level, but the horizon is stretched to the finite radius AdS{sub 2}xS{sup D-2} geometry once higher curvature corrections are turned on. This has been demonstrated to give good agreement with microscopic entropy counting. Previous considerations, however, were based on the classical local solutions valid only in the vicinity of the event horizon. Here we address the question of global existence of extremal black holes in the D-dimensional Einstein-Maxwell-Dilaton theory with the Gauss-Bonnet term introducing a variable dilaton coupling a as a parameter. We show that asymptotically flat black holes exist only in a bounded region of the dilaton couplings 0=}5 (but not for D=4) the allowed range of a includes the heterotic string values. For a>a{sub cr} numerical solutions meet weak naked singularities at finite radii r=r{sub cusp} (spherical cusps), where the scalar curvature diverges as |r-r{sub cusp}|{sup -1/2}. For D{>=}7 cusps are met in pairs, so that solutions can be formally extended to asymptotically flat infinity choosing a suitable integration variable. We show, however, that radial geodesics cannot be continued through the cusp singularities, so such a continuation is unphysical.

  13. Barrow Black Carbon Source and Impact Study Final Campaign Report

    SciTech Connect (OSTI)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.

  14. Petroleum geology of Azov-Black Sea region

    SciTech Connect (OSTI)

    Lukin, A.; Trofimenko, G.

    1995-08-01

    The main features of tectonics, stratigraphy, paleogeography, lithology, hydrogeology, geothermics and hydrocarbon-bearingness of Azov-Black Sea Region are characterized on the basis of present-day data. Among the most prospective petroliferous complexes one ought to mention: Paleozoic (S - D - C{sub 1}) of Near-Dobrudga foredeep, Triassic - Jurassic of the Black Sea (shelf and continental slope); Lower Cretaceous of the various parts of the Region; Upper Cretaceous of the Black Sea shelf; Paleocene-Eocene of Azov Sea. In addition certain prospects are connected with Precambrian and Paleozoic basements within conjunction zone between Eastern-Europe platform and Scythian plate. Geodynamic evolution of the Region is considered with determination of tension and compression stages and characteristic of the main regularities of diapirs, mud volcanos, swells, horsts and grabens distribution. There determined the most interesting types of hydrocarbon traps connected with various tectonic forms, river and deltaic channels, bars, conturites, carbonate reefs, etc. Paleogeothermic and paleogeodynamic reconstructions allow to determine the main phases of oil and gas accumulation. The most prospective oil-gas-bearing zones and areas are mapped.

  15. Regular black holes: Electrically charged solutions, Reissner-Nordstroem outside a de Sitter core

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zanchin, Vilson T.

    2011-06-15

    To have the correct picture of a black hole as a whole, it is of crucial importance to understand its interior. The singularities that lurk inside the horizon of the usual Kerr-Newman family of black hole solutions signal an endpoint to the physical laws and, as such, should be substituted in one way or another. A proposal that has been around for sometime is to replace the singular region of the spacetime by a region containing some form of matter or false vacuum configuration that can also cohabit with the black hole interior. Black holes without singularities are called regular black holes. In the present work, regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several types of solutions: regular nonextremal black holes with a null matter boundary, regular nonextremal black holes with a timelike matter boundary, regular extremal black holes with a timelike matter boundary, and regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed.

  16. The hadronic origin of the hard gamma-ray spectrum from blazar 1ES 1101-232

    SciTech Connect (OSTI)

    Cao, Gang; Wang, Jiancheng E-mail: jcwang@ynao.ac.cn

    2014-03-10

    The very hard γ-ray spectrum from distant blazars challenges the traditional synchrotron self-Compton (SSC) model, which may indicate that there is a contribution from an additional high-energy component beyond the SSC emission. In this paper, we study the possible origin of the hard γ-ray spectrum from distant blazars. We develop a model to explain the hard γ-ray spectrum from blazar 1ES 1101-232. In the model, the optical and X-ray radiation would come from the synchrotron radiation of primary electrons and secondary pairs and the GeV emission would be produced by the SSC process, however, the hard γ-ray spectrum would originate from the decay of neutral pion produced through proton-photon interactions with the synchrotron radiation photons within the jet. Our model can explain the observed spectral energy distribution of 1ES 1101-232 well, especially the very hard γ-ray spectrum. However, our model requires a very large proton power to efficiently produce the γ-ray through proton-photon interactions.

  17. Hard x-ray photoelectron spectroscopy using an environmental cell with silicon nitride membrane windows

    SciTech Connect (OSTI)

    Tsunemi, Eika; Watanabe, Yoshio; Oji, Hiroshi; Cui, Yi-Tao; Son, Jin-Young

    2015-06-21

    We applied hard x-ray photoelectron spectroscopy (HAXPES) to a sample under ambient pressure conditions using an environmental cell with an approximately 24 nm-thick SiN{sub x} membrane window. As a model chemical substance, europium (II) iodide (EuI{sub 2}) sealed in the cell with argon gas was investigated with HAXPES to identify the chemical species present inside the cell. The optical and morphological properties of the sample within the cell were measured with optical and fluorescent microscopy, scanning electron microscopy, cathodoluminescence, and energy dispersive x-ray spectrometry. We confirmed the effectiveness of the gas barrier properties of the cell with the SiN{sub x} window and demonstrated its applicability to various other optical and electron measurements as well as HAXPES.

  18. Optimal focusing for a linac-based hard x-ray source

    SciTech Connect (OSTI)

    Liu, C.; Krafft, G.; Talman, R.

    2011-03-28

    In spite of having a small average beam current limit, a linac can have features that make it attractive as an x-ray source: high energy, ultralow emittance and energy spread, and flexible beamline optics. Unlike a storage ring, in which an (undulator) radiation source is necessarily short and positioned at an electron beam waist, in a linac the undulator can be long and the electron beam can be adjusted to have a (virtual) waist far downstream toward the x-ray target. Using a planned CEBAF beamline as an example, this paper shows that a factor of 2000 in beam current can be overcome to produce a monochromatic hard x-ray source comparable with, or even exceeding, the performance of an x-ray line at a third generation storage ring. Optimal electron beam focusing conditions for x-ray flux density and brilliance are derived, and are verified by simulations using the SRW code.

  19. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements

    SciTech Connect (OSTI)

    Bommier, C; Luo, W; Gao, WY; Greaney, A; Ma, SQ; Ji, X

    2014-09-01

    We report an inverse relationship between measurable porosity values and reversible capacity from sucrose-derived hard carbon as an anode for sodium-ion batteries (SIBs). Materials with low measureable pore volumes and surface areas obtained through N-2 sorption yield higher reversible capacities. Conversely, increasing measurable porosity and specific surface area leads to sharp decreases in reversible capacity. Utilizing a low porosity material, we thus are able to obtain a reversible capacity of 335 mAh g(-1). These findings suggest that sodium-ion storage is highly dependent on the absence of pores detectable through N-2 sorption in sucrose-derived carbon. (C) 2014 Elsevier Ltd. All rights reserved.

  20. Tribocharging phenomena in hard disk amorphous carbon coatings with and without perfluoropolyether lubricants

    SciTech Connect (OSTI)

    van den Oetelaar, Ronald J.A.; Xu, Lei; Ogletree, D. Frank; Salmeron, Miquel; Tang, Hung; Gui, Jing

    2000-08-01

    Scanning polarization force microscopy was used to study changes in surface potential (tribocharging) caused by the contact between a tungsten carbide tip and the amorphous carbon coating of a hard disk,both when bare and when covered with Zdol-TX lubricant. The surface potential change produced by tip contact decays with time at a rate that is strongly dependent on lubricant coverage, and on the presence of oxygen and water vapor in the environment. Two different charging mechanisms are proposed. One involves chemical modification of the surface by removal of oxygen bound to the surface. This gives rise to a potential change that decays with time. Another mechanism involves trapping of charge in states within the energy gap of the insulating carbon film. The potential change due to this trapped charge does not decay over periods much greater than 1 hour.

  1. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie; Zhou, Juan; Macrander, Albert; Maser, Jorg; Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Harder, Ross; et al

    2015-05-04

    We report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. These results indicate that the desired wedging is achieved in the fabricated structure. We anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers andmoreenrich capabilities and opportunities for hard X-ray microscopy.less

  2. Achieving Hard X-ray Nanofocusing Using a Wedged Multilayer Laue Lens

    SciTech Connect (OSTI)

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie; Zhou, Juan; Macrander, Albert; Maser, Jorg; Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Harder, Ross; Robinson, Ian K.; Kalbfleisch, Sebastian; Chu, Yong S.

    2015-05-04

    Here, we report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. Our results indicate that the desired wedging is achieved in the fabricated structure. Furthermore, we anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers and enrich capabilities and opportunities for hard X-ray microscopy.

  3. Two-Yukawa fluid at a hard wall: Field theory treatment

    SciTech Connect (OSTI)

    Kravtsiv, I.; Patsahan, T.; Holovko, M.; Caprio, D. di

    2015-05-21

    We apply a field-theoretical approach to study the structure and thermodynamics of a two-Yukawa fluid confined by a hard wall. We derive mean field equations allowing for numerical evaluation of the density profile which is compared to analytical estimations. Beyond the mean field approximation, analytical expressions for the free energy, the pressure, and the correlation function are derived. Subsequently, contributions to the density profile and the adsorption coefficient due to Gaussian fluctuations are found. Both the mean field and the fluctuation terms of the density profile are shown to satisfy the contact theorem. We further use the contact theorem to improve the Gaussian approximation for the density profile based on a better approximation for the bulk pressure. The results obtained are compared to computer simulation data.

  4. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    SciTech Connect (OSTI)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well known stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.

  5. Claudio Pellegrini and the World’s First Hard X-ray Free-Electron Laser

    SciTech Connect (OSTI)

    Pellegrini, Claudio

    2015-10-20

    President Obama welcomed SLAC's Claudio Pellegrini inside the Oval Office on Tuesday morning as a recipient of the Enrico Fermi Award, one of the highest honors the U.S. government can give to a scientist. Pellegrini, a visiting scientist and consulting professor at SLAC and distinguished professor emeritus at the University of California, Los Angeles, received the award for research that aided in the development of X-ray free-electron lasers (XFELs) including SLAC's Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility that started up in 2009. Here, Pellegrini describes his efforts that contributed to the realization of SLAC’s Linac Coherent Light Source, the world’s first hard X-ray free-electron laser.

  6. Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline

    SciTech Connect (OSTI)

    Simos, N.; Chu, Y. N.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M.

    2010-08-30

    The Hard X-ray Nanoprobe (HXN) Beamline of National Synchrotron Light Source II (NSLS-lI) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic and NSLS II operating systems have been studied using state of the art simulations and an array of field data. Further, final stage vibration isolation principles have been explored in order to be utilized in supporting endstation instruments. This paper presents results of the various study aspects and their influence on the HXN design optimization.

  7. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    SciTech Connect (OSTI)

    Bayn, I.; Mouradian, S.; Li, L.; Goldstein, J. A.; Schröder, T.; Zheng, J.; Chen, E. H.; Gaathon, O.; Englund, Dirk; Lu, M.; Stein, A.; Ruggiero, C. A.; Salzman, J.; Kalish, R.

    2014-11-24

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 × 10{sup 6}) photonic crystal cavities with low mode volume (V{sub m} = 1.062 × (λ/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 × 10{sup 3}.

  8. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    SciTech Connect (OSTI)

    Müller, O. Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  9. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (3/3)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  10. Does the mass of a black hole decrease due to the accretion of phantom energy?

    SciTech Connect (OSTI)

    Gao Changjun; Chen Xuelei; Faraoni, Valerio; Shen Yougen

    2008-07-15

    According to Babichev et al., the accretion of a phantom test fluid onto a Schwarzschild black hole will induce the mass of the black hole to decrease, however the backreaction was ignored in their calculation. Using new exact solutions describing black holes in a background Friedmann-Robertson-Walker universe, we find that the physical black hole mass may instead increase due to the accretion of phantom energy. If this is the case, and the future universe is dominated by phantom dark energy, the black hole apparent horizon and the cosmic apparent horizon will eventually coincide and, after that, the black hole singularity will become naked in finite comoving time before the big rip occurs, violating the cosmic censorship conjecture.

  11. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  12. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  13. Hard photon processes in electron-positron annihilation at 29 GeV

    SciTech Connect (OSTI)

    Gold, M.S.

    1986-11-01

    The hard photon processes ..mu mu gamma.. and hadrons + ..gamma.. in e/sup +/e/sup -/ annihilation at 29 GeV have been studied. The study is based on an integrated luminosity of 226 pb/sup -1/ taken at PEP with the Mark II detector. For the ..mu mu gamma.. process, a small fraction of non-planar events are observed with missing momentum along the beam direction. The resulting missing energy spectrum is consistent with that expected from higher order effects. The observed cross section is consistent with the predicted cross section for this process, sigma/sup exp/sigma/sup th/ = .90 +- .05 +- .06. The observed hard photon energy spectrum and mass distributions are found to be in agreement with O(..cap alpha../sup 3/) QED. The measured charge asymmetry is in good agreement with the predicted value, A/sub exp/A/sub th/ = .83 +- .25 +- .12. The ..mu gamma.. invariant mass distribution is used to place a limit on a possible excited muon coupling G..gamma../M* for excited muon masses in the range 1 < M* < 21 GeV of (G..gamma../M*)/sup 2/ < 10/sup -5/ GeV/sup -2/ at a 95% confidence level. In the hadrons + ..gamma.. process, evidence for final state radiation is found in an excess of events over that predicted from initial state radiation alone of 253 +- 54 +- 60 events. Further evidence for final state radiation is found in a large hadronic charge asymmetry A/sub Had+..gamma../= (-24.6 +- 5.5)%.

  14. Phase relations and hardness trends of ZrO[subscript 2] phases at high pressure

    SciTech Connect (OSTI)

    Al-Khatatbeh, Yahya; Lee, Kanani K.M.; Kiefer, Boris

    2010-07-23

    We use high-resolution synchrotron x-ray powder diffraction and density-functional theory (DFT) to investigate the phase stability, equations of state (EOSs), and mechanical hardness of zirconia (ZrO{sub 2}) up to {approx}54 and 160 GPa, respectively. For the equilibrium phase at ambient conditions (MI), we provide an experimental EOS that is comparable to results obtained from room-pressure Brillouin scattering experiments and bulk modulus-volume systematics but different from previous high-pressure experiments. The experimental second-order Birch-Murnaghan EOS parameters of MI-ZrO{sub 2} are: ambient-pressure volume (V{sub 0}) of 35.15({+-}0.03) {angstrom}{sup 3}/f.u. with an ambient-pressure bulk modulus K{sub 0} of 210({+-}28) GPa. For the high-pressure OI phase, we find that the K{sub 0} = 290({+-}11) GPa, which is 19%-32% higher than previously determined, and V{sub 0} = 33.65({+-}0.07) {angstrom}{sup 3}/f.u. The small volume decrease of 3.4% across the MI {yields} OI transition at {approx}10 GPa is associated with a 38% increase in the bulk modulus consistent with our DFT calculations that predict a {approx}36% and 39% increase in K{sub 0} for the generalized gradient and local density approximations, respectively. In contrast to the EOS of MI and OI, we find that our experimental EOS for the high-pressure OII phase is in good agreement with previous measurements. The large volume decrease across the OI {yields} OII phase transition as obtained from both our experiments and calculations is {approx}10%. Our estimates, using scaling relations, indicate that this phase, while dense and quenchable, may have a comparatively low mechanical hardness of {approx} 10 GPa.

