National Library of Energy BETA

Sample records for handling system lmrhs01

  1. LM Records Handling System (LMRHS01) - Electronic Records Keeping System,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Legacy Management, | Department of Energy System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, PDF icon LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, More Documents & Publications LM

  2. LM Records Handling System (LMRHS01) - Energy Employees Occupational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illness Compensation Program Act, Office of Legacy Management | Department of Energy Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management PDF icon LM Records Handling System (LMRHS01) - Energy

  3. LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Database, Office of Legacy Management | Department of Energy Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management PDF icon LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management More Documents &

  4. LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy ...

  5. LM Records Handling System-Fernald Historical Records System, Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legacy Management | Department of Energy Fernald Historical Records System, Office of Legacy Management LM Records Handling System-Fernald Historical Records System, Office of Legacy Management LM Records Handling System-Fernald Historical Records System, Office of Legacy Management PDF icon LM Records Handling System-Fernald Historical Records System, Office of Legacy Management More Documents & Publications LM Records Handling System (LMRHS01) - Electronic Records Keeping System,

  6. Health Physics Records System (Dosimetry), Carlsbad Field Office |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Health Physics Records System (Dosimetry), Carlsbad Field Office Health Physics Records System (Dosimetry), Carlsbad Field Office Health Physics Records System (Dosimetry), Carlsbad Field Office PDF icon Health Physics Records System (Dosimetry), Carlsbad Field Office More Documents & Publications PIA - WEB Unclassified Business Operations General Support System LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy

  7. PIA - Environmental Management Consolidated Business Center ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Reactor National Scientific User Facility Users Week 2009 LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management

  8. Tritium handling in vacuum systems

    SciTech Connect (OSTI)

    Gill, J.T. [Monsanto Research Corp., Miamisburg, OH (United States). Mound Facility; Coffin, D.O. [Los Alamos National Lab., NM (United States)

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  9. Automated system for handling tritiated mixed waste

    SciTech Connect (OSTI)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL`s robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans.

  10. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System. This includes the primary hot cell bounded by the receiving area and WP transport exit air locks; and isolation doors at ATS, CTS, and Waste Package Remediation. The hot cell includes areas for welding, various staging, tilting, and WP transporter loading. There are associated operating galleries and equipment maintenance areas outside the hot cell. These areas operate concurrently to accommodate the DC/WP throughput rates and support system maintenance. The new DC preparation area is located in an unshielded structure. The handling equipment includes DC/WP bridge cranes, tilting stations, and horizontal transfer carts. The welding area includes DC/WP welders and staging stations. Welding operations are supported by remotely operated equipment including a bridge crane and hoists, welder jib cranes, welding turntables, and manipulators. WP transfer includes a transfer/decontamination and transporter load area. The transfer operations are supported by a remotely operated horizontal lifting system, decontamination system, decontamination and inspection manipulator, and a WP horizontal transfer cart. All handling operations are supported by a suite of fixtures including collars, yokes, lift beams, and lid attachments. Remote equipment is designed to facilitate decontamination and maintenance. Interchangeable components are provided where appropriate. Set-aside areas are included, as required, for fixtures and tooling to support off-normal and recovery operations. Semi-automatic, manual, and backup control methods support normal, maintenance, and recovery operations. The system interfaces with the ATS and CTS to provide empty and receive loaded DCs. The Waste Emplacement/Retrieval System interfaces are for loading/unloading WPs on/from the transporter. The system also interfaces with the Waste Package Remediation System for DC/WP repair. The system is housed, shielded, supported, and has ventilation boundaries by the Waste Handling Building (WHB). The system is ventilated by the WHB Ventilation System, which in conjunction with ventilation boundaries ensure that ai

  11. PIA - Environmental Management Consolidated Business Center (EMCBC) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) PDF icon PIA - Environmental Management Consolidated Business Center (EMCBC) More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 LM Records Handling System (LMRHS01) - Rocky

  12. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  13. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  14. Fuel handling system for a nuclear reactor

    DOE Patents [OSTI]

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  15. DESCRIPTION BARCODE MANUFACTURER MODEL_NO COST SN BLDG ROOM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEPARTMENT OF ENERGY Privacy Awareness Training DEPARTMENT OF ENERGY Privacy Awareness Training DEPARTMENT OF ENERGY Privacy Awareness Training PDF icon DEPARTMENT OF ENERGY Privacy Awareness Training More Documents & Publications PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System-Freedom of Information/Privacy Act, Office of Legacy management

  16. DOE Technical Targets for Hydrogen Storage Systems for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment | Department of Energy Material Handling Equipment DOE Technical Targets for Hydrogen Storage Systems for Material Handling Equipment This table summarizes hydrogen storage technical performance targets for material handling equipment. These targets were developed with input to DOE through extensive communications with various stakeholders, industry developers, and end users, including through a 2012 request for information and workshops, as well as additional national lab

  17. Method and system rapid piece handling

    DOE Patents [OSTI]

    Spletzer, Barry L.

    1996-01-01

    The advent of high-speed fabric cutters has made necessary the development of automated techniques for the collection and sorting of garment pieces into collated piles of pieces ready for assembly. The present invention enables a new method for such handling and sorting of garment parts, and to apparatus capable of carrying out this new method. The common thread is the application of computer-controlled shuttling bins, capable of picking up a desired piece of fabric and dropping it in collated order for assembly. Such apparatus with appropriate computer control relieves the bottleneck now presented by the sorting and collation procedure, thus greatly increasing the overall rate at which garments can be assembled.

  18. Health Safety & Environmental Protection Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Health Physics Records System (Dosimetry), Carlsbad Field Office Health Physics Records System (Dosimetry), Carlsbad Field Office Health Physics Records System (Dosimetry), Carlsbad Field Office PDF icon Health Physics Records System (Dosimetry), Carlsbad Field Office More Documents & Publications PIA - WEB Unclassified Business Operations General Support System LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy

  19. Bag-out material handling system

    DOE Patents [OSTI]

    Brak, Stephen B.

    1985-01-01

    A bagging device for transferring material from a first chamber through an opening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  20. Bag-out material handling system

    DOE Patents [OSTI]

    Brak, Stephen B.; Milek, Henry F.

    1984-01-01

    A bagging device for transferring material from a first chamber through an pening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  1. System and method for slurry handling

    DOE Patents [OSTI]

    Steele, Raymond Douglas; Oppenheim, Judith Pauline

    2015-12-29

    A system includes a slurry depressurizing system that includes a liquid expansion system configured to continuously receive a slurry at a first pressure and continuously discharge the slurry at a second pressure. For example, the slurry depressurizing system may include an expansion turbine to expand the slurry from the first pressure to the second pressure.

  2. Plutonium Immobilization Process: Puck Handling Module Supervisory Control System

    SciTech Connect (OSTI)

    Smail, T.R.

    2001-01-29

    This paper discusses the Supervisory Control and Data Acquisition for green puck handling. Also discussed is the overall control scheme implemented by the supervisory computer, the individual inspections completed on the puck, and the checks and balances between the computer, tray loading system and robot.

  3. LM Records Handling System-Freedom of Information/Privacy Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling System-Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling ...

  4. Australian liquids-handling system cuts surges to LPG plant

    SciTech Connect (OSTI)

    McKee, G.; Stenner, T.D. )

    1990-08-06

    This paper reports how a pipeline liquids-handling facility recently commissioned allows gas production to be quickly ramped up to meet customer demand. Its design eliminates trouble-some liquid surges which had hampered plant operations. The pipeline-loop system, located at the Wallumbilla LPG processing plant, Queensland, was built for 60 of the cost of an equivalently sized conventional slug catcher. Its control system enables automatic, unattended handling of liquid surges and pigging slugs from the 102-km Silver Springs to Wallumbilla two-phase pipeline. Because of this system's simple hydraulics, normal slug-catcher piping design problems are eliminated. Safety is improved because the potentially hazardous condensate liquid is contained in a buried pipeline.

  5. LM Records Handling System-Freedom of Information/Privacy Act, Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legacy management | Department of Energy Freedom of Information/Privacy Act, Office of Legacy management LM Records Handling System-Freedom of Information/Privacy Act, Office of Legacy management LM Records Handling System-Freedom of Information/Privacy Act, Office of Legacy management PDF icon LM Records Handling System-Freedom of Information/Privacy Act, Office of Legacy management More Documents & Publications LM Records Handling System-Fernald Historical Records System, Office of

  6. Automated cassette-to-cassette substrate handling system

    DOE Patents [OSTI]

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph; DeChellis, Michael; Koo, Michael

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and a processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.

  7. Development of a Bulk-Format System to Harvest, Handle, Store...

    Broader source: Energy.gov (indexed) [DOE]

    a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage generaprojectabstract1.pdf More Documents & Publications Development of a Bulk-Format System to Harvest,...

  8. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    SciTech Connect (OSTI)

    Bardal, M.A. [PaR Systems, Inc., Shoreview, MN (United States); Darwen, N.J. [Bechtel National, Inc., Richland, WA (United States)

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)

  9. Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer

    DOE Patents [OSTI]

    Chastgner, P.

    1991-05-08

    This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.

