Sample records for haps hazardous air

  1. HAPs-Rx: Precombustion Removal of Hazardous Air Pollutant Precursors

    SciTech Connect (OSTI)

    David J. Akers; Clifford E. Raleigh

    1998-03-16T23:59:59.000Z

    CQ Inc. and its project team members--Howard University, PrepTech Inc., Fossil Fuel Sciences, the United States Geological Survey (USGS), and industry advisors--are applying mature coal cleaning and scientific principles to the new purpose of removing potentially hazardous air pollutants from coal. The team uniquely combines mineral processing, chemical engineering, and geochemical expertise. This project meets more than 11 goals of the U.S. Department of Energy (DOE), the National Energy Strategy, and the 1993 Climate Change Action Plan. During this project: (1) Equations were developed to predict the concentration of trace elements in as-mined and cleaned coals. These equations, which address both conventional and advanced cleaning processes, can be used to increase the removal of hazardous air pollutant precursors (HAPs) by existing cleaning plants and to improve the design of new cleaning plants. (2) A promising chemical method of removing mercury and other HAPs was developed. At bench-scale, mercury reductions of over 50 percent were achieved on coal that had already been cleaned by froth flotation. The processing cost of this technology is projected to be less than $3.00 per ton ($3.30 per tonne). (3) Projections were made of the average trace element concentration in cleaning plant solid waste streams from individual states. Average concentrations were found to be highly variable. (4) A significantly improved understanding of how trace elements occur in coal was gained, primarily through work at the USGS during the first systematic development of semiquantitative data for mode of occurrence. In addition, significant improvement was made in the laboratory protocol for mode of occurrence determination. (5) Team members developed a high-quality trace element washability database. For example, the poorest mass balance closure for the uncrushed size and washability data for mercury on all four coals is 8.44 percent and the best is 0.46 percent. This indicates an extremely high level of reproducibility of the data. In addition, a series of ''round-robin'' tests involving various laboratories was performed to assure analytical accuracy. (6) A comparison of the cost of lowering mercury emissions through the use of coal cleaning technologies versus the use of post-combustion control methods such as activated carbon injection indicates that, in many cases, coal cleaning may prove to be the lower-cost option. The most significant disadvantage for using coal cleaning for control of mercury emissions is that a reduction of 90 percent or greater from as-fired coal has not yet been demonstrated, even at laboratory-scale.

  2. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31T23:59:59.000Z

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  3. {open_quotes}Methods for the determination of the Clean Air Act Title III metallic HAPS in coal

    SciTech Connect (OSTI)

    Snider, J. [Standard Laboratories, Inc., Evansville, IN (United States)

    1995-08-01T23:59:59.000Z

    The Clean Air Act was amended in 1990 and additional requirements were added to Title III {open_quotes}Air Toxics.{close_quotes} Title III identified one hundred eighty-nine hazardous air pollutants (HAPS) and Congress directed the EPA to study the effects of emissions of these HAPS on public health and the environment. EPA is to report to Congress in the fall of 1995 concerning their findings and make recommendations regarding fossil fuel fired combustion units. The outcome of the EPA recommendations will be of great interest to coal producers and users. Of the one hundred eighty-nine listed HAPS, eleven are trace metals found in coal. The producers and users may be required to analyze coal for these HAPS, to determine if selective mining and/or beneficiation can lower their occurrence, to determine their fate in the combustion process, etc. Indeed many coal companies have begun to study their reserves to aid the EPA investigation. Currently there are no EPA promulgated test methodologies for these elements in coal. Moreover, the American Society for Testing Materials (ASTM) does not provide standards for the analyses of all of the eleven HAPS either. In view of this lack of standardized analytical protocols the commercial laboratory is left with finding the best methods for meeting these analytical needs. This paper describes how Standard Laboratories, Inc. as a whole and particularly its Environmental Laboratory Division has met this need.

  4. HAPs, Micromaps and GPL Visualization of Geographically Referenced Statistical Summaries on the World Wide Web

    E-Print Network [OSTI]

    Symanzik, Jürgen

    ) hazardous air pollutant (HAP) data on the World Wide Web (WWW). Long­term cumulative concentrations for 148.S. Environmental Protection Agency (EPA) hazardous air pollutant (HAP ­ also called air toxics) data on the World concentration estimates of 148 air toxics for every census tract in the continental United States. Air toxics

  5. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01T23:59:59.000Z

    Health Hazards in Indoor Air. In Proceedings of the 2010for VOCs from post-1990 indoor air concentration studies inUnion project on indoor air pollutants. Allergy, 2008. 63(

  6. Abatement of Air Pollution: Hazardous Air Pollutants (Connecticut...

    Broader source: Energy.gov (indexed) [DOE]

    allowable stack concentrations and hazard limiting values for the emission of hazardous air pollutants. The regulations also discuss sampling procedures for hazardous air...

  7. Applicability issues and compliance strategies for the proposed oil and gas industry hazardous air pollutant standards

    SciTech Connect (OSTI)

    Tandon, N.; Winborn, K.A.; Grygar, W.W. II

    1999-07-01T23:59:59.000Z

    The US Environmental Protection Agency (US EPA) has targeted oil and natural gas transmission and storage facilities located across the United States for regulation under the National Emission Standards for Hazardous Air Pollutants (NESHAP) program (proposed in Title 40, Code of Federal Regulations, Part 63 [40 CFR 63], Subparts HH and HHH). The proposed NESHAP were published in the February 6, 1998 Federal Register and are expected to be promulgated in May 1999. These rules are intended to reduce Hazardous Air Pollutants (HAP) emitted from oil and gas facilities. It is expected that these rules will require more than 400 major sources and more than 500 non-major sources (also referred to as area sources) to meet maximum achievable control technology (MACT) standards defined in the NESHAP. The rules would regulate HAP emission from glycol dehydration units, storage vessels and various fugitive leak sources. This technical paper addresses the applicability issues and compliance strategies related to the proposed NESHAP. The applicability criteria for both rules differ from those promulgated for other source categories under 40 CFR 63. For example, individual unit throughput and/or HAP emission thresholds may exempt specific units from the MACT standards in the NESHAP. The proposed Subpart HH would apply not only to major sources, but also to triethylene glycol (TEC) dehydration units at area sources located in urban areas. For both proposed NESHAP all 199 HAP must be considered for the major source determinations, but only 15 specific HAP are targeted for control under the proposed standards. An overview of the HAP control requirements, exemption criteria, as well as initial and continued compliance determination strategies are presented. Several industry examples are included to assist industry develop compliance strategies.

  8. Regulation of hazardous air pollutants emitted from fossil-fired boilers

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Daellenbach, K.K.

    1993-12-01T23:59:59.000Z

    The changes made in {section}112 of the Clean Air Act by the 1990 Amendments to the Act will affect the regulation of hazardous air pollutants (HAPs) emitted by fossil-fired boilers. The 1990 Amendments designated 189 chemicals/compounds as HAPS. Major and area sources of these pollutants in categories designated by the Environmental Protection Agency (EPA) will be subject to emission standards set by EPA. Industrial and institutional/commercial boilers are two such categories of HAPs designated by EPA for which emission standards will be issued. Fossil-fired boilers can emit a variety of HAPS. All or a portion of such emissions that exceed designated thresholds are likely to be regulated. This paper discusses how the 1990 amendments impact fossil-fired boilers. The steps are outlined which can be taken by owners of industrial and institutional/commercial boilers before the final emission standards are issued. These steps include participation in EPA`s standard setting process, participation in EPA`s early reduction program to delay the time when compliance with the maximum achievable control technology (MACT) standard is required, and consideration of any planned modifications to a facility which might subject that facility to a MACT standard set in advance of the EPA-set standard.

  9. A Novel New Approach to VOC and HAP Emission Control

    E-Print Network [OSTI]

    McGinness, M.

    - adsorbent scrubber solution. Water wash paint booth scrubbers can effectively capture PM-IO and PM-2.S particulates as well as VOHAPs. Water wash scrubbers by their very nature represent a reduced fire hazard compared to dry filter booth systems. NFPA...A Novel New Approach to VOC and HAP Emission Control Mike McGinness VP-R&D EcoShield Environmental Systems, Inc. Houston, Texas ABSTRACT HAP (Hazardous Air Pollutant) and VOC (Volatile Organic Compound) thermal emission control devices (ECD...

  10. Air Pollution Control Fees (Ohio)

    Broader source: Energy.gov [DOE]

    Facilities with a potential to emit any one regulated air pollutant of a quantity greater than or equal to 100 tons per year, or any one hazardous air pollutant (HAP) greater than or equal to 10...

  11. A study of hazardous air pollutants at the Tidd PFBC Demonstration Plant

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    The US Department of Energy (DOE) Clean Coal Technology (CCD Program is a joint effort between government and industry to develop a new generation of coal utilization processes. In 1986, the Ohio Power Company, a subsidiary of American Electric Power (AEP), was awarded cofunding through the CCT program for the Tidd Pressure Fluidized Bed Combustor (PFBC) Demonstration Plant located in Brilliant, Ohio. The Tidd PFBC unit began operation in 1990 and was later selected as a test site for an advanced particle filtration (APF) system designed for hot gas particulate removal. The APF system was sponsored by the DOE Morgantown Energy Technology Center (METC) through their Hot Gas Cleanup Research and Development Program. A complementary goal of the DOE CCT and METC R&D programs has always been to demonstrate the environmental acceptability of these emerging technologies. The Clean Air Act Amendments of 1990 (CAAA) have focused that commitment toward evaluating the fate of hazardous air pollutants (HAPs) associated with advanced coal-based and hot gas cleanup technologies. Radian Corporation was contacted by AEP to perform this assessment of HAPs at the Tidd PFBC demonstration plant. The objective of this study is to assess the major input, process, and emission streams at Plant Tidd for the HAPs identified in Title III of the CAAA. Four flue gas stream locations were tested: ESP inlet, ESP outlet, APF inlet, and APF outlet. Other process streams sampled were raw coal, coal paste, sorbent, bed ash, cyclone ash, individual ESP hopper ash, APF ash, and service water. Samples were analyzed for trace elements, minor and major elements, anions, volatile organic compounds, dioxin/furan compounds, ammonia, cyanide, formaldehyde, and semivolatile organic compounds. The particle size distribution in the ESP inlet and outlet gas streams and collected ash from individual ESP hoppers was also determined.

  12. PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS

    SciTech Connect (OSTI)

    Unknown

    2000-10-09T23:59:59.000Z

    In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved.

  13. Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer

    E-Print Network [OSTI]

    Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer.S. Dept. of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control through5250E #12;Logue et al, Health Hazards in Indoor air LBNL5250E Health Hazards in Indoor Air J

  14. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    SciTech Connect (OSTI)

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10T23:59:59.000Z

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  15. Air Quality: Monthly Hazardous Material Use, Fuel Consumption, and Equipment Operation Forms

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Air Quality: Monthly Hazardous Material Use, Fuel Consumption, and Equipment Operation Forms Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 The conditions of SLAC's air quality permits specify that all subject hazardous

  16. VOC and HAP recovery using ionic liquids

    SciTech Connect (OSTI)

    Michael R. Milota : Kaichang Li

    2007-05-29T23:59:59.000Z

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy(trihexyl)phosphonium dicyanamide as the RTIL. It was determined that it has good absorption properties for methanol and ?-pinene, is thermally stable, and is relatively easy to synthesize. It has a density of 0.89 g/mL at 20°C and a molecular weight of 549.9 g/mol. Trials were conducted with a small absorption system and a larger absorption system. Methanol, formaldehyde, and other HAPs were absorbed well, nearly 100%. Acetaldehyde was difficult to capture. Total VOC capture, while satisfactory on methanol and ?-pinene in a lab system, was less than expected in the field, 60-80%. The inability to capture the broad spectrum of total organics is likely due to difficulties in cleaning them from the ionic liquid rather than the ability of the ionic liquid to absorb. It’s likely that a commercial system could be constructed to remove 90 to 100% of the gas contaminates. Selecting the correct ionic liquid would be key to this. Absorption may not be the main selection criterion, but rather how easily the ionic liquid can be cleaned is very important. The ionic liquid absorption system might work very well in a system with a limited spectrum of pollutants, such as a paint spray line, where there are not very high molecular weight, non volatile, compounds in the exhaust.

  17. Estimating HAPs and radionuclide emissions from a laboratory complex at a nuclear processing site

    SciTech Connect (OSTI)

    Paul, R.A. [IT Corp., Durham, NC (United States); Faugl, T. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-10-01T23:59:59.000Z

    A unique methodology was developed for conducting an air emission inventory (AEI) at a DOE nuclear processing facility. This methodology involved the use of computer-assisted design (CAD) drawings to document emission points, computerized process drawings to document industrial processes leading to emissions, and a computerized data base of AEI forms to document emission estimates and related process data. A detailed air emissions inventory for operating years 1985--1991 was recently implemented for the entire site using this methodology. One industrial area at the DOE Site is comprised of laboratory facilities that provide direct support to the nuclear reactor and recovery operations, developmental studies to support reactor and separation operations, and developmental studies to support waste handling and storage. The majority of the functions are conducted in a single large building complex wherein bench scale and pilot scale experiments are carried out involving radionuclides, hazardous air pollutants (HAP), and other chemicals reportable under the Clean Air Act Amendments (CAAA) and Superfund Amendments and Re-authorization Act (SARA) Title 111. The results of the inventory showed that HAP and radionuclide emissions from the laboratory complex were relatively minor.

  18. 1998 INEEL National Emission Standard for Hazardous Air Pollutants - Radionuclides

    SciTech Connect (OSTI)

    J. W. Tkachyk

    1999-06-01T23:59:59.000Z

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1998. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1998, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  19. 1999 INEEL National Emission Standards for Hazardous Air Pollutants - Radionuclides

    SciTech Connect (OSTI)

    J. W. Tkachyk

    2000-06-01T23:59:59.000Z

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1999. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1999, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  20. National Emission Standards for Hazardous Air Pollutants Calendar Year 2005

    SciTech Connect (OSTI)

    Bechtel Nevada

    2006-06-01T23:59:59.000Z

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nation’s site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides that are resuspended into the air (e.g., by winds, dust-devils) along with historically-contaminated soils on the NTS. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (40 Code of Federal Regulations 61 Subpart H) limits the release of radioactivity from a U. S. Department of Energy (DOE) facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent (EDE) to any member of the public. This is the dose limit established for someone living off of the NTS for inhaling radioactive particles that may be carried by wind off of the NTS. This limit assumes that members of the public surrounding the NTS may also inhale “background levels” or radioactive particles unrelated to NTS activities that come from naturally-occurring elements in the environment (e.g., radon gas from the earth or natural building materials) or from other man-made sources (e.g., cigarette smoke). The U. S. Environmental Protection Agency (EPA) requires DOE facilities (e.g., the NTS) to demonstrate compliance with the NESHAP dose limit by annually estimating the dose to a hypothetical member of the public, referred to as the maximally exposed individual (MEI), or the member of the public who resides within an 80-kilometer (50-mile) radius of the facility who would experience the highest annual dose. This dose to a hypothetical person living close to the NTS cannot exceed 10 mrem/yr. C.1 This report has been produced annually for the EPA Region IX, and for the state of Nevada since 1992 and documents that the estimated EDE to the MEI has been, and continues to be, well below the NESHAP dose limit. The report format and level of technical detail has been dictated by the EPA and DOE Headquarters over the years. It is read and evaluated for NESHAP compliance by federal and state regulators. Each section and appendix presents technical information (e.g., NTS emission source estimates, onsite air sampling data, air transport model input parameters, dose calculation methodology, etc.), which supports the annual dose assessment conclusions. In 2005, as in all previous years for which this report has been produced, the estimated dose to the public from inhalation of radiological emissions from current and past NTS activities is shown to be well below the 10 mrem/yr dose limit. This was demonstrated by air sampling data collected onsite at each of six EPA-approved “critical receptor” stations on the NTS. The sum of measured EDEs from the four stations at the NTS boundaries is 2.5 mrem/yr. This dose is 25 percent of the allowed NESHAP dose limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, this individual receives only a small fraction of this dose. NESHAP compliance does not require DOE facilities to estimate annual inhalation dose from non-DOE activities. Therefore, this report does not estimate public radiation doses from any other sources or activities (e.g., naturally-occurring radon, global fallout).

  1. Optimizing electric utility air toxics compliance with other titles of the Clean Air Act

    SciTech Connect (OSTI)

    Loeb, A.P.; South, D.W.

    1993-12-31T23:59:59.000Z

    This paper provides an overview of regulatory issues under Title III of the Clean Air Act Amendments that could affect electric utilities. Title III contains provisions relating to hazardous air pollutants (HAPs) and provides special treatment for electric utilities. Generally, this discussion documents that if utility toxic emissions are regulated, one of the chief difficulties confronting utilities will be the lack of coordination between Title III and other titles of the Act. The paper concludes that if the US Environmental Protection Agency (EPA) determines that regulation of utility HAPs is warranted under Title III, savings can be realized from flexible compliance treatment.

  2. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    E-Print Network [OSTI]

    Logue, J.M.

    2010-01-01T23:59:59.000Z

    acetaldehyde, and acrolein in residential indoor air inM. Cahill (2009). "Indoor acrolein emission and decay ratesbe impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene;

  3. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  4. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2010 INL Report for Radionuclides (2011)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2011-06-01T23:59:59.000Z

    This report documents the calendar Year 2010 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'

  5. National Emission Standards for Hazardous Air Pollutants Calendar Year 2006

    SciTech Connect (OSTI)

    NSTec Environmental Technical Services

    2007-06-01T23:59:59.000Z

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically-contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration.

  6. National emission standards for hazardous air pollutants submittal -- 1996

    SciTech Connect (OSTI)

    Townsend, Y.E. [ed.; Black, S.C.

    1997-06-01T23:59:59.000Z

    The Nevada Test Site (NTS) is operated by the US Department of Energy, Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing. Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in 1996 were releases from the following: evaporation of tritiated water from containment ponds that receive drainage from E tunnel and from wells used for site characterization studies; onsite radioanalytical laboratories; the Area 5 RWMS facility; and diffuse sources of tritium and resuspension of plutonium. Section 1 describes these sources on the NTS. Section 2 tabulates the air emissions data for the NTS. These data are used to calculate the effective dose equivalents to offsite residents. Appendices describe the methods used to determine the emissions from the sources listed.

  7. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2012 INL Report for Radionuclides (2013)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2013-06-01T23:59:59.000Z

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, “Protection of the Environment,” Part 61, “National Emission Standards for Hazardous Air Pollutants,” Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.” The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  8. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2013 INL Report for Radionuclides (2014)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2014-06-01T23:59:59.000Z

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, “Protection of the Environment,” Part 61, “National Emission Standards for Hazardous Air Pollutants,” Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.” The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  9. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2011 INL Report for Radionuclides (2012)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2012-06-01T23:59:59.000Z

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  10. Bibliography of work on the photocatalytic removal of hazardous compounds from water and air

    SciTech Connect (OSTI)

    Blake, D.M.

    1994-05-01T23:59:59.000Z

    This is a bibliography of information in the open literature on work that has been done to date on the photocatalytic oxidation of compounds, principally organic compounds. The goal of the listing is removing hazardous oompounds from water or air. It contains lists of substances and literature citations. The bibliography includes information obtained through the middle of 1993 and some selected references for the balance of that year.

