Powered by Deep Web Technologies
Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

LM Records Handling System (LMRHS01) - Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats...

2

LM Records Handling System (LMRHS01) - Electronic Records Keeping...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publications LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees...

3

LM Records Handling System-Fernald Historical Records System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management, LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management Energy.gov Careers & Internships For Staff & Contractors...

4

Ash Handling System Maintenance Guide  

Science Conference Proceedings (OSTI)

This Ash Handling System Maintenance Guide provides fossil plant maintenance personnel with current maintenance information on this system. This guide will assist plant maintenance personnel in improving the reliability and reducing the maintenance costs for the ash handling system.

2005-12-23T23:59:59.000Z

5

CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS, as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building structures and space allocations. The Carrier/Cask Handling System interfaces with the Waste Handling Building Electrical System for electrical power.

E.F. Loros

2000-06-23T23:59:59.000Z

6

WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will be designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.

S.C. Khamamkar

2000-06-23T23:59:59.000Z

7

Cask system design guidance for robotic handling  

SciTech Connect

Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs.

Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

1990-10-01T23:59:59.000Z

8

WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.

P.A. Kumar

2000-06-21T23:59:59.000Z

9

Water Management in Ash-Handling Systems  

Science Conference Proceedings (OSTI)

In 1980, EPA proposed revisions to the effluent standards and guidelines for fly ash and bottom ash transport systems. This review of utility practices provides a comprehensive account of the operation of and problems experienced in wet handling of bottom and fly ash and suggests areas for further research.

1987-08-24T23:59:59.000Z

10

DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System. This includes the primary hot cell bounded by the receiving area and WP transport exit air locks; and isolation doors at ATS, CTS, and Waste Package Remediation. The hot cell includes areas for welding, various staging, tilting, and WP transporter loading. There are associated operating galleries and equipment maintenance areas outside the hot cell. These areas operate concurrently to accommodate the DC/WP throughput rates and support system maintenance. The new DC preparation area is located in an unshielded structure. The handling equipment includes DC/WP bridge cranes, tilting stations, and horizontal transfer carts. The welding area includes DC/WP welders and staging stations. Welding operations are supported by remotely operated equipment including a bridge crane and hoists, welder jib cranes, welding turntables, and manipulators. WP transfer includes a transfer/decontamination and transporter load area. The transfer operations are supported by a remotely operated horizontal lifting system, decontamination system, decontamination and inspection manipulator, and a WP horizontal transfer cart. All handling operations are supported by a suite of fixtures including collars, yokes, lift beams, and lid attachments. Remote equipment is designed to facilitate decontamination and maintenance. Interchangeable components are provided where appropriate. Set-aside areas are included, as required, for fixtures and tooling to support off-normal and recovery operations. Semi-automatic, manual, and backup control methods support normal, maintenance, and recovery operations. The system interfaces with the ATS and CTS to provide empty and receive loaded DCs. The Waste Emplacement/Retrieval System interfaces are for loading/unloading WPs on/from the transporter. The system also interfaces with the Waste Package Remediation System for DC/WP repair. The system is housed, shielded, supported, and has ventilation boundaries by the Waste Handling Building (WHB). The system is ventilated by the WHB Ventilation System, which in conjunction with ventilation boundaries ensure that ai

E. F. Loros

2000-06-30T23:59:59.000Z

11

System for handling and storing radioactive waste  

DOE Patents (OSTI)

A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, J.K.; Lindemann, P.E.

1982-07-19T23:59:59.000Z

12

System for handling and storing radioactive waste  

DOE Patents (OSTI)

A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, John K. (San Diego, CA); Lindemann, Paul E. (Escondido, CA)

1984-01-01T23:59:59.000Z

13

ENDTOEND REQUEST HANDLING IN DISTRIBUTED VIDEOONDEMAND SYSTEMS  

E-Print Network (OSTI)

that adequate storage and stream handling capacities are present at the servers in the remote clusters. In addition, the remote sites act as sources of supplemental request handling capacity minimizing overall service is delivered only when the local cluster can­ not handle the load. Between the two remote clusters

Mundur, Padma

14

Fuel handling system for a nuclear reactor  

DOE Patents (OSTI)

A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

Saiveau, James G. (Hickory Hills, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

1986-01-01T23:59:59.000Z

15

Reagent Storage and Handling for SCR and SNCR Systems  

Science Conference Proceedings (OSTI)

As utilities move to post-combustion nitrogen oxides (NOx) control technologies, the need to understand reagent storage and handling requirements for these systems increases. This report reviews various approaches to the storage and handling of anhydrous ammonia, aqueous ammonia, and urea. Systems that convert urea to ammonia also are included.

2002-05-30T23:59:59.000Z

16

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network (OSTI)

Cryostat 1. Remote handling The high radiation levels and presence of hazardous, ac- tivated mercury vaporsMERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 placement within the Shielding Module in a remote environment. · Providing double containment of the mercury

McDonald, Kirk

17

Handling effluent from nuclear thermal propulsion system ground tests  

SciTech Connect

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Allen, G.C.

1992-09-09T23:59:59.000Z

18

Method and system rapid piece handling  

DOE Patents (OSTI)

The advent of high-speed fabric cutters has made necessary the development of automated techniques for the collection and sorting of garment pieces into collated piles of pieces ready for assembly. The present invention enables a new method for such handling and sorting of garment parts, and to apparatus capable of carrying out this new method. The common thread is the application of computer-controlled shuttling bins, capable of picking up a desired piece of fabric and dropping it in collated order for assembly. Such apparatus with appropriate computer control relieves the bottleneck now presented by the sorting and collation procedure, thus greatly increasing the overall rate at which garments can be assembled.

Spletzer, Barry L. (9504 Arvilla, NE, Albuquerque, NM 87111)

1996-01-01T23:59:59.000Z

19

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 12070 of 26,764 results. 61 - 12070 of 26,764 results. Download UDAC 2014 Findings and Recommendations http://energy.gov/fe/downloads/udac-2014-findings-and-recommendations Download EIS-0372: Notice of Public Hearings Proposed Bangor Hydro-Electric Company (BHE) Northeast Reliability Interconnect http://energy.gov/nepa/downloads/eis-0372-notice-public-hearings Download LM Records Handling System (LMRHS01)- Rocky Flats Environmental Records Database, Office of Legacy Management http://energy.gov/management/downloads/lm-records-handling-system-lmrhs01-rocky-flats-environmental-records-database Download MOX Services Unclassified Information System PIA, National Nuclear Services Administration http://energy.gov/management/downloads/mox-services-unclassified-information-system-pia-national-nuclear-services

20

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 - 4930 of 9,640 results. 21 - 4930 of 9,640 results. Download FederalComplianceCritReviewChecklist10-10.pdf http://energy.gov/management/downloads/federalcompliancecritreviewchecklist10-10pdf Download MOX Services Unclassified Information System PIA, National Nuclear Services Administration http://energy.gov/management/downloads/mox-services-unclassified-information-system-pia-national-nuclear-services Download LM Records Handling System (LMRHS01)- Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management http://energy.gov/management/downloads/lm-records-handling-system-lmrhs01-energy-employees-occupational-illness Download Microsoft PowerPoint- FinalModule1.ppt http://energy.gov/management/downloads/microsoft-powerpoint-finalmodule1ppt Download Microsoft PowerPoint- 03 Wyss Economic Outlook [Compatibility

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 3560 of 28,905 results. 51 - 3560 of 28,905 results. Download LM Records Handling System (LMRHS01)- Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management http://energy.gov/management/downloads/lm-records-handling-system-lmrhs01-energy-employees-occupational-illness Download EIS-0200: Record of Decision Treatment and Storage of Transuranic Waste http://energy.gov/nepa/downloads/eis-0200-record-decision Download TBA-0100- In the Matter of Vinod Chudgar This Decision considers an Appeal of an Initial Agency Decision (IAD) issued on January 13, 2011, involving a complaint of retaliation filed under the Department of Energy (DOE) ContractorEmployee... http://energy.gov/oha/downloads/tba-0100-matter-vinod-chudgar Article U-042: Mac RealPlayer Multiple Vulnerabilities

22

Handling Global Conditions in Parameterized System Verification  

Science Conference Proceedings (OSTI)

We consider symbolic verification for a class of parameterized systems, where a system consists of a linear array of processes, and where an action of a process may in general be guarded by both local conditions restricting the state of the process about ...

Parosh Aziz Abdulla; Ahmed Bouajjani; Bengt Jonsson; Marcus Nilsson

1999-07-01T23:59:59.000Z

23

Optimizing Ash Handling - SmartAshTM System Evaluation  

Science Conference Proceedings (OSTI)

High ash levels in electrostatic precipitator (ESP) hoppers are notorious for increasing particulate matter (PM) emissions and plume opacity. Conventional means of monitoring hopper ash levels and fly ash handling system performance have been time-consuming and problematic. Neundorfer, Inc., has developed a fly ash conveying system-monitoring package (SmartAshSystem) that provides improved monitoring of fly ash removal process parameters and provides graphical depictions of ash system performance. Additi...

2007-11-21T23:59:59.000Z

24

Status of ITER neutral beam cell remote handling system  

E-Print Network (OSTI)

The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

2013-01-01T23:59:59.000Z

25

CLASSIFICATION OF THE MGR WASTE HANDLING BUILDING ELECTRICAL SYSTEM  

SciTech Connect

The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste handling building electrical system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

S.E. Salzman

1999-08-31T23:59:59.000Z

26

Development and implementation of automated radioactive materials handling systems  

SciTech Connect

Material handling of radioactive and hazardous materials has forced the need to pursue remotely operated and robotic systems in light of operational safety concerns. Manual maneuvering, repackaging, overpacking and inspecting of containers which store radioactive and hazardous materials is the present mode of operation at the Department of Energy (DOE) Fernald Environmental Management Project (FEMP) in Fernald Ohio. The manual methods are unacceptable in the eyes of concerned site workers and influential community oversight committees. As an example to respond to the FEMP material handling needs, design efforts have been initiated to provide a remotely operated system to repackage thousands of degradated drums containing radioactive Thorium: Later, the repackaged Thorium will be shipped offsite to a predesignated repository again requiring remote operation.

Jacoboski, D.L.

1992-12-01T23:59:59.000Z

27

A sensor-based automation system for handling nuclear materials  

Science Conference Proceedings (OSTI)

An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool.

Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D. [and others

1997-03-01T23:59:59.000Z

28

Coal- and Ash-Handling Systems Reliability Conference and Workshop Proceedings  

Science Conference Proceedings (OSTI)

This report presents papers, discussion summaries, and conclusions from an EPRI workshop on reliability problems with coal- and ash-handling systems in power plants. Held in October 1980 in St. Louis, the workshop covered yard and in-plant coal handling, frozen coal, fugitive dust, fly ash handling, bottom ash handling, and ash disposal.

1981-08-01T23:59:59.000Z

29

Handling Overload Conditions In High Performance Trustworthy Information Retrieval Systems  

E-Print Network (OSTI)

Web search engines retrieve a vast amount of information for a given search query. But the user needs only trustworthy and high-quality information from this vast retrieved data. The response time of the search engine must be a minimum value in order to satisfy the user. An optimum level of response time should be maintained even when the system is overloaded. This paper proposes an optimal Load Shedding algorithm which is used to handle overload conditions in real-time data stream applications and is adapted to the Information Retrieval System of a web search engine. Experiment results show that the proposed algorithm enables a web search engine to provide trustworthy search results to the user within an optimum response time, even during overload conditions.

Ramachandran, Sumalatha; Paulraj, Sujaya; Ramaraj, Vetriselvi

2010-01-01T23:59:59.000Z

30

Environments for Remote Teaching in Embedded Systems Courses Christian Trodhandl Thomas Handl Markus Proske Bettina Weiss  

E-Print Network (OSTI)

Environments for Remote Teaching in Embedded Systems Courses Christian Tr¨odhandl Thomas Handl points for discussion at the workshop: How to handle remote access? In a distance lab with a limited/2, 1040 Vienna, Austria {troedhandl,handl,proske,bw}@ecs.tuwien.ac.at 1 Introduction Embedded systems lab

31

Modelling and simulation of high capacity waterside container handling systems at deep-sea terminals  

Science Conference Proceedings (OSTI)

Current handling systems at deep-sea container terminals run into their physical limits and new methods of handling containers are needed to deal with the ever-growing container shipping volumes. We present a domain specific simulation model of high ... Keywords: adjustable simulation model, container handling system, container workflow, productivity improvement, quay crane concepts

F. Geldof; B. C. van Haarlem; W. Lock; E. E. Roubtsova

2008-04-01T23:59:59.000Z

32

Octant 1 boom extension The JET remote handling system has been used  

E-Print Network (OSTI)

Octant 1 boom extension Background The JET remote handling system has been used since 1998 to maintain and modify components inside the torus. The efficiency of in-vessel remote handling activities study Remote handling Top: The Octant 1 boom prior to being extended Bottom: The fully assembled

33

Data-driven modeling and simulation framework for material handling systems in coal mines  

Science Conference Proceedings (OSTI)

In coal mining industry, discrete-event simulation has been widely used to support decisions in material handling system (MHS) to achieve premiums on revenues. However, the conventional simulation modeling approach requires extensive expertise of simulation ... Keywords: Coal mining, Data-driven modeling, Decision making, Material handling system

Chao Meng; Sai Srinivas Nageshwaraniyer; Amir Maghsoudi; Young-Jun Son; Sean Dessureault

2013-03-01T23:59:59.000Z

34

Optimization of Trajectories for the Cask and Plug Remote Handling System in Tokamak  

E-Print Network (OSTI)

May 2011 Optimization of Trajectories for the Cask and Plug Remote Handling System in Tokamak Building and Hot Cell Fusion for Energy Grant: F4E-GRT-276-01 (MS-RH) | April.2011-Oct.2011 o Partners| Project IST (F4E ­ ITER) #12;May 2011 Optimization of Trajectories for the Cask and Plug Remote Handling

Ribeiro,Isabel

35

Conceptual study on Flexible Guidance and Docking system for ITER Remote Handling  

E-Print Network (OSTI)

1 Conceptual study on Flexible Guidance and Docking system for ITER Remote Handling Transport Cask divertors and blanket modules from the Tokamak Building to the Hot Cell Building o Addressed topics for ITER Remote Handling Transport Cask o Publications from IST team: · Isabel Ribeiro, Pedro Lima, Pedro

Ribeiro,Isabel

36

High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant  

SciTech Connect

Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)

Bardal, M.A. [PaR Systems, Inc., Shoreview, MN (United States); Darwen, N.J. [Bechtel National, Inc., Richland, WA (United States)

2008-07-01T23:59:59.000Z

37

Welding Robot and Remote Handling System for the Yucca Mountain Waste Package Closure System  

SciTech Connect

In preparation for the license application and construction of a repository for housing the nation's spent nuclear fuel and high-level waste in Yucca Mountain, the Idaho National Laboratory (INL) has been charged with preparing a mock-up of a full-scale prototype system for sealing the waste packages (WP). Three critical pieces of the closure room include two PaR Systems TR4350 Telerobotic Manipulators and a PaR Systems XR100 Remote Handling System (RHS). The TR4350 Manipulators are 6-axis programmable robots that will be used to weld the WP lids and purge port cap as well as conduct nondestructive examinations. The XR100 Remote Handling System is a 4-axis programmable robot that will be used to transport the WP lids and process tools to the WP for operations and remove equipment for maintenance. The welding and RHS robots will be controlled using separate PaR 5/21 CIMROC Controllers capable of complex motion control tasks. A tele-operated PaR 4350 Manipulator will also be provided with the XR100 Remote Handling System. It will be used for maintenance and associated activities within the closure room. (authors)

Barker, M.E.; Holt, T.E.; LaValle, D.R. [PaR Systems, Inc., Shoreview, MN (United States); Pace, D.P.; Croft, K.M.; Shelton-Davis, C.V. [Battelle Energy Alliance, LLC/Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

38

Energy Employees' Occupational Illness Compensation Program Act (EEOICPA)  

NLE Websites -- All DOE Office Websites (Extended Search)

Employees' Occupational Illness Compensation Program Act Employees' Occupational Illness Compensation Program Act (EEOICPA) Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Energy Employees' Occupational Illness Compensation Program Act (EEOICPA) Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Energy Employees' Occupational Illness Compensation Program Act (EEOICPA) Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Energy Employees' Occupational Illness Compensation Program Act (EEOICPA) Tracking Database, INL Energy Employees' Occupational Illness Compensation Program More Documents & Publications LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management

39

Dynamical Control in Large-Scale Material Handling Systems through Agent Technology  

Science Conference Proceedings (OSTI)

Delayed arrivals, missing tag codes, flight changes, break-downs, etc. are some of the factors, which make the environment of airport baggage handling systems (BHS) extremely dynamic. Pre-scheduling and optimization is not an option, as identity, destination, ...

Kasper Hallenborg; Yves Demazeau

2006-12-01T23:59:59.000Z

40

EBR-II argon cooling system restricted fuel handling I and C upgrade  

SciTech Connect

The instrumentation and control of the Argon Cooling System (ACS) restricted fuel handling control system at Experimental Breeder Reactor II (EBR-II) is being upgraded from a system comprised of many discrete components and controllers to a computerized system with a graphical user interface (GUI). This paper describes the aspects of the upgrade including reasons for the upgrade, the old control system, upgrade goals, design decisions, philosophies and rationale, and the new control system hardware and software.

Start, S.E.; Carlson, R.B.; Gehrman, R.L. [Argonne National Lab., Idaho Falls, ID (United States). Engineering Div.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Remote Shopping Robot System for Fresh Foods Method of handling foods  

E-Print Network (OSTI)

Remote Shopping Robot System for Fresh Foods ­ Method of handling foods ­ Tetsuo TOMIZAWA, Akihisa a mobile manipulator as a teleoperated tool for accessing and manipulating remote objects. A human uses the system to select and buy fresh foods of a super market from a remote location via the Internet. We

Ohya, Akihisa

42

Mercury Handling for the Target System for a Muon Collider  

Science Conference Proceedings (OSTI)

The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes and waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.

Graves, Van B [ORNL; Mcdonald, K [Princeton University; Kirk, H. [Brookhaven National Laboratory (BNL); Weggel, Robert [Particle Beam Laser, Inc.; Souchlas, Nicholas [Particle Beam Laser, Inc.; Sayed, H [Brookhaven National Laboratory (BNL); Ding, X [University of California, Los Angeles

2012-01-01T23:59:59.000Z

43

Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford  

SciTech Connect

This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

2012-10-18T23:59:59.000Z

44

Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer  

DOE Patents (OSTI)

This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.

Chastgner, P.

1991-05-08T23:59:59.000Z

45

Remote Handling Equipment for a High-Level Waste Waste Package Closure System  

SciTech Connect

High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL.

Kevin M. Croft; Scott M. Allen; Mark W. Borland

2006-04-01T23:59:59.000Z

46

TITLE III EVALUATION REPORT FOR THE MATERIAL AND PERSONNEL HANDLING SYSTEM  

Science Conference Proceedings (OSTI)

This Title III Evaluation Report (TER) provides the results of an evaluation that was conducted on the Material and Personnel Handling System. This TER has been written in accordance with the ''Technical Document Preparation Plan for the Mined Geologic Disposal System Title III Evaluation Reports'' (BA0000000-01717-4600-00005 REV 03). The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Material and Personnel Handling System. Recommendations for resolving discrepancies between the as-constructed system, the technical baseline requirements, and the baseline design are included in this report. Cost and Schedule estimates are provided for all recommended modifications.

T. A. Misiak

1998-05-21T23:59:59.000Z

47

Interface between the SAM data handling system and CDF experiment V. Bartsch 1 , A. Baranovski 2 , D. Benjamin 3 , K. Genser 2 , S. Hsu 3 ,  

E-Print Network (OSTI)

data handling because files which are already present at remote sites are analysed first. This howeverInterface between the SAM data handling system and CDF experiment software V. Bartsch 1 , A at Fermilab has recently changed its data handling system. The old data handling system called DFC (Data File

48

Robust telerobotics - an integrated system for waste handling, characterization and sorting  

Science Conference Proceedings (OSTI)

The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application of emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.

Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.

1997-01-01T23:59:59.000Z

49

Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.  

Science Conference Proceedings (OSTI)

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage, and cleaning stations-have accumulated satisfactory construction and operation experiences. In addition, two special issues for future development are described in this report: large capacity interim storage and transuranic-bearing fuel handling.

Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

2009-03-01T23:59:59.000Z

50

Estimation of tritium and helium inventory in the tritium handling system in Korea  

Science Conference Proceedings (OSTI)

In Korea, the Wolsong Tritium Removal Facility (WTRF) is under construction to reduce the amount of tritium present in the moderator and coolant of the CANDU type Wolsong nuclear power plants. Recently, a study on the tritium handling system for recovery of the tritium collected from the WTRF was started. Some tritium would enter the steel of the container walls and subsequently decay to helium. This helium can deteriorate the mechanical properties of the material of the tritium handling system. To evaluate the tritium and helium inventory in the stainless steel wall of this system, the time-dependent diffusion equation was developed, solved and the results are presented in this paper. These results were compared to previous work that evaluated the tritium inventory in the stainless steel wall of 50-L tritium containers. Tritium and helium concentration profiles and the corresponding inventories were evaluated with respect to the various parameters such as exposure time, temperature, and partial pressure. After 24 years, the helium inventory in the wall of the tritium handling system exceeds the tritium inventory. (authors)

Yook, D.; Lee, S.; Lee, K. [Dept. of Nuclear Eng., KAIST, 373-1, Kusong-dong, Yusong-gu, Daejon 305-701 (Korea, Republic of); Song, K. M.; Shon, S. H. [KEPRI, 103-16 Munji-Dong, Yuseong-Gu, Daejeon, 305-380 (Korea, Republic of)

2008-07-15T23:59:59.000Z

51

Interim report spent nuclear fuel retrieval system fuel handling development testing  

Science Conference Proceedings (OSTI)

Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

1997-06-01T23:59:59.000Z

52

A Sentinel Approach to Fault Handling in Multi-Agent Systems  

E-Print Network (OSTI)

Fault handling in Multi-Agent Systems (MAS) is not much addressed in current research. Normally, it is considered difficult to address in detail and often well covered by traditional methods, relying on the underlying communication and operating system. In this paper it is shown that this is not necessarily true, at least not with the assumptions on applications we have made. These assumptions are a massive distribution of computing components, a heterogeneous underlying infrastructure (in terms of hardware, software and communication methods), an emerging configuration, possibly different parties in control of sub-systems, and real-time demands in parts of the system. The key problem is that while a MAS is modular and therefore should be a good platform for building fault tolerant systems, it is also non-deterministic, making it difficult to guarantee a specific behaviour, especially in fault situations. Our proposal is to introduce sentinels to guard certain functionality and to pro...

Staffan Hgg Department; Staffan Hgg

1996-01-01T23:59:59.000Z

53

End-To-End Request Handling In Distributed Video-On-Demand Systems  

E-Print Network (OSTI)

In this paper we provide an end-to-end analysis of a distributed Video-on-Demand system consisting of a hierarchy of server clusters and networks. We develop an analytical framework for remote service by combining two critical subsystems, the storage and the network subsystems. We use this framework to analyze different request handling policies that maximize throughput. We show that the results of our end-to-end analysis are scalable and may be used to predict system performance when the demand changes and the system size is scaled up. The relative performance order of different request handling policies remains the same, with the policy that uses retrials at more than one resource exhibiting better performance than other policies. Keywords: Network and Resource Management, Distributed VoD. 1 INTRODUCTION The focus of this paper is to conduct an end-to-end analysis that provides insight into efficient operation of a hierarchical Video-on-Demand (VoD) system. Two issues dealt in this...

Padmavathi Mundur; Robert Simon; Arun Sood

1999-01-01T23:59:59.000Z

54

Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report Site Visit Report Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System INTRODUCTION AND OVERVIEW This report documents the results of the Office of Health, Safety and Security's (HSS) review of a safety system oversight (SSO) assessment of the Los Alamos National Laboratory (LANL) Weapons Engineering Tritium Facility (WETF) tritium gas handling system (TGHS). The assessment evaluated the TGHS's ability to perform as required by safety bases and other applicable requirements. The assessment was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and was conducted October 25 - November 5, 2010. LASO was the overall lead organization for the evaluation, which included independent

55

A Globally Distributed System for Job, Data, and Information Handling for High Energy Physics  

SciTech Connect

The computing infrastructures of the modern high energy physics experiments need to address an unprecedented set of requirements. The collaborations consist of hundreds of members from dozens of institutions around the world and the computing power necessary to analyze the data produced surpasses already the capabilities of any single computing center. A software infrastructure capable of seamlessly integrating dozens of computing centers around the world, enabling computing for a large and dynamical group of users, is of fundamental importance for the production of scientific results. Such a computing infrastructure is called a computational grid. The SAM-Grid offers a solution to these problems for CDF and DZero, two of the largest high energy physics experiments in the world, running at Fermilab. The SAM-Grid integrates standard grid middleware, such as Condor-G and the Globus Toolkit, with software developed at Fermilab, organizing the system in three major components: data handling, job handling, and information management. This dissertation presents the challenges and the solutions provided in such a computing infrastructure.

Garzoglio, Gabriele; /DePaul U.

2005-12-01T23:59:59.000Z

56

PRIVACY IMPACT ASSESSMENT: OFFICE OF LEGACY MANAGEMENT: RECORDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

,. - -i * PRIVACY IMPACT ASSESSMENT: OFFICE OF LEGACY MANAGEMENT: RECORDS HANDLING SYSTEM: FERNALD HISTORICAL RECORDS SYSTEM PIA Template Version - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/02061.pdf Please complete electronically: no hand-written slibmisslons will be accepted. This template may not be modified. MODULE 1- PRIVACY NEEDS ASSESSMENT Date Departmental Element & SIte· June 4, 2009 Office of Legacy Management, Morgantown, WV Name of Information System or IT Project LM Records Handling System (LMRHS01) - Fernald Historical Records System exhIbit Project UIO 019-10-01-31-02-1014-00

57

PRIVACY IMPACT ASSESSMENT: OFFICE OF LEGACY MANAGEMENT: RECORDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-. -. ., ,-- -.' * PRIVACY IMPACT ASSESSMENT: OFFICE OF LEGACY MANAGEMENT: RECORDS HANDLING SYSTEM: ELECTRONIC RECORDS KEEPING SYSTEM PIA Template Version - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1. Department of Energy Privacy Program, Appendix A. Privacy Impact Assessments. for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetext/neword/206/02061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be modified. MODULE 1- PRIVACY NEEDS ASSESSMENT Date Deparbnental Element & Site . June 4, 2009 Office of Legacy Management, Morgantown, WV :;:~:f~~r~;;:reC: LM Records Handling System (LMRHS01) - Electronic Records Keeping System exhibit Project UID 019-10-01-31-02-1014-00

58

PRIVACY IMPACT ASSESSMENT: OFFICE OF LEGACY MANAGEMENT: RECORDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OFFICE OF LEGACY MANAGEMENT: RECORDS HANDLING SYSTEM: ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT PIA Template Version - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance Is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/02061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be modified. MODULE I - PRIVACY NEEDS ASSESSMENT Date Departmental Element &Site June 4, 2009 Office of Legacy Management, Morgantown, WV Name of Information LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness System or IT Project Compensation Program Act exhibit

59

Oak Rigde Associated Universities (ORAU) Radiation Emergency Assistance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rigde Associated Universities (ORAU) Radiation Emergency Rigde Associated Universities (ORAU) Radiation Emergency Assistance Center/Training Site (REAC/TS), ORAU Director Oak Rigde Associated Universities (ORAU) Radiation Emergency Assistance Center/Training Site (REAC/TS), ORAU Director Oak Rigde Associated Universities (ORAU) Radiation Emergency Assistance Center/Training Site (REAC/TS), ORAU Director Oak Rigde Associated Universities (ORAU) Radiation Emergency Assistance Center/Training Site (REAC/TS), ORAU Director More Documents & Publications iManage Strategic Integrated Procurement Enterprise System (STRIPES) PIA, Office of Procurement and Assistance Management LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System-Freedom of Information/Privacy Act, Office of

60

PRIVACY IMPACT ASSESSMENT: OFFICE OF LEGACY MANAGEMENT: RECORDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* PRIVACY IMPACT ASSESSMENT: OFFICE OF LEGACY MANAGEMENT: RECORDS HANDLING SYSTEM ROCKY FLATS ENVIRONMENTAL RECORDS DATABASE PIA Template Version - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/o2061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be modified. MODULE 1- PRIVACY NEEDS ASSESSMENT Date Departmental Element & Site June 4,2009 Office of Legacy Management, Morgantown, WV Name of Information LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records System or IT Project Database exhibit Project UID 019-10-01-31-02-1014-00

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PRIVACY IMPACT ASSESSMENT: OFFICE OF LEGACY MANAGEMENT: RECORDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'" '" " * .1 * PRIVACY IMPACT ASSESSMENT: OFFICE OF LEGACY MANAGEMENT: RECORDS HANDLING SYSTEM: FREEDOM OF INFORMAnON ACT/ PRIVACY ACT PIA Template Version - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/02061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be modified. MODULE 1- PRIVACY NEEDS ASSESSMENT Date Oeparbn~ntal Element" Site June 4, 2009 Office of Legacy Management, Morgantown, WV Name of Information System or IT Project LM Records Handling System (LMRHS01) - Freedom of Information Act/Privacy

62

Design and realization of a microfluidic system for dielectrophoretic colloidal handling  

Science Conference Proceedings (OSTI)

Precise spatial localization of colloids is required to fully exploit the potential of colloidal handling in a microfluidic channel. In this work, we present the fabrication and integration of a new type of microfluidic chip that can provide such tools. ... Keywords: Colloidal handling, Dielectrophoresis, Microfluidics, Photopatternable silicones

T. Honegger; K. Berton; T. Pinedo-Rivera; D. Peyrade

2009-04-01T23:59:59.000Z

63

Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System  

SciTech Connect

This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

KESSLER, S.F.