  10. TITLE III EVALUATION REPORT FOR THE MATERIAL AND PERSONNEL HANDLING SYSTEM

    SciTech Connect (OSTI)

    T. A. Misiak

    1998-05-21

    This Title III Evaluation Report (TER) provides the results of an evaluation that was conducted on the Material and Personnel Handling System. This TER has been written in accordance with the ''Technical Document Preparation Plan for the Mined Geologic Disposal System Title III Evaluation Reports'' (BA0000000-01717-4600-00005 REV 03). The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Material and Personnel Handling System. Recommendations for resolving discrepancies between the as-constructed system, the technical baseline requirements, and the baseline design are included in this report. Cost and Schedule estimates are provided for all recommended modifications.

  11. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage, and cleaning stations-have accumulated satisfactory construction and operation experiences. In addition, two special issues for future development are described in this report: large capacity interim storage and transuranic-bearing fuel handling.

  12. Interim report spent nuclear fuel retrieval system fuel handling development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  13. An advanced economizer controller for dual-duct air-handling systems -- with a case application

    SciTech Connect (OSTI)

    Liu, M.; Claridge, D.E.; Park, B.Y.

    1997-12-31

    A heating penalty is expected when economizers are applied to dual-duct air-handling systems. The heating penalty can be even higher than the cooling savings when the hot airflow is higher than the cold airflow. To avoid the excessive heating penalty, advanced economizers are developed in this paper. The application of the advanced economizer has resulted in savings of $7,000/yr in one 95,000-ft{sup 2} (8,800-m{sup 2}) school building since 1993. The impacts of cold and hot deck settings on the energy consumption are also discussed.

  14. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    SciTech Connect (OSTI)

    Teese, G.D.; Randall, W.J.

    1992-01-01

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended.

  15. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    SciTech Connect (OSTI)

    Teese, G.D.; Randall, W.J.

    1992-12-31

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended.

  16. Nuclear reactor fuel assembly duct-tube-to-handling-socket attachment system

    DOE Patents [OSTI]

    Christiansen, David W.; Smith, Bob G.

    1982-01-01

    A reusable system for removably attaching the upper end 10of a nuclear reactor duct tube to the lower end 30 of a nuclear reactor fuel assembly handling socket. A transition ring 20, fixed to the duct tube's upper end 10, has an interior-threaded section 22 with a first locking hole segment 24. An adaptor ring 40, fixed to the handling socket's lower end 30 has an outside-threaded section 42 with a second locking hole segment 44. The inside 22 and outside 42 threaded sections match and can be joined so that the first 24 and second 44 locking hole segments can be aligned to form a locking hole. A locking ring 50, with a locking pin 52, slides over the adaptor ring 40 so that the locking pin 52 fits in the locking hole. A swage lock 60 or a cantilever finger lock 70 is formed from the locking cup collar 26 to fit in a matching groove 54 or 56 in the locking ring 50 to prevent the locking ring's locking pin 52 from backing out of the locking hole.

  17. Proposal for Construction/Demonstration/Implementation of A Material Handling System

    SciTech Connect (OSTI)

    Jim Jnatt

    2001-08-24

    Vortec Corporation, the United States Enrichment Corporation (USEC) and DOE/Paducah propose to complete the technology demonstration and the implementation of the Material Handling System developed under Contract Number DE-AC21-92MC29120. The demonstration testing and operational implementation will be done at the Paducah Gaseous Diffusion Plant. The scope of work, schedule and cost for the activities are included in this proposal. A description of the facility to be constructed and tested is provided in Exhibit 1, attached. The USEC proposal for implementation at Paducah is presented in Exhibit 2, and the commitment letters from the site are included in Exhibit 3. Under our agreements with USEC, Bechtel Jacobs Corporation and DOE/Paducah, Vortec will be responsible for the construction of the demonstration facility as documented in the engineering design package submitted under Phase 4 of this contract on August 9, 2001. USEC will have responsibility for the demonstration testing and commercial implementation of the plant. The demonstration testing and initial commercial implementation of the technology will be achieved by means of a USEC work authorization task with the Bechtel Jacobs Corporation. The initial processing activities will include the processing of approximately 4,250 drums of LLW. Subsequent processing of LLW and TSCA/LLW will be done under a separate contract or work authorization task. To meet the schedule for commercial implementation, it is important that the execution of the Phase 4 project option for construction of the demonstration system be executed as soon as possible. The schedule we have presented herein assumes initiation of the construction phase by the end of September 2001. Vortec proposes to complete construction of the demonstration test system for an estimated cost of $3,254,422. This price is based on the design submitted to DOE/NETL under the Phase 4 engineering design deliverable (9 august 2001). The cost is subject to the assumptions and conditions identified in Section 6 of this proposal.

  18. Project Plan 7930 Cell G PaR Remote Handling System Replacement

    SciTech Connect (OSTI)

    Kinney, Kathryn A

    2009-10-01

    For over 40 years the US Department of Energy (DOE) and its predecessors have made Californium-252 ({sup 252}Cf) available for a wide range of industries including medical, nuclear fuels, mining, military and national security. The Radiochemical Engineering Development Center (REDC) located within the Oak Ridge National Laboratory (ORNL) processes irradiated production targets from the High Flux Isotope Reactor (HFIR). Operations in Building 7930, Cell G provide over 70% of the world's demand for {sup 252}Cf. Building 7930 was constructed and equipped in the mid-1960s. Current operations for {sup 252}Cf processing in Building 7930, Cell G require use of through-the-wall manipulators and the PaR Remote Handling System. Maintenance and repairs for the manipulators is readily accomplished by removal of the manipulator and relocation to a repair shop where hands-on work can be performed in glove boxes. Contamination inside cell G does not currently allow manned entry and no provisions were created for a maintenance area inside the cell. There has been no maintenance of the PaR system or upgrades, leaving operations vulnerable should the system have a catastrophic failure. The Cell G PaR system is currently being operated in a run to failure mode. As the manipulator is now 40+ years old there is significant risk in this method of operation. In 2006 an assessment was completed that resulted in recommendations for replacing the manipulator operator control and power centers which are used to control and power the PaR manipulator in Cell G. In mid-2008 the chain for the bridge drive failed and subsequent examinations indicated several damaged links (see Figure 1). To continue operations the PaR manipulator arm is being used to push and pull the bridge as a workaround. A retrieval tool was fabricated, tested and staged inside Cell G that will allow positioning of the bridge and manipulator arm for removal from the cell should the PaR system completely fail. A fully functioning and reliable Par manipulator arm is necessary for uninterrupted {sup 252}Cf operations; a fully-functioning bridge is needed for the system to function as intended.

  19. DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.

    2012-06-06

    Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA).

  20. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the sodium coolant. The cladding temperature requirement is maintained below the creep temperature limit to avoid any damage before core installation. The thermal analysis shows that a helium gas-filled cask can accommodate ABR-1000 fresh minor actinide-bearing fuel with 700-W decay heat. The above analysis results revealed the overall requirement for minor actinide-bearing metal fuel handling. The information is thought to be helpful in the design of the ABR-1000 and future sodium-cooled-reactor fuel-handling system.

  1. Development of a Bulk-Format System to Harvest, Handle, Store...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laidig Systems, Inc., Marathon Equipment, Dupont-Danisco Cellulosic Ethanol, Deere & ... potential, and inhibitors will be determined by Dupont-Danisco Cellulosic Ethanol. ...

  2. Central Characterization Program (CCP) Contact-Handled (CH) TRU...

    Office of Environmental Management (EM)

    Contact-Handled (CH) TRU Waste Certification and Waste Information SystemWaste Data System (WWISWDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU...

  3. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  4. Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System

    Office of Environmental Management (EM)

    the Dynamics of Coupled Systems | Department of Energy SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in the Dynamics of Coupled Systems SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in the Dynamics of Coupled Systems March 31, 2014 - 11:19am Addthis Research conducted at the Scaled Wind Farm Technology Facility (SWiFT) in Lubbock, Texas, drew a lot of interest from attendees at the International Modal Analysis Conference held in Orlando,

  5. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  6. TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN

    SciTech Connect (OSTI)

    RAYMOND RE

    2011-12-27

    In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

  7. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    SciTech Connect (OSTI)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  8. Puck Handling Glovebox

    SciTech Connect (OSTI)

    Fiscus, J.B.

    2001-01-29

    This paper discusses development and testing of the robots and specialized automation involved in handling green pucks from the cold press through placing sintered pucks on the transfer trays.

  9. Unvented Drum Handling Plan

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    2000-08-01

    This drum-handling plan proposes a method to deal with unvented transuranic drums encountered during retrieval of drums. Finding unvented drums during retrieval activities was expected, as identified in the Transuranic (TRU) Phase I Retrieval Plan (HNF-4781). However, significant numbers of unvented drums were not expected until excavation of buried drums began. This plan represents accelerated planning for management of unvented drums. A plan is proposed that manages unvented drums differently based on three categories. The first category of drums is any that visually appear to be pressurized. These will be vented immediately, using either the Hanford Fire Department Hazardous Materials (Haz. Mat.) team, if such are encountered before the facilities' capabilities are established, or using internal capabilities, once established. To date, no drums have been retrieved that showed signs of pressurization. The second category consists of drums that contain a minimal amount of Pu isotopes. This minimal amount is typically less than 1 gram of Pu, but may be waste-stream dependent. Drums in this category are assayed to determine if they are low-level waste (LLW). LLW drums are typically disposed of without venting. Any unvented drums that assay as TRU will be staged for a future venting campaign, using appropriate safety precautions in their handling. The third category of drums is those for which records show larger amounts of Pu isotopes (typically greater than or equal to 1 gram of Pu). These are assumed to be TRU and are not assayed at this point, but are staged for a future venting campaign. Any of these drums that do not have a visible venting device will be staged awaiting venting, and will be managed under appropriate controls, including covering the drums to protect from direct solar exposure, minimizing of container movement, and placement of a barrier to restrict vehicle access. There are a number of equipment options available to perform the venting. The preferred option is to use equipment provided by a commercial vendor during the first few years of retrieval and venting. This is based on a number of reasons. First, retrieval funding is uncertain. Using a commercial vendor will allow DOE-RL to avoid the investment and maintenance costs if retrieval is not funded. Second, when funding can be identified, retrieval will likely be performed with minimal initial throughput and intermittent operations. Again, costs can be saved by using contracted vendor services only as needed, rather than supporting Hanford equipment full time. When full-scale retrieval begins and the number of drums requiring venting increases significantly, then use of the Hanford container venting system (CVS) should be considered.