  11. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect (OSTI)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States); Hemenway, A. [USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)

    1991-12-31T23:59:59.000Z

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  12. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect (OSTI)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)); Hemenway, A. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States))

    1991-01-01T23:59:59.000Z

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  13. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    SciTech Connect (OSTI)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01T23:59:59.000Z

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  14. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    SciTech Connect (OSTI)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01T23:59:59.000Z

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  15. LITERATURE SEARCH FOR METHODS FOR HAZARD ANALYSES OF AIR CARRIER OPERATIONS.

    SciTech Connect (OSTI)

    MARTINEZ - GURIDI,G.; SAMANTA,P.

    2002-07-01T23:59:59.000Z

    Representatives of the Federal Aviation Administration (FAA) and several air carriers under Title 14 of the Code of Federal Regulations (CFR) Part 121 developed a system-engineering model of the functions of air-carrier operations. Their analyses form the foundation or basic architecture upon which other task areas are based: hazard analyses, performance measures, and risk indicator design. To carry out these other tasks, models may need to be developed using the basic architecture of the Air Carrier Operations System Model (ACOSM). Since ACOSM encompasses various areas of air-carrier operations and can be used to address different task areas with differing but interrelated objectives, the modeling needs are broad. A literature search was conducted to identify and analyze the existing models that may be applicable for pursuing the task areas in ACOSM. The intent of the literature search was not necessarily to identify a specific model that can be directly used, but rather to identify relevant ones that have similarities with the processes and activities defined within ACOSM. Such models may provide useful inputs and insights in structuring ACOSM models. ACOSM simulates processes and activities in air-carrier operation, but, in a general framework, it has similarities with other industries where attention also has been paid to hazard analyses, emphasizing risk management, and in designing risk indicators. To assure that efforts in other industries are adequately considered, the literature search includes publications from other industries, e.g., chemical, nuclear, and process industries. This report discusses the literature search, the relevant methods identified and provides a preliminary assessment of their use in developing the models needed for the ACOSM task areas. A detailed assessment of the models has not been made. Defining those applicable for ACOSM will need further analyses of both the models and tools identified. The report is organized in four chapters. Chapter 2 briefly describes ACOSM, and its structure, using the format of the Integrated Definition Function Model (IDEFO). A reader who is familiar with ACOSM may want to skip this chapter and continue with Chapter 3 that discusses the process we used for identifying applicable approaches for hazard analysis of air-carrier operations as modeled in ACOSM. It consisted of the following three main steps: (1) Search the literature containing articles related to hazard- or risk-analysis with potential applicability to air-carrier operations, (2) Review the selected publications and identify those with possible relevance to ACOSM, and (3) Group the selected publications or methods according to certain characteristics, such as their pertinence to specific areas of ACOSM. Chapter 4 discusses the applicability of the identified approaches to ACOSM, the areas of methods development, and comments related to methods development for ACOSM. The following areas were defined to identify the methods that may be applicable for ACOSM: (1) Identification of hazards associated with operations and activities; (2) Hazard-assessment techniques; (3) Modeling dependencies and interrelations leading to vulnerabilities; (4) Risk-management tools; (5) Data-assessment techniques; and (6) Risk-indicator identification. In addition, issues of human reliability and operational culture are relevant for all the above areas. They are expected to be addressed within each of them. We do not include in this report all the lists of publications that we obtained because they are voluminous. We keep them in our records which are available to the interested reader.

  16. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect (OSTI)

    Mulac, W.A.; McCreary, J.R. (Argonne National Lab., IL (United States)); Schmalz, H. (Argonne National Lab., IL (United States) Thermal Surveys, Inc., Rockford, IL (United States))

    1992-01-01T23:59:59.000Z

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  17. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect (OSTI)

    Mulac, W.A.; McCreary, J.R. [Argonne National Lab., IL (United States); Schmalz, H. [Argonne National Lab., IL (United States)]|[Thermal Surveys, Inc., Rockford, IL (United States)

    1992-11-01T23:59:59.000Z

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  18. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    SciTech Connect (OSTI)

    MULKEY, C.H.

    1999-07-06T23:59:59.000Z

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.

  19. Diffusion of gases in air and its affect on oxygen deficiency hazard abatement

    SciTech Connect (OSTI)

    Theilacker, J.C.; White, M.J.; /Fermilab

    2005-09-01T23:59:59.000Z

    Density differences between air and released gases of cryogenic systems have been used to either require special oxygen deficiency hazard (ODH) control measures, or as a means of abatement. For example, it is not uncommon to assume that helium spills will quickly collect at the ceiling of a building or enclosure and will efficiently exit at the nearest vertical penetration or vent. Oxygen concentration reduction was found to be detectable during a localized helium spill throughout the entire 6.3 km Tevatron tunnel. This prompted us to perform diffusion tests in air with common gases used at Fermilab. The tests showed that gases, more readily than expected, diffused through an air column in the direction opposing buoyancy. Test results for helium and sulfur hexafluoride are presented. A system of tests were performed to better understand how easily released gases would fully mix with air and whether they remained fully mixed. The test results have been applied to a new system at Fermilab for ODH abatement.

  20. HAP FINS/BUDGET Janet Backe

    E-Print Network [OSTI]

    HAP FINS/BUDGET Jay Black CIO Janet Backe Director Marie Rutledge Functional Lead Steven Freed and FINS/BUDGET Nick Oliver Technical (50%) A&T Vincent Wong DBA Ken Zhu DBA Luis Fernandes DBA PS Admin

  1. Overview of the effect of Title III of the 1990 Clean Air Act Amendments on the natural gas industry

    SciTech Connect (OSTI)

    Child, C.J.

    1995-12-31T23:59:59.000Z

    The regulation of hazardous air pollutants by Title III of the Clean Air Act Amendments of 1990 has a potential wide-ranging impact for the natural gas industry. Title III includes a list of 189 hazardous air pollutants (HAPs) which are targeted for reduction. Under Title III, HAP emissions from major sources will be reduced by the implementation of maximum achievable control technology (MACT) standards. If the source is defined as a major source, it must also comply with Title V (operating permit) and Title VII (enhanced monitoring) requirements. This presentation will review Title III`s effect on the natural gas industry by discussing the regulatory requirements and schedules associated with MACT as well as the control technology options available for affected sources.

  2. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2011-06-30T23:59:59.000Z

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations (U.S. Environmental Protection Agency [EPA] and DOE, 1995). This method was approved by the EPA for use on the NNSS in 2001(EPA, 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2010, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1 percent to a maximum of 17 percent of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of that measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000032 mrem/yr, more than 300,000 times lower than the 10 mrem/yr limit.

  3. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2007

    SciTech Connect (OSTI)

    Robert Grossman; Ronald Warren

    2008-06-01T23:59:59.000Z

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This is the dose limit established for someone living off of the NTS from radionuclides emitted to air from the NTS. This limit does not include the radiation doses that members of the public may receive through the intake of radioactive particles unrelated to NTS activities, such as those that come from naturally occurring elements in the environment (e.g., naturally occurring radionuclides in soil or radon gas from the earth or natural building materials), or from other man-made sources (e.g., medical treatments). The NTS demonstrates compliance using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. There are six critical receptor locations on the NTS that are actually pseudocritical receptor locations because they are hypothetical receptor locations; no person actually resides at these onsite locations. Annual average concentrations of detected radionuclides are compared with Concentration Levels (CL) for Environmental Compliance values listed in 40 CFR 61, Appendix E, Table 2. Compliance is demonstrated if the sum of fractions (CL/measured concentrations) of all detected radionuclides at each pseudo-critical receptor location is less than one. In 2007, as in all previous years for which this report has been produced, the NTS has demonstrated that the potential dose to the public from radiological emissions to air from current and past NTS activities is well below the 10 mrem/yr dose limit. Air sampling data collected onsite at each of the six pseudo-critical receptor stations on the NTS had average concentrations of nuclear test-related radioactivity that were a fraction of the limits listed in Table 2 in Appendix E of 40 CFR 61. They ranged from less than 1 percent to a maximum of 20 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS.

  4. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2011

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2012-06-19T23:59:59.000Z

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan. Radionuclides from the Fukushima nuclear power plant were detected at the NNSS in March 2011 and are discussed further in Section III. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the EPA for use on the NNSS in 2001 and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2. For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2011, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, at onsite compliance monitoring stations was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 1% to a maximum of 12.2% of the allowed NESHAP limit. Because the nearest member of the public resides about 20 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000024 mrem/yr, more than 400,000 times lower than the 10 mrem/yr limit.

  5. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2012

    SciTech Connect (OSTI)

    Warren, R.

    2013-06-10T23:59:59.000Z

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2012, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from less than 0.5% to a maximum of 11.1% of the allowed NESHAP limit. Because the nearest member of the public resides about 9 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000024 mrem/yr, more than 400,000 times lower than the 10 mrem/yr limit.

  6. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2013

    SciTech Connect (OSTI)

    Warren, R.

    2014-06-04T23:59:59.000Z

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitations to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has been the sole method used since 2005. Six locations on the NNSS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR 2010a). For multiple radionuclides, compliance is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2013, the potential dose from radiological emissions to air, resulting from both current and past NNSS activities, was well below the 10 mrem/yr dose limit. Air sampling data collected at all air monitoring stations had average concentrations of radioactivity that were a fraction of the CL values. Concentrations ranged from 0.2% to a maximum of 10.1% of the allowed NESHAP limit. Because the nearest member of the public resides about 9 kilometers from potential release points on the NNSS, dose to the public would be only a small fraction of the value measured on the NNSS. The potential dose to the public from NLVF emissions was also very low at 0.000011 mrem/yr, more than 900,000 times lower than the 10 mrem/yr limit.

  7. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2008

    SciTech Connect (OSTI)

    Ronald Warren and Robert F. Grossman

    2009-06-30T23:59:59.000Z

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to under-ground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by winds) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the North Las Vegas Facility (NLVF), an NTS support complex in the city of North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2008a) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from other man-made sources such as medical treatments. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration of each detected radionuclide at each of these locations is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2 (CFR, 2008a). At any one location, if multiple radionuclides are detected then compliance with NESHAP is demonstrated when the sum of the fractions (determined by dividing each radionuclide's concentration by its CL and then adding the fractions together) is less than 1.0. In 2008, the potential dose from radiological emissions to air, from both current and past NTS activities, at onsite compliance monitoring stations was a maximum of 1.9 mrem/yr; well below the 10 mrem/yr dose limit. Air sampling data collected at all six pseudo-critical receptor stations had average concentrations of radioactivity that were a fraction of the CL values listed in Table 2 in Appendix E of 40 CFR 61 (CFR, 2008a). Concentrations ranged from less than 1 percent to a maximum of 19 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS. Potential dose to the public from NLVF was also very low at 0.00006 mrem/yr; more than 160,000 times lower than the 10 mrem/yr limit.

  8. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2009

    SciTech Connect (OSTI)

    NSTec Ecological and Environmental Monitoring

    2010-06-11T23:59:59.000Z

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada Test Site (NTS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the NLVF, an NTS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from sources such as medically or commercially used radionuclides. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no member of the public actually resides at these onsite locations. Compliance is demonstrated if the measured annual average concentration of each detected radionuclide at each of these locations is less than the NESHAP Concentration Levels (CLs) for Environmental Compliance listed in 40 CFR 61, Appendix E, Table 2. At any one location, if multiple radionuclides are detected, then compliance with NESHAP is demonstrated when the sum of the fractions (determined by dividing each radionuclide’s concentration by its CL and then adding the fractions together) is less than 1.0. In 2009, the potential dose from radiological emissions to air, resulting from both current and past NTS activities, at onsite compliance monitoring stations was a maximum of 1.69 mrem/yr, well below the 10 mrem/yr dose limit. Air sampling data collected at all six critical receptor stations had average concentrations of radioactivity that were a fraction of the CL values listed in Table 2 in Appendix E of 40 CFR 61. Concentrations ranged from less than 1 percent to a maximum of 17 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers from potential release points on the NTS, concentrations at this location would be only a small fraction of that measured on the NTS. The potential dose to the public from NLVF emissions was also very low at 0.000044 mrem/yr, 230,000 times lower than the 10 mrem/yr limit.

  9. The potential impact of proposed hazardous air pollutant legislation on the US refining industry. Final report, Task 9

    SciTech Connect (OSTI)

    Not Available

    1989-11-01T23:59:59.000Z

    The Administration has recently submitted a Clean Air Act Bill to Congress which would significantly modify the regulatory treatment of industrial hazardous air pollutants (air toxics). The adverse economic impacts of this legislation on the petroleum refining industry could be substantial. Depending on how EPA interprets the legislative language, the capital costs of compliance for the proposed bill could range from $1.3 to $15.0 billion. At the upper end of the range, costs of this order of magnitude would be over 2.5 times larger than the combined estimated cost of EPAs gasoline volatility (RVP) regulations and the proposed diesel sulfur content regulations. Potential compliance costs could be as much as $0.40 per barrel processed for large, complex refineries and as much as $0.50 per barrel for some small, simple refineries. For perspective, total refining costs, including a normal return on investment, are $4--5 per barrel. Because foreign refineries supplying the US will not be affected by the US air toxics regulations, US refineries may not be able to raise prices sufficiently to recover their compliance costs. For this reason, the air toxic legislation may put US refineries at an economic disadvantage relative to foreign competitors. Even under the best petroleum product market conditions, costs of $0.40 to $0.50 per barrel processed could reduce US Gulf refiner cash operating margins by as much as 29 percent. Under less favorable market conditions, such as the mid-80`s when refiners were losing money, the hazardous air pollutant regulations could greatly increase US refiner operating losses and potentially lead to closure of some marginal refineries.

  10. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1992-09-01T23:59:59.000Z

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions).

  11. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect (OSTI)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01T23:59:59.000Z

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  12. Hanford Site radionuclide national emission standards for hazardous air pollutants registered stack source assessment

    SciTech Connect (OSTI)

    Davis, W.E.; Barnett, J.M.

    1994-07-01T23:59:59.000Z

    On February 3, 1993, the US Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency,, Region 10. The Compliance Order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford Site . The evaluation also determined if the effective dose equivalent from any of these stack emissions exceeded 0.1 mrem/yr, which will require the stack to have continuous monitoring. The result of this assessment identified a total of 16 stacks as having potential emissions that,would cause an effective dose equivalent greater than 0.1 mrem/yr.

  13. National emission standards for hazardous air pollutants application for approval to stabilize the 105N Basin

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces-to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin is a reinforced unlined concrete structure 150 feet long, 50 feet wide, and 24 feet deep. The basin is segregated into seven areas sharing a common pool of water; the Discharge/Viewing (``D``) Pit, the fuel segregation pit (including a water tunnel that connects the ``D`` pit and segregation pit), two storage basins designated as North Basin and South Basin, two cask load-out pits, and a fuel examination area. The North Basin floor is entirely covered and the South Basin is partly covered by a modular array of cubicles formed by boron concrete posts and boron concrete panels.

  14. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,`` each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  15. Review of research results for the photocatalytic oxidation of hazardous wastes in air

    SciTech Connect (OSTI)

    Nimlos, M.R.; Wolfrum, E.J.; Gratson, D.A.; Watt, A.S.; Jacoby, W.A.; Turchi, C.

    1995-01-01T23:59:59.000Z

    Laboratory experiments of gas-phase photocatalytic oxidation (PCO) at NREL have focused on measurements that can help commercialize this technology for treating gaseous air streams. This effort proceeds earlier NREL work and studies conducted elsewhere which demonstrated the general applicability of PCO. The more recent work has concentrated on: (1) the kinetics of the PCO process; (2) the formation and destruction of intermediates; and (3) possible enhancements to improve the destruction rates. The results from these studies will be used to help design large scale PCO equipment and they will be used to evaluate the economics of the PCO process. For trichloroethylene and ethanol, extensive studies of the rates of destruction have yielded kinetic parameters for the destruction of intermediates as well as the substrate. The kinetics of intermediates is essential for sizing a large scale reactor, as complete conversion to carbon dioxide is often desired. The kinetic data from these laboratory studies has been used for analyzing IT`s pilot PCO reactor and has been used to suggest modifications to this unit. For compounds that are more difficult to destroy (such as the components of BTEX), rate enhancement experiments have been conducted. These compounds represent a very large market for this technology and improvement of the rate of the process should make it competitive. Towards this goal, the enhancement of the destruction of BTEX components have been studied. Experiments have demonstrated that there is a significant increase in the rates of destruction of BTEX with the addition of ozone. Preliminary economic assessments have shown that PCO with ozone may be cost competitive. Future laboratory experiments of PCO will focus on refinements of what has been learned. Rate measurements will also be expanded to include other compounds representing significant markets for the PCO technology.

  16. Air Pollution Controls

    Broader source: Energy.gov [DOE]

    Various statutes within the Wisconsin Legislative Documents relate to air pollution control. These statutes describe zoning, permitting, and emissions regulations for hazardous and non-hazardous...

  17. Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air, Update Number 2 to October 1996

    SciTech Connect (OSTI)

    Blake, D.M.

    1997-01-01T23:59:59.000Z

    The Solar Industrial Program has developed processes that destroy hazardous substances in or remove them from water and air. The processes of interest in this report are based on the application of heterogeneous photocatalysts, principally titanium dioxide or modifications thereof, but work on other heterogeneous catalysts is included in this compilation. This report continues bibliographies that were published in May, 1994, and October, 1995. The previous reports included 663 and 574 citations, respectively. This update contains an additional 518 references. These were published during the period from June 1995 to October 1996, or are references from prior years that were not included in the previous reports. The work generally focuses on removing hazardous contaminants from air or water to meet environmental or health regulations. This report also references work on properties of semiconductor photocatalysts and applications of photocatalytic chemistry in organic synthesis. This report follows the same organization as the previous publications. The first part provides citations for work done in a few broad categories that are generic to the process. Three tables provide references to work on specific substances. The first table lists organic compounds that are included in various lists of hazardous substances identified by the US Environmental Protection Agency (EPA). The second table lists compounds not included in those categories, but which have been treated in a photocatalytic process. The third table covers inorganic compounds that are on EPA lists of hazardous materials or that have been treated by a photocatalytic process. A short update on companies that are active in providing products or services based on photocatalytic processes is provided.

  18. Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products

    E-Print Network [OSTI]

    de Lijser, Peter

    over a larger area and releases them into the air. Pouring hazardous liquids on the ground can poisonHousehold Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion should be considered hazardous. You cannot treat hazardous wastes like other kinds of garbage

  19. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

  20. Radionuclide Air Emission Report for 2011

    E-Print Network [OSTI]

    Wahl, Linnea

    2012-01-01T23:59:59.000Z

    LBNL-470E-20Ì1 Radionuclide Air Emission Report for Preparedfor Estimating Fugitive Air Emissions of Radionuclides fromStandards for Hazardous Air Pollutants (Radionuclides),

  1. Sampling of power plant stacks for air toxic emissions: Topical report for Phases 1 and 2

    SciTech Connect (OSTI)

    NONE

    1995-02-21T23:59:59.000Z

    Under contract with the US Department of Energy (DE-AC22-92PCO0367), Pittsburgh Energy Technology Center, Radian Corporation has conducted a test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPS). Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical charactization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions.

