Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Washington Closure Hanford - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanford Contractors >

2

Hanford Site, Richland, Washington  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety144 December 2014

3

Natural phenomena hazards, Hanford Site, Washington  

SciTech Connect (OSTI)

This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

Conrads, T.J.

1998-09-29T23:59:59.000Z

4

EA-0915: Waste Tank Safety Program Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to resolve waste tank safety issues at the Hanford Site near the City of Richland, Washington, and to reduce the risks associated with...

5

HANFORD SITE SUSTAINABILITY PROGRAM RICHLAND WASHINGTON - 12464  

SciTech Connect (OSTI)

In support of implementation of Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance, the Hanford Site Sustainability Plan was developed to implement strategies and activities required to achieve the prescribed goals in the EO as well as demonstrate measurable progress in environmental stewardship at the Hanford Site. The Hanford Site Sustainability Program was developed to demonstrate progress towards sustainability goals as defined and established in Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance; EO 13423, Strengthening Federal Environmental, Energy and Transportation Management, and several applicable Energy Acts. Multiple initiatives were undertaken in Fiscal Year (FY) 2011 to implement the Program and poise the Hanford Site as a leader in environmental stewardship. In order to implement the Hanford Site Sustainability Program, a Sustainability Plan was developed in conjunction with prime contractors, two U.S. Department of Energy (DOE) Offices, and key stakeholders to serve as the framework for measuring progress towards sustainability goals. Based on the review of these metrics and future plans, several activities were initiated to proactively improve performance or provide alternatives for future consideration contingent on available funding. A review of the key metric associated with energy consumption for the Hanford Site in FY 2010 and 2011 indicated an increase over the target reduction of 3 percent annually from a baseline established in FY 2003 as illustrated in Figure 1. This slight increase was attributed primarily from the increased energy demand from the cleanup projects funded by the American Recovery and Reinvestment Act (ARRA) in FY 2010 and 2011. Although it is forecasted that the energy demand will decrease commensurate with the completion of ARRA projects, several major initiatives were launched to improve energy efficiency.

FRITZ LL

2012-01-12T23:59:59.000Z

6

Washington River Protection Solutions - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanford ContractorsHanford

7

Routine environmental audit of the Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This report documents the results of the routine environmental audit of the Hanford Site (Hanford), Richland, Washington. During this audit, the activities conducted by the audit team included reviews of internal documents an reports from previous audits and assessments; interviews with US Department of Energy (DOE), State of Washington regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted May 2--13, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, State, and local environmental laws and regulations; compliance with DOE orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements.

Not Available

1994-05-01T23:59:59.000Z

8

EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

9

HAZARD CATEGORIZATION OF ENVIRONMENTAL RESTORATION SITES AT HANFORD WASHINGTON  

SciTech Connect (OSTI)

Environmental restoration activities, defined here as work to identify and characterize contaminated sites and then contain, treat, remove or dispose of the contamination, now comprises a significant fraction of work in the DOE complex. As with any other DOE activity, a safety analysis must be in place prior to commencing restoration. The rigor and depth of this safety analysis is in part determined by the site's hazard category. This category in turn is determined by the facility's hazardous material inventory and the consequences of its release. Progressively more complicated safety analyses are needed as a facility's hazard category increases from radiological to hazard category three (significant local releases) to hazard category two (significant on-site releases). Thus, a facility's hazard category plays a crucial early role in helping to determine the level of effort devoted to analysis of the facility's individual hazards. Improper determination of the category can result in either an inadequate safety analysis in the case of underestimation of the hazard category, or an unnecessarily cumbersome analysis in the case of overestimation. Contaminated sites have been successfully categorized and safely restored or remediated at the former DOE production site at Hanford, Washington. This paper discusses various means used to categorize former plutonium production or support sites at Hanford. Both preliminary and final hazard categorization is discussed. The importance of the preliminary (initial) hazard categorization in guiding further DOE involvement and approval of the safety analyses is discussed. Compliance to DOE direction provided in ''Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports'', DOE-STD-1027-92, is discussed. DOE recently issued 10 CFR 830, Subpart B which codifies previous DOE safety analysis guidance and orders. The impact of 10 CFR 830, Subpart B on hazard categorization is also discussed.

BISHOP, G.E.

2001-05-01T23:59:59.000Z

10

Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.  

SciTech Connect (OSTI)

This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

Youngs, Robert R.

2007-06-29T23:59:59.000Z

11

Hanford Patrol - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CH2M HILL Plateau Remediation Company HPM Corporation (HPMC) Mission Support Alliance Hanford Fire Department Hanford Patrol Volpentest HAMMER Washington Closure Hanford...

12

EA-1211: Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal for relocation and storage of the isotopic heat sources at the U.S. Department of Energy Hanford Site in Richland, Washington.

13

Type B Accident Investigation At Washington Closure Hanford,...  

Broader source: Energy.gov (indexed) [DOE]

Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington Type B Accident Investigation At Washington...

14

Environmental Survey preliminary report, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs.

Not Available

1987-08-01T23:59:59.000Z

15

Hanford Private Tours - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Private Tours Hanford Site Tours Hanford Tour Restrictions Hanford Site Tours Hanford Tours for Governmental Officials Hanford Tours for Tribal Affairs Hanford Private Tours Media...

16

Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planning process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.

N /A

1999-10-01T23:59:59.000Z

17

Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington  

SciTech Connect (OSTI)

Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

1998-06-01T23:59:59.000Z

18

Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

Not Available

1988-12-01T23:59:59.000Z

19

Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington  

SciTech Connect (OSTI)

Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

1998-02-01T23:59:59.000Z

20

EA-0904: Access Road from State Route 240 to the 200 West Area Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to construct an access road on the U.S. Department of Energy's Hanford Site in Richland, Washington, from State Route 240 to Beloit Avenue...

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Preliminary Notice of Violation, Washington Closure Hanford,...  

Broader source: Energy.gov (indexed) [DOE]

Washington Closure Hanford, LLC - WEA-2010-02 Preliminary Notice of Violation, Washington Closure Hanford, LLC - WEA-2010-02 August 19, 2010 Issued to Washington Closure Hanford,...

22

Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

L.C. Hulstrom

2010-11-10T23:59:59.000Z

23

Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

L.C. Hulstrom

2010-08-11T23:59:59.000Z

24

Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

Not Available

1994-07-01T23:59:59.000Z

25

Archaeological survey of the 200 East and 200 West Areas, Hanford Site, Washington  

SciTech Connect (OSTI)

Responding to a heavy demand for cultural resource reviews of excavation sites, the Westinghouse Hanford Company contracted with Pacific Northwest Laboratory to conduct a comprehensive archaeological resource review for the 200 Areas of the Hanford Site, Washington. This was accomplished through literature and records review and an intensive pedestrian survey of all undisturbed portions of the 200 East Area and a stratified random sample of the 200 West Area. The survey, followed the Secretary of the Interior's guidelines for the identification of historic properties. The result of the survey is a model of cultural resource distributions that has been used to create cultural resource zones with differing degrees of sensitivity. 11 refs., 7 figs., 1 tab.

Chatters, J.C.; Cadoret, N.A.

1990-03-01T23:59:59.000Z

26

Prioritization and accelerated remediation of groundwater contamination in the 200 Areas of the Hanford Site, Washington  

SciTech Connect (OSTI)

The Hanford Site, operated by the US Department of Energy (DOE), occupies about 1,450 km{sup 2} (560 mi{sup 2}) of the southeastern part of Washington State north of the confluence of the Yakima and Columbia Rivers. The Hanford Site is organized into numerically designated operational areas. The 200 Areas, located near the center of the Hanford Site, encompasses the 200 West, East and North Areas and cover an area of over 40 km{sup 2}. The Hanford Site was originally designed, built, and operated to produce plutonium for nuclear weapons using production reactors and chemical reprocessing plants. Operations in the 200 Areas were mainly related to separation of special nuclear materials from spent nuclear fuel and contain related chemical and fuel processing and waste management facilities. Large quantities of chemical and radioactive waste associated with these processes were often disposed to the environment via infiltration structures such as cribs, ponds, ditches. This has resulted in over 25 chemical and radionuclide groundwater plumes, some of which have reached the Columbia River. An Aggregate Area Management Study program was implemented under the Hanford Federal Facility Agreement and Consent Order to assess source and groundwater contamination and develop a prioritized approach for managing groundwater remediation in the 200 Areas. This included a comprehensive evaluation of existing waste disposal and environmental monitoring data and the conduct of limited field investigations (DOE-RL 1992, 1993). This paper summarizes the results of groundwater portion of AAMS program focusing on high priority contaminant plume distributions and the groundwater plume prioritization process. The objectives of the study were to identify groundwater contaminants of concern, develop a conceptual model, refine groundwater contaminant plume maps, and develop a strategy to expedite the remediation of high priority contaminants through the implementation of interim actions.

Wittreich, C.D.; Ford, B.H.

1993-04-01T23:59:59.000Z

27

Lead test assembly irradiation and analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) needs to confirm the viability of using a commercial light water reactor (CLWR) as a potential source for maintaining the nation`s supply of tritium. The Proposed Action discussed in this environmental assessment is a limited scale confirmatory test that would provide DOE with information needed to assess that option. This document contains the environmental assessment results for the Lead test assembly irradiation and analysis for the Watts Bar Nuclear Plant, Tennessee, and the Hanford Site in Richland, Washington.

NONE

1997-07-01T23:59:59.000Z

28

A hydrochemical data base for the Hanford Site, Washington  

SciTech Connect (OSTI)

This data package contains a revision of the Site Hydrochemical Data Base for water samples associated with the Basalt Waste Isolation Project (BWIP). In addition to the detailed chemical analyses, a summary description of the data base format, detailed descriptions of verification procedures used to check data entries, and detailed descriptions of validation procedures used to evaluate data quality are included. 32 refs., 21 figs., 3 tabs.

Early, T.O.; Mitchell, M.D.; Spice, G.D.

1986-05-01T23:59:59.000Z

29

INTERIM BARRIER AT HANFORDS TY FARM TO PROTECT GROUNDWATER AT THE HANFORD SITE WASHINGTON USA  

SciTech Connect (OSTI)

An innovative interim surface barrier was constructed as a demonstration project at the Hanford Site's TY Tank Farm. The purpose of the demonstration barrier is to stop rainwater and snowmelt from entering the soils within the tank farm and driving contamination from past leaks and spills toward the ground water. The interim barrier was constructed using a modified asphalt material with very low permeability developed by MatCon{reg_sign}. Approximately 2,400 cubic yards of fill material were added to the tank farm to create a sloped surface that will gravity drain precipitation to collection points where it will be routed through buried drain lines to an evapotranspiration basin adjacent to the farm. The evapotranspiration basin is a lined basin with a network of perforated drain lines covered with soil and planted with native grasses. The evapotranspiration concept was selected because it prevents the runoff from percolating into the soil column and also avoids potential monitoring and maintenance issues associated with standing water in a traditional evaporation pond. Because of issues associated with using standard excavation and earth moving equipment in the farm a number of alternate construction approaches were utilized to perform excavations and prepare the site for the modified asphalt.

PARKER DL; HOLM MJ; HENDERSON JC; LOBER RW

2011-01-13T23:59:59.000Z

30

Assessment of unsaturated zone radionuclide contamination in the 200 areas of the Hanford site, Washington  

SciTech Connect (OSTI)

The 200 East and 200 West Areas at the Department of Energy`s Hanford site in southeastern Washington, contain chemical and nuclear fuel processing facilities that disposed of large volumes of chemical and radionuclide effluents to the ground via various structures such as ponds, cribs and ditches. A geophysical logging investigation was implemented in 1992 to assess the nature and extent of contamination beneath select liquid disposal sites in the 200 Areas. The borehole geophysical logging was accomplished with a recently developed spectral gamma-ray logging system called the Radionuclide Logging System (RLS). This system has a high-resolution, intrinsic germanium detector mounted in a downhole probe and is calibrated and operated specifically for use in a borehole environment. It provides a means to develop in-situ, gamma-emitting radioelement concentration profiles. Approximately 50 boreholes were logged in this study. The RLS log data provided information about the migration and deposition patterns of specific radionuclides in the unsaturated zone and their impacts on the groundwater. Approximately 10 radionuclide species were detected and quantified. Results of the field investigation are being used to refine site specific conceptual models, support Hanford Site remediation decisions and focus future characterization activities.

Brodeur, J.R.; Wittreich, C.D.

1993-03-01T23:59:59.000Z

31

Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State  

SciTech Connect (OSTI)

Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.

Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu

2008-09-01T23:59:59.000Z

32

EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE’s Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012.

33

EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

34

Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

Hulstrom, L.

2011-02-07T23:59:59.000Z

35

Identifying the sources of subsurface contamination at the Hanford site in Washington using high-precision uranium isotopic measurements  

E-Print Network [OSTI]

Batches Processed Through Hanford Separations Plants, 1944Rev. 0, Lockheed Martin Hanford Corporation, Richland, WA,11) Hartman, M.J. , ed. Hanford Site Groundwater Monitoring:

Christensen, John N.; Dresel, P. Evan; Conrad, Mark E.; Maher, Kate; DePaolo, Donald J.

2004-01-01T23:59:59.000Z

36

Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997  

SciTech Connect (OSTI)

Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

Hartshorn, D.C.; Reidel, S.P.

1997-05-01T23:59:59.000Z

37

Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997  

SciTech Connect (OSTI)

Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

1997-08-01T23:59:59.000Z

38

National Register of Historic Places multiple property documentation form -- Historic, archaeological, and traditional cultural properties of the Hanford Site, Washington  

SciTech Connect (OSTI)

The US Department of Energy`s Hanford Site encompasses an area of 560 square miles on the Columbia River in southeastern Washington. Since 1943, the Hanford Site has existed as a protected area for activities primarily related to the production of radioactive materials for national defense uses. For cultural resources on the Hanford Site, establishment of the nuclear reservation as a high security area, with public access restricted, has resulted in a well-protected status, although no deliberate resource protection measures were in effect to mitigate effects of facilities construction and associated activities. Thus, the Hanford Site contains an extensive record of aboriginal archaeological sites and Native American cultural properties, along with pre-Hanford Euro-American sites (primarily archaeological in nature with the removal of most pre-1943 structures), and a considerable number of Manhattan Project/Cold War era buildings and structures. The recent mission change from production to clean up and disposal of DOE lands created a critical need for development and implementation of new and different cultural resource management strategies. DOE-RL has undertaken a preservation planning effort for the Hanford Site. The intent of this Plan is to enable DOE-RL to organize data and develop goals, objectives, and priorities for the identification, evaluation, registration, protection, preservation, and enhancement of the Site`s historical and cultural properties. Decisions made about the identification, evaluation, registration and treatment of historic properties are most aptly made when relationships between individual properties and other similar properties are considered. The historic context and the multiple property documentation (NTD) process provides DOE-RL the organizational framework for these decisions. Once significant patterns are identified, contexts developed, and expected properties are defined, the NTD process provides the foundation for future decisions concerning the management of significant cultural resources on the Hanford Site.

Nickens, P.R.

1997-08-01T23:59:59.000Z

39

EIS-0113: Disposal of Hanford Defense High-Level, Transuranic and Tank Waste, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to examine the potential environmental impacts of final disposal options for legacy and future radioactive defense wastes stored at the Hanford Site.

40

Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington  

SciTech Connect (OSTI)

In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy's Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan.

Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington  

SciTech Connect (OSTI)

In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy`s Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan.

Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

1992-09-01T23:59:59.000Z

42

Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington  

SciTech Connect (OSTI)

This Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) ongoing and proposed waste management practices at the Hanford Site in Washington State. The HSW EIS updates some analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS; DOE 1997c) Records of Decision (RODs). The draft HSW EIS was initially issued in April 2002 for public comment (DOE 2002b). A revised draft HSW EIS was issued in March 2003 to address new waste management alternatives that had been proposed since the initial draft HSW EIS was prepared, and to address comments received during the public review period for the first draft (DOE 2003d). The revised draft HSW EIS also incorporated alternatives for disposal of immobilized low-activity waste (ILAW) from treatment of Hanford Site tank waste in the waste treatment plant (WTP) currently under construction, an activity that was not included in the first draft (68 FR 7110). This final HSW EIS describes the DOE preferred alternative, and in response to public comments received on the March 2003 revised draft, provides additional analyses for some environmental consequences associated with the preferred alternative, with other alternatives, and with cumulative impacts. Public comments on the revised draft HSW EIS are addressed in the comment response document (Volume III of this final EIS). This HSW EIS describes the environmental consequences of alternatives for constructing, modifying, and operating facilities to store, treat, and/or dispose of low-level (radioactive) waste (LLW), transuranic (TRU) waste, ILAW, and mixed low-level waste (MLLW) including WTP melters at Hanford. In addition, the potential long-term consequences of LLW, MLLW, and ILAW disposal on groundwater and surface water are evaluated for a 10,000-year period, although the DOE performance standards only require assessment for the first 1000 years after disposal (DOE 2001f). This document does not address non-radioactive waste that contains ''hazardous'' or ''dangerous'' waste, as defined under the Resource Conservation and Recovery Act (RCRA) of 1976 (42 USC 6901) and Washington State Dangerous Waste regulations (WAC 173-303). Following a previous National Environmental Policy Act (NEPA, 42 USC 4321) review (DOE 1997d), DOE decided to dispose of TRU waste in New Mexico at the Waste Isolation Pilot Plant (WIPP), a repository that meets the requirements of 40 CFR 191 (63 FR 3623). This HSW EIS has been prepared in accordance with NEPA, the DOE implementing procedures for NEPA 10 CFR 1021, and the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR 1500-1508).

N /A

2004-02-13T23:59:59.000Z

43

Hydrogeology along the southern boundary of the Hanford Site between the Yakima and Columbia Rivers, Washington  

SciTech Connect (OSTI)

US Department of Energy (DOE) operations at the Hanford Site, located in southeastern Washington, have generated large volumes of hazardous and radioactive wastes since 1944. Some of the hazardous wastes were discharged to the ground in the 1100 and 3000 Areas, near the city of Richland. The specific waste types and quantities are unknown; however, they probably include battery acid, antifreeze, hydraulic fluids, waste oils, solvents, degreasers, paints, and paint thinners. Between the Yakima and Columbia rivers in support of future hazardous waste site investigations and ground-water and land-use management. The specific objectives were to collect and review existing hydrogeologic data for the study area and establish a water-level monitoring network; describe the regional and study area hydrogeology; develop a hydrogeologic conceptual model of the unconfined ground-water flow system beneath the study area, based on available data; describe the flow characteristics of the unconfined aquifer based on the spatial and temporal distribution of hydraulic head within the aquifer; use the results of this study to delineate additional data needs in support of future Remedial Investigation/Feasibility Studies (RI/FS), Fate and Transport modeling, Baseline Risk Assessments (BRA), and ground-water and land-use management.

Liikala, T.L.

1994-09-01T23:59:59.000Z

44

A postmortem assessment of environmental compliance of a high-level radioactive waste repository, Hanford Site, Washington  

E-Print Network [OSTI]

the engineered barrier and the accessible environment. The concept of geochemical retarda'tion has been analyzed by Domenico et al. (1988) from a regulatory point of view and the following discussion is a summary of their work. As discussed previously, a...A POSTMORTEM ASSESSMENT OF ENVIRONMENTAL COMPLIANCE OF A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY, HANFORD SITE, WASHINGTON A Thesis by RUDOLF HARALD WILHELM PETRINI Submitted to the Graduate College of Texas A & M University in partial...

Petrini, Rudolf Harald Wilhelm

1988-01-01T23:59:59.000Z

45

GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD SITE WASHINGTON USA - 11507  

SciTech Connect (OSTI)

The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km{sup 2} (2.7 mi{sup 2}) with concentrations greater than 20 {micro}g/L. Concentrations range from 60,000 {micro}g/L near the former dichromate transfer station in the 100-D Area to large areas of 20 to 100 {micro}g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 {micro}g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.

SMOOT JL; BIEBESHEIMER FH; ELUSKIE JA; SPILIOTOPOULOS A; TONKIN MJ; SIMPKIN T

2011-01-12T23:59:59.000Z

46

Fiscal year 1992 report on archaeological surveys of the 100 Areas, Hanford Site, Washington  

SciTech Connect (OSTI)

During FY 1992, the Hanford Cultural Resources Laboratory (HCRL) conducted a field survey of the 100-HR-3 Operable Unit (600 Area) and tested three sites near the 100 Area reactor compounds on the US Department of Energy`s Hanford Site at the request of Westinghouse Hanford Company. These efforts were conducted in compliance with Section 106 of the National Historic Preservation Act (NHPA) and are part of a cultural resources review of 100 Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization studies.The results of the FY 1992 survey and test excavation efforts are discussed in this report. 518 ha in the 100-HR-3 Operable Unit and conducted test excavations at three prehistoric sites near the 100-F and 100-K reactors to determine their eligibility for listing on the National Register of Historic Places.

Wright, M.K.

1993-09-01T23:59:59.000Z

47

Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils  

SciTech Connect (OSTI)

This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

L. C. Hulstrom

2009-09-28T23:59:59.000Z

48

Revised Hydrogeology for the Suprabasalt Aquifer System, 200-West Area and Vicinity, Hanford Site, Washington  

SciTech Connect (OSTI)

The primary objective of this study was to refine the conceptual groundwater flow model for the 200-West Area and vicinity. This is the second of two reports that combine to cover the 200 Area Plateau, an area that holds the largest inventory of radionuclide and chemical waste on the Hanford Site.

Williams, Bruce A.; Bjornstad, Bruce N.; Schalla, Ronald; Webber, William D.

2002-05-14T23:59:59.000Z

49

EIS-0089: PUREX Plant and Uranium Oxide Plant Facilities, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of resumption of operations of the PUREX/Uranium Oxide facilities at the Hanford Site to produce plutonium and other special nuclear materials for national defense needs.