  10. DShaper: An approach for handling missing low-Q data in pair distribution function analysis of nanostructured systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olds, Daniel; Wang, Hsiu -Wen; Page, Katharine L.

    2015-09-04

    In this work we discuss the potential problems and currently available solutions in modeling powder-diffraction based pair-distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometer length scale, such as finite nanoparticles, nanoporous networks, and nanoscale precipitates in bulk materials. The implications of an experimental finite minimum Q-value are addressed by simulation, which also demonstrates the advantages of combining PDF data with small angle scattering data (SAS). We introduce a simple Fortran90 code, DShaper, which may be incorporated into PDF data fitting routines in order to approximate the so-called shape-function for any atomistic model.

  11. Puck Handling Glovebox

    SciTech Connect (OSTI)

    Fiscus, J.B.

    2001-01-03

    The Plutonium Immobilization Project (PIP) is a joint venture between the Savannah River Site (SRS) and Lawrence Livermore National Laboratory (LLNL). This project will disposition excess weapons grade plutonium in a solid ceramic form. The plutonium, in oxide powder form, will be mixed with uranium oxide powder, ceramic precursors and binders. The combined powder mixture will be milled and possibly granulated; this processed powder will then be dispensed to a (dual action) cold press where it will be formed into green (unsintered) compacts. The compact will have the shape of a puck measuring approximately 3 1/2'' in diameter and 1 3/8'' thick. The green puck, once ejected from the press die, will be picked up by a robot and transferred into the Puck Handling Glovebox. Here the green puck will be inspected and then palletized onto furnace trays. The loaded furnace trays will be stacked/assembled and transported to the furnace where sintering operations will be performed. Finally the sintered pucks will be off loaded, inspected and transferred onto Transfer Trays which will carry the pucks from the Puck Handling Glovebox downstream to subsequent Bagless Transfer Can (BTC) operations. Due to contamination potential and high radiation rates, all Puck Handling Glovebox operations will be performed remotely using robots and specialized automation.

  12. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  13. Solid handling valve

    DOE Patents [OSTI]

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  14. Sectional device handling tool

    DOE Patents [OSTI]

    Candee, Clark B.

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  15. REMOTE HANDLING ARRANGEMENTS

    DOE Patents [OSTI]

    Ginns, D.W.

    1958-04-01

    A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

  16. Contact-Handled and Remote-Handled Transuranic Waste Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-09

    Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel/supersede other directives.

  17. HAND TRUCK FOR HANDLING EQUIPMENT

    DOE Patents [OSTI]

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  18. Operating Experience Level 3, Losing Control: Material Handling Dangers

    Broader source: Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document provides information about the dangers inherent in material handling and the role hazard analysis, work planning, and walkdowns can play in preventing injuries during heavy equipment moves. More than 200 material handling events reported to the Occurrence Reporting and Processing System (ORPS) from January 1, 2010, through August 31, 2014.

  19. Ergonomic material-handling device

    DOE Patents [OSTI]

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  20. Handling and Packaging a Potentially Radiologically Contaminated...

    Office of Environmental Management (EM)

    Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is...

  1. Property:TwitterHandle | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Property Name TwitterHandle Property Type Text Description A Twitter handle in @Whatever format (not the full url) Pages using the property...

  2. Tritium Handling and Safe Storage

    Energy Savers [EERE]

    NOT MEASUREMENT SENSITIVE DOE-STD-1129-2015 September 2015 DOE STANDARD TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS DOE-STD-1129-2015 ii TABLE OF CONTENTS FOREWORD ............................................................................................................................................. 1 ACRONYMS

  3. Portable vacuum object handling device

    DOE Patents [OSTI]

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  4. Non-contact handling device

    DOE Patents [OSTI]

    Reece, Mark; Knorovsky, Gerald A.; MacCallum, Danny O.

    2007-05-15

    A pressurized fluid handling nozzle has a body with a first end and a second end, a fluid conduit and a recess at the second end. The first end is configured for connection to a pressurized fluid source. The fluid conduit has an inlet at the first end and an outlet at the recess. The nozzle uses the Bernoulli effect for lifting a part.

  5. Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review | Department of Energy Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume Systems - 2014 BTO Peer Review Presenter: Jin Wen, Drexel

  6. Tritium Handling and Safe Storage

    Energy Savers [EERE]

    DOE-HDBK-1129-2008 December 2008 DOE HANDBOOK TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS DOE-HDBK-1129-2008 ii This page is intentionally blank. DOE-HDBK-1129-2008 iii TABLE OF CONTENTS SECTION PAGE FOREWORD................................................................................................................................ ix ACRONYMS

  7. Tritium Handling and Safe Storage

    Energy Savers [EERE]

    SENSITIVE DOE-HDBK-1129-2007 March 2007 ____________________ DOE HANDBOOK TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1129-2007 ii This page is intentionally blank. DOE-HDBK-1129-2007 iii TABLE OF CONTENTS SECTION PAGE FOREWORD............................................................................................................................... vii

  8. Portable vacuum object handling device

    DOE Patents [OSTI]

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  9. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture Switchgrass Feedstock

    SciTech Connect (OSTI)

    Womac, Alvin; Groothuis, Mitch; Westover, Tyler; Phanphanich, Manunya; Webb, Erin; Sokhansanj, Shahab; Turhollow, Anthony

    2013-09-24

    This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLS evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.

  10. Uranium hexafluoride: A manual of good handling practices. Revision 7

    SciTech Connect (OSTI)

    1995-01-01

    The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

  11. Experiences with decontaminating tritium-handling apparatus

    SciTech Connect (OSTI)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T. )

    1992-03-01

    Tritium-handling apparatus has been decontaminated as part of the downsizing of the LLNL Tritium Facility. Two stainless-steel glove boxes that had been used to process lithium deuteride-tritide (LiDT) slat were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. In this paper the details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium, in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.

  12. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  13. Operating Experience Level 3, Losing Control: Material Handling...

    Energy Savers [EERE]

    Losing Control: Material Handling Dangers Operating Experience Level 3, Losing Control: Material Handling Dangers October 23, 2014 OE-3 2014-05: Losing Control: Material Handling...

  14. Apparatus for remotely handling components

    DOE Patents [OSTI]

    Szkrybalo, Gregory A.; Griffin, Donald L.

    1994-01-01

    The inventive apparatus for remotely handling bar-like components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of the first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components.

  15. Experiences with decontaminating tritium-handling apparatus

    SciTech Connect (OSTI)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish{trademark}. The surface contamination, as shown by swipe surveys, was reduced from 4{times}10{sup 4}--10{sup 6} disintegrations per minute (dpm)/cm{sup 2} to 2{times}10{sup 2}--4{times}10{sup 4} dpm/cm{sup 2}. Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.

  16. 2004 Biodiesel Handling and Use Guidelines (Revised)

    SciTech Connect (OSTI)

    Not Available

    2004-11-01

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It is intended to fleets and individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel.

  17. Storage/Handling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage/Handling Storage/Handling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management Business Center RETIREMENT OF RECORDS: 1. The Program Office originates the Records Transmittal and Receipt Form SF-135 (PDF, 107KB), and sends it to IM-23 at doerm@hq.doe.gov for approval. 2. IM-23 reviews the SF-135 for completeness/correctness and coordinates with the originating office by email if more

  18. Handling encapsulated spent fuel in a geologic repository environment

    SciTech Connect (OSTI)

    Ballou, L.B.

    1983-02-01

    In support of the Spent Fuel Test-Climate at the U.S. Department of Energy`s Nevada Test Site, a spent-fuel canister handling system has been designed, deployed, and operated successfully during the past five years. This system transports encapsulated commercial spent-fuel assemblies between the packaging facility and the test site ({similar_to}100 km), transfers the canisters 420 m vertically to and from a geologic storage drift, and emplaces or retrieves the canisters from the storage holes in the floor of the drift. The spent-fuel canisters are maintained in a fully shielded configuration at all times during the handling cycle, permitting manned access at any time for response to any abnormal conditions. All normal operations are conducted by remote control, thus assuring as low as reasonably achievable exposures to operators; specifically, we have had no measurable exposure during 30 canister transfer operations. While not intended to be prototypical of repository handling operations, the system embodies a number of concepts, now demonstrated to be safe, reliable, and economical, which may be very useful in evaluating full-scale repository handling alternatives in the future. Among the potentially significant concepts are: Use of an integral shielding plug to minimize radiation streaming at all transfer interfaces. Hydraulically actuated transfer cask jacking and rotation features to reduce excavation headroom requirements. Use of a dedicated small diameter (0.5 m) drilled shaft for transfer between the surface and repository workings. A wire-line hoisting system with positive emergency braking device which travels with the load. Remotely activated grapples - three used in the system - which are insensitive to load orientation. Rail-mounted underground transfer vehicle operated with no personnel underground.