2000-08-10T23:59:59.000Z

64

Proposal for Construction/Demonstration/Implementation of A Material Handling System  

SciTech Connect

Vortec Corporation, the United States Enrichment Corporation (USEC) and DOE/Paducah propose to complete the technology demonstration and the implementation of the Material Handling System developed under Contract Number DE-AC21-92MC29120. The demonstration testing and operational implementation will be done at the Paducah Gaseous Diffusion Plant. The scope of work, schedule and cost for the activities are included in this proposal. A description of the facility to be constructed and tested is provided in Exhibit 1, attached. The USEC proposal for implementation at Paducah is presented in Exhibit 2, and the commitment letters from the site are included in Exhibit 3. Under our agreements with USEC, Bechtel Jacobs Corporation and DOE/Paducah, Vortec will be responsible for the construction of the demonstration facility as documented in the engineering design package submitted under Phase 4 of this contract on August 9, 2001. USEC will have responsibility for the demonstration testing and commercial implementation of the plant. The demonstration testing and initial commercial implementation of the technology will be achieved by means of a USEC work authorization task with the Bechtel Jacobs Corporation. The initial processing activities will include the processing of approximately 4,250 drums of LLW. Subsequent processing of LLW and TSCA/LLW will be done under a separate contract or work authorization task. To meet the schedule for commercial implementation, it is important that the execution of the Phase 4 project option for construction of the demonstration system be executed as soon as possible. The schedule we have presented herein assumes initiation of the construction phase by the end of September 2001. Vortec proposes to complete construction of the demonstration test system for an estimated cost of $3,254,422. This price is based on the design submitted to DOE/NETL under the Phase 4 engineering design deliverable (9 august 2001). The cost is subject to the assumptions and conditions identified in Section 6 of this proposal.

Jim Jnatt

2001-08-24T23:59:59.000Z

65

Project Plan 7930 Cell G PaR Remote Handling System Replacement  

Science Conference Proceedings (OSTI)

For over 40 years the US Department of Energy (DOE) and its predecessors have made Californium-252 ({sup 252}Cf) available for a wide range of industries including medical, nuclear fuels, mining, military and national security. The Radiochemical Engineering Development Center (REDC) located within the Oak Ridge National Laboratory (ORNL) processes irradiated production targets from the High Flux Isotope Reactor (HFIR). Operations in Building 7930, Cell G provide over 70% of the world's demand for {sup 252}Cf. Building 7930 was constructed and equipped in the mid-1960s. Current operations for {sup 252}Cf processing in Building 7930, Cell G require use of through-the-wall manipulators and the PaR Remote Handling System. Maintenance and repairs for the manipulators is readily accomplished by removal of the manipulator and relocation to a repair shop where hands-on work can be performed in glove boxes. Contamination inside cell G does not currently allow manned entry and no provisions were created for a maintenance area inside the cell. There has been no maintenance of the PaR system or upgrades, leaving operations vulnerable should the system have a catastrophic failure. The Cell G PaR system is currently being operated in a run to failure mode. As the manipulator is now 40+ years old there is significant risk in this method of operation. In 2006 an assessment was completed that resulted in recommendations for replacing the manipulator operator control and power centers which are used to control and power the PaR manipulator in Cell G. In mid-2008 the chain for the bridge drive failed and subsequent examinations indicated several damaged links (see Figure 1). To continue operations the PaR manipulator arm is being used to push and pull the bridge as a workaround. A retrieval tool was fabricated, tested and staged inside Cell G that will allow positioning of the bridge and manipulator arm for removal from the cell should the PaR system completely fail. A fully functioning and reliable Par manipulator arm is necessary for uninterrupted {sup 252}Cf operations; a fully-functioning bridge is needed for the system to function as intended.

Kinney, Kathryn A [ORNL

2009-10-01T23:59:59.000Z

66

DOE-HDBK-1209-2012 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-2012 9-2012 DOE-HDBK-1209-2012 September 27, 2012 Access Handbook - Conducting Health Studies at Department of Energy The purpose of this handbook is to outline procedures that facilitate access to information needed for outside researchers conducting public health activities at Department of Energy (DOE) sites. The handbook is intended for use by these researchers conducting studies. DOE-HDBK-1209-2012, Access Handbook - Conducting Health Studies at Department of Energy Sites More Documents & Publications PIA - Form EIA-475 A/G Residential Energy Consumption Survey LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management MOX Services Unclassified Information System PIA, National Nuclear Services

67

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network (OSTI)

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

68

December 2005 PREVENTING AND HANDLING  

E-Print Network (OSTI)

, and remote access servers. NIST SP 800-61, Computer Security Incident Handling Guide, describes the fourDecember 2005 PREVENTING AND HANDLING MALWARE INCIDENTS: HOW TO PROTECT INFORMATION TECHNOLOGY SYSTEMS FROM MALICIOUS CODE AND SOFTWARE PREVENTING AND HANDLING MALWARE INCIDENTS: HOW TO PROTECT

69

DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES  

SciTech Connect

Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA).

Sexton, L.

2012-06-06T23:59:59.000Z

70

Using Single-Camera 3-D Imaging to Guide Material Handling Robots in a Nuclear Waste Package Closure System  

SciTech Connect

Nuclear reactors for generating energy and conducting research have been in operation for more than 50 years, and spent nuclear fuel and associated high-level waste have accumulated in temporary storage. Preparing this spent fuel and nuclear waste for safe and permanent storage in a geological repository involves developing a robotic packaging systema system that can accommodate waste packages of various sizes and high levels of nuclear radiation. During repository operation, commercial and government-owned spent nuclear fuel and high-level waste will be loaded into casks and shipped to the repository, where these materials will be transferred from the casks into a waste package, sealed, and placed into an underground facility. The waste packages range from 12 to 20 feet in height and four and a half to seven feet in diameter. Closure operations include sealing the waste package and all its associated functions, such as welding lids onto the container, filling the inner container with an inert gas, performing nondestructive examinations on welds, and conducting stress mitigation. The Idaho National Laboratory is designing and constructing a prototype Waste Package Closure System (WPCS). Control of the automated material handling is an important part of the overall design. Waste package lids, welding equipment, and other tools must be moved in and around the closure cell during the closure process. These objects are typically moved from tool racks to a specific position on the waste package to perform a specific function. Periodically, these objects are moved from a tool rack or the waste package to the adjacent glovebox for repair or maintenance. Locating and attaching to these objects with the remote handling system, a gantry robot, in a loosely fixtured environment is necessary for the operation of the closure cell. Reliably directing the remote handling system to pick and place the closure cell equipment within the cell is the major challenge.

Rodney M. Shurtliff

2005-09-01T23:59:59.000Z

71

Bulk materials storage handling and transportation  

Science Conference Proceedings (OSTI)

This book contains papers on bulk materials storage, handling, and transportation. Topic areas covered include: mechanical handling; pneumatic conveying; transportation; freight pipeliners; storage and discharge systems; integrated handling systems; automation; environment and sampling; feeders and flow control; structural design; large mobile machines; and grain handling.

Not Available

1983-01-01T23:59:59.000Z

72

Monsanto/Mound Laboratory Engineering Development of Tritium-Handling Systems  

SciTech Connect

Mound Laboratory (Mound) has, during the past four years, been actively involved in the development of methods to contain and control tritium during its processing and to recover it from waste streams. Initial bench-scale research was directed mainly toward removal of tritium from gaseous effluent streams and from laboratory liquid wastes. The gaseous effluent investigation has progressed through the developmental stage and has been implemented in routine operations. A test laboratory embodying many of the results of the research phase has been designed and construction has been completed. As the program at Mound has progressed, the scope of the effort has been expanded to include research concerned with handling not only gaseous tritium but also tritiated liquids. A program is presently under way to investigate the detritiation of aqueous wastes encountered in the fuel cycle of the commercial power reactor industry.

Bixel, J. C.; Lamberger, P. H.

1976-07-01T23:59:59.000Z

73

FMAC: Coal-Handling Maintenance Guide  

Science Conference Proceedings (OSTI)

The Coal Handling System Maintenance Guide provides fossil plant maintenance personnel with current maintenance information on this system. This report will assist plant maintenance personnel in improving the reliability of and reducing the maintenance costs for the coal handling system.

2006-12-22T23:59:59.000Z

74

Remote Handling of Cryogenic Targets for the Omega Laser System (A23039)  

E-Print Network (OSTI)

Proc. Of The 8th Int. Top. Mtg On Robotics And Remote Systems, Pittsburgh, Pennsylvania, April 1999, To Be PublishedInternational Topical Meeting on Robotics and Remote Systems Pittsburgh Pennsylvania, US, 1999932764927

Silke, G.W.

1999-04-25T23:59:59.000Z

75

Proposal for the award of a contract for the supply, installation and modification of air-handling systems for the LHC  

E-Print Network (OSTI)

This document concerns the award of a contract for the supply, installation and modification of air-handling systems for the LHC. The Finance Committee is invited to agree to the negotiation of a contract with AMEC SPIE (DE), the lowest bidder after realignment, for the supply, installation and modification of air-handling systems for the LHC for a total amount of 8 222 490 euros (12 511 396 Swiss francs), not subject to revision. The rate of exchange used is that stipulated in the tender.

2004-01-01T23:59:59.000Z

76

Criticality safety evaluation report for the cold vacuum drying facility's process water handling system  

SciTech Connect

This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

NELSON, J.V.

1999-05-12T23:59:59.000Z

77

Uranium hexafluoride handling. Proceedings  

SciTech Connect

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

78

Incident Handling Activities  

Science Conference Proceedings (OSTI)

[an error occurred while processing this directive] Incident Handling Activities. Since 1989 the National Institute of Standards ...

79

Vacuum Vessel Remote Handling  

E-Print Network (OSTI)

FIRE Vacuum Vessel and Remote Handling Overview B. Nelson, T. Burgess, T. Brown, H-M Fan, G. Jones #12;13 July 2002 Snowmass Review: FIRE Vacuum Vessel and Remote Handling 2 Presentation Outline · Remote Handling - Maintenance Approach & Component Classification - In-Vessel Transporter - Component

80

Handling historical information on protected-area systems and coverage. An information system for the Natura 2000 European context  

Science Conference Proceedings (OSTI)

Protected-area coverage is an internationally-recognized surrogate indicator for measuring biodiversity conservation. To measure trends in biodiversity conservation over time, historical records on protected-area boundaries are needed. Protected-area ... Keywords: Biodiversity indicators, Conservation databases, Historical trends, Information systems (IS), Natura 2000, Protected areas, Protected-area boundaries, Protected-area coverage

Arnald Marcer; Vctor Garcia; Agust Escobar; Xavier Pons

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN  

SciTech Connect

In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

RAYMOND RE

2011-12-27T23:59:59.000Z

82

Nuclear Maintenance Applications Center: Nuclear Fuel Handling Equipment Application and Maintenance Guide: Fuel Handling Equipment Guide  

Science Conference Proceedings (OSTI)

Fuel handling is a critical task during a nuclear power plant refueling outage. The proper operation of fuel handling equipment (such as fuel handling machines, fuel upending machines, fuel transfer carriages, and fuel elevators) is important to a successful refueling outage and to preparing fuel for eventual disposal.BackgroundThe fuel handling system contains the components used to move fuel from the time that the new fuel is received until the spent fuel ...

2013-12-13T23:59:59.000Z

83

Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report  

Science Conference Proceedings (OSTI)

Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

Hancock, David, W.

2012-02-14T23:59:59.000Z

84

Enhancing CIMOSA with Exception Handling  

E-Print Network (OSTI)

CIMOSA (Open System Architecture for CIM) [2], an architecture for the modelling of manufacturing applications, does not provide a facility for exception definition and handling. Exceptions, traditionally associated to programming language and operating systems, are necessary in all types of languages, including specification languages. Our contribution consists of the enhancement of the CIMOSA model with a complete facility and methodology for the specification of the system behaviour in case of exception.

Messina Pleinevaux Swiss; S. Messina; P. Pleinevaux

1996-01-01T23:59:59.000Z

85

Handling Pyrophoric Reagents  

SciTech Connect

Pyrophoric reagents are extremely hazardous. Special handling techniques are required to prevent contact with air and the resulting fire. This document provides several methods for working with pyrophoric reagents outside of an inert atmosphere.

Alnajjar, Mikhail S.; Haynie, Todd O.

2009-08-14T23:59:59.000Z

86

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Readiness Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets Doug Wheeler DJW Technology Michael Ulsh National Renewable Energy Laboratory Technical Report NREL/TP-5600-53046 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power

87

Transportation and handling environment  

SciTech Connect

The elements of the environment relating to transportation and handling include temperature, solar radiation, precipitation, humidity, pressure, shock, and vibration. While each of these deserves consideration, the latter two, shock and vibration, are perhaps the least understood. The report discusses all of these elements, but concentrates largely on shock and vibration. Emphasis is upon the necessity of understanding both the product and the environment. To that end, descriptions of the environment which have been derived statistically are discussed. Land, sea, and air transport are considered. Current knowledge of the handling environment is indicated.

Gens, M.B.

1972-09-01T23:59:59.000Z

88

FUEL HANDLING MECHANISM  

DOE Patents (OSTI)

A remotely operable handling device specifically adapted for the handling of vertically disposed fuel rods in a nuclear reactor was developed. The device consists essentially of an elongated tubular member having a gripping device at the lower end of the pivoted jaw type adapted to grip an enlarged head on the upper end of the workpiece. The device includes a sensing element which engages the enlarged head and is displaced to remotely indicate when the workpiece is in the proper position to be engaged by the jaws.

Koch, L.J.; Hutter, E.

1960-02-01T23:59:59.000Z

89

SLUG HANDLING DEVICES  

DOE Patents (OSTI)

A device is described for handling fuel elements of a neutronic reactor. The device consists of two concentric telescoped contalners that may fit about the fuel element. A number of ratchet members, equally spaced about the entrance to the containers, are pivoted on the inner container and spring biased to the outer container so thnt they are forced to hear against and hold the fuel element, the weight of which tends to force the ratchets tighter against the fuel element. The ratchets are released from their hold by raising the inner container relative to the outer memeber. This device reduces the radiation hazard to the personnel handling the fuel elements.

Gentry, J.R.

1958-09-16T23:59:59.000Z

90

Recommendations for cask features for robotic handling from the Advanced Handling Technology Project  

SciTech Connect

This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs.

Drotning, W.

1991-02-01T23:59:59.000Z

91

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets  

DOE Green Energy (OSTI)

In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

Wheeler, D.; Ulsh, M.

2012-08-01T23:59:59.000Z

92

Solid handling valve  

DOE Patents (OSTI)

The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

Williams, William R. (Morgantown, WV)

1979-01-01T23:59:59.000Z

93

Sectional device handling tool  

DOE Patents (OSTI)

Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

Candee, Clark B. (Monroeville, PA)

1988-07-12T23:59:59.000Z

94

REMOTE HANDLING ARRANGEMENTS  

DOE Patents (OSTI)

A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

Ginns, D.W.

1958-04-01T23:59:59.000Z

95

History of remote handling at LAMPF  

SciTech Connect

A portable remote-handling system (Monitor) has been developed for performing remote maintenance on radioactive experimental facilities at the Clinton P. Anderson Meson Physics Facility (LAMPF). This system has been continually improved since its implementation in 1976. The present system has performed highly sophisticated tasks in improving and maintaining the LAMPF experimental facility. Unlike conventional hot-cell remote-handling technology, the Monitor system is portable and highly flexible, thereby allowing quick response to unforeseen tasks with minimal planning and/or special tooling. In addition to performing routine maintenance and repairs, the Monitor system is capable of performing major revisions and improvements to current facilities, keeping pace with new experimental requirements.

Grisham, D.L.; Lambert, J.E.

1982-01-01T23:59:59.000Z

96

Integrative path planning and motion control for handling large components  

Science Conference Proceedings (OSTI)

For handling large components a large workspace and high precision are required. In order to simplify the path planning for automated handling systems, this task can be divided into global, regional and local motions. Accordingly, different types of ... Keywords: integrative production, motion control, path planning, robotic assembly application

Rainer Mller; Martin Esser; Markus Janssen

2011-12-01T23:59:59.000Z

97

In-Plant Ash-Handling Reference Manual  

Science Conference Proceedings (OSTI)

Despite problems with ash-handling systems that have led to failures in electrostatic precipitators, there has been no extensive reference manual for specifying, operating, and maintaining such systems. The comprehensive manual compiled in this study serves as a reference for every phase of boiler bottom ash- and fly ash-handling systems design and operation as well as a primer for those unfamiliar with these systems.

1986-12-01T23:59:59.000Z

98

Biodiesel Handling and Use Guidelines  

DOE Green Energy (OSTI)

This document is a field guide for end-users, distributors, and those involved in related activities. These guidelines cover fuel use and handling issues that could be anticipated or encountered in the field.

Tyson, S.

2001-09-05T23:59:59.000Z

99

Storage/Handling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

100

Propane gas: Handle with care  

SciTech Connect

Because of its chemical composition and combustion properties, this liquefied petroleum (LP) gas can be mixed with air and used as a direct replacement for natural gas with no burner or process equipment modifications. One major and growing use of propane is as a vehicle fuel. Growing industrial use of propane also has prompted the National Fire Protection Association (NFPA) to issue new codes. NFPA standard 58-95, Storing and Handling of Liquefied Petroleum Gases, stresses the need to adhere to safe work and handling practices whenever propane is involved. All employees directly handling the gas should be formally trained and certified, and recertified annually. Although the code applies only to those directly handling propane or operating propane equipment such as portable cylinder filling stations, all employees working around or with propane or other LP gases should understand the characteristics of LP gas and be aware of basic safe handling practices. The paper discusses what LP gas is, special safety concerns, the care required in refilling cylinders, and cylinder inspection.

Fernald, D. [Plant Systems, Inc., Berea, OH (United States)

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

T-625: Opera Frameset Handling Memory Corruption Vulnerability | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Opera Frameset Handling Memory Corruption Vulnerability 5: Opera Frameset Handling Memory Corruption Vulnerability T-625: Opera Frameset Handling Memory Corruption Vulnerability May 18, 2011 - 3:05pm Addthis PROBLEM: A vulnerability has been reported in Opera, which can be exploited by malicious people to compromise a user's system. PLATFORM: Opera versions prior to 11.11 ABSTRACT: The vulnerability is caused due to an error when handling certain frameset constructs during page unloading and can be exploited to corrupt memory via a specially crafted web page. reference LINKS: Secunia Advisory: SA44611 Opera Knowledge Base Opera 11.11 for Windows Opera Download Opera Mobile IMPACT ASSESSMENT: High Discussion: Framesets allow web pages to hold other pages inside them. Certain frameset constructs are not handled correctly when the page is unloaded, causing a

102

V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCUSSION: The vulnerability is caused due to an error within the Windows NAT Driver when handling ICMP packets and can be exploited to cause the system to stop responding IMPACT:...

103

Tritium Handling and Safe Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE DOE-HDBK-1129-2007 March 2007 ____________________ DOE HANDBOOK TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1129-2007

104

Photon Sciences Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Y Y Rhein Craig 20622 PSBC Active Y Y Page 3 of 80 List of Photon Sciences Mat'l Handling Equip 5242013 4:09:58 PM 725 UV East GE-56 PS-C01 Yale A-422-3749 2 ton...

105

Portable vacuum object handling device  

DOE Patents (OSTI)

The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuable to apply the vacuum to lift the object.

Anderson, G.H.

1981-07-30T23:59:59.000Z

106

Portable vacuum object handling device  

SciTech Connect

The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

Anderson, Gordon H. (Los Alamos, NM)

1983-08-09T23:59:59.000Z

107

Economizer Applications in Dual-Duct Air-Handling Units  

E-Print Network (OSTI)

This paper provides analytical tools and engineering methods to evaluate the feasibility of the economizer for dual-duct air-handling units. The results show that the economizer decreases cooling energy consumption without heating energy penalties for dual-fan, dual-duct air-handling units. The economizer has significant heating energy penalties for single-fan, dual-duct air-handling units. The penalties are higher than the cooling energy savings when the cold airflow is less than the hot airflow. Detailed engineering analyses are required to evaluate the feasibility of the economizer for single-fan, dual-duct systems.

Joo, I.; Liu, M.

2002-01-01T23:59:59.000Z

108

Appendix A: Handling of Federal  

Gasoline and Diesel Fuel Update (EIA)

and selected State legislation and regulation in the AEO This page inTenTionally lefT blank 177 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Appendix A: Handling of Federal and selected State legislation and regulation in the AEO Legislation Brief description AEO handling Basis Residential sector A. National Appliance Energy Conservation Act of 1987 Requires Secretary of Energy to set minimum efficiency standards for 10 appliance categories with periodic updates Included for categories represented in the AEO residential sector forecast. Public Law 100-12. a. Room air conditioners Sets standards for room air conditioners in 2014. Require new purchases of room air conditioners to meet the standard. Federal Register Notice

109

Tritium Handling and Safe Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-HDBK-1129-2008 December 2008 DOE HANDBOOK TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS DOE-HDBK-1129-2008 ii This page is intentionally blank. DOE-HDBK-1129-2008 iii TABLE OF CONTENTS SECTION PAGE FOREWORD................................................................................................................................ ix ACRONYMS ................................................................................................................................ xi 1.0 INTRODUCTION ....................................................................................................................

110

Portable vacuum object handling device  

DOE Patents (OSTI)

The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

Anderson, G.H.

1983-08-09T23:59:59.000Z

111

DOE N 435.1, Contact-Handled and Remote-Handled Transuranic Waste Packaging  

Directives, Delegations, and Requirements

Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner ...

2011-08-15T23:59:59.000Z

112

The Remote-Handled TRU Waste Program  

SciTech Connect

RH TRU Waste is radioactive waste that requires shielding in addition to that provided by the container to protect people nearby from radiation exposure. By definition, the radiation dose rate at the outer surface of the container is greater than 200 millirem per hour and less than 1,000 rem per hour. The DOE is proposing a process for the characterization of RH TRU waste planned for disposal in the WIPP. This characterization process represents a performance-driven approach that satisfies the requirements of the New Mexico Hazardous Waste Act, the Environmental Protection Agency (EPA) regulations for WIPP long-term performance, the transportation requirements of the Nuclear Regulatory Commission (NRC) and the Department of Transportation, as well as the technical safety requirements of RH TRU waste handling. The transportation, management and disposal of RH TRU waste is regulated by external government agencies as well as by the DOE itself. Externally, the characterization of RH-TRU waste for disposal at the WIPP is regulated by 20.4.1.500 New Mexico Administrative Code (incorporating 40 CFR 261.13) for the hazardous constituents and 40 CFR 194.24 for the radioactive constituents. The Nuclear Regulatory Commission certifies the shipping casks and the transportation system must meet DOT regulations. Internally, the DOE evaluates the environmental impacts of RH TRU waste transportation, handling and disposal through its National Environmental Policy Act program. The operational safety is assessed in the RH TRU Waste Safety Analysis Report, to be approved by the DOE. The WIPP has prepared a modification request to the Hazardous Waste Facility Permit that includes modifications to the WIPP facility for the safe receipt and handling of RH TRU waste and the addition of an RH TRU waste analysis plan. Modifications to the facility include systems and equipment for safe handling of RHTRU containers. Two shipping casks are to be used to optimize RH TRU was te throughput: the RH-72B and the CNS 10-160B transportation casks. Additionally, a draft Notification of Proposed Change to the EPA 40 CFR 194 Certification of the WIPP has been prepared, which contains a proposal for the RH TRU characterization program for compliance with the EPA requirements.

Gist, C. S.; Plum, H. L.; Wu, C. F.; Most, W. A.; Burrington, T. P.; Spangler, L. R.

2002-02-26T23:59:59.000Z

113

WIPP Remote Handled Waste Facility: Performance Dry Run Operations  

SciTech Connect

The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

2003-02-24T23:59:59.000Z

114

Uranium hexafluoride: A manual of good handling practices. Revision 7  

SciTech Connect

The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

NONE

1995-01-01T23:59:59.000Z

115

Depleted UF6 Production and Handling Slide Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Production and Handling Depleted UF6 Production and Handling Slide Presentation An online slide presentation about production and handling of depleted UF6, from mining of uranium...

116

CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

J.F. Beesley

2005-04-21T23:59:59.000Z

117

METHOD AND APPARATUS FOR HANDLING RADIOACTIVE PRODUCTS  

DOE Patents (OSTI)

A device is described for handling fuel elements being discharged from a nuclear reactor. The device is adapted to be disposed beneath a reactor within the storage canal for spent fuel elements. The device is comprised essentially of a cylinder pivotally mounted to a base for rotational motion between a vertical position. where the mouth of the cylinder is in the top portion of the container for receiving a fuel element discharged from a reactor into the cylinder, and a horizontal position where the mouth of the cylinder is remote from the top portion of the container and the fuel element is discharged from the cylinder into the storage canal. The device is operated by hydraulic pressure means and is provided with a means to prevent contaminated primary liquid coolant in the reactor system from entering the storage canal with the spent fuel element.

Nicoll, D.

1959-02-24T23:59:59.000Z

118

Scheduling coal handling processes using metaheuristics.  

E-Print Network (OSTI)

??The operational scheduling at coal handling facilities is of the utmost importance to ensure that the coal consuming processes are supplied with a constant feed (more)

Conradie, David Gideon

2008-01-01T23:59:59.000Z

119

Waste management handling in Benin City.  

E-Print Network (OSTI)

??The researcher was inspired by the topic Waste management handling due to the ugly situa-tion of waste being littered all over the city, which have (more)

Oseghale, Peter

2011-01-01T23:59:59.000Z

120

Some thoughts on using argumentation to handle trust  

Science Conference Proceedings (OSTI)

This paper describes some of our recent work on using argumentation to handle information about trust. We first discuss the importance of trust in computer science in general and in multi-agent systems in particular.We then describe the setting of our ...

Simon Parsons; Yuqing Tang; Kai Cai; Elizabeth Sklar; Peter McBurney

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Assessment of Coal Handling for Fuel Flexibility  

Science Conference Proceedings (OSTI)

To reduce total generating costs, power generators may use multiple solid fuels. This study is a preliminary investigation of the methods and costs of handling multiple solid fuels. An important byproduct of the study was some of the first-ever systematic comparisons of coal handling costs at a sample of plants.

1998-09-03T23:59:59.000Z

122

Constraint Handling in Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

In this article, the authors propose a particle swarm optimization PSO for constrained optimization. The proposed PSO adopts a multiobjective approach to constraint handling. Procedures to update the feasible and infeasible personal best are designed ... Keywords: Constrained Optimization, Constraint Handling, Feasible Personal Best, Infeasible Personal Best, Multiobjective Optimization, Particle Swarm Optimization

Wen Fung Leong; Gary G. Yen

2010-01-01T23:59:59.000Z

123

INTERNATIONAL SYMPOSIUM ON PROCESSING AND HANDLING ...  

Science Conference Proceedings (OSTI)

... Battle, DuPont White Pigments and Mineral Products, Edge Moor Plant, Edge Moor, ... PHYSICAL EXAMINATION AND HANDLING OF WET AND DRY C60: K. ... part of a modern ironmaking blast furnace with high pulverised coal injection,...

124

Thermal decomposition study of hydroxylamine nitrate during storage and handling  

E-Print Network (OSTI)

Hydroxylamine nitrate (HAN), an important agent for the nuclear industry and the U.S. Army, has been involved in several costly incidents. To prevent similar incidents, the study of HAN safe storage and handling boundary has become extremely important for industries. However, HAN decomposition involves complicated reaction pathways due to its autocatalytic behavior and therefore presents a challenge for definition of safe boundaries of HAN storage and handling. This research focused on HAN decomposition behavior under various conditions and proposed isothermal aging testing and kinetic-based simulation to determine safety boundaries for HAN storage and handling. Specifically, HAN decomposition in the presence of glass, titanium, stainless steel with titanium, or stainless steel was examined in an Automatic Pressure Tracking Adiabatic Calorimeter (APTAC). n-th order kinetics was used for initial reaction rate estimation. Because stainless steel is a commonly used material for HAN containers, isothermal aging tests were conducted in a stainless steel cell to determine the maximum safe storage time of HAN. Moreover, by changing thermal inertia, data for HAN decomposition in the stainless steel cell were examined and the experimental results were simulated by the Thermal Safety Software package. This work offers useful guidance for industries that manufacture, handle, and store HAN. The experimental data acquired not only can help with aspects of process safety design, including emergency relief systems, process control, and process equipment selection, but also is a useful reference for the associated theoretical study of autocatalytic decomposition behavior.

Zhang, Chuanji

2003-05-01T23:59:59.000Z

125

A plug and play framework for an HVAC air handling unit and temperature sensor auto recognition technique.  

E-Print Network (OSTI)

??A plug and play framework for an HVAC air handling unit control system is proposed in this study. This is the foundation and the first (more)

Zhou, Xiaohui

2010-01-01T23:59:59.000Z

126

T-656: Microsoft Office Visio DXF File Handling Arbitrary Code...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Microsoft Office Visio DXF File Handling Arbitrary Code Execution Vulnerability T-656: Microsoft Office Visio DXF File Handling Arbitrary Code Execution Vulnerability June 28,...