50

EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON  

SciTech Connect (OSTI)

K Basins, consisting of two water-filled storage basins (KW and KE) for spent nuclear fuel (SNF), are part of the 100-K Area of the Hanford Site, along the shoreline of the Columbia River, situated approximately 40 km (25 miles) northwest of the City of Richland, Washington. The KW contained 964 metric tons of SNF in sealed canisters and the KE contained 1152 metric tons of SNF under water in open canisters. The cladding on much of the fuel was damaged allowing the fuel to corrode and degrade during storage underwater. An estimated 1,700 cubic feet of sludge, containing radionuclides and sediments, have accumulated in the KE basin. Various alternatives for removing and processing the SNF, sludge, debris and water were originally evaluated, by USDOE (DOE), in the Environmental Impact Statement (EIS) with a preferred alternative identified in the Record of Decision. The SNF, sludge, debris and water are ''hazardous substances'' under the Comprehensive, Environmental, Response, Compensation and Liability Act of 1980 (CERCLA). Leakage of radiologically contaminated water from one of the basins and subsequent detection of increased contamination in a down-gradient monitoring well helped to form the regulatory bases for cleanup action under CERCLA. The realization that actual or threatened release of hazardous substances from the waste sites and K Basins, if not addressed in a timely manner, may present an imminent and substantial endangerment to public health, welfare and environment led to action under CERCLA, with EPA as the lead regulatory agency. Clean-up of the K Basins as a CERCLA site required SNF retrieval, processing, packaging, vacuum drying and transport to a vaulted storage facility for storage, in conformance with a quality assurance program approved by the Office of Civilian Radioactive Waste Management (OCRWM). Excluding the facilities built for SNF drying and vaulted storage, the scope of CERCLA interim remedial action was limited to the removal of fuel, sludge, debris and water. At present, almost all of the spent fuel has been removed from the basins and other activities to remove sludge, debris and water are scheduled to be completed in 2007. Developing environmental documentation and obtaining regulatory approvals for a project which was initiated outside CERCLA and came under CERCLA during execution, was a significant priority to the successful completion of the SNF retrieval, transfer, drying, transport and storage of fuel, within the purview of strong conduct-of-operations culture associated with nuclear facilities. Environmental requirements promulgated in the state regulations by Washington Department of Public Health for radiation were recognized as ''applicable or relevant and appropriate.'' Effective implementation of the environmental compliance strategy in a project that transitioned to CERCLA became a significant challenge involving multiple contractors. This paper provides an overview of the development and implementation of an environmental permitting and surveillance strategy that enabled us to achieve full compliance in a challenging environment, with milestones and cost constraints, while meeting the high safety standards. The details of the strategy as to how continuous rapport with the regulators, facility operators and surveillance groups helped to avoid impacts on the clean-up schedule are discussed. Highlighted are the role of engineered controls, surveillance protocols and triggers for monitoring and reporting, and active administrative controls that were established for the control of emissions, water loss and transport of waste shipments, during the different phases of the project.

AMBALAM, T.

2004-12-01T23:59:59.000Z

51

Hanford Site Environmental Report for Calendar Year 2001  

SciTech Connect (OSTI)

This report summarizes environmental information for the Hanford Site in Washington State for the calendar year 2001.

Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

2002-09-02T23:59:59.000Z

52

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite Public Tours Hanford Site

53

Archaeological survey of the McGee Ranch vicinity, Hanford Site, Washington  

SciTech Connect (OSTI)

In response to a request for a cultural resources review from Westinghouse Hanford Company for the Action Plan for Characterization of McGee Ranch Soil, Pacific Northwest Laboratory`s Hanford Cultural Resources Laboratory (HCRL) conducted an archaeological survey of the McGee Ranch vicinity, located in the northwest portion of the Hanford Site. Staff members covered 8.4 km{sup 2} and recorded 42 cultural resources; 22 sites, and 20 isolated artifacts. Only 2 sites and 3 isolates were attributed to a prehistoric Native American occupation. The historic sites date from the turn of the century to the 1940s and are representative of the settlement patterns that occurred throughout the Columbia Basin. In addition to an archaeological pedestrian survey of the project area, we conducted literature and records searches and examined available aerial photographs. Records kept at HCRL were reviewed to determine if any archaeological survey had been conducted previously within the project area. Although no survey had been conducted, portions of the area adjacent to project boundaries were surveyed in 1988 and 1990. During those surveys, historic and prehistoric cultural resources were observed, increasing the possibility that similar land usage had taken place within the current project boundaries. Literature searches established a general historical sequence for this area. Aerial photographs alerted researchers to homesteads and linear features, such as roads and irrigation ditches, that might not be apparent from ground level.

Gard, H.A.; Poet, R.M.

1992-09-01T23:59:59.000Z

54

Archaeological survey of the McGee Ranch vicinity, Hanford Site, Washington  

SciTech Connect (OSTI)

In response to a request for a cultural resources review from Westinghouse Hanford Company for the Action Plan for Characterization of McGee Ranch Soil, Pacific Northwest Laboratory's Hanford Cultural Resources Laboratory (HCRL) conducted an archaeological survey of the McGee Ranch vicinity, located in the northwest portion of the Hanford Site. Staff members covered 8.4 km{sup 2} and recorded 42 cultural resources; 22 sites, and 20 isolated artifacts. Only 2 sites and 3 isolates were attributed to a prehistoric Native American occupation. The historic sites date from the turn of the century to the 1940s and are representative of the settlement patterns that occurred throughout the Columbia Basin. In addition to an archaeological pedestrian survey of the project area, we conducted literature and records searches and examined available aerial photographs. Records kept at HCRL were reviewed to determine if any archaeological survey had been conducted previously within the project area. Although no survey had been conducted, portions of the area adjacent to project boundaries were surveyed in 1988 and 1990. During those surveys, historic and prehistoric cultural resources were observed, increasing the possibility that similar land usage had taken place within the current project boundaries. Literature searches established a general historical sequence for this area. Aerial photographs alerted researchers to homesteads and linear features, such as roads and irrigation ditches, that might not be apparent from ground level.

Gard, H.A.; Poet, R.M.

1992-09-01T23:59:59.000Z

55

Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington  

SciTech Connect (OSTI)

This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

2008-02-29T23:59:59.000Z

56

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluate the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material.

57

Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington  

SciTech Connect (OSTI)

This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

Rohay, Alan C.; Reidel, Steve P.

2005-02-24T23:59:59.000Z

58

Hanford ARRA News - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act of 2009 > Hanford ARRA News Recovery Act of 2009 Hanford ARRA FAQ Hanford ARRA Weekly Reports Hanford ARRA News Hanford ARRA Photogallery Hanford ARRA Videos Hanford...

59

Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

Peterson, Robert E.; Patton, Gregory W.

2009-12-14T23:59:59.000Z

60

Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, Southeast Washington  

SciTech Connect (OSTI)

A composite analysis of low-level radioactive waste disposal and other radioactive sources was recently completed for the Hanford Site in Southeast Washington State. Impacts from source release and environmental transport were estimated for a 1000-year period following Site closure in a multi-step process involving 1) estimation of radiological inventories and release, 2) assessment of contaminant migration through the vadose zone, groundwater, and atmospheric pathways, 3) and estimation of doses. The analysis showed that most of the radionuclide inventory in past-practice liquid discharge sites and pre-1988 solid waste burial grounds on the 200 Area Plateau will be released in the first several hundred years following Hanford Site closure, well before projected releases from active and planned disposals of solid waste. The maximum predicted agricultural dose was less than 6 mrem/y in 2050 and declined thereafter. The maximum doses for the residential, industrial, and recreational scenarios, were 2.2, 0.7, and 0.04 mrem/y, respectively, and also declined after 2050.

Kincaid, Charles T.; Bergeron, Marcel P.; Cole, Charles R.; Freshley, Mark D.; Johnson, Vernon G.; Kaplan, D. I.; Serne, R. Jeffrey; Streile, Gary P.; Strenge, Dennis L.; Thorne, Paul D.; Vail, Lance W.; Whyatt, Greg A.; Wurstner, Signe K.

2000-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington  

SciTech Connect (OSTI)

This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS.

N /A

2003-04-11T23:59:59.000Z

62

Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington  

SciTech Connect (OSTI)

The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices at the Hanford Site. The HSW EIS updates analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS) Records of Decision (RODs). Waste types considered in the HSW EIS include operational low-level radioactive waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and transuranic (TRU) waste (including TRU mixed waste). MLLW contains chemically hazardous components in addition to radionuclides. Alternatives for management of these wastes at the Hanford Site, including the alternative of No Action, are analyzed in detail. The LLW, MLLW, and TRU waste alternatives are evaluated for a range of waste volumes, representing quantities of waste that could be managed at the Hanford Site. A single maximum forecast volume is evaluated for ILAW. The No Action Alternative considers continuation of ongoing waste management practices at the Hanford Site and ceasing some operations when the limits of existing capabilities are reached. The No Action Alternative provides for continued storage of some waste types. The other alternatives evaluate expanded waste management practices including treatment and disposal of most wastes. The potential environmental consequences of the alternatives are generally similar. The major differences occur with respect to the consequences of disposal versus continued storage and with respect to the range of waste volumes managed under the alternatives. DOE's preferred alternative is to dispose of LLW, MLLW, and ILAW in a single, modular, lined facility near PUREX on Hanford's Central Plateau; to treat MLLW using a combination of onsite and offsite facilities; and to certify TRU waste onsite using a combination of existing, upgraded, and mobile facilities. DOE issued the Notice of Intent to prepare the HSW EIS on October 27, 1997, and held public meetings during the scoping period that extended through January 30, 1998. In April 2002, DOE issued the initial draft of the EIS. During the public comment period that extended from May through August 2002, DOE received numerous comments from regulators, tribal nations, and other stakeholders. In March 2003, DOE issued a revised draft of the HSW EIS to address those comments, and to incorporate disposal of ILAW and other alternatives that had been under consideration since the first draft was published. Comments on the revised draft were received from April 11 through June 11, 2003. This final EIS responds to comments on the revised draft and includes updated analyses to incorporate information developed since the revised draft was published. DOE will publish the ROD(s) in the ''Federal Register'' no sooner than 30 days after publication of the Environmental Protection Agency's Notice of Availability of the final HSW EIS.

M.S. Collins C.M. Borgstrom

2004-01-01T23:59:59.000Z

63

Characterization of solids in residual wastes from single-shell tanks at the Hanford site, Washington, USA.  

SciTech Connect (OSTI)

Solid phase physical and chemical characterization methods have been used in an ongoing study of residual wastes from several single-shell underground waste tanks at the U.S. Department of Energy's Hanford Site in southeastern Washington State. Because these wastes are highly-radioactive dispersible powders and are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases, their detailed characterization offers an extraordinary technical challenge. X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) are the two principal methods used, along with a limited series of analyses by synchrotron-based methods, to characterize solid phases and their contaminant associations in these wastes.

Krupka, K. M.; Cantrell, K. J.; Todd Schaef, H.; Arey, B. W.; Heald, S. M.; Deutsch, W. J.; Lindberg, M. J. (X-Ray Science Division); ( PSC-USR); (PNNL)

2010-03-01T23:59:59.000Z

64

Startup of the New 200 West Pump-and-Treat, Hanford Site, Richland, Washington - 13214  

SciTech Connect (OSTI)

On June 28, 2012, CH2M HILL Plateau Remediation Company (CHPRC) completed the construction and acceptance testing for a new 2,500 gallon-per-minute (gpm) pump-and-treat (P and T) system in the 200 West Area of the Hanford Site in Washington State. This system is designed to remove Tc-99, carbon tetrachloride, trichloroethene (TCE), nitrate, and total and hexavalent chromium from groundwater using ion exchange, anoxic and aerobic bioreactors, and air stripping. The system will eventually remove uranium from groundwater using ion exchange as well. The startup of the P and T system is important because it will ensure that contaminants from the 200 West Area never reach the Columbia River. When fully operational, the 200 West P and T will include approximately 23 extraction wells and 21 injection wells. The extraction wells are 8 inches in diameter, are completed with well screens 100 feet or more in length, and are distributed throughout the central portion of the 5-square-mile carbon tetrachloride plume. The injection wells are also 8 inches in diameter and are installed up-gradient of the plumes to recharge the aquifer and down-gradient of the plumes for flow-path control. Groundwater in the 200 West Area is approximately 250 feet below ground surface, and the aquifer is 200 feet or more in thickness. All of the contaminants (except nitrate) are found within the perimeter of the carbon tetrachloride plume and occur at various depths throughout the aquifer. The 200 West P and T consists of two separate buildings to conduct groundwater treatment. The RAD building contains an ion exchange system to remove Tc-99 from groundwater at a maximum flow rate of 600 gpm. The RAD building only accepts water from those extraction wells showing elevated Tc-99 concentrations. Groundwater initially fills an influent tank, is then pumped through particulate filters (to remove suspended materials), and then passes through two parallel treatment trains containing Purolite{sup R} A530E resin (which has been proven effective in removing Tc-99). The water is then transferred to the biological treatment building for further treatment. When the lead vessel in each of the two treatment trains becomes fully loaded with Tc-99, the Purolite A530E resin is transferred to a separate tank where it is heated to 160 deg. F to remove volatile organics prior to disposal at the Environmental Restoration Disposal Facility. The biological treatment building has a maximum flow capacity of 2,500 gpm. Groundwater from the nonradiological extraction wells and treated groundwater from the RAD building are initially pumped into an equalization tank and then into two parallel fluidized bed reactors (FBRs). The FBRs contain granulated activated carbon in suspension for microbes to populate, a carbon-based food source for the microbes to eat (e.g., MicroCg{sup TM}, molasses, or sodium lactate), and nitrate for the microbes to breathe (represents 'anoxic' conditions that contain little or no dissolved oxygen). The FBRs are maintained at a temperature between 55 deg. F and 90 deg. F, and at a pH between 6.5 and 6.8, to maximize microbial growth. The FBRs break down the nitrate, reduce the hexavalent chromium to trivalent chromium, and break down a good portion of the carbon tetrachloride and TCE. From the FBRs, groundwater is pumped through a carbon separation tank, then through a splitter box that divides the water evenly between four membrane bioreactors (MBRs) that further break down the contaminants. The MBRs have aeration capacity to provide sufficient oxygen for maintaining the aerobic biological process. The MBRs use submerged membranes for filtration. Vertically strung fibers are found in the membrane zone where a vacuum draws water through tiny pores in the fibers. The liquid is then pumped to air strippers to remove any volatile organics that have passed through the bioreactors. Solids from the MBRs are pumped to rotary drum thickeners and centrifuges for dewatering prior to lime being added to kill the bacteria and control odor. The conditioned sludge is then

Byrnes, Mark E. [CH2M HILL Plateau Remediation Company, Richland, Washington (United States)] [CH2M HILL Plateau Remediation Company, Richland, Washington (United States); Simmons, Sally [Fluor Federal Services, Richland, Washington (United States)] [Fluor Federal Services, Richland, Washington (United States); Morse, John [U.S. Department of Energy, Richland Operations Office, Richland, Washington (United States)] [U.S. Department of Energy, Richland Operations Office, Richland, Washington (United States)

2013-07-01T23:59:59.000Z

65

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secretary Ernest Moniz Visits Hanford Title: Secretary Moniz at the 200 West Pump and Treat System Secretary Moniz at the 200 West Pump and Treat System Name: Secretary Moniz at...

66

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tours the 200 West Pump and Treat System. This year alone, the facility has removed more than two tons of carbon tetrachloride and 33 tons of nitrates from Hanford's groundwater...

67

Risk and Performance Analyses Supporting Closure of WMA C at the Hanford Site in Southeast Washington  

SciTech Connect (OSTI)

The Office of River Protection under the U.S. Department of Energy (DOE) is pursuing closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C as stipulated by the Hanford Federal Facility Agreement and Consent Order (HFFACO) under federal requirements and work tasks will be done under the State-approved closure plans and permits. An initial step in meeting the regulatory requirements is to develop a baseline risk assessment representing current conditions based on available characterization data and information collected at the WMA C location. The baseline risk assessment will be supporting a Resource Conservation and Recovery Act of 1976 (RCRA) Field Investigation (RFI)/Corrective Measures Study (CMS) for WMA closure and RCRA corrective action. Complying with the HFFACO conditions also involves developing a long-term closure Performance Assessment (PA) that evaluates human health and environmental impacts resulting from radionuclide inventories in residual wastes remaining in WMA C tanks and ancillary equipment. This PA is being developed to meet the requirements necessary for closure authorization under DOE Order 435.1 and Washington State Hazardous Waste Management Act. To meet the HFFACO conditions, the long-term closure risk analysis will include an evaluation of human health and environmental impacts from hazardous chemical inventories along with other performance Comprehensive Environmental Response, Compensation, and Liability Act Appropriate and Applicable Requirements (CERCLA ARARs) in residual wastes left in WMA C facilities after retrieval and removal. This closure risk analysis is needed to needed to comply with the requirements for permitted closure. Progress to date in developing a baseline risk assessment of WMA C has involved aspects of an evaluation of soil characterization and groundwater monitoring data collected as a part of the RFI/CMS and RCRA monitoring. Developing the long-term performance assessment aspects has involved the construction of detailed numerical models of WMA C using the Subsurface Transport Over Multiple Phases (STOMP©) computer code, the development of a technical approach for abstraction of a range of representative STOMP© simulations into a system-level model based on the GoldSim© system-level model software.The STOMP©-based models will be used to evaluate local-scale impacts and closed facility performance over a sufficient range of simulations to allow for development of the system-level model of the WMA C. The GoldSim©-based system-level model will be used to evaluate overall sensitivity of modeled parameters and the estimate the uncertainty in potential future impacts from a closed WMA C facility.

Eberlein, Susan J. [Washington River Protection Systems, Richland, WA (United States); Bergeron, Marcel P. [Washington River Protection Systems, Richland, WA (United States); Kemp, Christopher J. [USDOE Office of River Protection, Richland, WA (United States); Hildebrand, R. Douglas [USDOE Office of River Protection, Richland, WA (United States); Aly, Alaa [INTERA, Inc., Richland, WA (United States); Kozak, Matthew [INTERA, Inc., Richland, WA (United States); Mehta, Sunil [INTERA, Inc., Richland, WA (United States); Connelly, Michael [Freestone Environmental Services, Richland, WA (United States)

2013-11-11T23:59:59.000Z

68

Microscale Controls on the Fate of Contaminant Uranium in the Vadose Zone, Hanford Site, Washington  

SciTech Connect (OSTI)

An alkaline brine containing uranyl (UO22+) leaked to the thick unsaturated zone at the Hanford Site. X-ray and electron microprobe imaging showed that the uranium was associated with a minority of clasts, specifically granitic clasts occupying less than four percent of the sediment volume. XANES analysis at micron resolution showed the uranium to be hexavalent. The uranium was precipitated in microfractures as radiating clusters of uranyl silicates, and sorbed uranium was not observed on other surfaces. Compositional determinations of the 1-3 µm precipitates were difficult, but indicated a sodium potassium uranyl silicate, likely sodium boltwoodite. Observations suggested that uranyl was removed from pore waters by diffusion and precipitation in microfractures, where dissolved silica within the granite-equilibrated solution would cause supersaturation with respect to sodium boltwoodite. This hypothesis was tested using a diffusion reaction model operating at microscale. Conditions favoring precipitation were simulated to be transient, and driven by the compositional contrast between pore and fracture space. Pore-space conditions, including alkaline pH, were eventually imposed on the microfracture environment. However, conditions favoring precipitation were prolonged within the microfracture by reaction at the silicate mineral surface to buffer pH in a solubility limiting acidic state, and to replenish dissolved silica. During this time, uranyl was additionally removed to the fracture space by diffusion from pore space. Uranyl is effectively immobilized within the microfracture environment within the presently unsaturated vadose zone.

McKinley, James P.; Zachara, John M.; Liu, Chongxuan; Heald, Steve M.; Prenitzer, Brenda I.; Kempshall, Brian

2006-04-15T23:59:59.000Z

69

Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA  

SciTech Connect (OSTI)

A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

Eberlein, Susan J. [Washington River Protection Systems, Richland, WA (United States); Parker, Danny L. [Washington River Protection Systems, Richland, WA (United States); Tabor, Cynthia L. [Washington River Protection Systems, Richland, WA (United States); Holm, Melissa J. [Washington River Protection Systems, Richland, WA (United States)

2013-11-11T23:59:59.000Z

70

Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington  

SciTech Connect (OSTI)

This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

Freeman-Pollard, J.R.

1994-03-02T23:59:59.000Z

71

222-S radioactive liquid waste line replacement and 219-S secondary containment upgrade, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is proposing to: (1) replace the 222-S Laboratory (222-S) radioactive liquid waste drain lines to the 219-S Waste Handling Facility (219-S); (2) upgrade 219-S by replacing or upgrading the waste storage tanks and providing secondary containment and seismic restraints to the concrete cells which house the tanks; and (3) replace the transfer lines from 219-S to the 241-SY Tank Farm. This environmental assessment (EA) has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and the DOE Implementing Procedures for NEPA (10 CFR 1021). 222-S is used to perform analytical services on radioactive samples in support of the Tank Waste Remediation System and Hanford Site environmental restoration programs. Activities conducted at 222-S include decontamination of analytical processing and support equipment and disposal of nonarchived radioactive samples. These activities generate low-level liquid mixed waste. The liquid mixed waste is drained through pipelines in the 222-S service tunnels and underground concrete encasements, to two of three tanks in 219-S, where it is accumulated. 219-S is a treatment, storage, and/or disposal (TSD) unit, and is therefore required to meet Washington Administrative Code (WAC) 173-303, Dangerous Waste Regulations, and the associated requirements for secondary containment and leak detection. The service tunnels are periodically inspected by workers and decontaminated as necessary to maintain as low as reasonably achievable (ALARA) radiation levels. Although no contamination is reaching the environment from the service tunnels, the risk of worker exposure is present and could increase. 222-S is expected to remain in use for at least the next 30 years to serve the Hanford Site environmental cleanup mission.

NONE

1995-01-01T23:59:59.000Z

72

Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

Lentsch, J.W., Westinghouse Hanford

1996-05-16T23:59:59.000Z

73

A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington  

SciTech Connect (OSTI)

This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

Lentsch, J.W.