  19. Bulk materials handling equipment roundup

    SciTech Connect (OSTI)

    Fiscor, S.

    2007-07-15

    The article reports recent product developments in belt conveyors. Flexco Steel Lancing Co. (Flexco) has a range of light, portable maintenance tools and offers training modules on procedures for belt conveyor maintenance on its website www.flexcosafe.com. Siemens recently fitted a 19 km long conveyor belt drive system at a Texan aluminium plant with five 556-kW Simovent Masterdrive VC drives. Voith recently launched the TPKL-T turbo coupling for users who want an alignment-free drive solution. Belt cleaners newly on the market include the RemaClean SGB brush and ASGCO Manufacturing's Razor-Back with Spray bar. Continental Conveyor has introduced a new line of dead-shaft pulleys offering increased bearing protection. 6 photos.

  20. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

  1. Hydrogen Fuel for Material Handling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Material Handling Hydrogen Fuel for Material Handling Presented by Tom Joseph at the National Hydrogen Assocation Conference and Hydrogen Expo PDF icon josephinfrastructurefo...

  2. Biodiesel Handling and Use Guide | Open Energy Information

    Open Energy Info (EERE)

    Handling and Use Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biodiesel Handling and Use Guide AgencyCompany Organization: National Renewable Energy...

  3. V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability August...

  4. DOE handbook: Tritium handling and safe storage

    SciTech Connect (OSTI)

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

  5. DOE Hydrogen Storage Technical Performance Targets for Material Handling Equipment

    Broader source: Energy.gov [DOE]

    This table summarizes hydrogen storage technical performance targets for material handling equipment.

  6. Duct Remediation Program: Material characterization and removal/handling

    SciTech Connect (OSTI)

    Beckman, T.d.; Davis, M.M.; Karas, T.M.

    1992-11-01

    Remediation efforts were successfully performed at Rocky Flats to locate, characterize, and remove plutonium holdup from process exhaust ducts. Non-Destructive Assay (NDA) techniques were used to determine holdup locations and quantities. Visual characterization using video probes helped determine the physical properties of the material, which were used for remediation planning. Assorted equipment types, such as vacuum systems, scoops, brushes, and a rotating removal system, were developed to remove specific material types. Personnel safety and material handling requirements were addressed throughout the project.

  7. Remote handling facility and equipment used for space truss assembly

    SciTech Connect (OSTI)

    Burgess, T.W.

    1987-01-01

    The ACCESS truss remote handling experiments were performed at Oak Ridge National Laboratory's (ORNL's) Remote Operation and Maintenance Demonstration (ROMD) facility. The ROMD facility has been developed by the US Department of Energy's (DOE's) Consolidated Fuel Reprocessing Program to develop and demonstrate remote maintenance techniques for advanced nuclear fuel reprocessing equipment and other programs of national interest. The facility is a large-volume, high-bay area that encloses a complete, technologically advanced remote maintenance system that first began operation in FY 1982. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the DOE, the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, and the US Navy in addition to the National Aeronautics and Space Administration. ACCESS truss remote assembly was performed in the ROMD facility using the Central Research Laboratory's (CRL) model M-2 servomanipulator. The model M-2 is a dual-arm, bilateral force-reflecting, master/slave servomanipulator which was jointly developed by CRL and ORNL and represents the state of the art in teleoperated manipulators commercially available in the United States today. The model M-2 servomanipulator incorporates a distributed, microprocessor-based digital control system and was the first successful implementation of an entirely digitally controlled servomanipulator. The system has been in operation since FY 1983. 3 refs., 2 figs.

  8. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    SciTech Connect (OSTI)

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has benefited greatly from review principally by Steve Pye, and also by Paul Eslinger, Dave Sevougian and Jiann Su.

  9. An analysis of repository waste-handling operations

    SciTech Connect (OSTI)

    Dennis, A.W.

    1990-09-01

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs.

  10. Early Markets: Fuel Cells for Material Handling Equipment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment This fact sheet describes the use of hydrogen fuel cells to power material handling equipment (MHE) and includes cost and performance comparisons for fuel cell-powered and battery-powered MHE. PDF icon Early Markets: Fuel Cells for Material Handling Equipment More Documents & Publications An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment Market

  11. Waste handling activities in glovebox dismantling facility

    SciTech Connect (OSTI)

    Kitamura, Akihiro; Okada, Takashi; Kashiro, Kashio; Yoshino, Masanori; Hirano, Hiroshi

    2007-07-01

    The Glovebox Dismantling Facility is a facility to decontaminate and size-reduce after-service gloveboxes in the Plutonium Fuel Production Facility, Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency. The wastes generated from these dismantling activities are simultaneously handled and packaged into drums in a bag-out manner. For future waste treatment and disposal, these wastes are separated into material categories. In this paper, we present the basic steps and analyzed data for the waste handling activities. The data were collected from dismantling activities for three gloveboxes (Grinding Pellet Glovebox, Visual Inspection Glovebox, Outer-diameter Screening Glovebox) conducted from 2001-2004. We also describe both current and near-future improvements. (authors)

  12. Improving Memory Error Handling Using Linux

    SciTech Connect (OSTI)

    Carlton, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Blanchard, Sean P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Debardeleben, Nathan A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-25

    As supercomputers continue to get faster and more powerful in the future, they will also have more nodes. If nothing is done, then the amount of memory in supercomputer clusters will soon grow large enough that memory failures will be unmanageable to deal with by manually replacing memory DIMMs. "Improving Memory Error Handling Using Linux" is a process oriented method to solve this problem by using the Linux kernel to disable (offline) faulty memory pages containing bad addresses, preventing them from being used again by a process. The process of offlining memory pages simplifies error handling and results in reducing both hardware and manpower costs required to run Los Alamos National Laboratory (LANL) clusters. This process will be necessary for the future of supercomputing to allow the development of exascale computers. It will not be feasible without memory error handling to manually replace the number of DIMMs that will fail daily on a machine consisting of 32-128 petabytes of memory. Testing reveals the process of offlining memory pages works and is relatively simple to use. As more and more testing is conducted, the entire process will be automated within the high-performance computing (HPC) monitoring software, Zenoss, at LANL.

  13. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

  14. Innovative methods for corn stover collecting, handling, storing and transporting

    SciTech Connect (OSTI)

    Atchison, J. E.; Hettenhaus, J. R.

    2004-04-01

    Investigation of innovative methods for collecting, handling, storing, and transporting corn stover for potential use for production of cellulosic ethanol.

  15. APPARATUS FOR HANDLING MIXTURES OF SOLID MATERIALS

    DOE Patents [OSTI]

    Hubbell, J.P.

    1959-08-25

    An apparatus is described for handling either a mixture of finely subdivided materials or a single material requiring a compacting action thereon preparatory to a chemical reducing process carried out in a crucible container. The apparatus is designed to deposit a mixture of dust-forming solid materials in a container while confining the materials against escape into the surrounding atmosphere. A movable filling tube, having a compacting member, is connected to the container and to a covered hopper receiving the mixture of materials. The filling tube is capable of reciprocating in the container and their relative positions are dependent upon the pressure established upon the material by the compacting member.

  16. 327 Building liquid waste handling options modification project plan

    SciTech Connect (OSTI)

    Ham, J.E.

    1998-03-28

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation.

  17. Error handling strategies in multiphase inverse modeling

    SciTech Connect (OSTI)

    Finsterle, S.; Zhang, Y.

    2010-12-01

    Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.

  18. Primer on tritium safe handling practices

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This Primer is designed for use by operations and maintenance personnel to improve their knowledge of tritium safe handling practices. It is applicable to many job classifications and can be used as a reference for classroom work or for self-study. It is presented in general terms for use throughout the DOE Complex. After reading it, one should be able to: describe methods of measuring airborne tritium concentration; list types of protective clothing effective against tritium uptake from surface and airborne contamination; name two methods of reducing the body dose after a tritium uptake; describe the most common method for determining amount of tritium uptake in the body; describe steps to take following an accidental release of airborne tritium; describe the damage to metals that results from absorption of tritium; explain how washing hands or showering in cold water helps reduce tritium uptake; and describe how tritium exchanges with normal hydrogen in water and hydrocarbons.

  19. Overview on Hydrate Coring, Handling and Analysis

    SciTech Connect (OSTI)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  20. 340 waste handling complex: Deactivation project management plan

    SciTech Connect (OSTI)

    Stordeur, R.T.

    1998-06-25

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

  1. Remote-Handled Transuranic Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2006-12-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

  2. Webinar: Analysis Using Fuel Cell Material Handling Equipment for Shaving

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peak Building Energy | Department of Energy Analysis Using Fuel Cell Material Handling Equipment for Shaving Peak Building Energy Webinar: Analysis Using Fuel Cell Material Handling Equipment for Shaving Peak Building Energy Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Analysis Using Fuel Cell Material Handling Equipment (MHE) for Shaving Peak Building Energy" held on August 11, 2015. PDF icon Analysis Using Fuel Cell MHE

  3. Literature Survey of Crude Oil Properties Relevant to Handling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relevant to Handling and Fire Safety in Transport - Sandia Energy Energy Search Icon ... Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ...