  2. Approche Mthodologique de la modlisation du transport des HAP dans les sols et les eaux

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    hydrocarbures aromatiques polycycliques (HAP) ont fait l'objet de simulations par deux groupes de travail. Le durée de 10 ans. Le naphtalène révèle un comportement d'hydrocarbure " lourd " avec une phase huile

  3. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.50

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.50 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  4. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.41

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.41 meets Internal Revenue Code §179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

  5. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01T23:59:59.000Z

    Environmental Energy Technologies Division  Lawrence Singer Environmental Energy Technologies Division OctoberLow Energy and Sustainable Ventilation Technologies for

  6. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01T23:59:59.000Z

    residences: acetaldehyde, acrolein, benzene, 1,3-butadiene,with the addition of acrolein, which was not included inlarge contributors to acrolein and NO 2 respectively indoors

  7. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01T23:59:59.000Z

    Low Energy and Sustainable Ventilation Technologies for Green Buildings,Low Energy and Sustainable Ventilation Technologies for Green Buildings,Low Energy and Sustainable Ventilation Technologies for Green Buildings,

  8. Electrical hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

  9. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  10. Hazards Survey and Hazards Assessments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

  11. Hazard evaluation

    SciTech Connect (OSTI)

    Vervalin, C.H.

    1986-12-01T23:59:59.000Z

    Recent major disasters in the hydrocarbon processing industry (HPI) have inspired renewed interest in the fine-tuning of hazard evaluation methods. In addition to traditional risk-study methods, the computer promises eventual expert systems to vastly improve the speed of assembling and using loss-prevention information. But currently, the computerization of hazard evaluation finds the HPI taking a back seat to aerospace/nuclear industries. The complexity of creating computer databases and expert systems has not-however-kept some HPI companies from plunging in. Arabian American Oil Co. (Aramco) has used computer-generated information in working with probabilistic risk analysis. Westinghouse has used its risk-analysis experience in the nuclear field to build a computer-based program for HPI clients. An Exxon plant has a huge data bank as the basis for its Hazard Loss Information System.

  12. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  13. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  14. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  15. Reproductive Hazards in the Lab Reproductive Hazards

    E-Print Network [OSTI]

    de Lijser, Peter

    Reproductive Hazards in the Lab Reproductive Hazards The term reproductive hazard refers to agents healthy children. Reproductive hazards may have harmful effects on libido, sexual behavior, or sperm the effects of reproductive hazards may be reversible for the parent, the effects on the fetus or offspring

  16. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  17. Air Quality Chapter Outline

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Chapter 30 Air Quality Chapter Outline 1 Overview 2 1.1 Hazards / Impacts 2 1.2 Exposure Sources 3 Manual Chapter 30: Air Quality 7 References 20 8 Implementation 21 9 Ownership 22 1 Overview SLAC operations produce a wide range of air emissions. Sources of emissions include standard equipment

  18. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  19. PITTSBURGH REGIONAL ENVIRONMENTAL THREATS ANALYSIS

    E-Print Network [OSTI]

    Jiang, Huiqiang

    AND COMMUNITIES PITTSBURGH, PA. | AUGUST 2013 #12;PRETA AIR: HAZARDOUS AIR POLLUTANTS 32 PITTSBURGH REGIONAL ENVIRONMENTAL THREATS ANALYSIS REPORT PRETA AIR: HAZARDOUS AIR POLLUTANTS (HAPs)/AIR TOXICS PREPARED BY AUTHORSPITTSBURGH REGIONAL ENVIRONMENTAL THREATS ANALYSIS (PRETA) REPORT PRETA AIR: HAZARDOUS AIR

  20. What is Hazardous Hazardous waste is

    E-Print Network [OSTI]

    de Lijser, Peter

    What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E.calrecycle.ca.gov www.earth911.com Campus Hazardous Waste Roundup Roundups conducted the last week of: January April

  1. HAZARD COMMUNICATION PROGRAM The______________________________ Department has developed a Hazard Communication

    E-Print Network [OSTI]

    Zhang, Yuanlin

    HAZARD COMMUNICATION PROGRAM The______________________________ Department has developed a Hazard about chemical hazards and other hazardous substances via our comprehensive Hazard Communication Program. The Hazard Communication Program will include: WORKPLACE CHEMICAL LIST MATERIAL SAFETY DATA SHEETS CONTAINER

  2. This is page 1 Printer: Opaque this

    E-Print Network [OSTI]

    Haran, Murali

    data from the Hazardous Air Pollutants (HAPs) study, which collected reported emissions of particulates the Hazardous Air Pollutants (HAPs) study, which collected reported emissions of particulates smaller than 2 Understanding the effects of pollutants on the health of individuals requires consideration of different

  3. Ductless fume hoods are designed to remove hazardous fumes and vapors from the work area by passing the exhaust air through a filter and/or adsorbent, such as an activated

    E-Print Network [OSTI]

    de Lijser, Peter

    I. Policy Ductless fume hoods are designed to remove hazardous fumes and vapors from the work area to Hazardous Chemicals in Laboratories); 5154.1 (Ventilation Requirements for Laboratory-Type Hood Operations require use of fume hoods to control exposure to hazardous or odorous chemicals. IV. Definitions Activated

  4. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  5. Hazard Baseline Documentation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-12-04T23:59:59.000Z

    This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

  6. A Laboratory Study of the Schmidt Number Dependency of Air-Water Gas

    E-Print Network [OSTI]

    Jaehne, Bernd

    . Sc = /D denotes the Schmidt number, the ratio of kinematic viscosity of water and the tracersA Laboratory Study of the Schmidt Number Dependency of Air-Water Gas Transfer Kerstin Richter1 of exchange hap- pens with an exponent of 1/2 and links this fraction with a physical property of the wave

  7. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  8. Track 3: Exposure Hazards

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

  9. Sampling of power plant stacks for air toxic emissions: Final report for Phases 1 and 2

    SciTech Connect (OSTI)

    NONE

    1995-04-28T23:59:59.000Z

    A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in two phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.

  10. Pinellas Plant contingency plan for the hazardous waste management facility

    SciTech Connect (OSTI)

    NONE

    1988-04-01T23:59:59.000Z

    Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

  11. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  12. Review: Air Pollution and Global Warming: History, Science, and Solutions, 2nd ed.

    E-Print Network [OSTI]

    Laberge, Yves

    2013-01-01T23:59:59.000Z

    Review: Air Pollution and Global Warming: History, Science,Jacobson, Mark Z. Air Pollution and Global Warming: History,and hazards related to pollution, Professor Mark Z. Jacobson

  13. Hazardous Waste Management (Arkansas)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

  14. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  15. Hazard Analysis Database report

    SciTech Connect (OSTI)

    Niemi, B.J.

    1997-08-12T23:59:59.000Z

    This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

  16. Hazard analysis results report

    SciTech Connect (OSTI)

    Niemi, B.J., Westinghouse Hanford

    1996-09-30T23:59:59.000Z

    This document describes and defines the Hazard Analysis Results for the Tank Waste Remediation System Final Safety Analysis Report.

  17. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  18. WEATHER HAZARDS Basic Climatology

    E-Print Network [OSTI]

    Prediction Center (SPC) Watch Atmospheric conditions are right for hazardous weather ­ hazardous weather is likely to occur Issued by SPC Warning Hazardous weather is either imminent or occurring Issued by local NWS office #12;Outlooks--SPC Storm Prediction Center (SPC) Outlook=Convective Outlook Day 1 Day 2

  19. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    records. The initial training of Hazardous Waste Management and Waste Minimization is done in a classHazardous Waste Management Training Persons (including faculty, staff and students) working before handling hazardous waste. Departments are re- quired to keep records of training for as long

  20. Les expriences de laboratoire permettent-elles de prvoir le transport de HAP et de mtaux l'chelle du lysimtre de terrain ?

    E-Print Network [OSTI]

    Boyer, Edmond

    a généré de vastes superficies de friches polluées par des hydrocarbures lourds (de type Hydrocarbures particulier par des Hydrocarbures Aromatiques Polycycliques (HAP), des métaux, de l'arsenic et du cyanure

  1. Hazard Analysis Database Report

    SciTech Connect (OSTI)

    GRAMS, W.H.

    2000-12-28T23:59:59.000Z

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

  2. Hazardous Materials and Controlled Hazardous Substances (Maryland)

    Broader source: Energy.gov [DOE]

    A permit is required to own, establish, operate, or maintain a facility in the state of Maryland that transfers quantities of a single hazardous material in excess of 100,000 pounds at any time...

  3. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06T23:59:59.000Z

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  4. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

    1998-01-01T23:59:59.000Z

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  5. Hazard baseline documentation

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This DOE limited technical standard establishes uniform Office of Environmental Management (EM) guidance on hazards baseline documents that identify and control radiological and nonradiological hazards for all EM facilities. It provides a road map to the safety and health hazard identification and control requirements contained in the Department`s orders and provides EM guidance on the applicability and integration of these requirements. This includes a definition of four classes of facilities (nuclear, non-nuclear, radiological, and other industrial); the thresholds for facility hazard classification; and applicable safety and health hazard identification, controls, and documentation. The standard applies to the classification, development, review, and approval of hazard identification and control documentation for EM facilities.

  6. March 29, 2007 Mobile Source Air Toxics Analysis

    E-Print Network [OSTI]

    Minnesota, University of

    , 6 were identified as significant contributors to national emissions of hazardous air pollutants of cancer per million people · Urban areas ­ >25 cases per million · "Transportation corridors" (areas

  7. Air Quality: Acronym List Department: Chemical and General Safety

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Air Quality: Acronym List Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 ACM asbestos-containing material AHA area hazard analysis AQPM air quality program manager ARP accidental release prevention ATCM air toxic control

  8. Surveillance Guides - Hazards Control

    Broader source: Energy.gov (indexed) [DOE]

    Facility Representative RL Facility Representative Program March 9, 1995 Surveillance Guide Revision 0 Hazard Controls Page 5 of Error Bookmark not defined....

  9. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  10. Safety Hazards of Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the...

  11. Radiation Hazards Program (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

  12. Hazardous Material Security (Maryland)

    Broader source: Energy.gov [DOE]

    All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

  13. HAZARDOUS MATERIALS Hazardous materials can be silent killers.

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    HAZARDOUS MATERIALS #12;Hazardous materials can be silent killers. Almost every household they may be found, and what to do, or not do, about hazardous material spills. #12;Ways that hazardous or eyes · Ingestion; swallowing · Injection; penetrating skin #12;The key to dealing with hazardous

  14. Chapter 1 -Hazard Communication Hazard Communication and Training Act

    E-Print Network [OSTI]

    and Training Act require employers to inform workers about hazardous chemicals in their work areas13 Chapter 1 - Hazard Communication Hazard Communication and Training Act The Hazard Communication and Safety (EH&S) to administer a program to comply with this law. Hazardous Chemicals Index EH&S maintains

  15. Hazard Communication at Purdue University

    E-Print Network [OSTI]

    Holland, Jeffrey

    Hazard Communication at Purdue University Radiological and Environmental Management Written APPENDICES A OSHA Health Hazard Definitions B OSHA Method Of Hazard Determination C Expanded List Completed Work Area Forms HCP-4, HCP-5, HCP-8 I Health Hazard Warning Information 1. Health Hazard Rating 2

  16. Advanced Materials Laboratory hazards assessment document

    SciTech Connect (OSTI)

    Barnett, B.; Banda, Z.

    1995-10-01T23:59:59.000Z

    The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

  17. air pollution index: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index of Global Air Quality Matthew J. Cooper* Randall V. Martin, Canada.M6B 2S7 Air pollution is a major health hazard that is responsible for millions of annual excess...

  18. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  19. Hazardous Sites Cleanup Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste...

  20. Implementation of the Clean Air Act, Title V operating permit program requirements for the U.S. DOE Oak Ridge Reservation facilities

    SciTech Connect (OSTI)

    Humphreys, M.P. [Dept. of Energy Oak Ridge Operations Office, TN (United States). Environmental Protection Div.

    1998-12-31T23:59:59.000Z

    Title V of the Clean Air Act (CAA) establishes a new permit program requiring major sources and sources subject to Title III (Hazardous Air Pollutants) to obtain a state operating permit. Historically, most states have issued operating permits for individual emission units. Under the Title V permit program, a single permit will be issued for all of the emission units at the facility much like the current National Pollutant Discharge Elimination System (NPDES) permit program. The permit will specify all reporting, monitoring, and record-keeping requirements for the facility. Sources required to obtain permits include (a) major sources that emit 100 tons per year or more of any criteria air contaminant, (b) any source subject to the HAP provisions of Title III, (c) any source subject to the acid rain provisions of Title IV, (d) any source subject to New Source Performance Standards, and (e) any source subject to new source review under the nonattainment or Prevention of Significant Deterioration provisions. The State of Tennessee Title V Operating Permit Program was approved by EPA on August 28, 1996. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title V Operating Permit Program. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the East Tennessee Technology Park (ETTP). The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the ETTP conducts a variety of research and development activities and is the home of a mixed waste incinerator. Each of the three DOE Facilities is considered a major source under Title V of the CAA.

  1. Hazard Communication Site Specific Information Sheet Hazard Communication Program (HCP)

    E-Print Network [OSTI]

    Slatton, Clint

    Hazard Communication Site Specific Information Sheet Hazard Communication Program (HCP) Site Specific Information The responsible party for a unit/area should complete this section to make the Hazard Communication Program site specific. The responsible party will ensure that the Hazard Communication Program

  2. Hazardous Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

  3. Hazardous Waste Management (Oklahoma)

    Broader source: Energy.gov [DOE]

    This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

  4. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  5. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  6. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

  7. HAZARD ANALYSIS SOFTWARE

    SciTech Connect (OSTI)

    Sommer, S; Tinh Tran, T

    2008-04-08T23:59:59.000Z

    Washington Safety Management Solutions, LLC developed web-based software to improve the efficiency and consistency of hazard identification and analysis, control selection and classification, and to standardize analysis reporting at Savannah River Site. In the new nuclear age, information technology provides methods to improve the efficiency of the documented safety analysis development process which includes hazard analysis activities. This software provides a web interface that interacts with a relational database to support analysis, record data, and to ensure reporting consistency. A team of subject matter experts participated in a series of meetings to review the associated processes and procedures for requirements and standard practices. Through these meetings, a set of software requirements were developed and compiled into a requirements traceability matrix from which software could be developed. The software was tested to ensure compliance with the requirements. Training was provided to the hazard analysis leads. Hazard analysis teams using the software have verified its operability. The software has been classified as NQA-1, Level D, as it supports the analysis team but does not perform the analysis. The software can be transported to other sites with alternate risk schemes. The software is being used to support the development of 14 hazard analyses. User responses have been positive with a number of suggestions for improvement which are being incorporated as time permits. The software has enforced a uniform implementation of the site procedures. The software has significantly improved the efficiency and standardization of the hazard analysis process.

  8. State of Colorado Wildfire Hazard

    E-Print Network [OSTI]

    State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 and importance of the August 1995 Wildfire Hazard Mitigation Plan and its predecessors as foundation documents on which to build and judge progress in wildfire hazard mitigation. The text version of the 1995 Plan

  9. Hazardous Working Policy November 2012

    E-Print Network [OSTI]

    Doran, Simon J.

    for: The management of University workers performing hazardous tasks or working in hazardous areas;2 Hazardous Areas: are areas where a University worker may be exposed to risks that are considered greater1 Hazardous Working Policy November 2012 Introduction The University of Surrey acknowledges

  10. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    - Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

  11. WORKPLACE HAZARD ASSESSMENT Location: Task

    E-Print Network [OSTI]

    Rubloff, Gary W.

    /Eyes Hands Foot Body 7. THERMAL HAZARD DOES NOT EXIST DOES EXIST SOURCE OF HAZARD Welding Brazing Furnace/NON-IONIZING RADIATION HAZARD DOES NOT EXIST DOES EXIST SOURCE OF HAZARD Heat Treating Brazing Welding Oxygen Cutting Laser High Intensity Lighting Body Part Affected Head Face/Eyes Hands Foot Body #12;

  12. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  13. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20T23:59:59.000Z

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  14. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W. (Martinez, GA)

    1994-01-01T23:59:59.000Z

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  15. Chemical process hazards analysis

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  16. Lime kiln source characterization: Lime manufacturing industry Fourier transform infrared spectroscopy. Final report

    SciTech Connect (OSTI)

    Toney, M.L.

    1999-07-01T23:59:59.000Z

    The purpose of this testing program is to obtain uncontrolled and controlled hydrogen chloride (HCl) and speciated hydrocarbon Hazardous Air Pollutants (HAPs) emissions data from lime production plants to support a national emission standard for hazardous air pollutants (NESHAP). This report presents data from the Fourier Transform Infrared Spectroscopy (FTIR) measurements. FTIR source testing was conducted for the following purposes: Quantify HCl emission levels; and Gather screening (i.e., qualitative) data on other HAP emissions.

  17. Identification of Aircraft Hazards

    SciTech Connect (OSTI)

    K. Ashley

    2006-12-08T23:59:59.000Z

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  18. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01T23:59:59.000Z

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  19. INTERACTIVE TABLES AND MAPS | A GLANCE AT EPA'S CUMULATIVE EXPOSURE PROJECT WEB PAGE

    E-Print Network [OSTI]

    Symanzik, Jürgen

    , Logan, UT 84322{3900, e{mail: symanzik@sunfs.math.usu.edu Key Words: Micromaps, Hazardous Air Pollutants of this Web page is to provide easy access to EPA's hazardous air pollutant (HAP) data for 1990. Concentrations of 148 air pollutants were es- timated for each of the 60,803 census tracts in the 48 contiguous

  20. Environmental Hazards and

    E-Print Network [OSTI]

    Murphy, Bob

    . 2. Pollution -Mexico. 3. Transboundary pollution. 4. Conservation of natural resources - UnitedEnvironmental Hazards and Bioresource Management in the United States- Mexico Borderlands Edited. -(Special studies ;v. 3) Includes bibliographical references. ISBN 0-87903-503-X 1. Pollution -United States

  1. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01T23:59:59.000Z

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  2. Missouri Hazardous Waste Management Law (Missouri)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

  3. Hazardous Waste Management (North Dakota)

    Broader source: Energy.gov [DOE]

    The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

  4. Montana Hazardous Waste Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

  5. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    air pollution control agency and the Department of Labor and Industries (L&I) at least ten (10) days construction and renovation projects. Asbestos is a stringently regulated hazardous material and many Construction projects which impact existing building materials must include an environmental consultant

  6. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  7. Hazard Sampling Dialog General Layout

    E-Print Network [OSTI]

    Zhang, Tao

    1 Hazard Sampling Dialog General Layout The dialog's purpose is to display information about the hazardous material being sampled by the UGV so either the system or the UV specialist can identify the risk level of the hazard. The dialog is associated with the hazmat reading icons (Table 1). Components

  8. Appendix C: Hazardous Property Assessment

    E-Print Network [OSTI]

    Siddharthan, Advaith

    Appendix C: Hazardous Property Assessment The aim of this appendix is to: · give advice on the hazards properties H1 to H14 identified in Annex III of the HWD; · provide assessment methods and threshold concentrations for the hazards; and · advise on which test methods should be considered

  9. LOG HAZARD REGRESSION Huiying Sun

    E-Print Network [OSTI]

    Heckman, Nancy E.