1996-07-01T23:59:59.000Z

74

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz at the 200Hanford Congressman

75

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz at the 200Hanford CongressmanK

76

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz at the 200Hanford

77

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz at the 200HanfordPFP Hoisting

78

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz at the 200HanfordPFP

79

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz at the 200HanfordPFPPeople

80

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz atfacility Hanford LEED Gold

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz atfacility Hanford LEED

82

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz atfacility Hanford

83

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity NationalexplosivescanistersgovernmentHanford LEED

84

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity NationalexplosivescanistersgovernmentHanford

85

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity NationalexplosivescanistersgovernmentHanford DX

86

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity NationalexplosivescanistersgovernmentHanford DX-HX

87

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity NationalexplosivescanistersgovernmentHanford

88

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity NationalexplosivescanistersgovernmentHanfordAerial

89

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Video Title:

90

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Video Title:of

91

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Video Title:of

92

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Video Title:of

93

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric223300 Area NorthHanford Fire

94

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric223300 Area NorthHanford FirePRC 200 E

95

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric223300 Area NorthHanford FirePRC 200

96

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric223300 Area NorthHanford FirePRC

97

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric223300 Area NorthHanford FirePRCN

98

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric223300 Area NorthHanford FirePRCN284

99

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric223300 Area NorthHanford

100

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric223300 Area NorthHanfordShipping

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric223300 Area NorthHanfordShippingPublic

102

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront face.May 05.jpg Gallery:Well Drilling All8.jpg Gallery: Hanford

103

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTFIrrigation 65881-2 Hanford Train

104

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTFIrrigation 65881-2 Hanford

105

Revised Hydrogeology for the Suprabasalt Aquifer System, 200-East Area and Vicinity, Hanford Site, Washington  

SciTech Connect (OSTI)

This study supports the Hanford Groundwater/Vadose integration project objectives to better understand the risk of groundwater contamination and potential risk to the public via groundwater flow paths. The primary objective of this study was to refine the conceptual groundwater flow model for the 200-East Area and vicinity.

Williams, Bruce A.; Bjornstad, Bruce N.; Schalla, Ronald; Webber, William D.

2000-04-20T23:59:59.000Z

106

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

107

Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington  

SciTech Connect (OSTI)

This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removal level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.

Murthy, K.S.; Stout, L.A.; Napier, B.A.; Reisenauer, A.E.; Landstrom, D.K.

1983-06-01T23:59:59.000Z

108

Hanford Site Solid (Radioactive and Hazardous) Waste Program...  

Office of Environmental Management (EM)

Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE...

109

Hanford Site Tours - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulf ofnewsFlash F ReactorHanford

110

Recovery FAQ - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act of 2009 > Hanford ARRA FAQ Recovery Act of 2009 Hanford ARRA FAQ Hanford ARRA Weekly Reports Hanford ARRA News Hanford ARRA Photogallery Hanford ARRA Videos Hanford...

111

Hanford Site Development Plan  

SciTech Connect (OSTI)

The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

1990-01-01T23:59:59.000Z

112

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary Moniz atfacilityrecovery Waste Site

113

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery:Act-funded KPER TV14 WhiteShimkus CongressmanSite

114

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200 Wlocalplywoodroadship Shipping Mixed,sites 212R

115

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200 Wlocalplywoodroadship Shipping Mixed,sites

116

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite visit EdBoard3

117

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite visit

118

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite visitARRA

119

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSite

120

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSiteSubcontract for

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTF PRCGrip Get aSiteSubcontract

122

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTFIrrigationBasin Waste Site

123

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpg Gallery: VPPDR ReactorFFTFIrrigationBasin Waste SiteReactor

124

Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions.

NONE

1997-06-01T23:59:59.000Z

125

HANFORD SITE RIVER CORRIDOR CLEANUP  

SciTech Connect (OSTI)

In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

BAZZELL, K.D.

2006-02-01T23:59:59.000Z

126

Site-Specific Velocity and Density Model for the Waste Treatment Plant, Hanford, Washington.  

SciTech Connect (OSTI)

This report documents the work conducted under the SBP to develop a shear wave and compressional wave velocity and density model specific to the WTP site. Section 2 provides detailed background information on the WTP site and its underlying geology as well as on the Seismic Boreholes Project activities leading up to the Vs and Vp measurements. In Section 3, methods employed and results obtained are documented for measurements of Vs and Vp velocities in basalts and interbeds. Section 4 provides details on velocity measurements in the sediments underlying the WTP. Borehole gravity measurements of density of the subsurface basalt and sediments are described in Section 5. Section 6 describes the analysis of data presented in section 3-5, and presents the overall velocity and density model for the WTP site.

Rohay, Alan C.; Brouns, Thomas M.

2007-06-27T23:59:59.000Z

127

Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

Not Available

1993-05-01T23:59:59.000Z

128

Hanford Site, Richland, Washington  

Broader source: Energy.gov (indexed) [DOE]

to experiments with radionuclides. This technology includes establishing controlled radiation zones with high-efficiency particulate air (HEPA) filtered exhaust from all...

129

A WASHINGTON STATE UNIVERSITY POSTDOCTORAL POSITION FOR WORK AT LIGO HANFORD, WA Applications are invited for a postdoctoral position in the Gravity Group at the Department of Physics  

E-Print Network [OSTI]

A WASHINGTON STATE UNIVERSITY POSTDOCTORAL POSITION FOR WORK AT LIGO HANFORD, WA Applications characterization for the Advanced Laser Interferometer Gravitational wave Observatory (LIGO) at the Hanford site characterization at the LIGO Hanford observatory. Familiarity with data analysis pipelines for searching

Collins, Gary S.

130

The Hanford Site: An anthology of early histories  

SciTech Connect (OSTI)

This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford`s early reactors were crucial to the sites`s history; T-Plant made chemical engineering history; the UO{sub 3} plant has a long history of service. PUREX Plant: the Hanford Site`s Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon.

Gerber, M.S.

1993-10-01T23:59:59.000Z

131

RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented.

Not Available

1993-06-01T23:59:59.000Z

132

Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

Not Available

1992-09-01T23:59:59.000Z

133

VPP Hanford Site Champions Committee - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field EmissionFunctionalPortalV1 - March8,Hanford Site

134

PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364  

SciTech Connect (OSTI)

A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

2011-02-14T23:59:59.000Z

135

Hanford Site Regional Population - 2010 Census  

SciTech Connect (OSTI)

The U.S. Department of Energy conducts radiological operations in south-central Washington State. Population dose estimates must be performed to provide a measure of the impact from site radiological releases. Results of the U.S. 2010 Census were used to determine counts and distributions for the residential population located within 50-miles of several operating areas of the Hanford Site. Year 2010 was the first census year that a 50-mile population of a Hanford Site operational area exceeded the half-million mark.

Hamilton, Erin L.; Snyder, Sandra F.

2011-08-12T23:59:59.000Z

136

Hanford Site Groundwater Monitoring for Fiscal Year 2004  

SciTech Connect (OSTI)

This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2005-03-01T23:59:59.000Z

137

Site Feeds - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System OutagesNewsMaterialsX-rayOur‹Simulation,Site

138

Vascular Plants of the Hanford Site  

SciTech Connect (OSTI)

This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.

Sackschewsky, Michael R.; Downs, Janelle L.

2001-09-28T23:59:59.000Z

139

Hanford Cultural Resources - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-AssemblyOctober 2012FebruaryAbout Us > Hanford

140

Hanford Blog Archive - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric Edlund |1/2013 HanfordOctober 2009

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hanford Blog Archive - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric Edlund |1/2013 HanfordOctober

142

Hanford Blog Archive - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric Edlund |1/2013 HanfordOctoberOctober

143

Hanford Blog Archive - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulf of Mexico FactCalendars Hanford

144

Hanford's 2015 Vision - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulf ofnewsFlashSpeakersHanford's

145

Application of a modified denitrifying bacteria method for analyzing groundwater and vadose zone pore water nitrate at the Hanford Site, WA, USA.  

E-Print Network [OSTI]

zone pore water nitrate at the Hanford Site, WA, USA. Woods,and Conrad, Mark The Hanford Site in southern WashingtonL have been reported for Hanford groundwaters, where nitrate

Woods, Katharine N.; Singleton, Michael J.; Conrad, Mark

2003-01-01T23:59:59.000Z

146

Hanford Site Fire June 2000 AM  

SciTech Connect (OSTI)

The Hanford Site Fire on the morning of June 29, 2000. Fire crews working to contain a fire on the Hanford Site in June 2000.

2000-06-29T23:59:59.000Z

147

Hanford Site Groundwater Monitoring for Fiscal Year 2002  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2003-02-28T23:59:59.000Z

148

Disposal Information - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates The Office ofDispelling aHanford Site

149

Getting Started - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGet Assistance Get AssistanceGetting InsideHanford Site

150

Isotopic Tracking of Hanford 300 Area Derived Uranium in the Columbia River  

E-Print Network [OSTI]

F. ; and Webber, W. D.. Hanford Site Groundwater MonitoringGeochemistry at the Hanford Site. PNNL-17031. 2007. (13)contamination at the Hanford Site in Washington using high-

Christensen, John N.

2012-01-01T23:59:59.000Z

151

COLLOID AND COLLOID-FACILITATED RADIONUCLIDE TRANSPORT AT THE SEMI-ARID HANFORD SITE  

E-Print Network [OSTI]

COLLOID AND COLLOID-FACILITATED RADIONUCLIDE TRANSPORT AT THE SEMI-ARID HANFORD SITE By ZIRU LIU Hanford project. Unfortunately, he just passed away this January and could not see the completion-ARID HANFORD SITE Abstract by Ziru Liu, Ph.D. Washington State University May 2013 Chair: Markus Flury

Flury, Markus

152

Annual Hanford Site Environmental Permitting Status Report  

SciTech Connect (OSTI)

The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Rev. 4), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year.

HOMAN, N.A.

2000-10-01T23:59:59.000Z

153

Sediment transport time measured with U-Series isotopes: Results from ODP North Atlantic Drill Site 984  

E-Print Network [OSTI]

zone infiltration rate at Hanford, Washington, inferred fromcontamination at the Hanford Site in Washington using high-fluvial sediments cored at the Hanford site in south central

DePaolo, Donald J.; Maher, Kate; Christensen, John N.; McManus, Jerry

2006-01-01T23:59:59.000Z

154

Hanford Tour Restrictions - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite PublicAboutAETour

155

Hanford Workers Compensation - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite

156

Independent Oversight Investigation, Hanford Site- April 2004  

Broader source: Energy.gov [DOE]

Investigation of Worker Vapor Exposure and Occupational Medicine Program Allegations at the Hanford Site

157

MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)  

SciTech Connect (OSTI)

The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

GERBER MS

2009-04-28T23:59:59.000Z

158

Hanford Site Environmental Surveillance Data Report for Calendar Year 2008  

SciTech Connect (OSTI)

Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2008" (PNNL-18427), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

Bisping, Lynn E.

2009-08-11T23:59:59.000Z

159

Hanford Site Environmental Surveillance Data Report for Calendar Year 2007  

SciTech Connect (OSTI)

Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2007" (PNNL-17603), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

Bisping, Lynn E.

2008-10-13T23:59:59.000Z

160

Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan  

SciTech Connect (OSTI)

This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

K.J. Kroegler, M. Truex, D.J. McBride

2006-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hanford Site Groundwater Monitoring for Fiscal Year 2006  

SciTech Connect (OSTI)

This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2007-03-01T23:59:59.000Z

162

Annual Hanford Site environmental permitting status report  

SciTech Connect (OSTI)

The information contained and/or referenced in this Annual Hanford Site Environmental Permitting Status Report (Status Report) addresses the State Environmental Policy Act (SEPA) of 1971 and Condition II.W. of the Resource Conservation and Recovery Act (RCRA) of 1976 Permit, Dangerous Waste Portion (DW Portion). Condition II.W. of the RCRA Permit specifies the Permittees are responsible for all other applicable federal, state, and local permits for the development and operation of the Hanford Facility. Condition II.W. of the RCRA Permit specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of permit condition, `best efforts` means submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by RCRA, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) is addressed. Information on RCRA and non-RCRA is current as of July 31, 1998. For the purposes of RCRA and the State of Washington Hazardous Waste Management Act of 1976 [as administered through the Dangerous Waste Regulations, Washington Active Code (WAC) 173-303], the Hanford Facility is considered a single facility. As such, the Hanford Facility has been issued one US Environmental Protection Agency (EPA)/State Identification Number (WA7890008967). This EPA/State identification number encompasses over 60 treatment, storage, and/or disposal (TSD) units. The Washington State Department of Ecology (Ecology) has been delegated authority by the EPA to administer the RCRA, including mixed waste authority. The RCRA permitting approach for the Hanford Facility is addressed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). Pursuant to the Tri-Party Agreement, a single RCRA permit was issued by Ecology and the EPA to cover the Hanford Facility. The RCRA Permit, through the permit modification process, eventually will incorporate all TSD units.

Sonnichsen, J.C.

1998-09-17T23:59:59.000Z

163

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secretary Ernest Moniz Visits Hanford All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200...

164

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hanford, 12.11.09 Description: A high-reach excavator being fabricated by the manufacturer to support accelerated demolition on the Central Plateau. CHPRC is using Recovery...

165

Hanford Site 1998 Environmental Report  

SciTech Connect (OSTI)

This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

RL Dirkes; RW Hanf; TM Poston

1999-09-21T23:59:59.000Z

166

Hanford Site Environmental Report 1999  

SciTech Connect (OSTI)

This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

TM Poston; RW Hanf; RL Dirkes

2000-09-28T23:59:59.000Z

167

Independent Oversight Follow-up Review, Hanford Site - June 2011...  

Broader source: Energy.gov (indexed) [DOE]

Hanford Site - June 2011 Independent Oversight Follow-up Review, Hanford Site - June 2011 June 2011 Follow-up Review of the Hanford Site Chronic Beryllium Disease Prevention...

168

HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY  

SciTech Connect (OSTI)

Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the Parties on October 26,2010, and are now in the process of being implemented.

BERGMAN TB

2011-01-14T23:59:59.000Z

169

Hanford Workers Compensation Flow - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSiteAbout Us > Hanford Site

170

Hanford Site Environmental Report 1993  

SciTech Connect (OSTI)

The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

1994-06-01T23:59:59.000Z

171

Contaminant desorption during long-term leaching of hydroxide-weathered Hanford sediments  

E-Print Network [OSTI]

137 in sediments at the Hanford Site, Washington. Environ.during simulated leaks of Hanford waste tanks. Appl.subsurface sediments from the Hanford site, USA. Geochim.

Thompson, A.

2010-01-01T23:59:59.000Z

172

Washington Energy Facility Site Evalutation Council - Generalized...  

Open Energy Info (EERE)

Washington Energy Facility Site Evalutation Council - Generalized Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Chart: Washington Energy...

173

The Hanford Site focus, 1994  

SciTech Connect (OSTI)

This report describes what the Hanford Site will look like in the next two years. We offer thumbnail sketches of Hanford Site programs and the needs we are meeting through our efforts. We describe our goals, some recent accomplishments, the work we will do in fiscal year (FY) 1994, the major activities the FY 1995 budget request covers, and the economic picture in the next few years. The Hanford Site budget shows the type of work being planned. US Department of Energy (DOE) sites like the Hanford Site use documents called Activity Data Sheets to meet this need. These are building blocks that are included in the budget. Each Activity Data Sheet is a concise (usually 4 or 5 pages) summary of a piece of work funded by the DOE`s Environmental Restoration and Waste Management budget. Each sheet describes a waste management or environmental restoration need over a 5-year period; related regulatory requirements and agreements; and the cost, milestones, and steps proposed to meet the need. The Hanford Site is complex and has a huge budget, and its Activity Data Sheets run to literally thousands of pages. This report summarizes the Activity Data Sheets in a less detailed and much more reader-friendly fashion.

Peterson, J.M.

1994-03-01T23:59:59.000Z

174

Annual Hanford Site environmental permitting status report  

SciTech Connect (OSTI)

This Annual Hanford Site Environmental Permitting Status Report (Status Report) was prepared in response to requirements prescribed in U.S. Department of Energy (DOE) Order 5400.2A, `Environmental Compliance Issue Coordination`. This Order, canceled in April 1996, required that information on existing and anticipated environmental permitting for DOE facilities be submitted (or updated) annually by October 1 of each calendar year. Although the Order was canceled, the need for this Status Report still remains. For example, the Washington State Department of Ecology`s (Ecology) Dangerous Waste Permit Application Requirements (Publication Number 95-402, June 1996), Checklist Section J, calls for current information on existing and anticipated environmental permitting. As specified in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28), this Status Report serves as the vehicle for meeting this requirement for the Hanford Facility. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by the Resource Conservation and Recovery Act (RCRA) of 1976, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) are addressed. Information on RCRA and non-RCRA permitting is included and is current as of July 31, 1996.

Thompson, S.A.

1996-10-01T23:59:59.000Z

175

Annual Hanford Site Environmental Permitting status report  

SciTech Connect (OSTI)

The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. Condition II.W further specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of this Permit Condition, ''best efforts'' mean submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies.

SONNICHSEN, J.C.

1999-10-18T23:59:59.000Z

176

Site Visit Report, Hanford Waste Encapsulation Storage Facility...  

Office of Environmental Management (EM)

Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford...

177

Site Visit Report, Hanford Sludge Treatment Project 105-KW -...  

Broader source: Energy.gov (indexed) [DOE]

Site Visit Report, Hanford Sludge Treatment Project 105-KW - August 2011 Site Visit Report, Hanford Sludge Treatment Project 105-KW - August 2011 August 2011 Hanford Sludge...

178

Hanford Site Cleanup Completion Framework - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite Public ToursOfficial

179

Hanford Site Safety Standards - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite Public

180

Hanford Site Voluntary Protection Program - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite PublicAbout Us >Program

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Report on the emergency response to the event on May 14, 1997, at the plutonuim reclamation facility, Hanford Site, Richland,Washington  

SciTech Connect (OSTI)

On the evening of May 14,1997, a chemical explosion Occurred at the Plutonium Reclamation Facility (PRF) in the 200 West Area(200-W) of the Hanford Site. The event warranted the declaration of an Alert emergency, activation of the Hanford Emergency Response Organization (BRO), and notification of offsite agencies. As a result of the emergency declaration, a subsequent evaluation was conducted to assess: 9 the performance of the emergency response organization o the occupational health response related to emergency activities o event notifications to offsite and environmental agencies. Additionally, the evaluation was designed to: 9 document the chronology of emergency and occupational health responses and environmental notifications connected with the explosion at the facility 0 assess the adequacy of the Hanford Site emergency preparedness activities; response readiness; and emergency management actions, occupational health, and environmental actions 0 provide an analysis of the causes of the deficiencies and weaknesses in the preparedness and response system that have been identified in the evaluation of the response a assign organizational responsibility to correct deficiencies and weaknesses a improve future performance 0 adjust elements of emergency implementing procedures and emergency preparedness activities.

Shoop, D.S.

1997-08-20T23:59:59.000Z

182

Hanford Site Transuranic (TRU) Waste Certification Plan  

SciTech Connect (OSTI)

The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

GREAGER, T.M.

1999-12-14T23:59:59.000Z

183

Hanford Site Transuranic (TRU) Waste Certification Plan  

SciTech Connect (OSTI)

The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

GREAGER, T.M.

1999-09-09T23:59:59.000Z

184

Summary of the HANFORD SITE  

E-Print Network [OSTI]

...........................................................................10 Hanford Cleanup Operations..........................................................................................................14 Waste Management........................................................................................................23 Potential Radiological Doses from 2004 Hanford Operations

185

Environmental remediation of contamination sites at the Hanford Site  

SciTech Connect (OSTI)

Efforts currently are under way to remediate the 200 Areas of the US Department of Energy`s (DOE) Hanford Site in Washington State. Because of the complexity and extent of environmental contamination that has resulted from decades of hazardous and radioactive waste disposal practices, an innovative approach to remediating the site was required. A comprehensive study of waste disposal and environmental monitoring data with field investigations, referred to as the 200 Aggregate Area Management Study (AAMS) program, was conducted in 1992 to assess the scope of the remediation effort and to develop a plan to expedite the cleanup progress.

Wittreich, C.D.; Johnson, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

1993-12-31T23:59:59.000Z

186

Independent Oversight Inspection, Hanford Site- September 2006  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health and Emergency Management Programs at the Hanford Site Waste Stabilization and Disposition Project

187

Hanford Site environmental management specification  

SciTech Connect (OSTI)

The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

Grygiel, M.L.

1998-06-10T23:59:59.000Z

188

Hanford Site air operating permit application  

SciTech Connect (OSTI)

The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

NONE

1995-05-01T23:59:59.000Z

189

A Short History of Waste Management at the Hanford Site  

SciTech Connect (OSTI)

"The world’s first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford’s last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford’s only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book “Hanford: A Conversation about Nuclear Waste and Cleanup.”(1) "

Gephart, Roy E.

2010-03-31T23:59:59.000Z

190

Presentations - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentations Presentations Sort by: Default | Name |Hanford

191

Hanford Site Freedom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Video60

192

Hanford Site Freedom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety

193

Hanford Site Freedom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Depnrlmcnt of

194

Hanford Site Freedom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Depnrlmcnt

195

Hanford Site Freedom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Depnrlmcnt

196

Hanford Site Freedom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Depnrlmcnt~

197

Weather Photos - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtectiveWaste toWe Visit|> Hanford

198

Classroom Projects - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous Materials | Center for GasChemicalHanford For

199

Siting the International Linear Collider at Hanford  

SciTech Connect (OSTI)

Review of the proposed International Linear Collider, applications in high energy physics, and evaluation of the Hanford Site as a possible location for siting the facilityl.

Kouzes, Richard T.; Asner, David M.; Brodzinski, Ronald L.; Fast, James E.; Miley, Harry S.

2012-03-15T23:59:59.000Z

200

Siting the International Linear Collider at Hanford  

SciTech Connect (OSTI)

Review of the proposed International Linear Collider, applications in high energy physics, and evaluation of the Hanford Site as a possible location for siting the facility.

Kouzes, Richard T.; Asner, David M.; Brodzinski, Ronald L.; Fast, James E.; Miley, Harry S.

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DETECTION OF HISTORICAL PIPELINE LEAK PLUMES USING NON-INTRUSIVE SURFACE-BASED GEOPHYSICAL TECHNIQUES AT THE HANFORD NUCLEAR SITE WASHINGTON USA  

SciTech Connect (OSTI)

Historical records from the Department of Energy Hanford Nuclear Reservation (in eastern WA) indicate that ruptures in buried waste transfer pipelines were common between the 1940s and 1980s, which resulted in unplanned releases (UPRs) of tank: waste at numerous locations. A number of methods are commercially available for the detection of active or recent leaks, however, there are no methods available for the detection of leaks that occurred many years ago. Over the decades, leaks from the Hanford pipelines were detected by visual observation of fluid on the surface, mass balance calculations (where flow volumes were monitored), and incidental encounters with waste during excavation or drilling. Since these detection methods for historic leaks are so limited in resolution and effectiveness, it is likely that a significant number of pipeline leaks have not been detected. Therefore, a technology was needed to detect the specific location of unknown pipeline leaks so that characterization technologies can be used to identify any risks to groundwater caused by waste released into the vadose zone. A proof-of-concept electromagnetic geophysical survey was conducted at an UPR in order to image a historical leak from a waste transfer pipeline. The survey was designed to test an innovative electromagnetic geophysical technique that could be used to rapidly map the extent of historical leaks from pipelines within the Hanford Site complex. This proof-of-concept test included comprehensive testing and analysis of the transient electromagnetic method (TEM) and made use of supporting and confirmatory geophysical methods including ground penetrating radar, magnetics, and electrical resistivity characterization (ERC). The results for this initial proof-of-concept test were successful and greatly exceeded the expectations of the project team by providing excellent discrimination of soils contaminated with leaked waste despite the interference from an electrically conductive pipe.