  4. Biodiesel Handling and Use Guide: Fourth Edition (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    Intended for those who blend, distribute, and use biodiesel and its blends, this guide contains procedures for handling and using these fuels.

  5. Handling and characterization of glow-discharge polymer samples...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Handling and characterization of glow-discharge polymer samples for the ... Subject: 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; 36 MATERIALS SCIENCE; 37 ...

  6. Widget:TwitterHandleValidate | Open Energy Information

    Open Energy Info (EERE)

    common copy + paste errors, and alerting the user if the format is not a valid Twitter handle. Parameters include: fieldname - the field to validate (optional, default:...

  7. Literature Survey of Crude Oil Properties Relevant to Handling...

    Office of Scientific and Technical Information (OSTI)

    Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport. Citation Details In-Document Search Title: Literature Survey of Crude Oil Properties ...

  8. Material Handling Fuel Cells for Building Electric Peak Shaving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Time ---> Power ---> Grid power Power from FCEV Building demand Time ---> Power ---> DC bus Class I, II, III material handling equipment (MHE) On-site refueling available Forklift ...

  9. Handbook for Handling, Storing, and Dispensing E85 and Other...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Solubility in Water Ethanol is extremely hydroscopic (i.e., attracts water). Water should be removed to the extent possible from fuel ethanol handling, storage, and distribution ...

  10. Processing and Disposition of Remote-Handled Transuranic Liquid...

    Office of Scientific and Technical Information (OSTI)

    Liquid Waste Generated at Oak Ridge National Laboratory Citation Details In-Document Search Title: Processing and Disposition of Remote-Handled Transuranic Liquid Waste Generated ...

  11. Handling and Packaging a Potentially Radiologically Contaminated Patient

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients.

  12. Early Markets: Fuel Cells for Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Handling Equipment Overview Fuel cells can be used to produce power for many ... natural gas, or biogas to electricity, fuel cells can effciently provide power while ...

  13. Handbook for Handling, Storing, and Dispensing E85

    SciTech Connect (OSTI)

    Not Available

    2008-04-01

    Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

  14. Spectrum Sciences Decision and Data Handling Issues | Department of Energy

    Energy Savers [EERE]

    Spectrum Sciences Decision and Data Handling Issues Spectrum Sciences Decision and Data Handling Issues PDF icon spectrum sciences software_breaches.pdf PDF icon Park _IP_meeting.pdf More Documents & Publications DOE M 483.1-1 EXHIBIT A: CRADA, WFO, PUA and NPUA Comparison Table, with suggested changes Subcontractor Rights Under CRADAs and WFO Agreements

  15. Apparatus and method for handling magnetic particles in a fluid

    DOE Patents [OSTI]

    Holman, David A. (Richland, WA); Grate, Jay W. (West Richland, WA); Bruckner-Lea, Cynthia J. (Richland, WA)

    2000-01-01

    The present invention is an apparatus and method for handling magnetic particles suspended in a fluid, relying upon the known features of a magnetic flux conductor that is permeable thereby permitting the magnetic particles and fluid to flow therethrough; and a controllable magnetic field for the handling. The present invention is an improvement wherein the magnetic flux conductor is a monolithic porous foam.

  16. Automated Proactive Techniques for Commissioning Air-Handling Units

    SciTech Connect (OSTI)

    Katipamula, Srinivas ); Brambley, Michael R. ); Luskay, Larry

    2003-08-30

    Many buildings today use sophisticated building automation systems (BASs) to manage a wide and varied range of building systems. Although the capabilities of the BASs seem to have increased over time, many buildings still are not properly commissioned, operated or maintained. Lack of or improper commissioning, the inability of the building operators to grasp the complex controls, and lack of proper maintenance leads to inefficient operations and reduced lifetimes of the equipment. If regularly scheduled manual maintenance or re-commissioning practices are adopted, they can be expensive and time consuming. Automated proactive commissioning and diagnostic technologies address two of the main barriers to commissioning: cost and schedules. Automated proactive continuous commissioning tools can reduce both the cost and time associated with commissioning, as well as enhance the persistence of commissioning fixes. In the long run, automation even offers the potential for automatically correcting problems by reconfiguring controls or changing control algorithms dynamically. This paper will discuss procedures and processes that can be used to automate and continuously commission the economizer operation and outdoor-air ventilation systems of an air-handling unit.

  17. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

  18. Handling debugger breakpoints in a shared instruction system

    DOE Patents [OSTI]

    Gooding, Thomas Michael; Shok, Richard Michael

    2014-01-21

    A debugger debugs processes that execute shared instructions so that a breakpoint set for one process will not cause a breakpoint to occur in the other processes. A breakpoint is set by recording the original instruction at the desired location and writing a trap instruction to the shared instructions at that location. When a process encounters the breakpoint, the process passes control to the debugger for breakpoint processing if the breakpoint was set at that location for that process. If the trap was not set at that location for that process, the cacheline containing the trap is copied to a small scratchpad memory, and the virtual memory mappings are changed to translate the virtual address of the cacheline to the scratchpad. The original instruction is then written to replace the trap instruction in the scratchpad, so that process can execute the instructions in the scatchpad thereby avoiding the trap instruction.

  19. Draft Environmental Assessment on the Remote-handled Waste Disposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review...

  20. Handling and characterization of glow-discharge polymer samples...

    Office of Scientific and Technical Information (OSTI)

    of glow-discharge polymer samples for the light gas gun Citation Details In-Document Search Title: Handling and characterization of glow-discharge polymer samples for the light ...

  1. T-625: Opera Frameset Handling Memory Corruption Vulnerability

    Broader source: Energy.gov [DOE]

    The vulnerability is caused due to an error when handling certain frameset constructs during page unloading and can be exploited to corrupt memory via a specially crafted web page.

  2. Grain Handling and Transportation Policy in Canada: Implications for the United States

    SciTech Connect (OSTI)

    Nolan, James; Peterson, Steven K

    2015-08-01

    The grain handling and transportation system in Canada (GHTS) is currently going through a major transition, both with respect to handling and transportation. Historically, the system has pitted farmers against the railways with respect to securing individual fair shares of grain revenues. But with the removal of the single desk marketing and logistics function of the Canadian Wheat Board (CWB) in late 2012, a very interesting and potentially game-changing outcome is emerging with respect to the new functionality of the grain companies in the Canadian system. While historical awareness of rail s natural monopoly position in the grain handling system has kept that sector regulated (in several ways) for close to a century, we are now starting to see the effects of a less than competitive Canadian grain handling sector on revenue sharing, along with renewed movement in the industry with respect to buyouts and potential mergers. This overview will highlight some of the changes now occurring and how they are potentially going to interact or evolve as the system moves forward. For example, the on-going regulatory instrument used to regulate grain transportation rates in Canada (called the maximum revenue entitlement (MRE) or revenue cap) is under current debate because of the introduction a few months ago of a modification to an old regulatory instrument known as extended (or reciprocal) interswitching. As opposed to the revenue cap which is a direct intervention on monopoly behavior, extended interswitching is designed to encourage the major Canadian grain carriers to compete with one another and potentially seek out new traffic (Nolan and Skotheim, 2008). But the most intriguing aspect of extended interswitching is how it might allow a major rail carrier from the U.S. to solicit grain traffic in some areas of the Canadian grain transportation system.

  3. Grain Handling and Transportation Policy in Canada: Implications for the United States

    SciTech Connect (OSTI)

    Nolan, James; Peterson, Steven K

    2015-01-01

    The grain handling and transportation system in Canada (GHTS) is currently going through a major transition, both with respect to handling and transportation. Historically, the system has pitted farmers against the railways with respect to securing individual fair shares of grain revenues. But with the removal of the single desk marketing and logistics function of the Canadian Wheat Board (CWB) in late 2012, a very interesting and potentially game-changing outcome is emerging with respect to the new functionality of the grain companies in the Canadian system. While historical awareness of rail s natural monopoly position in the grain handling system has kept that sector regulated (in several ways) for close to a century, we are now starting to see the effects of a less than competitive Canadian grain handling sector on revenue sharing, along with renewed movement in the industry with respect to buyouts and potential mergers. This overview will highlight some of the changes now occurring and how they are potentially going to interact or evolve as the system moves forward. For example, the on-going regulatory instrument used to regulate grain transportation rates in Canada (called the maximum revenue entitlement (MRE) or revenue cap) is under current debate because of the introduction a few months ago of a modification to an old regulatory instrument known as extended (or reciprocal) interswitching. As opposed to the revenue cap which is a direct intervention on monopoly behavior, extended interswitching is designed to encourage the major Canadian grain carriers to compete with one another and potentially seek out new traffic (Nolan and Skotheim, 2008). But the most intriguing aspect of extended interswitching is how it might allow a major rail carrier from the U.S. to solicit grain traffic in some areas of the Canadian grain transportation system.