    LOG HAZARD REGRESSION by Huiying Sun Ph.D, Harbin Institute of Technology, Harbin, CHINA, 1991 regression splines to estimate the two log marginal hazard func­ tions of bivariate survival times, where, 1995) hazard regression for estimating a univariate survival time. We derive an approach to find

  10. Written Hazard Communication (HAZCOM) Program

    E-Print Network [OSTI]

    Jia, Songtao

    chemicals The potential hazards of chemicals in the work area How to protect yourself from these potential for their respective work areas MSDS's shall be maintained by each department for all hazardous chemicals&S office has developed several employee training modules for specific work areas and hazardous materials

  11. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

  12. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23T23:59:59.000Z

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  13. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  14. Literature Review of Air Pollution Control Biofilters and Biotrickling

    E-Print Network [OSTI]

    Literature Review of Air Pollution Control Biofilters and Biotrickling Filters for Odor Emission Standards for Hazardous Air Pollutants and Title V permitting) as well as local and state for the treatment of complex odorous waste air containing hydrogen sulfide (H2S), organic reduced sulfur com- pounds

  15. Frequency Analysis of Aircraft hazards for License Application

    SciTech Connect (OSTI)

    K. Ashley

    2006-10-24T23:59:59.000Z

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

  16. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE ProjectCrisis and RiskEnvironment AtGraduateH1N1Hazard

  17. Surveillance Guides - Identification of Hazards

    Broader source: Energy.gov (indexed) [DOE]

    Date: Facility Representative RL Facility Representative Program March 9, 1995 Surveillance Guide Revision 0 Identification of hazards Page 1 of 5...

  18. Hazardous Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    "Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may:  cause or significantly...

  19. Hazardous Substances Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The Commissioner of the Department of Agriculture has the authority to promulgate regulations declaring specified substances to be hazardous and establishing labeling, transportation, storage, and...

  20. Hazardous Waste Facilities Siting (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

  1. Hazardous Waste Transporter Permits (Connecticut)

    Broader source: Energy.gov [DOE]

    Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide information about obtaining permits and other permit...

  2. Nebraska Hazardous Waste Regulations (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

  3. HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY

    E-Print Network [OSTI]

    Calgary, University of

    HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 HAZARD ALERT ­ Reaction Manual. http://www.ucalgary.ca/safety/files/safety/LaboratoryFumeHoodUserStandard.pdf #12;HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 In the recent incident the sash was closed while

  4. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

  5. Hazardous and radioactive substances in

    E-Print Network [OSTI]

    , and a number of other organic substances, as well as some biological effects of hazardous substances. Chapter 3 substances in the marine food web ...12 1.3 Effects of hazardous substances in the marine environment ..........................................40 2.5 Other organic substances............................................

  6. Glass Formulation and Fabrication Laboratory, Building 864, Hazards assessment document

    SciTech Connect (OSTI)

    Banda, Z.; Wood, C.L.

    1995-08-01T23:59:59.000Z

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Glass Formulation and Fabrication Laboratory, Building 864. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 threshold is 96 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  7. Simulation Technology Laboratory Building 970 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.L.; Starr, M.D.

    1994-11-01T23:59:59.000Z

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  8. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a hazard to human health when the particle size becomes small enough to enter the lungs, e.g., smoke. At LANL, particulate matter concentrations are measured continuously and...

  9. Laboratory Hazard Assessment Tool UC Laboratory Hazard Assessment v11 UC Regents Page 1 of 28

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Laboratory Hazard Assessment Tool UC Laboratory Hazard Assessment v11 © UC Regents Page 1 of 28 This Laboratory Hazard Assessment Tool (LHAT) facilitates identification of hazards and identifies the Personal as hazards and personnel change, and at least once every 12 months, irrespective of changes to hazards

  10. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  11. Hazardous Waste Management Standards and Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

  12. Hazardous Waste Facility Siting Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

  13. COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD

    E-Print Network [OSTI]

    Sheehan, Anne F.

    COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado, seismic, seismicity, crust, fault, hazard ABSTRACT Construction of seismic hazard and risk maps depends upon carefully constrained input parameters including background seismicity, seismic attenuation

  14. Hazard Lewis Farms Collection Binghamton University Libraries

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Hazard Lewis Farms Collection Binghamton University Libraries Special Collections Hazard Lewis Farms Collection Finding Aid created 2012 Jean Green, Head of Special Collections, Preservation

  15. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  16. Method and apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Korenberg, Jacob (York, PA)

    1990-01-01T23:59:59.000Z

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  17. Hurricane Andrew: Impact on hazardous waste management

    SciTech Connect (OSTI)

    Kastury, S.N. (Dept. of Environmental Regulation, Tallahassee, FL (United States))

    1993-03-01T23:59:59.000Z

    On August 24, 1992, Hurricane Andrew struck the eastern coast of South Florida with winds of 140 mph approximately and a storm surge of 15 ft. The Florida Department of Environmental Regulation finds that the Hurricane Andrew caused a widespread damage throughout Dade and Collier County as well as in Broward and Monroe County and has also greatly harmed the environment. The Department has issued an emergency final order No. 92-1476 on August 26, 1992 to address the environmental cleanup and prevent any further spills of contaminants within the emergency area. The order authorizes the local government officials to designate certain locations in areas remote from habitation for the open burning in air certain incinerators of hurricane generated yard trash and construction and demolition debris. The Department staff has assisted the county and FEMA staff in establishing procedures for Hazardous Waste Management, Waste Segregation and disposal and emergency responses. Local governments have issued these burn permits to public agencies including FDOT and Corps of Engineering (COE). Several case studies will be discussed on the Hazardous Waste Management at this presentation.

  18. Maximum Achievable Control Technology for New Industrial Boilers (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    As part of Clean Air Act 90 (CAAA90, the EPA on February 26, 2004, issued a final rulethe National Emission Standards for Hazardous Air Pollutants (NESHAP) to reduce emissions of hazardous air pollutants (HAPs) from industrial, commercial, and institutional boilers and process heaters. The rule requires industrial boilers and process heaters to meet limits on HAP emissions to comply with a Maximum Achievable Control Technology (MACT) floor level of control that is the minimum level such sources must meet to comply with the rule. The major HAPs to be reduced are hydrochloric acid, hydrofluoric acid, arsenic, beryllium, cadmium, and nickel. The EPA predicts that the boiler MACT rule will reduce those HAP emissions from existing sources by about 59,000 tons per year in 2005.

  19. Hap McSween

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soil Hanford TrafficDepartmentHansDRAFT

  20. Process for removal of hazardous air pollutants from coal

    DOE Patents [OSTI]

    Akers, David J. (Indiana, PA); Ekechukwu, Kenneth N. (Silver Spring, MD); Aluko, Mobolaji E. (Burtonsville, MD); Lebowitz, Howard E. (Mountain View, CA)

    2000-01-01T23:59:59.000Z

    An improved process for removing mercury and other trace elements from coal containing pyrite by forming a slurry of finely divided coal in a liquid solvent capable of forming ions or radicals having a tendency to react with constituents of pyrite or to attack the bond between pyrite and coal and/or to react with mercury to form mercury vapors, and heating the slurry in a closed container to a temperature of at least about 50.degree. C. to produce vapors of the solvent and withdrawing vapors including solvent and mercury-containing vapors from the closed container, then separating mercury from the vapors withdrawn.

  1. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    E-Print Network [OSTI]

    Logue, J.M.

    2010-01-01T23:59:59.000Z

    etha nol tetra chl oroetha ne, 1,1,2,2- not a ppl i ca ble not a ppl i ca bl e C C/NC C C C C C NC C C hi gh hi gh hi

  2. Toxic hazards of underground excavation

    SciTech Connect (OSTI)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01T23:59:59.000Z

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  3. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    SciTech Connect (OSTI)

    R. Longwell; J. Keifer; S. Goodin

    2001-01-22T23:59:59.000Z

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

  4. Method of recycling hazardous waste

    SciTech Connect (OSTI)

    NONE

    1999-11-11T23:59:59.000Z

    The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

  5. Hazardous and Industrial Waste (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

  6. Hazardous Waste Management Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the...

  7. Hazardous Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

  8. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

    1994-06-01T23:59:59.000Z

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  9. Zevenhoven & Kilpinen List of Abbreviations 13.4.2002 Abb.-1 List of abbreviations

    E-Print Network [OSTI]

    Zevenhoven, Ron

    potential HAP Hazardous air pollutant (USA) HC Hydrocarbon HCFC Hydrogenated chlorofluorocarbon HFC carbon AF Air factor ASR Auto shredder residue ASTM American Society for Testing and Materials BaP Benzo and Development ODP Ozone-depleting potential ODS Ozoen-depleting substance OFA Over-fire air PAH Polycyclic

  10. Bulletin No. 233 Ergonomic Hazards of the

    E-Print Network [OSTI]

    Martin, Jeff

    July, 2004 Bulletin No. 233 Ergonomic Hazards of the Seated Posture Ergonomic Hazards of the Seated it is possible for these injuries to heal themselves when the ergonomic hazard is removed, cases do exist where;PAGE 2 ERGONOMIC HAZARDS of the SEATED POSTURE BULLETIN NO. 233 Ergonomic interventions to reduce

  11. LEARNERS GUIDE FOR RESPONSIBLE HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Portman, Douglas

    1 LEARNERS GUIDE FOR RESPONSIBLE HAZARDOUS CHEMICAL WASTE MANAGEMENT UNIVERSITY OF ROCHESTER the effects of improper hazardous waste management and disposal. Each person who works with hazardous is managed by the Hazardous Waste Management Unit (HWMU) of Facilities and Services. To contact HWMU dial x

  12. Hazard % free free espresso Over Run

    E-Print Network [OSTI]

    Dill, David L.

    Total Products Hazard­ Hazard­ % free free espresso­ Over­ Run­ name in/out Method exact head time 5 0 1 dme­fast­opt 5/3 8 8 0 1 Table 2. Comparison of Hazard­Free Logic Minimization with espresso­level hazard­free minimization prob­ lem for several reasons: the general problem has not pre­ viously been

  13. CONTROL OF HAZARDOUS ENERGY 12.A GENERAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Jun 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When working on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program (HECP) is required see 12.B. Hazardous energy is any energy, including but not limited to mechanical (e

  14. GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Tennessee, University of

    GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE The proper management of hazardous waste and regulatory compliance are achieved: 1. Make sure that no hazardous materials are placed into regular solid in the departmental chemical hygiene plan (CHP) before you begin to use hazardous substances. 3. Make sure you know

  15. Hazardous Materials Alert Departmental Contact(s)

    E-Print Network [OSTI]

    Hickman, Mark

    Hazardous Materials Alert Departmental Contact(s): Name ___________________________________________________________________________________ Hazardous Materials Alert If the release of a hazardous chemical or gas is affecting people in your area yourself at risk. 2. isOlATE the hazardous material by clearing the area, close the doors. If safe to do so

  16. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  17. Increasing Resiliency to Natural Hazards: A Strategic Plan for the Multi-Hazards

    E-Print Network [OSTI]

    Fleskes, Joe

    Increasing Resiliency to Natural Hazards: A Strategic Plan for the Multi-Hazards Demonstration Survey #12;#12;Increasing Resiliency to Natural Hazards--A Strategic Plan for the Multi-Hazards on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards

  18. Activity Hazard Assessment 6.0 Page 1 of 6 Activity Hazard

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Activity Hazard Assessment 6.0 Page 1 of 6 Activity Hazard Assessment Tool This form must Hazard Assessment specific to activities in their laboratories. The Activity Hazard Assessment identifies hazards to employees and specifies personal protective equipment (PPE) to protect employees during work

  19. Air Resources Laboratory The Air Resources Laboratory (ARL) is a research laboratory within the National Oceanic and Atmospheric Administration

    E-Print Network [OSTI]

    in West Texas. The data collected and analyzed by ARL will improve forecasts of winds at heights more research and development in the fields of atmospheric dispersion, air quality, climate change, and boundary of hazardous chemicals and materials; developing, evaluating, and applying air quality models; conducting

  20. Clean Air Mercury Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    On February 8, 2008, a three-judge panel on the D.C. Circuit of the U.S. Court of Appeals issued a decision to vacate the Clean Air Mercury Rule (CAMR). In its ruling, the panel cited the history of hazardous air pollutant regulation under Section 112 of the Clean Air Act (CAA). Section 112, as written by Congress, listed emitted mercury as a hazardous air pollutant that must be subject to regulation unless it can be proved harmless to public welfare and the environment. In 2000, the Environmental Protection Agency ruled that mercury was indeed hazardous and must be regulated under Section 112 and, therefore, subjected to the best available control technology for mitigation.

  1. Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 1111

    E-Print Network [OSTI]

    Rose, William I.

    Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 11111 Open-File Report 01­431Open-File Report 01

  2. INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION

    SciTech Connect (OSTI)

    R.J. Garrett

    2005-02-17T23:59:59.000Z

    The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology for this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified.

  3. A Green Laser Pointer Hazard

    E-Print Network [OSTI]

    Jemellie Galang; Allesandro Restelli; Edward W. Hagley; Charles W. Clark

    2010-08-09T23:59:59.000Z

    An inexpensive green laser pointer was found to emit 20 mW of infrared radiation during normal use. This is potentially a serious hazard that would not be noticed by most users of such pointers. We find that this infrared emission derives from the design of the pointer, and describe a simple method of testing for infrared emissions using common household items.

  4. WHC fire hazards analysis policy

    SciTech Connect (OSTI)

    Evans, C.B.

    1994-04-01T23:59:59.000Z

    The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

  5. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    E-Print Network [OSTI]

    Jones, Robert; Wills, Brandon; Kang, Christopher

    2010-01-01T23:59:59.000Z

    Chlorine Gas: An Evolving Hazardous Material Threat andChlorine gas represents a hazardous material threat fromrepresents a persistent hazardous material (HAZMAT) threat.

  6. Owning Hazard, A Tragedy Barbara Young Welke*

    E-Print Network [OSTI]

    Barrett, Jeffrey A.

    693 Owning Hazard, A Tragedy Barbara Young Welke* In Memory of Frances Young Welke (March 21, 1992 in the ownership of hazard from the individuals who suffered injury, to the enterprises involved in manufacturing

  7. Georgia Hazardous Site Response Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Site Response Act is Georgia’s version of Superfund. The Act provides for graduated fees on the disposal of hazardous waste, a trust fund to enable the EPD to clean up or plan...

  8. Massachusetts Hazardous Waste Management Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

  9. Oklahoma Hazardous Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility...

  10. D-Area Preliminary Hazards Analysis

    SciTech Connect (OSTI)

    Blanchard, A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Paik, I.R. [Westinghouse Safety Management Solutions, , ()

    1998-04-01T23:59:59.000Z

    A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

  11. CONTROL OF HAZARDOUS ENERGY Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 12 CONTROL OF HAZARDOUS ENERGY Table Of Contents Section: Page 12.A General.................. .............................................. ... .12-1 12.B Hazardous Energy.......................................................12-6 #12;EM 385-1-1 XX Sep 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When

  12. Hazard & Disaster Management College of Science

    E-Print Network [OSTI]

    Hickman, Mark

    Hazard & Disaster Management College of Science 09 For further information about the University Postgraduate Programmes #12;PostgraduateProgrammes in Hazard & Disaster Management Postgraduate Diploma - BSc by risk management. These programmes aim to develop skills of hazard and disaster management through

  13. Hazard Communication Program 1.0 REFERENCE

    E-Print Network [OSTI]

    de Lijser, Peter

    Hazard Communication Program 1.0 REFERENCE California Code of Regulations, Title 8, Sections 337 the properties and potential safety and health hazards of the materials which they use or to which they are exposed. Employees who use or may be exposed to potentially hazardous substances or harmful physical

  14. University of Florida Hazard Communication Program

    E-Print Network [OSTI]

    Slatton, Clint

    in the following areas with regard to the inventoried hazardous chemicals to which I am exposed: a. The chemical involving them in my work area. c. The proper and safe handling of the hazardous chemicals. d. The location chemicals. f. The physical and health hazards of the chemicals in my work area. g. Methods to protect myself

  15. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  16. HAZARDOUS DRUG SAFETY AND HEALTH PLAN FOR HANDLING ANTINEOPLASTIC OTHER HAZARDOUS DRUGS IN CLINICAL ENVIRONMENTS

    E-Print Network [OSTI]

    Kim, Duck O.

    containers, pickup hazardous drug waste and provide chemo spill kits to appropriate areas. The OfficeHAZARDOUS DRUG SAFETY AND HEALTH PLAN FOR HANDLING ANTINEOPLASTIC AND OTHER HAZARDOUS DRUGS, administration and disposal of drug residues. Drugs are classified as hazardous if studies in animals and

  17. Solar Processes for the Destruction of Hazardous Chemicals

    SciTech Connect (OSTI)

    Blake, D. M.

    1993-06-01T23:59:59.000Z

    Solar technologies are being developed to address a wide range of environmental problems. Sunlight plays a role in the passive destruction of hazardous substances in soil, water, and air. Development of processes that use solar energy to remediate environmental problems or to treat process wastes is underway in laboratories around the world. This paper reviews progress in understanding the role of solar photochemistry in removing man-made chemicals from the environment, and developing technology that uses solar photochemistry for this purpose in an efficient manner.

  18. Hazard Avoidance in Wireless Sensor and Actor Networks

    E-Print Network [OSTI]

    Sivakumar, Raghupathy

    Hazard Avoidance in Wireless Sensor and Actor Networks Ramanuja Vedantham Zhenyun Zhuang Prof [Akyildiz'04] Network Low bandwidth (Hazards Hazards undesirable changes in the environment Reason for hazards Different latencies For different sensors and actors

  19. Canister Storage Building (CSB) Hazard Analysis Report

    SciTech Connect (OSTI)

    POWERS, T.B.

    2000-03-16T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.

  20. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K.; Grey, Alan E.

    1994-04-05T23:59:59.000Z

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  1. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  2. Training for hazardous waste workers

    SciTech Connect (OSTI)

    Favel, K.

    1990-10-26T23:59:59.000Z

    This implementation plan describes the system and provides the information and schedules that are necessary to comply with the Department of Energy (DOE) Albuquerque Operations Office (AL) Memorandum, Reference EPD dated September 11, 1990, Training for Hazardous Waste Workers. The memo establishes the need for identifying employees requiring environmental training, ensuring that the training is received, and meeting documentation and recordkeeping requirements for the training.

  3. Hazardous materials in Fresh Kills landfill

    SciTech Connect (OSTI)

    Hirschhorn, J.S. [Hirschhorn and Associates, Wheaton, MD (United States)

    1997-12-31T23:59:59.000Z

    No environmental monitoring and corrective action programs can pinpoint multiple locations of hazardous materials the total amount of them in a large landfill. Yet the consequences of hazardous materials in MSW landfills are considerable, in terms of public health concerns, environmental damage, and cleanup costs. In this paper a rough estimation is made of how much hazardous material may have been disposed in Fresh Kills landfill in Staten Island, New York. The logic and methods could be used for other MSW landfills. Fresh Kills has frequently been described as the world`s largest MSW landfill. While records of hazardous waste disposal at Fresh Kills over nearly 50 years of operation certainly do not exist, no reasonable person would argue with the conclusion that large quantities of hazardous waste surely have been disposed at Fresh Kills, both legally and illegally. This study found that at least 2 million tons of hazardous wastes and substances have been disposed at Fresh Kills since 1948. Major sources are: household hazardous waste, commercial RCRA hazardous waste, incinerator ash, and commercial non-RCRA hazardous waste, governmental RCRA hazardous waste. Illegal disposal of hazardous waste surely has contributed even more. This is a sufficient amount to cause serious environmental contamination and releases, especially from such a landfill without an engineered liner system, for example. This figure is roughly 1% of the total amount of waste disposed in Fresh Kills since 1948, probably at least 200 million tons.