  15. Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC

    SciTech Connect (OSTI)

    Chiu Juiyu; Fuhrer, Andreas; Kelley, Randall; Manohar, Aneesh V.

    2009-11-01

    Previous work on electroweak radiative corrections to high-energy scattering using soft-collinear effective theory (SCET) has been extended to include external transverse and longitudinal gauge bosons and Higgs bosons. This allows one to compute radiative corrections to all parton-level hard scattering amplitudes in the standard model to next-to-leading-log order, including QCD and electroweak radiative corrections, mass effects, and Higgs exchange corrections, if the high-scale matching, which is suppressed by two orders in the log counting, and contains no large logs, is known. The factorization structure of the effective theory places strong constraints on the form of gauge theory amplitudes at high energy for massless and massive gauge theories, which are discussed in detail in the paper. The radiative corrections can be written as the sum of process-independent one-particle collinear functions, and a universal soft function. We give plots for the radiative corrections to qq{yields}W{sub T}W{sub T}, Z{sub T}Z{sub T}, W{sub L}W{sub L}, and Z{sub L}H, and gg{yields}W{sub T}W{sub T} to illustrate our results. The purely electroweak corrections are large, ranging from 12% at 500 GeV to 37% at 2 TeV for transverse W pair production, and increasing rapidly with energy. The estimated theoretical uncertainty to the partonic (hard) cross section in most cases is below 1%, smaller than uncertainties in the parton distribution functions. We discuss the relation between SCET and other factorization methods, and derive the Magnea-Sterman equations for the Sudakov form factor using SCET, for massless and massive gauge theories, and for light and heavy external particles.

  16. Suzaku monitoring of hard X-ray emission from ? Carinae over a single binary orbital cycle

    SciTech Connect (OSTI)

    Hamaguchi, Kenji; Corcoran, Michael F.; Yuasa, Takayuki; Ishida, Manabu; Pittard, Julian M.; Russell, Christopher M. P.

    2014-11-10

    The Suzaku X-ray observatory monitored the supermassive binary system ? Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ? 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ?3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the ?-ray source detected in this field. The helium-like Fe K? line complex at ?6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with ? ? 10{sup 11} cm{sup 3} s{sup 1}. The NEI plasma increases in importance toward periastron.

  17. FIA-16-0040 - In the Matter of Kathy L. Black | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 - In the Matter of Kathy L. Black FIA-16-0040 - In the Matter of Kathy L. Black On June 27, 2016, OHA denied a Freedom of Information Act Appeal (FOIA) filed by Kathy L. Black (Appellant) of a determination issued by the DOE Office of Information Resources (OIR). In the Appeal, the Appellant challenged OIR's withholding under FOIA Exemption 5. OHA reviewed the withheld information and concluded that OIR properly withheld the information under Exemption 5's deliberative process privilege. OHA

  18. A Study of Selected Properties and Applications of AlMgB14 and Related Composites: Ultra-Hard Materials

    SciTech Connect (OSTI)

    Theron L. Lewis

    2002-05-28

    This research presents a study of the hardness, electrical, and thermal properties AlMgB{sub 14} containing Al{sub 2}MgO{sub 4} spinel. This research also investigated how much Al{sub 2}MgO{sub 4} spinel consistently forms with AlMgB{sub 14}, if AlMgB{sub 14} materials can be produced by hot isostatic pressing (HIP), what effects TiC and TiB{sub 2} have on this composite material, and the importance of mechanical alloying. Included also is a study of the variation in hardness measurements and how they relate to SI units. Heretofore, all ultra-hard materials (hardness > 40 GPA) have been found to be cubic in structure, electrical insulators, and expensive; the behavior of AlMgB{sub 14}, which in certain specimens and compositions can have hardness values greater than 40 GPa, is therefore quite unusual since it is non-cubic, conductive, and moderate in cost. This offers an opportunity to investigate the relationship between hardness, thermal, and electrical properties from a new perspective. The main purpose of this project was to characterize the different properties of the AlMgB{sub 14} materials and to demonstrate that this material can be made in bulk. The technologies used for this study include microhardness measurement techniques, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction spectroscopy, x-ray diffraction spectroscopy at different temperatures, optical microscopy, thermomechanical analysis, differential thermal analysis, 4-point probe resistivity, density techniques, Seebeck Effect, and Hall Effect. This research may lead to use of this material for applications where high abrasion resistance along with electrical conduction is needed. Also this research gave more information about a material that could have a great impact on industrial applications.

  19. Gas Flux Sampling At Black Warrior Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Black Warrior Area (DOE GTP) Exploration Activity Details Location...

  20. Searching for mini black holes signatures in cosmic rays air shower

    SciTech Connect (OSTI)

    Lamri, S.; Kalli, S.; Mimouni, J.

    2012-06-27

    Theories with extra dimensions at low Planck scale, offer the exciting possibility of mini black holes production in ultra high-energy particles interactions. In particular, cosmic neutrinos interaction can produce black holes deep in the Earth's atmosphere. These mini black holes then decay and produce 'characteristic' air showers. In this paper, we examine the properties of the mini black holes (mBH) air showers and compare them to the standard model (mSM) ones. We point out to some possible criteria that help distinguishing mBH air showers.

  1. Surface geometry of a rotating black hole in a magnetic field...

    Office of Scientific and Technical Information (OSTI)

    Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BLACK HOLES; KERR FIELD; ROTATION; DIFFERENTIAL GEOMETRY; EINSTEIN-MAXWELL EQUATIONS; EQUATIONS; FIELD EQUATIONS; ...

  2. Five-dimensional black strings in Einstein-Gauss-Bonnet gravity

    SciTech Connect (OSTI)

    Kobayashi, Tsutomu; Tanaka, Takahiro

    2005-04-15

    We consider black-string-type solutions in five-dimensional Einstein-Gauss-Bonnet gravity. Numerically constructed solutions under static, axially symmetric and translationally invariant metric ansatz are presented. The solutions are specified by two asymptotic charges: mass of a black string and a scalar charge associated with the radion part of the metric. Regular black string solutions are found if and only if the two charges satisfy a fine-tuned relation, and otherwise the spacetime develops a singular event horizon or a naked singularity. We can also generate bubble solutions from the black strings by using a double Wick rotation.

  3. Navy legend Carl Brashear speaks at JLab's Black History Month event |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Navy legend Carl Brashear speaks at JLab's Black History Month event Carl Brashear poster Carl Brashear will speak at JLab's Black History Month event on Wednesday, February 19 at 2p.m. Navy legend Carl Brashear speaks at JLab's Black History Month event February 6, 2003 U.S. Naval legend Carl Brashear will be at Jefferson Lab on Wednesday, February 19, as the Lab's guest speaker for Black History Month Directions to the Lab Enter through Onnes Dr. from Jefferson Ave. Anyone 16

  4. Generalized uncertainty principle in f(R) gravity for a charged black hole

    SciTech Connect (OSTI)

    Said, Jackson Levi; Adami, Kristian Zarb

    2011-02-15

    Using f(R) gravity in the Palatini formularism, the metric for a charged spherically symmetric black hole is derived, taking the Ricci scalar curvature to be constant. The generalized uncertainty principle is then used to calculate the temperature of the resulting black hole; through this the entropy is found correcting the Bekenstein-Hawking entropy in this case. Using the entropy the tunneling probability and heat capacity are calculated up to the order of the Planck length, which produces an extra factor that becomes important as black holes become small, such as in the case of mini-black holes.

  5. Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and...

    Open Energy Info (EERE)

    up flow zone drilling targets in a blind geothermal prospect at Black Warrior, Churchill and Washoe Counties, Nevada. Awardees (Company Institution) Nevada Geothermal...

  6. V-158: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities

    Broader source: Energy.gov [DOE]

    Multiple vulnerabilities have been reported in BlackBerry Tablet OS, which can be exploited by malicious people to bypass certain security restrictions and compromise a user's system.

  7. Climate Impacts of Atmospheric Sulfate and Black Carbon Aerosols

    SciTech Connect (OSTI)

    Qian, Yun; Song, Qingyuan; Menon, Surabi; Yu, Shaocai; Liu, Shaw C.; Shi, Guangyu; Leung, Lai R.; Luo, Yunfeng

    2008-09-19

    Although the global average surface temperature has increased by about 0.6°C during the last century (IPCC, 2001), some regions such as East Asia, Eastern North America, and Western Europe have cooled rather than warmed during the past decades (Jones, 1988; Qian and Giorgi, 2000). Coherent changes at the regional scale may reflect responses to different climate forcings that need to be understood in order to predict the future net climate response at the global and regional scales under different emission scenarios. Atmospheric aerosols play an important role in global climate change (IPCC 2001). They perturb the earth’s radiative budget directly by scattering and absorbing solar and long wave radiation, and indirectly by changing cloud reflectivity, lifetime, and precipitation efficiency via their role as cloud condensation nuclei. Because aerosols have much shorter lifetime (days to weeks) compared to most greenhouse gases, they tend to concentrate near their emission sources and distribute very unevenly both in time and space. This non-uniform distribution of aerosols, in conjunction with the greenhouse effect, may lead to differential net heating in some areas and net cooling in others (Penner et al. 1994). Sulfate aerosols come mainly from the oxidation of sulfur dioxide (SO2) emitted from fossil fuel burning. Black carbon aerosols are directly emitted during incomplete combustion of biomass, coal, and diesel derived sources. Due to the different optical properties, sulfate and black carbon affect climate in different ways. Because of the massive emissions of sulfur and black carbon that accompany the rapid economic expansions in East Asia, understanding the effects of aerosols on climate is particularly important scientifically and politically in order to develop adaptation and mitigation strategies.

  8. Barrow Black Carbon Source and Impact Study Final Campaign Report

    SciTech Connect (OSTI)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact campaign was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility site in Barrow, Alaska. The carbonaceous component was characterized by measuring the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the PM, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine PM fractions (PM2.5) and 49 coarse (PM10) PM fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the Barrow Black Carbon Source and Impact (BBCSI) study used standard Tisch “hi-vol” motors that have a known lifetime of approximately 1 month under constant use; this necessitated monthly maintenance, and it is suggested that, for future deployment in the Arctic, the motors be upgraded to industrial blowers. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric PM samples from Barrow, Alaska, from July 2012 to June 2013. Preliminary analysis of the OC and BC concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer. However, the annual OC concentrations had a very different seasonal pattern with the highest concentrations during the summer, lowest concentrations during the fall, and increased concentrations during the winter and spring (Figure 1).

  9. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian OH-PA (2) Appalachian Eastern PA (3) Appalachian Southern OH (4) Appalachian Eastern WV (5) Appalachian WV-VA (6) Appalachian TN-KY (7) Piceance Greater Green River Eastern OR-WA Ventura Williston Williston NE (2) Williston NW (1) Williston South (3) Eastern Great Basin Ventura West, Central, East Eastern OR-WA Eastern

  10. Minimum length, extra dimensions, modified gravity and black hole remnants

    SciTech Connect (OSTI)

    Maziashvili, Michael

    2013-03-01

    We construct a Hilbert space representation of minimum-length deformed uncertainty relation in presence of extra dimensions. Following this construction, we study corrections to the gravitational potential (back reaction on gravity) with the use of correspondingly modified propagator in presence of two (spatial) extra dimensions. Interestingly enough, for r?0 the gravitational force approaches zero and the horizon for modified Schwarzschild-Tangherlini space-time disappears when the mass approaches quantum-gravity energy scale. This result points out to the existence of zero-temperature black hole remnants in ADD brane-world model.

  11. Black hole temperature: Minimal coupling vs conformal coupling

    SciTech Connect (OSTI)

    Fazel, Mohamadreza; Mirza, Behrouz; Mansoori, Seyed Ali Hosseini

    2014-05-15

    In this article, we discuss the propagation of scalar fields in conformally transformed spacetimes with either minimal or conformal coupling. The conformally coupled equation of motion is transformed into a one-dimensional Schrödinger-like equation with an invariant potential under conformal transformation. In a second stage, we argue that calculations based on conformal coupling yield the same Hawking temperature as those based on minimal coupling. Finally, it is conjectured that the quasi normal modes of black holes are invariant under conformal transformation.

  12. Entropy localization and extensivity in the semiclassical black hole evaporation

    SciTech Connect (OSTI)

    Casini, H.

    2009-01-15

    I aim to quantify the distribution of information in the Hawking radiation and inside the black hole in the semiclassical evaporation process. The structure of relativistic quantum field theory does not allow one to define a localized entropy unambiguously, but rather forces one to consider the shared information (mutual information) between two different regions of space-time. Using this tool, I first show that the entropy of a thermal gas at the Unruh temperature underestimates the actual amount of (shared) information present in a region of the Rindler space. Then, I analyze the mutual information between the black hole and the late time radiation region. A well-known property of the entropy implies that this is monotonically increasing with time. This means that in the semiclassical picture it is not possible to recover the eventual purity of the initial state in the final Hawking radiation through subtle correlations established during the whole evaporation period, no matter the interactions present in the theory. I find extensivity of the entropy as a consequence of a reduction to a two dimensional conformal problem in a simple approximation. However, the extensivity of information in the radiation region in a full four dimensional calculation seems not to be guaranteed on general grounds. I also analyze the localization of shared information inside the black hole finding that a large amount of it is contained in a small, approximately flat region of space-time near the point where the horizon begins. This gives place to large violations of the entropy bounds. I show that this problem is not eased by backscattering effects and argue that a breaking of conformal invariance is necessary to delocalize the entropy. Finally, I indicate that the mutual information could lead to a way to understand the Bekenstein-Hawking black hole entropy which does not require a drastic reduction in degrees of freedom in order to regulate the entanglement entropy. On the contrary

  13. Application of an EMCCD Camera for Calibration of Hard X-Ray Telescopes

    SciTech Connect (OSTI)

    Vogel, J K; Pivovaroff, M J; Nagarkar, V V; Kudrolli, H; Madsen, K K; Koglin, J E; Christensen, F E; Brejnholt, N F

    2011-11-08

    Recent technological innovations now make it feasible to construct hard x-ray telescopes for space-based astronomical missions. Focusing optics are capable of improving the sensitivity in the energy range above 10 keV by orders of magnitude compared to previously used instruments. The last decade has seen focusing optics developed for balloon experiments and they will soon be implemented in approved space missions such as the Nuclear Spectroscopic Telescope Array (NuSTAR) and ASTRO-H. The full characterization of x-ray optics for astrophysical and solar imaging missions, including measurement of the point spread function (PSF) as well as scattering and reflectivity properties of substrate coatings, requires a very high spatial resolution, high sensitivity, photon counting and energy discriminating, large area detector. Novel back-thinned Electron Multiplying Charge-Coupled Devices (EMCCDs) are highly suitable detectors for ground-based calibrations. Their chip can be optically coupled to a microcolumnar CsI(Tl) scintillator via a fiberoptic taper. Not only does this device exhibit low noise and high spatial resolution inherent to CCDs, but the EMCCD is also able to handle high frame rates due to its controllable internal gain. Additionally, thick CsI(Tl) yields high detection efficiency for x-rays. This type of detector has already proven to be a unique device very suitable for calibrations in astrophysics: such a camera was used to support the characterization of the performance for all NuSTAR optics. Further optimization will enable similar cameras to be improved and used to calibrate x-ray telescopes for future space missions. In this paper, we discuss the advantages of using an EMCCD to calibrate hard x-ray optics. We will illustrate the promising features of this detector solution using examples of data obtained during the ground calibration of the NuSTAR telescopes performed at Columbia University during 2010/2011. Finally, we give an outlook on ongoing

  14. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  15. Primordial Black Holes: Observational characteristics of the final evaporation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ukwatta, T. N.; Stump, D. R.; Linnemann, J. T.; MacGibbon, J. H.; Marinelli, S. S.; Yapici, T.; Tollefson, K.