127

Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants  

DOE Green Energy (OSTI)

Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

Manohar S. Sohal; J. Stephen Herring

2008-07-01T23:59:59.000Z

128

A Novel Dynamic Voltage Restorer with Outage Handling Capability Using Fuzzy Logic Controler  

Science Conference Proceedings (OSTI)

This paper presents a novel dynamic voltage restorer (DVR) capable of handling deep sags including outage on a low voltage distribution system. The DVR recovers sags up to 10% of nominal voltage; otherwise, it will operate as an uninterruptible power ...

M. Ashari; T. Hiyama; M. Pujiantara; H. Suryoatmojo; M. Hery Purnomo

2007-09-01T23:59:59.000Z

129

Focus on O & M: safeguarding coal-handling assets  

Science Conference Proceedings (OSTI)

Coal fired power plants have millions of dollars invested in conveyor systems and train-unloading equipment. The article gives advice on routine maintenance of coal handling equipment and of the use of monitoring and control systems to prevent fire. It sites an incidence of a fire being triggered by the automated fire protection systems having failed to deliver sufficient water to the upper levels of the conveyor, whilst unloading a coal train at a plant which had switched to Powder River Basin coal which is more prone to spontaneous combustion. 3 photos.

Earney, T.C. [Air Control Science Inc. (United States)

2006-11-15T23:59:59.000Z

130

Supply Fan Control for Constant Air Volume Air Handling Units  

E-Print Network (OSTI)

Since terminal boxes do not have a modulation damper in constant volume (CV) air handling unit (AHU) systems, zone reheat coils have to be modulated to maintain the space temperature with constant supply airflow. This conventional control sequence causes a significant amount of reheat and constant fan power under partial load conditions. Variable Frequency Drives (VFDs) can be installed on these constant air volume systems. The fan speed can be modulated based on the maximum zone load. This paper present the procedure to control the supply fan speed and analyzes the thermal performance and major fan energy and thermal energy savings without expensive VAV retrofit through the actual system operation.

Cho, Y.; Wang, G.; Liu, M.

2007-01-01T23:59:59.000Z

131

Storage and Handling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage and Handling Storage and Handling Storage and Handling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management Business Center RETIREMENT OF RECORDS: 1. The Program Office is responsible for originating the Records Transmittal and Receipt Form SF-135 (PDF, 107KB), and sending it to IM-23 at doerha@hq.doe.gov for approval. 2. IM-23 reviews the SF-135 for completeness/correctness (Coordinates with the originating office by email if more information is required.). 3. IM-23 sends the SF-135 for approval to WNRC. PREPARING RECORDS FOR THE TRANSFER TO THE WNRC: 1. Use your organization's Records Information Disposition Schedule (RIDS) as a guide toward assessing records for storage. Refer to DOE O

132

DOE handbook: Tritium handling and safe storage  

SciTech Connect

The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

NONE

1999-03-01T23:59:59.000Z

133

Remote-Handled Transuranic Content Codes  

SciTech Connect

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document representsthe development of a uniform content code system for RH-TRU waste to be transported in the 72-Bcask. It will be used to convert existing waste form numbers, content codes, and site-specificidentification codes into a system that is uniform across the U.S. Department of Energy (DOE) sites.The existing waste codes at the sites can be grouped under uniform content codes without any lossof waste characterization information. The RH-TRUCON document provides an all-encompassing|description for each content code and compiles this information for all DOE sites. Compliance withwaste generation, processing, and certification procedures at the sites (outlined in this document foreach content code) ensures that prohibited waste forms are not present in the waste. The contentcode gives an overall description of the RH-TRU waste material in terms of processes and|packaging, as well as the generation location. This helps to provide cradle-to-grave traceability ofthe waste material so that the various actions required to assess its qualification as payload for the72-B cask can be performed. The content codes also impose restrictions and requirements on themanner in which a payload can be assembled.The RH-TRU Waste Authorized Methods for Payload Control (RH-TRAMPAC), Appendix 1.3.7of the 72-B Cask Safety Analysis Report (SAR), describes the current governing procedures|applicable for the qualification of waste as payload for the 72-B cask. The logic for this|classification is presented in the 72-B Cask SAR. Together, these documents (RH-TRUCON,|RH-TRAMPAC, and relevant sections of the 72-B Cask SAR) present the foundation and|justification for classifying RH-TRU waste into content codes. Only content codes described in thisdocument can be considered for transport in the 72-B cask. Revisions to this document will be madeas additional waste qualifies for transport. |Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatindicates the shipper of the RH-TRU waste. The site-specific letter designations for each of the|DOE sites are provided in Table 1. Not all of the sites listed in Table 1 have generated/stored RH-|TRU waste.

Washington TRU Solutions

2001-08-01T23:59:59.000Z

134

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

135

Safe Handling Of Nuclear Substances Undergraduate Laboratories  

E-Print Network (OSTI)

Safe Handling Of Nuclear Substances Undergraduate Laboratories There are three main hazards associated with working with unsealed sources of nuclear substances. These are: 1. Skin contamination and/or deposition of the nuclear substance in the body 2. Spread of contamination 3. External radiation In teaching

Beaumont, Christopher

136

Automatic Continuous Commissioning of Measurement Instruments in Air Handling Units  

E-Print Network (OSTI)

This paper presents a robust strategy based on a condition-based adaptive statistical method for automatic commissioning of measurement instruments typically employed in air-handling units (AHU). The multivariate statistic method, principal component analysis (PCA), is adopted and modified to monitor the air handling process. Two PCA models are built corresponding to the heat balance and pressure-flow balance of the air-handling process. Sensor faults can be detected and isolated using the Q-statistic and the Q-contribution plot. The fault isolation ability against typical component faults is improved using knowledge-based analysis. A novel condition-based adaptive scheme is developed to update the PCA models with the operation conditions for continuous online application. A commissioning tool is developed to implement the strategy. Simulation tests and field tests in a building in Hong Kong were conducted to validate the automatic commissioning strategy for typical AHU. The integration of the tool with a building management system (BMS) and its application is demonstrated.

Xiao, F.; Wang, S.

2006-01-01T23:59:59.000Z

137

SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W. Burgess, J. B. Chesser, V. B. Graves, and S.L. Schrock  

E-Print Network (OSTI)

SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W remote handling techniques and tools for replacing target system components. During the past year seal configuration to assess leak tightness and remote handling features. In addition, testing

McDonald, Kirk

138

Material handling for the Los Alamos National Laboratory Nuclear Material Storage Facility  

SciTech Connect

This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels.

Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

1999-04-01T23:59:59.000Z

139

Remote Inspection, Measurement and Handling for LHC  

E-Print Network (OSTI)

Personnel access to the LHC tunnel will be restricted to varying extents during the life of the machine due to radiation, cryogenic and pressure hazards. The ability to carry out visual inspection, measurement and handling activities remotely during periods when the LHC tunnel is potentially hazardous offers advantages in terms of safety, accelerator down time, and costs. The first applications identified were remote measurement of radiation levels at the start of shut-down, remote geometrical survey measurements in the collimation regions, and remote visual inspection during pressure testing and initial machine cool-down. In addition, for remote handling operations, it will be necessary to be able to transmit several real-time video images from the tunnel to the control room. The paper describes the design, development and use of a remotely controlled vehicle to demonstrate the feasibility of meeting the above requirements in the LHC tunnel. Design choices are explained along with operating experience to-dat...

Kershaw, K; Coin, A; Delsaux, F; Feniet, T; Grenard, J L; Valbuena, R

2007-01-01T23:59:59.000Z

140

Fuel handling apparatus for a nuclear reactor  

DOE Patents (OSTI)

Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

Hawke, Basil C. (Solana Beach, CA)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vestibule and Cask Preparation Mechanical Handling Calculation  

SciTech Connect

The scope of this document is to develop the size, operational envelopes, and major requirements of the equipment to be used in the vestibule, cask preparation area, and the crane maintenance area of the Fuel Handling Facility. This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAIC Company L.L.C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Ref. 167124). This correspondence was appended by further correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-01R W12101; TDL No. 04-024'' (Ref. 16875 1). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process.

N. Ambre

2004-05-26T23:59:59.000Z

142

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Emergency Response to a Transportation Accident Involving Radioactive Material Radioactive Materials Transportation and Incident Response

143

Robotics for Nuclear Material Handling at LANL:Capabilities and Needs  

SciTech Connect

Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory for nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.

Harden, Troy A [Los Alamos National Laboratory; Lloyd, Jane A [Los Alamos National Laboratory; Turner, Cameron J [CO SCHOOL OF MINES/PMT-4

2009-01-01T23:59:59.000Z

144

V-177: VMware vCenter Chargeback Manager File Upload Handling Vulnerability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

177: VMware vCenter Chargeback Manager File Upload Handling 177: VMware vCenter Chargeback Manager File Upload Handling Vulnerability V-177: VMware vCenter Chargeback Manager File Upload Handling Vulnerability June 13, 2013 - 6:00am Addthis PROBLEM: vCenter Chargeback Manager Remote Code Execution PLATFORM: VMware vCenter Chargeback Manager 2.x ABSTRACT: The vCenter Chargeback Manager contains a critical vulnerability that allows for remote code execution REFERENCE LINKS: Secunia Advisory SA53798 VMWare Security Advisory VMSA-2013-0008 CVE-2013-3520 IMPACT ASSESSMENT: Medium DISCUSSION: The vCenter Chargeback Manager (CBM) contains a flaw in its handling of file uploads. Exploitation of this issue may allow an unauthenticated attacker to execute code remotely. IMPACT: System Access SOLUTION: Vendor recommends updating to version 2.5.1

145

V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service  

NLE Websites -- All DOE Office Websites (Extended Search)

7: Microsoft Windows NAT Driver ICMP Packet Handling Denial of 7: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability August 14, 2013 - 6:00am Addthis PROBLEM: A vulnerability was reported in the Windows NAT Driver PLATFORM: Windows Server 2012 ABSTRACT: This security update resolves a vulnerability in the Windows NAT Driver in Microsoft Windows REFERENCE LINKS: Secunia Advisory SA54420 Security Tracker ID 1028909 Microsoft Security Bulletin MS13-064 CVE-2013-3182 IMPACT ASSESSMENT: Medium DI SCUSSION: The vulnerability is caused due to an error within the Windows NAT Driver when handling ICMP packets and can be exploited to cause the system to stop responding IMPACT: Denial of Service SOLUTION: Vendor has released a security update

146

T-656: Microsoft Office Visio DXF File Handling Arbitrary Code Execution  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Microsoft Office Visio DXF File Handling Arbitrary Code 6: Microsoft Office Visio DXF File Handling Arbitrary Code Execution Vulnerability T-656: Microsoft Office Visio DXF File Handling Arbitrary Code Execution Vulnerability June 28, 2011 - 3:42pm Addthis PROBLEM: Functional code that demonstrates an exploit of the Microsoft Office Visio DXF file handling arbitrary code execution vulnerability is publicly available. PLATFORM: Microsoft Office Visio 2002 SP2 and prior Microsoft Office Visio 2003 SP3 and prior Microsoft Office Visio 2007 SP2 and prior ABSTRACT: Microsoft Office Visio contains a vulnerability that could allow an unauthenticated, remote attacker to execute arbitrary code on a targeted system. reference LINKS: IntelliShield ID: 20432 Original Release: S516 CVE-2010-1681 IMPACT ASSESSMENT: High Discussion: The vulnerability exists because the affected software does not perform

147

Human error contribution to nuclear materials-handling events  

E-Print Network (OSTI)

This thesis analyzes a sample of 15 fuel-handling events from the past ten years at commercial nuclear reactors with significant human error contributions in order to detail the contribution of human error to fuel-handling ...

Sutton, Bradley (Bradley Jordan)

2007-01-01T23:59:59.000Z

148

Innovative Methods for Corn Stover Collecting, Handling, Storing and Transporting  

DOE Green Energy (OSTI)

Investigation of innovative methods for collecting, handling, storing, and transporting corn stover for potential use for production of cellulosic ethanol.

Atchison, J. E.; Hettenhaus, J. R.

2003-03-01T23:59:59.000Z

149

Chris Densham T2K Target Remote Handling  

E-Print Network (OSTI)

Chris Densham T2K Target Remote Handling CJ Densham, MD Fitton, M Baldwin, M Woodward Rutherford are handled by remote controlled crane. Concrete shield Horns are shielded by iron and concrete shields A numerical controlled crane is used in the TS. A remote handling machine is attached to this crane. Crane

McDonald, Kirk

150

FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION  

SciTech Connect

The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

B. SZALEWSKI

2005-03-22T23:59:59.000Z

151

Safety Advice for Storage and Handling of  

E-Print Network (OSTI)

"This document is intended for information only and sets out advice for the safe storage and handling of anhydrous titanium tetrachloride. The information contained in these guidelines is provided in good faith and, while it is accurate as far as the authors are aware, no representations or warranties are made with regards to its completeness. For guidance on individual circumstances specific advice should be sought and in all cases the applicable national, European and international regulations should always be complied with. No responsibility will be assumed by Cefic in relation to the information

unknown authors

2007-01-01T23:59:59.000Z

152

Design and control of a heavy material handling manipulator for agricultural robots  

Science Conference Proceedings (OSTI)

In this paper, we propose a manipulation system for agricultural robots that handle heavy materials. The structural systems of a mobile platform and a manipulator are selected and designed after proposing new knowledge about agricultural robots. Also, ... Keywords: Agricultural robots, Evaluation index, Manipulator, Robust control

Satoru Sakai; Michihisa Iida; Koichi Osuka; Mikio Umeda

2008-10-01T23:59:59.000Z

153

Flue Gas Desulfurization Scrubber Maintenance Guide: Wastewater Treatment and Gypsum Handling Area  

Science Conference Proceedings (OSTI)

The Flue Gas Desulfurization Scrubber Maintenance Guide: Wastewater Treatment and Gypsum Handling Area provides fossil plant maintenance personnel with current maintenance information on these systems. This guide will assist plant maintenance personnel in improving the reliability and reducing the maintenance costs for these areas of their scrubber system.

2009-12-23T23:59:59.000Z

154

Process development for remote-handled mixed-waste treatment  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) is developing a treatment process for remote-handled (RH) liquid transuranic mixed waste governed by the concept of minimizing the volume of waste requiring disposal. This task is to be accomplished by decontaminating the bulk components so the process effluent can be disposed with less risk and expense. Practical processes have been demonstrated on the laboratory scale for removing cesium 137 and strontium 90 isotopes from the waste, generating a concentrated waste volume, and rendering the bulk of the waste nearly radiation free for downstream processing. The process is projected to give decontamination factors of 10{sup 4} for cesium and 10{sup 3} for strontium. Because of the extent of decontamination, downstream processing will be contact handled. The transuranic, radioactive fraction of the mixed waste stream will be solidified using a thin-film evaporator and/or microwave solidification system. Resultant solidified waste will be disposed at the Waste Isolation Pilot Plant (WIPP). 8 refs., 2 figs., 3 tabs.

Berry, J.B.; Campbell, D.O.; Lee, D.D.; White, T.L.

1990-01-01T23:59:59.000Z

155

Remote Handling Concepts for the Long Baseline Neutrino Experiment  

SciTech Connect

The Long Baseline Neutrino Experiment (LBNE) is a DOE funded experiment aimed at furthering the understanding of neutrino physics. The high intensity neutrino beam for LBNE will be produced at Fermi National Accelerator Laboratory (FNAL) by delivering a high power, 120 GeV proton beam to an underground target facility. The design proton beam power on target is 700 kW with an expected future upgrade to 2.3 MW. Both these beam powers will be sufficient to activate critical equipment necessary for producing neutrinos; thus, the activated equipment must be maintained using remote handling tools and operations. Oak Ridge National Laboratory (ORNL) was tasked to develop concepts for the remote maintenance of the LBNE target equipment as well as provide recommendations for facility layouts. A discussion of the proposed LBNE Target Hall layout is presented along with concepts for the facility's remote handling systems and major remote operations. Concepts for replacement and maintenance of beam line components are also discussed.

Graves, Van B [ORNL; Carroll, Adam J [ORNL; Hurh, Patrick G. [FNAL

2011-01-01T23:59:59.000Z

156

Primer on tritium safe handling practices  

Science Conference Proceedings (OSTI)

This Primer is designed for use by operations and maintenance personnel to improve their knowledge of tritium safe handling practices. It is applicable to many job classifications and can be used as a reference for classroom work or for self-study. It is presented in general terms for use throughout the DOE Complex. After reading it, one should be able to: describe methods of measuring airborne tritium concentration; list types of protective clothing effective against tritium uptake from surface and airborne contamination; name two methods of reducing the body dose after a tritium uptake; describe the most common method for determining amount of tritium uptake in the body; describe steps to take following an accidental release of airborne tritium; describe the damage to metals that results from absorption of tritium; explain how washing hands or showering in cold water helps reduce tritium uptake; and describe how tritium exchanges with normal hydrogen in water and hydrocarbons.

Not Available

1994-12-01T23:59:59.000Z

157

Overview on Hydrate Coring, Handling and Analysis  

SciTech Connect

Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

2003-06-30T23:59:59.000Z

158

PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional specific areas of competency or more hours of training

159

Contact-handled transuranic waste characterization based on existing records  

Science Conference Proceedings (OSTI)

This report contains the results of characterizing the retrievably stored, contact-handled transuranic (CH-TRU) waste based on existing records. This report is the first comprehensive analysis of these records. A history of the methods used in storing the transuranic waste and in determining how the data was accumulated for entry into the Richland-Solid Waste Information Management System (R-SWIMS) is also described. Data from the R-SWIMS have been the primary source of information in characterizing the waste contents. Supporting documents and interviews with knowledgeable people provide the basis for the documenting the history of storage practices. The storage conditions will be investigated further to ensure that a representative statistical sample is obtained for the second phase of this characterization program.

Anderson, B.C.; Anderson, J.D.; Demiter, J.A.; Duncan, D.R.; Fort, L.A.; McCann, D.C.; Stone, S.J.

1991-09-01T23:59:59.000Z

160

Contact-handled transuranic waste characterization based on existing records  

Science Conference Proceedings (OSTI)

This report contains the results of characterizing the retrievably stored, contact-handled transuranic (CH-TRU) waste based on existing records. This report is the first comprehensive analysis of these records. A history of the methods used in storing the transuranic waste and in determining how the data was accumulated for entry into the Richland-Solid Waste Information Management System (R-SWIMS) is also described. Data from the R-SWIMS have been the primary source of information in characterizing the waste contents. Supporting documents and interviews with knowledgeable people provide the basis for documenting the history of storage practices. The storage conditions will be investigated further to ensure that a representative statistical sample is obtained for the second phase of this characterization program 12 refs., 19 figs., 46 tabs.

Anderson, B.C.; Anderson, J.D.; Demiter, J.A.; Duncan, D.R.; McCann, D.C.

1990-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

340 waste handling complex: Deactivation project management plan  

SciTech Connect

This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

Stordeur, R.T.

1998-06-25T23:59:59.000Z

162

Nuclear Maintenance Applications Center: Material Handling Application Guide  

Science Conference Proceedings (OSTI)

Although the majority of the material handling activities at nuclear power plant sites are similar to the material handling activities in many other industries, there are several differences unique to the nuclear power industry. This guide to material handling equipment and its safe and effective operation at nuclear plants covers basic common practices while taking into account those unique differences. Recent industry experiences provide context for the guidance in the report.

2007-11-30T23:59:59.000Z

163

Nuclear Maintenance Applications Center: Material Handling Application Guide  

Science Conference Proceedings (OSTI)

BackgroundDuring 2005 and 2006, there were nine Institute of Nuclear Power Operations (INPO) operating events (OEs) from material handling incidents. A fatality occurred at Browns Ferry on Oct. 1, 2005, when a small article radiation monitor overturned while being moved on a material handling cart (INPO OE21844).More than 50 serious OEs concerning material handling activities have occurred in the past 10 years. The majority of these incidents involved the ...

2012-09-28T23:59:59.000Z

164

Remote-Handled Transuranic Content Codes  

SciTech Connect

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

Washington TRU Solutions

2006-12-01T23:59:59.000Z

165

Argonne Chemical Sciences & Engineering - Facilities - Remote Handling  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities * Actinide * Analytical Chemistry * Premium Coal Samples * Electrochemical Analysis * Glovebox * Glassblowing Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for Electrical Energy Storage: Tailored Interfaces Contact Us CSE Intranet Remote Handling Mockup Facility Remote Handling Mockup Facility Radiochemist Art Guelis observes technician Kevin Quigley preparing to cut open a surrogate uranium target. Argonne designed and built a Remote Handling Mockup Facility to let engineers simulate the handling of radioactive materials in a non-radioactive environment. The ability to carry out the details of an

166

Biodiesel Handling and Use Guide: Fourth Edition (Revised)  

DOE Green Energy (OSTI)

Intended for those who blend, distribute, and use biodiesel and its blends, this guide contains procedures for handling and using these fuels.

Not Available

2009-01-01T23:59:59.000Z

167

Handbook for Handling, Storing, and Dispensing E85  

DOE Green Energy (OSTI)

A guidebook that contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

Not Available

2002-04-01T23:59:59.000Z

168

Production and Handling Slide 1: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

and Handling The Uranium Fuel Cycle Skip Presentation Navigation Next Slide Last Presentation Table of Contents The Uranium Fuel Cycle Refer to caption below for image...

169

Unit load and material handling considerations in facility layout design  

E-Print Network (OSTI)

Dec 1, 2002 ... In this paper, the integration of unit load and material handling considerations in facility layout design is presented. This integration is based on...

170

Handbook for Handling, Storing, and Dispensing E85  

DOE Green Energy (OSTI)

Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

Not Available

2008-04-01T23:59:59.000Z

171

Chromoblastomycosis associated with in a carpenter handling exotic woods  

E-Print Network (OSTI)

in a carpenter handling exotic woods Nuno Menezes 1 , Pauloas saprophytes in the soil, wood and vegetation [ 3 ]. Theyare normally made of tropical wood [ 9 ]. The inoculation

2008-01-01T23:59:59.000Z

172

ITER Engineering Design Activities -R & DITER-In-Vessel Remote Handling  

E-Print Network (OSTI)

ITER Engineering Design Activities - R & DITER- In-Vessel Remote Handling Blanket Module Remote Handling Project (L-6) Divertor Remote Handling Project (L-7) Objective To develop and demonstrate handling equipment, port handling equipment, auxiliary remote handling tools and a blanket mockup structure

173

Brief Linear MPC with optimal prioritized infeasibility handling: application, computational issues and stability  

Science Conference Proceedings (OSTI)

All practical MPC implementations should have a means to recover from infeasibility. We present a recently developed infeasibility handler which computes optimal relaxations of the relaxable constraints subject to a user-defined prioritization, by solving ... Keywords: Infeasibility handling, Linear programming, Linear systems, Model-based control

Jostein Vada; Olav Slupphaug; Tor A. Johansen; Bjarne A. Foss

2001-11-01T23:59:59.000Z

174

An agent based approach for exception handling in e-procurement management  

Science Conference Proceedings (OSTI)

E-procurement has become an important function of enterprise information systems. The process of e-procurement includes the automatic definition of product requirements, search and selection for suppliers, negotiation and contracting with suppliers. ... Keywords: E-procurement, Exception handling, Intelligent agents, Web service

Sherry X. Sun; Jing Zhao; Huaiqing Wang

2012-01-01T23:59:59.000Z

175

An apparatus for remotely handling components  

DOE Patents (OSTI)

The inventive apparatus for remotely handling barlike components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of t he first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components. In a preferred embodiment, the apparatus also includes a control mechanism for remotely controlling movement of the jaw in the locking mode to assume one of a plurality of locking positions corresponding to positioning one of the stepped portions opposite the base.

Szkrybalo, G.A.; Griffin, D.L.

1992-12-31T23:59:59.000Z

176

HANDLING FRESH FISH REFRIGERATION OF FISH -PART 2  

E-Print Network (OSTI)

(Fishery Leaflet 427) Cold-Storage Design and Refrigeration Equipment Part 3 (Fisher y Leaflet 429) FactorsHANDLING FRESH FISH REFRIGERATION OF FISH - PART 2 UNITED STATES DEPARTMENT OF THE INTERIOR FISH 428 Washington 25, D, C. December 1956 REFRIGERATION OF FISH - PART TWO HANDLING FRESH FISH By Charles

177

Dynamic manipulation inspired by the handling of a pizza peel  

Science Conference Proceedings (OSTI)

This paper discusses dynamic manipulation inspired by the handling mechanism of a pizza chef. The chef handles a tool called "pizza peel," where a plate is attached at the tip of a bar, and he remotely manipulates a pizza on the plate. We found that ... Keywords: dynamic manipulation, high-speed robot, robot skill

Mitsuru Higashimori; Keisuke Utsumi; Yasutaka Omoto; Makoto Kaneko

2009-08-01T23:59:59.000Z

178

Pre-Hospital Practices for Handling a Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Hospital Practices for Handling a Radiologically Contaminated Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Pre-Hospital Practices for Handling a Radiologically Contaminated Patient The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on key activities and duties at the scene. PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT More Documents & Publications Emergency Response to a Transportation Accident Involving Radioactive Material Handling and Packaging a Potentially Radiologically Contaminated Patient

179

FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

C.E. Sanders

2005-06-30T23:59:59.000Z

180

Air Handling Unit Supply Air Temperature Optimization During Economizer Cycles  

E-Print Network (OSTI)

Most air handling units (AHUs) in commercial buildings have an air economizer cycle for free cooling under certain outside air conditions. During the economizer cycle, the outside air and return air dampers are modulated to seek mixing air temperature at supply air temperature setpoint. Mechanical cooling is always required when outside air temperature is higher than the supply air temperature setpoint. Generally the supply air temperature setpoint is set at 55F for space humidity control. Actually the dehumidification is not necessary when outside air dew point is less than 55F. Meanwhile the space may have less cooling load due to envelope heat loss and/or occupant schedule. These provide an opportunity to use higher supply air temperature to reduce or eliminate mechanical cooling and terminal box reheat. On the other hand the higher supply air temperature will require higher air flow as well as higher fan power. Therefore the supply air temperature has to be optimized to minimize the combined energy for fan, cooling and heating energy. In this paper a simple energy consumption model is established for AHU systems during the economizer and then a optimal supply air temperature control is developed to minimize the total cost of the mechanical cooling and the fan motor power. This paper presents AHU system energy modeling, supply air temperature optimization, and simulated energy savings.

Xu, K.; Liu, M.; Wang, G.; Wang, Z.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

INTERNATIONAL SYMPOSIUM ON PROCESSING AND HANDLING ...  

Science Conference Proceedings (OSTI)

Proper injection system design must integrate conveying, injection, ... 1200C, and 1400C. The ash content and volatile matter remaining in each of the chars...

182

Determining Critical Pressure and Duct Leakage in VAV Air-Handling Units  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining Critical Pressure and Duct Leakage in VAV Air-Handling Units Determining Critical Pressure and Duct Leakage in VAV Air-Handling Units Speaker(s): Clifford Federspiel Date: December 3, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Nance Matson Fans for moving air in buildings use a significant amount of energy. It is well known that fan energy use in variable-air-volume (VAV) systems can be reduced by resetting the supply duct pressure. The standard way to reset duct pressure is by controlling the most-open terminal damper to a nearly open position. Most systems can't measure terminal damper positions, so pressures are either not reset at all or use ad hoc resetting strategies that are configured sub-optimally. In this seminar I will describe a new method of determining the critical supply duct pressure for VAV systems.

183

ON THE ORSAY MP GAS HANDLING SYSTEM P. BRETONNEAU  

E-Print Network (OSTI)

decomposition products and oil perceptible traces after several weeks of running at maximum voltage: Kinney pump + Roots pump (500 m3/h) KMBD-1601/KT 500. ' Pressure: 5 to 2 x 10 2 torr. Time: 8 hours

Paris-Sud XI, Université de

184

Improved Empty Vehicle Balancing in Automated Material Handling Systems  

Science Conference Proceedings (OSTI)

The use of automated guided vehicles in high-tech industries such as the semiconductor industry results, due to the size of such factories, in highly complex rail-networks. In contrast to the routing of vehicles that are transporting a lot to its destination, ... Keywords: Vehicle Balancing, AMHS, Semiconductor, Simulation

Roland Wertz; Christian Fischmann; Fabian Bttinger; Martin Kasperczyk

2008-04-01T23:59:59.000Z

185

Attrition of Alumina in Smelter Handling and Scrubbing Systems  

Science Conference Proceedings (OSTI)

Methods to Reduce Operating Costs in Circulating Fluidized Bed Calcination New Development Model for Bauxite Deposits One Green Field Megaton Grade ...

186

Biodiesel Handling and Use Guide | Open Energy Information  

Open Energy Info (EERE)

Biodiesel Handling and Use Guide Biodiesel Handling and Use Guide Jump to: navigation, search Tool Summary Name: Biodiesel Handling and Use Guide Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.nrel.gov/vehiclesandfuels/npbf/pdfs/43672.pdf This document is a guide for those who blend, store, distribute, and use biodiesel. It is intended to help fleets, individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel fuels. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

187

Production and Handling Slide 20: Advantages of UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Advantages of UF6 Only one isotope of F2 Can be handled at reasonable...