  4. Hazard Labeling Elements 1. Product identifier: how the hazardous chemical is identified. This can be (but is not

    E-Print Network [OSTI]

    Chapman, Michael S.

    Hazard Labeling Elements 1. Product identifier: how the hazardous chemical is identified. This can of severity of hazard and alert the reader to a potential hazard on the label. There are only two signal words, "Danger" and "Warning." Within a specific hazard class, "Danger" is used for the more severe hazards

  5. Hazards assessment for the INEL Landfill Complex

    SciTech Connect (OSTI)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01T23:59:59.000Z

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment.

  6. Air Quality: Construction Project Air Permit Requirements

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Air Quality: Construction Project Air Permit Requirements Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 All manager or operator must submit the completed form to the air quality program manager before the project

  7. 2010 LANL radionuclide air emissions report /

    SciTech Connect (OSTI)

    Fuehne, David P.

    2011-06-01T23:59:59.000Z

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  8. NGNP SITE 2 HAZARDS ASSESSMENT

    SciTech Connect (OSTI)

    Wayne Moe

    2011-10-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

  9. Hazardous and Radioactive Mixed Waste

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-12-31T23:59:59.000Z

    To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

  10. Mission Support Alliance, LLC Volpentest Hazardous Materials...

    Broader source: Energy.gov (indexed) [DOE]

    should use caution to preclude an overreliance on individual expertise and ensure hazard analysis procedures and policies are fully integrated into the systematic approach...

  11. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    POWERS, T.B.

    1999-05-11T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''.

  12. Identification of Hazards, 3/9/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs.  Surveillance activities encompass maintenance and implementation of safety...

  13. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo...

  14. Hazards Control, 3/9/35

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's programs and policy for establishing controls to mitigate hazards affecting the public, worker, and...

  15. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30T23:59:59.000Z

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  16. Hazardous Material Transportation Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

  17. Fire hazards analysis of central waste complex

    SciTech Connect (OSTI)

    Irwin, R.M.

    1996-05-30T23:59:59.000Z

    This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  18. BNL | CFN: Transport of Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation of Hazardous Materials and Nanomaterials The following contains guidance for transporting materials to and from BNL and for on-site transfers. All staff and users...

  19. DC Hazardous Waste Management (District of Columbia)

    Broader source: Energy.gov [DOE]

    This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

  20. Hazardous Waste Management System-General (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

  1. Chapter 38 Hazardous Waste Permitting Process (Kentucky)

    Broader source: Energy.gov [DOE]

    This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements...

  2. Hazardous Waste Minimum Distance Requirements (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste and other land uses. The regulations require an...

  3. Louisiana Hazardous Waste Control Law (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

  4. Hazardous Liquid Pipelines and Storage Facilities (Iowa)

    Broader source: Energy.gov [DOE]

    This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

  5. Extremely Hazardous Substances Risk Management Act (Delaware)

    Broader source: Energy.gov [DOE]

    This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

  6. Oil and Hazardous Substance Discharge Preparedness (Minnesota)

    Broader source: Energy.gov [DOE]

    Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

  7. Air Pollution (Illinois)

    Broader source: Energy.gov [DOE]

    This article states regulations for monitoring air pollution, methods for permit applications, emission limitations for pollutants and air quality standards.

  8. Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 Identification of Hazardous Chemical Waste

    E-Print Network [OSTI]

    Ford, James

    Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 · Identification of Hazardous Chemical Waste OBJECTIVES Do you know how to do the following? If you do, skip ahead to Minimization of Hazardous Waste section. If you do not, continue on in this section. · Determine whether

  9. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOE Patents [OSTI]

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23T23:59:59.000Z

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  10. Comparison of Hazard Analysisp y Requirements of I&C

    E-Print Network [OSTI]

    ) M di l D i A id tShip Accident (Ferry Sewol) Medical Device Accident (Therac-25) 3 NPP Accident­ Software Fault Tree Analysis ­ By AECL, Nancy Leveson Name of Software Hazards No % Remarks For construct hazard 4 7For construct hazard 4 7 Initialization hazard 4 7 IF-THEN-ELSE construct hazard 38 67 CASE

  11. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    None

    1981-12-01T23:59:59.000Z

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  12. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Oliver, Douglas L.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Officer Biological (Accident Reports) 2204 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN (CHP) (4/2007) 1

  13. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Clinical Engineering 2964 #12;TABLE OF CONTENTS CHEMICAL HYGIENE

  14. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN

  15. Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS

    E-Print Network [OSTI]

    Kääb, Andreas

    and other forms of creeping mountain permafrost may be the source of a number of hazards. Rock glaciers of large rock avalanche disasters are examples of mountain hazards. In the case of the September 20, 2002, rock-ice avalanche at Kolka-Karmadon in the Russian Caucasus, a combined rock-ice avalanche

  16. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  17. Why is Eastern Redcedar a Hazardous Fuel?

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Why is Eastern Redcedar a Hazardous Fuel? Why is Eastern Redcedar a Hazardous Fuel? Homes built the destruction of fire-tolerant trees if a wildfire moves through the area. Creating fuel breaks (such ignite it. · When ERC grows in forests and wood- lands, it acts as a ladder fuel to allow fire to climb

  18. Technical basis document for natural event hazards

    SciTech Connect (OSTI)

    CARSON, D.M.

    2003-08-28T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls This report documents the technical basis for assigning risk bins for Natural Event Hazards Representative Accident and associated represented hazardous conditions.

  19. Ventura County hazardous waste minimization program

    SciTech Connect (OSTI)

    Hanlon, D.A.; Koepp, D.W.

    1987-05-01T23:59:59.000Z

    In 1985, Ventura County Environmental Health Department began a technical assistance program to encourage hazardous waste generators to reduce their dependence on land disposal. In order to accomplish this, information from the California State Hazardous Waste Manifest Information System was analyzed to identify the types, quantities and disposition of hazardous waste produced by companies in Ventura County. All generators that rely on land disposal were also surveyed to determine future waste management plans. Waste audits were conducted at each site to determine if alternative waste handling methods were feasible and to ensure that reuse, recycling and waste reduction methods are used when possible. This article summarizes these findings and projects future hazardous waste generation and disposal patterns for industries in Ventura County. It also identifies barriers to volume reduction and provides a framework for future local hazardous waste alternative technology/volume reduction program activities.

  20. Nat. Hazards Earth Syst. Sci., 8, 577586, 2008 www.nat-hazards-earth-syst-sci.net/8/577/2008/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 8, 577­586, 2008 www.nat-hazards-earth-syst-sci.net/8 Hazards and Earth System Sciences Integrated approach for coastal hazards and risks in Sri Lanka M. Garcin the importance of knowledge and the taking into account of coastal hazards. Sri Lanka was one of the countries

  1. Nat. Hazards Earth Syst. Sci., 6, 553561, 2006 www.nat-hazards-earth-syst-sci.net/6/553/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 553­561, 2006 www.nat-hazards-earth-syst-sci.net/6/553/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Introduction Risk consists of hazard and vulnerability. We can define "hazard" like "a threatening event

  2. Nat. Hazards Earth Syst. Sci., 6, 637651, 2006 www.nat-hazards-earth-syst-sci.net/6/637/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 637­651, 2006 www.nat-hazards-earth-syst-sci.net/6/637/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Hazards and Landscape (BFW), Department of Natural Hazards and Alpine Timberline, Innsbruck, Austria 3

  3. Hazard Priority and Remediation Hazards are prioritized according to the severity of the resulting injury, potential damage, and the

    E-Print Network [OSTI]

    de Lijser, Peter

    Hazard Priority and Remediation Hazards are prioritized according to the severity of the resulting injury, potential damage, and the probability of occurrence. Imminent and serious procedures or hazards Description Correction Date 1 EMERGENCY HAZARD Emergency Hazards threaten life safety or health, property

  4. Sustainable System for Residual Hazards Management

    SciTech Connect (OSTI)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-06-01T23:59:59.000Z

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today’s waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous longterm management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by externalintrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the longterm success of the prescribed system. In fact, given that society has become more reliant on and confident of engineered controls, there may be a growing tendency to be even less concerned with institutional controls.

  5. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Environmental Management (EM)

    of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous...

  6. Uintah -a scalable framework for hazard analysis Martin Berzins

    E-Print Network [OSTI]

    Utah, University of

    Uintah - a scalable framework for hazard analysis Martin Berzins Scientific Computing and Imaging of Uintah to a petascale problem in hazard analysis arising from "sympathetic" explosions in which. Devices containing such materials undergo extensive testing for hazard classification prior

  7. A Hazardous Inquiry: The Rashomon Effect at Love Canal

    E-Print Network [OSTI]

    Fortunato, Mary Beth

    2000-01-01T23:59:59.000Z

    Review: A Hazardous Inquiry: The Rashomon Effect at LoveUSA Mazur, Allan. A Hazardous Inquiry: The Rashomon EffectISBN 0674748336. A Hazardous Inquiry: The Rashomon Effect at

  8. Judging Hazard from Native Trees in California Recreational Areas

    E-Print Network [OSTI]

    Standiford, Richard B.

    Judging Hazard from Native Trees in California Recreational Areas : - -a Guide for Professional;Introduction . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .The Problem of Hazard 1 Weather and Hazard . . . . . . . . . . . . . . 5 Types and Classes of Rot . . . . . 6 . . . . . . . . . . . .Trunk

  9. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Air emissions standards, updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module provides a regulatory overview of the RCRA air emission standards as they apply to hazardous waste facilities. It outlines the history of RCRA air emission standards as well as the air emission controls required by the standards. It explains the differences between the parts 264/265, Subpart AA BB, CC, air emission standards and summarizes the requirements of each of these Subparts. It identifies the types of units subject to these requirements as well as specific exemptions.

  10. Hazardous constituent source term. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-11-17T23:59:59.000Z

    The Department of Energy (DOE) has several facilities that either generate and/or store transuranic (TRU)-waste from weapons program research and production. Much of this waste also contains hazardous waste constituents as regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Toxicity characteristic metals in the waste principally include lead, occurring in leaded rubber gloves and shielding. Other RCRA metals may occur as contaminants in pyrochemical salt, soil, debris, and sludge and solidified liquids, as well as in equipment resulting from decontamination and decommissioning activities. Volatile organic compounds (VOCS) contaminate many waste forms as a residue adsorbed on surfaces or occur in sludge and solidified liquids. Due to the presence of these hazardous constituents, applicable disposal regulations include land disposal restrictions established by Hazardous and Solid Waste Amendments (HSWA). The DOE plans to dispose of TRU-mixed waste from the weapons program in the Waste Isolation Pilot Plant (WIPP) by demonstrating no-migration of hazardous constituents. This paper documents the current technical basis for methodologies proposed to develop a post-closure RCRA hazardous constituent source term. For the purposes of demonstrating no-migration, the hazardous constituent source term is defined as the quantities of hazardous constituents that are available for transport after repository closure. Development of the source term is only one of several activities that will be involved in the no-migration demonstration. The demonstration will also include uncertainty and sensitivity analyses of contaminant transport.

  11. New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...

    Office of Environmental Management (EM)

    National Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a free Web-based tool that can quickly calculate potential visual hazards from proposed solar...

  12. airflow hazard visualization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    257 Brookhaven National Laboratory LIGHT SOURCES DIRECTORATE Subject: Building 725 Fire Hazard AnalysisFire Hazard Assessment Physics Websites Summary: Brookhaven National...

  13. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  14. A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...

    Open Energy Info (EERE)

    atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than...

  15. Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations is to help maintain accountability and track data on the hazardous and nonhazardous waste sites in...

  16. October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday...

    Office of Environmental Management (EM)

    Seismic Hazard Analysis for Nuclear Facilities at the Hanford Site, Eastern Washington, USA Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook A Probabilistic Approach to...

  17. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis...

    Office of Environmental Management (EM)

    SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East...

  18. Sandia National Laboratories: Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glare Hazard Analysis Tool Solar Glare Hazard Analysis Tool Available for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar...

  19. Assessment of Health Hazards of Repeated Inhalation of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

  20. Protecting the Grid from All Hazards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protecting the Grid from All Hazards Protecting the Grid from All Hazards October 31, 2014 - 2:10pm Addthis Patricia Hoffman Patricia Hoffman Assistant Secretary The Energy...

  1. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  2. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  3. WESF natural phenomena hazards survey

    SciTech Connect (OSTI)

    Wagenblast, G.R., Westinghouse Hanford

    1996-07-01T23:59:59.000Z

    A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

  4. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

    1992-01-01T23:59:59.000Z

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  5. Hazardous Waste Compliance Program Plan

    SciTech Connect (OSTI)

    Potter, G.L.; Holstein, K.A.

    1994-05-01T23:59:59.000Z

    The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

  6. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17T23:59:59.000Z

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  7. 283-E and 283-W hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-26T23:59:59.000Z

    This report documents the hazards assessment for the 200 area water treatment plants 283-E and 283-W located on the US DOE Hanford Site. Operation of the water treatment plants is the responsibility of ICF Kaiser Hanford Company (ICF KH). This hazards assessment was conducted to provide emergency planning technical basis for the water treatment plants. This document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A which requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  8. Hazards Control Department annual technology review, 1987

    SciTech Connect (OSTI)

    Griffith, R.V.; Anderson, K.J. (eds.)

    1988-07-01T23:59:59.000Z

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  9. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

    1999-01-01T23:59:59.000Z

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  10. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12T23:59:59.000Z

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  11. Design characteristics for facilities which process hazardous particulate

    SciTech Connect (OSTI)

    Abeln, S.P.; Creek, K.; Salisbury, S.

    1998-12-01T23:59:59.000Z

    Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

  12. Air temperature thresholds for indoor comfort and perceived air quality

    E-Print Network [OSTI]

    Zhang, Hui; Edward, Arens; Pasut, Wilmer

    2012-01-01T23:59:59.000Z

    system on perceived air quality, Indoor Air 2008, August 17-perception of indoor air quality during immediate and longeraddressing indoor air quality, thermal environment, lighting

  13. Air temperature thresholds for indoor comfort and perceived air quality

    E-Print Network [OSTI]

    Zhang, Hui; Edward, Arens; Pasut, Wilmer

    2012-01-01T23:59:59.000Z

    in the Netherlands, Indoor Air 2, 127 – 136. BuildingPaliaga, G. (2009) Moving air for comfort. ASHRAE Journal,ventilation system on perceived air quality, Indoor Air

  14. Feasibility of air capture

    E-Print Network [OSTI]

    Ranjan, Manya

    2010-01-01T23:59:59.000Z

    Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

  15. Moving air for comfort

    E-Print Network [OSTI]

    Arens, Edward; Turner, Stephen; Zhang, Hui; Paliaga, Gwelen

    2009-01-01T23:59:59.000Z

    Brager, L. Zagreus. 2007, “Air movement preferences observed709-731. 9. Toftum, J. 2004. “Air movement – good or bad? ”Indoor Air 14, pp 40-45. 10. Gong, N. , K. Tham, A. Melikov,

  16. Hazards Control Department 1995 annual report

    SciTech Connect (OSTI)

    Campbell, G.W.

    1996-09-19T23:59:59.000Z

    This annual report of the Hazards Control Department activities in 1995 is part of the department`s efforts to foster a working environment at Lawrence Livermore National Laboratory (LLNL) where every person desire to work safely.

  17. Rainfall-induced Landslide Hazard Rating System

    E-Print Network [OSTI]

    Chen, Yi-Ting, Civ. E., Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    This research develops a Landslide Hazard Rating System for the rainfall-induced landslides in the Chenyulan River basin area in central Taiwan. This system is designed to provide a simplified and quick evaluation of the ...

  18. Hazardous materials transportation and emergency response programs

    SciTech Connect (OSTI)

    Joy, D.S.; Fore, C.S.

    1983-01-01T23:59:59.000Z

    This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY).

  19. Wireless, automated monitoring for potential landslide hazards 

    E-Print Network [OSTI]

    Garich, Evan Andrew

    2007-09-17T23:59:59.000Z

    . Commercially available soil moisture probes and soil tilt sensors were combined with low-power, wireless data transmitters to form a self-configuring network of soil monitoring sensors. The remote locations of many slope stability hazard sites eliminates...

  20. Improving Tamper Detection for Hazardous Waste Security

    SciTech Connect (OSTI)

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-02-26T23:59:59.000Z

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

  1. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    Richard C. Logan

    2002-03-28T23:59:59.000Z

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

  2. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    J. L. Kubicek

    2001-09-07T23:59:59.000Z

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

  3. Massachusetts Hazardous Waste Facility Siting Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct,...

  4. Hazardous Waste Management Act (South Dakota)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive...

  5. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20T23:59:59.000Z

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  6. Oil or Hazardous Spills Releases Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Oil or Hazardous Spills Law requires notice to the Environmental Protection Division of the State Department of Natural Resources Emergency Operations Center when there is a spill or release of...

  7. Technical basis document for natural event hazards

    SciTech Connect (OSTI)

    CARSON, D.M.

    2003-03-20T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for natural event hazards (NEH)-initiated representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  8. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  9. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  10. Hazard Baseline Downgrade Effluent Treatment Facility

    SciTech Connect (OSTI)

    Blanchard, A.

    1998-10-21T23:59:59.000Z

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility.

  11. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.; Garvin, L.J.

    1997-07-01T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  12. Advanced Technology for Railway Hydraulic Hazard Forecasting

    E-Print Network [OSTI]

    Huff, William Edward 1988-

    2012-12-05T23:59:59.000Z

    Page 1.1 Map of Total Railway Hydraulic Hazard Events from 1982-2011 ............ 2 1.2 90 mi Effective Radar Coverage for Reliable Rainfall Rate Determination ....................................................................... 5 3... Administration (FRA) for the period of 1982-2011. This data was compiled from the FRA Office of Safety Analysis website (FRA, 2011). A map of the railway hydraulic hazard events over the same time period is displayed in Figure 1.1. Table 1.1. U.S. Railway...

  13. Air Pollution Control (Oklahoma)

    Broader source: Energy.gov [DOE]

    This chapter enumerates primary and secondary ambient air quality standards and the significant deterioration increments. Significant deterioration refers to an increase in ambient air pollution...

  14. Primary zone air proportioner

    DOE Patents [OSTI]

    Cleary, Edward N. G. (San Diego, CA)

    1982-10-12T23:59:59.000Z

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  15. The University of Texas at Dallas Texas Hazardous Communication Act

    E-Print Network [OSTI]

    O'Toole, Alice J.

    The University of Texas at Dallas Texas Hazardous Communication Act Handbook #12;TEXAS HAZARDOUS IV. Texas Hazard Communication Act Exemptions V. Implementation A. Employee Rights Under the Act Explanation IX. Written Hazard Communication Program A. Manufacturers' Labels and Other Forms of Warning B

  16. Hazardous Material Code Identification NFPA 704, 1996 Edition

    E-Print Network [OSTI]

    Slatton, Clint

    Hazardous Material Code Identification NFPA 704, 1996 Edition Identification of Health Hazard Color offer no hazard. 00 Materials that will not burn. 00 Materials that in themselves are normally stable DAMAGE TO LIVING TISSUE. MATERIALS POSSESSING RADIOACTIVITY HAZARDS. The identification systems

  17. NIH POLICY MANUAL 3034 -Working with Hazardous Materials

    E-Print Network [OSTI]

    Bandettini, Peter A.