SKORSKA MB; FINK JB; RUCKER DF; LEVITT MT

2010-12-02T23:59:59.000Z

202

Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval  

SciTech Connect (OSTI)

This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

2002-02-25T23:59:59.000Z

203

Wildlife studies on the Hanford site: 1994 Highlights report  

SciTech Connect (OSTI)

The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights of wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population.

Cadwell, L.L. [ed.

1995-04-01T23:59:59.000Z

204

Hanford Site Guidelines for Preparation and Presentation of Geologic Information  

SciTech Connect (OSTI)

A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

2010-04-30T23:59:59.000Z

205

Hanford Site Worker Eligibility Tool | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Site Worker Eligibility Tool Hanford Site Worker Eligibility Tool May 16, 2013 Presenter: Ted Giltz, Volpentest HAMMER Federal Training Center Topics Covered: The Hanford Site...

206

Independent Oversight Inspection, Hanford Site, Vol III - August...  

Broader source: Energy.gov (indexed) [DOE]

Site, Vol III - August 2001 Independent Oversight Inspection, Hanford Site, Vol III - August 2001 August 2001 Inspection of Emergency Management at the Hanford Site This report...

207

History of Hanford Site Defense Production (Brief)  

SciTech Connect (OSTI)

This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history.

GERBER, M S

2001-02-01T23:59:59.000Z

208

Hanford Site Solid Waste Acceptance Criteria  

SciTech Connect (OSTI)

This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

Not Available

1993-11-17T23:59:59.000Z

209

Green Initiatives Keep Hanford Site Environmentally Responsible  

Broader source: Energy.gov [DOE]

RICHLAND, Wash. ?Though the Hanford site is technically located in the desert, it has a decidedly “green” tint due to many successful pollution prevention and environmental stewardship initiatives.

210

Hanford Site stormwater pollution prevention plan  

SciTech Connect (OSTI)

This ECN is to replace and update the Hanford Site Stormwater Pollution Prevention Plan as required by NPDES Permit No. WA-R-10-OOOF.

Menard, N.M.

1997-01-10T23:59:59.000Z

211

Annual Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site|Andrea4 Early813412

212

Tank Farms - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWPCarbonTake aTalentTammyProjects

213

HANFORD SITE WELDING PROGRAM SUCCESSFULLY PROVIDING A SINGLE SITE FUNCTION FOR USE BY MULTIPLE CONTRACTORS  

SciTech Connect (OSTI)

The Department of Energy, Richland Operations (DOE-RL) recently restructured its Hanford work scope, awarding two new contracts over the past several months for a total of three contracts to manage the sites cleanup efforts. DOE-RL met with key contractor personnel prior to and during contract transition to ensure site welding activities had appropriate oversight and maintained code compliance. The transition also provided an opportunity to establish a single site-wide function that would provide welding and materials engineering services to the Hanford site contractors: CH2M HILL Plateau Remediation Company (CHPRC); Mission Support Alliance (MSA); Washington River Protection Solutions (WRPS); and Washington Closure Hanford (WCH). Over the years, multiple and separate welding programs (amongst the several contractors) existed at the Hanford site leading to inefficiencies resulting from duplication of administrative efforts, maintenance of welding procedures, welder performance certifications, etc. The new, single program eliminates these inefficiencies. The new program, co-managed by two of the sites' new contractors, the CHPRC ('owner' of the program and responsible for construction welding services) and the MSA (provides maintenance welding services), provides more than just the traditional construction and maintenance welding services. Also provided, are welding engineering, specialty welding development/qualification for the closure of radioactive materials containers and materials evaluation/failure analysis. The following describes the new Hanford site welding program.

CANNELL GR

2009-11-19T23:59:59.000Z

214

Hanford Site Environmental Surveillance Master Sampling Schedule  

SciTech Connect (OSTI)

Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1, General Environmental Protection Program: and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The sampling design is described in the Operations Office, Environmental Monitoring Plan, United States Department of Energy, Richland DOE/RL-91-50, Rev.2, U.S. Department of Energy, Richland, Washington. This document contains the CY 2000 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes sampling locations, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis and may not be collected in 2000 in which case the anticipated year for collection is provided. In addition, a map showing approximate sampling locations is included for each media scheduled for collection.

LE Bisping

2000-01-27T23:59:59.000Z

215

Hanford Site Environmental Surveillance Master Sampling Schedule  

SciTech Connect (OSTI)

Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1, ''General Environmental protection Program,'' and DOE Order 5400.5, ''Radiation Protection of the Public and the Environment.'' The sampling methods are described in the Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office, DOE/RL-91-50, Rev.2, U.S. Department of Energy, Richland, Washington. This document contains the CY1999 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes the sampling location, sample type, and analyses to be performed on the sample. In some cases, samples are scheduled on a rotating basis and may not be collected in 1999 in which case the anticipated year for collection is provided. In addition, a map is included for each media showing approximate sampling locations.

LE Bisping

1999-02-12T23:59:59.000Z

216

Summary of the HANFORD SITE  

E-Print Network [OSTI]

.........................................................................................................9 Hanford Cleanup Operations................................................12 Liquid Waste Management..................................................................................................14 Solid Waste Management

217

DOE Issues Request for Proposals for Hanford Site Occupational...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Issues Request for Proposals for Hanford Site Occupational Medical Services DOE Issues Request for Proposals for Hanford Site Occupational Medical Services November 14, 2011 -...

218

Independent Oversight Inspection, Hanford Site - May 2004 | Department...  

Broader source: Energy.gov (indexed) [DOE]

May 2004 Independent Oversight Inspection, Hanford Site - May 2004 May 2004 Inspection of Emergency Management at the Hanford Site This report provides the results of an...

219

Worker Involvement Improves Safety at Hanford Site's Plutonium...  

Broader source: Energy.gov (indexed) [DOE]

Worker Involvement Improves Safety at Hanford Site's Plutonium Finishing Plant Worker Involvement Improves Safety at Hanford Site's Plutonium Finishing Plant May 29, 2014 - 12:00pm...

220

Independent Oversight Follow-Up Review, Hanford Site - June 2005...  

Broader source: Energy.gov (indexed) [DOE]

Follow-Up Review, Hanford Site - June 2005 Independent Oversight Follow-Up Review, Hanford Site - June 2005 June 2005 Review of Worker Vapor Exposures and Occupational Medicine...

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Workers Create Demolition Zone at Hanford Site's Plutonium Finishing...  

Broader source: Energy.gov (indexed) [DOE]

Create Demolition Zone at Hanford Site's Plutonium Finishing Plant Workers Create Demolition Zone at Hanford Site's Plutonium Finishing Plant August 28, 2014 - 12:00pm Addthis The...

222

Department of Energy Honors Hanford Site Contractor for Employee...  

Office of Environmental Management (EM)

Department of Energy Honors Hanford Site Contractor for Employee Involvement and Management Leadership in Safety and Health Department of Energy Honors Hanford Site Contractor for...

223

Hanford Site Annual Treatability Studies Report, Calendar Year 2002  

SciTech Connect (OSTI)

This report provides information required to be reported annually by the Washington Administrative Code (WAC) 173-303-071 (3)(r)(ii)(F) and (3)(s)(ix) on the treatability studies conducted on the Hanford Site in 2002. These studies were conducted as required by WAC 173-303-071, “Excluded Categories of Waste,” sections (3)(r) and (s). Unless otherwise noted, the waste samples were provided by and the treatability studies were performed for the U.S. Department of Energy, Richland Operations Office, P.O. Box 550, Richland, Washington 99352. The U.S. Environmental Protection Agency identification number for these studies is WA7890008967.

Grohs, Eugene L.

2003-02-28T23:59:59.000Z

224

Hanford Site groundwater monitoring for fiscal year 1996  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others] [eds.; and others

1997-02-01T23:59:59.000Z

225

Isotopic Studies of Contaminant Transport at the Hanford Site, WA  

E-Print Network [OSTI]

MR-0132. Westinghouse Hanford Company, Richland WA. Bretz,in recharge at the Hanford Site. Northwest Science. 66:237-M.J. , ed. 2000. Hanford Site groundwater Monitoring

Christensen, J.N.; Conrad, M.E.; DePaolo, D.J.; Dresel, P.E.

2008-01-01T23:59:59.000Z

226

Hanford Patrol Academy demolition sites closure plan  

SciTech Connect (OSTI)

The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

Not Available

1993-09-30T23:59:59.000Z

227

Hanford For Students and Kids - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-AssemblyOctober 2012FebruaryAbout Us >Hanford

228

Hanford Natural Resource Trustees - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-AssemblyOctober 2012FebruaryAbout UsHanfordMembers

229

Hanford Traffic Safety FAQs - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety144 DecemberTraffic

230

Hanford Advisory Board Calendars - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulf of Mexico FactCalendars Hanford

231

Hanford Overview and History - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulf ofnewsFlash Hanford News

232

Isotopic Tracers for Biogeochemical Processes and Contaminant Transport: Hanford, Washington  

SciTech Connect (OSTI)

Our goal is to use isotopic measurements to understand how contaminants are introduced to and stored in the vadose zone, and what processes control migration from the vadose zone to groundwater and then to surface water. We have been using the Hanford Site in south-central Washington as our field laboratory, and our investigations are often stimulated by observations made as part of the groundwater monitoring program and vadose zone characterization activities. Understanding the transport of contaminants at Hanford is difficult due to the presence of multiple potential sources within small areas, the long history of activities, the range of disposal methods, and the continuing evolution of the hydrological system. Observations often do not conform to simple models, and cannot be adequately understood with standard characterization approaches, even though the characterization activities are quite extensive. One of our objectives is to test the value of adding isotopic techniques to the characterization program, which has the immediate potential benefit of addressing specific remediation issues, but more importantly, it allows us to study fundamental processes at the scale and in the medium where they need to be understood. Here we focus on two recent studies at the waste management area (WMA) T-TX-TY, which relate to the sources and transport histories of vadose zone and groundwater contamination and contaminant fluid-sediment interaction. The WMA-T and WMA-TX-TY tank farms are located within the 200 West Area in the central portion of the Hanford Site (Fig. 2). They present a complicated picture of mixed groundwater plumes of nitrate, {sup 99}Tc, Cr{sup 6+}, carbon tetrachloride, etc. and multiple potential vadose zone sources such as tank leaks and disposal cribs (Fig. 3). To access potential vadose zone sources, we analyzed samples from cores C3832 near tank TX-104 and from C4104 near tank T-106. Tank T-106 was involved in a major event in 1973 in which 435,000 L of high activity waste leaked to the vadose zone over a seven-week period. Other nearby tanks (T-103 and T-101) are also suspected of having leaked or overfilled. Pore water from these cores was analyzed for U and Sr isotopic compositions. Increasing {sup 99}Tc concentration in monitoring well 299-W11-39 (to 27,000 pCi/L in 2005) near the northeast corner of the WMA-T area prompted the emplacement of a series of new wells, 299-W11-25B, W11-45 (down gradient), and W11-47 (Fig. 3), during which depth discrete samples were collected below the groundwater surface. The depth profile from W11-25B revealed high {sup 99}Tc concentrations peaking at 182,000 pCi/L at {approx}10 m below the water table (Dresel et al. 2006). We obtained aliquots for isotopic analysis of groundwater samples produced by purge-and-pump sampling during the drilling of W11-25B, -45 and -47. In addition we have analyzed groundwater samples from monitoring wells in the vicinity of WMA T-TX-TY.

Donald J. DePaolo; John N. Christensen; Mark E. Conrad; and P. Evan Dresel

2007-04-19T23:59:59.000Z

233

Environment, Safety and Health Progress Assessment of the Hanford Site  

SciTech Connect (OSTI)

This report documents the result of the US Department of Energy (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the Hanford Site, in Richland, Washington. The assessment, which was conducted from May 11 through May 22, 1992, included a selective-review of the ES&H management systems and programs of the responsible DOE Headquarters Program Offices the DOE Richland Field Office, and the site contractors. The ES&H Progress Assessments are part of the Secretary of Energy`s continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. The purpose of the Hanford Site ES&H Progress Assessment is to provide the Secretary with an independent assessment of the adequacy and effectiveness of the DOE and contractor management structures, resources, and systems to address ES&H problems and requirements. They are not intended to be comprehensive compliance assessments of ES&H activities. The point of reference for assessing programs at the Hanford Site was, for the most part, the Tiger Team Assessment of the Hanford Site, which was conducted from May 21 through July 18, 1990. A summary of issues and progress in the areas of environment, safety and health, and management is included.

Not Available

1992-05-01T23:59:59.000Z

234

Overview and History of DOE's Hanford Site - 12502  

SciTech Connect (OSTI)

Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level, and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the public. They carry forward key values captured in forums such as the Hanford Future Site Uses

Flynn, Karen; McCormick, Matt [US DOE (United States)

2012-07-01T23:59:59.000Z

235

Hanford Site ground-water monitoring for 1994  

SciTech Connect (OSTI)

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

1995-08-01T23:59:59.000Z

236

Hanford Federal Facility state of Washington leased land  

SciTech Connect (OSTI)

This report was prepared to provide information concerning past solid and hazardous waste management practices for all leased land at the US DOE Hanford Reservation. This report contains sections including land description; land usage; ground water, air and soil monitoring data; and land uses after 1963. Numerous appendices are included which provide documentation of lease agreements and amendments, environmental assessments, and site surveys.

Not Available

1993-11-01T23:59:59.000Z

237

Blue Ribbon Commission Tour of Hanford Site  

ScienceCinema (OSTI)

The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

Paul Saueressig

2010-09-01T23:59:59.000Z

238

Blue Ribbon Commission Tour of Hanford Site  

SciTech Connect (OSTI)

The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

Paul Saueressig

2010-07-14T23:59:59.000Z

239

Hanford Site Groundwater Monitoring for Fiscal Year 2000  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2001-03-01T23:59:59.000Z

240

Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3  

SciTech Connect (OSTI)

This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.

Coles, G.A.; Shultz, M.V.; Taylor, W.E.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hanford Site physical separations CERCLA treatability test plan  

SciTech Connect (OSTI)

This test plan describes specifications, responsibilities, and general procedures to be followed to conduct a physical separations soil treatability test in the North Process Pond of the 300-FF-1 Operable Unit at the Hanford Site, Washington. The objective of this test is to evaluate the use of physical separation systems as a means of concentrating chemical and radioactive contaminants into fine soil fractions and thereby minimizing waste volumes. If successful the technology could be applied to clean up millions of cubic meters of contaminated soils in waste sites at Hanford and other sites. It is not the intent of this test to remove contaminated materials from the fine soils. Physical separation is a simple and comparatively low cost technology to potentially achieve a significant reduction in the volume of contaminated soils. Organic contaminants are expected to be insignificant for the 300-FF-I Operable Unit test, and further removal of metals and radioactive contaminants from the fine fraction of soils will require secondary treatment such as chemical extraction, electromagnetic separation, or other technologies. Additional investigations/testing are recommended to assess the economic and technical feasibility of applying secondary treatment technologies, but are not within the scope of this test. This plan provides guidance and specifications for the treatability test to be conducted as a service contract. More detailed instructions and procedures will be provided as part of the vendors (sellers) proposal. The procedures will be approved by Westinghouse Hanford Company (Westinghouse Hanford) and finalized by the seller prior to initiating the test.

Not Available

1992-03-01T23:59:59.000Z

242

Starting up a new U.S. Department of Energy Analytical Laboratory at the Hanford site  

SciTech Connect (OSTI)

A new analytical chemistry laboratory was constructed on the Hanford Site near Richland, Washington by the U.S. Department of Energy to provide radiochemistry, inorganic, and organic analytical services. The laboratory is staffed and operated by Westinghouse Hanford Company, the U.S. Department of Energy contractor of the government-owned contractor-operated site. The start-up process, after laboratory construction and analytical equipment installation, requires a safety analysis report, approved analytical procedures, training, a plant {open_quotes}readiness review{close_quotes} by Westinghouse Hanford Company, and final approval for start-up by the U.S. Department of Energy.

Grabbe, R.R.

1994-05-01T23:59:59.000Z

243

LONG-TERM STEWARDSHIP AT DOE HANFORD SITE - 12575  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)[1], which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S&M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation between the contractors and DOE-RL. Information Management (IM) is a key part of the LTS program. The IM Program identifies, locates, stores, protects and makes accessible Hanford LTS records and data to support the transfer of property ultimately to LM. As such, DOE-RL manages the Hanford LTS Program in a manner consistent with LM's goals, policies, and procedures.

MOREN RJ; GRINDSTAFF KD

2012-01-11T23:59:59.000Z

244

EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA  

Broader source: Energy.gov [DOE]

This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

245

Hanford Tours for Governmental Officials - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite PublicAboutAETourTours for

246

Hanford Tours for Tribal Affairs - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite PublicAboutAETourTours

247

Hanford Site Environmental Surveillance Master Sampling Schedule  

SciTech Connect (OSTI)

Environmental surveillance of the Hanford Site and surrounding areas is conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs. The document contains the CY 2002 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project.

Bisping, Lynn E.

2002-01-16T23:59:59.000Z

248

Borehole Data Package for RCRA Well 299-W22-47 at Single-Shell Tank Waste Management Area S-SX, Hanford Site, Washington  

SciTech Connect (OSTI)

One new Resource Conservation and Recovery Act (RCRA) groundwater assessment well was installed at single-shell tank Waste Management Area (WMA) S-SX in fiscal year (FY) 2005 to fulfill commitments for well installations proposed in Hanford Federal Facility Agreement and Consent Order, Milestone M-24-57 (2004). The need for the new well, well 299-W22-47, was identified during a data quality objectives process for establishing a RCRA/ Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)/Atomic Energy Act (AEA) integrated 200 West and 200 East Area Groundwater Monitoring Network. This document provides a compilation of all available geologic data, spectral gamma ray logs, hydrogeologic data and well information obtained during drilling, well construction, well development, pump installation, aquifer testing, and sample collection/analysis activities. Appendix A contains the Well Summary Sheets, the Well Construction Summary Report, the geologist's Borehole Log, well development and pump installation records, and well survey results. Appendix B contains analytical results from groundwater samples collected during drilling. Appendix C contains complete spectral gamma ray logs and borehole deviation surveys.

Horton, Duane G.; Chamness, Mickie A.

2006-04-17T23:59:59.000Z

249

Hanford site transuranic waste sampling plan  

SciTech Connect (OSTI)

This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed.

GREAGER, T.M.

1999-05-13T23:59:59.000Z

250

Hanford Site near-facility environmental monitoring data report for calendar year 1998  

SciTech Connect (OSTI)

This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

DIEDIKER, L.P.

1999-07-29T23:59:59.000Z

251

Registration of Hanford Site Class V underground injection wells. Revision 1  

SciTech Connect (OSTI)

The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Streams (DOE 1994) requires that all existing Class V injection wells be registered under WAC 173--218. (Washington Underground Injection Control Program). The purpose of this document is to fulfill this requirement by registering all active Class V underground injection control wells, on the Hanford Site, under WAC 173--218. This registration will revise the registration previously submitted in 1988 (DOE 1988). In support of this registration, an extensive effort has been made to identify all injection wells on the Hanford Site. New injection wells will not be constructed on the Hanford Site except to receive uncontaminated stormwater or groundwater heatpump return flow. All changes to Miscellaneous Streams will be tracked through the Hanford Site Miscellaneous Streams Inventory Database. Table 5--2 of this injection well registration may be updated annually at the same time as the Miscellaneous Streams Inventory, if necessary.

NONE

1995-08-01T23:59:59.000Z

252

Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill  

SciTech Connect (OSTI)

Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

Fruland, R.M.

1986-10-01T23:59:59.000Z

253

Demolishing Decay at the Hanford Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demolishing Decay at the Hanford Site Demolishing Decay at the Hanford Site February 22, 2011 - 5:44pm Addthis The stacks and support structures of the 284 West Power House at the...

254

Hanford Site Pollution Prevention Plan progress report, 1994. Revision 1  

SciTech Connect (OSTI)

This report tracks progress made during 1994 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307, ``Plans,`` for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, ``Waste Reduction,`` an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in-process reuse or reclamation of valuable spent material. The Hanford Site is voluntarily complying with this state regulatory-mandated program. All treatment, storage, or disposal (TSD) facilities are exempt from participating; the Hanford Site is classified as a TSD.

NONE

1995-09-01T23:59:59.000Z

255

Hanford Site Groundwater Monitoring for Fiscal Year 2001  

SciTech Connect (OSTI)

This report provides information on the status of groundwater monitoring at the Hanford Site during fiscal year 2001.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2002-02-28T23:59:59.000Z

256

Collaboration in long-term stewardship at DOE Hanford Site  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan, DOE/RL-2010-35 Rev 1. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large parcel that includes one of the six (6) cocooned reactors on site. These accomplishments relied upon the transparency between DOE cleanup programs and their contractors working together to successfully transition the land while addressing the challenges that arise. All parties, the three different DOE Programs and their respective prime contractors are dedicated to working together and continuing the progress of transitioning land to LTS, in alignment with the Program Plan and compliant with contractual requirements. This paper highlights the accomplishments and collaborative efforts to address the challenges faced as work progresses from the cleanup to transitioning of land parcels to LTS Program.

Moren, R. J.; Zeisloft, J. H.; Feist, E. T.; Brown, D.; Grindstaff, K. D.