188

V-079: ISC BIND AAAA Record Lookup Handling Assertion Failure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lets Remote Users Deny Service T-633: BIND RRSIG RRsets Negative Caching Off-by-one Bug Lets Remote Users Deny Service U-183: ISC BIND DNS Resource Records Handling Vulnerability...

189

Material handling resource utilization simulation study for stamping plant  

Science Conference Proceedings (OSTI)

This paper describes the application of dynamic simulation to evaluate material handling resource utilization for a stamping plant in the automotive industry. The other objective of this study was evaluation of throughput relative to press schedules, ...

Edward J. Williams; Onur M. Ulgen; Sheldon Bailiff; Ravindra Lote

2006-12-01T23:59:59.000Z

190

Input handling in agent-based micro-level simulators.  

E-Print Network (OSTI)

??In this thesis we presented a new direction for handling missing values in multi agent-based simulation (MABS) at micro-level by using truth tables and logical (more)

Fayyaz, Muhammad

2010-01-01T23:59:59.000Z

191

Strategies for handling missing data in randomised trials  

E-Print Network (OSTI)

sensitivity analysis and how to handle missing baseline variables. Published: 13 December 2011 References 1. National Research Council: The prevention and treatment of missing data in clinical trials. The National Academies Press; Washington, DC; 2010 [http...

2011-12-13T23:59:59.000Z

192

PRIME VALUE METHOD TO PRIORITIZE RISK HANDLING STRATEGIES  

Science Conference Proceedings (OSTI)

Funding for implementing risk handling strategies typically is allocated according to either the risk-averse approach (the worst risk first) or the cost-effective approach (the greatest risk reduction per implementation dollar first). This paper introduces a prime value approach in which risk handling strategies are prioritized according to how nearly they meet the goals of the organization that disburses funds for risk handling. The prime value approach factors in the importance of the project in which the risk has been identified, elements of both risk-averse and cost-effective approaches, and the time period in which the risk could happen. This paper also presents a prioritizer spreadsheet, which employs weighted criteria to calculate a relative rank for the handling strategy of each risk evaluated.

Noller, D

2007-10-31T23:59:59.000Z

193

CORE COMPETENCY Overview Engineered Specialty Systems  

Remote and Specialty Systems SRNL expertise in remote and specialty systems spans the entire engineered ... simulation, radioactive materials handling ...

194

Step-By-Step Guide for Waste Handling at WIPP - Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

the nation's nuclear waste disposal problem Step-By-Step Guide for Waste Handling at WIPP The handling and disposal of contact-handled transuranic waste at the Waste Isolation...

195

Remote-Handled Transuranic Content Codes  

SciTech Connect

Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatdesignates the physical location of the RH-TRU waste. The site-specific letter designations for eachof the DOE sites are provided in Table 2. All TRU waste generating/storage sites are included inTable 2 for completeness. Not all of the sites listed in Table 2 have generated/stored RH-TRU waste.

Washington TRU Solutions

2000-11-01T23:59:59.000Z

196

Plutonium stabilization and handling (PuSH)  

SciTech Connect

This Functional Design Criteria (FDC) addresses construction of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. The major sections of the project are: site preparation; SPS Procurement, Installation, and Testing; storage vault modification; and characterization equipment additions. The SPS will be procured as part of a Department of Energy nationwide common procurement. Specific design crit1460eria for the SPS have been extracted from that contract and are contained in an appendix to this document.

Weiss, E.V.

1997-01-23T23:59:59.000Z

197

GN470094 - Handling Chemicals at SNL/CA  

NLE Websites -- All DOE Office Websites (Extended Search)

094, Handling Chemicals at SNL/CA 094, Handling Chemicals at SNL/CA Sponsor: Michael W. Hazen, 4000 Revision Date: October 31, 2008 Replaces Document Dated: October 16, 2007 This document is no longer a CPR. This document implements the requirements of Corporate procedure ESH100.2.IH.25, Control Chemical Hazards at SNL/CA. IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is the online version located on the Sandia Restricted Network (SRN). GN470094 - HANDLING CHEMICALS AT SNL/CA Subject Matter Expert: Al Buerer GN470094, Issue E Revision Date: October 31, 2008; Replaces Document Dated: October 16, 2007 Change History 1.0 Purpose, Scope, and Ownership 2.0 Responsibilities 3.0 Definitions 4.0 Training 5.0 Protective Equipment 6.0 Procurement of Chemicals

198

Arrival condition of spent fuel after storage, handling, and transportation  

Science Conference Proceedings (OSTI)

This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

1982-11-01T23:59:59.000Z

199

Remote-Handled Low Level Waste Disposal Project Alternatives Analysis  

Science Conference Proceedings (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energys mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-10-01T23:59:59.000Z

200

Handbook for Handling, Storing, and Dispensing E85 | Open Energy  

Open Energy Info (EERE)

for Handling, Storing, and Dispensing E85 for Handling, Storing, and Dispensing E85 Jump to: navigation, search Tool Summary Name: Handbook for Handling, Storing, and Dispensing E85 Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.afdc.energy.gov/afdc/pdfs/48162.pdf This document serves as a guide for blenders, distributors, sellers, and users of E85 as an alternative motor fuel. It provides basic information on the proper and safe use of E85 and offers supporting technical and policy references. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

DOE Green Energy (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

202

Performance Analysis of Dual-Fan, Dual-Duct Constant Volume Air-Handling Units  

E-Print Network (OSTI)

Dual-fan, dual-duct air-handling units introduce outside air directly into the cooling duct and use two variable speed devices to independently maintain the static pressure of the hot and the cold air ducts. Analytical models have been developed to compare fan power and thermal energy consumption of dualfan, dual-duct constant volume air-handling units with single-fan, dual-duct constant volume airhandling units. This study shows that the dual-fan, dual-duct system uses less fan power and less thermal energy during winter, and uses more thermal energy during summer. Thermal energy performance can be significantly improved if the thermal energy penalty can be decreased or eliminated.

Joo, I. S.; Liu, M.

2001-01-01T23:59:59.000Z

203

Certification plan transuranic waste: Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification.

1992-06-01T23:59:59.000Z

204

Method of preparing and handling chopped plant materials  

DOE Patents (OSTI)

The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

Bransby, David I. (2668 Wire Rd., Auburn, AL 36832)

2002-11-26T23:59:59.000Z

205

Guidelines for Handling Confidential Information by Remote Access  

E-Print Network (OSTI)

Guidelines for Handling Confidential Information by Remote Access You have signed an OHSU of your access to OHSU electronic information and/or other sanctions. Remember, using remote access of the OHSU facilities. When you are utilizing remote access, you must provide the same level of security used

Chapman, Michael S.

206

A business process modeling notation extension for risk handling  

Science Conference Proceedings (OSTI)

During the years of prosperity, numerous organizations neglected numerous aspects of risk management. As systematic approach to handling identified risks is crucial to achieving success by the organization, modern business modeling standards and techniques ... Keywords: BPMN extension, business process modeling notation, risk management

Bartosz Marcinkowski; Michal Kuciapski

2012-09-01T23:59:59.000Z

207

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

208

Self-Correcting HVAC Controls: Algorithms for Sensors and Dampers in Air-Handling Units  

SciTech Connect

This report documents the self-correction algorithms developed in the Self-Correcting Heating, Ventilating and Air-Conditioning (HVAC) Controls project funded jointly by the Bonneville Power Administration and the Building Technologies Program of the U.S. Department of Energy. The algorithms address faults for temperature sensors, humidity sensors, and dampers in air-handling units and correction of persistent manual overrides of automated control systems. All faults considered create energy waste when left uncorrected as is frequently the case in actual systems.

Fernandez, Nicholas; Brambley, Michael R.; Katipamula, Srinivas

2009-12-31T23:59:59.000Z

209

Analysis of the Energy-Saving Potential of a Three-Rotary Wheel Fresh Air-Handling Unit  

E-Print Network (OSTI)

To evaluate the energy-saving potential of a proposed three-rotary wheel fresh air-handling unit (TRWFAHU), it is numerically simulated with weather data of Changsha by using a mathematical model. Compared with a conventional fresh air-handling unit, TRWFAHU can save 10.2% of primary energy and greatly decrease the energy consumption of chiller. If waste heat is available for regenerating the desiccant, the system can achieve greater energy savings. It is feasible to improve indoor air quality (IAQ) by increasing ventilation while without increasing energy consumption.

Hao, X.; Zhang, G.; Zou, S.; Liu, H.

2006-01-01T23:59:59.000Z

210

Safety System Oversight Assessment, Los Alamos National Laboratory- May 2011  

Energy.gov (U.S. Department of Energy (DOE))

Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System

211

Radioactive waste systems and radioactive effluents  

SciTech Connect

Radioactive waste systems for handling gaseous, liquid, and solid wastes generated at light and pressurized water reactors are described. (TFD)

Row, T.H.

1973-01-01T23:59:59.000Z

212

Some new techniques in tritium gas handling as applied to metal hydride synthesis  

SciTech Connect

A state-of-the-art tritium Hydride Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilized unique fast-cycling 5.63 mole uranium beds (50.9 g to T/sub 2/ at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops.

Nasise, J.E.

1988-09-01T23:59:59.000Z

213

Some new techniques in tritium gas handling as applied to metal hydride synthesis  

SciTech Connect

A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs.

Nasise, J.E.

1988-01-01T23:59:59.000Z

214

DOE Seeks Independent Evaluation of Remote-Handled Waste Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Seeks Independent Evaluation Seeks Independent Evaluation Of Remote-Handled Waste Program CARLSBAD, N.M., July 24, 2001 - An independent panel of scientific and engineering experts will convene July 30 in Carlsbad to evaluate U.S. Department of Energy (DOE) plans for managing remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP). DOE's Carlsbad Field Office has asked the American Society of Mechanical Engineers and the Institute for Regulatory Science to review its proposed RH-TRU waste program. The program must be approved by the New Mexico Environment Department and the U.S. Environmental Protection Agency before DOE will be permitted to accept and dispose of RH-TRU waste at WIPP. "Safety and compliance are our primary considerations in developing the plans for

215

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

for anything but remote handling under controlledhandling, and inspection systems must be designed with remote

Kramer, Kevin James

2010-01-01T23:59:59.000Z

216

EURISOL-DS Multi-Megawatt Target: Remote Handling Equipment  

E-Print Network (OSTI)

The design proposed within Task #2 of the EURISOL Design Study for the remote handling of the mercury converter target and its associated loop is presented with particular emphasis on achieving rapid turn-around during routine maintenance.The converter target needs to be completely exchanged every four months due to the high irradiation damage sustained. Other components are less susceptible to damage but may need periodic maintenance; in particular the on-line isotopic separation unit in the mercury loop.

Cyril Kharoua, Olivier Choisnet, Yacine Kadi, Karel Samec (CERN)

217

Safety aspects of large-scale handling of hydrogen  

DOE Green Energy (OSTI)

Since the decade of the 1950s, there has been a large increase in the quantity of hydrogen, especially liquid hydrogen, that has been produced, transported, and used. The technology of hydrogen, as it relates to safety, has also developed at the same time. The possible sources of hazards that can arise in the large-scale handling of hydrogen are recognized, and for the most part, sufficiently understood. These hazard sources are briefly discussed. 26 refs., 4 figs.

Edeskuty, F.J.; Stewart, W.F.

1988-01-01T23:59:59.000Z

218

Baseline descriptions for LWR spent fuel storage, handling, and transportation  

SciTech Connect

Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables.

Moyer, J.W.; Sonnier, C.S.

1978-04-01T23:59:59.000Z

219

Best Practices for Biomass Handling in Wood Yard Operations  

Science Conference Proceedings (OSTI)

Utilities are beginning to add wood and other biomass fuels to fire their generating units to enable them to produce carbon-neutral electricity and participate in state or national renewable energy programs. However, because the material handling aspects of biomass differ from those of coal, firing at a significant scale requires new equipment to receive, store, and deliver the biomass to the flame front. This equipment is analogous in function to existing machinery but is quite different in detail, desi...

2011-08-29T23:59:59.000Z

220

Preliminary analysis of the postulated changes needed to achieve rail cask handling capabilities at selected light water reactors  

SciTech Connect

Reactor-specific railroad and crane information for all LWRs in the US was extracted from current sources of information. Based on this information, reactors were separated into two basic groups consisting of reactors with existing, usable rail cask capabilities and those without these capabilities. The latter group is the main focus of this study. The group of reactors without present rail cask handling capabilities was further separated into two subgroups consisting of reactors considered essentially incapable of handling a large rail cask of about 100 tons and reactors where postulated facility changes could result in rail cask handling capabilities. Based on a selected population of 127 reactors, the results of this assessment indicate that usable rail cask capabilities exist at 83 (65%) of the reactors. Twelve (27%) of the remaining 44 reactors are deemed incapable of handling a large rail cask without major changes, and 32 reactors are considered likely candidates for potentially achieving rail cask handling capabilities. In the latter group, facility changes were postulated that would conceptually enable these reactors to handle large rail casks. The estimated cost per plant of required facility changes varied widely from a high of about $35 million to a low of <$0.3 million. Only 11 of the 32 plants would require crane upgrades. Spur track and right-of-way costs would apparently vary widely among sites. These results are based on preliminary analyses using available generic cost data. They represent lower bound values that are useful for developing an initial assessment of the viability of the postulated changes on a system-wide basis, but are not intended to be absolute values for specific reactors or sites.

Konzek, G.J.

1986-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Draft Environmental Assessment on the Remote-handled Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review and comment on a draft environmental assessment that the Department issued today, for a proposal to process approximately 327 cubic meters of remote-handled waste currently stored at the Idaho National Laboratory. An additional five cubic meters of waste stored at the Hanford Site near Richland, Washington is also evaluated since it is reasonably foreseeable that a decision may be made in the future to send that waste to Idaho for treatment. The project is necessary to prepare the waste for legally-required disposal. Under the Department�s preferred alternative, workers would use sealed rooms called hot cells at the Idaho Nuclear Technology and Engineering Center (INTEC) to process the waste, treat it as necessary and repackage it so that it is ready for disposal. The document describes the modifications necessary to hot cells to perform the work.

222

West Valley facility spent fuel handling, storage, and shipping experience  

Science Conference Proceedings (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

223

METHODS OF HANDLING AND LAUNDERING BERYLLIUM-CONTAMINATED GARMENTS  

SciTech Connect

In beryllium industries, it has been the general practice to supply workers with protective clothing. Problems in handling and laundering this clothing were investigated. These problems include: potential hazard to laundry workers and subsequent wearers of the clothing, special laundering techniques, methods to determine the degree of contamination on garments, and determining the most desirable types of garments for the purpose. Four methods to determine the degree of contamination discussed include the shake test, the vacuum test, the rinse test, and the smear test. Assuming conventional laundering procedures have been used, the potential hazard to subsequent wearers of the garment is minimal. Standards for determining adequacy of laundry are suggested. These ar 0.1 mu g Be/cm/sup 2/ as determined by the vacuum test, or 200 mu g Be/garment as determined by the rinse test. Possible hazard to those handling contaminated garments could be significant. This hazard is best controlled simply by use of wet methods. Included in this report is the summary of a survey conducted to determine how these problems are handled in other beryllium industries. (auth)

Cohen, J.J.

1963-04-01T23:59:59.000Z

224

Conceptual design report, plutonium stabilization and handling,project W-460  

SciTech Connect

Project W-460, Plutonium Stabilization and Handling, encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. This Conceptual Design Report (CDR) provides conceptual design details for the vault modification, site preparation and site interface with the purchased SPS. Two concepts are described for vault configuration; acceleration of this phase of the project did not allow completion of analysis which would clearly identify a preferred approach.

Weiss, E.V.

1997-03-06T23:59:59.000Z

225

Assessment of Options for the Collection, Handling, and Transport of Corn Stover  

DOE Green Energy (OSTI)

In this report, we discuss the logistics and estimate the delivered costs for collecting, handling, and hauling corn stover to an ethanol conversion facility. We compare costs for two conventional baling systems (large round bales and large rectangular bales), a silage-harvest system, and an unprocessed-pickup system. Our results generally indicate that stover can be collected, stored, and hauled for about $43.60 to $48.80/dry ton ($48.10-$53.80/dry Mg) using conventional baling equipment for conversion facilities ranging in size from 500 to 2000 dry tons/day (450-1810 dry Mg/day). These estimates are inclusive of all costs including farmer payments for the stover. Our results also suggest that costs might be significantly reduced with an unprocessed stover pickup system provided more efficient equipment is developed.

Perlack, R.D.

2002-11-18T23:59:59.000Z

226

Operational simulation model of the raw material handling in an integrated steel making plant  

Science Conference Proceedings (OSTI)

This article is focused on the design and implementation of an operational simulation model (OSM) of the handling of raw material in an integrated steel making plant, considering operations of receiving, unloading, stocking, handling and supplying the ...

Robson Jacinto Coelho; Paula Fernandes Lana; Adriano Csar Silva; Takeo Fugiwara Santos; ArcelorMittal Tubaro; Marcelo Moretti Fioroni; Luiz Augusto G. Franzese; Daniel de Oliveira Mota; Paragon Tecnologia; Luiz Bueno da Silva

2009-12-01T23:59:59.000Z

227

DOE-HDBK-1129-2007: Tritium Handling and Safe Storage; Replaced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HDBK-1129-2007: Tritium Handling and Safe Storage; Replaced by DOE-HDBK-1129-2008 DOE-HDBK-1129-2007: Tritium Handling and Safe Storage; Replaced by DOE-HDBK-1129-2008 Tritium...

228

Medical Examiner/Coroner on the Handling of a Body/Human Remains...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Medical ExaminerCoroner on the Handling of a BodyHuman Remains that are Potentially Radiologically Contaminated Medical ExaminerCoroner on the Handling of a BodyHuman Remains...

229

V-177: VMware vCenter Chargeback Manager File Upload Handling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: VMware vCenter Chargeback Manager File Upload Handling Vulnerability V-177: VMware vCenter Chargeback Manager File Upload Handling Vulnerability June 13, 2013 - 6:00am Addthis...

230

U-271: Google Android Dialer TEL URL Handling Flaw Lets Remote...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Google Android Dialer TEL URL Handling Flaw Lets Remote Users Deny Service U-271: Google Android Dialer TEL URL Handling Flaw Lets Remote Users Deny Service October 1, 2012 -...

231

Practical Guide to Vegetable Oil ProcessingChapter 8 Finished Product Storage and Handling  

Science Conference Proceedings (OSTI)

Practical Guide to Vegetable Oil Processing Chapter 8 Finished Product Storage and Handling Processing eChapters Processing Press Downloadable pdf of Chapter 8 Finished Product Storage and Handling from the book ...

232

Practical Handbook of Soybean Processing and UtilizationHarvest, Storage, Handling and Trading of Soybeans  

Science Conference Proceedings (OSTI)

Practical Handbook of Soybean Processing and Utilization Harvest, Storage, Handling and Trading of Soybeans Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 4 Harvest, Storage, Handling and T

233

Disposal of Remote-Handled Transuranic Waste at the WasteIsolation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gear and is referred to as "contact-handled" TRU. However, TRU wastes with a surface radiation dose rate greater than 200 millirem per hour must be handled using remote...

234

Viability of Existing INL Facilities for Dry Storage Cask Handling  

SciTech Connect

This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INLs Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

2013-04-01T23:59:59.000Z

235

A non-contact end-effector for the handling of garments  

Science Conference Proceedings (OSTI)

In order to handle a material with either a delicate surface or an air permeable structure, a novel nozzle was designed and developed. This nozzle utilises the phenomena of the radial air outflow. It is envisaged that this new nozzle will handle materials ... Keywords: End-effector, Fabric, Garment, Gripper, Handling

Babur Ozcelik; Fehmi Erzincanli

2002-07-01T23:59:59.000Z

236

Nuclear Maintenance Applications Center: Nuclear Fuel Handling Equipment Application and Maintenance Guide  

Science Conference Proceedings (OSTI)

Fuel handling is a critical item during a nuclear power plant refueling outage. The proper operation of fuel handling equipment, such as fuel handling machines, fuel upending machines, fuel transfer carriages, and fuel elevators, is important to a successful refueling outage and to preparing fuel for eventual disposal.

2007-12-21T23:59:59.000Z

237

Recommended strategy for the disposal of remote-handled transuranic waste  

SciTech Connect

The current baseline plan for RH TRU (remote-handled transuranic) waste disposal is to package the waste in special canisters for emplacement in the walls of the waste disposal rooms at the Waste Isolation Pilot Plant (WIPP). The RH waste must be emplaced before the disposal rooms are filled by contact-handled waste. Issues which must be resolved for this plan to be successful include: (1) construction of RH waste preparation and packaging facilities at large-quantity sites; (2) finding methods to get small-quantity site RH waste packaged and certified for disposal; (3) developing transportation systems and characterization facilities for RH TRU waste; (4) meeting lag storage needs; and (5) gaining public acceptance for the RH TRU waste program. Failure to resolve these issues in time to permit disposal according to the WIPP baseline plan will force either modification to the plan, or disposal or long-term storage of RH TRU waste at non-WIPP sites. The recommended strategy is to recognize, and take the needed actions to resolve, the open issues preventing disposal of RH TRU waste at WIPP on schedule. It is also recommended that the baseline plan be upgraded by adopting enhancements such as revised canister emplacement strategies and a more flexible waste transport system.

Bild, R.W. [Sandia National Lab., Albuquerque, NM (United States). Program Integration Dept.

1994-07-01T23:59:59.000Z

238

Oak Ridge Isotope Production Cyclotron Facility and Target Handling  

SciTech Connect

Abstract The Nuclear Science Advisory Committee issued in August 2009 an Isotopes Subcommittee report that recommended the construction and operation of a variable-energy, high-current, multiparticle accelerator for producing medical radioisotopes. To meet the needs identified in the report, Oak Ridge National Laboratory is developing a technical concept for a commercial 70 MeV dual-port-extraction, multiparticle cyclotron to be located at the Holifield Radioactive Ion Beam Facility. The conceptual design of the isotope production facility as envisioned would provide two types of targets for use with this new cyclotron. One is a high-power target cooled by water circulating on both sides, and the other is a commercial target cooled only on one side. The isotope facility concept includes an isotope target vault for target irradiation and a shielded transfer station for radioactive target handling. The targets are irradiated in the isotope target vault. The irradiated targets are removed from the target vault and packaged in an adjoining shielded transfer station before being sent out for postprocessing. This paper describes the conceptual design of the target-handling capabilities required for dealing with these radioactive targets and for minimizing the contamination potential during operations.

Bradley, Eric Craig [ORNL; Varma, Venugopal Koikal [ORNL; Egle, Brian [ORNL; Binder, Jeffrey L [ORNL; Mirzadeh, Saed [ORNL; Tatum, B Alan [ORNL; Burgess, Thomas W [ORNL; Devore, Joe [Oak Ridge National Laboratory (ORNL); Rennich, Mark [Oak Ridge National Laboratory (ORNL); Saltmarsh, Michael John [ORNL; Caldwell, Benjamin Cale [Oak Ridge National Laboratory (ORNL)

2011-01-01T23:59:59.000Z

239

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30T23:59:59.000Z

240

A sampling device with a capped body and detachable handle  

DOE Patents (OSTI)

The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and out of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.

Jezek, Gerd-Rainer

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Comparative economics for DUCRETE spent fuel storage cask handling, transportation, and capital requirements  

SciTech Connect

This report summarizes economic differences between a DUCRETE spent nuclear fuel storage cask and a conventional concrete storage cask in the areas of handling, transportation, and capital requirements. The DUCRETE cask is under evaluation as a new technology that could substantially reduce the overall costs of spent fuel and depleted U disposal. DUCRETE incorporates depleted U in a Portland cement mixture and functions as the cask`s primary radiation barrier. The cask system design includes insertion of the US DOE Multi-Purpose Canister inside the DUCRETE cask. The economic comparison is from the time a cask is loaded in a spent fuel pool until it is placed in the repository and includes the utility and overall US system perspectives.

Powell, F.P. [Sierra Nuclear Corp., Roswell, GA (United States)

1995-04-01T23:59:59.000Z

242

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

243

Feasibility Study of Developing a Virtual Chilled Water Flow Meter at Air Handling Unit Level  

E-Print Network (OSTI)

In this paper, a virtual Air handling unit (AHU) level water flow meter is explored by using a control valve as a measurement device. The flow through the valve is indirectly calculated using differential pressure over both the valve and its associated coil and valve stem position. Thus, the non-intrusive virtual flow meter introduced in this paper provides a solution to one of the measurement barriers and challenges: a low cost, reliable energy metering system at the AHU level. Mathematical models were built and the preliminary experiments were conducted to investigate the feasibility of the virtual flow meter applications. As a result, the valve flow meter can be a cost effective means for water flow measurements at the AHU and thus provides an effective index for detecting and diagnosing the AHU operation faults.

Song, L.; Swamy, A.; Shim, G.

2011-01-01T23:59:59.000Z

244

Survey of the State-of-the-Art of Coal Handling During Freezing Weather  

Science Conference Proceedings (OSTI)

This report presents a state-of-the-art review of coal-handling procedures and programs used by electric utilities, coal mines, and coal transfer stations during periods of freezing weather. The use of freeze-conditioning agents to reduce coal-handling problems is discussed, as well as the relative efficacy of various nonchemical techniques. Guidelines for handling frozen coal that reflect typical problems and solutions are given.

1981-04-04T23:59:59.000Z

245

End-Effector Development for the PIP Puck Handling Robot  

SciTech Connect

It has been decided that excess, weapons-grade plutonium shall be immobilized to prevent nuclear proliferation. The method of immobilization is to encapsulate the plutonium in a ceramic puck, roughly the size of a hockey puck, using a sintering process. This method has been officially identified as the Plutonium Immobilization Process (PIP). A Can-in-Canister storage method will be used to further immobilize the plutonium. The Can-in-Canister method uses the existing design of a Defense Waste Processing Facility (DWPF) canister to house the plutonium pucks. the process begins with several pucks being stacked in a stainless steel can. Several of the stainless steel cans are stacked in a cage-like magazine. Several of the magazines are then placed in a DWPF canister. The DWPF canister is then filled with molten glass containing high-level, radioactive waste from the DWPF vitrification process. The Can-in-Canister method makes reclamation of plutonium from the pucks technically difficult and highly undesirable. The mechanical requirements of the Can-in-Canister process, in conjunction with the amount of time required to immobilize the vast quantities of weapons-grade plutonium, will expose personnel to unnecessarily high levels of radiation if the processes were completed manually, in glove boxes. Therefore, automated equipment is designed into the process to reduce or eliminate personnel exposure. Robots are used whenever the automated handling operations become complicated. There are two such operations in the initial stages of the Can-in-Canister process, which required a six-axis robot. The first operation is a press unloading process. The second operation is a tray transfer process. To successfully accomplish the operational tasks described in the two operations, the end-effector of the robot must be versatile, lightweight, and rugged. As a result of these demands, an extensive development process was undertaken to design the optimum end-effector for these puck-handling operations. As an overall requirement, it was desired to keep the design of the robot end-effector as simple as possible. There were pros and cons for either type of actuation method (pneumatic or electric). But, pneumatic actuation was chosen for its simplicity and durability in a radioactive environment. It was determined early in the design process that at least two different types of end-effectors would be required for each of the operations. Therefore, a tool changer was incorporated into the end-effector design. The tool changer would also provide for simple end-effector maintenance when used in the PIP process.

Fowley, M.D.

2001-01-03T23:59:59.000Z

246

End-Effector Development for the PIP Puck Handling Robot  

SciTech Connect

It has been decided that excess, weapons-grade plutonium shall be immobilized to prevent nuclear proliferation. The method of immobilization is to encapsulate the plutonium in a ceramic puck, roughly the size of a hockey puck, using a sintering process. This method has been officially identified as the Plutonium Immobilization Process (PIP). A Can-in-Canister storage method will be used to further immobilize the plutonium. The Can-in-Canister method uses the existing design of a Defense Waste Processing Facility (DWPF) canister to house the plutonium pucks. the process begins with several pucks being stacked in a stainless steel can. Several of the stainless steel cans are stacked in a cage-like magazine. Several of the magazines are then placed in a DWPF canister. The DWPF canister is then filled with molten glass containing high-level, radioactive waste from the DWPF vitrification process. The Can-in-Canister method makes reclamation of plutonium from the pucks technically difficult and highly undesirable. The mechanical requirements of the Can-in-Canister process, in conjunction with the amount of time required to immobilize the vast quantities of weapons-grade plutonium, will expose personnel to unnecessarily high levels of radiation if the processes were completed manually, in glove boxes. Therefore, automated equipment is designed into the process to reduce or eliminate personnel exposure. Robots are used whenever the automated handling operations become complicated. There are two such operations in the initial stages of the Can-in-Canister process, which required a six-axis robot. The first operation is a press unloading process. The second operation is a tray transfer process. To successfully accomplish the operational tasks described in the two operations, the end-effector of the robot must be versatile, lightweight, and rugged. As a result of these demands, an extensive development process was undertaken to design the optimum end-effector for these puck-handling operations. As an overall requirement, it was desired to keep the design of the robot end-effector as simple as possible. There were pros and cons for either type of actuation method (pneumatic or electric). But, pneumatic actuation was chosen for its simplicity and durability in a radioactive environment. It was determined early in the design process that at least two different types of end-effectors would be required for each of the operations. Therefore, a tool changer was incorporated into the end-effector design. The tool changer would also provide for simple end-effector maintenance when used in the PIP process.

Fowley, M.D.