    NIH POLICY MANUAL 3034 - Working with Hazardous Materials Issuing Office: ORS/DOHS (301) 496 and procedure governing work with hazardous chemicals as described in the NIH Hazard Communication Program page. A. Purpose: This chapter establishes the NIH policy for working with hazardous chemicals

  18. General Safety Guidelines for Bio-Hazardous Waste Disposal

    E-Print Network [OSTI]

    Holland, Jeffrey

    General Safety Guidelines for Bio-Hazardous Waste Disposal · Determine if you have a Bio-Hazardous, cell cultures, Petri dishes, and etc. NOT fitting the category 1 description. · ALL BIO-HAZARDOUS WASTE OF CATEGORY 1 NEEDS TO BE TREATED BY AUTOCLAVE OR WITH HIV/HBV KILLING AGENT BEFORE PICK-UP · Bio-hazardous

  19. Hazard Communication -Regulatory Compliance 1/17/2013 a

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Hazard Communication - Regulatory Compliance 1/17/2013 a OSHA has updated their Hazard Communication Standard (29 CFR 1910.1200) and requires that all employees that work with Hazardous Chemicals this standard applies are required to receive an updated training as new chemical hazards are introduced

  20. University of Twente hazardous wast regulations 1 Introduction

    E-Print Network [OSTI]

    Twente, Universiteit

    1 University of Twente hazardous wast regulations 1 Introduction Effective from June 2011 the collection of hazardous waste has been outsourced to van Gansewinkel. The hazardous waste is collected that the hazardous waste is to be offered directly to the collector by the parties offering waste at a designated

  1. Hazardous Waste Management Compliance Guidelines INTRODUCTION AND SCOPE

    E-Print Network [OSTI]

    Reisslein, Martin

    Hazardous Waste Management Compliance Guidelines INTRODUCTION AND SCOPE Arizona State University Management, generate a variety of hazardous chemical wastes. ASU is classified as a hazardous waste generator) and has been assigned an EPA identification number (AZD042017723). As a hazardous waste generator facility

  2. NIH POLICY MANUAL 3015 -Admittance of Minors to Hazardous Areas

    E-Print Network [OSTI]

    Bandettini, Peter A.

    NIH POLICY MANUAL 3015 - Admittance of Minors to Hazardous Areas Issuing Office: OD/OM/ORS/DOHS 301 on admittance of minors to hazardous work areas that may contain inherently or potentially hazardous chemicals. Definitions: 1. Hazardous Area ­ Any area that poses an actual or potential risk of illness or injury

  3. Rules and Regulations for Hazardous Waste Management (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

  4. Hanford Site air operating permit application

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  5. AiR surface: AiR surface 1

    E-Print Network [OSTI]

    Tanaka, Jiro

    AiR surface: 1 PDA AiR surface 1 1: AiR surface () () 2 [1] [2] 3 AiR surface AiR surface surface surface surface 3.1 surface [3]( 3 ) surface 3.2 surface surface AiR surface 4 AiR surface surface AiR surface: Virtual Touch Panel

  6. Nat. Hazards Earth Syst. Sci., 7, 607614, 2007 www.nat-hazards-earth-syst-sci.net/7/607/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 607­614, 2007 www.nat-hazards-earth-syst-sci.net/7/607/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences A probabilistic approach for earthquake hazard assessment of the Province of Eskis¸ehir, Turkey A

  7. Nat. Hazards Earth Syst. Sci., 13, 11431158, 2013 www.nat-hazards-earth-syst-sci.net/13/1143/2013/

    E-Print Network [OSTI]

    Wu, Yih-Min

    Nat. Hazards Earth Syst. Sci., 13, 1143­1158, 2013 www.nat-hazards-earth-syst-sci.net/13 Hazards and Earth System Sciences OpenAccess G Atmospheric Chemistry and Physics OpenAccess Atmospheric OpenAcces Time-dependent probabilistic seismic hazard assessment and its application to Hualien City

  8. Nat. Hazards Earth Syst. Sci., 6, 471483, 2006 www.nat-hazards-earth-syst-sci.net/6/471/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 471­483, 2006 www.nat-hazards-earth-syst-sci.net/6/471/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Integrating public risk perception into formal natural hazard risk assessment Th. Plattner1, T

  9. Nat. Hazards Earth Syst. Sci., 8, 539558, 2008 www.nat-hazards-earth-syst-sci.net/8/539/2008/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 8, 539­558, 2008 www.nat-hazards-earth-syst-sci.net/8 Hazards and Earth System Sciences Spatial variability and potential impacts of climate change on flood and debris flow hazard zone mapping and implications for risk management H. Staffler1, R. Pollinger2, A

  10. Nat. Hazards Earth Syst. Sci., 7, 283288, 2007 www.nat-hazards-earth-syst-sci.net/7/283/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 283­288, 2007 www.nat-hazards-earth-syst-sci.net/7/283/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Physical vulnerability modelling in natural hazard risk assessment J. Douglas BRGM ­ ARN/RIS, 3

  11. Nat. Hazards Earth Syst. Sci., 7, 495506, 2007 www.nat-hazards-earth-syst-sci.net/7/495/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 495­506, 2007 www.nat-hazards-earth-syst-sci.net/7/495/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System as a function of the hazard, the elements at risk and the vul- nerability. From a natural sciences perspective

  12. Nat. Hazards Earth Syst. Sci., 6, 293302, 2006 www.nat-hazards-earth-syst-sci.net/6/293/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 293­302, 2006 www.nat-hazards-earth-syst-sci.net/6/293/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences A conceptual approach to the use of Cost Benefit and Multi Criteria Analysis in natural hazard

  13. Nat. Hazards Earth Syst. Sci., 6, 185193, 2006 www.nat-hazards-earth-syst-sci.net/6/185/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 185­193, 2006 www.nat-hazards-earth-syst-sci.net/6/185/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Geomorphological mapping and geophysical profiling for the evaluation of natural hazards

  14. Nat. Hazards Earth Syst. Sci., 7, 185193, 2007 www.nat-hazards-earth-syst-sci.net/7/185/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 185­193, 2007 www.nat-hazards-earth-syst-sci.net/7/185/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Validation of landslide hazard assessment by means of GPS monitoring technique ­ a case study

  15. Air Pollution Spring 2010

    E-Print Network [OSTI]

    ATS 555 Air Pollution Spring 2010 T Th 11:00 ­ 12:15, NESB 101 Instructor: Prof. Sonia Kreidenweis an understanding of types and sources of air pollution. 2. Examine concentrations of air pollutants and their effects on health and welfare. Review regulations governing air pollution. 3. Examine the meteorological

  16. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOE Patents [OSTI]

    Wasserman, Stephen R. (Darien, IL); Anderson, Kenneth B. (Lisle, IL); Song, Kang (Woodridge, IL); Yuchs, Steven E. (Naperville, IL); Marshall, Christopher L. (Naperville, IL)

    1998-01-01T23:59:59.000Z

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  17. Hazardous waste Interpretation of the definition and classification of hazardous waste

    E-Print Network [OSTI]

    Siddharthan, Advaith

    Hazardous waste Interpretation of the definition and classification of hazardous waste www Scottish Environment Protection Agency Environment and Heritage Service Rio House Corporate Office Waste.environment-agency.gov.uk www.sepa.org.uk www.ehsni.gov.uk © Environment Agency 2005 ISBN: 1 84432 454 0 An electronic pdf

  18. Waste Stream Disposal Pharmacy Quick Sheet (6/16/14) Also pharmacy employees must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous Additional Waste

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Additional Waste Disposal Location Green Bins for Non-hazardous waste Black Bins must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous for Hazardous Waste Yellow Trace Chemo Disposal Bin Red Sharps Bins Red

  19. Repository Subsurface Preliminary Fire Hazard Analysis

    SciTech Connect (OSTI)

    Richard C. Logan

    2001-07-30T23:59:59.000Z

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

  20. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2006-07-31T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  1. New environmental regulation for the aerospace industry: The aerospace NESHAP

    SciTech Connect (OSTI)

    Bauer, J.P.; Gampper, B.P. [Brusn and McDonnell Waste Consultants, Inc., Kansas City, MO (United States); Baker, J.M. [Raytheon Aircraft Co., Wichita, KS (United States)

    1997-12-31T23:59:59.000Z

    40 CFR Part 63, Subpart GG, the National Emission Standard for Hazardous Air Pollutants for Aerospace Manufacturing and Rework Facilities, commonly referred to as the Aerospace NESHAP, was issued on September 1, 1995 and requires compliance by September 1, 1998. The regulation affects any facility that manufactures or reworks commercial, civil, or military aircraft vehicles or components and is a major source of Hazardous Air Pollutants (HAPs). The regulation targets reducing Volatile Organic Compound (VOC) and Hazardous Air Pollutant (HAP) emissions to the atmosphere. Processes affected by the new regulation include aircraft painting, paint stripping, chemical milling masking, solvent cleaning, and spray gun cleaning. Regulatory requirements affecting these processes are summarized, and different compliance options compared in terms of cost-effectiveness and industry acceptance. Strategies to reduce compliance costs and minimize recordkeeping burdens are also presented.

  2. Robots, systems, and methods for hazard evaluation and visualization

    DOE Patents [OSTI]

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15T23:59:59.000Z

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  3. Hazard Classification for Fuel Supply Shutdown Facility

    SciTech Connect (OSTI)

    BENECKE, M.W.

    2000-09-07T23:59:59.000Z

    Final hazard classification for the 300 Area N Reactor fuel storage facility resulted in the assignment of Nuclear Facility Hazard Category 3 for the uranium metal fuel and feed material storage buildings (303-A, 303-B, 303-G, 3712, and 3716). Radiological for the residual uranium and thorium oxide storage building and an empty former fuel storage building that may be used for limited radioactive material storage in the future (303-K/3707-G, and 303-E), and Industrial for the remainder of the Fuel Supply Shutdown buildings (303-F/311 Tank Farm, 303-M, 313-S, 333, 334 and Tank Farm, 334-A, and MO-052).

  4. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01T23:59:59.000Z

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  5. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  6. PPE Certification of Hazard Assessment Dept: Area: Job Classification/Task

    E-Print Network [OSTI]

    Slatton, Clint

    PPE 7 Appendix A PPE Certification of Hazard Assessment Dept: Area: Job Classification/Task: HAZARDS (Circle Hazards) Describe Specific Hazards Identify Type of PPE Required for the Hazards Eye Hazard Impact Penetration Dust Chemical Radiation Heat Bioaerosols Projectiles Head Hazard Burn Electric

  7. RCRA, superfund and EPCRA hotline training module. Introduction to: Air emission standards (40 cfr parts 264/265, subparts aa, bb, and cc) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module provides a regulatory overview of the RCRA air emission standards as they apply to hazardous waste facilities. It outlines the history of RCRA air emission standards as well as the air emission controls required by the standards. It explains the difference in the parts 264/265 and subparts AA, BB and CC, air emission standards. It summarizes the requirements of each of these subparts and identifies the types of units subject to these requirements as well as specific exemptions.

  8. Hazard Communication Standard Pictogram As of June 1, 2015, the Hazard Communication Standard (HCS) will require pictograms on labels to alert users of the chemical

    E-Print Network [OSTI]

    Hazard Communication Standard Pictogram As of June 1, 2015, the Hazard Communication Standard (HCS) will require pictograms on labels to alert users of the chemical hazards to which they may be exposed. Each hazard(s). The pictogram on the label is determined by the chemical hazard classification. HCS Pictograms

  9. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    SciTech Connect (OSTI)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01T23:59:59.000Z

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

  10. air temperature air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air temperatures... conditions. The design of this study was based on the relation- ship of four parameters: air temperature, air velocity, radiant heat, and globe...

  11. Mobile Source Air Toxics Rule (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    On February 9, 2007, the Environmental Protection Agency (EPA) released its MSAT2 rule, which will establish controls on gasoline, passenger vehicles, and portable fuel containers. The controls are designed to reduce emissions of benzene and other hazardous air pollutants. Benzene is a known carcinogen, and the EPA estimates that mobile sources produced more than 70% of all benzene emissions in 1999. Other mobile source air toxics, including 1,3-butadiene, formaldehyde, acetaldehyde, acrolein, and naphthalene, also are thought to increase cancer rates or contribute to other serious health problems.

  12. New energy, new hazards ? The hydrogen scenario

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    engines using hydrogen or hydrogen based mixtures, fuel cell systems), electrical plants, systemsNew energy, new hazards ? The hydrogen scenario Lionel PERRETTE, Samira CHELHAOUI Institut National a practical experience on hydrogen safety. Among others, the following experimental topics have been dealt

  13. Control Of Hazardous Energy Lockout/Tagout

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Control Of Hazardous Energy Lockout/Tagout Millersville University - Office Of Environmental Health & Safety Scope & Application The Lockout/Tagout program applies to the control of energy during servicing of this program is to establish procedures for affixing appropriate lockout or tagout devices to energy

  14. Freeze Concentration Applied to Hazardous Waste Management

    E-Print Network [OSTI]

    Ruemekorf, R.

    Ages. Potable water from seawater was recorded in the 17th century. Today this technology is emerging as a new unit operation for the recovery ofwater from RCRA hazardous waste streams. Typical streams are high in water content and contain soluble...

  15. Appendix B: Wastes and Potential Hazards for

    E-Print Network [OSTI]

    Siddharthan, Advaith

    of minerals including gypsum, salt, potash, asbestos, graphite, fluorite, calcite, clay, sand and gravel or their compounds and should be considered under the following hazards: H5 to H7, H10, H11, or H14. 01 05 drilling muds and other drilling wastes 01 05 05* oil-containing drilling muds and wastes M Oil-containing muds

  16. Hazardous and Radioactive Mixed Waste Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22T23:59:59.000Z

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  17. Preliminary Hazards Analysis Plasma Hearth Process

    SciTech Connect (OSTI)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

    1993-11-01T23:59:59.000Z

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

  18. Four: Evaluating Reforms in the Implementation of Hazardous Waste Policies in California

    E-Print Network [OSTI]

    Cutter, W. Bowman; DeShazo, J.R.

    2006-01-01T23:59:59.000Z

    THE IMPLEMENTATION OF HAZARDOUS WASTE POLICIES IN CALIFORNIAfrom the release of hazardous waste and toxic substances.The mishandling of hazardous waste by industry has created

  19. Hazardous Waste Contamination: Implications for Commercial/Industrial Land Transactions in Silicon Valley

    E-Print Network [OSTI]

    Scholz, Diane

    1989-01-01T23:59:59.000Z

    Magazine (October). Hazardous Waste Contamination, ScholzPatton. 1 988. State Hazardous Waste and Property TransferForbes. 1 985. "Hazardous Waste Problems: Implications for

  20. Hazardous-Substance Generator, Transporter and Disposer Liability under the Federal and California Superfunds

    E-Print Network [OSTI]

    Vernon, James; Dennis, Patrick W.

    1981-01-01T23:59:59.000Z

    Carpenter-Presley-Tanner Hazardous Substance Account Act ofincluding spills and hazardous- waste disposal sites thatlabel for the disposal of hazardous wastes. Id. at 607. The

  1. Anywhere But Here: An Introduction to State Control of Hazardous Waste Facility Location

    E-Print Network [OSTI]

    Tarlock, Dan A.

    1981-01-01T23:59:59.000Z

    State Control Of Hazardous- Waste Facility Location A. Danautonomy over the location of hazardous-waste managementa hazardous-waste facility-siting process is the location of

  2. Four: Evaluating Reforms in the Implementation of Hazardous Waste Policies in California

    E-Print Network [OSTI]

    Cutter, W. Bowman; DeShazo, J.R.

    2006-01-01T23:59:59.000Z

    in four areas: storage tanks, hazardous waste generatingprograms in hazardous waste and other areas. This resultof hazardous waste laws, requiring that every area be under

  3. The Transboundary Movement of Hazardous Waste in the Mediterranean Regional Context

    E-Print Network [OSTI]

    Scovazzi, Tullio

    2000-01-01T23:59:59.000Z

    HAZARDOUS WASTE IN MEDITERRANEAN Moreover, the Mediterranean Protocol,Protocol Area by transboundary movements of hazardous wastes (wastes subject to this Protocol; Annex II: List of hazardous

  4. Evaluation of an air drilling cuttings containment system

    SciTech Connect (OSTI)

    Westmoreland, J.

    1994-04-01T23:59:59.000Z

    Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

  5. Air bubbles clean produced water for reinjection

    SciTech Connect (OSTI)

    Michnick, M.J. [Univ. of Kansas, Lawrence, KS (United States)

    1995-12-31T23:59:59.000Z

    The reuse of produced water in a waterflood may be hazardous to the health and wealth of the reservoir. Disposal of produced water and finding a new source of water for a waterflood can double your costs. Air flotation is being tested to rehabilitate produced water on a lease in eastern Kansas. The use of air flotation in the oil field is at least forty years old. However, many operators are reluctant to spend the capital for surface equipment to assure a supply of good quality water for their waterflood operation. Before the installation of the air flotation unit only the produced water was filtered through a 75-micron bag and the filter water was then added to the make-up water. Seventy-five micron cartridge filters were used at the wellhead. Both the plant and wellhead filters required frequent replacement. Injection wells averaged more than one cleaning and acidization per year. Since installation of the air flotation unit, the combined produced and makeup water is passed through either a 25-or 10-micron bag filter in the plant and a 10-micron cartridge at the wellhead. The results of the test being conducted by an independent oil operator show a reduction in the cost for the water injection system. This study is part of the Department of Energy Class I PONS with independent oil operators.

  6. General Air Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    Any source, including a temporary source, which emits or has the potential to emit any air contaminant requires an air permit. Facilities with potential emissions less than 5 tons per year of any...

  7. Healthy Air Act (Maryland)

    Broader source: Energy.gov [DOE]

    The Maryland Healthy Air Act was developed with the purpose of bringing Maryland into attainment with the National Ambient Air Quality Standards (NAAQS) for ozone and fine particulate matter by the...

  8. Compressed Air Supply Efficiency 

    E-Print Network [OSTI]

    Joseph, B.

    2004-01-01T23:59:59.000Z

    COMPRESSED AIR SUPPLY EFFICENCY Babu Joseph, Ph.D., P.E. Engineer Southern California Edison Irwindale, CA ABSTRACT This project, under contract from California Energy Commission, developed the CASE (Compressed Air Supply Efficiency...

  9. on man, nature & air pollution

    E-Print Network [OSTI]

    Finlayson-Pitts, Barbara J

    2008-01-01T23:59:59.000Z

    on man, nature & air pollution About three decades ago, itand episodes of air pollution the following summer. Wetthe increase in air pollution. This hypothesis generated

  10. Ventilation Air Preconditioning Systems

    E-Print Network [OSTI]

    Khattar, M.; Brandemuehl, M. J.

    1996-01-01T23:59:59.000Z

    simply and cost-effectively with a dual path arrangement that treats and controls the ventilation air independently of the recirculation air. The Electric Power Research Institute (EPRI)--the nonprofit R&D arm of the electric utility industry... particular type of application. EPRI is developing variations of the dual path concept to meet different reeofit and new construction markets. Figure 6. Ventilation Air Conditioner as a Separate Unit EPRVCALMAC System: Separate Unit for Ventilation Air...