    2016-07-01

    For many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 105 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. Moreover, the final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigatemore » the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. Finally, the implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5–10 TeV range.« less

  16. CALIBRATING C-IV-BASED BLACK HOLE MASS ESTIMATORS

    SciTech Connect (OSTI)

    Park, Daeseong; Woo, Jong-Hak; Shin, Jaejin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Denney, Kelly D., E-mail: pds2001@astro.snu.ac.kr, E-mail: woo@astro.snu.ac.kr, E-mail: jjshin@astro.snu.ac.kr, E-mail: kelly@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-06-20

    We present the single-epoch black hole mass estimators based on the C IV {lambda}1549 broad emission line, using the updated sample of the reverberation-mapped active galactic nuclei and high-quality UV spectra. By performing multi-component spectral fitting analysis, we measure the C IV line widths (FWHM{sub C{sub IV}} and line dispersion, {sigma}{sub C{sub IV}}) and the continuum luminosity at 1350 A (L{sub 1350}) to calibrate the C-IV-based mass estimators. By comparing with the H{beta} reverberation-based masses, we provide new mass estimators with the best-fit relationships, i.e., M{sub BH}{proportional_to}L{sub 1350}{sup 0.50{+-}0.07}{sigma}{sub C{sub IV}{sup 2}} and M{sub BH}{proportional_to}L{sub 1350}{sup 0.52{+-}0.09} FWHM{sub C{sub IV}{sup 0.56{+-}0.48}}. The new C-IV-based mass estimators show significant mass-dependent systematic difference compared to the estimators commonly used in the literature. Using the published Sloan Digital Sky Survey QSO catalog, we show that the black hole mass of high-redshift QSOs decreases on average by {approx}0.25 dex if our recipe is adopted.

  17. GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE

    SciTech Connect (OSTI)

    Cerd-Durn, Pablo; DeBrye, Nicolas; Aloy, Miguel A.; Font, Jos A.; Obergaulinger, Martin

    2013-12-20

    We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates ? 0.1yr{sup 1}.

  18. Effects of intermediate mass black holes on nuclear star clusters

    SciTech Connect (OSTI)

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B.; Loeb, Abraham

    2014-11-20

    Nuclear star clusters (NSCs) are dense stellar clusters observed in galactic nuclei, typically hosting a central massive black hole. Here we study the possible formation and evolution of NSCs through the inspiral of multiple star clusters hosting intermediate mass black holes (IMBHs). Using an N-body code, we examine the dynamics of the IMBHs and their effects on the NSC. We find that IMBHs inspiral to the core of the newly formed NSC and segregate there. Although the IMBHs scatter each other and the stars, none of them is ejected from the NSC. The IMBHs are excited to high eccentricities and their radial density profile develops a steep power-law cusp. The stars also develop a power-law cusp (instead of the central core that forms in their absence), but with a shallower slope. The relaxation rate of the NSC is accelerated due to the presence of IMBHs, which act as massive perturbers. This in turn fills the loss cone and boosts the tidal disruption rate of stars both by the MBH and the IMBHs to a value excluded by rate estimates based on current observations. Rate estimates of tidal disruptions can therefore provide a cumulative constraint on the existence of IMBHs in NSCs.

  19. Strengthening Our Partnerships with Historically Black Colleges and Universities

    Broader source: Energy.gov [DOE]

    Secretary Chu meets with Annie Whatley, Acting Chief of Staff in the Office of Economic Impact and Diversity, and Dr. William Harvey. Last February, President Obama renewed the White House Initiative on Historically Black Colleges and Universities to encourage collaboration between government agencies, educational associations, philanthropic organizations, the private sector and others to increase the capacity of HBCUs to provide high-quality education to a greater number of students.  The Department of Energy is committed to supporting education at HBCUs and has partnered with HBCUs on a variety of projects. As part of that commitment, today I met with Dr. William Harvey, Chairman of the President’s Board of Advisors on Historically Black Colleges and Universities and President of Hampton University, as well as Langston University President JoAnn Haysbert and Morgan State University President David Wilson. The presidents and I discussed how the Department can better engage HBCUs in our science and laboratory projects, and what lessons we can learn from the many ongoing and successful partnerships we have in place.

  20. Hawking radiation of scalar particles from accelerating and rotating black holes

    SciTech Connect (OSTI)

    Gillani, Usman A.; Rehman, Mudassar; Saifullah, K. E-mail: mudassar051@yahoo.com

    2011-06-01

    Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.

  1. AmeriFlux CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce

    SciTech Connect (OSTI)

    Margolis, Hank A.

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce. Site Description - 49.69247° N / 74.34204° W, elevation of 387 mm, 90 - 100 yr old Black Spruce, Jack Pine, feather moss

  2. X-ray technology behind NASA's black-hole hunter (NuSTAR)

    ScienceCinema (OSTI)

    Craig, Bill

    2014-05-22

    Livermore Lab astrophysicist Bill Craig describes his team's role in developing X-ray imaging technology for the NASA Nuclear Spectroscopic Telescope Array (NuSTAR) mission. The black-hole-hunting spacecraft bagged its first 10 supermassive black holes this week

  3. X-ray technology behind NASA's black-hole hunter (NuSTAR)

    SciTech Connect (OSTI)

    Craig, Bill

    2013-09-10

    Livermore Lab astrophysicist Bill Craig describes his team's role in developing X-ray imaging technology for the NASA Nuclear Spectroscopic Telescope Array (NuSTAR) mission. The black-hole-hunting spacecraft bagged its first 10 supermassive black holes this week

  4. The LCLS variable-energy hard X-ray single-shot spectrometer

    SciTech Connect (OSTI)

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10-5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  5. The LCLS variable-energy hard X-ray single-shot spectrometer

    SciTech Connect (OSTI)

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10-5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  6. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    SciTech Connect (OSTI)

    Nguyen, Dinh Cong; Anisimov, Petr Mikhaylovich; Buechler, Cynthia Eileen; Lewellen, IV, John W.; Marksteiner, Quinn R.

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, which leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10-5 .

  7. A model for heat-affected zone hardness profiles in Al-Li-X alloys

    SciTech Connect (OSTI)

    Rading, G.O.; Berry, J.T.

    1998-09-01

    A model based on reaction kinetics and elemental diffusion is proposed to account for the presence of double inflection in the hardness profiles of the heat-affected zone (HAZ) in weldments of Al-Li-X alloys tested without postweld heat treatment (PWHT). Such profiles are particularly evident when (1) the base metal is in the peak-aged (T8 or T6) temper condition prior to welding; (2) the welding process is a high-heat input process, i.e., gas tungsten arc (GTA), gas metal arc (GMA) or plasma arc (PA) welding; and (3) a filler alloy deficient in lithium (i.e., AA 2319) is used. In the first part of this paper, the theoretical mechanisms are presented. It is proposed that the double inflection appears due to complete or partial reversion of the semi-coherent, plate-like precipitates (i.e., {theta}{prime}, T{sub 1} or S{prime}); coarsening of the plate-like precipitates at constant volume fraction; precipitation of {delta}{prime} as a result of natural aging; and diffusion of lithium from the HAZ into the weld pool due to the concentration gradient between the weld pool and the base metal. In the second part (to be published in next month`s Welding Journal), experimental validation of the model is provided using weldments of the Al-Li-Cu Alloy 2095.

  8. Microstructure, hardness profile and tensile strength in welds of AA6013 T6 extrusions

    SciTech Connect (OSTI)

    Guitterez, L.A.; Neye, G.; Zschech, E.

    1996-04-01

    Alloy AA6013 is easily welded by conventional arc welding processes as well as by high-energy-density processes. However, some physical properties, which are inherent to all aluminum alloys, have to be considered during welding. In comparison to steel, the high thermal conductivity of aluminum alloys requires the use of higher heat input for welding. This is realized by a greater welding current during GTAW of aluminum alloys. One of the main problems associated with LBW of aluminum alloys is the high surface reflectivity. In particular, the threshold intensity for the development of a keyhole is much higher for aluminum than for steel. Finally, aluminum alloys, and particularly the heat-treatable alloys, are sensitive to weld cracking. This phenomenon can be avoided by proper filler and base metal alloy selection and adequate filler metal dilution. In order to improve the mechanical integrity of Al-Mg-Si weldments, it would be desirable to study the microstructure of the FZ and of the HAZ, as well as the residual stress distribution. The present study was performed in order to show differences in microstructure, hardness profile and tensile strength of gas tungsten arc (GTA) and laser beam (LB) welded AA6013-T6 extrusions. In addition, grain boundary liquations and hot tearing are discussed.

  9. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect (OSTI)

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori; Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (ΔE/E ∼ 5 × 10{sup −3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ∼3 × 10{sup −3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  10. Heavy-Quark Associated Production with One Hard Photon at Hadron Colliders

    SciTech Connect (OSTI)

    Hartanto, Heribertus Bayu

    2013-01-01

    We present the calculation of heavy-quark associated production with a hard photon at hadron colliders, namely $pp(p\\bar p) \\rightarrow Q\\bar Q\\gam +X$ (for $Q=t,b$), at Next-to-Leading Order (NLO) in Quantum Chromodynamics (QCD). We study the impact of NLO QCD corrections on the total cross section and several differential distributions at both the Tevatron and the Large Hadron Collider (LHC). For $t\\bar t\\gam$ production we observe a sizeable reduction of the renormalization and factorization scale dependence when the NLO QCD corrections are included, while for $b\\bar b\\gam$ production a considerable scale dependence still persists at NLO in QCD. This is consistent with what emerges in similar processes involving $b$ quarks and vector bosons and we explain its origin in detail. For $b\\bar b\\gam$ production we study both the case in which at least one $b$ jet and the case in which at least two $b$ jets are observed. We perform the $b\\bar b\\gam$ calculation using the Four Flavor Number Scheme (4FNS) and compare the case where at least one $b$ jet is observed with the corresponding results from the Five Flavor Number Scheme (5FNS) calculation. Finally we compare our results for $p\\bar p \\rightarrow \\gam+b+X$ with the Tevatron data.

  11. KAPPA DISTRIBUTION MODEL FOR HARD X-RAY CORONAL SOURCES OF SOLAR FLARES

    SciTech Connect (OSTI)

    Oka, M.; Ishikawa, S.; Saint-Hilaire, P.; Krucker, S.; Lin, R. P. [Space Sciences Laboratory, University of California Berkeley (United States)] [Space Sciences Laboratory, University of California Berkeley (United States)

    2013-02-10

    Solar flares produce hard X-ray emission, the photon spectrum of which is often represented by a combination of thermal and power-law distributions. However, the estimates of the number and total energy of non-thermal electrons are sensitive to the determination of the power-law cutoff energy. Here, we revisit an 'above-the-loop' coronal source observed by RHESSI on 2007 December 31 and show that a kappa distribution model can also be used to fit its spectrum. Because the kappa distribution has a Maxwellian-like core in addition to a high-energy power-law tail, the emission measure and temperature of the instantaneous electrons can be derived without assuming the cutoff energy. Moreover, the non-thermal fractions of electron number/energy densities can be uniquely estimated because they are functions of only the power-law index. With the kappa distribution model, we estimated that the total electron density of the coronal source region was {approx}2.4 Multiplication-Sign 10{sup 10} cm{sup -3}. We also estimated without assuming the source volume that a moderate fraction ({approx}20%) of electrons in the source region was non-thermal and carried {approx}52% of the total electron energy. The temperature was 28 MK, and the power-law index {delta} of the electron density distribution was -4.3. These results are compared to the conventional power-law models with and without a thermal core component.

  12. Hard X-ray emission and {sup 44}Ti line features of the Tycho supernova remnant

    SciTech Connect (OSTI)

    Wang, Wei [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Li, Zhuo, E-mail: wangwei@bao.ac.cn, E-mail: zhuo.li@pku.edu.cn [Department of Astronomy and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2014-07-10

    A deep hard X-ray survey of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected for the first time non-thermal emission up to 90 keV in the Tycho supernova (SN) remnant. Its 3-100 keV spectrum is fitted with a thermal bremsstrahlung of kT ? 0.81 0.45 keV plus a power-law model of ? ? 3.01 0.16. Based on diffusive shock acceleration theory, this non-thermal emission, together with radio measurements, implies that the Tycho remnant may not accelerate protons up to >PeV but to hundreds TeV. Only heavier nuclei may be accelerated to the cosmic ray spectral 'knee'. In addition, using INTEGRAL, we search for soft gamma-ray lines at 67.9 and 78.4 keV that come from the decay of radioactive {sup 44}Ti in the Tycho remnant. A bump feature in the 60-90 keV energy band, potentially associated with the {sup 44}Ti line emission, is found with a marginal significance level of ?2.6?. The corresponding 3? upper limit on the {sup 44}Ti line flux amounts to 1.5 10{sup 5} photon cm{sup 2} s{sup 1}. Implications on the progenitor of the Tycho SN, considered to be a Type Ia SN prototype, are discussed.

  13. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, M.; Blackmore, E. W.; Rodbell, K. P.; Reed, R. A.; Pellish, J. A.; et al

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data frommore » 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.« less

  14. Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology

    SciTech Connect (OSTI)

    K.K. Gan; M.O. Johnson; R.D. Kass; J. Moore

    2008-09-12

    The proposed International Linear Collider (ILC) will use tens of thousands of beam position monitors (BPMs) for precise beam alignment. The signal from each BPM is digitized and processed for feedback control. We proposed the development of an 11-bit (effective) digitizer with 500 MHz bandwidth and 2 G samples/s. The digitizer was somewhat beyond the state-of-the-art. Moreover we planned to design the digitizer chip using the deep-submicron technology with custom transistors that had proven to be very radiation hard (up to at least 60 Mrad). The design mitigated the need for costly shielding and long cables while providing ready access to the electronics for testing and maintenance. In FY06 as we prepared to submit a chip with test circuits and a partial ADC circuit we found that IBM had changed the availability of our chosen IC fabrication process (IBM 6HP SiGe BiCMOS), making it unaffordable for us, at roughly 3 times the previous price. This prompted us to change our design to the IBM 5HPE process with 0.35 µm feature size. We requested funding for FY07 to continue the design work and submit the first prototype chip. Unfortunately, the funding was not continued and we will summarize below the work accomplished so far.