2013-01-10T23:59:59.000Z

257

EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

258

Progress on Footprint Reduction at the Hanford Site - 12406  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Environmental Management (EM) continues to reduce the footprint of legacy sites throughout the EM complex. Footprint reduction is being accomplished by focusing cleanup activities on decontamination and demolition of excess contaminated facilities, soil and groundwater remediation, and solid waste disposition. All of these initiatives are being accomplished with established technologies in proven regulatory frameworks. Ultimately, completion of these environmental cleanup activities will reduce the monitoring and maintenance costs associated with managing large federal facilities, allowing EM to place more focus on other high priority cleanup efforts and facilitate a successful transition to land-term stewardship of these sites. Through the American Recovery and Reinvestment Act (ARRA) investment, the Department's cleanup footprint has been reduced by 45 percent to date, from 2411 km{sup 2} (931 mi{sup 2}) to 1336 km{sup 2} (516 mi{sup 2}s). With this significant progress on footprint reduction, the Department is on track towards their goal to reduce its overall footprint by approximately 90 percent by 2015. In addition, some areas cleaned up may become available for alternate uses (i.e. recreation, conservation, preservation, industrialization or development). Much of the work to reduce the complex's footprint occurred at the Savannah River Site in South Carolina and the Hanford Site in Washington, but cleanup continues across the complex. Footprint reduction is progressing well at the Hanford Site, supported predominantly through ARRA investment. To date, 994 km{sup 2} (384 mi{sup 2}) (65%) of footprint reduction have been achieved at Hanford, with a goal to achieve a 90% reduction by Fiscal Year 2015. The DOE EM and DOE Richland Operations Office, continue to make great progress to reduce the legacy footprint of the Hanford Site. Footprint reduction is being accomplished by focusing cleanup activities on decontamination and demolition of excess facilities, both contaminated and uncontaminated, waste site cleanup activities, and debris pile removal. All of these activities can be accomplished with proven technologies and within established regulatory frameworks. Footprint reduction goals for Fiscal Year 2011 were exceeded, largely with the help of ARRA funding. As cleanup projects are completed and the total area requiring cleanup shrinks, overall costs for surveillance and maintenance operations and infrastructure services decrease. This work completion and decrease in funding requirements to maintain waste sites and antiquated facilities allows more focus on high priority site missions (i.e. groundwater remediation, tank waste disposition, etc.) and moves Site areas closer to transition from EM to the Legacy Management program. The progress in the Hanford footprint reduction effort will help achieve success in these other important mission areas. (authors)

McKenney, Dale E. [CH2M HILL, Plateau Remediation Company, Richland, Washington 99352 (United States); Seeley, Paul [Cenibark International, Inc., Richland, Washington 99352 (United States); Farabee, Al [U.S. Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

2012-07-01T23:59:59.000Z

259

Programmatic agreement among the USDOE/RL Operations Office, the Advisory Council on Historic Preservation, and the WA State Historic Preservation Office for the maintenance, deactivation, alteration and demolition of the built environment on the Hanford Site, Washington  

SciTech Connect (OSTI)

This Programmatic Agreement (PA) addresses the built environment (i.e., buildings and structures) constructed during the Manhattan Project and Cold War Era periods of Hanford`s operational history. As such it encompasses the years 1943 through 1990. The identification, evaluation, and treatment of buildings and historic archeological remains on the Hanford Site predating 1943 will be accomplished through Sections 800.4 through 800.6 of the Council`s regulations. This PA will be in effect from the date of signature until September 30, 2000. Completion of the Sitewide Treatment Plan established under this PA satisfies all Section 106 requirements for identification, evaluation, and treatment necessary for all undertakings, up to and including demolition which may affect Manhattan Project and Cold War Era properties. This PA may be extended if the Sitewide Treatment Plan has not been completed by the end of FY 2000. Identification, evaluation, and treatment of properties constructed on the Hanford Site after 1990 will be handled pursuant to the regulations in effect at the time such properties are eligible for review.

Lloyd, D.W.

1997-08-01T23:59:59.000Z

260

Hanford Site ground-water monitoring for 1993  

SciTech Connect (OSTI)

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Expanded public notice: Washington State notice of intent for corrective action management unit, Hanford Environmental Restoration Disposal  

SciTech Connect (OSTI)

This document is to serve notice of the intent to operate an Environmental Restoration Disposal Facility (ERDF), adjacent to the 200 West Area of the Hanford Facility, Richland, Washington, as a Corrective Action Management Unit (CAMU), in accordance with 40 Code of Federal Regulation (CFR) 264.552. The ERDF CAMU will serve as a management unit for the majority of waste (primarily soil) excavated during remediation of waste management sites on the Hanford Facility. Only waste that originates from the Hanford Facility can be accepted in this ERDF CAMU. The waste is expected to consist of dangerous waste, radioactive waste, and mixed waste. Mixed waste contains radioactive and dangerous components. The primary features of the ERDF could include the following: one or more trenches, rail and tractor/trailer container handling capability, railroads, an inventory control system, a decontamination building, and operational offices.

Not Available

1994-01-01T23:59:59.000Z

262

Bat Surveys of Retired Facilitiies Scheduled for Demolition by Washington Closure Hanford  

SciTech Connect (OSTI)

This project was conducted to evaluate buildings and facilities remaining in the Washington Closure Hanford (WCH) deactivation, decontamination, decommissioning, and demolition schedule for bat roost sites. The project began in spring of 2009 and was concluded in spring of 2011. A total of 196 buildings and facilities were evaluated for the presence of bat roosting sites. The schedule for the project was prioritized to accommodate the demolition schedule. As the surveys were completed, the results were provided to the project managers to facilitate planning and project completion. The surveys took place in the 300 Area, 400 Area, 100-H, 100-D, 100-N, and 100-B/C Area. This report is the culmination of all the bat surveys and summarizes the findings by area and includes recommended mitigation actions where bat roosts were found.

Gano, K. A.; Lucas, J. G.; Lindsey, C. T.

2011-06-30T23:59:59.000Z

263

Hanford Site groundwater monitoring: Setting, sources and methods  

SciTech Connect (OSTI)

Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

M.J. Hartman

2000-04-11T23:59:59.000Z

264

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect (OSTI)

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

265

Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

Not Available

1993-05-01T23:59:59.000Z

266

VPP News Releases - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field EmissionFunctionalPortalV1 - March8,Hanford

267

Current HMS Observations - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact UsHanford Meteorological Station

268

Mission Support Alliance - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 -3EutecticMindingMiraHanford Contractors >

269

Hanford Site Celebrates National Native American Heritage Month...  

Office of Environmental Management (EM)

handle obsidian, a naturally occurring volcanic glass, which is part of a simulated fire hearth at the cultural test beds site. Hanford Site, Tribes Raise Awareness of...

270

Historical Time Line and Information About the Hanford Site  

SciTech Connect (OSTI)

Historical time line of the Hanford Site spanning from 1940 through 1997, including photographs and other information regarding the town sites and living conditions.

Briggs Jr, David

2001-03-07T23:59:59.000Z

271

Hanford performance evaluation program for Hanford site analytical services  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ``quality is achieved and maintained by those who have been assigned the responsibility for performing the work.`` Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A.

Markel, L.P.

1995-09-01T23:59:59.000Z

272

Fire protection program fiscal year 1997 site support program plan - Hanford fire department  

SciTech Connect (OSTI)

The mission of the Hanford Fires Department (HFD) is to support the safe and timely cleanup of the Hanford Site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. this includes response to surrounding fire department districts under mutual aids agreements and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site. the fire department also provides site fire marshal overview authority, fire system testing, and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention and education.

Good, D.E., Westinghouse Hanford

1996-07-01T23:59:59.000Z

273

Release Data Package for Hanford Site Assessments  

SciTech Connect (OSTI)

Beginning in fiscal year (FY) 2003, the U.S. Department of Energy (DOE) Richland Operations Office initiated activities, including the development of data packages, to support a Hanford assessment. This report describes the data compiled in FY 2003 through 2005 to support the Release Module of the System Assessment Capability (SAC) for the updated composite analysis. This work was completed as part of the Characterization of Systems Project, part of the Remediation and Closure Science Project, the Hanford Assessments Project, and the Characterization of Systems Project managed by Pacific Northwest National Laboratory. Related characterization activities and data packages for the vadose zone and groundwater are being developed under the remediation Decision Support Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. The Release Module applies release models to waste inventory data from the Inventory Module and accounts for site remediation activities as a function of time. The resulting releases to the vadose zone, expressed as time profiles of annual rates, become source terms for the Vadose Zone Module. Radioactive decay is accounted for in all inputs and outputs of the Release Module. The Release Module is implemented as the VADER (Vadose zone Environmental Release) computer code. Key components of the Release Module are numerical models (i.e., liquid, soil-debris, cement, saltcake, and reactor block) that simulate contaminant release from the different waste source types found at the Hanford Site. The Release Module also handles remediation transfers to onsite and offsite repositories.

Riley, Robert G.; Lopresti, Charles A.; Engel, David W.

2006-07-01T23:59:59.000Z

274

Fire Protection Program fiscal year 1996, site support program plan Hanford Fire Department. Revision 2  

SciTech Connect (OSTI)

The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report gives a program overview, technical program baselines, and cost and schedule baseline.

Good, D.E.

1995-09-01T23:59:59.000Z

275

Fire protection program fiscal year 1995 site support program plan, Hanford Fire Department  

SciTech Connect (OSTI)

The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report describes the specific responsibilities and programs that the HFD must support and the estimated cost of this support for FY1995.

Good, D.E.

1994-09-01T23:59:59.000Z

276

Hanford Site Annual Report Radiological Dose Calculation Upgrade Evaluation  

SciTech Connect (OSTI)

Operations at the Hanford Site, Richland, Washington, result in the release of radioactive materials to offsite residents. Site authorities are required to estimate the dose to the maximally exposed offsite resident. Due to the very low levels of exposure at the residence, computer models, rather than environmental samples, are used to estimate exposure, intake, and dose. A DOS-based model has been used in the past (GENII version 1.485). GENII v1.485 has been updated to a Windows®-based software (GENII version 2.08). Use of the updated software will facilitate future dose evaluations, but must be demonstrated to provide results comparable to those of GENII v1.485. This report describes the GENII v1.485 and GENII v2.08 dose exposure, intake, and dose estimates for the maximally exposed offsite resident reported for calendar year 2008. The GENII v2.08 results reflect updates to implemented algorithms. No two environmental models produce the same results, as was again demonstrated in this report. The aggregated dose results from 2008 Hanford Site airborne and surface water exposure scenarios provide comparable dose results. Therefore, the GENII v2.08 software is recommended for future offsite resident dose evaluations.

Snyder, Sandra F.

2010-02-28T23:59:59.000Z

277

Hanford Site climatological data summary 1996, with historical data  

SciTech Connect (OSTI)

This document presents the climatological data measured at the US Department of Energy`s Hanford Site for calendar year 1996. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters.

Hoitink, D.J.; Burk, K.W.

1997-04-01T23:59:59.000Z

278

Hanford Site Asbestos Abatement Plan. Revision 1  

SciTech Connect (OSTI)

The Hanford Site Asbestos Abatement Plan (Plan) lists priorities for asbestos abatement activities to be conducted in Hanford Site facilities. The Plan is based on asbestos assessment information gathered in fiscal year 1989 that evaluated all Hanford Site facilities for the presence and condition of asbestos. Of those facilities evaluated, 414 contain asbestos-containing materials and are classified according to the potential risk of asbestos exposure to building personnel. The Plan requires that asbestos condition update reports be prepared for all affected facilities. The reporting is completed by the asbestos coordinator for each of the 414 affected facilities and transmitted to the Plan manager annually. The Plan manager uses this information to reprioritize future project lists. Currently, five facilities are determined to be Class Al, indicating a high potential for asbestos exposure. Class Al and B1 facilities are the highest priority for asbestos abatement. Abatement of the Class A1 and Bl facilities is scheduled through fiscal year 1997. Removal of asbestos in B1 facilities will reduce the risk for further Class ``A`` conditions to arise.

Mewes, B.S.

1993-09-01T23:59:59.000Z

279

Hanford site waste minimization and pollution prevention awareness program  

SciTech Connect (OSTI)

This plan documents the requirements of the Hanford Site Waste Minimization/Pollution Prevention (WMin/P2) Program. The plan specifies requirements for Hanford contractors to prevent pollution from entering the environment, to conserve resources and energy, and to reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary waste generated at Hanford. The Pollution Prevention Awareness Program required by DOE 5400.1 (DOE 1988A) is included in the Hanford WMin/P2 Program.

Kirkendall, J.R.

1996-09-23T23:59:59.000Z

280

Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R  

SciTech Connect (OSTI)

The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

2011-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hanford Site Environmental Report for Calendar Year 2002  

SciTech Connect (OSTI)

This report is prepared annually to satisfy the requirements of DOE Orders. The report provides an overview of activities at the Hanford Site during 2002 and demonstrates the site's compliance with applicable federal, state, and local environmental laws, regulations, executive orders, and DOE policies; and to summarize environmental data that characterize Hanford Site environmental management performance. The purpose of the report is to provide useful summary information to members of the public, public officials, regulators, Hanford contractors, and elected representatives.

Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

2003-09-01T23:59:59.000Z

282

Data Summary Report for Hanford Site Coal Ash Characterization  

SciTech Connect (OSTI)

The purpose of this report is to present data and findings from sampling and analysis of five distinct areas of coal ash within the Hanford Site River Corridor

Sulloway, H. M.

2012-03-06T23:59:59.000Z

283

Independent Oversight Review, Hanford Site Waste Treatment and...  

Office of Environmental Management (EM)

2014 June 2014 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report documents the results of an independent oversight review of...

284

Enterprise Assessments Review, Hanford Site Waste Treatment and...  

Office of Environmental Management (EM)

September 2014 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy independent Office of Enterprise Assessments...

285

Registration Date Set for 2012 Hanford Site Wide Tours  

Broader source: Energy.gov [DOE]

RICHLAND, Wash. – The U.S. Department of Energy (DOE) will open online registration on Tuesday, March 6, 2012, for its popular tours of the Hanford Site.

286

Hanford Site Workers Meet Challenging Performance Goal at Plutonium...  

Broader source: Energy.gov (indexed) [DOE]

Hanford site's Plutonium Finishing Plant are surpassing goals for removing hazardous tanks once used in the plutonium production process. EM's Richland Operations Office and...

287

Independent Oversight Review, Hanford Site CH2M Hill Plateau...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CH2M Hill Plateau Remediation Company - November 2012 Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company - November 2012 November 2012 Review of the...

288

Hanford Site Environmental Surveillance Data Report for Calendar Year 2003  

SciTech Connect (OSTI)

This data report contains the actual raw data used to create the tables and summaries in the annual Hanford Site Environmental Report for Calendar Year 2003.

Bisping, Lynn E.

2004-09-01T23:59:59.000Z

289

Coffee Can Time Capsule Found at Hanford Site  

Broader source: Energy.gov [DOE]

RICHLAND, Wash. – Two workers supporting the Richland Operations Office at the Hanford site got quite a surprise while preparing a building for demolition.

290

Independent Oversight Review, Hanford Site Waste Treatment and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

August 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight...

291

The River Corridor Closure Contract How Washington Closure Hanford is Closing A Unique Department of Energy Project - 12425  

SciTech Connect (OSTI)

Cleanup of the Hanford River Corridor has been one of Hanford Site's top priorities since the early 1990's. This urgency is due to the proximity of hundreds of waste sites to the Columbia River and the groundwater that continues to threaten the Columbia River. In April 2005, the U.S. Department of Energy, Richland Operations Office (DOE-RL) awarded the Hanford River Corridor Closure Contract (RCCC), a cost-plus incentive-fee closure contract with a 2015 end date and first of its kind at Hanford Site, to Washington Closure Hanford (WCH), a limited-liability company owned by URS, Bechtel National, and CH2M HILL. WCH is a single-purpose company whose goal is to safely, compliantly, and efficiently accelerate cleanup in the Hanford River Corridor and reduce or eliminate future obligations to DOE-RL for maintaining long-term stewardship over the site. Accelerated performance of the work-scope while keeping a perspective on contract completion presents challenges that require proactive strategies to support the remaining work-scope through the end of the RCCC. This paper outlines the processes to address the challenges of completing work-scope while planning for contract termination. WCH is responsible for cleanup of the River Corridor 569.8 km{sup 2} (220 mi{sup 2}) of the 1,517.7 km{sup 2} (586 mi{sup 2}) Hanford Site's footprint reduction. At the end of calendar year 2011, WCH's closure implementation is well underway. Fieldwork is complete in three of the largest areas within the RCCC scope (Segments 1, 2, and 3), approximately 44.5% of the River Corridor (Figure 3). Working together, DOE-RL and WCH are in the process of completing the 'paper work' that will document the completion of the work-scope and allow DOE-RL to relieve WCH of contractual responsibilities and transition the completed areas to the Long-Term Stewardship Program, pending final action RODs. Within the next 4 years, WCH will continue to complete cleanup of the River Corridor following the completion goals. As field work-scope is completed, progressive reductions of business processes, physical facilities, and staff will occur. Organizations will collapse and flatten commensurate with workload. WCH employees will move on to new endeavors, proud of their accomplishments and the legacy they are leaving behind as being the first and largest environmental cleanup closure contract at Hanford. (authors)

Feist, E.T. [Washington Closure Hanford, 2620 Fermi Avenue, Richland, WA 99354 (United States)

2012-07-01T23:59:59.000Z

292

Hanford Site Solid Waste Acceptance Program - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite PublicAbout Us >

293

Summary of the Hanford Site Environmental Report for Calendar Year 2004  

SciTech Connect (OSTI)

This booklet summarizes the information contained in ''Hanford Site Environmental Report for Calendar Year 2004.'' The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of the activities at DOE's Hanford Site.

Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

2005-09-26T23:59:59.000Z

294

Technitium Management at the Hanford Site  

SciTech Connect (OSTI)

Long Abstract. Full Text. The Hanford tank waste contains approx 26,000 Ci of technetium-99 (Tc-99), the majority of which is in the supernate fraction. Tc-99 is a long-lived radionuclide with a half-life of approx 212,000 years and, in its predominant pertechnetate (TcO{sub 4}) form, is highly soluble and very mobile in the vadose zone and ultimately the groundwater. Tc-99 is identified as the major dose contributor (in groundwater) by past Hanford site performance assessments and therefore considered a key radionuclide of concern at Hanford. The United States Department of Energy (DOE) River Protection Project's (RPP) long-term Tc-99 management strategy is to immobilize the Tc-99 in a waste form that will retain the Tc-99 for many thousands of years. To achieve this, the RPP flowsheet will immobilize the majority of the Tc-99 as a vitrified low-activity waste product that will be ultimately disposed on site in the Integrated Disposal Facility. The Tc-99 will be released gradually from the glass at very low rates such that the groundwater concentrations at any point in time would be substantially below regulatory limits.The liquid secondary waste will be immobilized in a low-temperature matrix (cast stone) and the solid secondary waste will be stabilized using grout. Although the Tc-99 that is immobilized in glass will meet the release rate for disposal in IDF, a proportion is driven into the secondary waste stream that will not be vitrified and therefore presents a disposal risk. If a portion of the Tc-99 were to be removed from the Hanford waste inventory and disposed off-site, (e.g., as HLW), it could lessen a major constraint on LAW waste form performance, i.e., the requirement to retain Tc-99 over thousands of years and have a positive impact on the IDF Performance Assessment. There are several technologies available at various stages of technical maturity that can be employed for Tc-99 removal. The choice of technology and the associated efficacy of the technology are dependent on the chemical fonn of the technetium in the waste, the removal location in the tlowsheet. and the ultimate disposition path chosen for the technetium product. This paper will discuss the current plans for the management of the technetium present in the Hanford tank waste. It will present the risks associated with processing technetium in the current treatment flowsheet and present potential mitigation opportunities, the status of available technetium removal technologies, the chemical speciation of technetium in the tank waste, and the available disposition paths and waste forms for technetium containing streams.

Robbins, Rebecca A.

2013-08-15T23:59:59.000Z

295

Worker Involvement Improves Safety at Hanford Site's Plutonium Finishing Plant  

Broader source: Energy.gov [DOE]

Employees at the Hanford site are working together to find new and innovative ways to stay safe at the Plutonium Finishing Plant, one of the site’s most complex decommissioning projects.

296

Nitrate-Cancrinite Precipitation on Quartz Sand in Simulated Hanford  

E-Print Network [OSTI]

Nitrate-Cancrinite Precipitation on Quartz Sand in Simulated Hanford Tank Solutions B A R R Y R . B minerals at the U.S. Department of Energy's Hanford site in Washington. Nitrate-cancrinite began's (DOE) Hanford Site in southeast Washington since the late 1950s (1). To predict the fate

Illinois at Chicago, University of

297

Hanford site transuranic waste certification plan  

SciTech Connect (OSTI)

As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP).

GREAGER, T.M.

1999-05-12T23:59:59.000Z

298

Tank Integrity Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWPCarbonTake

299

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste...

300

Soil Water Balance and Recharge Monitoring at the Hanford Site – FY 2010 Status Report  

SciTech Connect (OSTI)

This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

2010-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Department of Energy's Tribal Program - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINLNuclear262About Us > Hanford Site Wide

302

Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10  

SciTech Connect (OSTI)

This document describes the US Department of Energy`s (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site.

Neitzel, D.A. [ed.; Fosmire, C.J.; Fowler, R.A. [and others

1998-09-01T23:59:59.000Z

303

Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste  

SciTech Connect (OSTI)

DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

NONE

1998-09-01T23:59:59.000Z

304

Hanford Site baseline risk assessment methodology. Revision 2  

SciTech Connect (OSTI)

This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site.

Not Available

1993-03-01T23:59:59.000Z

305

Type B Accident Investigation, Response to the 24 Command Wildland Fire on the Hanford Site, June 27-July 1, 2000  

Broader source: Energy.gov [DOE]

On June 27, 2000, a passenger vehicle and semitractor-trailer collided on Washington State Route (SR) 24 near the U.S. Department of Energy's (DOE) Hanford Site. The vehicle fire resulting from the fatality accident quickly ignited vegetation on both sides of the highway.

306

RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY at the Hanford Site  

SciTech Connect (OSTI)

A groundwater quality assessment plan was prepared to investigate the rate and extent of aquifer contamination beneath Waste Management Area TX-TY on the Hanford Site in Washington State. This plan is an update of a draft plan issued in February 1999, which guided work performed in fiscal year 2000.

Hodges, Floyd N.; Chou, Charissa J.

2001-02-23T23:59:59.000Z

307

Hanford Site Transuranic (TRU) Waste Certification Plan  

SciTech Connect (OSTI)

As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

GREAGER, T.M.

2000-12-06T23:59:59.000Z

308

Hanford Site Transuranic (TRU) Waste Certification Plan  

SciTech Connect (OSTI)

As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

GREAGER, T.M.