  4. Uranium hexafluoride: A manual of good handling practices. Revision 7

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Uranium hexafluoride: A manual of good handling practices. Revision 7 Citation Details In-Document Search Title: Uranium hexafluoride: A manual of good handling practices. Revision 7 × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  5. NREL: Process Development and Integration Laboratory - Sample Handling in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Atmospheric Processing Platform Sample Handling in the Atmospheric Processing Platform This page provides details on sample handling in the Atmospheric Processing platform. Photo of the large circular metal top of the cluster tool. Two wires cross the top and are attached to connectors on a flange at the center of the top. The chamber is surrounded by several other tools, but several of the cluster tool ports are open for future expansion. The robotic cluster tool portion of the

  6. Processing and Disposition of Remote-Handled Transuranic Liquid Waste

    Office of Scientific and Technical Information (OSTI)

    Generated at Oak Ridge National Laboratory (Conference) | SciTech Connect SciTech Connect Search Results Conference: Processing and Disposition of Remote-Handled Transuranic Liquid Waste Generated at Oak Ridge National Laboratory Citation Details In-Document Search Title: Processing and Disposition of Remote-Handled Transuranic Liquid Waste Generated at Oak Ridge National Laboratory Authors: Robinson, Sharon M [1] ; DePaoli, David W [1] ; Jubin, Robert Thomas [1] ; Patton, Bradley D [1] ;

  7. Grain Handling and Transportation Policy in Canada: Implications for the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nolan, James; Peterson, Steven K

    2015-08-01

    The grain handling and transportation system in Canada (GHTS) is currently going through a major transition, both with respect to handling and transportation. Historically, the system has pitted farmers against the railways with respect to securing individual fair shares of grain revenues. But with the removal of the single desk marketing and logistics function of the Canadian Wheat Board (CWB) in late 2012, a very interesting and potentially game-changing outcome is emerging with respect to the new functionality of the grain companies in the Canadian system. While historical awareness of rail s natural monopoly position in the grain handling systemmore » has kept that sector regulated (in several ways) for close to a century, we are now starting to see the effects of a less than competitive Canadian grain handling sector on revenue sharing, along with renewed movement in the industry with respect to buyouts and potential mergers. This overview will highlight some of the changes now occurring and how they are potentially going to interact or evolve as the system moves forward. For example, the on-going regulatory instrument used to regulate grain transportation rates in Canada (called the maximum revenue entitlement (MRE) or revenue cap) is under current debate because of the introduction a few months ago of a modification to an old regulatory instrument known as extended (or reciprocal) interswitching. As opposed to the revenue cap which is a direct intervention on monopoly behavior, extended interswitching is designed to encourage the major Canadian grain carriers to compete with one another and potentially seek out new traffic (Nolan and Skotheim, 2008). But the most intriguing aspect of extended interswitching is how it might allow a major rail carrier from the U.S. to solicit grain traffic in some areas of the Canadian grain transportation system.« less

  8. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High...

    Office of Scientific and Technical Information (OSTI)

    Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors Citation Details In-Document Search Title: Pebble Fuel Handling and Reactivity Control for ...

  9. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  10. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect (OSTI)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  11. Certification document for newly generated contact-handled transuranic waste

    SciTech Connect (OSTI)

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP.

  12. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  13. Handling state-of-the-art large-diameter coiled tubing

    SciTech Connect (OSTI)

    Courville, P.

    1994-12-31

    Completion and workover demands placed on coiled tubing technology in the last 10 years have shown the limitations of small-diameter (1- to 1{1/2}-in.) coiled tubing. The small tubing tends to buckle when used at lengths greater than 1,500 ft in most horizontal applications. Large-diameter coiled tubing (up to 3{1/2} in.) provides greater flexibility of job design and increases horizontal reach possibilities for drilling, completion, and workover activities. Transportation and handling equipment to accommodate the larger, heavier tubing is naturally a critical component of the system. This paper will present the benefits of large-diameter coiled tubing including completion and workover for greater depth and more extended horizontal reach. It will also discuss the unique concerns of transportation and handling of large diameter tubing and associated equipment.

  14. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    SciTech Connect (OSTI)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  15. Safety System Oversight Assessment, Los Alamos National Laboratory- May 2011

    Broader source: Energy.gov [DOE]

    Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System

  16. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    SciTech Connect (OSTI)

    Mertz, G.

    1999-12-16

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  17. Tritium handling experience at Atomic Energy of Canada Limited

    SciTech Connect (OSTI)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I.

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  18. Method of preparing and handling chopped plant materials

    DOE Patents [OSTI]

    Bransby, David I.

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  19. Sampling device with a capped body and detachable handle

    DOE Patents [OSTI]

    Jezek, Gerd-Rainer

    2000-01-01

    The apparatus is a sampling device having a pad for sample collection, a body which supports the pad, a detachable handle connected to the body and a cap which encloses and retains the pad and body to protect the integrity of the sample.

  20. A novel scheme to handle highly pulsed loads with a standard helium refrigerator

    SciTech Connect (OSTI)

    Slack, D.S.

    1993-06-30

    Helium refrigerator performance degrades rapidly when it has to handle a varying or pulsed heat load. A novel scheme is presented to handle highly pulsed 4.5 K cryogenic loads with a standard helium refrigerator by isolating it from these pulses. The scheme uses a relatively simple arrangement of control valves, heat exchangers, and a storage dewar. Applications include pulsed tokamak machines such as TPX (Tokamak Physics Experiment) and ITER (International Thermonuclear Experimental Reactor). For example, the TPX (currently in the conceptual design phase in a DoE contract) requires an average 4.5 K refrigerator capacity of about 10 kW; however, pulsed loads caused by eddy current and nuclear heating will exceed 100 kW. The scheme presented here provides a method for handling these pulsed loads. Because of the simple and proven nature of the components involved and the thermodynamic properties of the helium, the system could be implemented for projects such as TPX or ITER with little or no development.

  1. Liquid class predictor for liquid handling of complex mixtures

    DOE Patents [OSTI]

    Seglke, Brent W.; Lekin, Timothy P.

    2008-12-09

    A method of establishing liquid classes of complex mixtures for liquid handling equipment. The mixtures are composed of components and the equipment has equipment parameters. The first step comprises preparing a response curve for the components. The next step comprises using the response curve to prepare a response indicator for the mixtures. The next step comprises deriving a model that relates the components and the mixtures to establish the liquid classes.

  2. Health physics considerations in UF{sub 6} handling

    SciTech Connect (OSTI)

    Bailey, J.C.

    1991-12-31

    Uranium is a radioactive substance that emits alpha particles and very small amounts of gamma radiation. Its daughter products emit beta and gamma radiation. In uranium handling operations these are the radiations one must consider. This presentation will review the characteristics of the radiations, the isotopes from which they originate, the growth and decay of the uranium daughter products, and some specific health physics practices dictated by these factors.

  3. West Valley facility spent fuel handling, storage, and shipping experience

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  4. Fuel handling exclusion zone established to prevent spurious alarms to CAS neutron detectors in the IFSF

    SciTech Connect (OSTI)

    S. S. Kim; J. W. Sterbentz

    2000-09-17

    An experimental and calculational study has been performed to understand and prevent inadvertent activation of the criticality alarm system (CAS) from fuel-handling operations at the Irradiated Fuel Storage Facility. In conjunction with the study, the CAS neutron detectors were tested to verify the design specifications for gamma rejection capability and zero response limit. A minimum physical restrictive boundary around the CAS location was established based on a gamma ray dose rate limit of 10 rad/hr. The canister loaded with spent nuclear fuel must be moved in the area outside the exclusion zone so as not to trigger a false alarm from the CAS detectors.

  5. Fuel Handling Exclusion Zone Established to Prevent Spurious Alarms to CAS Neutron Detectors in the IFSF

    SciTech Connect (OSTI)

    Kim, Soon Sam; Sterbentz, James William

    2000-09-01

    An experimental and calculational study has been performed to understand and prevent inadvertent activation of the criticality alarm system (CAS) from fuel-handling operations at the Irradiated Fuel Storage Facility. In conjunction with the study, the CAS neutron detectors were tested to verify the design specifications for gamma rejection capability and zero response limit. A minimum physical restrictive boundary around the CAS location was established based on a gamma ray dose rate limit of 10 rad/hr. The canister loaded with spent nuclear fuel must be moved in the area outside the exclusion zone so as not to trigger a false alarm from the CAS detectors.

  6. Conceptual design report, plutonium stabilization and handling,project W-460

    SciTech Connect (OSTI)

    Weiss, E.V.

    1997-03-06

    Project W-460, Plutonium Stabilization and Handling, encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. This Conceptual Design Report (CDR) provides conceptual design details for the vault modification, site preparation and site interface with the purchased SPS. Two concepts are described for vault configuration; acceleration of this phase of the project did not allow completion of analysis which would clearly identify a preferred approach.

  7. Remote-Handled Transuranic Waste Drum Venting - Operational Experience and Lessons Learned

    SciTech Connect (OSTI)

    Clements, Th.L.Jr.; Bhatt, R.N.; Troescher, P.D.; Lattin, W.J.

    2008-07-01

    Remote-handled transuranic (RH TRU) waste drums must be vented to meet transportation and disposal requirement before shipment to the Waste Isolation Pilot Plant. The capability to perform remote venting of drums was developed and implemented at the Idaho National Laboratory. Over 490 drums containing RH TRU waste were successfully vented. Later efforts developed and implemented a long-stem filter to breach inner waste bags, which reduced layers of confinement and mitigated restrictive transportation wattage limits. This paper will provide insight to the technical specifications for the drum venting system, development, and testing activities, startup, operations, and lessons learned. (authors)

  8. U-226: Linux Kernel SFC Driver TCP MSS Option Handling Denial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Linux Kernel SFC Driver TCP MSS Option Handling Denial of Service Vulnerability U-226: Linux Kernel SFC Driver TCP MSS Option Handling Denial of Service Vulnerability August 2,...