  15. Hard x-ray tomographic studies of the destruction of an energetic electron ring

    SciTech Connect (OSTI)

    Wang, Y.; Gekelman, W.; Pribyl, P.

    2013-05-15

    A tomography system was designed and built at the Large Plasma Device to measure the spatial distribution of hard x-ray (100 KeV-3 MeV) emissivity. The x-rays were generated when a hot electron ring was significantly disrupted by a shear Alfven wave. The plasma is pulsed at 1 Hz (1 shot/s). A lead shielded scintillator detector with an acceptance angle defined by a lead pinhole is mounted on a rotary gimbal and used to detect the x-rays. The system measures one chord per plasma shot using only one detector. A data plane usually consists of several hundred chords. A novel Dot by Dot Reconstruction (DDR) method is introduced to calculate the emissivity profile from the line integrated data. In the experiments, there are often physical obstructions, which make measurements at certain angles impossible. The DDR method works well even in this situation. The method was tested with simulated data, and was found to be more effective than previously published methods for the specific geometry of this experiment. The reconstructed x-ray emissivity from experimental data by this method is shown.

  16. Effect of heat treatment on microstructure and hardness of Grade 91 steel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; Potirniche, Gabriel; Glazoff, Michael

    2015-01-21

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore » differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.« less

  17. MOTIONS OF HARD X-RAY SOURCES DURING AN ASYMMETRIC ERUPTION

    SciTech Connect (OSTI)

    Liu Chang; Jing Ju; Liu Rui; Deng Na; Wang Haimin; Lee, Jeongwoo

    2010-10-01

    Filament eruptions and hard X-ray (HXR) source motions are commonly observed in solar flares, which provide critical information on the coronal magnetic reconnection. This Letter reports an event on 2005 January 15, in which we found an asymmetric filament eruption and a subsequent coronal mass ejection together with complicated motions of HXR sources during the GOES-class X2.6 flare. The HXR sources initially converge to the magnetic polarity inversion line (PIL), and then move in directions either parallel or perpendicular to the PIL depending on the local field configuration. We distinguish the evolution of the HXR source motion in four phases and associate each of them with distinct regions of coronal magnetic fields as reconstructed using a nonlinear force-free field extrapolation. It is found that the magnetic reconnection proceeds along the PIL toward the regions where the overlying field decreases with height more rapidly. It is also found that not only the perpendicular but the parallel motion of the HXR sources correlates well with the HXR light curve. These results are discussed in favor of the torus instability as an important factor in the eruptive process.

  18. A Thermodynamically-Consistent Non-Ideal Stochastic Hard-Sphere Fluid

    SciTech Connect (OSTI)

    Donev, A; Alder, B J; Garcia, A L

    2009-08-03

    A grid-free variant of the Direct Simulation Monte Carlo (DSMC) method is proposed, named the Isotropic DSMC (I-DSMC) method, that is suitable for simulating collision-dominated dense fluid flows. The I-DSMC algorithm eliminates all grid artifacts from the traditional DSMC algorithm and is Galilean invariant and microscopically isotropic. The stochastic collision rules in I-DSMC are modified to introduce a non-ideal structure factor that gives consistent compressibility, as first proposed in [Phys. Rev. Lett. 101:075902 (2008)]. The resulting Stochastic Hard Sphere Dynamics (SHSD) fluid is empirically shown to be thermodynamically identical to a deterministic Hamiltonian system of penetrable spheres interacting with a linear core pair potential, well-described by the hypernetted chain (HNC) approximation. We develop a kinetic theory for the SHSD fluid to obtain estimates for the transport coefficients that are in excellent agreement with particle simulations over a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic structure factor against theory based on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a nano-particle suspended in an SHSD fluid and find a long-time power-law tail in its velocity autocorrelation function consistent with hydrodynamic theory and molecular dynamics calculations.

  19. Scattered hard X-ray and γ-ray generation from a chromatic electron beam

    SciTech Connect (OSTI)

    Coleman, J. E.; Welch, D. R.; Miller, C. L.

    2015-11-14

    An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. <10% of the 100 ns electron pulse is composed of off energy electrons (1–3 MeV) accelerated during the rise and fall of the pulse that impact the stainless steel beam pipe and generate a Bremsstrahlung spectrum of 0.1–3 MeV photons with a total count of 10{sup 11}. The principal objective of these experiments is to quantify the electron beam dynamics and spatial dynamics of the hard X-ray and γ-ray flux generated in the diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V{sup 4} and detected photon counts of nearly 10{sup 6} at a radial distance of 1 m which corresponds to dose ∼40 μrad at 1 m.

  20. Effect of heat treatment on microstructure and hardness of Grade 91 steel

    SciTech Connect (OSTI)

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; Potirniche, Gabriel; Glazoff, Michael

    2015-01-21

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with the differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.

  1. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    SciTech Connect (OSTI)

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-06-10

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F{sub 3-9} {sub keV}, is below and above a critical flux, F{sub X,} {sub crit}, which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F{sub 3-9} {sub keV} ≳ F{sub X,} {sub crit} have a steeper radio-X-ray correlation (F{sub X}∝F{sub R}{sup b} and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F{sub 3-9} {sub keV} either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  2. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  3. ELECTRON ENERGY PARTITION IN THE ABOVE-THE-LOOPTOP SOLAR HARD X-RAY SOURCES

    SciTech Connect (OSTI)

    Oka, Mitsuo; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal

    2015-02-01

    Solar flares produce non-thermal electrons with energies up to tens of MeVs. To understand the origin of energetic electrons, coronal hard X-ray (HXR) sources, in particular above-the-looptop sources, have been studied extensively. However, it still remains unclear how energies are partitioned between thermal and non-thermal electrons within the above-the-looptop source. Here we show that the kappa distribution, when compared to conventional spectral models, can better characterize the above-the-looptop HXRs (≳15 keV) observed in four different cases. The widely used conventional model (i.e., the combined thermal plus power-law distribution) can also fit the data, but it returns unreasonable parameter values due to a non-physical sharp lower-energy cutoff E{sub c}. In two cases, extreme-ultraviolet data were available from SDO/AIA and the kappa distribution was still consistent with the analysis of differential emission measure. Based on the kappa distribution model, we found that the 2012 July 19 flare showed the largest non-thermal fraction of electron energies about 50%, suggesting equipartition of energies. Considering the results of particle-in-cell simulations, as well as density estimates of the four cases studied, we propose a scenario in which electron acceleration is achieved primarily by collisionless magnetic reconnection, but the electron energy partition in the above-the-looptop source depends on the source density. In low-density above-the-looptop regions (few times 10{sup 9} cm{sup –3}), the enhanced non-thermal tail can remain and a prominent HXR source is created, whereas in higher-densities (>10{sup 10} cm{sup –3}), the non-thermal tail is suppressed or thermalized by Coulomb collisions.

  4. CORONAL THICK TARGET HARD X-RAY EMISSIONS AND RADIO EMISSIONS

    SciTech Connect (OSTI)

    Lee, Jeongwoo; Lim, Daye; Choe, G. S.; Kim, Kap-Sung; Jang, Minhwan

    2013-05-20

    A distinctive class of hard X-ray (HXR) sources located in the corona was recently found, which implies that the collisionally thick target model (CTTM) applies even to the corona. We investigated whether this idea can be independently verified by microwave radiations which have been known as the best companion to HXRs. This study is conducted on the GOES M2.3 class flare which occurred on 2002 September 9 and was observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Owens Valley Solar Array. Interpreting the observed energy-dependent variation of HXR source size under the CTTM, the coronal density should be as high as 5 Multiplication-Sign 10{sup 11} cm{sup -3} over a distance of up to 12''. To explain the cutoff feature of the microwave spectrum at 3 GHz, however, we require a density no higher than 1 Multiplication-Sign 10{sup 11} cm{sup -3}. Additional constraints must be placed on the temperature and magnetic field of the coronal source in order to reproduce the microwave spectrum as a whole. First, a spectral feature called the Razin suppression requires a magnetic field in a range of 250-350 G along with high viewing angles around 75 Degree-Sign . Second, to avoid excess fluxes at high frequencies due to the free-free emission that was not observed, we need a high temperature {>=}2 Multiplication-Sign 10{sup 7} K. These two microwave spectral features, Razin suppression and free-free emissions, become more significant at regions of high thermal plasma density and are essential for validating and determining additional parameters of the coronal HXR sources.

  5. Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

  6. The genome of black cottonwood, Populus trichocarpa (Torr.&Gray)

    SciTech Connect (OSTI)

    Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev,I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R.R.; Bhalerao, R.P.; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Carlson, J.; Chalot, M.; Chapman, J.; Chen, G.-L.; Cooper, D.; Coutinho,P.M.; Couturier, J.; Covert, S.; Cronk, Q.; Cunningham, R.; Davis, J.; Degroeve, S.; Dejardin, A.; dePamphillis, C.; Detter, J.; Dirks, B.; Dubchak, I.; Duplessis, S.; Ehiting, J.; Ellis, B.; Gendler, K.; Goodstein, D.; Gribskov, M.; Grimwood, J.; Groover, A.; Gunter, L.; Hamberger, B.; Heinze, B.; Helariutta, Y.; Henrissat, B.; Holligan, D.; Holt, R.; Huang, W.; Islam-Faridi, N.; Jones, S.; Jones-Rhoades, M.; Jorgensen, R.; Joshi, C.; Kangasjarvi, J.; Karlsson, J.; Kelleher, C.; Kirkpatrick, R.; Kirst, M.; Kohler, A.; Kalluri, U.; Larimer, F.; Leebens-Mack, J.; Leple, J.-C.; Locascio, P.; Lou, Y.; Lucas, S.; Martin,F.; Montanini, B.; Napoli, C.; Nelson, D.R.; Nelson, D.; Nieminen, K.; Nilsson, O.; Peter, G.; Philippe, R.; Pilate, G.; Poliakov, A.; Razumovskaya, J.; Richardson, P.; Rinaldi, C.; Ritland, K.; Rouze, P.; Ryaboy, D.; Schmutz, J.; Schrader, J.; Segerman, B.; Shin, H.; Siddiqui,A.; Sterky, F.; Terry, A.; Tsai, C.; Uberbacher, E.; Unneberg, P.; Vahala, J.; Wall, K.; Wessler, S.; Yang, G.; Yin, T.; Douglas, C.; Marra,M.; Sandberg, G.; Van der Peer, Y.; Rokhsar, D.

    2006-09-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. Over 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event, with approximately 8,000 pairs of duplicated genes from that event surviving in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication and gross chromosomal rearrangement appear to proceed substantially slower in Populus relative to Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average between 1.4-1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with disease resistance, meristem development, metabolite transport and lignocellulosic wall biosynthesis.

  7. Recoiling supermassive black holes: a search in the nearby universe

    SciTech Connect (OSTI)

    Lena, D.; Robinson, A.; Axon, D. J.; Merritt, D.; Marconi, A.; Capetti, A.; Batcheldor, D.

    2014-11-10

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (? 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  8. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    SciTech Connect (OSTI)

    Liu, F. K.; Wang Dong; Chen Xian

    2012-02-20

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  9. Constraining the spin and the deformation parameters from the black hole shadow

    SciTech Connect (OSTI)

    Tsukamoto, Naoki; Li, Zilong; Bambi, Cosimo E-mail: zilongli@fudan.edu.cn

    2014-06-01

    Within 5–10 years, very-long baseline interferometry (VLBI) facilities will be able to directly image the accretion flow around SgrA*, the super-massive black hole candidate at the center of the Galaxy, and observe the black hole ''shadow''. In 4-dimensional general relativity, the no-hair theorem asserts that uncharged black holes are described by the Kerr solution and are completely specified by their mass M and by their spin parameter a. In this paper, we explore the possibility of distinguishing Kerr and Bardeen black holes from their shadow. In Hioki and Maeda (2009), under the assumption that the background geometry is described by the Kerr solution, the authors proposed an algorithm to estimate the value of a/M by measuring the distortion parameter δ, an observable quantity that characterizes the shape of the shadow. Here, we try to extend their approach. Since the Hioki-Maeda distortion parameter is degenerate with respect to the spin and possible deviations from the Kerr solution, one has to measure another quantity to test the Kerr black hole hypothesis. We study a few possibilities. We find that it is extremely difficult to distinguish Kerr and Bardeen black holes from the sole observation of the shadow, and out of reach for the near future. The combination of the measurement of the shadow with possible accurate radio observations of a pulsar in a compact orbit around SgrA* could be a more promising strategy to verify the Kerr black hole paradigm.

  10. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect (OSTI)

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  11. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    SciTech Connect (OSTI)

    Hierro-Rodriguez, A. Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M.; Teixeira, J. M.; Vélez, M.

    2014-09-08

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  12. Sulfide-Driven Arsenic Mobilization from Arsenopyrite and Black Shale Pyrite

    SciTech Connect (OSTI)

    Zhu, W.; Young, L; Yee, N; Serfes, M; Rhine, E; Reinfelder, J

    2008-01-01

    We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black

  13. Applicability of existing C3 (command, control and communications) vulnerability and hardness analyses to sentry system issues. Technical report

    SciTech Connect (OSTI)

    Lee, R.C.

    1983-01-13

    This report is a compilation of abstracts resulting from a literature search of reports relevant to Sentry Ballistic missile system C3 vulnerability and hardness. Primary sources consulted were the DOD Nuclear Information Analysis Center (DASIAC) and the Defense Technical Information Center (DTIC). Approximately 175 reports were reviewed and abstracted, including several related to computer programs for estimating nuclear effects on electromagnetic propagation. The reports surveyed were ranked in terms of their importance for Sentry C3 VandH issues.

  14. Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control

    SciTech Connect (OSTI)

    D. Subbaram Naidu; Craig G. Rieger

    2011-02-01

    A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

  15. Formation of carbon black as a byproduct of pyrolysis of light hydrocarbons in plasma jet

    SciTech Connect (OSTI)

    Chen, H.G.; Zhang, X.B.; Li, F.; Xie, K.C.; Dai, B.; Fan, Y.S.

    1997-12-31

    The light hydrocarbons undergo a complex reaction of flash hydropyrolysis in a DC arc H{sub 2}/Ar plasma jet at atmospheric pressure and average temperatures between 1,500 K and 4,000 K. The raw material was LPG. Acetylene is the major product. Carbon black is a byproduct. Carbon black is characterized with XRD, TEM, and adsorption-and-desorption of liquid nitrogen, respectively. The present work proposes to use the plasma process to replace the classical thermal process in order to produce acetylene directly from LPG with carbon black being a byproduct.