2000-12-01T23:59:59.000Z

309

Hanford Site Environmental Report for Calendar Year 2009  

SciTech Connect (OSTI)

The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

2010-09-01T23:59:59.000Z

310

Hanford Site Environmental Report for Calendar Year 2008  

SciTech Connect (OSTI)

The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

2009-09-15T23:59:59.000Z

311

Hanford Site Groundwater Monitoring for Fiscal Year 2005  

SciTech Connect (OSTI)

This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2006-02-28T23:59:59.000Z

312

The Hanford Story: Overview  

Broader source: Energy.gov [DOE]

This is the Emmy Award-winning first chapter of The Hanford Story, a multimedia presentation that provides an overview of the Hanford Site—its history, today's cleanup activities, and a glimpse into the possibilities of future uses of the 586-square-mile government site in southeast Washington State.

313

Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013  

SciTech Connect (OSTI)

The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

Nugent, John J.; Lindsey, Cole T.; Wilde, Justin W.

2014-02-13T23:59:59.000Z

314

Hanford Site Anuran Monitoring Report for Calendar Year 2013  

SciTech Connect (OSTI)

The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

Wilde, Justin W.; Johnson, Scott J.; Lindsey, Cole T.

2014-02-13T23:59:59.000Z

315

230Th/U ages Supporting Hanford Site-Wide Probabilistic Seismic Hazard Analysis  

SciTech Connect (OSTI)

This product represents a USGS Administrative Report that discusses samples and methods used to conduct uranium-series isotope analyses and resulting ages and initial 234U/238U activity ratios of pedogenic cements developed in several different surfaces in the Hanford area middle to late Pleistocene. Samples were collected and dated to provide calibration of soil development in surface deposits that are being used in the Hanford Site-Wide probabilistic seismic hazard analysis conducted by AMEC. The report includes description of sample locations and physical characteristics, sample preparation, chemical processing and mass spectrometry, analytical results, and calculated ages for individual sites. Ages of innermost rinds on a number of samples from five sites in eastern Washington are consistent with a range of minimum depositional ages from 17 ka for cataclysmic flood deposits to greater than 500 ka for alluvium at several sites.

Paces, James B. [U.S. Geological Survey] [U.S. Geological Survey

2014-08-31T23:59:59.000Z

316

Hanford Site Environmental Report for Calendar Year 2010  

SciTech Connect (OSTI)

The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2011 information is included where appropriate.

Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

2011-07-12T23:59:59.000Z

317

Compendium of Data for the Hanford Site (Fiscal Years 2004 to 2008) Applicable to Estimation of Recharge Rates  

SciTech Connect (OSTI)

This report is a compendium of recharge data collected in Fiscal Years 2004 through 2008 at various soil and surface covers found and planned in the 200 West and 200 East Areas of the U.S. Department of Energy’s Hanford Site in southeast Washington State. The addition of these new data to previously published recharge data will support improved estimates of recharge with respect to location and soil cover helpful to evaluations and risk assessments of radioactive and chemical wastes at this site. Also presented are evaluations of the associated uncertainties, limitations, and data gaps in the existing knowledge base for recharge at the Hanford Site.

Nichols, William E.; Rockhold, Mark L.; Downs, Janelle L.

2008-09-24T23:59:59.000Z

318

Hanford Site groundwater monitoring for Fiscal Year 1997  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

Hartman, M.J.; Dresel, P.E. [eds.] [and others] [eds.; and others

1998-02-01T23:59:59.000Z

319

Remedial Investigation of Hanford Site Releases to the Columbia River - 13603  

SciTech Connect (OSTI)

In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation/feasibility study (RI/FS) reports developed for upland areas, riparian areas, and groundwater in the Hanford Site River Corridor. The RI/FS reports will evaluate the impacts to soil, groundwater, and river sediments and lead to proposed cleanup actions and records of decision to address releases from the Hanford Site reactor operations. (authors)

Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States)] [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)] [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

2013-07-01T23:59:59.000Z

320

Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

2001-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vegetation communities associated with the 100-Area and 200-Area facilities on the Hanford Site  

SciTech Connect (OSTI)

The Hanford Site, Benton County, Washington, lies within the broad semi-arid shrub-steppe vegetation zone of the Columbia Basin. Thirteen different habitat types on the Hanford Site have been mapped in Habitat Types on the Hanford Site: Wildlife and Plant Species of Concern (Downs et al. 1993). In a broad sense, this classification is correct. On a smaller scale, however, finer delineations are possible. This study was conducted to determine the plant communities and estimate vegetation cover in and directly adjacent to the 100 and 200 Areas, primarily in relation to waste sites, as part of a comprehensive ecological study for the Compensation Environmental Response, Compensation, and Liability Act (CERCLA) characterization of the 100 and 200 Areas. During the summer of 1993, field surveys were conducted and a map of vegetation communities in each area, including dominant species associations, was produced. The field surveys consisted of qualitative community delineations. The community delineations described were made by field reconnaissance and are qualitative in nature. The delineations were made by visually determining the dominant plant species or vegetation types and were based on the species most apparent at the time of inspection. Additionally, 38 transects were run in these plant communities to try to obtain a more accurate representation of the community. Because habitat disturbances from construction/operations activities continue to occur in these areas, users of this information should be cautious in applying these maps without a current ground survey. This work will complement large-scale habitat maps of the Hanford Site.

Stegen, J.A.

1994-01-17T23:59:59.000Z

322

Hanford Site River Protection Project (RPP) High Level Waste Storage  

SciTech Connect (OSTI)

The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc.

KRISTOFZSKI, J.G.

2000-01-31T23:59:59.000Z

323

Hanford Site Groundwater Monitoring for Fiscal Year 2003  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. ''Resource Conservation and Recovery Act'' groundwater monitoring continued at 24 waste management areas during fiscal year 2003: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater; 7 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. During calendar year 2003, drillers completed seven new RCRA monitoring wells, nine wells for CERCLA, and two wells for research on chromate bioremediation. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2003. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. Soil vapor also was sampled to locate carbon tetrachloride sites with the potential to impact groundwater in the future. DOE uses geophysical methods to monitor potential movement of contamination beneath single-shell tank farms. During fiscal year 2003, DOE monitored selected boreholes within each of the 12 single-shell tank farms. In general, the contaminated areas appeared to be stable over time. DOE drilled new boreholes at the T Tank Farm to characterize subsurface contamination near former leak sites. The System Assessment Capability is a set of computer modules simulating movement of contaminants from waste sites through the vadose zone and groundwater. In fiscal year 2003, it was updated with the addition of an atmospheric transport module and with newer versions of models including an updated groundwater flow and transport model.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2004-04-12T23:59:59.000Z

324

Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site  

SciTech Connect (OSTI)

Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington State (USA) was investigated by analyzing samples recovered from depths of 9 to 52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analyzed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units at the 97% identity level), respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (ca. 90%) of Proteobacteria. The Bacterial community in the oxic sediments contained not only members of 9 well-recognized phyla but also an unusually high proportion of 3 candidate divisions (GAL15, NC10, and SPAM). Additionally, novel phylogenetic orders were identified within the Delta-proteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site.

Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

2011-11-29T23:59:59.000Z

325

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...  

Broader source: Energy.gov (indexed) [DOE]

River. ERDF receives contaminated soil, demolition debris, and solid waste from cleanup operations across the 586-square-mile Hanford Site in southeast Washington state. On...

326

Hanford Site Environmental Report for Calendar Year 2005  

SciTech Connect (OSTI)

This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2005; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

2006-09-28T23:59:59.000Z

327

Hanford Site Environmental Report for Calendar Year 2004  

SciTech Connect (OSTI)

This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2003; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

2005-09-29T23:59:59.000Z

328

Hanford Site solid waste acceptance criteria  

SciTech Connect (OSTI)

Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities.

Ellefson, M.D.

1998-07-01T23:59:59.000Z

329

Hanford Site environmental report for calendar year 1990  

SciTech Connect (OSTI)

The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its new mission; summarize the status in 1990 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

Woodruff, R.K.; Hanf, R.W.; Hefty, M.G.; Lundgren, R.E. (eds.)

1991-12-20T23:59:59.000Z

330

Radionuclide air emissions report for the Hanford Site -- calendar year 1997  

SciTech Connect (OSTI)

This report documents radionuclide air emission from the Hanford Site in 1997, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the MEI. The report has been prepared in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emissions Standards for Hazardous Air Pollutants, Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. This report has also been prepared in accordance with the reporting requirements of the Washington Administrative Code Chapter 246-247, Radiation Protection-Air Emissions. The effective dose equivalent to the MEI from the Hanford Site`s 1997 point source emissions was 1.2 E-03 mrem (1.2 E-05 mSv), which is well below the 40 CFR 61 Subpart H regulatory limit of 10 mrem/yr. Radon and thoron emissions, exempted from 40 CFR 61 Subpart H, resulted in an effective dose equivalent to the MEI of 2.5 E-03 mrem (2.5 E-05 mSv). The effective dose equivalent to the MEI attributable to diffuse and fugitive emissions was 2.2 E-02 mrem (2.2 E-04 mSv). The total effective dose equivalent from all of the Hanford Site`s air emissions was 2.6 E-02 mrem (2.6 E-04 mSv). The effective dose equivalent from all of the Hanford Site`s air emissions is well below the Washington Administrative Code, Chapter 246-247, regulatory limit of 10 mrem/yr.

Gleckler, B.P.; Rhoads, K.

1998-06-17T23:59:59.000Z

331

Potential Federal On-Site Solar Aggregation in Washington, D...  

Broader source: Energy.gov (indexed) [DOE]

Requirements * On-site Renewable Energy Purchase Overview * Washington DCMaryland Solar Options * Case Studies * Federal Interest * Q&A * Resources 2 3 Federal Renewable...

332

Hanford Site pollution prevention progress report  

SciTech Connect (OSTI)

The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its contractors have a clear sense of direction toward achieving environmental protection, cleanup, and research.

BETSCH, M.D.

1999-10-05T23:59:59.000Z

333

Plutonium and Americium Geochemistry at Hanford: A Site Wide Review  

SciTech Connect (OSTI)

This report was produced to provide a systematic review of the state-of-knowledge of plutonium and americium geochemistry at the Hanford Site. The report integrates existing knowledge of the subsurface migration behavior of plutonium and americium at the Hanford Site with available information in the scientific literature regarding the geochemistry of plutonium and americium in systems that are environmentally relevant to the Hanford Site. As a part of the report, key research needs are identified and prioritized, with the ultimate goal of developing a science-based capability to quantitatively assess risk at sites contaminated with plutonium and americium at the Hanford Site and the impact of remediation technologies and closure strategies.

Cantrell, Kirk J.; Felmy, Andrew R.

2012-08-23T23:59:59.000Z

334

Hanford Site National Environmental Policy Act (NEPA) Characterization  

SciTech Connect (OSTI)

This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

Cushing, C.E. (ed.)

1992-12-01T23:59:59.000Z

335

Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5  

SciTech Connect (OSTI)

This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

Cushing, C.E. [ed.] [ed.

1992-12-01T23:59:59.000Z

336

The development of surface barriers at the Hanford Site  

SciTech Connect (OSTI)

Engineered barriers are being developed to isolate wastes disposed of near the earth`s surface at the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. Much of the waste that would be disposed of by in-place stabilization currently is located in relatively shallow subsurface structures such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via the following pathways: plant, animal, and human intrusion; water infiltration; erosion; and the exhalation of noxious gases. Permanent isolation surface barriers have been proposed to protect wastes disposed of ``in place`` from the transport pathways identified previously (Figure 1). The protective barrier consists of a variety of different materials (e.g., fine soil, sand, gravel, riprap, asphalt, etc.) placed in layers to form an above-grade mound directly over the waste zone. Surface markers are being considered for placement around the periphery of the waste sites to inform future generations of the nature and hazards of the buried wastes. In addition, throughout the protective barrier, subsurface markers could be placed to warn any inadvertent human intruders of the dangers of the buried wastes (Figure 2).

Wing, N.R. [Westinghouse Hanford Co., Richland, WA (United States); Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

1994-03-01T23:59:59.000Z

337

INNOVATIVE ALARA TOOLS AND WORK PRACTICES USED AT THE DOE HANFORD SITE  

SciTech Connect (OSTI)

The Hanford Nuclear Reservation occupies an area of 586 square miles in southeastern Washington state. The site was created as part of the World War II Manhattan Project to produce weapons grade plutonium. A multitude of old reactor plants, processing facilities, underground tank farms, contaminated soil and ground water remain and are part of an on-going environmental cleanup mission of the site. The Columbia River bisects Hanford, and the concern is that the river will become contaminated if the sources of contamination are not removed. Currently facilities are being removed, the ground water is being treated, and contaminated soil is being transferred to an approved burial ground about 15 miles away from the River located in the center of the Hanford Site The remaining facilities and adjacent structures are undergoing D&D (decontaminate and demolish) and to date, significant progress has been made. During this presentation, I will discuss how we are using innovative tools and work practices to D&D these Hanford Site facilities.

WAGGONER LO

2010-02-12T23:59:59.000Z

338

Hanford Site environmental data for calendar year 1993--surface and Columbia River  

SciTech Connect (OSTI)

Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1993 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1993 by PNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries.

Bisping, L.E.

1994-06-01T23:59:59.000Z

339

Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 7  

SciTech Connect (OSTI)

This seventh revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology, hydrology, environmental monitoring, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors. Chapter 5.0 was not updated from the sixth revision (1994). It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE Orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

Cushing, C.E. [ed.] ed.; Baker, D.A.; Chamness, M.A. [and others] and others

1995-09-01T23:59:59.000Z

340

Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6  

SciTech Connect (OSTI)

This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan  

SciTech Connect (OSTI)

This document is the FY 1993 report on Hanford Site-specific science and technology (S&T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford`s highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S&T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ``problem owners`` (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S&T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders.

Not Available

1993-12-01T23:59:59.000Z

342

Hanford Site Climatological Summary 2004 with Historical Data  

SciTech Connect (OSTI)

This document presents the climatological data measured on the DOE Hanford Site for calendar year 2004. This report contains updated historical information for temperature, precipitation, wind, and normal and extreme values of temperature, and precipitation.

Hoitink, Dana J.; Burk, Kenneth W.; Ramsdell, James V.; Shaw, William J.

2005-06-03T23:59:59.000Z

343

Hanford Site Waste Management Area C Performance Assessment ...  

Office of Environmental Management (EM)

Exchange December 11-12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation - Part 1 Video Presentation - Part 2 Hanford Site Waste...

344

Hanford Site Environmental Report for Calendar Year 1999  

SciTech Connect (OSTI)

The Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts.

Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

2000-09-28T23:59:59.000Z

345

Hanford Site Environmental Report for Calendar Year 2000  

SciTech Connect (OSTI)

This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts.

Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

2001-09-25T23:59:59.000Z

346

Independent Oversight Review, Hanford Site K-West Annex Facility...  

Office of Environmental Management (EM)

Facility - April 2014 April 2014 Review of the Hanford Site K-West Annex Facility Construction Quality The U.S. Department of Energy Office of Enforcement and Oversight...

347

Office of Enterprise Assessments Review of the Hanford Site Waste...  

Energy Savers [EERE]

of liquid or semi-solid radioactive and chemical waste stored in 177 underground tanks at the Hanford Site. ORP serves as DOE line management for two functions: the Tank...

348

Independent Oversight Review of the Hanford Site Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of liquid or semi-solid radioactive and chemical waste stored in 177 underground tanks at the Hanford Site. ORP serves as DOE line management for two functions: the Tank...

349

Enterprise Assessments, Hanford Site K-West Annex Facility Constructio...  

Energy Savers [EERE]

of liquid or semi-solid radioactive and chemical waste stored in 177 underground tanks at the Hanford Site. DOE-ORP serves as DOE line management for two functions: the Tank...

350

Hanford Site Environmental Surveillance Data Report for Calendar Year 2000  

SciTech Connect (OSTI)

This data report contains the actual raw data used to create tables and summaries in the Hanford Site Environmental Report 2000. This report also includes data from special sampling studies performed in 2000.

Bisping, Lynn E.

2001-09-27T23:59:59.000Z

351

Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 9  

SciTech Connect (OSTI)

This ninth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4.0 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. Not all of the sections have been updated for this revision. The following lists the updated sections: climate and meteorology; ecology (threatened and endangered species section only); culture, archaeological, and historical resources; socioeconomics; all of Chapter 6.

Neitzel, D.A. [ed.] [ed.; Bjornstad, B.N.; Fosmire, C.J. [and others] [and others

1997-08-01T23:59:59.000Z

352

Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 8  

SciTech Connect (OSTI)

This eighth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, historical, archaeological and cultural resources, socioeconomics, and noise. Chapter 6 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. The following sections were updated in this revision: climate and meteorology; ecology (threatened and endangered species section only); historical; archaeological and cultural resources; and all of chapter 6. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the hanford Site and its past activities by which to evaluate projected activities and their impacts.

Neitzel, D.A. [ed.] [ed.; Bjornstad, B.N.; Fosmire, C.J.; Fowler, R.A. [and others] [and others

1996-08-01T23:59:59.000Z

353

Hanford Site environmental report for calendar year 1991  

SciTech Connect (OSTI)

This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. [eds.

1992-06-01T23:59:59.000Z

354

Hanford Site environmental report for calendar year 1995  

SciTech Connect (OSTI)

The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. It also highlights environmental programs and efforts. It is written to meet reporting requirements and guidelines of DOE and to meet the needs of the public. Individual sections are designed to describe the Hanford Site and its mission, summarize the status in 1995 of compliance, describe the environmental programs, discuss estimated radionuclide exposure to the public from 1995 Hanford activities, present information on effluent monitoring and environmental surveillance (including ground- water protection and monitoring), and discuss activities to ensure quality.

Dirkes, R.L.; Hanf, R.W. [eds.] [Pacific Northwest National Lab., Richland, WA (United States)] [eds.; Pacific Northwest National Lab., Richland, WA (United States)

1996-06-01T23:59:59.000Z

355

Site locality identification study: Hanford Site. Volume II. Data cataloging  

SciTech Connect (OSTI)

Data compilation and cataloging for the candidate site locality identification study were conducted in order to provide a retrievable data cataloging system for the present siting study and future site evaluation and licensng processes. This task occurred concurrently with and also independently of other tasks of the candidate site locality identification study. Work in this task provided the data utilized primarily in the development and application of screening and ranking processes to identify candidate site localities on the Hanford Site. The overall approach included two steps: (1) data acquisition and screening; and (2) data compilation and cataloging. Data acquisition and screening formed the basis for preliminary review of data sources with respect to their probable utilization in the candidate site locality identification study and review with respect to the level of completeness and detail of the data. The important working assumption was that the data to be used in the study be based on existing and available published and unpublished literature. The data compilation and cataloging provided the basic product of the Task; a retrievable data cataloging system in the form of an annotated reference list and key word index and an index of compiled data. The annotated reference list and key word index are cross referenced and can be used to trace and retrieve the data sources utilized in the candidate site locality identification study.

Not Available

1980-07-01T23:59:59.000Z

356

Hanford Site environmental surveillance data report for calendar year 1996  

SciTech Connect (OSTI)

Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River water and sediment. In addition, Hanford Site wildlife samples were also collected for metals analysis. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1996 describes the site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1996 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from river monitoring and sediment data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

Bisping, L.E.

1997-09-01T23:59:59.000Z

357

A Site-Wide Perspective on Uranium Geochemistry at the Hanford Site  

E-Print Network [OSTI]

PNNL-17031 A Site-Wide Perspective on Uranium Geochemistry at the Hanford Site J. Zachara C. Liu C Laboratory, Argonne, IL 2 Lawrence Berkeley National Laboratory, Berkeley, CA 3 U.S. Geological Survey, Menlo of River Protection (ORP) #12;#12;PNNL-17031 A Site-Wide Perspective on Uranium Geochemistry at the Hanford

358

Hanford Site Environmental Report for Calendar Year 2007  

SciTech Connect (OSTI)

The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights signifi cant environmental and public protection programs and efforts. Some historical and early 2008 information is included where appropriate.

Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

2008-06-05T23:59:59.000Z

359

TECHNICAL ASSESSMENT OF FRACTIONAL CRYSTALLIZATION FOR TANK WASTE PRETREATMENT AT THE DOE HANFORD SITE  

SciTech Connect (OSTI)

Radioactive wastes from one hundred seventy-seven underground storage tanks in the 200 Area of the Department of Energy (DOE) Hanford Site in Washington State will be retrieved, treated and stored either on site or at an approved off-site repository. DOE is currently planning to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions, which would be treated and permanently disposed in separate facilities. A significant volume of the wastes in the Hanford tanks is currently classified as medium Curie waste, which will require separation and treatment at the Waste Treatment Plant (WTP). Because of the specific challenges associated with treating this waste stream, DOE EM-21 funded a project to investigate the feasibility of using fractional crystallization as a supplemental pretreatment technology. The two process requirements for fractional crystallization to be successfully applied to Hanford waste include: (1) evaporation of water from the aqueous solution to enrich the activity of soluble {sup 137}Cs, resulting in a higher activity stream to be sent to the WTP, and (2) separation of the crystalline salts that are enriched in sodium, carbonate, sulfate, and phosphate and sufficiently depleted in {sup 137}Cs, to produce a second stream to be sent to Bulk Vitrification. Phase I of this project has just been completed by COGEMA/Georgia Institute of Technology. The purpose of this report is to document an independent expert review of the Phase I results with recommendations for future testing. A team of experts with significant experience at both the Hanford and Savannah River Sites was convened to conduct the review at Richland, Washington the week of November 14, 2005.

HAMILTON, D.W.

2006-01-03T23:59:59.000Z

360

Hanford Site National Environmental Policy Act (NEPA) Characterization  

SciTech Connect (OSTI)

This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.; Eschbach, Tara O.; Fowler, Richard A.; Fritz, Brad G.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hanford Site National Environmental Policy Act (NEPA) Characterization Report  

SciTech Connect (OSTI)

This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

2004-09-22T23:59:59.000Z

362

Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15  

SciTech Connect (OSTI)

This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Scott, Michael J.; Thorne, Paul D.; Woody, Dave M.

2003-09-01T23:59:59.000Z

363

Hanford Site National Environmental Policy Act (NEPA) Characterization  

SciTech Connect (OSTI)

This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.; Fowler, Richard A.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast, Ellen L.; Rohay, Alan C.; Thorne, Paul D.