2001-01-31T23:59:59.000Z

247

Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record  

Science Conference Proceedings (OSTI)

The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2010-10-01T23:59:59.000Z

248

A biomechanical analysis of patient handling techniques and equipment in a remote setting.  

E-Print Network (OSTI)

??Remote area staff performing manual patient handling tasks in the absence of patient lifting hoists available in most health care settings are at an elevated (more)

Muriti, Andrew John

2005-01-01T23:59:59.000Z

249

Pacific Northwest Laboratory (PNL) spent fuel transportation and handling facility models  

SciTech Connect

A spent fuel logistics study was conducted in support of the US DOE program to develop facilities for preparing spent unreprocessed fuel from commercial LWRs for geological storage. Two computerized logistics models were developed. The first one was the site evaluation model. Two studies of spent fuel handling facility and spent fuel disposal facility siting were completed; the first postulates a single spent fuel handling facility located at any of six DOE laboratory sites, while the second study examined siting strategies with the spent fuel repository relative to the spent fuel handling facility. A second model to conduct storage/handling facility simulations was developed. (DLC)

Andrews, W.B.; Bower, J.C.; Burnett, R.A.; Engel, R.L.; Rolland, C.W.

1979-09-01T23:59:59.000Z

250

Modernizing the handling of ear corn. Final technical report  

DOE Green Energy (OSTI)

The goal of the project was to modernize the handling of ear corn. The corn was picked with a three row JD 300 picker pulled by a tractor. Pulled behind the picker was a side dump wagon with a capacity of 150 bushels of ear corn. When the dump wagon was full, a grain truck was driven along side of the wagon and the dump wagon, controlled by the tractor driver, was emptied into the truck. After two dumps of the wagon, the truck was driven to the storage area. The storage area consisted of ten (ten) 2000 bushel corn cribs set in a semi circle so that the elevator that filled the cribs could be moved from one crib to the next without changing the fill point. At the storage area, the truck full of corn was dumped into the platform feeder. By using a platform feeder to feed the elevator, all ten (10) cribs could be filled without moving it. After the harvest was complete, the corn remains in the cribs until needed for feed or until the corn is sold. During the time that the corn remains in the cribs, the turbine ventilator draws air through the corn and dries it.

Kleptz, C.F.

1980-01-01T23:59:59.000Z

251

Removable pellicle for lithographic mask protection and handling  

DOE Patents (OSTI)

A removable pellicle for a lithographic mask that provides active and robust particle protection, and which utilizes a traditional pellicle and two deployments of thermophoretic protection to keep particles off the mask. The removable pellicle is removably attached via a retaining structure to the mask substrate by magnetic attraction with either contacting or non-contacting magnetic capture mechanisms. The pellicle retaining structural is composed of an anchor piece secured to the mask substrate and a frame member containing a pellicle. The anchor piece and the frame member are in removable contact or non-contact by the magnetic capture or latching mechanism. In one embodiment, the frame member is retained in a floating (non-contact) relation to the anchor piece by magnetic levitation. The frame member and the anchor piece are provided with thermophoretic fins which are interdigitated to prevent particles from reaching the patterned area of the mask. Also, the anchor piece and mask are maintained at a higher temperature than the frame member and pellicle which also prevents particles from reaching the patterned mask area by thermophoresis. The pellicle can be positioned over the mask to provide particle protection during mask handling, inspection, and pumpdown, but which can be removed manually or robotically for lithographic use of the mask.

Klebanoff, Leonard E. (Dublin, CA); Rader, Daniel J. (Albuquerque, NM); Hector, Scott D. (Oakland, CA); Nguyen, Khanh B. (Sunnyvale, CA); Stulen, Richard H. (Livermore, CA)

2002-01-01T23:59:59.000Z

252

Well tool lock mandrel and handling tools therefor  

SciTech Connect

A lock mandrel and running tool assembly for setting and locking a well tool in a landing nipple along a well bore is described comprising: a lock mandrel having a body provided with at least one side window; a support shoulder on the body for supporting the mandrel in a no-go landing nipple; a radially movable locking dog in the side window; a longitudinally movable expander sleeve in the body movable within the dog for expanding and locking the dog outwardly and releasing the dog for inward movement, the expander sleeve having an internal annular recess for engagement by a handling tool to move the sleeve upwardly and downwardly and an external annular latch boss along an upper end portion thereof; and a latch ring in the body around the expander sleeve above the locking dog for engagement with the latch boss on the sleeve when the sleeve is at an upper locking position to releasably hold the sleeve in the upper position. The running tool includes a head assembly for connection with an operating tool string; an upper retainer dog assembly supported from the head assembly for releasably coupling the running tool with the body of the lock mandrel; a lower locking lug assembly supported from the head assembly for releasably coupling the running tool with the expander sleeve of the lock mandrel to move the expander sleeve between locking and release positions.

Higgins, B.D.

1988-05-24T23:59:59.000Z

253

ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES  

SciTech Connect

Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

2011-06-07T23:59:59.000Z

254

Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report number 8, October 1--December 31, 1995  

SciTech Connect

The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.

1996-03-15T23:59:59.000Z

255

Field Test of Manufactured Gas Plant Remediation Technologies: Material Removal and Handling  

Science Conference Proceedings (OSTI)

Common manufactured gas plant (MGP) site structures are often sources of contamination and present a number of unique material removal and handling challenges. This report provides results from a field-scale study involving the excavation of the contents of a subgrade gas holder tank. Specifically discussed are the material handling activities needed to prepare MGP impacted soils and debris for remediation processes.

1996-02-02T23:59:59.000Z

256

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-10-01T23:59:59.000Z

257

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-05-01T23:59:59.000Z

258

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-02-01T23:59:59.000Z

259

Viability of Existing INL Facilities for Dry Storage Cask Handling R1 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Viability of Existing INL Facilities for Dry Storage Cask Handling Viability of Existing INL Facilities for Dry Storage Cask Handling R1 Viability of Existing INL Facilities for Dry Storage Cask Handling R1 While dry storage technologies are some of the safest in the world, the U.S. Department of Energy is planning a confirmatory dry storage project for high burnup fuel. This report evaluates existing capabilities at Idaho National Laboratory (INL) to determine if a practical and cost effective method could be developed for handling and opening full-sized dry storage casks. Existing facilities at the Idaho Nuclear Technology and Engineering Center provide the infrastructure to support handling and examining of casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal

260

EA-1793: Replacement Capability for Disposal of Remote-handled Low-level  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

793: Replacement Capability for Disposal of Remote-handled 793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site Summary This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Public Comment Opportunities Submit Comments to: Mr. Chuck Ljungberg 1955 Fremont Avenue, Mailstop 1216 Idaho Falls, ID 83415 Electronic mail: rhllwea@id.doe.gov Documents Available for Download December 21, 2011 EA-1793: Finding of No Significant Impact Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

V-007: McAfee Firewall Enterprise ISC BIND Record Handling Lockup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: McAfee Firewall Enterprise ISC BIND Record Handling Lockup 7: McAfee Firewall Enterprise ISC BIND Record Handling Lockup Vulnerability V-007: McAfee Firewall Enterprise ISC BIND Record Handling Lockup Vulnerability October 22, 2012 - 6:00am Addthis PROBLEM: McAfee Firewall Enterprise ISC BIND Record Handling Lockup Vulnerability PLATFORM: Versions 8.2.x prior to 8.2.1P06, and 8.3.x prior to 8.3.0P02 REFERENCE LINKS: Secunia Advisory SA51050 CVE-2012-5166 McAfee Corporate Knowledge Base IMPACT ASSESSMENT: Medium DISCUSSION: The vulnerability is caused due to an error when handling queries for certain records and can be exploited to cause the named process to lockup. IMPACT: If specific combinations of RDATA are loaded into a nameserver, either via cache or an authoritative zone, a subsequent query for a related record

262

Exploring Maximum Humidity Control and Energy Conservation Opportunities with Single Duct Single Zone Air-Handling Units  

E-Print Network (OSTI)

Humidity control for single-duct single-zone (SDSZ) constant volume air handling units is known to be a challenge. The operation of these systems is governed by space temperature only. Under mild weather conditions, discharge air temperature can get much higher than the space dew point and the dehumidification capability of the system is diminished. Buildings served by this type of air handler often experience exceptionally high humidity levels under humid weather conditions. Many potential solutions and improvements exist. However, these solutions require system modifications or upgrades and therefore are less attractive to some facility owners. A Critical Humidity Control Program (CHCP) was developed to change the normal control sequence of the air-handling units during high humidity periods to help improve the moisture removal capability of the system. The program was not designed to solve the problem completely, but the overall humidity levels can be lowered and controlled within a reasonably low range (58% - 65%) for a significant part of the high humidity seasons. This approach is relatively easy to implement and does not require any hardware changes. This paper also summarizes various potential solutions to improve humidity control for SDSZ units. The advantages and disadvantages for each solution are compared.

Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.

2006-01-01T23:59:59.000Z

263

Canister Transfer System Description Document  

SciTech Connect

The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane/hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

NONE

2000-10-12T23:59:59.000Z

264

New Developments in Storage and Handling of Biomass  

E-Print Network (OSTI)

An extensive research project to derive guidelines for the design of a reliable bin-feeder system for biomass materials has been completed. The new system uses a converging mass flow hopper with a much smaller outlet and discharge feeder compared to existing systems. A reliable and economical system with a superior performance has been achieved. Two existing hog fuel storage bins in pulp mills have been successfully modified, based on the new design.

Bundalli, N.

1986-06-01T23:59:59.000Z

265

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-05-01T23:59:59.000Z

266

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-02-01T23:59:59.000Z

267

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

268

Spent nuclear fuel shipping cask handling capabilities of commercial light water reactors  

Science Conference Proceedings (OSTI)

This report describes an evaluation of the cask handling capabilities of those reactors which are operating or under construction. A computerized data base that includes cask handling information was developed with information from the literature and utility-supplied data. The capability of each plant to receive and handle existing spent fuel shipping casks was then evaluated. Modal fractions were then calculated based on the results of these evaluations and the quantities of spent fuel projected to be generated by commercial nuclear power plants through 1998. The results indicated that all plants are capable of receiving and handling truck casks. Up to 118 out of 130 reactors (91%) could potentially handle the larger and heavier rail casks if the maximum capability of each facility is utilized. Design and analysis efforts and physical modifications to some plants would be needed to achieve this high rail percentage. These modifications would be needed to satisfy regulatory requirements, increase lifting capabilities, develop rail access, or improve other deficiencies. The remaining 12 reactors were determined to be capable of handling only the smaller truck casks. The percentage of plants that could receive and handle rail casks in the near-term would be reduced to 64%. The primary reason for a plant to be judged incapable of handling rail casks in the near-term was a lack of rail access. The remaining 36% of the plants would be limited to truck shipments. The modal fraction calculations indicated that up to 93% of the spent fuel accumulated by 1998 could be received at federal storage or disposal facilities via rail (based on each plant's maximum capabilities). If the near-term cask handling capabilities are considered, the rail percentage is reduced to 62%.

Daling, P.M.; Konzek, G.J.; Lezberg, A.J.; Votaw, E.F.; Collingham, M.I.

1985-04-01T23:59:59.000Z

269

ANALYSIS OF BIOMASS HARVEST, HANDLING, AND COMPUTER MODELING.  

E-Print Network (OSTI)

??Biomass materials are currently considered for use in direct combustion systems, and for value added products. The major roadblock associated with implementation of biomass into (more)

Brownell, Douglas

2009-01-01T23:59:59.000Z

270

Safety System Oversight Assessment of the Los Alamos National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System INTRODUCTION AND...

271

Development of an Outdoor Concentrating Photovoltaic Module Testbed, Module Handling and Testing Procedures, and Initial Energy Production Results  

DOE Green Energy (OSTI)

This report addresses the various aspects of setting up a CPV testbed and procedures for handling and testing CPV modules.

Muller, M.

2009-09-01T23:59:59.000Z

272

U-226: Linux Kernel SFC Driver TCP MSS Option Handling Denial of Service  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Linux Kernel SFC Driver TCP MSS Option Handling Denial of 6: Linux Kernel SFC Driver TCP MSS Option Handling Denial of Service Vulnerability U-226: Linux Kernel SFC Driver TCP MSS Option Handling Denial of Service Vulnerability August 2, 2012 - 7:00am Addthis PROBLEM: Linux Kernel SFC Driver TCP MSS Option Handling Denial of Service Vulnerability PLATFORM: Linux Kernel 3.2.x ABSTRACT: The Linux kernel is prone to a remote denial-of-service vulnerability. reference LINKS: Secunia Advisory SA50081 Bugtraq ID: 54763 Vulnerability Report: Linux Kernel 3.2.x The Linux Kernel Archives Original Advisory CVE-2012-3412 IMPACT ASSESSMENT: Medium Discussion: A vulnerability has been reported in Linux Kernel, which can be exploited by malicious people to cause a DoS (Denial of Service). The vulnerability is caused due to an error in the Solarflare network

273

WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Remote-Handled Waste Shipment From Sandia Labs First Remote-Handled Waste Shipment From Sandia Labs WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs December 21, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) has received the first of eight planned defense-related remote-handled transuranic (RH-TRU) waste shipments from Sandia National Laboratories (SNL) in Albuquerque. The shipment arrived December 16 for permanent disposal in WIPP's underground repository. DOE National TRU Program Director J.R. Stroble said the shipment is significant to WIPP. "Our goal is to reduce the nation's nuclear waste footprint and we routinely receive shipments from around the country,"

274

State of New Mexico Issues Permit For Remote-Handled Waste at WIPP |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of New Mexico Issues Permit For Remote-Handled Waste at WIPP of New Mexico Issues Permit For Remote-Handled Waste at WIPP State of New Mexico Issues Permit For Remote-Handled Waste at WIPP October 16, 2006 - 1:35pm Addthis Enables DOE to Permanently Move Waste to the WIPP Repository for Safe Disposal CARLSBAD, NM - U.S. Department of Energy (DOE) today announced that the New Mexico Environment Department (NMED) issued a revised hazardous waste facility permit for DOE's Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The revised permit enables WIPP to receive and dispose of remote-handled (RH) transuranic (TRU) radioactive waste currently stored at DOE clean-up sites across the country. WIPP expects to receive its first RH-TRU waste shipment in the coming months, as soon as the regulatory approvals are obtained.

275

Thread-Specific Data and Signal Handling in Multi-Threaded Applications  

Science Conference Proceedings (OSTI)

This second part of a series on Multi-threading deals with how to use C programs with one of the POSIX packages available for Linux to handle signals and concurrent threads

Martin McCarthy

1997-04-01T23:59:59.000Z

276

Remote-Handled Low-Level Waste Disposal Project Code of Record  

Science Conference Proceedings (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-04-01T23:59:59.000Z

277

Remote-Handled Low-Level Waste Disposal Project Code of Record  

Science Conference Proceedings (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-06-01T23:59:59.000Z

278

Remote-Handled Low-Level Waste Disposal Project Code of Record  

Science Conference Proceedings (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-01-01T23:59:59.000Z

279

Remote-Handled Low-Level Waste Disposal Project Code of Record  

Science Conference Proceedings (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-04-01T23:59:59.000Z

280

Frying Technology and PracticesChapter 5 Procedures for Oil Handling in a Frying Operation  

Science Conference Proceedings (OSTI)

Frying Technology and Practices Chapter 5 Procedures for Oil Handling in a Frying Operation Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloa

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

U-226: Linux Kernel SFC Driver TCP MSS Option Handling Denial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2, 2012 - 7:00am Addthis PROBLEM: Linux Kernel SFC Driver TCP MSS Option Handling Denial of Service Vulnerability PLATFORM: Linux Kernel 3.2.x ABSTRACT: The Linux...

282

Soap Manufacturing TechnologyChapter 13 Soap Making Raw Materials: Their Sources, Specifications, Markets, and Handling  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 13 Soap Making Raw Materials: Their Sources, Specifications, Markets, and Handling Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tCha

283

ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2012  

DOE Green Energy (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the fourth quarter of 2012.

Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.; Ramsden, T.

2013-05-01T23:59:59.000Z

284

Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

Not Available

1992-09-01T23:59:59.000Z

285

ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2012  

DOE Green Energy (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the second quarter of 2012.

Kurtz, J.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-10-01T23:59:59.000Z

286

Assessing 1D Atmospheric Solar Radiative Transfer Models: Interpretation and Handling of Unresolved Clouds  

Science Conference Proceedings (OSTI)

The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. ...

H. W. Barker; G. L. Stephens; P. T. Partain; J. W. Bergman; B. Bonnel; K. Campana; E. E. Clothiaux; S. Clough; S. Cusack; J. Delamere; J. Edwards; K. F. Evans; Y. Fouquart; S. Freidenreich; V. Galin; Y. Hou; S. Kato; J. Li; E. Mlawer; J.-J. Morcrette; W. O'Hirok; P. Risnen; V. Ramaswamy; B. Ritter; E. Rozanov; M. Schlesinger; K. Shibata; P. Sporyshev; Z. Sun; M. Wendisch; N. Wood; F. Yang

2003-08-01T23:59:59.000Z

287

Extensive remote handling and conservative plasma conditions to enable fusion nuclear science R&D using a component testing facility  

E-Print Network (OSTI)

FT/P3-14 Page 1 Extensive remote handling and conservative plasma conditions to enable fusion modularization and remote handling, and allow conservative plasma assumptions including an extended divertor component modularization and capability for remote handling, and estimate the replacement times of various

Princeton Plasma Physics Laboratory

288

SAFETY CONSIDERATIONS FOR HANDLING PLUTONIUM, URANIUM, THORIUM, THE ALKALI METALS, ZIRCONIUM, TITANIUM, MAGNESIUM, AND CALCIUM  

SciTech Connect

BS>This report compiles from various sources safety considerations for work with the special metals plutonium, uranium, thorium, the alkali group, magnesium, titanium, calcium, and zirconium. General criteria to be observed in handling all of these metals and their alloys are listed, as well as characteristics of individual metals with regard to health hazards, pyrophoricity, explosiveness, and other chemical reactions, in both handling and storage. (auth)

Stout, E.L. comp.

1957-09-01T23:59:59.000Z

289

Automatic multi-interface management through profile handling  

Science Conference Proceedings (OSTI)

In the recent years, wireless communication systems have received increased interest in commercial applications. Different kind of wireless public access have become increasingly available in various areas like airports, stations and shopping centers ... Keywords: heterogeneous networks, profile management, ubiquitous computing, vertical handover middleware

Jean-Marie Bonnin; Imed Lassoued; Zied Ben Hamouda

2009-02-01T23:59:59.000Z

290

Annual Report of the EURATOM/CCFE Fusion Programme 2010/11 8 ITER Systems  

E-Print Network (OSTI)

to the ITER heating, diagnostic and remote handling systems in particular. Fusion for Energy (F4E) content, the ion temperature and flow; · Remote handling system, in particular the design for the Neutral Remote Handling requirements; · Full manufacturing / assembly assessments. Figure 8.5: Development

291

TARGET ENCLOSURE AND SYSTEM DESIGN FOR A MERCURY-TARGET NEUTRINO PRODUCING FACILITY  

E-Print Network (OSTI)

for mercury target system components, and various remote handling equipment used for maintenance tasks; therefore, replacing components after start-up operations must be done using remote handling equipment for radioactive component handling. The major components include the target containment system, a high magnetic

McDonald, Kirk

292

Shielded Payload Containers Will Enhance the Safety and Efficiency of the DOE's Remote Handled Transuranic Waste Disposal Operations  

Science Conference Proceedings (OSTI)

The Waste Isolation Pilot Plant (WIPP) disposal operation currently employs two different disposal methods: one for Contact Handled (CH) waste and another for Remote Handled (RH) waste. CH waste is emplaced in a variety of payload container configurations on the floor of each disposal room. In contrast, RH waste is packaged into a single type of canister and emplaced in pre-drilled holes in the walls of disposal rooms. Emplacement of the RH waste in the walls must proceed in advance of CH waste emplacement. This poses a significant logistical constraint on waste handling operations by requiring significant coordination between waste characterization and preparations for shipping among the various generators. To improve operational efficiency, the Department of Energy (DOE) is proposing a new waste emplacement process for certain RH waste streams that can be safely managed in shielded containers. RH waste with relatively low gamma-emitting activity would be packaged in lead-lined containers, shipped to WIPP in existing certified transportation packages for CH waste, and emplaced in WIPP among the stacks of CH waste containers on the floor of a disposal room. RH waste with high gamma-emitting activity would continue to be emplaced in the boreholes along the walls. The new RH container appears essentially the same as a nominal 208-liter drum, but is built with about 2.5 cm of lead, sandwiched between thick steel sheet. The top and bottom are made of very thick plate steel, for strengthening the package to meet transportation requirements, and provide similar gamma attenuation. This robust configuration provides an overpack for waste that otherwise would be remotely handled. Up to a 3:1 reduction in number of shipments is projected if RH waste were transported in the proposed shielded containers. This paper describes the container design and testing, as well as the regulatory approach used to meet the requirements that apply to WIPP and its associated transportation system. This paper describes the RH transuranic waste inventory that may be candidates for packaging and emplacement in shielded containers. DOE does not propose to use shielded containers to increase the amount of RH waste allowed at WIPP. DOE's approach to gain approval for the transportation of shielded containers and to secure regulatory approval for use of shielded containers from WIPP regulators is discussed. Finally, the paper describes how DOE proposes to count the waste packaged into shielded containers against the RH waste inventory and how this will comply with the volume and radioactivity limitations imposed in the many and sometimes overlapping regulations that apply to WIPP. (authors)

Nelson, R.A. [U. S. Department of Energy, Carlsbad, New Mexico (United States); White, D.S. [Washington Group International, Carlsbad, New Mexico (United States)

2008-07-01T23:59:59.000Z

293

Spent fuel handling and packaging program. Management summary report  

SciTech Connect

Objective is to design, develop, and demonstrate a spent fuel package for geologic storage and disposal; to design, license, and construct the facilities to produce this package; and to develop and demonstrate technology for the dry, passive surface storage of spent fuel. Progress is reported on engineering and system studies, technical R and D studies, demonstrations, project support studies, spent fuel facility project, and program management.

1978-09-01T23:59:59.000Z

294

Use of commercial manipulator to handle a nuclear weapon component  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory (PNL) has developed a manipulator workcell to load and unload nuclear weapon pit assemblies from a cart. To develop this workcell, PNL procured a commercially available manipulator, equipped it with force-sensing and vision equipment, and developed manipulator control software. Manipulator workcell development demonstrated that commercially available manipulator systems can successfully perform this task if the appropriate manipulator is selected and the manipulator workcell tooling and software are carefully designed.

Baker, C.P.

1994-08-01T23:59:59.000Z

295

Remote handling equipment at the hanford waste treatment plant  

Science Conference Proceedings (OSTI)

Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's Hanford Waste Treatment Plant. The storage tanks could potentially leak into the ground water and into the Columbia River. The solution for this risk of the leaking waste is vitrification. Vitrification is a process of mixing molten glass with radioactive waste to form a stable condition for storage. The Department of Energy has contracted Bechtel National, Inc. to build facilities at the Hanford site to process the waste. The waste will be separated into high and low level waste. Four major systems will process the waste, two pretreatment and two high level. Due to the high radiation levels, high integrity custom cranes have been designed to remotely maintain the hot cells. Several critical design parameters were implemented into the remote machinery design, including radiation limitations, remote operations, Important to Safety features, overall equipment effectiveness, minimum wall approaches, seismic constraints, and recovery requirements. Several key pieces of equipment were designed to meet these design requirements - high integrity crane bridges, trolleys, main hoists, mast hoists, slewing hoists, a monorail hoist, and telescoping mast deployed tele-robotic manipulator arms. There were unique and challenging design features and equipment needed to provide the remotely operated high integrity crane/manipulator systems for the Hanford Waste Treatment Plant. The cranes consist of a double girder bridge with various main hoist capacities ranging from one to thirty ton and are used for performing routine maintenance. A telescoping mast mounted tele-robotic manipulator arm with a one-ton hook is deployed from the trolley to perform miscellaneous operations in-cell. A dual two-ton slewing jib hoist is mounted to the bottom of the trolley and rotates 360 degrees around the mast allowing the closest hook wall approaches. Each of the two hoists on this slewer is mounted 180 degrees opposite each other. Another system utilizes a single one-ton slewing jib hoist that can extend and retract as well as rotate 270 degrees around the mast. Yet, another system utilizes an under-hung monorail trolley with one-ton hoist capacity mounted to the bottom of the bridge girder. The main, slewer and monorail hoists each have power-rotating hooks for installing and removing equipment in the hot cell. (authors)

Bardal, M.A. [PaR Systems, Inc., Shoreview, MN, (United States); Roach, J.D. [Bechtel National, Inc., Richland, WA (United States)

2007-07-01T23:59:59.000Z

296

ESP: a system utilization benchmark  

Science Conference Proceedings (OSTI)

This article describes a new benchmark, called the Effective System Performance (ESP) test, which is designed to measure system-level performance, including such factors as job scheduling efficiency, handling of large jobs and shutdown-reboot times. ...

Adrian T. Wong; Leonid Oliker; William T. C. Kramer; Teresa L. Kaltz; David H. Bailey

2000-11-01T23:59:59.000Z

297

DEMO Hot Cell and Ex-Vessel Remote Handling  

E-Print Network (OSTI)

In Europe the work on the specification and design of a Demonstration Power Plant (DEMO) is being carried out by EFDA in the Power Plant Physics and Technology (PPP&T) programme. DEMO will take fusion from experimental research into showing the potential for commercial power generation. This paper describes the first steps being taken towards the design of the DEMO Hot Cell. It will show a comparison of the current DEMO in-vessel maintenance concepts from a Hot Cell perspective, describe a proposed ex-vessel transport system, and summarize the facilities that have been identified as required within the Hot Cell, examine current RH technology and discuss the identified critical development issues.

Thomas, Justin; Bachmann, Christian; Harman, Jon

2013-01-01T23:59:59.000Z

298

Plasma Fueling, Pumping, and Tritium Handling Considerations for FIRE  

Science Conference Proceedings (OSTI)

Tritium pellet injection will be utilized on the Fusion Ignition Research Experiment (FIRE) for efficient tritium fueling and to optimize the density profile for high fusion power. Conventional pneumatic pellet injectors, coupled with a guidetube system to launch pellets into the plasma from the high, field side, low field side, and vertically, will be provided for fueling along with gas puffing for plasma edge density control. About 0.1 g of tritium must be injected during each 10-s pulse. The tritium and deuterium will be exhausted into the divertor. The double null divertor will have 16 cryogenic pumps located near the divertor chamber to provide the required high pumping speed of 200 torr-L/s.

Fisher, P.W.; Foster, C.A.; Gentile, C.A.; Gouge, M.J.; Nelson, B.E.

1999-11-13T23:59:59.000Z

299

Microsoft Word - Los Alamos National Laboratory ships remote-handled transuranic waste to WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory Ships Remote-Handled Los Alamos National Laboratory Ships Remote-Handled Transuranic Waste to WIPP CARLSBAD, N.M., June 3, 2009 - Cleanup of the nation's defense-related transuranic (TRU) waste has reached an important milestone. Today, the first shipment of remote-handled (RH) TRU waste from Los Alamos National Laboratory (LANL) in New Mexico arrived safely at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) in the southeast corner of the state. "Shipping this waste to WIPP is important for our national cleanup mission, but this event is especially important for New Mexicans," said DOE Carlsbad Field Office Manager Dave Moody. "It's great to see progress being made right here in our own state." WIPP's mission includes the safe disposal of two types of defense-related

300

29 C.F.R. Part 24: Procedures for the Handling of Retaliation Complaints  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Part 24: Procedures for the Handling of Retaliation Part 24: Procedures for the Handling of Retaliation Complaints under Federal Employee Protection Statutes 29 C.F.R. Part 24: Procedures for the Handling of Retaliation Complaints under Federal Employee Protection Statutes Stakeholders: DOE Employees and Employees of DOE Contractors Scope: 29 C.F.R. Part 24 implements procedures under the employee protection provisions for which the Secretary of Labor has been given responsibility pursuant to the following federal statutes: Safe Drinking Water Act, 42 U.S.C. 300j-9(i); Federal Water Pollution Control Act, 33 U.S.C. 1367; Toxic Substances Control Act, 15 U.S.C. 2622; Solid Waste Disposal Act, 42 U.S.C. 6971; Clean Air Act, 42 U.S.C. 7622; Energy Reorganization Act of 1974, 42 U.S.C. 5851; and Comprehensive Environmental Response, Compensation and Liability Act

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Final remote-handled waste canister leaves Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Remote-handled waste canister leaves LANL Remote-handled waste canister leaves LANL Final remote-handled waste canister leaves Los Alamos National Laboratory The Laboratory began shipping the canisters exactly one month ago and averaged four shipments per week. July 2, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

302

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energys mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2009-10-01T23:59:59.000Z

303

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energys mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-03-01T23:59:59.000Z

304

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energys mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-04-01T23:59:59.000Z

305

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energys mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-06-01T23:59:59.000Z

306

Green Button Giving Millions of Americans Better Handle on Energy Costs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Giving Millions of Americans Better Handle on Energy Giving Millions of Americans Better Handle on Energy Costs Green Button Giving Millions of Americans Better Handle on Energy Costs March 22, 2012 - 1:14pm Addthis Image courtesy of the National Institute of Standards and Technology. Image courtesy of the National Institute of Standards and Technology. John P. Holdren and Nancy Sutley What does this project do? Green Button provides millions of utility customers with easy access to a downloadable copy of their electricity usage data. This article is cross posted from the White House. More information about Apps for Energy, the Energy Department's software development competition, is here. On that page, you can submit app ideas and sign up for competition news and announcements. This afternoon President Obama is visiting Ohio State University to

307

Applying Remote Handling Attributes to the ITER Neutral Beam Cell Monorail Crane  

E-Print Network (OSTI)

The maintenance requirements for the equipment in the ITER Neutral Beam Cell requires components to be lifted and transported within the cell by remote means. To meet this requirement, the provision of an overhead crane with remote handling capabilities has been initiated. The layout of the cell has driven the design to consist of a monorail crane that travels on a branched monorail track attached to the cell ceiling. This paper describes the principle design constraints and how the remote handling attributes were applied to the concept design of the monorail crane, concentrating on areas where novel design solutions have been required and on the remote recovery requirements and solutions.