  16. FIA-16-0034 - In the Matter of Leo Conor Black | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 - In the Matter of Leo Conor Black FIA-16-0034 - In the Matter of Leo Conor Black On June 13, 2016, OHA denied a FOIA Appeal filed by Leo Conor Black from a determination issued by the Office of Information Resources (OIR) of the Department of Energy. In the Appeal, the Appellant challenged the adequacy of OIR's search for responsive documents. OHA found, however, that OIR conducted a search reasonably calculated to uncover the materials sought by the Appellant. FIA-16-0034.pdf (139.28 KB)

  17. Legendary Tuskegee Airmen to Speak at Jefferson Lab's Black History Month

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event | Jefferson Lab Legendary Tuskegee Airmen to Speak at Jefferson Lab's Black History Month Event Legendary Tuskegee Airmen to Speak at Jefferson Lab's Black History Month Event February 3, 2004 Three members of the legendary, World War II era Tuskegee Airmen will speak at Jefferson Lab's Black History Month celebration at 2:30 p.m. on Thursday, Feb. 19. The public is invited to the event. The program will start with footage from the 1996 movie based on the true story of the Tuskegee

  18. General Nonextremal Rotating Black Holes in Minimal Five-Dimensional Gauged Supergravity

    SciTech Connect (OSTI)

    Chong, Z.-W.; Lue, H.; Pope, C.N.; Cvetic, M.

    2005-10-14

    We construct the general solution for nonextremal charged rotating black holes in five-dimensional minimal gauged supergravity. They are characterized by four nontrivial parameters: namely, the mass, the charge, and the two independent rotation parameters. The metrics in general describe regular rotating black holes, providing the parameters lie in appropriate ranges so that naked singularities and closed timelike curves (CTCs) are avoided. We calculate the conserved energy, angular momenta, and charge for the solutions, and show how supersymmetric solutions arise in a Bogomol'nyi-Prasad-Sommerfield limit. These have naked CTCs in general, but for special choices of the parameters we obtain new regular supersymmetric black holes or smooth topological solitons.

  19. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect (OSTI)

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  20. Stringy stability of charged dilaton black holes with flat event horizon

    SciTech Connect (OSTI)

    Ong, Yen Chin; Chen, Pisin

    2015-01-15

    Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Critical to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilation arises naturally in the context of string theory, we study the effect of coupling dilation to Maxwell field on the stability of flat charged AdS black holes.

  1. Hard photo-disintegration of proton pairs in {sup 3}He nuclei

    SciTech Connect (OSTI)

    Ishay Pomerantz

    2011-09-01

    Extensive studies of high-energy deuteron photodisintegration over the past two decades have probed the limits of meson-baryon descriptions of nuclei and nuclear reactions. At high energies, photodisintegration cross sections have been shown to scale as a power law in s (the total cm energy squared), which suggests that quarks are the relevant degrees of freedom. In an attempt to more clearly identify the underlying dynamics at play, JLab/Hall A experiment 03-101 measured the hard photodisintegration of {sup 3}He into p-p and p-d pairs at θ{sub c.m.} = 90◦ and E{sub {gamma}} = 0.8 - 4.7 GeV. The basic idea is that the measurement should be able to test theoretical predictions for the relative size of pp versus pn disintegrations. This document presents data for the energy dependence of the high energy 90◦ c.m. photodisintegration of {sup3]He: dσ/dt(γ + {sup3}He → p + p + n{sub spectator}), and dσ/dt(γ + {sup 3}He → p + d). The cross sections were observed to scale as a function of s{sup −n} where n was found to be 11.1±0.1 and 17.4±0.5 for the two reactions respectively. The degree of scaling found for d#27;{sigma}/dt (γ + {sup 3}He → p + d) is the highest degree of scaling ever observed in a nuclear process. The onset of the observed scaling are at photon energy of 2.2 GeV for the pp breakup and 0.7 GeV for the pd breakup. The magnitude of the invariant cross section for pp pair breakup was found to be dramatically lower than for the breakup of pn pairs and theoretical predictions. At energies below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in the pn breakup. The data indicate a transition from three-nucleon hadronic photodisintegration processes at low energies to two-nucleon quark-dominated photodisintegration processes at high energies.

  2. Arctic Black Carbon Loading and Profile Using the Single-Particle...

    Office of Scientific and Technical Information (OSTI)

    Single-Particle Soot Photometer (SP2) Field Campaign Report Citation Details In-Document Search Title: Arctic Black Carbon Loading and Profile Using the Single-Particle Soot ...

  3. DOE/SC-ARM-14-017 Barrow Black Carbon Source and Impact Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Barrow Black Carbon Source and Impact Study Final Campaign Report July 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither...

  4. Final/Technical Report on The National Conference of Black Physics Students

    SciTech Connect (OSTI)

    Williams, Elvira

    2001-06-01

    The 14th Annual Conference of the Society of Black Physics Students (NCBPS) was held March 16-19, 2000 at North Carolina A&T State University. The conference was held jointly with the National Society of Black Physicists. The students had the opportunity to interact and network with each other and the members of the profesional organization (NSBP). There are two attachments: Findings from the survey of participants of the 14th Annual National Conference of Black Physics Students, and XXVII Day of Scientific Lectures and 23rd Annual Meeting of The National Society of Black Physicists, March 15-18, 2000. The theme of the meeting was 'Physics: The science that shapes the future.'

  5. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    SciTech Connect (OSTI)

    Bromley, Benjamin C.; Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R. E-mail: skenyon@cfa.harvard.edu E-mail: wbrown@cfa.harvard.edu

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  6. Thermodynamics of black holes in (n+1)-dimensional Einstein-Born-Infeld-dilaton gravity

    SciTech Connect (OSTI)

    Sheykhi, A.; Riazi, N.

    2007-01-15

    We construct a new class of (n+1)-dimensional (n{>=}3) black hole solutions in Einstein-Born-Infeld-dilaton gravity with Liouville-type potential for the dilaton field and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black holes, with inner and outer event horizons, an extreme black hole, or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the thermodynamic quantities of the black hole solutions and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis and investigate the effect of dilaton on the stability of the solutions.

  7. Hidden symmetries, null geodesics, and photon capture in the Sen black hole

    SciTech Connect (OSTI)

    Hioki, Kenta; Miyamoto, Umpei

    2008-08-15

    Important classes of null geodesics and hidden symmetries in the Sen black hole are investigated. First, we obtain the principal null geodesics and circular photon orbits. Then, an irreducible rank-two Killing tensor and a conformal Killing tensor are derived, which represent the hidden symmetries. Analyzing the properties of Killing tensors, we clarify why the Hamilton-Jacobi and wave equations are separable in this spacetime. We also investigate the gravitational capture of photons by the Sen black hole and compare the result with those by the various charged/rotating black holes and naked singularities in the Kerr-Newman family. For these black holes and naked singularities, we show the capture regions in a two dimensional impact parameter space (or equivalently the 'shadows' observed at infinity) to form a variety of shapes such as the disk, circle, dot, arc, and their combinations.

  8. Thermodynamics of asymptotically flat charged black holes in third order Lovelock gravity

    SciTech Connect (OSTI)

    Dehghani, M.H.; Shamirzaie, M.

    2005-12-15

    We present a new class of asymptotically flat charge static solutions in third order Lovelock gravity. These solutions present black hole solutions with two inner and outer event horizons, extreme black holes, or naked singularities provided the parameters of the solutions are chosen suitable. We find that the uncharged asymptotically flat solutions can present black holes with two inner and outer horizons. This kind of solution does not exist in Einstein or Gauss-Bonnet gravity, and it is a special effect in third order Lovelock gravity. We compute temperature, entropy, charge, electric potential, and mass of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the determinant of the Hessian matrix of the mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that there exists only an intermediate stable phase.

  9. Causal extraction of black hole rotational energy by various kinds of electromagnetic fields

    SciTech Connect (OSTI)

    Koide, Shinji; Baba, Tamon

    2014-09-10

    Recent general relativistic magnetohydrodynamics (MHD) simulations have suggested that relativistic jets from active galactic nuclei (AGNs) have been powered by the rotational energy of central black holes. Some mechanisms for extraction of black hole rotational energy have been proposed, like the Penrose process, Blandford-Znajek mechanism, MHD Penrose process, and superradiance. The Blandford-Znajek mechanism is the most promising mechanism for the engines of the relativistic jets from AGNs. However, an intuitive interpretation of this mechanism with causality is not yet clarified, while the Penrose process has a clear interpretation for causal energy extraction from a black hole with negative energy. In this paper, we present a formula to build physical intuition so that in the Blandford-Znajek mechanism, as well as in other electromagnetic processes, negative electromagnetic energy plays an important role in causal extraction of the rotational energy of black holes.

  10. Thin-layer black phosphorous/GaAs heterojunction p-n diodes

    SciTech Connect (OSTI)

    Gehring, Pascal; Urcuyo, Roberto; Duong, Dinh Loc; Burghard, Marko; Kern, Klaus

    2015-06-08

    Owing to its high carrier mobility and thickness-tunable direct band gap, black phosphorous emerges as a promising component of optoelectronic devices. Here, we evaluate the device characteristics of p-n heterojunction diodes wherein thin black phosphorous layers are interfaced with an underlying, highly n-doped GaAs substrate. The p-n heterojunctions exhibit close-to-ideal diode behavior at low bias, while under illumination they display a photoresponse that is evenly distributed over the entire junction area, with an external quantum efficiency of up to 10% at zero bias. Moreover, the observed maximum open circuit voltage of 0.6 V is consistent with the band gap estimated for a black phosphorous sheet with a thickness on the order of 10?nm. Further analysis reveals that the device performance is limited by the structural quality of the black phosphorous surface.

  11. Higgs production and decay from TeV scale black holes at the...

    Office of Scientific and Technical Information (OSTI)

    We compare our results with the standard model backgrounds. We find that Higgs production from black holes is dominant over standard model production for psub Tsup H>100 GeV, ...

  12. File:Black.Warrior.Basin usgs.map.pdf | Open Energy Information

    Open Energy Info (EERE)

    usgs.map.pdf Jump to: navigation, search File File history File usage Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Size...

  13. Savannah River National Laboratory Meets with Historically Black Colleges and Universities

    Broader source: Energy.gov [DOE]

    Student and faculty leaders at Historically Black Colleges and Universities (HBCUs) spent the day at the Center for Hydrogen Research at Savannah River National Laboratory, reporting on their work to professional scientists and engineers at the Laboratory.

  14. Superradiance and black hole bomb in five-dimensional minimal ungauged supergravity

    SciTech Connect (OSTI)

    Aliev, Alikram N.

    2014-11-01

    We examine the black hole bomb model which consists of a rotating black hole of five-dimenensional minimal ungauged supergravity and a reflecting mirror around it. For low-frequency scalar perturbations, we find solutions to the Klein-Gordon equation in the near-horizon and far regions of the black hole spacetime. To avoid solutions with logarithmic terms, we assume that the orbital quantum number l takes on nearly, but not exactly, integer values and perform the matching of these solutions in an intermediate region. This allows us to calculate analytically the frequency spectrum of quasinormal modes, taking the limits as l approaches even or odd integers separately. We find that all l modes of scalar perturbations undergo negative damping in the regime of superradiance, resulting in exponential growth of their amplitudes. Thus, the model under consideration would exhibit the superradiant instability, eventually behaving as a black hole bomb in five dimensions.

  15. Black History Month: Former Energy Secretary Broke Barriers and Advanced Clean Energy

    Broader source: Energy.gov [DOE]

    Black History Month celebrates the many vital contributions African Americans have made in America’s history.  Today, we’re highlighting African Americans who have helped advance energy efficiency...

  16. Quasinormal modes, scattering, and Hawking radiation of Kerr-Newman black holes in a magnetic field

    SciTech Connect (OSTI)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2011-01-15

    We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes), transmission/reflection coefficients, and Hawking radiation for a massive charged scalar field in the background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic field. There are two main effects: the Zeeman shift of the particle energy in the magnetic field and the difference of values of an electromagnetic potential between the horizon and infinity, i.e. the Faraday induction. We have shown that 'turning on' the magnetic field induces a stronger energy-emission rate and leads to 'recharging' of the black hole. Thus, a black hole immersed in a magnetic field evaporates much quicker, achieving thereby an extremal state in a shorter period of time. Quasinormal modes are moderately affected by the presence of a magnetic field which is assumed to be relatively small compared to the gravitational field of the black hole.

  17. SUPER-CRITICAL GROWTH OF MASSIVE BLACK HOLES FROM STELLAR-MASS SEEDS

    SciTech Connect (OSTI)

    Madau, Piero; Haardt, Francesco; Dotti, Massimo

    2014-04-01

    We consider super-critical accretion with angular momentum onto stellar-mass black holes as a possible mechanism for growing billion-solar-mass black holes from light seeds at early times. We use the radiatively inefficient ''slim disk'' solutionadvective, optically thick flows that generalize the standard geometrically thin disk modelto show how mildly super-Eddington intermittent accretion may significantly ease the problem of assembling the first massive black holes when the universe was less than 0.8Gyr old. Because of the low radiative efficiencies of slim disks around non-rotating as well as rapidly rotating black holes, the mass e-folding timescale in this regime is nearly independent of the spin parameter. The conditions that may lead to super-critical growth in the early universe are briefly discussed.

  18. AmeriFlux CA-Man Manitoba - Northern Old Black Spruce (former BOREAS Northern Study Area)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Amiro, Brian [University of Manitoba

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Man Manitoba - Northern Old Black Spruce (former BOREAS Northern Study Area). Site Description - 55.880° N, 98.481° W, elevation of 259 m, Boreal coniferous: Black spruce; occasional larch present in poorly-drained areas. Groundcover is moss (feathermosses and Sphagnum), Labrador Tea, Vaccinium, and willows are a main component of the understory. It was established in 1993 as a BOREAS site.

  19. Wet-chemical systems and methods for producing black silicon substrates

    DOE Patents [OSTI]

    Yost, Vernon; Yuan, Hao-Chih; Page, Matthew

    2015-05-19

    A wet-chemical method of producing a black silicon substrate. The method comprising soaking single crystalline silicon wafers in a predetermined volume of a diluted inorganic compound solution. The substrate is combined with an etchant solution that forms a uniform noble metal nanoparticle induced Black Etch of the silicon wafer, resulting in a nanoparticle that is kinetically stabilized. The method comprising combining with an etchant solution having equal volumes acetonitrile/acetic acid:hydrofluoric acid:hydrogen peroxide.

  20. Analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations

    SciTech Connect (OSTI)

    Faraoni, Valerio

    2009-08-15

    The Sultana-Dyer solution of general relativity representing a black hole embedded in a special cosmological background is analyzed. We find an expanding (weak) spacetime singularity instead of the reported conformal Killing horizon, which is covered by an expanding black hole apparent horizon (internal to a cosmological apparent horizon) for most of the history of the Universe. This singularity was naked early on. The global structure of the solution is studied as well.