2001-09-01T23:59:59.000Z

364

Hanford Speakers Bureau Presentations FY2013 - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulf ofnewsFlash FDocuments3 Hanford

365

Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3  

SciTech Connect (OSTI)

This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

MCCALL, D L

2002-06-01T23:59:59.000Z

366

DEVELOPMENT OF A GEOCHEMICAL MODEL FOR URANIUM TRANSPORT IN THE UNSATURATED AND SATURATED SEDIMENTS AT THE 200 WEST AREA OF THE US DEPARTMENT OF ENERGY HANFORD SITE WASHINGTON (SEPTEMBER 2004)  

SciTech Connect (OSTI)

Final Deliverable under GWP-HQ-LMT-02 contract for Hanford Sci. & Tech. Gp. to BHI. The scope of work covered laboratory analyses and gephysical logging for 299-W19-43 near the 200 West U Plant. Other isotopic analyses were conducted for holes around 216-U-1&2, including U-236.

ADAMS SC; PETERSEN SW

2010-03-24T23:59:59.000Z

367

Hanford Site climatological data summary 1997, with historical data  

SciTech Connect (OSTI)

This document presents the climatological data measured at the U.S. Department of Energy`s Hanford Site for calendar year 1997. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk; however, Appendix B - Wind Climatology is excluded.

Hoitink, D.J.; Burk, K.W.

1998-03-01T23:59:59.000Z

368

QUEST Hanford Site Computer Users - What do they do?  

SciTech Connect (OSTI)

The Fluor Hanford Chief Information Office requested that a computer-user survey be conducted to determine the user's dependence on the computer and its importance to their ability to accomplish their work. Daily use trends and future needs of Hanford Site personal computer (PC) users was also to be defined. A primary objective was to use the data to determine how budgets should be focused toward providing those services that are truly needed by the users.

WITHERSPOON, T.T.

2000-03-02T23:59:59.000Z

369

The Hanford Story: River Corridor  

Broader source: Energy.gov [DOE]

This is the seventh chapter of The Hanford Story, a multimedia presentation that provides an overview of the Hanford Site—its history, today's cleanup activities, and a glimpse into the possibilities of future uses of the 586-square-mile government site in southeast Washington State.

370

Quantitative 3-D Elemental Mapping by LA-ICP-MS of a Basaltic Clast from the Hanford 300 Area, Washington, USA  

E-Print Network [OSTI]

Quantitative 3-D Elemental Mapping by LA-ICP-MS of a Basaltic Clast from the Hanford 300 Area collected from the Hanford 300 Area in south-central Washington State, United States. A calibration method and riparian quality in many locations, most notably at the Hanford, Savannah River, Oak Ridge, and Nevada Test

Hu, Qinhong "Max"

371

Hanford site near-facility environmental monitoring annual report, calendar year 1996  

SciTech Connect (OSTI)

This document summarizes the results of the near-facility environmental monitoring results for 1996 in the 100, 200/600, and 300/400 areas of the Hanford Site in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. The monitoring implements applicable portions of DOE Orders 5400.1 (DOE 1988a), 5400.5 (DOE 1990), and 5820.2A (DOE 1988b); Washington Administrative Code (WAC) 246-247; and Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H (EPA 1989). In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels were slightly elevated when compared to offsite locations, the differences are less than in previous years.

Perkins, C.J.

1997-08-05T23:59:59.000Z

372

Air pollution prevention at the Hanford Site: Status and recommendations  

SciTech Connect (OSTI)

With the introduction of the Clean Air Act Amendments of 1990 and other air and pollution prevention regulations, there has been increased focus on both pollution prevention and air emissions at US DOE sites. The Pollution Prevention (P2) Group of WHC reviewed the status of air pollution prevention with the goal of making recommendations on how to address air emissions at Hanford through pollution prevention. Using the air emissions inventory from Hanford`s Title V permit, the P2 Group was able to identify major and significant air sources. By reviewing the literature and benchmarking two other DOE Sites, two major activities were recommended to reduce air pollution and reduce costs at the Hanford Site. First, a pollution prevention opportunity assessment (P2OA) should be conducted on the significant painting sources in the Maintenance group and credit should be taken for reducing the burning of tumbleweeds, another significant source of air pollution. Since they are significant sources, reducing these emissions will reduce air emission fees, as well as have the potential to reduce material and labor costs, and increase worker safety. Second, a P2OA should be conducted on alternatives to the three coal-fired powerhouses (steam plants) on-site, including a significant costs analysis of alternatives. This analysis could be of significant value to other DOE sites. Overall, these two activities would reduce pollution, ease regulatory requirements and fees, save money, and help Hanford take a leadership role in air pollution prevention.

Engel, J.A.

1995-08-01T23:59:59.000Z

373

Hanford Site environmental surveillance data report for calendar year 1995  

SciTech Connect (OSTI)

Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

Bisping, L.E.

1996-07-01T23:59:59.000Z

374

1995 Report on Hanford site land disposal restrictions for mixed waste  

SciTech Connect (OSTI)

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

Black, D.G.

1995-04-01T23:59:59.000Z

375

Hanford Site environmental report for calendar year 1989  

SciTech Connect (OSTI)

This report is a summary of the environmental status of the Hanford Site in 1989. It includes descriptions of the Site and its mission, the status of compliance with environmental regulations, planning and activities to accomplish compliance, environmental protection and restoration activities, and environmental monitoring. 97 refs., 67 figs., 14 tabs.

Jaquish, R.E.; Bryce, R.W. (eds.)

1990-05-01T23:59:59.000Z

376

E-Print Network 3.0 - areas hanford site Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site. 12;5 This map shows the Hanford Site and surrounding area. McNary Dam... BENTON COUNTY 200-West Area 200-East Area 300 Area Saddle Mountains Ringold Hanford Town ......

377

E-Print Network 3.0 - area hanford site Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site. 12;5 This map shows the Hanford Site and surrounding area. McNary Dam... BENTON COUNTY 200-West Area 200-East Area 300 Area Saddle Mountains Ringold Hanford Town ......

378

Summary of the Hanford Site Environmental Report for Calendar Year 2005  

SciTech Connect (OSTI)

This small booklet provides highlights of the environmental monitoring at the Hanford Site during 2005. It is a summary of the information contained in the larger report: Hanford Site Environmental Monitoring for Calendar Year 2005.

Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

2006-09-28T23:59:59.000Z

379

Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites  

E-Print Network [OSTI]

Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites-iodoaniline) in sediments collected at the Savannah River and Hanford Sites, where anthropogenic 129 I from

Hu, Qinhong "Max"

380

E-Print Network 3.0 - annual hanford site Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: annual hanford site Page: << < 1 2 3 4 5 > >> 1 Summary of the HANFORD SITE Summary: Summary of the...

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Temperature Normals/Extremes-October - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How ToMay HanfordOctober Hanford

382

Radionuclide Air Emissions Report for the Hanford Site Calendar year 1998  

SciTech Connect (OSTI)

This report documents radionuclide air emissions from the Hanford Site in I998 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (40 CFR SI), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities,'' and with the Washington Administrative Code Chapter 246-247, Radiation Protection--Air Emissions. The federal regulations in 40 CFR 61, Subpart H; require the measurement and reporting of radionuclides emitted from Department of Energy facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1998 from Hanford Site point sources was 1.3 E-02 mrem (1.3 E-04 mSv), which is 0.13 percent of the federal standard. Chapter 246-247 of the Washington Administrative Code (WAC) requires the reporting of radionuclide emissions from all Department of Energy Hanford Site sources. The state has adopted into these regulations the 40 CFR 61 standard of 10 mrem/yr EDE. The EDE to the MEI attributable to diffuse and fugitive radionuclide air emissions from the Hanford Site in 1998 was 2.5 E-02 mrem (2.5 E-04 mSv). This dose added to the dose from point sources gives a total for all sources of 3.8 E-02 mrem/yr (3.8 E-04 mSv) EDE, which is 0.38 percent of the 10 mrem/yr standard. An unplanned release on August 26, 1998, in the 300 Area of the Hanford Site resulted in a potential dose of 4.1 E-02 mrem to a hypothetical individual at the nearest point of public access to that area. This hypothetical individual was not the MEI since the wind direction on the day of the release was away from the MEI residence. The potential dose from the unplanned event was similar in magnitude to that from routine releases during 1998. Were the release from this unplanned event combined with routine releases, the total dose would be less than 1 percent ofthe 10 mrem/yr standard.

DIEDIKER, L.P.

1999-06-15T23:59:59.000Z

383

Collaboration in Long-Term Stewardship at DOE's Hanford Site - 13019  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan [1]. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years,, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large parcel that includes one of the six (6) cocooned reactors on site. These accomplishments relied upon the transparency between DOE cleanup programs and their contractors working together to successfully transition the land while addressing the challenges that arise. All parties, the three different DOE Programs and their respective prime contractors are dedicated to working together and continuing the progress of transitioning land to LTS, in alignment with the Program Plan and compliant with contractual requirements. (authors)

Moren, Rick; Brown, David [Mission Support Alliance, LLC, Richland, WA (United States)] [Mission Support Alliance, LLC, Richland, WA (United States); Feist, Ella [Washington Closure Hanford, LLC, Richland WA (United States)] [Washington Closure Hanford, LLC, Richland WA (United States); Grindstaff, Keith; Zeisloft, Jamie [US Department of Energy, Richland Operations, Richland WA (United States)] [US Department of Energy, Richland Operations, Richland WA (United States)

2013-07-01T23:59:59.000Z

384

Hanford Site Groundwater Monitoring for Fiscal Year 1999  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds, was clean closed in fiscal year 1999, and monitoring is no longer required. Groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100 K, D, and H) and strontium-90 (100 N) reaching the Columbia River. The objective of two remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. Subsurface source characterization and vadose zone monitoring, soil-vapor monitoring, sediment sampling and characterization, and vadose zone remediation were conducted in fiscal year 1999. Baseline spectral gamma-ray logging at two single-shell tank farms was completed, and logging of zones at tank farms with the highest count rate was initiated. Spectral gamma-ray logging also occurred at specific retention facilities in the 200 East Area. These facilities are some of the most significant potential sources of remaining vadose zone contamination. Finally, remediation and monitoring of carbon tetradoride in the 200 West Area continued, with an additional 972 kilograms of carbon tetrachloride removed from the vadose zone in fiscal year 1999.

MJ Hartman; LF Morasch; WD Webber

2000-05-10T23:59:59.000Z

385

EIS-0356: Retrieval, Treatment and Disposal of Tank Wastes and Closure of Single-Shell Tanks at the Hanford Site, Richland, WA  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposed retrieval, treatment, and disposal of the waste being managed in the high-level waste (HLW) tank farms at the Hanford Site near Richland, Washington, and closure of the 149 single-shell tanks (SSTs) and associated facilities in the HLW tank farms.

386

Microbial community changes during sustained Cr(VI) reduction at the 100H site in Hanford, WA  

E-Print Network [OSTI]

at the 100H site in Hanford, WA Romy Chakraborty 1 , Eoin Lcontaminated aquifer at the Hanford (WA) 100H site in 2004.Cr(VI) reduction at Hanford, and a comparison of the

Chakraborty, Romy

2010-01-01T23:59:59.000Z

387

Central Plateau Cleanup at DOE's Hanford Site - 12504  

SciTech Connect (OSTI)

The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all other unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring wells. As a companion to the Hanford Site Cleanup Completion Framework document, DOE issued its draft Central Plateau Cleanup Completion Strategy in September 2009 to provide an outline of DOE's vision for completion of cleanup activities across the Central Plateau. As major elements of the Hanford cleanup along the Columbia River Corridor near completion, DOE believed it appropriate to articulate the agency vision for the remainder of the cleanup mission. The Central Plateau Cleanup Completion Strategy and the Hanford Site Cleanup Completion Framework were provided to the regulatory community, the Tribal Nations, political leaders, the public, and Hanford stakeholders to promote dialogue on Hanford's future. The Central Plateau Cleanup Completion Strategy describes DOE's vision for completion of Central Plateau cleanup and outlines the decisions needed to achieve the vision. The Central Plateau strategy involves steps to: (1) contain and remediate contaminated groundwater, (2) implement a geographic cleanup approach that guides remedy selection from a plateau-wide perspective, (3) evaluate and deploy viable treatment methods for deep vadose contamination to provide long-term protection of the groundwater, and (4) conduct essential waste management operations in coordination with cleanup actions. The strategy will also help optimize Central Plateau readiness to use funding when it is available upon completion of River Corridor cleanup projects. One aspect of the Central Plateau strategy is to put in place the process to identify the final footprint for permanent waste management and containment of residual contamination within the 20-square-mile Industrial-Exclusive Area. The final footprint identified for permanent waste management and containment of residual contamination should be as small as practical and remain under federal ownership and control for as long as a potential hazard exists. Outside the final footprint, the remainder of the Central Plateau will be available for other uses consistent with the Hanford Comprehensive Land-Use Plan (DOE 1999), while

Dowell, Jonathan [US DOE (United States)

2012-07-01T23:59:59.000Z

388

Wildlife studies on the Hanford Site: 1993 Highlights report  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory (PNL) Wildlife Resources Monitoring Project was initiated by DOE to track the status of wildlife populations to determine whether Hanford operations affected them. The project continues to conduct a census of wildlife populations that are highly visible, economically or aesthetically important, and rare or otherwise considered sensitive. Examples of long-term data collected and maintained through the Wildlife Resources Monitoring Project include annual goose nesting surveys conducted on islands in the Hanford Reach, wintering bald eagle surveys, and fall Chinook salmon redd (nest) surveys. The report highlights activities related to salmon and mollusks on the Hanford Reach of the Columbia River; describes efforts to map vegetation on the Site and efforts to survey species of concern; provides descriptions of shrub-steppe bird surveys, including bald eagles, Canada geese, and hawks; outlines efforts to monitor mule deer and elk populations on the Site; and describes development of a biological database management system.

Cadwell, L.L. [ed.

1994-04-01T23:59:59.000Z

389

AUTOMATED LEAK DETECTION OF BURIED TANKS USING GEOPHYSICAL METHODS AT THE HANFORD NUCLEAR SITE  

SciTech Connect (OSTI)

At the Hanford Nuclear Site in Washington State, the Department of Energy oversees the containment, treatment, and retrieval of liquid high-level radioactive waste. Much of the waste is stored in single-shelled tanks (SSTs) built between 1943 and 1964. Currently, the waste is being retrieved from the SSTs and transferred into newer double-shelled tanks (DSTs) for temporary storage before final treatment. Monitoring the tanks during the retrieval process is critical to identifying leaks. An electrically-based geophysics monitoring program for leak detection and monitoring (LDM) has been successfully deployed on several SSTs at the Hanford site since 2004. The monitoring program takes advantage of changes in contact resistance that will occur when conductive tank liquid leaks into the soil. During monitoring, electrical current is transmitted on a number of different electrode types (e.g., steel cased wells and surface electrodes) while voltages are measured on all other electrodes, including the tanks. Data acquisition hardware and software allow for continuous real-time monitoring of the received voltages and the leak assessment is conducted through a time-series data analysis. The specific hardware and software combination creates a highly sensitive method of leak detection, complementing existing drywell logging as a means to detect and quantify leaks. Working in an industrial environment such as the Hanford site presents many challenges for electrical monitoring: cathodic protection, grounded electrical infrastructure, lightning strikes, diurnal and seasonal temperature trends, and precipitation, all of which create a complex environment for leak detection. In this discussion we present examples of challenges and solutions to working in the tank farms of the Hanford site.

CALENDINE S; SCHOFIELD JS; LEVITT MT; FINK JB; RUCKER DF

2011-03-30T23:59:59.000Z

390

Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1999  

SciTech Connect (OSTI)

This report documents radionuclide air emissions from the US. Department of Energy (DOE) Hanford Site in 1999 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR). Title 40, Protection of the Environment, Part 61. National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities'', and with the Washington Administrative Code (WAC) Chapter 246-247. Radiation Protection-Air Emissions. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from US. Department of Energy (DOE) facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1999 from Hanford Site point sources was 0.029 mrem (2.9 E-04 mSv), which is less than 0.3 percent of the federal standard. WAC 246-247 requires the reporting of radionuclide emissions from all Hanford Site sources, during routine as well as nonroutine operations. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations. The state further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. The EDE from diffuse and fugitive emissions at the Hanford Site in 1999 was 0.039 mrem (3.9 E-04 mSv) EDE. The total dose from point sources and from diffuse and fugitive sources of radionuclide emissions during all operating conditions in 1999 was 0.068 mrem (6.8 E-04 mSv) EDE, which is less than 0.7 percent of the state standard.

ROKKAN, D.J.

2000-06-01T23:59:59.000Z

391

Hanford Site National Evnironmental Policy Act (NEPA) characterization  

SciTech Connect (OSTI)

This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

Cushing, C.E. (ed.)

1991-12-01T23:59:59.000Z

392

Hanford Site National Evnironmental Policy Act (NEPA) characterization. Revision 4  

SciTech Connect (OSTI)

This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

Cushing, C.E. [ed.

1991-12-01T23:59:59.000Z

393

Hanford Site National Environmental Policy Act (NEPA) Characterization  

SciTech Connect (OSTI)

This document describes the US Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents being prepared by DOE contractors. No conclusions or recommendations are provided. This year's report is the eleventh revision of the original document published in 1988 and is (until replaced by the 12th revision) the only version that is relevant for use in the preparation of Hanford NEPA; SEPA and CERCLA documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomic; occupational safety, and noise. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100,200,300, and other Areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) is essentially a definitive NEPA Chapter 6.0, which describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. People preparing environmental assessments and EISs should also be cognizant of the document entitled ''Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements'' published by the DOE Office of NEPA Oversight. Pacific Northwest National Laboratory (PNNL) staff prepared individual sections of this document, with input from other Site contractors. More detailed data are available from reference sources cited or from the authors. The following sections of the document were reviewed by the authors and updated with the best available information through June 1999: Climate and Meteorology; Ecology; Cultural, Archaeological, and Historical Resources; Socioeconomics; and All of Chapter 6.

Rohay, A.C.; Fosmire, C.J.; Neitzel, D.A.; Hoitink, D.J.; Harvey, D.W.; Antonio, E.J.; Wright, M.K.; Thorne, P.D.; Hendrickson, P.L.; Fowler, R.A.; Goodwin, S.M.; Poston, T.M.

1999-09-28T23:59:59.000Z

394

1993 report on Hanford Site land disposal restrictions for mixed wastes  

SciTech Connect (OSTI)

Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976{sup 2}(RCRA) and Atomic Energy Act{sup 3}. This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order{sup 1} (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress.

Black, D.

1993-04-01T23:59:59.000Z

395

Hanford Site National Environmental Policy Act (NEPA) characterization  

SciTech Connect (OSTI)

This document describes the Hanford Site environment (Chapter 4) and contains data in Chapter 5 and 6 which will guide users in the preparation of National Environmental Policy Act (NEPA)-related documents. Many NEPA compliance documents have been prepared and are being prepared by site contractors for the US Department of Energy, and examination of these documents reveals inconsistencies in the amount of detail presented and the method of presentation. Thus, it seemed necessary to prepare a consistent description of the Hanford environment to be used in preparing Chapter 4 of environmental impact statements and other site-related NEPA documentation. The material in Chapter 5 is a guide to the models used, including critical assumptions incorporated in these models, in previous Hanford NEPA documents. The users will have to select those models appropriate for the proposed action. Chapter 6 is essentially a definitive NEPA Chapter 6, which describes the applicable laws, regulations, and DOE and state orders. In this document, a complete description of the environment is presented in Chapter 4 without excessive tabular data. For these data, sources are provided. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information where it is available on the 100, 200, 300, and other Areas. This division will allow a person requiring information to go immediately to those sections of particular interest. However, site-specific information on each of these separate areas is not always complete or available. In this case, the general Hanford Site description should be used. 131 refs., 19 figs., 32 tabs.

Cushing, C.E. (ed.)

1988-09-01T23:59:59.000Z

396

Hanford Site surface soil radioactive contamination control plan, March 1993  

SciTech Connect (OSTI)

The Decommissioning and Resource Conservation and Recovery Act Closure Program is responsible to the US Department of Energy Richland Field Office, for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities and Resource Conservation and Recovery Act of 1976 closures at the Hanford Site. This program also manages the Radiation Area Remedial Action that includes the surveillance, maintenance, decontamination, and/or interim stabilization of inactive burial grounds, cribs, ponds, trenches, and unplanned release sites. This plan addresses only the Radiation Area Remedial Action activity requirements for managing and controlling the contaminated surface soil areas associated with these inactive sites until they are remediated as part of the Hanford Site environmental restoration process. All officially numbered Radiation Area Remedial Action and non-Radiation Area Remedial Action contaminated surface soil areas are listed in this document so that a complete list of the sites requiring remediation is contained in one document.

Mix, P.D.; Winship, R.A.

1993-04-01T23:59:59.000Z

397

History of the Hanford Site: 1943-1990  

SciTech Connect (OSTI)

This booklet was developed to highlight the national and international historical events that occurred in association with the development of the Hanford Site. The purpose of the booklet is to increase the awareness Hanford Site employees have of the historical significance of the Site's contributions and missions during the Manhattan Project (1943-1946) and Cold War era (1946-1990). By increasing knowledge and understanding of the Site's unique heritage, it is hoped this publication will help generate an appreciation of the Site's historic buildings and structures, and, thus, instill a sense of ''ownership'' in these buildings. One cannot appreciate the historic significance of a place or building without first knowing its story.

D.W. Harvey

2000-09-01T23:59:59.000Z

398

Conceptual design analyses for Hanford Site deployable remote spectroscopy systems  

SciTech Connect (OSTI)

This document identifies potential remote, NIR spectroscopic waste surface moisture monitoring system design alternatives to be operated inside one of the Hanford Site, high level, nuclear waste storage tanks. Potential tank waste moisture data impacts from the remote NIR signal transfer through high humidity vapor space is evaluated.

Philipp, B.L.; Reich, F.R.