  9. Feasibiltiy of Power and Particle Handling in an ST-FNSF and...

    Office of Scientific and Technical Information (OSTI)

    Feasibiltiy of Power and Particle Handling in an ST-FNSF and the Effects of Divertor Geometry Citation Details In-Document Search Title: Feasibiltiy of Power and Particle Handling...

  10. Medical Examiner/Coroner on the Handling of a Body/Human Remains...

    Office of Environmental Management (EM)

    Medical ExaminerCoroner on the Handling of a BodyHuman Remains that are Potentially Radiologically Contaminated Medical ExaminerCoroner on the Handling of a BodyHuman Remains...

  11. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect (OSTI)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  12. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect (OSTI)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil; Marschman, Steve

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  13. Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings

    SciTech Connect (OSTI)

    Strunk, W.D.; Thornton, S.G.

    1988-01-01

    This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA. (LTN)

  14. FEMA and RAM Analysis for the Multi Canister Overpack (MCO) Handling Machine

    SciTech Connect (OSTI)

    SWENSON, C.E.

    2000-06-01

    The Failure Modes and Effects Analysis and the Reliability, Availability, and Maintainability Analysis performed for the Multi-Canister Overpack Handling Machine (MHM) has shown that the current design provides for a safe system, but the reliability of the system (primarily due to the complexity of the interlocks and permissive controls) is relatively low. No specific failure modes were identified where significant consequences to the public occurred, or where significant impact to nearby workers should be expected. The overall reliability calculation for the MHM shows a 98.1 percent probability of operating for eight hours without failure, and an availability of the MHM of 90 percent. The majority of the reliability issues are found in the interlocks and controls. The availability of appropriate spare parts and maintenance personnel, coupled with well written operating procedures, will play a more important role in successful mission completion for the MHM than other less complicated systems.

  15. Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141

    SciTech Connect (OSTI)

    Kravarik, K.; Medved, J.; Pekar, A.; Stubna, M.; Michal, V.; Vargovcik, L.

    2012-07-01

    The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementation of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design of manipulator, their operation and control systems as well as tools of manipulators. Precise planning of decontamination and dismantling tasks is necessary for its successful performance by remotely controlled manipulator. The example of the heavy water evaporator demonstrates typical procedure for decommissioning of contaminated technological equipment by remotely controlled manipulators - planning of decommissioning tasks, preparatory tasks, modification of applied tools and design of specific supporting constructions for manipulator and finally decontamination and dismantling themselves. Due to the particularly demanding conditions in highly contaminated A1 NPP, a team of experts with special know-how in the field of decommissioning has grown up, and unique technological equipment enabling effective and safe work in environment with a high radiation level has been developed. (authors)

  16. Preliminary Dynamic Siol-Structure-Interaction Analysis for the Waste Handling Building

    SciTech Connect (OSTI)

    G. Wagenblast

    2000-05-01

    The objective of this analysis package is to document a preliminary dynamic seismic evaluation of a simplified design concept of the Wade Handling Building (WHB). Preliminary seismic ground motions and soil data will be used. Loading criteria of the WHB System Design Description will be used. Detail design of structural members will not be performed.. The results of the analysis will be used to determine preliminary sizes of structural concrete and steel members and to determine whether the seismic response of the structure is within an acceptable level for future License Application design of safety related facilities. In order to complete this preliminary dynamic evaluation to meet the Site Recommendation (SR) schedule, the building configuration was ''frozen in time'' as the conceptual design existed in October 1999. Modular design features and dry or wet waste storage features were intentionally excluded from this preliminary dynamic seismic evaluation. The document was prepared in accordance with the Development Plan for the ''Preliminary/Dynamic Soil Structure Interaction Analysis for the Waste Handling Building'' (CRWMS M&O 2000b), which was completed, in accordance with AP-2.13Q, ''Technical Product Development Planning''.

  17. Test reports for K Basins vertical fuel handling tools

    SciTech Connect (OSTI)

    Meling, T.A.

    1995-02-01

    The vertical fuel handling tools, for moving N Reactor fuel elements, were tested in the 305 Building Cold Test Facility (CTF) in the 300 Area. After fabrication was complete, the tools were functionally tested in the CTF using simulated N Reactor fuel rods (inner and outer elements). The tools were successful in picking up the simulated N Reactor fuel rods. These tools were also load tested using a 62 pound dummy to test the structural integrity of each assembly. The tools passed each of these tests, based on the performance objectives. Finally, the tools were subjected to an operations acceptance test where K Basins Operations personnel operated the tool to determine its durability and usefulness. Operations personnel were satisfied with the tools. Identified open items included the absence of a float during testing, and documentation required prior to actual use of the tools in the 100 K fuel storage basin.

  18. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    SciTech Connect (OSTI)

    Pierce, G.D. . Joint Integration Office); Beaulieu, D.H. ); Wolaver, R.W.; Carson, P.H. Corp., Boulder, CO )

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.

  19. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High

    Office of Scientific and Technical Information (OSTI)

    Temperature Reactors (Technical Report) | SciTech Connect Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors Citation Details In-Document Search Title: Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled

  20. First Oak Ridge Remote-Handled Transuranic Waste Shipment Arrives Safely at WIPP

    Broader source: Energy.gov [DOE]

    DOE achieved a major environmental cleanup milestone this week with the first shipment of remote-handled TRU waste leaving DOE’s Oak Ridge Reservation.

  1. RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric Peak Shaving Applications

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar entitled "Material Handling Fuel Cells for Building Electric Peak Shaving Applications".

  2. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  3. Urenco`s experience of UF{sub 6} handling

    SciTech Connect (OSTI)

    Saelmans, F.; Scane, C.; Christofzik, J.

    1991-12-31

    Urenco operates enrichment plants at three sites, Almelo (Netherlands), Capenhurst (United Kingdom) and Gronau (Germany). Current installed separative work capacity is 2,500 tSWpa. Since 1971, when the first pilot plants were built, enrichment production has totalled 18,000 tSW. During this last 20 years over 3,500 48 containers of UF{sub 6} have been fed to the plants, over 3,700 30 containers have been filled with product and delivered successfully to Urenco`s customers worldwide and over 3,000 48 containers of depleted tails have been filled and have either been returned to customers or retained for long term storage on site. The paper gives a brief outline of Urenco`s experience in handling UF{sub 6}: the equipment and methods used in receiving, feeding, filling, blending, liquid sampling, storing, moving on site and despatching of UF{sub 6} containers. Some of the difficulties experienced with UF{sub 6} containers are appended.

  4. Self-actuating mechanical grapple for lifting and handling objects

    DOE Patents [OSTI]

    Hovis, Gregory L. (North Augusta, SC); Etheredge, Jr., Carl T. (Tuscaloosa, AL)

    2001-01-01

    A self-actuating mechanical grapple for lifting and handling an object includes a support housing with upper and lower portions and defining an internal recess. The lower portion of the housing includes a bottom opening which communicates with the recess. Preferably, two or three grapple jaws are provided, the first end portions of which are connected to the housing and the second end portions thereof remain free for engaging an object. The grapple jaws are pivotable between open and closed positions. An actuator member is slidably positioned in the recess for opening and closing the jaws, and includes a cam portion in operative engagement with the first end portions of the jaws in a manner to pivot the jaws when the actuator member moves axially relative to the housing. The actuator member includes a rotatable member with at least one contact member. A locking member or logic ring includes grooves defining open and closed positions of the jaws and is fixedly mounted to the internal surface of the housing and cooperates with the rotatable member. A plunger member is axially movable in the housing for contacting an object and includes at least one stud member for immovably engaging the contact member.

  5. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07

    Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

  6. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-23

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

  7. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

  8. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  9. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-05-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  10. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  11. Resources for Handling Transcripts | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Graduate Transcripts for Current Graduate Institution » Resources for Handling Transcripts DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program Letters of Support Graduate Transcripts for Current Graduate Institution Resources for Handling Transcripts Application Evaluation

  12. A Review and Analysis of European Industrial Experience in Handling LWR Spent Fuel and Vitrified High-Level Waste

    SciTech Connect (OSTI)

    Blomeke, J.O.

    2001-07-10

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performance of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States.

  13. ARRA Material Handling Equipment Composite Data Products: Data through Quarter 3 of 2014 (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARRA Material Handling Equipment Composite Data Products Data through Quarter 3 of 2014 Chris Ainscough, Jennifer Kurtz May 2015 NREL/PR-5400-64362 2 CDP-MHE-102 Fuel Cell System Operation Hours 3 CDP-MHE-103 Fueling Events by Quarter 4 CDP-MHE-104 Hydrogen Dispensed by Quarter 5 CDP-MHE-105 Refueling Time of Day 6 CDP-MHE-106 Histogram of Fueling Times 7 CDP-MHE-107 Tank Pressure Level at Fueling 8 CDP-MHE-108 Operation Time between Fueling 9 CDP-MHE-109 Histogram of Fueling Rates 10

  14. Literature Survey of Crude Oil Properties Relevant to Handling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... produced from its associated upstream conditioning system. ... the temperature at which methane is released from a crude ... at which the first vapor emissions occur from a given crude ...