Crofts, O; Raimbach, J; Tesini, A; Choi, C-H; Damiani, C; Van Uffelen, M

2013-01-01T23:59:59.000Z

308

Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-01T23:59:59.000Z

309

Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 7, July 1, 1995--September 30, 1995  

SciTech Connect

The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled Coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. The Mulled Coal circuit was installed in an empty bay at the Chetopa Preparation Plant. Equipment has been installed to divert a 2.7 tonnes/hr (3 tons/hr) slipstream of the froth concentrate to a dewatering centrifuge. The concentrated wet coal fines from the centrifuge dropped through a chute directly into a surge hopper and feed system for the Mulled Coal circuit. The Mulled Coal product was gravity discharged from the circuit to a truck or product discharge area from which it will be hauled to a stockpile located at the edge of the clean coal stockpile area. During the 3-month operating period, the facility produced 870 tonnes (966 tons) of the Muffed Coal for evaluation in various storage, handling, and transportation equipment and operations. Immediately following the production demonstration, the circuit was disassembled and the facility was decommissioned.

1996-08-22T23:59:59.000Z

310

Direct Methanol Fuel Cell Material Handling Equipment Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Todd Ramsden National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3704 Email: todd.ramsden@nrel.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Subcontractor: Oorja Protonics, Inc., Fremont, CA Project Start Date: June 1, 2010 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Operate and maintain fuel-cell-powered material * handling equipment (MHE) using direct methanol fuel cell (DMFC) technology. Compile operational data of DMFCs and validate their * performance under real-world operating conditions. Provide an independent technology assessment that * focuses on DMFC system performance, operation, and

311

Evaluation of a Mobile Hot Cell Technology for Processing Idaho National Laboratory Remote-Handled Wastes  

SciTech Connect

The Idaho National Laboratory (INL) currently does not have the necessary capabilities to process all remote-handled wastes resulting from the Laboratorys nuclear-related missions. Over the years, various U.S. Department of Energy (DOE)-sponsored programs undertaken at the INL have produced radioactive wastes and other materials that are categorized as remote-handled (contact radiological dose rate > 200 mR/hr). These materials include Spent Nuclear Fuel (SNF), transuranic (TRU) waste, waste requiring geological disposal, low-level waste (LLW), mixed waste (both radioactive and hazardous per the Resource Conservation and Recovery Act [RCRA]), and activated and/or radioactively-contaminated reactor components. The waste consists primarily of uranium, plutonium, other TRU isotopes, and shorter-lived isotopes such as cesium and cobalt with radiological dose rates up to 20,000 R/hr. The hazardous constituents in the waste consist primarily of reactive metals (i.e., sodium and sodium-potassium alloy [NaK]), which are reactive and ignitable per RCRA, making the waste difficult to handle and treat. A smaller portion of the waste is contaminated with other hazardous components (i.e., RCRA toxicity characteristic metals). Several analyses of alternatives to provide the required remote-handling and treatment capability to manage INLs remote-handled waste have been conducted over the years and have included various options ranging from modification of existing hot cells to construction of new hot cells. Previous analyses have identified a mobile processing unit as an alternative for providing the required remote-handled waste processing capability; however, it was summarily dismissed as being a potentially viable alternative based on limitations of a specific design considered. In 2008 INL solicited expressions of interest from Vendors who could provide existing, demonstrated technology that could be applied to the retrieval, sorting, treatment (as required), and repackaging of INL remote-handled wastes. Based on review of the responses and the potential viability of a mobile hot cell technology, INL subsequently conducted a technology evaluation, including proof-of-process validation, to assess the feasibility of utilizing such a technology for processing INLs remote-handled wastes to meet established regulatory milestones. The technology evaluation focused on specific application of a mobile hot cell technology to the conditions to be encountered at the INL and addressed details of previous technology deployment, required modifications to accommodate INLs remote-handled waste, ability to meet DOE safety requirements, requirements for fabrication/construction/decontamination and dismantling, and risks and uncertainties associated with application of the technology to INLs remote-handled waste. The large capital costs associated with establishing a fixed asset to process INLs remote-handled waste, the relatively small total volume of waste to be processed when compared to other waste streams through the complex, and competing mission-related needs has made it extremely difficult to secure the necessary support to advance the project. Because of this constraint, alternative contract structures were also explored as part of the technology evaluation wherein the impact of a large capital investment could be lessened.

B.J. Orchard; L.A. Harvego; R.P. Miklos; F. Yapuncich; L. Care

2009-03-01T23:59:59.000Z

312

Handbook for Handling, Storing, and Dispensing E85, July 2010, Energy Efficiency and Renewable Energy (EERE), Clean Cities (Brochure)  

SciTech Connect

Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

2010-07-01T23:59:59.000Z

313

Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-10-01T23:59:59.000Z

314

CARGO HANDLING COOPERATIVE PROGRAM Program Sector: Agile Port and Terminal Systems Technologies  

E-Print Network (OSTI)

this document, the CHCP tested and evaluated the operation of selected radio frequency (RF) based e-seals. Electronic seals were evaluated from four manufacturers that are currently supplying electronic container seals to the marketplace. In addition, the CHCP also evaluated one non-RF e-seal solution. This product has similar functionality, in terms of security and data, as the other tested e-seals but uses a contact memory linkage to transmit data instead of an RF link. As part of the current effort, the CHCP first tested each of the evaluated RF eseals in a laboratory to determine baseline communication performance both in free space and mounted on a container. Each seal was then evaluated for readability in three different field environments: on a container being moved through a container terminal gate, on a container moving along an open road, and on a simulated container being moved on a double-stack rail car. Seals were tested to not only determine how the technologies perform in these real-world environments but also to evaluate the various trade-offs that exist with e-seal design and the potential impact of those trade-offs on functionality, reliability, utility, and cost. The goal of this effort was not to select a "winner" (i.e., a seal which would become an industry standard) but rather to develop the technical baseline that will help government and industry stake-holders select appropriate solutions based on security, operational, and economic requirements. As such, testing and evaluation was completed not to provide a head-to-head comparison of eseals from different manufacturers but instead to identify the major design tradeoffs that exist between the various seals and to identify how these design tradeoffs might effect the deployment and performance of t...

Program Element Cargo; Subcontract S-chcp

2003-01-01T23:59:59.000Z

315

Design Study of Remote Handling System for Lower Divertor Cassettes in JT-60SA  

Science Conference Proceedings (OSTI)

Blanket Design and Experiments / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

Takao Hayashi; Shinji Sakurai; Kiyoshi Shibanuma; Akira Sakasai

316

A new guide for commissioning air handling systems: Using a model functional test  

E-Print Network (OSTI)

or a transmitter at the RTD. Subject to moderate self-temperature detector (RTD) Nearly linear over a wide rangeresistance compared to a RTD, so lead wire resistance errors

Haasl, Tudi; Sellers, David; Friedman, Hannah; Piette, Mary Ann; Bourassa, Norman; Gillespie, Ken

2002-01-01T23:59:59.000Z

317

Annual Report of the EURATOM/CCFE Fusion Programme 2011/12 8 ITER Systems  

E-Print Network (OSTI)

and Remote Handling etc.) in Europe; 8ITERSystems · Seek to play other design roles in R&D of ITER specialist the helium (ash) content, the ion temperature and flow; · Remote handling system, in particular the design Dump and Calorimeter designs. 8.2.3 REMOTE HANDLING CCFE was awarded a grant to complete the conceptual

318

On performance evaluation of handling streaming traffic in IP networks using TFRC protocol  

Science Conference Proceedings (OSTI)

This paper deals with the performance evaluation of handling streaming traffic in IP best effort networks using TFRC protocol. In our studies we check and discuss an influence of video on demand traffic and different network conditions on TFRC congestion ... Keywords: IP network, TCP-friendly, best-effort, video on demand

Kacper Kurowski; Halina Tarasiuk

2008-05-01T23:59:59.000Z

319

Real-time deferrable load control: handling the uncertainties of renewable generation  

Science Conference Proceedings (OSTI)

Real-time demand response is essential for handling the uncertainties of renewable generation. Traditionally, demand response has been focused on large industrial and commercial loads, however it is expected that a large number of small residential loads ... Keywords: deferrable load control, demand response, model predictive control, smart grid

Lingwen Gan, Adam Wierman, Ufuk Topcu, Niangjun Chen, Steven H. Low

2013-01-01T23:59:59.000Z

320

Current methods to handle wall conduction and room internal heat transfer  

SciTech Connect

This paper reviews methods of handling wall conduction and room internal heat exchange adopted by ASHRAE (1993 Handbook of Fundamentals and later developments), CIBSE (1986 Guide and current proposals), and the CEN/TC89/WG6 proposals to calculate heating and cooling loads and related topics.

Davies, M.G.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air  

Energy.gov (U.S. Department of Energy (DOE))

Revised fact sheet describes the transpired solar collector that was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

322

Power Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via  

E-Print Network (OSTI)

results of the power generation loading optimization based on a coal-fired power plant demonstratesPower Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via PSO power industry. A major objective for the coal-fired power generation loading optimization

Li, Xiaodong

323

3.1.1.2 Feed Processing and Handling DL2 Final Report  

DOE Green Energy (OSTI)

This milestone report is the deliverable for our Feed Processing and Handling project. It includes results of wet biomass feedstock analysis, slurry pumping information, fungal processing to produce a lignin-rich biorefinery residue and two subcontracted efforts to quantify the amount of wet biomass feedstocks currently available within the corn processing and paper processing industries.

Elliott, Douglas C.; Magnuson, Jon K.; Wend, Christopher F.

2006-09-30T23:59:59.000Z

324

Handling Triple Hidden Terminal Problems for Multi-Channel MAC in Long-Delay Underwater  

E-Print Network (OSTI)

1 Handling Triple Hidden Terminal Problems for Multi-Channel MAC in Long-Delay Underwater Sensor-channel MAC problem in underwater acoustic sensor networks. To reduce hardware cost, only one acoustic transceiver is often preferred on every node. In a single-transceiver multi- channel long-delay underwater

Cui, Jun-Hong

325

Siting Study for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

2010-10-01T23:59:59.000Z

326

Improved safety through training for gas-handling operations at the ship-jetty interface  

SciTech Connect

Leith Nautical College has found that integrated training of both ship and dock personnel in LNG-cargo handling is beneficial to both groups of workers. Overlapping coursework alleviate much of the difficulties which emerge in implementing this approach. The use of computers and models to simulate loading and off-loading operation has been a valuable aid in training workers for maximum safety.

Mcquire, G.

1979-01-01T23:59:59.000Z

327

Guidelines for the Selection, Use, and Handling of High Temperature Insulation  

Science Conference Proceedings (OSTI)

This guide addresses design considerations for selecting replacement materials based on reviewing acceptable operating experience; handling new and used insulating materials safely; and identifying training criteria for personnel that come in contact with insulation. The user can complete an economically sound, energy conserving, and safe insulation maintenance project by applying this guide.

1997-11-13T23:59:59.000Z

328

The Muon Collider/Neutrino Factory Target System H.G. Kirk (BNL) and K.T. McDonald (Princeton U.)  

E-Print Network (OSTI)

, with its remote-handling equipment, and hot-cells for eventual processing of activated materials must be performed by remote-handling equipment. The infrastructure associated with the target hall Loop, Remote Handling Maintenance Systems, Target Hall When it comes time to build a target system

McDonald, Kirk

329

HANDLING AND CO-FIRING OF SHREDDED MUNICIPAL REFUSE AND COAL IN A SPREADER-STOKER BOILER*  

E-Print Network (OSTI)

HANDLING AND CO-FIRING OF SHREDDED MUNICIPAL REFUSE AND COAL IN A SPREADER-STOKER BOILER* D. A for handling up to 120 tons/day of municipal refuse has been developed for co-firing with coal in a spreader-tube metals; and (3) environmental effects of the co-firing, with respect to emissions and ash residues. Co-firing

Columbia University

330

APS Protocols for Handling, Storage, and Disposal of Untreated Foreign Soil  

NLE Websites -- All DOE Office Websites (Extended Search)

APS Protocols for Handling, Storage, and Disposal of Untreated Foreign Soil APS Protocols for Handling, Storage, and Disposal of Untreated Foreign Soil and Regulated Domestic Soil Arrival of New Samples: Unpack shipping containers. Treat any ice/melted water immediately. Decontaminate any "blue ice" packets with 70% ethyl alcohol. Collect any loose soil from container and heat-treat immediately. Immediately decontaminate shipping containers. Heat-treat wooden, metal, or cardboard shipping containers (using lowest heat). Treat plastic containers and coolers with 70% ethyl alcohol. Storage of Samples: Store dry samples in the locked storage cabinet in Room 431Z021 until they can be delivered to the appropriate beamline for analysis. Label containers with origin and arrival date. Log samples into the APS Soil Inventory book maintained in 431Z021.

331

DOE-HDBK-1079-94; Primer on Tritium Safe Handling Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

METRIC DOE-HDBK-1079-94 December 1994 DOE HANDBOOK PRIMER ON TRITIUM SAFE HANDLING PRACTICES U.S. Department of Energy FSC-6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161. (703)487-4650. Order No. DE95003577 DOE-HDBK-1079-94 TRITIUM SAFE HANDLING PRACTICES

332

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Total Cost Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Prepared under Task No. HT12.8610 Technical Report NREL/TP-5600-56408

333

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2011-03-01T23:59:59.000Z

334

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

David Duncan

2011-05-01T23:59:59.000Z

335

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

336

Handling and archiving of magnetic fusion data at DIII-D  

SciTech Connect

Recent modifications to the computer network at DIII-D enhance the collection and distribution of newly acquired and archived experimental data. Linked clients and servers route new data from diagnostic computers to centralized mass storage and distribute data on demand to local and remote workstations and computers. Capacity for data handling exceeds the upper limit of DIII-D Tokamak data production of about 4 GBytes per day. Network users have fast access to new data stored on line. An interactive program handles requests for restoration of data archived off line. Disk management procedures retain selected data on line in preference to other data. Redundancy of all components on the archiving path from the network to magnetic media has prevented loss of data. Older data are rearchived as dictated by limited media life.

VanderLaan, J.F.; Miller, S.; McHarg, B.B. Jr.; Henline, P.A.

1995-10-01T23:59:59.000Z

337

WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

For immediate release WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs CARLSBAD, N.M., December 21, 2011 - The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) has received the first of eight planned defense-related remote- handled transuranic (RH-TRU) waste shipments from Sandia National Laboratories (SNL) in Albuquerque. The shipment arrived December 16 for permanent disposal in WIPP's underground repository. DOE National TRU Program Director J.R. Stroble said the shipment is significant to WIPP. "Our goal is to reduce the nation's nuclear waste footprint and we routinely receive shipments from around the country," said Stroble. "This first shipment of RH-TRU waste from

338

Conceptual design for remote handling methods using the HIP process in the Calcine Immobilization Program  

SciTech Connect

This report recommends the remote conceptual design philosophy for calcine immobilization using the hot isostatic press (HIP) process. Areas of remote handling operations discussed in this report include: (1) introducing the process can into the front end of the HIP process, (2) filling and compacting the calcine/frit mixture into the process can, (3) evacuating and sealing the process can, (4) non-destructive testing of the seal on the process can, (5) decontamination of the process can, (6) HIP furnace loading and unloading the process can for the HIPing operation, (7) loading an overpack canister with processed HIP cans, (8) sealing the canister, with associated non-destructive examination (NDE) and decontamination, and (9) handling canisters for interim storage at the Idaho Chemical Processing Plant (ICPP) located on the Idaho National Engineering Laboratory (INEL) site.

Berry, S.M.; Cox, C.G.; Hoover, M.A.

1994-03-01T23:59:59.000Z

339

Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process  

SciTech Connect

Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment.

Heckendorn, F.M.

2001-01-03T23:59:59.000Z

340

Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility  

SciTech Connect

This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished.

NONE

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogen Gas Generation Model for Fuel Based Remote Handled TRU Waste Stored at INEEL  

DOE Green Energy (OSTI)

The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

Soli T. Khericha; Rajiv N. Bhatt; Kevin Liekhus

2003-02-01T23:59:59.000Z

342

Acquisition Strategy for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposition Project  

Science Conference Proceedings (OSTI)

This document describes the design-build acquisition strategy that will be applied to the Remote Handled LLW Disposal Project. The design-build delivery method will be tailored, as appropriate, to integrate the requirements of Department of Energy (DOE) Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets,' with the DOE budget formulation process and the safety requirements of DOE-STD-1189, 'Integration of Safety into the Design Process.'

David Duncan

2011-05-01T23:59:59.000Z

343

Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP - Project W-460  

E-Print Network (OSTI)

This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP.

Weiss, E V

2000-01-01T23:59:59.000Z

344

U-183: ISC BIND DNS Resource Records Handling Vulnerability | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: ISC BIND DNS Resource Records Handling Vulnerability 3: ISC BIND DNS Resource Records Handling Vulnerability U-183: ISC BIND DNS Resource Records Handling Vulnerability June 5, 2012 - 7:00am Addthis PROBLEM: A vulnerability has been reported in ISC BIND, which can be exploited by malicious people to disclose potentially sensitive information or cause a DoS (Denial of Service). PLATFORM: Version(s): ISC BIND 9.2.x ISC BIND 9.3.x ISC BIND 9.4.x ISC BIND 9.5.x ISC BIND 9.6.x ISC BIND 9.7.x ISC BIND 9.8.x ISC BIND 9.9.x ABSTRACT: This problem was uncovered while testing with experimental DNS record types. It is possible to add records to BIND with null (zero length) rdata fields. Reference List: Secunia Advisory 49338 CVE-2012-1667 Original Advisory IMPACT ASSESSMENT: High Discussion: Recursive servers may crash or disclose some portion of memory to the

345

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

Science Conference Proceedings (OSTI)

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

346

METHODS FOR THE SAFE STORAGE, HANDLING, AND DISPOSAL OF PYROPHORIC LIQUIDS AND SOLIDS IN THE LABORATORY  

DOE Green Energy (OSTI)

Pyrophoric reagents represent an important class of reactants because they can participate in many different types of reactions. They are very useful in organic synthesis and in industrial applications. The Occupational Safety and Health Administration (OSHA) and the National Fire Protection Association (NFPA) define Pyrophorics as substances that will self-ignite in air at temperatures of 130 F (54.4 C) or less. However, the U.S. Department of Transportation (DOT) uses criteria different from the auto-ignition temperature criterion. The DOT defines a pyrophoric material as a liquid or solid that, even in small quantities and without an external ignition source, can ignite within five minutes after coming in contact with air when tested according to the United Nations Manual of Tests and Criteria. The Environmental Protection Agency has adopted the DOT definition. Regardless of which definition is used, oxidation of the pyrophoric reagents by oxygen or exothermic reactions with moisture in the air (resulting in the generation of a flammable gas such as hydrogen) is so rapid that ignition occurs spontaneously. Due to the inherent nature of pyrophoric substances to ignite spontaneously upon exposure to air, special precautions must be taken to ensure their safe handling and use. Pyrophoric gases (such as diborane, dichloroborane, phosphine, etc.) are typically the easiest class of pyrophoric substances to handle since the gas can be plumbed directly to the application and used remotely. Pyrophoric solids and liquids, however, require the user to physically manipulate them when transferring them from one container to another. Failure to follow proper safety precautions could result in serious injury or unintended consequences to laboratory personnel. Because of this danger, pyrophorics should be handled only by experienced personnel. Users with limited experience must be trained on how to handle pyrophoric reagents and consult with a knowledgeable staff member prior to performing the experimental task. The purpose of this article is three fold: (1) to provide guidelines and general safety precautions to avoid accidents, (2) describe proper techniques on how to successfully handle, store, and dispose of pyrophoric liquids and solids, and (3) illustrate best practices for working with this class of reactants in a laboratory environment.

Simmons, F.; Kuntamukkula, M.; Alnajjar, M.; Quigley, D.; Freshwater, D.; Bigger, S.

2010-02-02T23:59:59.000Z

347

Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratorys recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energys ability to meet obligations with the State of Idaho.

Lisa Harvego

2009-06-01T23:59:59.000Z

348

Executive information system  

DOE Green Energy (OSTI)

The Executive Information System (EIS) is a computer-based information handling system. The system has been designed and implemented for Energy Conversion and Utilization Technologies to allow program managers easy access and tracking of certain types of reporting at various levels of management interaction, to simplify the handling of program-related data, and to streamline the preparation of reporting documents and responses to requests for information from the program. The EIS is especially useful in assisting DOE program managers in the routine dissemination of reports and information. The characteristics of each component of the EIS are discussed. A user's guide to the EIS is included in this report.

Vitullo, M.; Winter, C.; Johnson, D.R.

1984-07-01T23:59:59.000Z

349

Shipping Remote Handled Transuranic Waste to the Waste Isolation Pilot Plant - An Operational Experience  

Science Conference Proceedings (OSTI)

On January 18, 2007, the first ever shipment of Remote Handled Transuranic (RH TRU) waste left the gate at the Idaho National Laboratory (INL), headed toward the Waste Isolation Pilot Plant (WIPP) for disposal, thus concluding one of the most stressful, yet rewarding, periods the authors have ever experienced. The race began in earnest on October 16, 2006, with signature of the New Mexico Environment Department Secretary's Final Order, ruling that the '..draft permit as changed is hereby approved in its entirety.' This established the effective date of the approved permit as November 16, 2006. The permit modification was a consolidation of several Class 3 modification requests, one of which included incorporation of RH TRU requirements and another of which incorporated the requirements of Section 311 of Public Law 108-137. The obvious goal was to complete the first shipment by November 17. While many had anticipated its approval, the time had finally come to actually implement, and time seemed to be the main item lacking. At that point, even the most aggressive schedule that could be seriously documented showed a first ship date in March 2007. Even though planning for this eventuality had started in May 2005 with the arrival of the current Idaho Cleanup Project (ICP) contractor (and even before that), there were many facility and system modifications to complete, startup authorizations to fulfill, and many regulatory audits and approvals to obtain before the first drum could be loaded. Through the dedicated efforts of the ICP workers, the partnership with Department of Energy (DOE) - Idaho, the coordinated integration with the Central Characterization Project (CCP), the flexibility and understanding of the regulatory community, and the added encouragement of DOE - Carlsbad Field Office and at Headquarters, the first RH TRU canister was loaded on December 22, 2006. Following final regulatory approval on January 17, 2007, the historic event finally occurred the following day. While some of the success of this endeavor can be attributed to the sheer will and determination of the individuals involved, the fact that it was established and managed as a separate sub-project under the ICP, accounts for a majority of the success. Utilizing a structured project management approach, including development of, and management to, a performance baseline, allowed for timely decision making and the flexibility to adapt to changing conditions as the various aspects of the project matured. This paper provides some insight into how this was achieved, in a relatively short time, and provides an overview of the experience of start-up of a new retrieval, characterization, loading, and transportation operation in the midst of an aggressive cleanup project. Additionally, as one might expect, everything within the project did not go as planned, which provides a great opportunity to discuss some lessons learned. Finally, the first shipment was just the beginning. There are 224 additional shipments scheduled. In keeping with the theme of WM 2008, Phoenix Rising: Moving Forward in Waste Management, this paper will address the future opportunities and challenges of RH TRU waste management at the INL. (authors)

Anderson, S.; Bradford, J.; Clements, T.; Crisp, D.; Sherick, M. [CH2M-WG Idaho, Idaho Falls, ID (United States); D'Amico, E. [Washington TRU Solutions, Denver, CO (United States); Lattin, W. [United States Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States); Watson, K. [United States Department of Energy, Carlsbad Field Office, Carlsbad, NM (United States)

2008-07-01T23:59:59.000Z

350

Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals  

SciTech Connect

The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project are due to: i) a reduced number of process shutdowns to change hardware or lining material, ii) reduced need to produce new hardware or lining material, iii) improved product quality leads to reduced need to remake product or manufacturing of new product, iv) reduction in contamination of melt from degradation of refractory and metallic components, v) elimination of worn hardware will increase efficiency of process, vi) reduced refractory lining deterioration or formation of a less insulating phase, would result in decreased heat loss through the walls. Projected 2015 benefits for the U.S. aluminum industry, assuming 21% market penetration of improved refractory materials, are energy savings of approximately 0.2 trillion BTU/year, cost savings of $2.3 billion/year and carbon reductions of approximately 1.4 billion tons/year. The carbon reduction benefit of the project for the hot-dip galvanize and aluminum industries combined is projected to be approximately 2.2 billion tons/year in 2015. Pathways from research to commercialization were based on structure of the projects industrial partnerships. These partnerships included suppliers, industrial associations, and end users. All parties were involved in conducting the project including planning and critiquing the trials. Supplier companies such as Pyrotech Metaullics, Stoody, and Duraloy have commercialized products and processes developed on the project.

Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

2009-02-06T23:59:59.000Z

351

POWER SYSTEM VOLTAGE STABILITY AND AGENT BASED DISTRIBUTION AUTOMATION IN SMART GRID.  

E-Print Network (OSTI)

??Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased interarea power transfers, (more)

Nguyen, Cuong Phuc

2011-01-01T23:59:59.000Z

352

Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this Model Procedure is to identify precautions and provide guidance to MedicalExaminers/Coroners on the handling of a body or human remains that are potentiallycontaminated with...

353

Practical Handbook of Soybean Processing and Utilization Chapter 9 Handling, Storage, and Transport of Crude and Crude Degummed Soybean Oil  

Science Conference Proceedings (OSTI)

Practical Handbook of Soybean Processing and Utilization Chapter 9 Handling, Storage, and Transport of Crude and Crude Degummed Soybean Oil Processing eChapters Processing AOCS Press Downloadable pdf of Chapter

354

Deep Frying: Chemistry, Nutrition and Practical ApplicationsChapter 2 Storage and Handling of Finished Frying Oils  

Science Conference Proceedings (OSTI)

Deep Frying: Chemistry, Nutrition and Practical Applications Chapter 2 Storage and Handling of Finished Frying Oils Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Pres

355

The U. S. Department of Energy (DOE) has submitted a planned change request to use shielded containers for emplacement of selected remote-handled (RH) transuranic  

E-Print Network (OSTI)

shielded containers for emplacement of selected remote-handled (RH) transuranic (TRU) waste streams, Carlsbad Field Office, Carlsbad, NM. DOE. 2007. First Remote-Handled Transuranic Waste Shipment arrives for transportation and handling and will prevent releases under the most severe accident conditions. The design

356

WM2008 Conference, February 24-28, 2008, Phoenix, AZ Shielded Payload Containers Will Enhance the Safety and Efficiency of the DOE's Remote Handled  

E-Print Network (OSTI)

the Safety and Efficiency of the DOE's Remote Handled Transuranic Waste Disposal Operations - 8199 R. A for Remote Handled (RH) waste. CH waste is emplaced in a variety of payload container configurations. This robust configuration provides an overpack for waste that otherwise would be remotely handled. Up to a 3

357

Power Handling in ITER: Divertor and Blanket Design and R&D M. Merola 1), D. Loesser 2), R. Raffray 1) on behalf of the ITER Organization, ITER  

E-Print Network (OSTI)

that can be handled via the Remote Handling ports and still have an integer number of cassettes per sector operation. Therefore the divertor is allocated a Remote Handling (RH) Maintenance Class 1. Divertor holes in the FW panels for the RH of the SB, and to minimize the space requirement in the Hot Cell. 3

Raffray, A. René

358

Joint Working Group-39, Manufacturing Technology Subworking Group-F, remote handling and automation  

Science Conference Proceedings (OSTI)

The terms of reference were reviewed and continue to encompass the scope of activities of the SUBWOG. No revisions to the terms of reference were proposed. The list of site contacts who should receive copies of SUBWOG correspondence and meeting minutes was reviewed and updated. Documents exchanged related to the meeting include: Minutes of the sixth SUBOG 39F meeting; transactions of the fifth topical meeting on robotics and remote handling; data on manipulators was forwarded to LLNL from the robotics group at AEA Harwell; and the specifications of the duct remediation robot from the Rocky Flats Plant.

Merrill, R.D.

1995-02-01T23:59:59.000Z

359

Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

David Duncan

2011-05-01T23:59:59.000Z

360

Zoned heating and air conditioning system  

SciTech Connect

This patent describes a zoned heating and air conditioning system comprising: a central air handling system with an air heating means and an air cooling means and a blower connected to an air duct system; thermostats each have heating and cooling set points, respectively associated with and located in different zones of a building; dampers respectively associated with each building zone positioned in the air duct system. Each damper has an open position allowing air into the respective zone from the duct system and a closed position; relay means for connecting one thermostat to the air handling system upon a call for heating or cooling by one thermostat and disconnecting all other thermostats by connecting one thermostat's connections between the thermostat and air handling system. Only one thermostat is connected to the air handling system at a time and the relay means disconnects one thermostat from the air handling system after one thermostat is satisified; and damper actuating means for unlocking each damper in one building zone responsive actuated by a respective zone thermostat connected to the air handling system by the relay means. The damper actuates means including a damper solenoid for each damper located adjacent each damper and connected to a respective zone thermostat. It unlocks each damper in one building zone responsive to being actuated by the respective zone thermostat and unlocks the dampers in one building zone when one thermostat is actuated while preventing the dampers in another thermostat's building zone from unlocking.