  1. Energy Department Announces New Technical Review to Assess Black Cells at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford's Waste Treatment Plant | Department of Energy Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant August 2, 2012 - 12:15pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Department of Energy announced today that Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste

  2. HOW IMPORTANT IS THE DARK MATTER HALO FOR BLACK HOLE GROWTH?

    SciTech Connect (OSTI)

    Volonteri, Marta; Gueltekin, Kayhan; Natarajan, Priyamvada

    2011-08-20

    In this paper, we examine whether the properties of central black holes in galactic nuclei correlate with their host dark matter halos. We analyze the entire sample of galaxies where black hole mass, velocity dispersion {sigma}, and asymptotic circular velocity V{sub c} have all been measured. We fit M{sub BH}-{sigma} and M{sub BH}-V{sub c} to a power law, and find that in both relationships the scatter and slope are similar. This model-independent analysis suggests that although the black hole masses are not uniquely determined by dark matter halo mass, when considered for the current sample as a whole, the M{sub BH}-V{sub c} correlation may be as strong (or as weak) as M{sub BH}-{sigma}. Although the data are sparse, there appears to be more scatter in the correlation for both {sigma} and V{sub c} at the low-mass end. This is not unexpected given our current understanding of galaxy and black hole assembly. In fact, there are several compelling reasons that account for this: (1) supermassive black hole (SMBH) formation is likely less efficient in low-mass galaxies with large angular momentum content, (2) SMBH growth is less efficient in low-mass disk galaxies that have not experienced major mergers, and (3) dynamical effects, such as gravitational recoil, increase scatter preferentially at the low-mass end. Therefore, the recent observational claim of the absence of central SMBHs in bulgeless, low-mass galaxies, or deviations from the correlations defined by high-mass black holes in large galaxies today is, in fact, predicated by current models of black hole growth. We show how this arises as a direct consequence of the coupling between dark matter halos and central black holes at the earliest epochs.

  3. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    ScienceCinema (OSTI)

    None

    2011-10-06

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  4. Red & Black Ball raises nearly $82,000 for youth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Red & Black Ball raises $81,000 for youth Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Red & Black Ball raises nearly $82,000 for youth The Family YMCA receives windfall for Española and Los Alamos teen centers. April 4, 2016 From left: LANL Government Affairs Office Director Patrick Woehrle, LANL Community Programs Office Director Kathy Keith, Laboratory Director Charles

  5. COLLOQUIUM: The Observation of Gravitational Waves from a Binary Black Hole

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Merger | Princeton Plasma Physics Lab 29, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: The Observation of Gravitational Waves from a Binary Black Hole Merger Dr. Duncan Brown Syracuse University On September 14, 2015 the the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed gravitational waves from a binary black hole merger. The gravitational waves observed match the waveform predicted by general

  6. T-602: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web Desktop Manager Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    The BlackBerry Web Desktop Manager not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause arbitrary scripting code to be executed by the target user's browser. The code will originate from the site running the BlackBerry Web Desktop Manager software and will run in the security context of that site. As a result, the code will be able to access the target user's cookies (including authentication cookies), if any, associated with the site, access data recently submitted by the target user via web form to the site, or take actions on the site acting as the target user.

  7. Very large radiative transfer over small distances from a black body for thermophotovoltaic applications

    SciTech Connect (OSTI)

    Pan, J.L.; Choy, H.K.H.; Fonstad, C.G. Jr.

    2000-01-01

    The maximum amount of radiated heat intensity which can be transferred from a black body of refractive index n{sub BB} to an object of refractive index n{sub OBJ} located a short distance away is shown to be n{sup 2}{sub smaller} times the free space Planck distribution, where n{sub smaller} is the smaller of n{sub BB} and n{sub OBJ}, and where n{sub BB} and n{sub OBJ} are assumed greater than unity. The implication is that the radiative power spectral density within a thermophotovoltaic cell could be designed to be much greater than the free space Planck distribution. The maximum radiative intensity transferred occurs when the index of the black body matches that of the object at wavelengths where the Planck distribution is sizeable. A simple expression is found for the transferred radiative intensity as a function of the refractive indices of, and the distance separating, the black body and the object. The expression is interpreted in terms of the specific black body modes which are evanescent in the space between the black body and the object and which make the largest contribution to the transmission of radiation. The black body, the object, and the gap region are all modeled as lossless dielectrics.

  8. Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole

    SciTech Connect (OSTI)

    Wei, Shao-Wen; Liu, Yu-Xiao E-mail: liuyx@lzu.edu.cn

    2013-11-01

    In this paper, the shadows cast by Einstein-Maxwell-Dilaton-Axion black hole and naked singularity are studied. The shadow of a rotating black hole is found to be a dark zone covered by a deformed circle. For a fixed value of the spin a, the size of the shadow decreases with the dilaton parameter b. The distortion of the shadow monotonically increases with b and takes its maximal when the black hole approaches to the extremal case. Due to the optical properties, the area of the black hole shadow is supposed to equal to the high-energy absorption cross section. Based on this assumption, the energy emission rate is investigated. For a naked singularity, the shadow has a dark arc and a dark spot or straight, and the corresponding observables are obtained. These results show that there is a significant effect of the spin a and dilaton parameter b on these shadows. Moreover, we examine the observables of the shadow cast by the supermassive black hole at the center of the Milky Way, which is very useful for us to probe the nature of the black hole through the astronomical observations in the near future.

  9. BPS-like bound and thermodynamics of the charged BTZ black hole

    SciTech Connect (OSTI)

    Cadoni, Mariano; Monni, Cristina

    2009-07-15

    The charged Banados-Teitelboim-Zanelli (BTZ) black hole is plagued by several pathologies: (a) Divergent boundary terms are present in the action; hence, we have a divergent black-hole mass. (b) Once a finite, renormalized, mass M is defined, black-hole states exist for arbitrarily negative values of M. (c) There is no upper bound on the charge Q. We show that these pathological features are an artifact of the renormalization procedure. They can be completely removed by using an alternative renormalization scheme leading to a different definition M{sub 0} of the black-hole mass, which is the total energy inside the horizon. The new mass satisfies a BPS-like bound M{sub 0}{>=}({pi}/2)Q{sup 2}, and the heat capacity of the hole is positive. We also discuss the black-hole thermodynamics that arises when M{sub 0} is interpreted as the internal energy of the system. We show, using three independent approaches (black-hole thermodynamics, Einstein equations, and Euclidean action formulation), that M{sub 0} satisfies the first law if a term describing the mechanical work done by the electrostatic pressure is introduced.

  10. Linking the spin evolution of massive black holes to galaxy kinematics

    SciTech Connect (OSTI)

    Sesana, A.; Barausse, E.; Dotti, M.; Rossi, E. M. E-mail: barausse@iap.fr E-mail: emr@strw.leidenuniv.nl

    2014-10-20

    We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e.g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad K? iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

  11. WHAT'S INSIDE THE BLACK BOX - EXPLAINING PERFORMANCE ASSESSMENT TO STAKEHOLDERS

    SciTech Connect (OSTI)

    Seitz, R; Elmer Wilhite, E

    2009-01-06

    The performance assessment (PA) process is being applied to support an increasing variety of waste management decisions that involve the whole spectrum of stakeholders. As with many technical tools, the PA process can be seen as a black box, which can be difficult to understand when implemented. Recognizing the increasing use of PA and the concerns about difficulties with understanding, the Savannah River Site Citizens Advisory Board (CAB) made a recommendation that the U.S. Department of Energy (DOE) provide a Public Educational Forum on PAs. The DOE-Headquarters Environmental Management (DOE-EM) Office of Compliance and the DOE-Savannah River (DOE-SR) responded to this recommendation by supporting the Savannah River National Laboratory (SRNL) in developing several presentation modules that can be used to describe different aspects of the PA process. For the Public Educational Forum, the PA modules were combined with presentations on DOE perspectives, historical modeling efforts at the Savannah River Site, and review perspectives from the U.S. Nuclear Regulatory Commission (NRC). The overall goals are to help the public understand how PAs are implemented and the rigor that is applied, and to provide insight into the use of PAs for waste management decision-making.

  12. First principles study of metal contacts to monolayer black phosphorous

    SciTech Connect (OSTI)

    Chanana, Anuja; Mahapatra, Santanu

    2014-11-28

    Atomically thin layered black phosphorous (BP) has recently appeared as an alternative to the transitional metal dichalcogenides for future channel material in a metal-oxide-semiconductor transistor due to its lower carrier effective mass. Investigation of the electronic property of source/drain contact involving metal and two-dimensional material is essential as it impacts the transistor performance. In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the side-contact formed by the monolayer BP (mBP) and metals (gold, titanium, and palladium), which are commonly used in experiments. Employing the Density Functional Theory, we analyse the potential barrier, charge transfer and atomic orbital overlap at the metal-mBP interface in an optimized structure to understand how efficiently carriers could be injected from metal contact to the mBP channel. Our analysis shows that gold forms a Schottky contact with a higher tunnel barrier at the interface in comparison to the titanium and palladium. mBP contact with palladium is found to be purely Ohmic, where as titanium contact demonstrates an intermediate behaviour.

  13. Black carbon aerosols and the third polar ice cap

    SciTech Connect (OSTI)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  14. The mass of the black hole in LMC X-3

    SciTech Connect (OSTI)

    Orosz, Jerome A.; Steiner, James F.; McClintock, Jeffrey E.; Buxton, Michelle M.; Bailyn, Charles D.; Steeghs, Danny; Guberman, Alec; Torres, Manuel A. P. E-mail: jsteiner@cfa.harvard.edu E-mail: michelle.buxton@yale.edu E-mail: D.T.H.Steeghs@warwick.ac.uk E-mail: M.Torres@sron.nl

    2014-10-20

    We analyze a large set of new and archival photometric and spectroscopic observations of LMC X-3 to arrive at a self-consistent dynamical model for the system. Using echelle spectra obtained with the Magellan Inamori Kyocera Echelle instrument on the 6.5 m Magellan Clay telescope and the UVES instrument on the second 8.2 m Very Large Telescope, we find a velocity semiamplitude for the secondary star of K {sub 2} = 241.1 6.2 km s{sup 1}, where the uncertainty includes an estimate of the systematic error caused by X-ray heating. Using the spectra, we also find a projected rotational velocity of V {sub rot}sin i = 118.5 6.6 km s{sup 1}. From an analysis of archival B and V light curves as well as new B and V light curves from the SMARTS 1.3 m telescope, we find an inclination of i = 69.84 0.37 for models that do not include X-ray heating and an inclination of i = 69.24 0.72 for models that incorporate X-ray heating. Adopting the latter inclination measurement, we find masses of 3.63 0.57 M {sub ?} and 6.98 0.56 M {sub ?} for the companion star and the black hole, respectively. We briefly compare our results with earlier work and discuss some of their implications.

  15. BLINDLY DETECTING MERGING SUPERMASSIVE BLACK HOLES WITH RADIO SURVEYS

    SciTech Connect (OSTI)

    Kaplan, D. L.; O'Shaughnessy, R.; Sesana, A.; Volonteri, M. E-mail: oshaughn@gravity.phys.uwm.edu E-mail: martav@umich.edu

    2011-06-20

    Supermassive black holes (SMBHs) presumably grow through numerous mergers throughout cosmic time. During each merger, SMBH binaries are surrounded by a circumbinary accretion disk that imposes a significant ({approx}10{sup 4} G for a binary of 10{sup 8} M{sub sun}) magnetic field. The motion of the binary through that field will convert the field energy to Poynting flux, with a luminosity {approx}10{sup 43} erg s{sup -1} (B/10{sup 4} G){sup 2}(M/10{sup 8} M{sub sun}){sup 2}, some of which may emerge as synchrotron emission at frequencies near 1 GHz where current and planned wide-field radio surveys will operate. We find that the short timescales of many mergers will limit their detectability with most planned blind surveys to <1 per year over the whole sky, independent of the details of the emission process and flux distribution. Including an optimistic estimate for the radio flux makes detection even less likely, with <0.1 mergers per year over the whole sky. However, wide-field radio instruments may be able to localize systems identified in advance of merger by gravitational waves. Further, radio surveys may be able to detect the weaker emission produced by the binary's motion as it is modulated by spin-orbit precession and inspiral well in advance of merger.

  16. Black Carbon Radiative Forcing over the Tibetan Plateau

    SciTech Connect (OSTI)

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.55.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.74.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  17. Enhanced hardness in epitaxial TiAlScN alloy thin films and rocksalt TiN/(Al,Sc)N superlattices

    SciTech Connect (OSTI)

    Saha, Bivas; Lawrence, Samantha K.; Bahr, David F.; Schroeder, Jeremy L.; Birch, Jens; Sands, Timothy D.

    2014-10-13

    High hardness TiAlN alloys for wear-resistant coatings exhibit limited lifetimes at elevated temperatures due to a cubic-AlN to hexagonal-AlN phase transformation that leads to decreasing hardness. We enhance the hardness (up to 46 GPa) and maximum operating temperature (up to 1050 °C) of TiAlN-based coatings by alloying with scandium nitride to form both an epitaxial TiAlScN alloy film and epitaxial rocksalt TiN/(Al,Sc)N superlattices on MgO substrates. The superlattice hardness increases with decreasing period thickness, which is understood by the Orowan bowing mechanism of the confined layer slip model. These results make them worthy of additional research for industrial coating applications.

  18. The internal disruption as hard Magnetohydrodynamic limit of 1/2 sawtooth like activity in large helical device

    SciTech Connect (OSTI)

    Varela, J.; Watanabe, K. Y.; Ohdachi, S.

    2012-08-15

    Large helical device (LHD) inward-shifted configurations are unstable to resistive MHD pressure-gradient-driven modes. Sawtooth like activity was observed during LHD operation. The main drivers are the unstable modes 1/2 and 1/3 in the middle and inner plasma region which limit the plasma confinement efficiency of LHD advanced operation scenarios. The aim of the present research is to study the hard MHD limit of 1/2 sawtooth like activity, not observed yet in LHD operation, and to predict its effects on the device performance. Previous investigations pointed out this system relaxation can be an internal disruption [J. Varela et al., 'Internal disruptions and sawtooth like activity in LHD,' 38th EPS Conference on Plasma Physics (2011), P5.077]. In the present work, we simulate an internal disruption; we study the equilibria properties before and after the disruptive process, its effects on the plasma confinement efficiency during each disruptive phase, the relation between the n/m = 1/2 hard MHD events and the soft MHD events, and how to avoid or reduce their adverse effects. The simulation conclusions point out that the large stochastic region in the middle plasma strongly deforms and tears the flux surfaces when the pressure gradient increases above the hard MHD limit. If the instability reaches the inner plasma, the iota profiles will be perturbed near the plasma core and three magnetic islands can appear near the magnetic axis. If the instability is strong enough to link the stochastic regions in the middle plasma (around the half minor radius {rho}) and the plasma core ({rho}<0.25), an internal disruption is driven.

  19. Wave functions of the super-Tonks-Girardeau gas and the trapped one-dimensional hard-sphere Bose gas

    SciTech Connect (OSTI)

    Girardeau, M. D.; Astrakharchik, G. E.