1994-09-01T23:59:59.000Z

399

Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site  

SciTech Connect (OSTI)

The microbial diversity in subsurface sediments at the Hanford Site's 300 Area in southeastern Washington State was investigated by analyzing 21 samples recovered from depths that ranged from 9 to 52 m. Approximately 8000 non-chimeric Bacterial and Archaeal 16S rRNA gene sequences were analyzed across geological strata that contain a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units, defined at the 97% identity level). Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (based upon Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic transition zone, richness was about 325 and declined to less than 50 in the deeper reduced zones. The Bacterial community in the oxic Hanford and Ringold Formations contained members of 9 major well-recognized phyla as well 30 as unusually high proportions of 3 candidate divisions (GAL15, NC10, and SPAM). The deeper Ringold strata were characterized by low OTU richness and a very high preponderance (ca. 90%) of Proteobacteria. The study has greatly expanded the intralineage phylogenetic diversity within some major divisions. These subsurface sediments have been shown to contain a large number of phylogenetically novel microbes, with substantial heterogeneities between sediment samples from the same geological formation.

Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

2012-02-01T23:59:59.000Z

400

Summary of the Hanford Site environmental report for calendar year 1996  

SciTech Connect (OSTI)

This report summarizes the 420-page Hanford Site Environmental Report for Calendar Year 1996. The Hanford Site environmental report is prepared annually to summarize environmental data and information, describe environmental management performance, demonstrate the status of compliance with environmental regulations, and highlight major environmental programs and efforts. The summary is designed to briefly: describe the Hanford Site and its mission; summarize the status in 1996 of compliance with environmental regulations; describe environmental programs at the Hanford Site; discuss estimated radionuclide exposure to the public from 1996 Hanford Site activities; present information on effluent monitoring and environmental surveillance, including groundwater protection and monitoring; and discuss activities to ensure quality.

Hanf, R.W.; O`Connor, G.P.; Dirkes, R.L. [eds.] [comps.

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hanford Site - 200-UP-1 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanfordUP-1 Hanford Site -

402

Hanford Site - 200-ZP-1 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable ProjectsHanfordUP-1 Hanford Site

403

Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.  

SciTech Connect (OSTI)

During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

Gardner, Martin G.; Price, Randall K.

2007-02-01T23:59:59.000Z

404

Hanford Site Black-tailed Jackrabbit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Video Title:of10

405

Hanford Site Cleanup Before Cleanup Began  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Video

406

Hanford Site Confined Space Procedure (HSCSP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety Video60 Revision

407

Hanford Site Respiratory Protection Program (HSRPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 Hanford Traffic Safety

408

Daily Normal Precipitation January - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S.11-26-2013 1 2January Hanford

409

Daily Normal Precipitation November - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S.11-26-2013 1November Hanford

410

Waste Encapsulation and Storage Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanfordProjects &

411

Full Board Meeting Information - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours,Frequently AskedInformation Hanford

412

DOE - ORP Contracts/Procurements - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact UsHanfordORP

413

Temperature Normals/Extremes-April - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How To LicenseApril Hanford

414

Temperature Normals/Extremes-August - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How To LicenseApril HanfordAugust

415

Temperature Normals/Extremes-February - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How To LicenseAprilFebruary Hanford

416

Temperature Normals/Extremes-May - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How ToMay Hanford Meteorological

417

Temperature Normals/Extremes-November - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How ToMay Hanford

418

Temperature Normals/Extremes-September - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How ToMay HanfordOctober

419

HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE  

SciTech Connect (OSTI)

The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the retrieval of the waste is under way and is being conducted to achieve the completion criteria established in the Hanford Federal Facility Agreement and Consent Order.

JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

2006-01-30T23:59:59.000Z

420

Strategies for Containment: The U.S. Federal Government at the Hanford Nuclear Site .  

E-Print Network [OSTI]

??This dissertation argues that the U.S. government employs multiple rhetorical strategies to manage discourse about the Hanford Site, a nuclear site located on the Columbia… (more)

Elliott, Erica

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

In Situ Colloid Mobilization in Hanford Sediments under  

E-Print Network [OSTI]

In Situ Colloid Mobilization in Hanford Sediments under Unsaturated Transient Flow Conditions of radioactive wastes at the Hanford site, Washington State. In this study, column experiments were conducted to examine the effect of irrigation schedule on releases of in situ colloids from two Hanford sediments

Perfect, Ed

422

List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

Not Available

1993-04-01T23:59:59.000Z

423

Independent Activity Report, Hanford - May 2010 | Department...  

Broader source: Energy.gov (indexed) [DOE]

visit to the Department of Energy, Richland Operations Office (DOE-RL) and the Hanford Site in Richland, Washington during the period May 17-19, with DOE-RL managersstaff...

424

Hanford Site Groundwater Monitoring for Fiscal Year 1998  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; they are believed to represent natural components of groundwater. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during FY 1998: 17 under detection programs and data indicate that they are not adversely affecting groundwater, 6 under interim-status groundwater-quality-assessment programs to assess possible contamination, and 2 under final-status corrective-action programs. Groundwater remediation in the 100 Areas continued to reduce the amount of strontium-90 (100-N) and chromium (100-K, D, and H) reaching the Columbia River. Two systems in the 200-West Area operated to prevent the spread of carbon tetrachloride and technetide uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. A three-dimensional, numerical groundwater model was applied to simulate radionuclide movement from sources in the 200 Areas following site closure in 2050. Contaminants will continue to move toward the southeast and north (through Gable Gap), but the areas with levels exceeding drinking water standards will diminish.

Hartman, M.J. [and others

1999-03-24T23:59:59.000Z

425

The role of plants and animals in isolation barriers at Hanford, Washington  

SciTech Connect (OSTI)

The Hanford Site Surface Barrier Development Program was organized in 1985 to test the effectiveness of various barrier designs in minimizing the effects of water infiltration; plant, animal, and human intrusion; and wind and water erosion on buried wastes, and in minimizing the emanation of noxious gases. Plants will serve to minimize drainage and erosion, but present,the potential for growing roots into wastes. Animals burrow holes into the soil, and the burrow holes could allow water to preferentially drain into the waste. They also bring soil to the surface which, if wastes are incorporated, could present a risk for the dispersion of wastes into the environment. This report reviews work done to assess the role of plants and animals in isolation barriers at Hanford. It also reviews work done to understand the potential effects from climate change on the plants and animals that may inhabit barriers in the future.

Link, S.O.; Cadwell, L.L.; Petersen, K.L.; Sackschewsky, M.R.; Landeen, D.S.

1995-09-01T23:59:59.000Z

426

Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site  

SciTech Connect (OSTI)

The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

1999-06-01T23:59:59.000Z

427

Initial Single-Shell Tank System Performance Assessment for the Hanford Site  

SciTech Connect (OSTI)

The Initial Single-Shell Tank System Performance Assessment for the Hanford Site (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank wastes and closure of the SST farms at the U.S. Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the U.S. Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989), the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A 'reference' case and a suite of sensitivity/uncertainty cases are considered. The 'reference case' evaluates environmental impacts assuming central tendency estimates of site conditions. 'Reference' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that are significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives to 'reference' cases to judge how well the proposed closure system performs when changes to important assumptions are made to the hydrogeologic and engineered systems. The estimated impacts from these cases are generally consistent with 'reference' case results (i.e., performance objectives are exceeded by contaminants from past releases but not tank residuals). This document and its future iterations will play a critical role in the decision making process for the closure of the Hanford Tank Farms. It will support interim decisions related to tank retrievals and interim corrective measures, in addition to supporting the major closure decisions of tanks and tank farms. Hence, it is imperative that the review process of this document is inclusive of the decision makers as well as the Hanford Stakeholders. (authors)

Jaraysi, M.N.; Kristofzski, J.G.; Connelly, M.P. [CH2M HILL Hanford Group, Inc., Richland, WA (United States); Wood, M.I. [Fluor Hanford Inc., Richland WA (United States); Knepp, A.J. [YAHSGS LLC, Richland WA (United States); Quintero, R.A. [Office of River Protection, United States Department of Energy, Richland, WA (United States)

2007-07-01T23:59:59.000Z

428

INITIAL SINGLE SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE  

SciTech Connect (OSTI)

The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives to ''reference'' cases to judge how the proposed closure system performs when changes to important assumptions are made to the hydrogeologic and engineered systems. The estimated impacts from these cases are generally consistent with ''reference'' case results (i.e., performance objectives are exceeded by contaminants from past releases but not tank residuals). This document and its future iterations will play a critical role in the decision making process for the closure of the Hanford Tank Farms. It will support interim decisions related to tank retrievals and interim corrective measures, in addition to supporting the major closure decisions of tanks and tank farms. Hence, it is imperative that the review process of this document is inclusive of the decision makers as well as the Hanford Stakeholders.

JARAYSI, M.N.

2007-01-08T23:59:59.000Z

429

Environmental radiological monitoring of air, rain, and snow on and near the Hanford Site, 1945-1957  

SciTech Connect (OSTI)

This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project. The goal of the HEDR Project is to estimate the radiation dose that individuals could have received from emissions since 1944 at the Hanford Site near Richland, Washington. Members of the HEDR Project`s Environmental Monitoring Data Task have developed databases of historical environmental measurements of such emissions. Hanford documents were searched for information on the radiological monitoring of air, rain, and snow at and near the Hanford Site in Richland, Washington. The monitoring information was reviewed and summarized. The end product is a yearly overview of air, rain, and snow samples as well as ambient radiation levels in the air that were measured from 1945 through 1957. The following information is provided in each annual summary: the media sampled, the constituents (radionuclides) measured/reported, the sampling locations, the sampling frequencies, the sampling methods, and the document references. For some years a notes category is included that contains additional useful information. For the years 1948 through 1957, tables summarizing the sampling locations for the various sample media are also included in the appendix. A large number of documents were reviewed to obtain the information in this report. A reference list is attached to the end of each annual summary. All of the information summarized here was obtained from reports originating at Hanford. These reports are all publicly available and can be found in the Richland Operations Office (RL) public reading room. The information in this report has been compiled without analysis and should only be used as a guide to the original documents.

Hanf, R.W.; Thiede, M.E.

1994-03-01T23:59:59.000Z

430

1997 evaluation of tritium removal and mitigation technologies for Hanford Site wastewaters  

SciTech Connect (OSTI)

This report contains results of a biennial assessment of tritium separation technology and tritium nitration techniques for control of tritium bearing wastewaters at the Hanford Site. Tritium in wastewaters at Hanford have resulted from plutonium production, fuel reprocessing, and waste handling operations since 1944. this assessment was conducted in response to the Hanford Federal Facility Agreement and Consent Order.

Jeppson, D.W.; Biyani, R.K.; Duncan, J.B.; Flyckt, D.L.; Mohondro, P.C.; Sinton, G.L.

1997-07-24T23:59:59.000Z

431

Long-term climate change assessment study plan for the Hanford Site Permanent Isolation Barrier Development Program. Revision 1  

SciTech Connect (OSTI)

The Hanford Site Permanent Isolation Barrier Development Program (Barrier Development Program) was organized to develop the technology needed to provide an in-place disposal capability for low-level nuclear waste for the US Department of Energy at the Hanford Site in south-central Washington. The goal of the Barrier Development Program is to provide defensible evidence that final barrier design(s) will adequately control water infiltration, plant and animal intrusion, and wind and water erosion for a minimum of 1,000 yr; to isolate wastes from the accessible environment; and to use markers to warn inadvertent human intruders. Evidence for barrier performance will be obtained by conducting laboratory experiments, field tests, computer modeling, and other studies that establish confidence in the barrier`s ability to meet its 1,000-yr design life.

Petersen, K.L. [Westinghouse Hanford Co., Richland, WA (United States); Chatters, J.C. [Pacific Northwest Lab., Richland, WA (United States); Waugh, W.J. [Chem-Nuclear Geotech, Inc., Grand Junction, CO (United States)

1993-05-01T23:59:59.000Z

432

Hanford Site environmental report for calendar year 1996  

SciTech Connect (OSTI)

The Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology.

Dirkes, R.L.; Hanf, R.W. [eds.] [eds.

1997-08-01T23:59:59.000Z

433

The Evolution of LTS at DOE's Hanford Site  

SciTech Connect (OSTI)

Hanford's Long-Term Stewardship (LTS) Program has evolved from a small, informal process, with minimal support, to a robust program that provides comprehensive transitions from cleanup contractors to long-term stewardship for post-cleanup requirements specified in the associated cleanup decision documents. The LTS Program has the responsibility for almost 100,000 acres of land, along with over 200 waste sites and will soon have six cocooned reactors. Close to 2,600 documents have been identified and tagged for storage in the LTS document library. The program has successfully completed six consecutive transitions over the last two years in support of the U.S. DOE Richland Operations Office's (DOE-RL) near-term cleanup objectives of significantly reducing the footprint of active cleanup operations for the River Corridor. The program has evolved from one that was initially responsible for defining and measuring Institutional Controls for the Hanford Site, to a comprehensive, post remediation surveillance and maintenance program that begins early in the transition process. In 2013, the first reactor area -- the cocooned 105-F Reactor and its surrounding 1,100 acres, called the F Area was transitioned. In another first, the program is expected to transition the five remaining cocooned reactors into the program through using a Transition and Turnover Package (TTP). As Hanford's LTS Program moves into the next few years, it will continue to build on a collaborative approach. The program has built strong relationships between contractors, regulators, tribes and stakeholders and with the U.S. Department of Energy's Office of Legacy Management (LM). The LTS Program has been working with LM since its inception. The transition process utilized LM's Site Transition Framework as one of the initial requirement documents and the Hanford Program continues to collaborate with LM today. One example of this collaboration is the development of the LTS Program's records management system in which, LM has been instrumental. The development of a rigorous data collection and records management systems has been influenced and built off of LMs success, which also ensures compatibility between what Hanford's LTS Program develops and LM. In another example, we are exploring a pilot project to ship records from the Hanford Site directly to LM for long-term storage. This pilot would gain program efficiencies so that records would be handled only once. Rather than storage on-site, then shipment to an interim Federal Records Center in Seattle, records would be shipped directly to LM. The Hanford LTS Program is working to best align programmatic processes, find efficiencies, and to benchmark site transition requirements. Involving the Hanford LTS Program early in the transition process with an integrated contractor and DOE team is helping to ensure that there is time to work through details on the completed remediation of transitioning areas. It also will allow for record documentation and storage for the future, and is an opportunity for the program to mature through the experiences that will be gained by implementing LTS Program activities over time.

Moren, Richard J. [Mission Support Alliance, Richland, WA (United States); Grindstaff, Keith D. [USDOE Richland Operations Office, Richland, WA (United States)

2013-11-12T23:59:59.000Z

434

FATE AND TRANSPORT OF RADIONUCLIDES [U(VI), Sr, Cs] IN VADOSE ZONE SEDIMENTS AT THE HANFORD SITE  

E-Print Network [OSTI]

FATE AND TRANSPORT OF RADIONUCLIDES [U(VI), Sr, Cs] IN VADOSE ZONE SEDIMENTS AT THE HANFORD SITE AND TRANSPORT OF RADIONUCLIDES [U(VI), Sr, Cs] IN VADOSE ZONE SEDIMENTS AT THE HANFORD SITE Abstract by Kenton A that influence radionuclide fate and transport in the Hanford vadose zone. Hanford was established for nuclear

Flury, Markus

435

PERFORMACE OF MULTI-PROBE CORROSION MONITORING SYSTEMS AT THE HANFORD SITE  

SciTech Connect (OSTI)

Between 2007 and 2009, several different multi-probe corrosion monitoring systems were designed and installed in high-level nuclear waste tanks at the U.S. Department of Energy's Hanford Site in WaShington State. The probe systems are being monitored to ensure waste tanks operate in regions that minimize localized corrosion (i.e., pitting) and stress corrosion cracking. The corrosion monitoring systems have been installed in wastes with different chemistry types. An ongoing effort during the same time period has generated non-radioactive simulants that are tested in the laboratory to establish baseline corrosion monitoring system performance and characterize data to allow interpretation of readings from the multiple corrosion monitoring systems. Data collection from these monitoring systems has reached the point where the results allow comparison with the laboratory testing. This paper presents analytical results from the corrosion monitoring system development program.

CAROTHERS KD; BOOMER KD; ANDA VS; DAHL MM; EDGEMON GL

2010-01-14T23:59:59.000Z

436

Response of winter birds to soil remediation along the Columbia River at the Hanford Site  

SciTech Connect (OSTI)

The Columbia River at the Hanford Site, located in south-central Washington State, USA, is a regionally important refugium for overwintering birds. Some of the river shoreline has been designated by the U.S. Department of Energy for environmental clean-up following past production of materials for nuclear weapons. We evaluated the effects of soil remediation on winter birds at six inactive nuclear reactor areas. Remediation activities consisted of daily excavation and removal of approximately 1,035 t of contaminated soil from previously herbicided and denuded areas located between 30 m and 400 m and mostly in line-of-sight of the river shoreline. Remediation activities had no apparent effect on numbers of riverine or terrestrial birds using adjacent undisturbed shoreline and riparian habitat.

Becker, James M.; McKinstry, Craig A.

2004-04-01T23:59:59.000Z

437

Radionuclide air emissions report for the Hanford site calendar year 1995  

SciTech Connect (OSTI)

This report documents radionuclide air emissions from the Hanford Site in 1995, and the resulting effective dose equivalent (FDE) to the maximally exposed member of the public, referred to as the `MEI.` The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, `National Emissions Standards for Hazardous Air Pollutants,` Subpart H, `National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.` This report has also been prepared for and will be submitted in accordance with the reporting requirements of the Washington Administrative Code Chapter 246-247, `Radiation Protection-Air Emissions.`

Gleckler, B.P., Westinghouse Hanford

1996-06-26T23:59:59.000Z

438

TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE  

SciTech Connect (OSTI)

At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

SCHAUS, P.S.

2006-07-21T23:59:59.000Z

439

Hanford Site Assessment & Characterization/Verification of Buildings Procedure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSite Public Tours Hanford Site2

440

Voluntary Protection Program Onsite Review, Waste Treatment Plant Hanford Site- June 2010  

Broader source: Energy.gov [DOE]

Evaluation to determine whether the Waste Treatment Plant Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

Note: This page contains sample records for the topic "hanford site washington" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Voluntary Protection Program Onsite Review, CHPlateau Remediation Contract Hanford Site- March 2011  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Plateau Remediation Contract Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

442

Activity-level Work Planning and Control in the Hanford Site...  

Broader source: Energy.gov (indexed) [DOE]

Worker Evaluation Tool Addthis Description Slide Presentation by Ted Giltz, Volpentest HAMMER Federal Training Center. Hanford Site Worker Eligibility Tool, Verifying...

443

Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste  

SciTech Connect (OSTI)

This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

444

Colloid and Colloid-Facilitated Radionuclide Transport at the Semi-Arid Hanford Site .  

E-Print Network [OSTI]

??Considerable amount of radioactive waste has been released to vadose zone sediments at the Hanford site. Colloids can facilitate the movement of radionuclides through the… (more)

[No author

2013-01-01T23:59:59.000Z

445

Voluntary Protection Program Onsite Review, 222-S Laboratory Hanford Site- January 2011  

Broader source: Energy.gov [DOE]

Evaluation to determine whether 222-S Laboratory at the Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

446

Nature of Nano-Sized Plutonium Particles in Soils at the Hanford Site  

SciTech Connect (OSTI)

The occurrence of plutonium dioxide (PuO2) either from direct deposition or from the precipitation of plutonium-bearing solutions in contaminated soils and sediments has been well described, particularly for the Hanford site in Washington State. However, past research has suggested that plutonium may exist in environmental samples at the Hanford site in chemical forms in addition to large size PuO2 particles and that these previously unidentified nano-sized particles maybe more reactive and thus more likely to influence the environmental mobility of Pu. Here we present evidence for the formation of nano-sized plutonium iron phosphate hydroxide structurally related to the rhabdophane group nanoparticles in 216-Z9 crib sediments from Hanford using transmission electron microscopy (TEM). The distribution and nature of these nanoparticles varied depending on the adjacent phases present. Fine electron probes were used to obtain electron diffraction and electron energy-loss spectra from specific phase regions of the 216-Z9 cribs specimens from fine-grained plutonium oxide and phosphate phases. Energy-loss spectra were used to evaluate the plutonium N4,5 (4d ? 5f ) and iron L2,3 absorption edges. The iron plutonium phosphate formation may depend on the local micro-environment in the sediments, availability of phosphate, and hence the distribution of these minerals may control long-term migration of Pu in the soil. This study also points to the utility of using electron beam methods for determining the identity of actinide phases and their association with other sediment phases.

Buck, Edgar C.; Moore, Dean A.; Czerwinski, Kenneth R.; Conradson, Steven D.; Batuk, Olga; Felmy, Andrew R.

2014-08-06T23:59:59.000Z

447

Office of Inspector General audit report on Hanford Site contractors` use of site services  

SciTech Connect (OSTI)

The mission of the Department of Energy (DOE), Richland Operations Office (Richland) is to safely manage legacy wastes, develop and deploy science and technology, and provide stewardship of the Hanford Site (Site). To accomplish its mission, Richland employs five prime contractors: Fluor Daniel Hanford, Inc. (Fluor Daniel); Bechtel Hanford, Inc. (Bechtel); Battelle-Pacific Northwest National Laboratory (Battelle); Hanford Environmental Health Foundation; and BNFL, Inc. Some of these contractors, in turn, have multiple subcontractors. To operate the Site, contractors need to use numerous services, such as telecommunications, copying, and photography. Richland directed certain contractors to provide these and other services, called site services, for the benefit of all contractors and assigned responsibility for optimal utilization of these services to its Site Infrastructure Division (SID). In the past, the Office of Inspector General (OIG) audited several site services, including groundwater monitoring, protective forces, personnel security clearances, railroad services, and fleet management. These audits disclosed that the services were not always efficiently and effectively coordinated. Therefore, the objective of this audit was to examine other site services, principally those provided at least in part by Fluor Daniel, to determine if contractors were acquiring services already available.

NONE

1999-03-01T23:59:59.000Z

448

Summary of the Hanford Site Environmental Report for Calendar Year 2008  

SciTech Connect (OSTI)

This summary booklet summarizes the "Hanford Site Environmental Report for Calendar Year 2008." The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

2009-09-15T23:59:59.000Z

449

Summary of the Hanford Site Environmental Report for Calendar Year 2007  

SciTech Connect (OSTI)

This summary booklet summarizes the "Hanford Site Environmental Report for Calendar Year 2007." The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights signifi cant environmental and public protection programs and efforts. Some historical and early 2008 information is included where appropriate.

Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

2008-09-10T23:59:59.000Z

450

Summary of the Hanford Site Environmental Report for Calendar Year 2009  

SciTech Connect (OSTI)

This summary booklet summarizes the "Hanford Site Environmental Report for Calendar Year 2009." The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

2010-09-30T23:59:59.000Z

451

Sherwood, Washington, Disposal Site Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May