Beachboard, S.A.

1987-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Guideline to good practices for material receipt, inspection, handling, storage, retrieval, and issuance at DOE nuclear facilities  

Science Conference Proceedings (OSTI)

This guide is intended to assist facility maintenance organization in the review of existing methods and in the development of new methods for establishing a material receipt, inspection, handling, storage, retrieval, and issuance process/system which ensures timely delivery of the proper parts and materials, in the condition required for effective maintenance activities, and periodic services which provide unique and/or supplemental maintenance support. It is expected that each DOE facility may use approaches or methods different from those defined in this guide. The specific guidelines that follow reflect generally accepted industry practices. Therefore, deviation from any particular guideline would not, in itself, indicate a problem. If substantive differences exist between the intent of this guideline and actual practice, management should evaluate current practice to determine the meed to include/exclude proposed features. A change in maintenance practice would be appropriate if a performance weakness were determined to exist. The development, documentation, and implementation of other features that further enhance these guidelines for specific applications are encouraged.

Not Available

1994-06-01T23:59:59.000Z

362

Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel. [Fuel crud  

Science Conference Proceedings (OSTI)

Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs.

Hazelton, R.F.

1987-09-01T23:59:59.000Z

363

Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029  

SciTech Connect

This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

2013-09-01T23:59:59.000Z

364

Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

D. Craig Cooper

2011-11-01T23:59:59.000Z

365

A review of polymer-based water conditioners for reduction of handling-related injury  

Science Conference Proceedings (OSTI)

Fish are coated with an external layer of protective mucus. This layer serves as the primary barrier against infection or injury, reduces friction, and plays a role in ionic and osmotic regulation. However, the mucus layer is easily disturbed when fish are netted, handled, transported, stressed, or subjected to adverse water conditions. Water additives containing polyvinylpyrrolidone (PVP) or proprietary polymers have been used to prevent the deleterious effects of mucus layer disturbances in the commercial tropical fish industry, aquaculture, and for other fisheries management purposes. This paper reviews research on the effectiveness of water conditioners, and examines the contents and uses of a wide variety of commercially available water conditioners. Water conditioners containing polymers may reduce external damage to fish held in containers during scientific experimentation, including surgical implantation of electronic tags. However, there is a need to empirically test the effectiveness of water conditioners at preventing damage to and promoting healing of the mucus layer. A research agenda is provided to advance the science related to the use of water conditions to improve the condition of fish during handling and tagging.

Harnish, Ryan A.; Colotelo, Alison HA; Brown, Richard S.

2011-01-01T23:59:59.000Z

366

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-08-01T23:59:59.000Z

367

Remote Handling and Maintenance in the Facility for Rare Isotope Beams  

SciTech Connect

Michigan State University (MSU) in East Lansing, MI was selected by the U.S. Department of Energy (DOE) to design and establish a Facility for Rare Isotope Beams (FRIB), a cutting-edge research facility to advance the understanding of rare nuclear isotopes and the evolution of the cosmos. The research conducted at the FRIB will involve experimentation with intense beams of rare isotopes within a well-shielded target cell that will result in activation and contamination of components. The target cell is initially hands-on accessible after shutdown and a brief cool-down period. Personnel are expected to have hands-on access to the tops of shielded component modules with the activated in-beam sections suspended underneath. The modules are carefully designed to include steel shielding for protecting personnel during these hand-on operations. However, as the facility has greater levels of activation and contamination, a bridge mounted servomaniputor may be added to the cell, to perform the disconnecting of services to the component assemblies. Dexterous remote handling and exchange of the modularized activated components is completed at a shielded window workstation with a pair of master-slave manipulators. The primary components requiring exchange or maintenance are the production target, the beam wedge filter, the beam dump, and the beam focusing and bending magnets. This paper provides an overview of the FRIB Target Facility remote handling and maintenance design requirements, concepts, and techniques.

Burgess, Thomas W [ORNL; Aaron, Adam M [ORNL; Carroll, Adam J [ORNL; DeVore, Joe R [ORNL; Giuliano, Dominic R [ORNL; Graves, Van B [ORNL; Bennett, Richard P [Facility for Rare Isotope Beams (FRIB); Bollen, Georg [Facility for Rare Isotope Beams (FRIB); Cole, Daniel F. [Facility for Rare Isotope Beams (FRIB); Ronningen, Reginald M. [Facility for Rare Isotope Beams (FRIB); Schein, Mike E [Facility for Rare Isotope Beams (FRIB); Zeller, Albert F [Facility for Rare Isotope Beams (FRIB)

2011-01-01T23:59:59.000Z

368

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-04-01T23:59:59.000Z

369

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2010-10-01T23:59:59.000Z

370

Powered Remote Manipulators Perform Hazardous Retrieval, Handling, and Size Reduction Operations  

SciTech Connect

This paper describes a new lightweight, powered remote manipulator (PRM) that S.A.Robotics has developed for remote material handling and size reduction in hazardous environments such as reactor decommissioning projects. PRMs can be mounted to various deployment platforms such as remote controlled track-driven vehicles, commercial All Terrain Vehicles, or crane-mounted arms. They can also be installed as replacements for traditional Master-Slave Manipulators (MSMs) in hot cells. The PRM is a six degree of freedom manipulator with carbon fiber structural components that can provide up to a 3 meter (10 foot) reach. Either electric or hydraulic power options can be used and a variety of hydraulic fluids are available to meet combustible material limitations. The PRM is operated with easy-to-use joystick controls that allow operators to sit in a comfortable work station and handle 90 kg (200 pound) loads with a hydraulic power pack or 45 kg (100 pounds) with electric servo-motor driven equipment. With a quick disconnect tool changer, the manipulator can operate grippers, drills, shears, saws, sampling and survey instruments, and the arm can also deploy cameras and lights to support a wide range of remote applications. (authors)

Cole, M.D.; Owen, J.R.; Adams, S.R. [S.A.Robotics, Inc., 3985 S. Lincoln Avenue, Suite 100, Loveland, Colorado 80241 (United States)

2006-07-01T23:59:59.000Z

371

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

372

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

373

Axiomatic design of customizable automotive suspension systems  

E-Print Network (OSTI)

The design of existing suspension systems typically involves a compromise solution for the conflicting requirements of comfort and handling. For instance, cars need a soft suspension for better comfort, whereas a stiff ...

Deo, Hrishikesh V

2007-01-01T23:59:59.000Z

374

Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors  

Science Conference Proceedings (OSTI)

Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a cold environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a hot or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment for remote applications in the nuclear industry. Minor modifications and suggestions for improved manual remote servicing by the remote handling specialists were provided but successful removal and replacement was demonstrated in the first prototype.

David H. Meikrantz; Troy G. Garn; Jack D. Law; Lawrence L. Macaluso

2009-09-01T23:59:59.000Z

375

Part 1: Participatory Ergonomics Approach to Waste Container Handling Utilizing a Multidisciplinary Team  

Science Conference Proceedings (OSTI)

This multidisciplinary team approach to waste container handling, developed within the Grassroots Ergonomics process, presents participatory ergonomic interpretations of quantitative and qualitative aspects of this process resulting in a peer developed training. The lower back, shoulders, and wrists were identified as frequently injured areas, so these working postures were a primary focus for the creation of the workers' training. Handling procedures were analyzed by the team to identify common cycles involving one 5 gallon (60 pounds), two 5 gallons (60 and 54 pounds), 30 gallon (216 pounds), and 55 gallon (482 pounds) containers: lowering from transporting to/from transport vehicles, loading/unloading on transport vehicles, and loading onto pallet. Eleven experienced waste container handlers participated in this field analysis. Ergonomic exposure assessment tools measuring these field activities included posture analysis, posture targeting, Lumbar Motion Monitor{trademark} (LMM), and surface electromyography (sEMG) for the erector spinae, infraspinatus, and upper trapezius muscles. Posture analysis indicates that waste container handlers maintained non-neutral lower back postures (flexion, lateral bending, and rotation) for a mean of 51.7% of the time across all activities. The right wrist was in non-neutral postures (radial, ulnar, extension, and flexion) a mean of 30.5% of the time and the left wrist 31.4%. Non-neutral shoulder postures (elevation) were the least common, occurring 17.6% and 14.0% of the time in the right and left shoulders respectively. For training applications, each cycle had its own synchronized posture analysis and posture target diagram. Visual interpretations relating to the peak force modifications of the posture target diagrams proved to be invaluable for the workers' understanding of LMM and sEMG results (refer to Part II). Results were reviewed by the team's field technicians and their interpretations were developed into ergonomic training that address the issues originally raised. This training includes intervention methods, ergonomic tools used, dam acquired, and effects of waste container handling techniques on lower back, shoulder, and wrists and methods to help proactively reduce injuries associated with this profession.

Zalk, D.M.; Tittiranonda, P.; Burastero, S.; Biggs, T.W.; Perry, C.M.; Tageson, R.; Barsnick, L.

2000-02-07T23:59:59.000Z

376

An Innovative Approach for Data Collection and Handling to Enable Advancements in Micro Air Vehicle Persistent Surveillance  

E-Print Network (OSTI)

The success of unmanned aerial vehicles (UAV) in the Iraq and Afghanistan conflicts has led to increased interest in further digitalization of the United States armed forces. Although unmanned systems have been a tool of the military for several decades, only recently have advances in the field of Micro-Electro-Mechanical Systems (MEMS) technology made it possible to develop systems capable of being transported by an individual soldier. These miniature unmanned systems, more commonly referred to as micro air vehicles (MAV), are envisioned by the Department of Defense as being an integral part of maintaining America?s military superiority. As researchers continue to make advances in the miniaturization of flight hardware, a new problem with regard to MAV field operations is beginning to present itself. To date, little work has been done to determine an effective means of collecting, analyzing, and handling information that can satisfy the goal of using MAVs as tools for persistent surveillance. Current systems, which focus on the transmission of analog video streams, have been very successful on larger UAVs such as the RQ-11 Raven but have proven to be very demanding of the operator. By implementing a new and innovative data processing methodology, currently existing hardware can be adapted to effectively present critical information with minimal user input. Research currently being performed at Texas A&M University in the areas of attitude determination and image processing has yielded a new application of photographic projection. By replacing analog video with spatially aware high-resolution images, the present MAV handheld ground control stations (GCS) can be enhanced to reduce the number of functional manpower positions required during operation. Photographs captured by an MAV can be displayed above pre-existing satellite imagery to give an operator a lasting reference to the location of objects in his vicinity. This newly generated model also increases the functionality of micro air vehicles by allowing for target tracking and energy efficient perch and stare capabilities, both essential elements of persistent surveillance.

Goodnight, Ryan David

2009-08-01T23:59:59.000Z

377

Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis  

Science Conference Proceedings (OSTI)

This Safety Evaluation Report (SER) documents the Department of Energys (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

Washington TRU Solutions LLC

2005-09-01T23:59:59.000Z

378

RJLG Presentation on Symposium for Safe Handling of Nanoparticles.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

RJ LeeGroup, Inc. RJ LeeGroup, Inc. Symposium on Safe Handling of Engineered Nanoscale Materials Exposure Assessment: Advance Analytical Techniques Gary S. Casuccio July 8, 2008 2 Exposure Assessment: Advance Analytical Techniques What are the goals?  To provide guidance that will help the NSRCs (and industry) develop site-specific controls that will protect workers and the environment.  Offer reasonable guidance for managing the uncertainly associated with nanomaterials whose hazards have not been determined.  Reduce to an acceptable level the risk of worker injury, worker ill-health and negative environmental impacts. 3 Exposure Assessment: Advance Analytical Techniques What are the issues with respect to nanoparticle measurement?  Sampling and analysis protocols have not been

379

DOE-HDBK-1129-99; DOE Handbook Tritium Handling and Safe Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

129-99 129-99 March 1999 DOE HANDBOOK TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1129-99 iii TABLE OF CONTENTS SECTION PAGE FOREWORD.............................................................................................................................vii

380

Optimal Outside Air Control for Air Handling Units with Humidity Control  

E-Print Network (OSTI)

Most air handling units (AHUs) in commercial buildings have the (air) economizer cycle to use outside air for free cooling under certain outside air conditions. Ideally the economizer cycle is enabled if outside air enthalpy is less than return air enthalpy. During the economizer cycle, outside air flow is modulated to seek mixed air temperature at a supply air temperature set point. Since the outside air may be dry during the economizer cycle, humidification is required for AHUs with humidity control. As a result, the economizer cycle saves cooling energy but requires excessive steam for humidification. Therefore the economizer cycle may not be economical. An optimal outside air control method is developed to minimize the total cost of mechanical cooling and steam humidification. The impacts of chilled water price, steam price, and space minimum humidity set point are analyzed. Finally the optimal outside air control zones are presented on a psychrometric chart under differential energy price ratios and minimum indoor humidity set points.

Wang, G.; Liu, M.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste  

SciTech Connect

This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

2010-02-01T23:59:59.000Z

382

Target System and Support Facility 3.1 Introduction  

E-Print Network (OSTI)

of the facility, a maintenance cell at the ground floor elevation for handling magnet components, a hot cell at the tunnel level for mercury target system components, and various remote-handling equipment used-Z targets, such as Inconel, or mercury. It would also be expected to get too hot with a 4 MW beam, which we

McDonald, Kirk

383

Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-10T23:59:59.000Z

384

Remote Food Shopping Robot System in a Supermarket Realization of the shopping task from remote places  

E-Print Network (OSTI)

the experimental result performed with the integrated system. Index Terms-- Remote shopping, Foods handling, Human dailylifeRemote shopping, Foods handling, Human dailylife I. INTRODUCTION In this research we focusedRemote Food Shopping Robot System in a Supermarket ­Realization of the shopping task from remote

Ohya, Akihisa

385

Generalized Nuclear Data: A New Structure (with Supporting Infrastructure) for Handling Nuclear Data  

SciTech Connect

The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate neutron reaction data to support nuclear engineering applications in power, national security and criticality safety. Over the years, the scope of the format has been extended to handle many other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron scattering. Although ENDF has wide acceptance and support for many data types, its limited support for correlated particle emission, limited numeric precision, and general lack of extensibility mean that the nuclear data community cannot take advantage of many emerging opportunities. More generally, the ENDF format provides an unfriendly environment that makes it difficult for new data evaluators and users to create and access nuclear data. The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Generalized Nuclear Data (or 'GND') structure, meant to replace older formats with a hierarchy that mirrors the underlying physics, and is aligned with modern coding and database practices. In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes) GND structured nuclear data. GND defines the structure needed for storing nuclear data evaluations and the type of data that needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML is a meta-language, meaning that it has a primitive set of definitions for representing hierarchical data/text in a file. Other meta-languages, like HDF5 which stores the data in binary form, can also be used to store GND in a file. In this paper, we will present an overview of the new GND data structures along with associated tools in Fudge.

Mattoon, C.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA (United States)] [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA (United States); Beck, B.R.; Patel, N.R.; Summers, N.C.; Hedstrom, G.W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA (United States)] [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA (United States); Brown, D.A. [National Nuclear Data Center, Upton NY (United States)] [National Nuclear Data Center, Upton NY (United States)

2012-12-15T23:59:59.000Z

386

Multi Canister Overpack (MCO) Handling Machine Trolley Seismic Uplift Constraint Design Loads  

Science Conference Proceedings (OSTI)

The MCO Handling Machine (MHM) trolley moves along the top of the MHM bridge girders on east-west oriented rails. To prevent trolley wheel uplift during a seismic event, passive uplift constraints are provided as shown in Figure 1-1. North-south trolley wheel movement is prevented by flanges on the trolley wheels. When the MHM is positioned over a Multi-Canister Overpack (MCO) storage tube, east-west seismic restraints are activated to prevent trolley movement during MCO handling. The active seismic constraints consist of a plunger, which is inserted into slots positioned along the tracks as shown in Figure 1-1. When the MHM trolley is moving between storage tube positions, the active seismic restraints are not engaged. The MHM has been designed and analyzed in accordance with ASME NOG-1-1995. The ALSTHOM seismic analysis (Reference 3) reported seismic uplift restraint loading and EDERER performed corresponding structural calculations. The ALSTHOM and EDERER calculations were performed with the east-west seismic restraints activated and the uplift restraints experiencing only vertical loading. In support of development of the CSB Safety Analysis Report (SAR), an evaluation of the MHM seismic response was requested for the case where the east-west trolley restraints are not engaged. For this case, the associated trolley movements would result in east-west lateral loads on the uplift constraints due to friction, as shown in Figure 1-2. During preliminary evaluations, questions were raised as to whether the EDERER calculations considered the latest ALSTHOM seismic analysis loads (See NCR No. 00-SNFP-0008, Reference 5). Further evaluation led to the conclusion that the EDERER calculations used appropriate vertical loading, but the uplift restraints would need to be re-analyzed and modified to account for lateral loading. The disposition of NCR 00-SNFP-0008 will track the redesign and modification effort. The purpose of this calculation is to establish bounding seismic loads (vertical and horizontal) for input into the uplift restraint hardware redesign calculations. To minimize iterations on the uplift redesign effort, efforts were made to assure that the final loading input was reasonable but unquestionably on the conservative side.

SWENSON, C.E.

2000-03-09T23:59:59.000Z

387

Effluent treatment options for nuclear thermal propulsion system ground tests  

DOE Green Energy (OSTI)

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Brockmann, J.E.

1992-10-16T23:59:59.000Z

388

U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)  

DOE Green Energy (OSTI)

This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-11-01T23:59:59.000Z

389

Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks  

DOE Green Energy (OSTI)

This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

Not Available

1990-07-01T23:59:59.000Z

390

National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

Peggy Hinman

2010-10-01T23:59:59.000Z

391

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

392

A GAUSSIAN PROCESS BASED APPROACH FOR HANDLING UNCERTAINTY IN VEHICLE DYNAMICS SIMULATION  

E-Print Network (OSTI)

Advances in vehicle modeling and simulation in recent years have led to designs that are safer, easier to handle, and less sensitive to external factors. Yet, the potential of simulation is adversely impacted by its limited ability to predict vehicle dynamics in the presence of uncertainty. A commonly occurring source of uncertainty in vehicle dynamics is the road-tire friction interaction, typically represented through a spatially distributed stochastic friction coefficient. The importance of its variation becomes apparent on roads with ice patches, where if the stochastic attributes of the friction coefficient are correctly factored into real time dynamics simulation, robust control strategies could be designed to improve transportation safety. This work concentrates on correctly accounting in the nonlinear dynamics of a car model for the inherent uncertainty in friction coefficient distribution at the road/tire interface. The outcome of this effort is the ability to quantify the effect of input uncertainty on a vehicles trajectory and the associated escalation of risk in driving. By using a space dependent Gaussian ? Address all correspondence to this author.

Kyle Schmitt; Justin Madsen; Mihai Anitescu; Dan Negrut

2008-01-01T23:59:59.000Z

393

LWR NUCLEAR FUEL BUNDLE DATA FOR USE IN FUEL BUNDLE HANDLING  

Office of Scientific and Technical Information (OSTI)

LWR NUCLEAR FUEL BUNDLE DATA FOR LWR NUCLEAR FUEL BUNDLE DATA FOR USE IN FUEL BUNDLE HANDLING TOPICAL REPORT W. 8. Weihermilfer C. S. Allison Septem bet 1979 Work Performed, Under Contract EY-76-C- M - 1 8 3 0 Form 189 Number 210.1 BAlTELLE PACIFIC NORTHWEST LABORATORY RICHLAND, WA 99352 BASE TECHNOLOGY N O T I C E T h i s report was prepard n an account of work sponrored by the UAed States Govcmmenr. Neither tht Unltcd S t a t e nor !he k p n m c n t of Energy, not any of their ernploylecs, nw any of theb ccmtnctotr, hontncton. or their employper. maka any warranty. expms or Implied, or m u m any legal liability or rcrponrlbllity for the accuracy, c o m p l c r e ~ s or ulefulnm of m y information. -ratus, prodm or p r e di~1Oltd. or represents that Its u w ? would not infringe privateiy o w d rights. The views, opinions and ccnclusionr contained in this report a

394

Adequacy of TRUPACT-I design for transporting contact-handled transuranic wastes to WIPP  

Science Conference Proceedings (OSTI)

TRUPACT I is the shipping container designed by the US Department of Energy (DOE) to transport contact-handled transuranic (CH-TRU) radioactive waste to the Waste Isolation Pilot Plant near Carlsbad, New Mexico. Approximately 24,000 shipments will be required to transport the 6 million cubic feet of waste to WIPP over a 20-year period. TRUPACT I was designed with two features that do not meet the NRC and DOT transportation regulations: (1) it has only single containment, which is not permitted for most forms of radioactive material if the shipment contains 20 Ci of plutonium; and (2) the waste storage cavity is continuously vented through filters to the atmosphere. The evaluation addressed these two design features as well as the problem of hydrogen gas generation in the wastes and the limits of radioactive materials proposed by DOE for a TRUPACT shipment. EEG recommends that TRUPACT-I not be certified for transporting any waste to WIPP unless the vents are sealed and the package is limited to 20 Ci of plutonium per load. We further recommend that: (1) the TRUPACT be redesigned to include double containment and eliminate continuous venting; (2) the use of methods other than venting for hydrogen gas control be seriously considered; and (3) the maximum curie content in a TRUPACT be limited to about 2,000 Ci.

Channell, J.K.; Rodgers, J.C.; Neill, R.H.

1986-06-01T23:59:59.000Z

395

Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve  

SciTech Connect

A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

Song, Li; Wang, Gang; Brambley, Michael R.

2013-04-28T23:59:59.000Z

396

Final Report for 'An Abstract Job Handling Grid Service for Dataset Analysis'  

Science Conference Proceedings (OSTI)

For Phase I of the Job Handling project, Tech-X has built a Grid service for processing analysis requests, as well as a Graphical User Interface (GUI) client that uses the service. The service is designed to generically support High-Energy Physics (HEP) experimental analysis tasks. It has an extensible, flexible, open architecture and language. The service uses the Solenoidal Tracker At RHIC (STAR) experiment as a working example. STAR is an experiment at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL). STAR and other experiments at BNL generate multiple Petabytes of HEP data. The raw data is captured as millions of input files stored in a distributed data catalog. Potentially using thousands of files as input, analysis requests are submitted to a processing environment containing thousands of nodes. The Grid service provides a standard interface to the processing farm. It enables researchers to run large-scale, massively parallel analysis tasks, regardless of the computational resources available in their location.

David A Alexander

2005-07-11T23:59:59.000Z

397

Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

Boyd D. Christensen

2012-05-01T23:59:59.000Z

398

Dose Reconstruction Using Computational Modeling of Handling a Particular Arsenic-73/Arsenic-74 Source  

E-Print Network (OSTI)

A special work evolution was performed at Los Alamos National Laboratory (LANL) with a particular 73As/74As source but the workers extremity dosimeter did not appear to provide appropriate dosimetric information for the tasks performed. This prompted a reconstruction of the dose to the workers hands. The computer code MCNP was chosen to model the tasks that the worker performed to evaluate the potential nonuniform hand dose distribution. A model was constructed similar to the workers hands to represent the performed handling tasks. The model included the thumb, index finger, middle finger, and the palm. The dose was calculated at the 7 mg cm-2 skin depth. To comply with the Code of Federal Regulations, 10 CFR 835, the 100 cm2 area that received the highest dose must be calculated. It could be determined if the dose received by the worker exceeded any regulatory limit. The computer code VARSKIN was also used to provide results to compare with those from MCNP where applicable. The results from the MCNP calculations showed that the dose to the workers hands did not exceed the regulatory limit of 0.5 Sv (50 rem). The equivalent nonuniform dose was 0.126 Sv (12.6 rem) to the right hand and 0.082 Sv (8.2 rem) to the left hand.

Stallard, Alisha M.

2010-05-01T23:59:59.000Z

399

Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles  

Science Conference Proceedings (OSTI)

Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

Robert J. Englar

2001-05-14T23:59:59.000Z

400

Systems  

E-Print Network (OSTI)

Abstract Developing usable and robust mixed reality systems requires unique humancomputer interaction techniques and customized hardware systems. The design of the hardware is directed by the requirements of the rich 3D interactions that can be performed using immersive mobile MR systems. Geometry modeling and capture, navigational annotations, visualizations, and training simulations are all enhanced using augmented computer graphics. We present the design guidelines that have led us through 10 years of evolving mobile outdoor MR hardware systems.

Benjamin Avery; Ross T. Smith; Wayne Piekarski; Bruce H. Thomas

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A type system for CHR  

Science Conference Proceedings (OSTI)

We propose a generic type system for the Constraint Handling Rules (CHR), a rewriting rule language for implementing constraint solvers. CHR being a high-level extension of a host language, such as Prolog or Java, this type system is parameterized ...

Emmanuel Coquery; Franois Fages

2005-06-01T23:59:59.000Z

402

Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant  

Science Conference Proceedings (OSTI)

The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

Washington TRU Solutions LLC

2005-12-29T23:59:59.000Z

403

Automated fuel pin loading system  

DOE Patents (OSTI)

An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA); Steffen, Jim M. (Richland, WA)

1985-01-01T23:59:59.000Z

404

Recycle Experience of Dismantled Cask Handling Crane by Surface Removal Sampling at Kori Unit No.1  

SciTech Connect

The Kori No.1, which began operation in 1978, replaced its cask handling crane in 2000. To prove the safety of recycling and reuse of crane scrap, a particular calculation method for surface contamination was used. Because surface radioactive contamination of steel is limited to a few-microns-thick layer, we can calculate the total(removable and fixed contamination) activity of the sample conservatively by this surface removal sampling means. If we multiply the ratio of total surface and the area of the selected surface by its activity, total activity of the scrap can be estimated. Conservatively, the sampled portion can be used as a representative sample of the scrap. Both the inner and outer part of the scrap was sampled separately, and gamma spectra were analyzed to check whether activation had occurred. Before sampling, the entire surface of the steel is scan surveyed by several kinds of GM and GP detectors. Contaminated parts were segregated, or decontaminated to the background. Almost one sample per one ton of steel was collected. Gamma spectra of 62 samples were analyzed by 100% efficiency HP Ge detector. Only 60Co was detected, and its highest activity was 0.01 Bq/g,. This level of activity is much lower than the ''clearance levels'' outlined in IAEA TecDoc-855.(4). The total alpha and total beta for 6 samples were measured in the laboratory by low background alpha, using a beta gas proportional counter. Activities were much lower than 0.005 Bq/g. A representative sample was taken from the complete mixture of 62 samples. Gamma activities of nuclides were measured to estimate the dose to the public. This study revealed that activities of nuclides were lower than 'clearance levels' if decontaminated until the lower limit of detection level of the portable field instrument. New surface removal sampling method was tested. This method allows us to easily calculate the specific activity for the solid material.

Kim, K. D.; Baeg, C. Y.; Son, J. K.; Kim, H. S.; Ha, J. A.; Song, M. J.

2002-02-25T23:59:59.000Z

405

A Gaussian process-based approach for handling uncertainty in vehicle dynamics simulation.  

Science Conference Proceedings (OSTI)

Advances in vehicle modeling and simulation in recent years have led to designs that are safer, easier to handle, and less sensitive to external factors. Yet, the potential of simulation is adversely impacted by its limited ability to predict vehicle dynamics in the presence of uncertainty. A commonly occurring source of uncertainty in vehicle dynamics is the road-tire friction interaction, typically represented through a spatially distributed stochastic friction coefficient. The importance of its variation becomes apparent on roads with ice patches, where if the stochastic attributes of the friction coefficient are correctly factored into real time dynamics simulation, robust control strategies could be designed to improve transportation safety. This work concentrates on correctly accounting in the nonlinear dynamics of a car model for the inherent uncertainty in friction coefficient distribution at the road/tire interface. The outcome of this effort is the ability to quantify the effect of input uncertainty on a vehicle's trajectory and the associated escalation of risk in driving. By using a space-dependent Gaussian process, the statistical representation of the friction coefficient allows for consistent space dependence of randomness. The approach proposed allows for the incorporation of noise in the observed data and a nonzero mean for inhomogeneous distribution of the friction coefficient. Based on the statistical model considered, consistent friction coefficient sample distributions are generated over large spatial domains of interest. These samples are subsequently used to compute and characterize the statistics associated with the dynamics of a nonlinear vehicle model. The information concerning the state of the road and thus the friction coefficient is assumed available (measured) at a limited number of points by some sensing device that has a relatively homogeneous noise field (satellite picture or ground sensors, for instance). The methodology proposed can be modified to incorporate information that is sensed by each individual car as it advances along its trajectory.