  11. Hazardous devices teams showcase skills at Robot Rodeo June 24...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Bomb squads compete in timed scenarios at Los...

  12. Hazardous waste management in the Texas construction industry 

    E-Print Network [OSTI]

    Sprinkle, Donald Lee

    1991-01-01T23:59:59.000Z

    This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations...

  13. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Mercury used in many laboratory areas on campus. All laboratory areas and former laboratory areas should. Cleanup by a hazardous materials contractor is required before demolition or construction can begin

  14. Hazardous waste management in the Texas construction industry

    E-Print Network [OSTI]

    Sprinkle, Donald Lee

    1991-01-01T23:59:59.000Z

    This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations...

  15. HAZARDOUS MATERIAL SAFETY Effective Date: January 1, 1992

    E-Print Network [OSTI]

    Cui, Yan

    to Hazardous Chemicals in Laboratories, as noted in Subject H. Laboratory Safety. Items in the CHP include hazardous waste (see sample CHP for definitions), it is subject to the RCRA generator rules which are found

  16. Reducing Physical Hazards: Encouraging Inherently Safer Production (Chapter 17)

    E-Print Network [OSTI]

    Ashford, Nicholas A.

    Physical hazards differ from hazards related to the toxicity of chemicals and materials in a number of ways. Their origin is the sudden and accidental release of chemicals and/ or energy - that is, chemical accidents, ...

  17. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOE Patents [OSTI]

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28T23:59:59.000Z

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  18. MAD-AIR

    E-Print Network [OSTI]

    Tooley, J. J.; Moyer, N. A.

    1989-01-01T23:59:59.000Z

    with stress- related illness rather than the anwr that spells RELIEF. Air flow in, through ad arourd a house is an important concern in the building we call haw. !lb enhance air flow and change the various corditions or properties of the air, a variety...

  19. Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual.

    SciTech Connect (OSTI)

    Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

    1986-04-01T23:59:59.000Z

    This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs.

  20. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    be shipped directly from site and recycled through the WA State Hazardous Waste Service Contract. Please call

  1. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25T23:59:59.000Z

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  2. Permit Fees for Hazardous Waste Material Management (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe applicable fees for permit application, modification, and transfer for permits related to hazardous waste management.

  3. Air Handling Unit Supply Air Temperature Optimization During Economizer Cycles

    E-Print Network [OSTI]

    Xu, K.; Liu, M.; Wang, G.; Wang, Z.

    2007-01-01T23:59:59.000Z

    temperature at supply air temperature setpoint. Mechanical cooling is always required when outside air temperature is higher than the supply air temperature setpoint. Generally the supply air temperature setpoint is set at 55°F for space humidity control...

  4. TAMU HAZARD COMMUNICATION PROGRAM Revised: 9/1/12

    E-Print Network [OSTI]

    Meagher, Mary

    TAMU HAZARD COMMUNICATION PROGRAM Revised: 9/1/12 WORK AREA SPECIFIC TRAINING Department of Chemistry Attendance Record I hereby acknowledge receipt of the Texas A&M University (TAMU) Hazard. information on hazardous chemicals known to be present in the employee's work area and to which the employee

  5. Highly Hazardous Chemicals and Chemical Spills EPA Compliance Fact Sheet

    E-Print Network [OSTI]

    Wikswo, John

    Highly Hazardous Chemicals and Chemical Spills EPA Compliance Fact Sheet Vanderbilt Environmental.safety.vanderbilt.edu HIGHLY HAZARDOUS CHEMICAL WASTES Certain chemical wastes must be handled by special procedures due to their highly hazardous nature. These chemicals include expired isopropyl and ethyl ethers (these chemicals

  6. Chemical and Hazardous Materials Department of Environmental Health and Safety

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Chemical and Hazardous Materials Safety Department of Environmental Health and Safety 800 West information useful in the recognition, evaluation, and control of workplace hazards and environmental factors safety, fire safety, and hazardous waste disposal. Many chemicals have properties that make them

  7. The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Law 273.4 The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims (Fall 2006) Units: 3 CCN (2 of Hazardous Waste Disposal and Remediation (2d ed. 2005) Syllabus Class 1 ­ August 22 Claims Based on Common: 1. Miller & Johnston The Law of Hazardous Waste Disposal and Remediation 2. Ch. III, Intro to RCRA

  8. Guidance Note 052 RISK ASSESSMENTS FOR HAZARDOUS CHEMICALS

    E-Print Network [OSTI]

    Guidance Note 052 RISK ASSESSMENTS FOR HAZARDOUS CHEMICALS as required under the CONTROL OF SUBSTANCES HAZARDOUS TO HEALTH REGULATIONS (COSHH) and the DANGEROUS SUBSTANCES AND EXPLOSIVE ATMOSPHERES Involving the Use of Hazardous Chemicals. COSHH requires health risks to be assessed and controlled

  9. Hazardous Waste Collection in Safety Cans HOW DOES THIS WORK?

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Hazardous Waste Collection in Safety Cans HOW DOES THIS WORK? o Labs that generate large volumes of solvent hazardous waste can contact EHS @ 255-8200 for approval of the use of safety cans. Once EHS approves the use we will provide the can. o A hang pocket will be placed on the can that states "Hazardous

  10. Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals

    E-Print Network [OSTI]

    Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals The following outline provides) or other sources of information. In cases where substances with significant or unusual potential hazards of experience and the degree of potential hazard associated with the proposed experiment, it may be necessary

  11. The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Law 273.4 The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims (Fall 2008) Units: 3 CCN (2, The Law of Hazardous Waste Disposal and Remediation (2d ed. 2005) Syllabus Class 1 ­ August 19 Claims on Federal Law: 1. Miller & Johnston The Law of Hazardous Waste Disposal and Remediation 2. Ch. III, Intro

  12. Lab 4: Plate Tectonics Locating Geologic Hazards Introduction

    E-Print Network [OSTI]

    Chen, Po

    1 Lab 4: Plate Tectonics ­ Locating Geologic Hazards Introduction The likelihood of major geologic hazards associated with the lithosphere, such as earthquakes and volcanoes, is not uniform around provides a ready explanation for the distribution of these types of geologic hazards. It is useful

  13. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28T23:59:59.000Z

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  14. Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs)

    E-Print Network [OSTI]

    Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs) All Hazardous waste generated to be chemically hazardous and shall be kept in a Satellite Accumulation Area (SAA). The safety coordinator will keep a list of all SAA's in the division and must be notified before an accumulation area

  15. Diesel particles -a health hazard 1 Diesel particles

    E-Print Network [OSTI]

    Diesel particles - a health hazard 1 Diesel particles - a health hazard #12;The Danish Ecological Council - August 20042 Diesel particles - a health hazard ISBN: 87-89843-61-4 Text by: Christian Ege 33150777 Fax no.: +45 33150971 E-mail: info@ecocouncil.dk www.ecocouncil.dk #12;Diesel particles - a health

  16. Disposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1

    E-Print Network [OSTI]

    Wikswo, John

    will be utilized. Please visit the VEHS website to submit an electronic Chemical Waste Collection Request FormDisposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1 Vanderbilt Environmental Health WASTE COLLECTION PROGRAM VEHS has implemented a Hazardous Waste Collection Program to collect hazardous

  17. Preliminary hazards analysis for the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.J.

    1993-10-01T23:59:59.000Z

    This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

  18. Nat. Hazards Earth Syst. Sci., 6, 779802, 2006 www.nat-hazards-earth-syst-sci.net/6/779/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -induced hazards that are representative for a whole class of hazards: Accidents due to nuclear power plants (NPP- ments (like embassies in the case of conventional threats) dis- play in the eye of potential aggressors

  19. Radionuclide air emissions report for the Hanford site, Calendar year 1994

    SciTech Connect (OSTI)

    Gleckler, B.P.; Diediker, L.P. [Westinghouse Hanford Co., Richland, WA (United States); Jette, S.J.; Rhoads, K.; Soldat, S.K. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01T23:59:59.000Z

    This report documents radionuclide air emissions from the Hanford Site in 1994, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the ``MEI.`` The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

  20. Radionuclide air emissions report for the Hanford Site, calendar year 1992

    SciTech Connect (OSTI)

    Diediker, L.P.; Johnson, A.R. [Westinghouse Hanford Co., Richland, WA (United States); Rhoads, K.; Klages, D.L.; Soldat, J.K. [Pacific Northwest Lab., Richland, WA (United States); Rokkan, D.J. [Science Applications International Corp., Richland, WA (United States)

    1993-06-01T23:59:59.000Z

    This report documents radionuclide air emissions from the Hanford Site in 1992 and the resulting effective dose equivalent to an member of the public. The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

  1. Air to Air Communication Protocol Arjan Durresi1

    E-Print Network [OSTI]

    Jain, Raj

    1 Air to Air Communication Protocol Arjan Durresi1 , Vamsi Paruchuri1 , Leonard Barolli2 and Raj. Louis, MO 63130, USA 314-935-4963, jain@cse.wustl.edu Abstract--We present Air to Air Communication (AAC........................................................2 3. AIR TO AIR COMMUNICATION..............................3 4. SIMULATIONS

  2. Air Pollution- Local Air Quality (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Air Pollution regulation administered by the Ministry of the Environment enforces compliance to the standards set in the Ontario law. The law is phased in, with portions taking effect in 2010,...

  3. ORIGINAL ARTICLE Ambient Air Pollution

    E-Print Network [OSTI]

    Mulholland, James A.

    ORIGINAL ARTICLE Ambient Air Pollution and Cardiovascular Emergency Department Visits Kristi Busico ambient air pollutants and cardiovascular disease (CVD), the roles of the physicochemical components the relation between ambient air pollution and cardiovascular conditions using ambient air quality data

  4. University of Texas at Arlington Exhibit 2 Hazardous Communication Program C. EMPLOYEE SITE-SPECIFIC HAZARD COMMUNICATION TRAINING ("WORK AREA

    E-Print Network [OSTI]

    Texas at Arlington, University of

    -SPECIFIC HAZARD COMMUNICATION TRAINING ("WORK AREA SPECIFIC") Information specific to the employee's particular to be in the employee's work area(s): · the location of hazardous chemicals, · safe handling · warning signsUniversity of Texas at Arlington Exhibit 2 Hazardous Communication Program C. EMPLOYEE SITE

  5. HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously with the words "Hazardous Waste."

    E-Print Network [OSTI]

    Slatton, Clint

    HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously. Decontaminate 5. Dispose of cleanup debris as Hazardous Waste Chemical Spill ­ major 1. Evacuate area, isolate with the words "Hazardous Waste." 2. Label all containers accurately, indicating the constituents and approximate

  6. Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and

    E-Print Network [OSTI]

    ten Brink, Uri S.

    Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region" Uri S. ten Brink, William H. Bakun), Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic

  7. Shedding a new light on hazardous waste

    SciTech Connect (OSTI)

    Reece, N.

    1991-02-01T23:59:59.000Z

    The sun's ability to detoxify waterborne chemicals has long been known; polluted streams, for example, become cleaner as they flow through sunlit areas. Solar detoxification harnesses this natural degradation process for beneficial ends, producing simple, nonhazardous substances from hazardous organic chemicals. Solar detoxification systems now being developed break down these chemicals without using the fossil fuels required by conventional technologies. Sunlight destroys hazardous waste because of the distinctive properties of photons, the packets of energy that make up sunlight. Low-energy photons add thermal energy that will heat toxic chemicals; high-energy photons add the energy needed to break the chemical bonds of these chemicals. The detoxification process discussed here takes advantage of this latter group of photons found in the ultraviolet portion of the solar spectrum. 4 figs.

  8. Split driveshaft pump for hazardous fluids

    DOE Patents [OSTI]

    Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

    1995-01-01T23:59:59.000Z

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  9. Natural phenomena hazards site characterization criteria

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  10. SNRB{trademark} air toxics monitoring. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process as well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.

  11. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1990-01-01T23:59:59.000Z

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  12. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1988-01-01T23:59:59.000Z

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  13. WHC natural phenomena hazards mitigation implementation plan

    SciTech Connect (OSTI)

    Conrads, T.J.

    1996-09-11T23:59:59.000Z

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  14. Hazardous waste minimization report for CY 1986

    SciTech Connect (OSTI)

    Kendrick, C.M.

    1990-12-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs.

  15. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect (OSTI)

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01T23:59:59.000Z

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  16. Field implementation complexities of EPA developmental methods during remediation at hazardous waste sites: Case study

    SciTech Connect (OSTI)

    Green, E.L. [Eagle Environmental Health, Inc., Houston, TX (United States); Cunningham, E.A. [Tenneco, Inc., Houston, TX (United States); Grabinski, C. [Joslyn Corp., Chicago, IL (United States)

    1995-12-31T23:59:59.000Z

    The objective of this presentation is to provide insight into the complexities of field implementation of Environmental Protection Agency developmental methods for polynuclear aromatic hydrocarbons, pentachlorophenol, particulates and metals at hazardous waste site remediations. A remedial action plan developed for the site called for the development and subsequent execution of an air monitoring plan during the removal of affected subsurface soils. Ambient air monitoring for polynuclear aromatic hydrocarbons, pentachlorophenol, total particulates and arsenic, chromium and copper was conducted from February through May, 1992. After May, sampling for arsenic, chromium and copper was dropped from the plan because of the extremely low levels of metals associated with the soils. Real-time monitoring for total suspended particulates was conducted from February through September, 1992.

  17. Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part

    E-Print Network [OSTI]

    Wilcock, William

    Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part of your work assignment. The University's Hazard Communication the hazard communication training you need? A combination of hazard communication training resources

  18. Air Pollution Control (Indiana)

    Broader source: Energy.gov [DOE]

    The mission of the Indiana Department of Environmental Management's Office of Air Quality implements federal and state regulations to protect human health and the environment while allowing the...

  19. Personal continuous air monitor

    DOE Patents [OSTI]

    Morgan, Ronald G. (Los Alamos, NM); Salazar, Samuel A. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  20. Environmental Quality: Air (Louisiana)

    Broader source: Energy.gov [DOE]

    The Department of Environmental Quality regulates air quality in Louisiana. The Department has an established a fee system for funding the monitoring, investigation and other activities required...

  1. AIR SEALING Seal air leaks and save energy!

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    AIR SEALING Seal air leaks and save energy! W H A T I S A I R L E A K A G E ? Ventilation is fresh air that enters a house in a controlled manner to exhaust excess moisture and reduce odors and stuffiness. Air leakage, or infiltration, is outside air that enters a house uncontrollably through cracks

  2. Air Quality: Air Pollutants, SLAC Emissions Sources, and Regulatory Reference

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Air Quality: Air Pollutants, SLAC Emissions Sources, and Regulatory Reference Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 SLAC's air emissions are regulated through a federally mandated site-wide permit as well

  3. Enhancing Railroad Hazardous Materials Transportation Safety

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession0-02 -Railroad Hazardous g Materials

  4. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting andSolar Glare Hazard

  5. Wastes Hazardous or Solid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search Contents 1Wastes Hazardous or Solid

  6. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLarge fileHazardous Waste

  7. Compressed Air System Optimization

    E-Print Network [OSTI]

    Aegerter, R.

    Several years ago I went to a gas station and noticed that my car's tires were low on air. I saw the gas station had an air compressor, but it cost a quarter to use the compressor. I paid my quarter and used the compressor. I realized...

  8. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09T23:59:59.000Z

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  9. Interaction between Titles 2 and 3 of the Clean Air Act as amended, 1990

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1996-02-01T23:59:59.000Z

    This report examines Some issues that would I affect the refining industry if the requirements for hazardous air pollutants set out in Title III of the Clean Air Act Amendments were to impede the market entrance of oxygenated fuels, as me; required by Title II. It describes the mandate for reformulated gasoline; considers gasoline characteristics in light of component shifts in refining; examines the supply of, demand for, and cost of various feedstocks and blendstocks; and identifies the emissions and atmospheric impacts that might result from the production and use of reformulated gasoline. Attention is focused on methanol and MTBE, two potential blendstocks that are also hazardous air pollutants, and on maximum achievable control technology standards, which might be applied to the stationary sources that produce them.

  10. Natural Hazards and Earth System Sciences (2001) 1: 4351 c European Geophysical Society 2001 Natural Hazards

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2001-01-01T23:59:59.000Z

    that the electromagnetic wave monitor- ing system has the potential to monitor and/or warn of vol- canic activity as a field trial for monitoring volcanic activities through the use of the electromagnetic method. Up Natural Hazards and Earth System Sciences Electromagnetic-wave radiation due to diastrophism of magma dike

  11. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect (OSTI)

    REMAIZE, J.A.

    2000-09-27T23:59:59.000Z

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  12. Management of hazardous medical waste in Croatia

    SciTech Connect (OSTI)

    Marinkovic, Natalija [Medical School University of Zagreb, Department for Chemistry and Biochemistry, Salata 3b, 10 000 Zagreb (Croatia)], E-mail: nmarinko@snz.hr; Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar ['Andrija Stampar' School of Public Health, Medical School University of Zagreb, Rockefellerova 4, 10 000 Zagreb (Croatia); Pavic, Tomo [Ministry of Health and Social Welfare, Ksaver 200, 10 000 Zagreb (Croatia)

    2008-07-01T23:59:59.000Z

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  13. The Hazard Posed by Depleted Uranium Munitions

    E-Print Network [OSTI]

    Steve Fetter And; Steve Fetter A

    This paper assesses the radiological and chemical hazards resulting from the use of depleted uranium (DU) munitions. Due to the low radioactivity of DU, radiological hazards to individuals would become significant in comparison to natural background radiation doses only in cases of prolonged contact---for example, when shards of a DU penetrator remain embedded in a soldier's body. Although the radiation doses to virtually all civilians would be very low, the cumulative "population dose" resulting from the dispersal of hundreds of tons of DU, as occurred during the Gulf War, could result in up to ten cancer deaths. It is highly unlikely that exposures of persons downwind from the use of DU munitions or consuming food or water contaminated by DU dust would reach the estimated threshold for chemical heavy-metal effects. The exposures of soldiers in vehicles struck by DU munitions could be much higher, however, and persons who subsequently enter such vehicles without adequate respiratory protection could potentially be at risk. Soldiers should be trained to avoid unnecessary exposure to DU, and vehicles struck by DU munitions should be made inaccessible to curious civilians. INTRODUCTION

  14. Los Alamos National Laboratory Hazardous Waste Facility Permit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit Draft Community Relations Plan CommentSuggestion Form Instructions for completing the form: Please reference the section in the plan that your...

  15. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...

    Energy Savers [EERE]

    Sheet Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL On October 17, 2012, the National Nuclear Security Administration (NNSA) issued a Preliminary...

  16. Surveillance Guide - OSS 19.5 Hazardous Waste Operations and...

    Broader source: Energy.gov (indexed) [DOE]

    RL Facility Representative Program March 21, 1995 Surveillance Guide OSS 19.5 Revision 0 Hazardous Waste Operations and Emergency Response Page 6 of Error Bookmark...

  17. Oregon Procedure and Criteria for Hazardous Waste Treatment,...

    Open Energy Info (EERE)

    Oregon Procedure and Criteria for Hazardous Waste Treatment, Storage or Disposal Permits Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  18. NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ Governor 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 875056303 Phone (50S) 476-6000 Fax...