    2010-06-15

    Recent theoretical and experimental results demonstrate a close connection between the super-Tonks-Girardeau (STG) gas and a one-dimensional (1D) hard-sphere Bose (HSB) gas with hard-sphere diameter nearly equal to the 1D scattering length a{sub 1D} of the STG gas, a highly excited gaslike state with nodes only at interparticle separations |x{sub jl}|=x{sub node{approx_equal}}a{sub 1D}. It is shown herein that when the coupling constant g{sub B} in the Lieb-Liniger interaction g{sub B{delta}}(x{sub jl}) is negative and |x{sub 12}|{>=}x{sub node}, the STG and HSB wave functions for N=2 particles are not merely similar, but identical; the only difference between the STG and HSB wave functions is that the STG wave function allows a small penetration into the region |x{sub 12}|hard-sphere diameter a{sub hs}=x{sub node}, the HSB wave function vanishes when |x{sub 12}|2. The STG and HSB wave functions for N=2 are given exactly in terms of a parabolic cylinder function, and for N{>=}2, x{sub node} is given accurately by a simple parabola. The metastability of the STG phase generated by a sudden change of the coupling constant from large positive to large negative values is explained in terms of the very small overlap between the ground state of the Tonks-Girardeau gas and collapsed cluster states.

  20. Nonlinear delayed symmetry breaking in a solid excited by hard x-ray free electron laser pulses

    SciTech Connect (OSTI)

    Ferrer, A.; Johnson, J. A. Mariager, S. O.; Grbel, S.; Staub, U.; Huber, T.; Trant, M.; Johnson, S. L.; Zhu, D.; Chollet, M.; Robinson, J.; Lemke, H. T.; Ingold, G.; Beaud, P.; Milne, C.

    2015-04-13

    We have studied the ultrafast changes of electronic states in bulk ZnO upon intense hard x-ray excitation from a free electron laser. By monitoring the transient anisotropy induced in an optical probe beam, we observe a delayed breaking of the initial c-plane symmetry of the crystal that lasts for several picoseconds. Interaction with the intense x-ray pulses modifies the electronic state filling in a manner inconsistent with a simple increase in electronic temperature. These results may indicate a way to use intense ultrashort x-ray pulses to investigate high-energy carrier dynamics and to control certain properties of solid-state materials.

  1. Inverse Compton Origin of the Hard X-ray and Soft gamma-ray Emission from the Galactic Ridge

    SciTech Connect (OSTI)

    Porter, Troy A.; Moskalenko, Igor V.; Strong, Andrew W.; Orlando, Elena; Bouchet, Laurent

    2008-09-30

    A recent re-determination of the non-thermal component of the hard X-ray to soft {gamma}-ray emission from the Galactic ridge, using the SPI instrument on the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) Observatory, is shown to be well reproduced as inverse-Compton emission from the interstellar medium. Both cosmic-ray primary electrons and secondary electrons and positrons contribute to the emission. The prediction uses the GALPROP model and includes a new calculation of the interstellar radiation field. This may solve a long-standing mystery of the origin of this emission, and potentially opens a new window on Galactic cosmic rays.

  2. Spectrum of relativistic radiation from electric charges and dipoles as they fall freely into a black hole

    SciTech Connect (OSTI)

    Shatskiy, A. A. Novikov, I. D.; Lipatova, L. N.

    2013-06-15

    The motion of electric charges and dipoles falling radially and freely into a Schwarzschild black hole is considered. The inverse effect of the electromagnetic fields on the black hole is neglected. Since the dipole is assumed to be a point particle, the deformation due to the action of tidal forces on it is neglected. According to the theorem stating that 'black holes have no hair', the multipole electromagnetic fields should be completely radiated as a multipole falls into a black hole. The electromagnetic radiation power spectrum for these multipoles (a monopole and a dipole) has been found. Differences have been found in the spectra for different orientations of the falling dipole. A general method has been developed to find the radiated multipole electromagnetic fields for multipoles (including higher-order multipoles-quadrupoles, etc.) falling freely into a black hole. The calculated electromagnetic spectra can be compared with observational data from stellar-mass and smaller black holes.

  3. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    SciTech Connect (OSTI)

    Contescu, Cristian I

    2006-01-01

    This report supports the effort for development of small scale fabrication of UCO (a mixture of UO{sub 2} and UC{sub 2}) fuel kernels for the generation IV high temperature gas reactor program. In particular, it is focused on optimization of dispersion conditions of carbon black in the broths from which carbon-containing (UO{sub 2} {center_dot} H{sub 2}O + C) gel spheres are prepared by internal gelation. The broth results from mixing a hexamethylenetetramine (HMTA) and urea solution with an acid-deficient uranyl nitrate (ADUN) solution. Carbon black, which is previously added to one or other of the components, must stay dispersed during gelation. The report provides a detailed description of characterization efforts and results, aimed at identification and testing carbon black and surfactant combinations that would produce stable dispersions, with carbon particle sizes below 1 {micro}m, in aqueous HMTA/urea and ADUN solutions. A battery of characterization methods was used to identify the properties affecting the water dispersability of carbon blacks, such as surface area, aggregate morphology, volatile content, and, most importantly, surface chemistry. The report introduces the basic principles for each physical or chemical method of carbon black characterization, lists the results obtained, and underlines cross-correlations between methods. Particular attention is given to a newly developed method for characterization of surface chemical groups on carbons in terms of their acid-base properties (pK{sub a} spectra) based on potentiometric titration. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the identity of surfactants, both ionic and non-ionic. In addition, background information on carbon black properties and the mechanism by which surfactants disperse carbon black in water is also provided. A list of main physical and chemical properties characterized, samples analyzed, and results obtained, as well as information on the desired trend or

  4. Linearity of Climate Response to Increases in Black Carbon Aerosols

    SciTech Connect (OSTI)

    Mahajan, Salil; Evans, Katherine J.; Hack, James J.; Truesdale, John

    2013-04-19

    The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $ W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $ W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $W^{-1}m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $ PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

  5. Phase stability, mechanical properties, hardness, and possible reactive routing of chromium triboride from first-principle investigations

    SciTech Connect (OSTI)

    Zhong, Ming-Min; Kuang, Xiao-Yu Wang, Zhen-Hua; Shao, Peng; Ding, Li-Ping; Huang, Xiao-Fen

    2013-12-21

    The first-principles calculations are employed to provide a fundamental understanding of the structural features and relative stability, mechanical and electronic properties, and possible reactive route for chromium triboride. The predicted new phase of CrB{sub 3} belongs to the rhombohedral phase with R-3m symmetry and it transforms into a hexagonal phase with P-6m2 symmetry at 64 GPa. The mechanical and thermodynamic stabilities of CrB{sub 3} are verified by the calculated elastic constants and formation enthalpies. Also, the full phonon dispersion calculations confirm the dynamic stability of predicted CrB{sub 3}. Considering the role of metallic contributions, the calculated hardness values from our semiempirical method for rhombohedral and hexagonal phases are 23.8 GPa and 22.1 GPa, respectively. In addition, the large shear moduli, Young's moduli, low Poisson's ratios, and small B/G ratios indicate that they are potential hard materials. Relative enthalpy calculations with respect to possible constituents are also investigated to assess the prospects for phase formation and an attempt at high-pressure synthesis is suggested to obtain chromium triboride.

  6. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; et al

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  7. HARD X-RAY LAGS IN ACTIVE GALACTIC NUCLEI: TESTING THE DISTANT REVERBERATION HYPOTHESIS WITH NGC 6814

    SciTech Connect (OSTI)

    Walton, D. J.; Harrison, F. A.; Zoghbi, A.; Reynolds, C. S.; Cackett, E. M.; Uttley, P.; Fabian, A. C.; Kara, E.; Miller, J. M.; Reis, R. C.

    2013-11-10

    We present an X-ray spectral and temporal analysis of the variable active galaxy NGC 6814, observed with Suzaku during 2011 November. Remarkably, the X-ray spectrum shows no evidence for the soft excess commonly observed amongst other active galaxies, despite its relatively low level of obscuration, and is dominated across the whole Suzaku bandpass by the intrinsic powerlaw-like continuum. Despite this, we clearly detect the presence of a low-frequency hard lag of ∼1600 s between the 0.5-2.0 and 2.0-5.0 keV energy bands at greater than 6σ significance, similar to those reported in the literature for a variety of other active galactic nuclei (AGNs). At these energies, any additional emission from, e.g., a very weak, undetected soft excess, or from distant reflection must contribute less than 3% of the observed countrates (at 90% confidence). Given the lack of any significant continuum emission component other than the powerlaw, we can rule out models that invoke distant reprocessing for the observed lag behavior, which must instead be associated with this continuum emission. These results are fully consistent with a propagating fluctuation origin for the low-frequency hard lags, and with the interpretation of the high-frequency soft lags—a common feature seen in the highest quality AGN data with strong soft excesses—as reverberation from the inner accretion disk.

  8. U-012: BlackBerry Enterprise Server Collaboration Service Bug Lets Remote Users Impersonate Intra-organization Messages

    Office of Energy Efficiency and Renewable Energy (EERE)

    A vulnerability was reported in BlackBerry Enterprise Server. A remote user can impersonate another messaging user within the same organization.

  9. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  10. THE ANGULAR MOMENTA OF NEUTRON STARS AND BLACK HOLES AS A WINDOW ON SUPERNOVAE

    SciTech Connect (OSTI)

    Miller, J. M.; Miller, M. C.; Reynolds, C. S.

    2011-04-10

    It is now clear that a subset of supernovae displays evidence for jets and is observed as gamma-ray bursts (GRBs). The angular momentum distribution of massive stellar endpoints provides a rare means of constraining the nature of the central engine in core-collapse explosions. Unlike supermassive black holes, the spin of stellar-mass black holes in X-ray binary systems is little affected by accretion and accurately reflects the spin set at birth. A modest number of stellar-mass black hole angular momenta have now been measured using two independent X-ray spectroscopic techniques. In contrast, rotation-powered pulsars spin down over time, via magnetic braking, but a modest number of natal spin periods have now been estimated. For both canonical and extreme neutron star parameters, statistical tests strongly suggest that the angular momentum distributions of black holes and neutron stars are markedly different. Within the context of prevalent models for core-collapse supernovae, the angular momentum distributions are consistent with black holes typically being produced in GRB-like supernovae with jets and with neutron stars typically being produced in supernovae with too little angular momentum to produce jets via magnetohydrodynamic processes. It is possible that neutron stars are with high spin initially and rapidly spun down shortly after the supernova event, but the available mechanisms may be inconsistent with some observed pulsar properties.

  11. Reservoir heterogeneity in carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-06-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  12. Transition from adiabatic inspiral to plunge into a spinning black hole

    SciTech Connect (OSTI)

    Kesden, Michael

    2011-05-15

    A test particle of mass {mu} on a bound geodesic of a Kerr black hole of mass M>>{mu} will slowly inspiral as gravitational radiation extracts energy and angular momentum from its orbit. This inspiral can be considered adiabatic when the orbital period is much shorter than the time scale on which energy is radiated, and quasicircular when the radial velocity is much less than the azimuthal velocity. Although the inspiral always remains adiabatic provided {mu}<black hole's spin changes following a test-particle merger, and can be extrapolated to help predict the mass and spin of the final black hole produced in finite-mass-ratio black-hole mergers. Our new contribution is particularly important for nearly maximally spinning black holes, as it can affect whether a merger produces a naked singularity.

  13. Evaluation of Black Carbon Estimations in Global Aerosol Models

    SciTech Connect (OSTI)

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the

  14. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    SciTech Connect (OSTI)

    Adriaan van Heiningen

    2007-06-30

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and agglomeration problems of

  15. Noether charges and black hole mechanics in Einstein-aether theory

    SciTech Connect (OSTI)

    Foster, Brendan Z.

    2006-01-15

    The Noether charge method for defining the Hamiltonian of a diffeomorphism-invariant field theory is applied to 'Einstein-aether' theory, in which gravity couples to a dynamical, timelike, unit-norm vector field. Using the method, expressions are obtained for the total energy, momentum, and angular momentum of an Einstein-aether space-time. The method is also used to discuss the mechanics of Einstein-aether black holes. The derivation of Wald, and Iyer and Wald, of the first law of black hole thermodynamics fails for this theory because the unit-vector is necessarily singular at the bifurcation surface of the Killing horizon. A general identity relating variations of energy and angular momentum to a surface integral at the horizon is obtained, but a thermodynamic interpretation, including a definitive expression for the black hole entropy, is not found.

  16. Uniqueness theorem for Kaluza-Klein black holes in five-dimensional minimal supergravity

    SciTech Connect (OSTI)

    Tomizawa, Shinya

    2010-11-15

    We show a uniqueness theorem for Kaluza-Klein black holes in the bosonic sector of five-dimensional minimal supergravity. More precisely, under the assumptions of the existence of two commuting axial isometries and a nondegenerate connected event horizon of the cross-section topology S{sup 3}, or lens space, we prove that a stationary charged rotating Kaluza-Klein black hole in five-dimensional minimal supergravity is uniquely characterized by its mass, two independent angular momenta, electric charge, magnetic flux, and nut charge, provided that there exists neither a nut nor a bolt (a bubble) in the domain of outer communication. We also show that under the assumptions of the same symmetry, same asymptotics, and the horizon cross section of S{sup 1}xS{sup 2}, a black ring within the same theory--if it exists--is uniquely determined by its dipole charge and rod intervals besides the charges and magnetic flux.

  17. Inflation Induced Planck-Size Black Hole Remnants as Dark Matter

    SciTech Connect (OSTI)

    Chen, P

    2004-07-06

    While there exist various candidates, the identification of dark matter remains unresolved. Recently it was argued that the generalized uncertainty principle (GUP) may prevent a black hole from evaporating completely, and as a result there should exist a Planck-size BHR at the end of its evaporation. We speculate that the stability of BHR may be further protected by supersymmetry in the form of extremal black hole. If this is indeed the case and if a sufficient amount of small black holes can be produced in the early universe, then the resultant BHRs can be an interesting candidate for DM. We demonstrate that this is the case in the hybrid inflation model. By assuming BHR as DM, our notion imposes a constraint on the hybrid inflation potential. We show that such a constraint is not fine-tuned. Possible observational signatures are briefly discussed.

  18. Gravitational waves from the collision of tidally disrupted stars with massive black holes

    SciTech Connect (OSTI)

    East, William E.

    2014-11-10

    We use simulations of hydrodynamics coupled with full general relativity to investigate the gravitational waves produced by a star colliding with a massive black hole when the star's tidal disruption radius lies far outside of the black hole horizon. We consider both main-sequence and white-dwarf compaction stars, and nonspinning black holes, as well as those with near-extremal spin. We study the regime in between where the star can be accurately modeled by a point particle, and where tidal effects completely suppress the gravitational wave signal. We find that nonnegligible gravitational waves can be produced even when the star is strongly affected by tidal forces, as well as when it collides with large angular momentum. We discuss the implications that these results have for the potential observation of gravitational waves from these sources with future detectors.