Schmitt, K.; Madsen, J.; Anitescu, M.; Negrut, D.; Mathematics and Computer Science; Univ. of Wisconsin at Madison

2009-01-01T23:59:59.000Z

406

KT McDonald IDS-NF Plenary Meeting (Glasgow) Apr 19, 2012 1 The High-Power-Target System  

E-Print Network (OSTI)

Cryogenics Diagnostics Controls and Interlocks Health and Safety Mechanical Decommissioning Remote Handling and Hot Cells ######## UScaled from LBNE Buildings, tunnels and Infrastructure ######## Scaled from LBNE,405,475 1.06.06 - Target Utility Systems 10,730,099 1.06.07 - Remote Handling Systems 14,348,362 1

McDonald, Kirk

407

INSTRUCTION MANUAL--SNAP-7C ELECTRIC GENERATION SYSTEM  

SciTech Connect

A description of SNAP-7C isotope-fueled electric generation system is presented. The operational limits and transportation, handling, installation, and adjustment procedures are described. Maintenance instructions and emergency and safety precautions are included. (M.C.G.)

Blazek, E.

1961-10-01T23:59:59.000Z

408

Operational Support Systems for Carrier-Scale IP Networks  

Science Conference Proceedings (OSTI)

The operational support systems (OSS) of any major telecommunications operator are the underlying resource for the management and delivery of all its communications services. It is used for handling direct customer interactions (helpdesk, orders, fault ...

C. B. Hatch; P. C. Utton; R. E. A. Leaton

2000-07-01T23:59:59.000Z

409

Hydrogen Gas Generation Model for Fuel-Based Remote-Handled Transuranic Waste Stored at the INEEL  

DOE Green Energy (OSTI)

The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

Khericha, S.; Bhatt, R.; Liekhus, K.

2003-01-14T23:59:59.000Z

410

Lead Safety Awareness This Bulletin provides information on the safe handling of lead  

E-Print Network (OSTI)

paints, radiation shielding, and ammunition. In addition, the Department has thousands of tons of lead 60 percent of the occurrences resulted in worker exposures and unsafe exposure levels in work spaces-forming system, internal organs, including the reproductive system, kidneys, nervous system, and the brain

411

SARDINE: A System for Analyzing, Recording, and Displaying Information from NRL-towchain Experiments  

Science Conference Proceedings (OSTI)

In this paper we offer a novel design for shipborne date-acquisition and storage systemsone which combines the technologies of both computers and television. We describe the particular implementation SARDINE, a system developed to handle the ...

Michael Karweit; Glen Lovell

1988-04-01T23:59:59.000Z

412

Emulsion polymerization of ethylene-vinyl acetate-branched vinyl ester using a pressure reactor system.  

E-Print Network (OSTI)

??A new pressure reactor system was designed to synthesize a novel branched ester-ethylene-vinyl acetate (BEEVA) emulsion polymer. The reactor system was capable of handling pressure (more)

Tan, Chee Boon.

2008-01-01T23:59:59.000Z

413

Concentration of remote-handled, transuranic, sodium nitrate-based sludge using agitated thin-film evaporators  

SciTech Connect

The Waste Handling and Packaging Plant (WHPP) is being designed at Oak Ridge National Laboratory (ORNL) to prepared transuranic waste for final disposal. Once operational, this facility will process, package, and certify remote-handled transuranic waste for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. One of the wastes that will be handled at WHIPP is the transuranic sludge currently stored at ORNL in eight 50,000-gal underground tanks. The use of an Agitated Thin-Film Evaporator (ATFE) for concentration of this waste is being investigated. Tests have shown that the ATFE can be used to produce a thick slurry, a powder, or a fused salt. A computer model developed at the Savannah River Plant (SRP) to simulate the operation of ATFE's on their waste is being modified for use on the ORNL transuranic sludge. This paper summarizes the results of the test with the ATFEs to date, discusses the changes in the SRP model necessary to use this model with the ORNL waste, and compares the results of the model with the actual data taken from the operation of ATFEs at vendors' test facilities. 8 refs., 1 fig., 3 tabs.

Walker, J.F. Jr.; Youngblood, E.L.; Berry, J.B. (Oak Ridge National Lab., TN (USA)); Pen, Ben-Li (Institute of Nuclear Energy Research, Lung-Tan (Taiwan))

1991-01-01T23:59:59.000Z

414

Conceptual flow sheets development for coal conversion plant coal handling-preparation and ash/slag removal operations  

SciTech Connect

This report presents 14 conceptual flow sheets and major equipment lists for coal handling and preparation operations that could be required for future, commercial coal conversion plants. These flow sheets are based on converting 50,000 tons per day of clean coal representative of the Pittsburgh and Kentucky No. 9 coal seams. Flow sheets were used by Union Carbide Corporation, Oak Ridge National Laboratory, in a survey of coal handling/preparation equipment requirements for future coal conversion plants. Operations covered in this report include run-of-mine coal breaking, coarse coal cleaning, fine coal cleaning, live storage and blending, fine crushing (crushing to top sizes ranging from 1/4-inch to 20 mesh), drying, and grinding (70 percent minus 200 mesh). Two conceptual flow sheets and major equipment lists are also presented for handling ash or granulated slag and other solid wastes produced by nine leading coal conversion processes. These flow sheets provide for solid wastes transport to an environmentally acceptable disposal site as either dry solids or as a water slurry.

1979-07-01T23:59:59.000Z

415

Criticality safety criteria for the handling, storage, and transportation of LWR fuel outside reactors: ANS-8.17-1984  

SciTech Connect

The potential for criticality accidents during the handling, storage, and transportation of fuel for nuclear reactors represents a health and safety risk to personnel involved in these activities, as well as to the general public. Appropriate design of equipment and facilities, handling procedures, and personnel training can minimize this risk. Even though the focus of the American National Standard, `Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors,` ANSI/ANS-8.1-1983, is general criteria for the ensurance of criticality safety, ANS-8.17-1984, provides additional guidance applicable to handling, storage, and transportation of light-water- reactor (LWR) nuclear fuel units in any phase of the fuel cycle outside the reactor core. ANS-8.17 had its origin in the late 1970s when a work group consisting of representatives from private industry, personnel from government contractor facilities, and scientists and engineers from the national laboratories was established. The work of this group resulted in the issuance of ANSI/ANS-8.17 in January 1984. This document provides a discussion of this standard.

Whitesides, G.E.

1996-09-01T23:59:59.000Z

416

Whitepaper:MDMPsimulationandanalysistoolforfusioncorrected20120805,YKMPeng Multidisciplinary multi-physics (MDMP) system simulation and an evolutionary  

E-Print Network (OSTI)

, no net electricity demonstration goal, etc.; b) ready access, using remote handling techniques conventional support structures and support systems, which in turn permit remote-handled internal modules and hot-cell laboratories for them. E) The total plasma facing surface areas where modules

417

Uncertainty handling in navigation services using rough and fuzzy set theory  

Science Conference Proceedings (OSTI)

Navigation services, such as used in cars, are widely used nowadays. Many applications, positioning technologies and techniques have been developed to make navigation systems easier to use. However current navigation systems suffer from different aspects ... Keywords: fuzzy set theory, location based services, navigation services, rough set theory, spatio-temporal objects, uncertainty

Anahid Basiri; Pouria Amirian; Adam Winstanley; Colin Kuntzsch; Monika Sester

2012-11-01T23:59:59.000Z

418

SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM  

SciTech Connect

The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES).

T. Wilson; R. Novotny

1999-11-22T23:59:59.000Z

419

Source: Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol Blends.  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

A2: Manufacturer Compatibility with Ethanol Blends (Other Equipment). September 2013. A2: Manufacturer Compatibility with Ethanol Blends (Other Equipment). September 2013. Manufacturer Compatibility with Ethanol Blends (Other Equipment) Manufacturer Product Model Ethanol Compatibility Bravo Systems Fiberglass Fittings Series F, FF, FPE, FR, F Retrofit- S, RPE Retrofit-Si, F BLR, F D-BLR-S, TBF E0-E100 Bravo Systems Spill Buckets B3XX E0-E100 Bravo Systems Tank Sumps & Covers B4XX E0-E100 Bravo Systems Transition Sumps (planter, walkover, H-20 rated) B5XX, B6XX, B7XX, B8XX E0-E100 Bravo Systems Transition Sumps B8XX E0-E100 Bravo Systems Under Dispenser Contain- ment Sumps B7XXX, B8XXX, B9XXX E0-E100 Brugg Pipes FLEXWELL-HL, SECON-X, NIROFLEX, LPG E0-E100 KPS Petrol Pipe Systems Pipes and Associated Products All single- and double-wall plastic pipes, flexible

420

Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1  

Science Conference Proceedings (OSTI)

Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

On handling data in automata learning: considerations from the CONNECT perspective  

Science Conference Proceedings (OSTI)

Most communication with real-life systems involves data values being relevant to the communication context and thus influencing the observable behavior of the communication endpoints. When applying methods from the realm of automata learning, it is necessary ...

Falk Howar; Bengt Jonsson; Maik Merten; Bernhard Steffen; Sofia Cassel

2010-10-01T23:59:59.000Z

422

Determining Critical Pressure and Duct Leakage in VAV Air-Handling...  

NLE Websites -- All DOE Office Websites (Extended Search)

for moving air in buildings use a significant amount of energy. It is well known that fan energy use in variable-air-volume (VAV) systems can be reduced by resetting the supply...

423

Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant  

SciTech Connect

The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

Silva, M.K.; Neill, R.H.

1994-09-01T23:59:59.000Z

424

Welding and Repair Technology Center: Boric Acid Attack of Concrete and Reinforcing Steel in PWR Fuel Handling Buildings  

Science Conference Proceedings (OSTI)

Spent fuel pool (SFP) leakage is common throughout the U.S. PWR fleet, with some plants experiencing leakage since early in plant life. The U.S. Nuclear Regulatory Commission (NRC) issued Information Notice 2004-05 describing leakage from the SFP at Salem Generating Station that migrated outside the building. The contamination was limited to the vicinity of the fuel handling building (FHB) and was contained and remediated within the confines of the protected area. It did not reach either underground aqui...

2012-05-14T23:59:59.000Z

425

Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning  

SciTech Connect

A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations.

Eberle, C.S.; Dean, E.M.; Angelo, P.L.

1995-12-31T23:59:59.000Z

426

High Level Trigger Configuration and Handling of Trigger Tables in the CMS Filter Farm  

Science Conference Proceedings (OSTI)

The CMS experiment at the CERN Large Hadron Collider is currently being commissioned and is scheduled to collect the first pp collision data in 2008. CMS features a two-level trigger system. The Level-1 trigger, based on custom hardware, is designed to reduce the collision rate of 40 MHz to approximately 100 kHz. Data for events accepted by the Level-1 trigger are read out and assembled by an Event Builder. The High Level Trigger (HLT) employs a set of sophisticated software algorithms, to analyze the complete event information, and further reduce the accepted event rate for permanent storage and analysis. This paper describes the design and implementation of the HLT Configuration Management system. First experiences with commissioning of the HLT system are also reported.

Bauer, G; Behrens, U; Boyer, V; Branson, J; Brett, A; Cano, E; Carboni, A; Ciganek, M; Cittolin, S; O'dell, V; Erhan, S; Gigi, D; Glege, F; Gomez-Reino, R; Gulmini, M; Gutleber, J; Hollar, J; Lange, D; Kim, J C; Klute, M; Lipeles, E; Perez, J L; Maron, G; Meijers, F; Meschi, E; Moser, R; Mlot, E G; Murray, S; Oh, A; Orsini, L; Paus, C; Petrucci, A; Pieri, M; Pollet, L; Racz, A; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Sumorok, K; Suzuki, I; Tsirigkas, D; Varela, J

2009-11-22T23:59:59.000Z

427

Designing Fault-Tolerant Mobile Systems  

Science Conference Proceedings (OSTI)

The purpose of this paper is to investigate how several innovative techniques, not all initially intended for fault-tolerance, can be applied in providing fault tolerance of complex mobile agent systems. Due to their roaming nature, mobile agents usually ... Keywords: exception handling, fault tolerance, mobile agents, software engineering, system structuring

Giovanna Di Marzo Serugendo; Alexander B. Romanovsky

2002-11-01T23:59:59.000Z

428

PFP Commercial Grade Food Pack Cans for Plutonium Handling and Storage Critical Characteristics  

SciTech Connect

This document specifies the critical characteristics for containers procured for Plutonium Finishing Plant's (PFP's) Vault Operations system as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to perform its safety function.

BONADIE, E.P.

2000-10-26T23:59:59.000Z

429

P2-12: Handling Misalignment and Drift in 3D EBSD Data Sets  

Science Conference Proceedings (OSTI)

P1-04: 3D Microstructural Characterization of Uranium Oxide as a Surrogate Nuclear ... P1-15: Gating System Optimisation Design Study of a Cast Automobile ... P2-27: Characterization of Carbonate Rocks through X-ray Microtomography.

430

Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations  

Science Conference Proceedings (OSTI)

This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

1980-03-01T23:59:59.000Z

431

Scheduling in Multiprocess Systems  

E-Print Network (OSTI)

Request Handling Since requests are sent to both remote andremote RTT for neighbor X, time m is the average per item-miss handling

Dou, Ji Adam

2011-01-01T23:59:59.000Z

432

Optimal Terminal Box Control for Single Duct Air-Handling Units  

E-Print Network (OSTI)

Terminal boxes maintain room temperature by modulating supply air temperature and airflow in building HVAC systems. Terminal boxes with conventional control sequences often supply inadequate airflow to a conditioned space, resulting in occupant discomfort, or provide excessive airflow that wastes significant reheat energy. In this study, an optimal terminal box airflow control sequence was developed to improve indoor ventilation and reduce energy consumption. The developed control sequence was applied in an office building air conditioning system. Improvements in indoor thermal comfort and energy reduction were verified through measurement. The results show that the optimal control sequence can stably maintain thermal environment, satisfy comfort standards and reduce energy consumption compared to the conventional control sequence.

Cho, Y.; Vondal, J.; Wang, G.; Liu, M.

2006-01-01T23:59:59.000Z

433

Multi-purpose canister system evaluation: A systems engineering approach  

SciTech Connect

This report summarizes Department of Energy (DOE) efforts to investigate various container systems for handling, transporting, storing, and disposing of spent nuclear fuel (SNF) assemblies in the Civilian Radioactive Waste Management System (CRWMS). The primary goal of DOE`s investigations was to select a container technology that could handle the vast majority of commercial SNF at a reasonable cost, while ensuring the safety of the public and protecting the environment. Several alternative cask and canister concepts were evaluated for SNF assembly packaging to determine the most suitable concept. Of these alternatives, the multi-purpose canister (MPC) system was determined to be the most suitable. Based on the results of these evaluations, the decision was made to proceed with design and certification of the MPC system. A decision to fabricate and deploy MPCs will be made after further studies and preparation of an environmental impact statement.

1994-09-01T23:59:59.000Z

434

Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization  

SciTech Connect

Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

2011-04-01T23:59:59.000Z

435

EVMS Self-Surveillance of Remote Handled Low Level Waste (RHLLW) Project  

Science Conference Proceedings (OSTI)

DOE G 413.3-10A, Section 3.a states: The Contractor has primary responsibility for implementing and maintaining a surveillance program to ensure continued compliance of the system with ANSI/EIA-748B. DOE O 413.3B requires the FPD to ensure the contractor conducts a Self-Surveillance annually. This annual Self-Surveillance,should cover all 32 guidelines of the ANSI/EIA748B. Documentation of the Self-Surveillance is sent to the CO and the PMSO (copy to OECM) confirming the continued compliance of their EVMS ANSI/EIA748B... This review, and the associated report, is deemed to satisfy this requirement.

Michael L. Nelson; Kimberly Case; Linda Hergesheimer; Maxine Johnson; Doug Parker; Rick Staten; Scott taylor

2013-07-01T23:59:59.000Z

436

Techniques and Facilities for Handling and Packaging Tritiated Liquid Wastes for Burial  

SciTech Connect

Methods and facilities have been developed for the collection, storage, measurement, assay, solidification, and packaging of tritiated liquid wastes (concentrations up to 5 Ci/ml) for disposal by land burial. Tritium losses to the environment from these operations are less than 1 ppm. All operations are performed in an inert gas-purged glovebox system vented to an effluent removal system which permits nearly complete removal of tritium from the exhaust gases prior to their dischardge to the environment. Waste oil and water from tritium processing areas are vacuum-transferred to glovebox storage tanks through double-walled lines. Accommodations are also available for emptying portable liquid waste containers and for removing tritiated water from molecular sieve beds with heat and vacuum. The tritium concentration of the collected liquids is measured by an in-line calorimeter. A low-volume metering pump is used to transfer liquids from holding tanks to heavy walled polyethylene drums filled with an absorbent or cement for solidification. Final packaging of the sealed polyethylene drums is in either an asphalt-filled combination 30- and 55- gallon metal drum package or a 30-gallon welded stainless steel container.

Rhinehammer, T. B.; Mershad, E. A.

1974-06-01T23:59:59.000Z

437

The Neutrino Factory and Muon Collider Collaboration The Target System and Support Facility  

E-Print Network (OSTI)

off in a hot cell. Kirk T. McDonald May 4, 2001 12 #12;The Neutrino Factory and Muon Collider Collaboration Target System Support Facility Extensive shielding; remote handling capability. Kirk T. Mc

McDonald, Kirk

438

The Neutrino Factory and Muon Collider Collaboration The Target System and Support Facility  

E-Print Network (OSTI)

off in a hot cell. Kirk T. McDonald May 4, 2001 12 #12; The Neutrino Factory and Muon Collider Collaboration Target System Support Facility Extensive shielding; remote handling capability. Kirk T. Mc

McDonald, Kirk

439

Power system voltage stability and agent based distribution automation in smart grid  

Science Conference Proceedings (OSTI)

Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems ...

Cuong Phuc Nguyen / Alexander J. Flueck

2011-01-01T23:59:59.000Z

440

Developing Supersonic Impactor and Aerodynamic Lens for Separation and Handling of Nano-Sized Particles  

SciTech Connect

A computational model for supersonic flows of compressible gases in an aerodynamic lens with several lenses and in a supersonic/hypersonic impactor was developed. Airflow conditions in the aerodynamic lens were analyzed and contour plots for variation of Mach number, velocity magnitude and pressure field in the lens were evaluated. The nano and micro-particle trajectories in the lens and their focusing and transmission efficiencies were evaluated. The computational model was then applied to design of a aerodynamic lens that could generate focus particle beams while operating under atmospheric conditions. The computational model was also applied to airflow condition in the supersonic/hypersonic impactor. Variations of airflow condition and particle trajectories in the impactor were evaluated. The simulation results could provide understanding of the performance of the supersonic and hypersonic impactors that would be helpful for the design of such systems.

Goodarz Ahmadi

2008-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "handling system lmrhs01" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Implementation of an Enhanced Measurement Control Program for handling nuclear safety samples at WSRC  

SciTech Connect

In the separation and purification of nuclear material, nuclear criticality safety (NCS) is of primary concern. The primary nuclear criticality safety controls utilized by the Savannah River Site (SRS) Separations Facilities involve administrative and process equipment controls. Additional assurance of NCS is obtained by identifying key process hold points where sampling is used to independently verify the effectiveness of production control. Nuclear safety measurements of samples from these key process locations provide a high degree of assurance that processing conditions are within administrative and procedural nuclear safety controls. An enhanced procedure management system aimed at making improvements in the quality, safety, and conduct of operation was implemented for Nuclear Safety Sample (NSS) receipt, analysis, and reporting. All procedures with nuclear safety implications were reviewed for accuracy and adequate detail to perform the analytical measurements safely, efficiently, and with the utmost quality. Laboratory personnel worked in a ``Deliberate Operating`` mode (a systematic process requiring continuous expert oversight during all phases of training, testing, and implementation) to initiate the upgrades. Thus, the effort to revise and review nuclear safety sample procedures involved a team comprised of a supervisor, chemist, and two technicians for each procedure. Each NSS procedure was upgraded to a ``Use Every Time`` (UET) procedure with sign-off steps to ensure compliance with each step for every nuclear safety sample analyzed. The upgrade program met and exceeded both the long and short term customer needs by improving measurement reliability, providing objective evidence of rigid adherence to program principles and requirements, and enhancing the system for independent verification of representative sampling from designated NCS points.

Boler-Melton, C.; Holland, M.K.

1991-12-31T23:59:59.000Z

442

Implementation of an Enhanced Measurement Control Program for handling nuclear safety samples at WSRC  

SciTech Connect

In the separation and purification of nuclear material, nuclear criticality safety (NCS) is of primary concern. The primary nuclear criticality safety controls utilized by the Savannah River Site (SRS) Separations Facilities involve administrative and process equipment controls. Additional assurance of NCS is obtained by identifying key process hold points where sampling is used to independently verify the effectiveness of production control. Nuclear safety measurements of samples from these key process locations provide a high degree of assurance that processing conditions are within administrative and procedural nuclear safety controls. An enhanced procedure management system aimed at making improvements in the quality, safety, and conduct of operation was implemented for Nuclear Safety Sample (NSS) receipt, analysis, and reporting. All procedures with nuclear safety implications were reviewed for accuracy and adequate detail to perform the analytical measurements safely, efficiently, and with the utmost quality. Laboratory personnel worked in a Deliberate Operating'' mode (a systematic process requiring continuous expert oversight during all phases of training, testing, and implementation) to initiate the upgrades. Thus, the effort to revise and review nuclear safety sample procedures involved a team comprised of a supervisor, chemist, and two technicians for each procedure. Each NSS procedure was upgraded to a Use Every Time'' (UET) procedure with sign-off steps to ensure compliance with each step for every nuclear safety sample analyzed. The upgrade program met and exceeded both the long and short term customer needs by improving measurement reliability, providing objective evidence of rigid adherence to program principles and requirements, and enhancing the system for independent verification of representative sampling from designated NCS points.

Boler-Melton, C.; Holland, M.K.

1991-01-01T23:59:59.000Z

443

Theoretical and experimental analysis of a multiphase screw pump, handling gas-liquid mixtures with very high gas volume fractions  

SciTech Connect

In the investigation of the pumping behaviour of multiphase screw pumps, handling gas-liquid mixtures with very high gas volume fractions, theoretical and experimental analyses were performed. A new theoretical screw pump model was developed, which calculates the time-dependent conditions inside the several chambers of a screw pump as well as the exchange of mass and energy between these chambers. By means of the performed experimental analysis, the screw pump model was verified, especially at very high gas volume fractions from 90% to 99%. The experiments, which were conducted with the reference fluids water and air, can be divided mainly into the determination of the steady state pumping behaviour on the one hand and into the analysis of selected transient operating conditions on the other hand, whereas the visualisation of the leakage flows through the circumferential gaps was rounded off the experimental analysis. (author)

Raebiger, K. [LEISTRITZ Pumpen GmbH, Nuremberg (Germany); Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales (United Kingdom); Maksoud, T.M.A.; Ward, J. [Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales (United Kingdom); Hausmann, G. [Department of Mechanical Engineering and Building Services Engineering, University of Applied Sciences, Nuremberg (Germany)

2008-09-15T23:59:59.000Z

444

Hybrid Systems Architectures  

E-Print Network (OSTI)

ion suppression of lower-level information not relevant for the current task Encapsulation (information hiding) implementation details are hidden, only interface information is visible F. Kurfe Hybrid System Architectures ASHS '96 37 Inheritance common characteristics are derived from ancestors Polymorphism appropriate instances of classes and operators can be selected at runtime Advantages ffl very flexible ffl suitable for large systems ffl support reuse Problems ffl handling of new and atypical situations ffl quite complex ffl formal verification F. Kurfe Hybrid System Architectures ASHS '96 38 Expert System What is an Expert System? Basic concepts ffl designer / user supplies facts and information ffl user asks queries and receives expert advice ffl limited to a problem domain (knowledge domain) Components ffl user interface ffl knowledge base ffl inference mechanism Synonyms: knowledge-based system, knowledge-based expert system F. Kurfe Hybrid System Archi...

Franz J. Kurfe

1996-01-01T23:59:59.000Z

445

Reputation in self-organized communication systems and beyond  

Science Conference Proceedings (OSTI)

Efficiently handling reputation is important in dealing with free-riding, malicious attacks and random failures in self-organized communication systems. At the same time, work in this context is often found to be relevant in many other disciplines, in ... Keywords: Bayesian belief propagation, discrete event dynamic system, interacting particle system, liars, performance optimization, phase transition, reputation, social networks, statistical physics model, trust

Jochen Mundinger; Jean-Yves Le Boudec

2006-10-01T23:59:59.000Z

446

Large File System Backup: NERSC Global File System Experience  

SciTech Connect

NERSC's Global File system (NGF), accessible from all compute systems at NERSC, holds files and data from many scientific projects. A full backup of this file system to our High Performance Storage System (HPSS) is performed periodically. Disk storage usage by projects at NERSC has grown seven fold over a two year period, from ~;;20TB in June 2006 to ~;;140 TB in June 2008. The latest full backup took about 13 days and more than 200 T10k tape cartridges (.5 TB capacity). Petabyte file systems are becoming a reality in the next few years and the existing utilities are already strained in handling backup tasks.

Mokhtarani, Akbar; Andrews, Matthew; Hick, Jason; Kramer, William

2008-10-23T23:59:59.000Z

447

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 DOE/EA-1793 Draft Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 v EXECUTIVE SUMMARY The U.S. Department of Energy (DOE) proposes to provide replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Historically, INL has disposed of this LLW onsite. However, the existing disposal area located within the INL Radioactive Waste Management Complex will undergo

448

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT FOR THE ENVIRONMENTAL ASSESSMENT FOR THE REPLACEMENT CAPABILITY FOR THE DISOPOSAL OF REMOTE-HANDLED LOW-LEVEL RADIOACTIVE WASTE GENERATED AT THE DEPARTMENT OF ENERGY'S IDAHO SITE Agency: U. S. Department of Energy (DOE) Action: Finding ofNo Significant Impact (FONSI) Summary: Operations conducted in support ofIdaho National Laboratory (INL) and Naval Reactors Facility (NRF) missions on the Idaho site generate low-level radioactive waste (LL W). DOE classifies some of the LL W generated at the INL as remote-handled LL W because its potential radiation dose is high enough to require additional protection of workers using distance and shielding. Remote-handled wastes are those with radiation levels exceeding 200 millirem

449

The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health related research. Volume 4: Production and materials handling  

Science Conference Proceedings (OSTI)

This is the fourth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume 4 is to describe record series pertaining to production and materials handling activities at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of production and materials handling practices at Rocky Flats, and identifies organizations contributing to production and materials handling policies and activities. Other topics include the scope and arrangement of the guide and the organization to contact for access to these records.

NONE

1995-08-01T23:59:59.000Z

450

A knowledge-based decision support system for shipboard damage control  

Science Conference Proceedings (OSTI)

The operational complexity of modern ships requires the use of advanced applications, called damage control systems (DCSs), able to assist crew members in the effective handling of dangerous events and accidents. In this article we describe the development ... Keywords: Damage control system, Decision support system, Expert system, Kill card, Knowledge-based system, Shipboard management

F. Calabrese; A. Corallo; A. Margherita; A. A. Zizzari

2012-07-01T23:59:59.000Z

451

ENGINEERING EXPERIENCE AT BROOKHAVEN NATIONAL LABORATORY IN HANDLING FUSED CHLORIDE SALTS  

SciTech Connect

Two fused chloride salt eutectics, binary LiCl-KCl and ternary NaCl- KCl- MgCl/sub 2/, were used in fuel processing studies as part of the Liquid Metal Fuel Reactor research and development program. Results of engineering work done at Brookhaven since 1950 are summarized. It was demonstrated that fused chloride salt technology is sufficiently developed so that loops and other experimental equipment can be designed and operated at 500 deg C with a high degree of confidence. The equipment, which was operated for many hours, included a large forced-circulation loop and many thermal-convection loops and tanks. The specifications used for the fabrication, cleaning, and testing of equipment for salt service are described. All welded systems, welded by the usual inert-arc procedures, are preferred, but ring type joint stainless-steel flanged connections were found satisfactory, mainly for connecting melt tanks to experimental equipment and for mounting orifice flowmeters. The surfaces of equipment to be used with fused salts were cleaned satisfactorily prior to assembly by several different methods, but sandblasting was found applicable to all types of equipment. Radiography was used to check all welds in contact with fused salt for flaws and, during operation, to locate and determine the cause of any malfunction. Components tested at the normal operating temperature of 500 deg C included pumps, valves, agitators, sightports, samplers, and filtens. Salt samples were usually taken by the thief method. Both stationary and movable resistance type, liquid-level probes were used and were reliable so long as the salt surface remained quiescent; otherwise, splashing and short-circuiting occurred. Nullmatic, pilot-operated pressure transmitters gave good service in conjunction with both orifice and Venturi flowmeters. A procedure is described for preparing pound quantities of pure eutectics, which, in the case of the ternary eutectic, differs from that used in preparing gram quantities. Both eutectics were pretreated with a Bi- Mg-U solution to remove oxidizing impurities before use in corrosion and processing experiments. The results of physical property measurements on the two eutectics are included. (auth)

Raseman, C.J.; Susskind, H.; Farber, G.; McNulty, W.E.; Salzano, F.J.

1960-06-01T23:59:59.000Z

452

REAL TIME SYSTEM OPERATIONS 2006-2007  

E-Print Network (OSTI)

automation,andhandlingofremoteclientrequests. 4.2.automation, and handling of remote client requests. At any

Eto, Joseph H.

2008-01-01T23:59:59.000Z

453

Portable battery powered system  

SciTech Connect

In a exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor is permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S. E.

1985-11-12T23:59:59.000Z

454

Automotive and MHE Fuel Cell System Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Vince Contini, Kathya Mahadevan, Fritz Eubanks, Vince Contini, Kathya Mahadevan, Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle April 16, 2013 Manufacturing Cost Anal