  19. asteroid impact hazard: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peter 2015-01-01 87 Ten years after wildfires: How does varying tree mortality impact fire hazard and forest resiliency? Environmental Sciences and Ecology Websites Summary: 30...

  20. additive hazards model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of spatial occurrence of landslides by discriminant analysis Boyer, Edmond 212 Lesson 1. Natural Hazards & Natural Disasters Geosciences Websites Summary: Lesson 1. Natural...

  1. airborne hazardous transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    risk exposure. The report describes the application of recent advances in network analysis methodologies to the problem of routing hazardous substances. Several specific...

  2. Order Module--self-study program: HAZARDOUS WASTE OPERATIONS...

    Broader source: Energy.gov (indexed) [DOE]

    the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste operations and emergency response or through the course manager. You may need...

  3. Mr. John E. Kieling, Chief Hazardous Waste Bureau Departmen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to characterize and certify waste in accordance with the Waste Isolation Pilot Plant Hazardous Waste Facility Permit. The report contains the results of the recertification audit...

  4. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pilot Plant (WIPP) facility. This notification fulfills the requirements of the W IPP Hazardous Waste Facility Perm it (Permit), (NM4890139088-TSDF), Permit Part 3, Section...

  5. Packaging and Transfer of Hazardous Materials and Materials of...

    Broader source: Energy.gov (indexed) [DOE]

    PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSANevada Site Office Facility Representative Division Performance...

  6. Fire hazards analysis of transuranic waste storage and assay facility

    SciTech Connect (OSTI)

    Busching, K.R., Westinghouse Hanford

    1996-07-31T23:59:59.000Z

    This document analyzes the fire hazards associated with operations at the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  7. Experiment Hazard Class 6.7 - Explosive and Energetic Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    section of this hazard class will be reviewed by either the APS Chemical Hygiene Officer andor a member of the APS Experiment Safety Review Board on an individual...

  8. Experiment Hazard Class 5.4 - Compressed Gas Cylinders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compressed flammable gas and pyrophoric gases. Consultation with EQO Industrial Hygiene when planning experiments that involve toxic gas, oxygen deficiency hazards or other...

  9. Fees For Disposal Of Hazardous Waste Or Substances (Alabama)

    Broader source: Energy.gov [DOE]

    The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

  10. Chapter 31 Identification and Listing of Hazardous Waste (Kentucky)

    Broader source: Energy.gov [DOE]

    This administrative regulation establishes the general provisions necessary for identification and listing of a hazardous waste. The regulation also establishes the criteria for identifying the...

  11. South Carolina Hazardous Waste Management Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The Department of Health and Environmental Control is authorized to promulgate rules and regulations to prevent exposure of persons, animals, or the environment to hazardous waste. The construction...

  12. Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky)

    Broader source: Energy.gov [DOE]

    This administrative regulation establishes procedures to establish the applicable general provisions for generators of hazardous waste. It also establishes recordkeeping and reporting standards....

  13. EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program

    Broader source: Energy.gov [DOE]

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

  14. Title 40 CFR 300 National Oil and Hazardous Substances Pollution...

    Open Energy Info (EERE)

    National Oil and Hazardous Substances Pollution Contingency Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal...

  15. Prevention, Abatement, and Control of Hazardous Substance Release (Iowa)

    Broader source: Energy.gov [DOE]

    The Department of Natural Resources is authorized to establish rules regarding the prevention and mitigation of hazardous substance release. These sections contain information on the notification...

  16. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE...

  17. Program Review, Workplace Inspections, Hazards Analysis And Abatement

    Broader source: Energy.gov [DOE]

    This document provides guidance information and suggested procedures for performing program review, workplace inspections, hazards analysis, and abatement, successfully at DOE Federal employee worksites.

  18. Dust: A major environmental hazard on the earth's moon

    SciTech Connect (OSTI)

    Heiken, G.; Vaniman, D.; Lehnert, B.

    1990-01-01T23:59:59.000Z

    On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

  19. October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday...

    Office of Environmental Management (EM)

    Natural Phenomena Hazards (NPH) Meeting. Presentations Application of Random Vibration Theory Methodology for Seismic Soil-Structure Interaction Analysis Validation of the...

  20. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...

    Energy Savers [EERE]

    for NNSA's Los Alamos National Laboratory (LANL), located in Los Alamos, New Mexico. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at...

  1. 2006 LANL Radionuclide Air Emissions Report

    SciTech Connect (OSTI)

    David P. Fuehne

    2007-06-30T23:59:59.000Z

    This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

  2. SUBJECT: Guidance on the Major Source Determination for Certain Hazardous Air FROM: John S. Seitz, Director

    E-Print Network [OSTI]

    . The following compounds are the POM listed in the guidance: Naphthalene Acenaphthene Acenaphthylene Fluorene

  3. air volume air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Preheat Economics Texas A&M University - TxSpace Summary: Retrofit air preheat systems are the most reliable and efficient means to effect significant energy...

  4. Air Resources: Prevention and Control of Air Contamination and...

    Broader source: Energy.gov (indexed) [DOE]

    limits and permitting and operational requirements for facilities that may contribute to air emissions. General air quality standards and standards for specific contaminants are...

  5. Air Pollution Control Regulations: No. 7 - Emission of Air Contaminant...

    Broader source: Energy.gov (indexed) [DOE]

    with the enjoyment of life and property. The criteria for determining compliance is listed in the regulations, and is based on other air pollution and ambient air standards...

  6. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1980-01-01T23:59:59.000Z

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  7. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01T23:59:59.000Z

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  8. Texas Clean Air Act (Texas)

    Broader source: Energy.gov [DOE]

    This Act is designed to safeguard the state's air resources from pollution by requiring the control and abatement of air pollution and emissions of air contaminants, consistent with the protection...

  9. Air Quality (Nova Scotia, Canada)

    Broader source: Energy.gov [DOE]

    Nova Scotia Environment is responsible for monitoring the air quality in the province, as well as administering fines and permits relating to air quality. The Air Quality Regulations state...

  10. Making Compressed Air System Decisions

    E-Print Network [OSTI]

    Porri, R. E.

    . The design of a compressed air system was formerly limited to the selection of an air compressor large enough to deliver sufficient compressed air for the estimated system requirements. As system air requirements grew, additional compressors were added... specification, selection and installation process will follow. BACKGROUND For more than 100 years compressed air has been used throughout industry as a safe and reliable utility. The generation of this utility is performed by an air compressor. The first...

  11. The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard;

    E-Print Network [OSTI]

    Torgersen, Christian

    The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard; light-gray areas have a lower ash fall hazard. Information is based on data during the past 10,000 years. Bottom, from left

  12. Air heating system

    DOE Patents [OSTI]

    Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

    1983-03-01T23:59:59.000Z

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  13. A complete electrical hazard classification system and its application

    SciTech Connect (OSTI)

    Gordon, Lloyd B [Los Alamos National Laboratory; Cartelli, Laura [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of electrical hazards. The new comprehensive electrical hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards. Based on this electrical hazard classification system, many new tools have been developed, including (a) work controls for these hazards, (b) better selection of PPE for R&D work, (c) improved training, and (d) a new Severity Ranking Tool that is used to rank electrical accidents and incidents with various forms of electrical energy.

  14. Air Cooling R&D

    Broader source: Energy.gov (indexed) [DOE]

    or otherwise restricted information. 2 State of the Art Everything on a vehicle is air cooled, ultimately... Air cooling can be done... When?... How? Honda Insight Power...

  15. Ambient Air Quality Standards (Iowa)

    Broader source: Energy.gov [DOE]

    These regulations set statewide ambient air quality standards for various contaminants. The state code follows the regulations set forth in the National Primary and Secondary Ambient Air Quality...

  16. UW Hazard Communication Program A Washington State Department of Labor and

    E-Print Network [OSTI]

    Wilcock, William

    UW Hazard Communication Program A Washington State Department of Labor and Industries standard called Hazard Communication (Right-to-Know) requires that all employees be informed about hazardous on manufacturer's containers of hazardous chemicals provide identification of the chemical, immediate hazard

  17. Primary lead smelter, Doe Run, Herculaneum, Missouri: Volume 3 -- Appendix B.2 through Appendix F. Final report

    SciTech Connect (OSTI)

    NONE

    1999-08-01T23:59:59.000Z

    The United States Environmental Protection Agency`s (EPA) Emission Standards Division (ESD) is investigating the primary lead smelting source category to identify and quantify organic hazardous air pollutants (HAPs) emitted from blast furnaces. The primary objective was to obtain data on the emissions of volatile and semi-volatile organic HAPs, aldehydes, and ketones from primary lead smelter blast furnaces. A secondary objective was to obtain data on the emission of carbon monoxide. The data will be used by ESD to determine whether organic HAPs are emitted at levels that would justify regulation under the Maximum Achievable Control Technology (MACT) program. The Doe Run Company, which operates a primary lead smelter in Herculaneum, Missouri was selected by the ESD as the host facility for this project. This volume consists of Appendices B.2 through F.

  18. Primary lead smelter, Doe Run, Herculaneum, Missouri: Volume 2 -- Appendix B.1. Final report

    SciTech Connect (OSTI)

    Phoenix, F.J.

    1999-08-01T23:59:59.000Z

    The United States Environmental Protection Agency`s (EPA) Emission Standards Division (ESD) is investigating the primary lead smelting source category to identify and quantify organic hazardous air pollutants (HAPs) emitted from blast furnaces. The primary objective was to obtain data on the emissions of volatile and semi-volatile organic HAPs, aldehydes, and ketones from primary lead smelter blast furnaces. A secondary objective was to obtain data on the emissions of carbon monoxide. The data will be used by ESD to determine whether organic HAPs are emitted at levels that would justify regulation under the Maximum Achievable Control Technology (MACT) program. The Doe Run Company, which operates a primary lead smelter in Herculaneum, Missouri was selected by the ESD as the host facility for this project. This volume consists of Appendix B.1.

  19. Primary lead smelter, Doe Run, Herculaneum, Missouri: Volume 1 -- Text and Appendix A. Final report

    SciTech Connect (OSTI)

    Phoenix, F.J.

    1999-08-01T23:59:59.000Z

    The United States Environmental Protection Agency`s (EPA) Emission Standards Division (ESD) is investigating the primary lead smelting source category to identify and quantify organic hazardous air pollutants (HAPs) emitted from blast furnaces. The primary objective was to obtain data on the emissions of volatile and semi-volatile organic HAPs, aldehydes, and ketones from primary lead smelter blast furnaces. A secondary objective was to obtain data on the emissions of carbon monoxide. The data will be used by ESD to determine whether organic HAPs are emitted at levels that would justify regulation under the Maximum Achievable Control Technology (MACT) program. The Doe Run Company, which operates a primary lead smelter in Herculaneum, Missouri was selected by the ESD as the host facility for this project. This volume consists of the report text and Appendix A.

  20. Primary lead smelter, Doe Run, Herculaneum, Missouri (kit)

    SciTech Connect (OSTI)

    NONE

    1999-08-01T23:59:59.000Z

    The United States Environmental Protection Agency`s (EPA) Emission Standards Division (ESD) is investigating the primary lead smelting source category to identify and quantify organic hazardous air pollutants (HAPs) emitted from blast furnaces. The primary objective was to obtain data on the emissions of volatile and semi-volatile organic HAPs, aldehydes, and ketones from primary lead smelter blast furnaces. A secondary objective was to obtain data on the emissions of carbon monoxide. The data will be used by ESD to determine whether organic HAPs are emitted at levels that would justify regulation under the Maximum Achievable Control Technology (MACT) program. The Doe Run Company, which operates a primary lead smelter in Herculaneum, Missouri was selected by the ESD as the host facility for this project.

  1. Compressed Air Supply Efficiency

    E-Print Network [OSTI]

    Joseph, B.

    2004-01-01T23:59:59.000Z

    This project, under contract from California Energy Commission, developed the CASE (Compressed Air Supply Efficiency) Index as a stand-alone value for compressor central plant efficiency. This Index captures the overall efficiency of a compressed...

  2. Retrofit Air Preheat Economics

    E-Print Network [OSTI]

    Goolsbee, J. A.

    1981-01-01T23:59:59.000Z

    Retrofit air preheat systems are the most reliable and efficient means to effect significant energy conservation for large existing industrial furnaces. Units can be quickly installed without a lengthy shutdown, and the furnace efficiency can...

  3. Padding with Compressed Air

    E-Print Network [OSTI]

    Beals, C.

    2004-01-01T23:59:59.000Z

    We commonly find plants using padding to transport liquids or light solids short distances from tankers into storage tanks. Padding can wreck havoc in compressed air systems with limited storage, undersized cleanup equipment (dryers and filters...

  4. Canned Air in China

    E-Print Network [OSTI]

    Hacker, Randi

    2013-10-23T23:59:59.000Z

    Broadcast Transcript: Not that long ago, coal smoke made the air here in Beijing so caustic that your nasal passages were seared with each breath. Those were the good old days: Car ownership was limited to government ...

  5. Breathing zone air sampler

    SciTech Connect (OSTI)

    Tobin, John (Bethel Park, PA)

    1989-01-01T23:59:59.000Z

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  6. Breathing zone air sampler

    SciTech Connect (OSTI)

    Tobin, J.

    1989-08-22T23:59:59.000Z

    A sampling apparatus is presented which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  7. Air pollution meteorology

    SciTech Connect (OSTI)

    Eagleman, J.R.

    1991-01-01T23:59:59.000Z

    Air Pollution Meteorology is divided into three parts: air pollution fundamentals; concentration calculations and distributions; and pollution and meteorological interactions. The first section includes chapters on the following topics: the problem; measurements, sources, and standards; air stagnation and pollutant index; and effects. The second section of the book includes chapters on diffusion theory, the Gaussian plume dispersion model, plume rise, various dispersion models, scale considerations, and concentration trends. The third and final section (on pollution and meteorological interactions) begins with two chapters on radiative and wind effects on dispersion, and then follows with chapters on acid rain, the ozone hole, the greenhouse effect, and nuclear winter. In summary, Air Pollution Meteorology does a good job of covering the field for physics, chemistry, and engineering students who want to obtain an overview of the subject.

  8. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01T23:59:59.000Z

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  9. Air bag restraint device

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.

    1995-10-17T23:59:59.000Z

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle`s rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump. 8 figs.

  10. Hazards Control Department 1996 Annual Report

    SciTech Connect (OSTI)

    Richards, J.

    1997-06-30T23:59:59.000Z

    This annual report on the activities of the Hazards Control Department (HCD) in 1996 is part of the department's continuing effort to foster a working environment at Lawrence Livermore National Laboratory where every person has the means, ability, and desire to work safely. The significant accomplishments and activities, the various services provided, and research into Environment, Safety, and Health (ES&H) issues by HCD would not have been possible without the many and ongoing contributions by its employees and support personnel. The HCD Leadership Team thanks each and every one in the department for their efforts and work in 1996 and for their personal commitment to keeping one of the premier research and scientific institutions in the world today a safe and healthy place.

  11. Potential health hazards of radiation. Fact Sheet

    SciTech Connect (OSTI)

    none,

    2009-05-19T23:59:59.000Z

    During World War II and the Cold War, the federal government developed and operated industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Some of these sites processed uranium and vanadium, and upon closure, left behind millions of cubic yards of mill tailings on the sites and throughout the nearby communities. The U.S. Department of Energy (DOE) administers the cleanup of these areas to minimize the risks to the public and environment from exposure to the tailings and the radon gas they produce.

  12. Method for disposing of hazardous wastes

    DOE Patents [OSTI]

    Burton, Frederick G. (West Richland, WA); Cataldo, Dominic A. (Kennewick, WA); Cline, John F. (Prosser, WA); Skiens, W. Eugene (Richland, WA)

    1995-01-01T23:59:59.000Z

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  13. Improving tamper detection for hazardous waste security

    SciTech Connect (OSTI)

    Johnston, R. G. (Roger G.); Garcia, A. R. E. (Anthony R. E.); Pacheco, A. N. (Adam N.); Trujillo, S. J. (Sonia J.); Martinez, R. K. (Ronald K.); Martinez, D. D. (Debbie D.); Lopez, L. N. (Leon N.)

    2002-01-01T23:59:59.000Z

    After September 11, waste managers are increasingly expected to provide improved levels of security for the hazardous materials in their charge. Many low-level wastes that previously had minimal or no security must now be well protected, while high-level wastes require even greater levels of security than previously employed. This demand for improved security comes, in many cases, without waste managers being provided the necessary additional funding, personnel, or security expertise. Contributing to the problem is the fact that--at least in our experience--waste managers often fail to appreciate certain types of security vulnerabilities. They frequently overlook or underestimate the security risks associated with disgruntled or compromised insiders, or the potential legal and political liabilities associated with nonexistent or ineffective security. Also frequently overlooked are potential threats from waste management critics who could resort to sabotage, vandalism, or civil disobedience for purposes of discrediting a waste management program.

  14. 327 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    BARILO, N.F.

    1999-05-10T23:59:59.000Z

    In March 1998, the 327 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U.S. Department of Energy, Richland Operations Office (DOE-E) for implementation by B and W Hanford Company (BWC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in five areas and provided nine recommendations (11 items) to bring the 327 Building into compliance. A status is provided for each recommendation in this document. BWHC will use this Implementation Plan to bring the 327 Building and its operation into compliance with DOE Order 5480.7A and IUD 5480.7.

  15. Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill Jorge G. Zornberg, M, Inc. OII Superfund landfill in southern California. This cover system constitutes the first ET cover:6 427 CE Database subject headings: Evapotranspiration; Coating; Landfills; Hazardous waste; Design

  16. Overview of hazardous-waste regulation at federal facilities

    SciTech Connect (OSTI)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01T23:59:59.000Z

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  17. Landslide hazard zonation in Namasigue and El Triunfo, Southern Honduras

    E-Print Network [OSTI]

    Perotto-Baldivieso, Humberto Lauro

    2000-01-01T23:59:59.000Z

    Approach Adaptation. . 76 20 Base Hazard Map for El Triunfo Watershed. Heuristic Approach Adaptation (Triuphase02r). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 21 EL Triunfo Landslide Hazard Map. Heuristic Approach Adaptation. . . 78... Adaptation. . . Page 80 18 Criteria for Assessing the Model Fit for Namasigue Watershed. . . 80 19 Analysis of Maximum Likelihood Estimates. . . 81 20 Associanon of Predicted Probabilities and Observed Responses. . . 21 Percentage of Land Affected...

  18. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28T23:59:59.000Z

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  19. CALIFORNIA STATE UNIVERSITY, LONG BEACH Hazard Communication Program

    E-Print Network [OSTI]

    Sorin, Eric J.

    : a. Any hazardous waste regulated by the Solid Waste Disposal Act, amended by the Resource who are exposed to them. The purpose of this program is to improve the detection, treatment the collection and disposal of all hazardous waste generated on campus. 5.2 Managers and Supervisors a. Develop

  20. inAir: Sharing Indoor Air Quality Measurements and Visualizations

    E-Print Network [OSTI]

    Mankoff, Jennifer

    evidence has indicated that indoor air pollution within homes and other buildings can be worse than the outdoor air pollution in even the largest and most industrialized cities. For example, the California Air Resources Board estimates that indoor air pollutant levels are 25-62% greater than outside levels [4