  19. Violation of the first law of black hole thermodynamics in f(T) gravity

    SciTech Connect (OSTI)

    Miao, Rong-Xin; Li, Miao; Miao, Yan-Gang E-mail: mli@itp.ac.cn

    2011-11-01

    We prove that, in general, the first law of black hole thermodynamics, ?Q = T?S, is violated in f(T) gravity. As a result, it is possible that there exists entropy production, which implies that the black hole thermodynamics can be in non-equilibrium even in the static spacetime. This feature is very different from that of f(R) or that of other higher derivative gravity theories. We find that the violation of first law results from the lack of local Lorentz invariance in f(T) gravity. By investigating two examples, we note that f''(0) should be negative in order to avoid the naked singularities and superluminal motion of light. When f''(T) is small, the entropy of black holes in f(T) gravity is approximatively equal to f'(T)/4 A.

  20. The Equations of Motion of Compact Binaries in the Neighborhood of Supermassive Black Hole

    SciTech Connect (OSTI)

    Gorbatsievich, Alexander; Bobrik, Alexey

    2010-03-24

    By the use of Einstein-Infeld-Hoffmann method, the equations of motion of a binary star system in the field of a supermassive black hole are derived. In spite of the fact that the motion of a binary system as a whole can be relativistic or even ultra-relativistic with respect to the supermassive black hole, it is shown, that under the assumption of non-relativistic relative motion of the stars in binary system, the motion of the binary system as a whole satisfies the Mathisson-Papapetrou equations with additional terms depending on quadrupole moments. Exemplary case of ultrarelativistic motion of a binary neutron star in the vicinity of non-rotating black hole is considered. It it shown that the motion of binary's center of mass may considerably differ from geodesic motion.

  1. Stable and 'bounded excursion' gravastars, and black holes in Einstein's theory of gravity

    SciTech Connect (OSTI)

    Rocha, P; Da Silva, M F A; Wang, Anzhong; Chan, R E-mail: chan@on.br E-mail: anzhong_wang@baylor.edu

    2008-11-15

    Dynamical models of prototype gravastars are constructed and studied. The models are the Visser-Wiltshire three-layer gravastars, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p = (1-{gamma}){sigma} divides the whole spacetime into two regions, where the internal region is de Sitter, and the external one is Schwarzschild. When {gamma}<1 and {Lambda}{ne}0, it is found that in some cases the models represent stable gravastars, and in some cases they represent 'bounded excursion' stable gravastars, where the thin shell is oscillating between two finite radii, while in some other cases they collapse until the formation of black holes occurs. However, when {gamma}{>=}1, even with {Lambda}{ne}0, only black holes are found. In the phase space, the region for both stable gravastars and 'bounded excursion' gravastars is very small in comparison to that for black holes, although it is not completely empty.

  2. SPIN-PRECESSION: BREAKING THE BLACK HOLE-NEUTRON STAR DEGENERACY

    SciTech Connect (OSTI)

    Chatziioannou, Katerina; Cornish, Neil; Klein, Antoine; Yunes, Nicols

    2015-01-01

    Mergers of compact stellar remnants are prime targets for the LIGO/Virgo gravitational wave detectors. The gravitational wave signals from these merger events can be used to study the mass and spin distribution of stellar remnants, and provide information about black hole horizons and the material properties of neutron stars. However, it has been suggested that degeneracies in the way that the star's mass and spin are imprinted in the waveforms may make it impossible to distinguish between black holes and neutron stars. Here we show that the precession of the orbital plane due to spin-orbit coupling breaks the mass-spin degeneracy, and allows us to distinguish between standard neutron stars and alternative possibilities, such as black holes or exotic neutron stars with large masses and spins.

  3. A population of relic intermediate-mass black holes in the halo of the Milky Way

    SciTech Connect (OSTI)

    Rashkov, Valery; Madau, Piero

    2014-01-10

    If 'seed' central black holes were common in the subgalactic building blocks that merged to form present-day massive galaxies, then relic intermediate-mass black holes (IMBHs) should be present in the Galactic bulge and halo. We use a particle tagging technique to dynamically populate the N-body Via Lactea II high-resolution simulation with black holes, and assess the size, properties, and detectability of the leftover population. The method assigns a black hole to the most tightly bound central particle of each subhalo at infall according to an extrapolation of the M {sub BH}-?{sub *} relation, and self-consistently follows the accretion and disruption of Milky Way progenitor dwarfs and their holes in a cosmological 'live' host from high redshift to today. We show that, depending on the minimum stellar velocity dispersion, ? {sub m}, below which central black holes are assumed to be increasingly rare, as many as ?2000 (? {sub m} = 3 km s{sup 1}) or as few as ?70 (? {sub m} = 12 km s{sup 1}) IMBHs may be left wandering in the halo of the Milky Way today. The fraction of IMBHs forced from their hosts by gravitational recoil is ? 20%. We identify two main Galactic subpopulations, 'naked' IMBHs, whose host subhalos were totally destroyed after infall, and 'clothed' IMBHs residing in dark matter satellites that survived tidal stripping. Naked IMBHs typically constitute 40%-50% of the total and are more centrally concentrated. We show that, in the ? {sub m} = 12 km s{sup 1} scenario, the clusters of tightly bound stars that should accompany naked IMBHs would be fainter than m{sub V} = 16 mag, spatially resolvable, and have proper motions of 0.1-10 mas yr{sup 1}. Their detection may provide an observational tool to constrain the formation history of massive black holes in the early universe.

  4. A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum

    SciTech Connect (OSTI)

    Yu Da; Liang Jiangguo; Yu Haining; Wu Haifeng; Xu Chunhua; Liu Jingze . E-mail: jzliu21@heinfo.net; Lai Ren . E-mail: rlai72@njau.edu.cn

    2006-05-05

    Some studies done to date suggest that B-cell inhibitory factor occurred in tick saliva. In this study, a novel protein having B-cell inhibitory activity was purified and characterized from the salivary glands of the hard tick, Hyalomma asiaticum asiaticum. This protein was named B-cell inhibitory factor (BIF). The cDNA encoding BIF was cloned by cDNA library screening. The predicted protein from the cDNA sequence is composed of 138 amino acids including the mature BIF. No similarity was found by Blast search. The lipopolysaccharide-induced B-cell proliferation was inhibited by BIF. This is First report of the identification and characterization of B-cell inhibitory protein from tick. The current study facilitates the study of identifying the interaction among tick, Borrelia burgdorferi, the causative agent of Lyme disease, and host.

  5. Instabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulations

    SciTech Connect (OSTI)

    Rebhan, Anton; Attems, Maximilian; Strickland, Michael

    2008-08-15

    Non-Abelian plasma instabilities play a crucial role in the nonequilibrium dynamics of a weakly coupled quark-gluon plasma, and they importantly modify the standard perturbative bottom-up thermalization scenario in heavy-ion collisions. Using the auxiliary-field formulation of the hard-loop effective theory, we study numerically the real-time evolution of instabilities in an anisotropic collisionless Yang-Mills plasma undergoing longitudinal free-streaming expansion. In this first real-time lattice simulation we consider the most unstable modes, long-wavelength coherent color fields that are constant in transverse directions and which therefore are effectively 1+1 dimensional in space-time, except for the auxiliary fields which also depend on discretized momentum rapidity and transverse velocity components. We reproduce the semianalytical results obtained previously for the Abelian regime, and we determine the nonlinear effects which occur when the instabilities have grown such that non-Abelian interactions become important.

  6. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    SciTech Connect (OSTI)

    Lar'kin, A. Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-15

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  7. SWIFT/BAT DETECTION OF HARD X-RAYS FROM TYCHO'S SUPERNOVA REMNANT: EVIDENCE FOR TITANIUM-44

    SciTech Connect (OSTI)

    Troja, E.; Baumgartner, W.; Markwardt, C.; Barthelmy, S.; Gehrels, N.; Segreto, A.; La Parola, V.; Cusumano, G.; Hartmann, D.

    2014-12-10

    We report Swift/Burst Alert Telescope survey observations of the Tycho's supernova remnant, performed over a period of 104 months since the mission's launch. The remnant is detected with high significance (>10σ) below 50 keV. We detect significant hard X-ray emission in the 60-85 keV band, above the continuum level predicted by a simple synchrotron model. The location of the observed excess is consistent with line emission from radioactive titanium-44, so far reported only for Type II supernova explosions. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type Ia supernova.

  8. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gleber, Sophie -Charlotte; Wojcik, Michael; Liu, Jie; Roehrig, Chris; Cummings, Marvin; Vila-Comamala, Joan; Li, Kenan; Lai, Barry; Shu, Deming; Vogt, Stefan

    2014-11-05

    Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies formorehigh resolution focusing at three different energies, 10, 11.8, and 25 keV.less

  9. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging

    SciTech Connect (OSTI)

    Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun; Gao, Peng; Ding, Qi; Yu, Young-Sang; Wang, Feng; Cabana, Jordi; Wang, Jun; Jin, Song

    2015-04-20

    In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge and charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.

  10. Annealing dependence of diamond-metal Schottky barrier heights probed by hard x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Gaowei, M.; Muller, E. M.; Rumaiz, A. K.; Weiland, C.; Cockayne, E.; Woicik, J. C.; Jordan-Sweet, J.; Smedley, J.

    2012-05-14

    Hard x-ray photoelectron spectroscopy was applied to investigate the diamond-metal Schottky barrier heights for several metals and diamond surface terminations. The position of the diamond valence-band maximum was determined by theoretically calculating the diamond density of states and applying cross section corrections. The diamond-platinum Schottky barrier height was lowered by 0.2 eV after thermal annealing, indicating annealing may increase carrier injection in diamond devices leading to photoconductive gain. The platinum contacts on oxygen-terminated diamond was found to provide a higher Schottky barrier and therefore a better blocking contact than that of the silver contact in diamond-based electronic devices.

  11. Electronic structure of Al- and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Gabás, M.; Ramos Barrado, José R.; Torelli, P.; Barrett, N. T.

    2014-01-01

    Al- and Ga-doped sputtered ZnO films (AZO, GZO) are semiconducting and metallic, respectively, despite the same electronic valence structure of the dopants. Using hard X-ray photoelectron spectroscopy we observe that both dopants induce a band in the electronic structure near the Fermi level, accompanied by a narrowing of the Zn 3d/O 2p gap in the valence band and, in the case of GZO, a substantial shift in the Zn 3d. Ga occupies substitutional sites, whereas Al dopants are in both substitutional and interstitial sites. The latter could induce O and Zn defects, which act as acceptors explaining the semiconducting character of AZO and the lack of variation in the optical gap. By contrast, mainly substitutional doping is consistent with the metallic-like behavior of GZO.

  12. Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity

    SciTech Connect (OSTI)

    Setare, M. R.; Kamali, V.

    2010-10-15

    In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.

  13. Comparative results of the combustion of lignin briquettes and black coal

    SciTech Connect (OSTI)

    V.G. Lurii

    2008-12-15

    A new type of biofuel - hydrolytic lignin briquettes - was tested as compared with ordinary SS coal from the Kuznetsk Basin in fuel-bed firing in a Universal-6 boiler. It was found that the (total) efficiency of the boiler with the firing of lignin briquettes was 38% higher than that with the use of black coal. Carbon loss in the combustion of briquettes was 1%, whereas it was 48.2% in the combustion of black coal. The emission of harmful gas pollutants into the environment in the combustion of briquettes was lower than that in the combustion of coal by a factor of 4.5.

  14. In Celebration of Black History Month, Energy Secretary Moniz and Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the National Museum of African Art Dr. Cole Discuss the Art of Science | Department of Energy In Celebration of Black History Month, Energy Secretary Moniz and Director of the National Museum of African Art Dr. Cole Discuss the Art of Science In Celebration of Black History Month, Energy Secretary Moniz and Director of the National Museum of African Art Dr. Cole Discuss the Art of Science February 23, 2015 - 1:50am Addthis News Media Contact 202 586 4940 RSVP@hq.doe.gov In Celebration of

  15. Are You Planning to Buy Energy-Efficient Products on Black Friday? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Are You Planning to Buy Energy-Efficient Products on Black Friday? Are You Planning to Buy Energy-Efficient Products on Black Friday? November 23, 2011 - 5:09am Addthis This week, Chris gave us some great information on shopping for energy-efficient products. He reminded us that the cost to run appliances and home office and electronics is just as important as the purchase price, and posted a new Energy Savers graphic that shows you how to read the EnergyGuide and Energy

  16. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    SciTech Connect (OSTI)

    Fricke, A.L.; Zaman, A.A.

    1998-05-01

    The overall objective of the program was to develop correlations to predict physical properties within requirements of engineering precision from a knowledge of pulping conditions and of kraft black liquor composition, if possible. These correlations were to include those relating thermodynamic properties to pulping conditions and liquor composition. The basic premise upon which the research was based is the premise that black liquor behaves as a polymer solution. This premise has proven to be true, and has been used successfully in developing data reduction methods and in interpreting results. A three phase effort involving pulping, analysis of liquor composition, and measurement of liquor properties was conducted.

  17. Turbulent pitch-angle scattering and diffusive transport of hard X-ray-producing electrons in flaring coronal loops

    SciTech Connect (OSTI)

    Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole E-mail: emslieg@wku.edu

    2014-01-10

    Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path ? associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that ? ? (10{sup 8}-10{sup 9}) cm for ?30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.

  18. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment

    SciTech Connect (OSTI)

    Bond, Tami C.; Doherty, Sarah J.; Fahey, D. W.; Forster, Piers; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, Steven J.; Karcher, B.; Koch, Dorothy; Kinne, Stefan; Kondo, Yutaka; Quinn, P. K.; Sarofim, Marcus; Schultz, Martin; Schulz, M.; Venkataraman, C.; Zhang, Hua; Zhang, Shiqiu; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, Joshua P.; Shindell, Drew; Storelvmo, Trude; Warren, Stephen G.; Zender, C. S.

    2013-06-06

    Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. Predominant sources are combustion related; namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption, influence on liquid, mixed-phase, and ice clouds, and deposition on snow and ice. These effects are calculated with models, but when possible, they are evaluated with both microphysical measurements and field observations. Global atmospheric absorption attributable to black carbon is too low in many models, and should be increased by about about 60%. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of black carbon is +0.43 W m-2 with 90% uncertainty bounds of (+0.17, +0.68) W m-2. Total direct forcing by all black carbon sources in the present day is estimated as +0.49 (+0.20, +0.76) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings and their rapid responses and feedbacks. The best estimate of industrial-era (1750 to 2005) climate forcing of black carbon through all forcing mechanisms is +0.77 W m-2 with 90% uncertainty bounds of +-0.06 to +1.53 W m-2. Thus, there is a 96% probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. With a value of +0.77 W m-2, black carbon is likely the second

  19. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    SciTech Connect (OSTI)

    Malik, Hitendra K.; Singh, Omveer; Dahiya, Raj P.

    2015-08-28

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  20. Overspinning a nearly extreme black hole and the weak cosmic censorship conjecture

    SciTech Connect (OSTI)

    Richartz, Mauricio; Saa, Alberto

    2008-10-15

    We revisit here the recent proposal for overspinning a nearly extreme black hole by means of a quantum tunneling process. We show that electrically neutral massless fermions evade possible backreaction effects related to superradiance, confirming the view that it would be indeed possible to form a naked singularity due to quantum effects.