  15. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  16. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  17. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  18. Step-By-Step Guide for Waste Handling at WIPP - Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the nation's nuclear waste disposal problem Step-By-Step Guide for Waste Handling at WIPP The handling and disposal of contact-handled transuranic waste at the Waste Isolation Pilot Plant (WIPP) involves a series of steps. The following is an overview of those steps. Ž A waste shipment arrives at the WIPP by tractor-trailer. Each tractor-trailer is capable of carrying up to three Transuranic Packaging Transporter Model IIs (TRUPACT-IIs) or HalfPACT's. Ž Upon arrival the tractor trailer and

  19. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.

  20. Development of an Outdoor Concentrating Photovoltaic Module Testbed, Module Handling and Testing Procedures, and Initial Energy Production Results

    SciTech Connect (OSTI)

    Muller, M.

    2009-09-01

    This report addresses the various aspects of setting up a CPV testbed and procedures for handling and testing CPV modules.

  1. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  2. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    Austad, S. L.; Guillen, L. E.; McKnight, C. W.; Ferguson, D. S.

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  3. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  4. ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.

    2013-11-01

    This report includes 47 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the second quarter of 2013.

  5. ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Peters, M.

    2014-06-01

    This report includes 47 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the fourth quarter of 2013.

  6. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  7. 29 C.F.R. Part 24: Procedures for the Handling of Retaliation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Employee Protection Statutes 29 C.F.R. Part 24: Procedures for the Handling of ... Stakeholders: DOE Employees and Employees of DOE Contractors Scope: 29 C.F.R. Part 24 ...

  8. ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2012

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.; Ramsden, T.

    2013-05-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the fourth quarter of 2012.

  9. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  10. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  11. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-01-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  12. 29 C.F.R. Part 24: Procedures for the Handling of Retaliation Complaints

    Energy Savers [EERE]

    under Federal Employee Protection Statutes | Department of Energy Part 24: Procedures for the Handling of Retaliation Complaints under Federal Employee Protection Statutes 29 C.F.R. Part 24: Procedures for the Handling of Retaliation Complaints under Federal Employee Protection Statutes Stakeholders: DOE Employees and Employees of DOE Contractors Scope: 29 C.F.R. Part 24 implements procedures under the employee protection provisions for which the Secretary of Labor has been given

  13. Green Button Giving Millions of Americans Better Handle on Energy Costs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Giving Millions of Americans Better Handle on Energy Costs Green Button Giving Millions of Americans Better Handle on Energy Costs March 22, 2012 - 1:14pm Addthis Image courtesy of the National Institute of Standards and Technology. Image courtesy of the National Institute of Standards and Technology. John P. Holdren and Nancy Sutley What does this project do? Green Button provides millions of utility customers with easy access to a downloadable copy of their electricity

  14. A Review of Toxicity and Use and Handling Considerations for Guanidine, Guanidine Hydrochloride, and Urea.

    SciTech Connect (OSTI)

    Ertell, Katherine GB

    2006-03-27

    This is a technical report prepared for Oregon Sustainable Energy, LLC, under Agreement 06-19 with PNNL's Office of Small Business Programs. The request was to perform a review of the toxicity and safe handling of guanidine. The request was later amended to add urea. This report summarizes the toxicity data available in the scientific literature and provides an interpretation of the results and recommendations for handling these compounds.

  15. EIS-0453: Recapitalization of Infrastructure Supporting Naval Spent Nuclear Fuel Handling at the Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Draft EIS evaluates the potential environmental impacts associated with recapitalizing the infrastructure needed to ensure the long-term capability of the Naval Nuclear Propulsion Program (NNPP) to support naval spent nuclear fuel handling capabilities provided by the Expended Core Facility (ECF). Significant upgrades are necessary to ECF infrastructure and water pools to continue safe and environmentally responsible naval spent nuclear fuel handling until at least 2060.

  16. Handbook Outlines Proper Handling, Storage and Distribution of E85 - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Handbook Outlines Proper Handling, Storage and Distribution of E85 August 21, 2008 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently updated the "Handbook for Handling, Storing, and Dispensing E85," a comprehensive booklet that details the proper and safe use of E85, a domestically produced alternative fuel composed of 85 percent ethanol and 15 percent gasoline. Increasing gasoline prices and a growing number of initiatives have

  17. WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For immediate release WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs CARLSBAD, N.M., December 21, 2011 - The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) has received the first of eight planned defense-related remote- handled transuranic (RH-TRU) waste shipments from Sandia National Laboratories (SNL) in Albuquerque. The shipment arrived December 16 for permanent disposal in WIPP's underground repository. DOE National TRU Program Director J.R. Stroble

  18. A Semi-automated Commissioning Tool for VAV Air Handling Units:Functional Test Analyzer

    SciTech Connect (OSTI)

    Haves, Philip; Kim, Moosung; Najafi, Massieh; Xu, Peng

    2007-01-01

    A software tool that automates the analysis of functional tests for air-handling units is described. The tool compares the performance observed during manual tests with the performance predicted by simple models of the components under test that are configured using design and of information catalog data. Significant differences between observed and expected performance indicate the presence faults. Fault diagnosis is performed by analyzing the variation of these differences with operating points using expert rules and fuzzy inferencing. The tool has a convenient user interface to facilitate manual entry of measurements made during a test. A graphical display compares the measured and expected performance, highlighting significant differences that indicate the presence of faults. The tool is designed to be used by commissioning providers conducting functional tests as part of either new building commissioning or retrocommissioning as well as by building owners and operators conducting routine tests to check the performance of their HVAC systems. This paper describes the input data requirements of the tool, the software structure, and the graphical interface and summarizes the development and testing process used.

  19. Western Grid Can Handle High Renewables in Challenging Conditions

    SciTech Connect (OSTI)

    2015-11-01

    Fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  20. Online Data Handling and Storage at the CMS Experiment

    SciTech Connect (OSTI)

    Andre, J. M.; et al.

    2015-12-23

    During the LHC Long Shutdown 1, the CMS Data Acquisition (DAQ) system underwent a partial redesign to replace obsolete network equipment, use more homogeneous switching technologies, and support new detector back-end electronics. The software and hardware infrastructure to provide input, execute the High Level Trigger (HLT) algorithms and deal with output data transport and storage has also been redesigned to be completely file- based. All the metadata needed for bookkeeping are stored in files as well, in the form of small documents using the JSON encoding. The Storage and Transfer System (STS) is responsible for aggregating these files produced by the HLT, storing them temporarily and transferring them to the T0 facility at CERN for subsequent offline processing. The STS merger service aggregates the output files from the HLT from ~62 sources produced with an aggregate rate of ~2GB/s. An estimated bandwidth of 7GB/s in concurrent read/write mode is needed. Furthermore, the STS has to be able to store several days of continuous running, so an estimated of 250TB of total usable disk space is required. In this article we present the various technological and implementation choices of the three components of the STS: the distributed file system, the merger service and the transfer system.

  1. Handling radiation generated during an ion source commissioning

    SciTech Connect (OSTI)

    Ren, H. T.; Zhao, J. Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Xu, Y.; Chen, J.; Zhang, T.; Zhang, A. L.; Guo, Z. Y.; Chen, J. E.

    2014-02-15

    Radiation is an important issue, which should be carefully treated during the design and commissioning of an ion source. Measurements show that X-rays are generated around the ceramics column of an extraction system when the source is powered up to 30 kV. The X-ray dose increases greatly when a beam is extracted. Inserting the ceramic column into a metal vacuum box is a good way to block X-ray emission for those cases. Moreover, this makes the online test of an intense H{sup +} ion beam with energy up to 100 keV possible. However, for deuteron ion source commissioning, neutron and gamma-ray radiation become a serious topic. In this paper, we will describe the design of the extraction system and the radiation doses of neutrons and gamma-rays measured at different D{sup +} beam energy during our 2.45 GHz deuteron electron cyclotron resonance ion source commissioning for PKUNIFTY (PeKing University Neutron Imaging FaciliTY) project at Peking University.

  2. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  3. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  4. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  5. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2009-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  6. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    SciTech Connect (OSTI)

    Johnson, W. L.; Cook, C. R.

    2014-01-29

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection.

  7. 18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer

    SciTech Connect (OSTI)

    Fujinaga, H.; Yamazaki, N.; Takebe, N.

    1991-12-31

    In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

  8. Development of a Bulk-Format System to Harvest, Handle, Store...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results apply to bulk-format feedstock supply chain under U.S. permitting conditions for ... 4% 0% Collaborations Project management Project PartnersRoles o Genera ...

  9. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Tonnage | Department of Energy abstract

  10. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Tonnage | Department of Energy abstract_1

  11. Data handling with SAM and art at the NOvA experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aurisano, A.; Backhouse, C.; Davies, G. S.; Illingworth, R.; Mayer, N.; Mengel, M.; Norman, A.; Rocco, D.; Zirnstein, J.

    2015-12-23

    During operations, NOvA produces between 5,000 and 7,000 raw files per day with peaks in excess of 12,000. These files must be processed in several stages to produce fully calibrated and reconstructed analysis files. In addition, many simulated neutrino interactions must be produced and processed through the same stages as data. To accommodate the large volume of data and Monte Carlo, production must be possible both on the Fermilab grid and on off-site farms, such as the ones accessible through the Open Science Grid. To handle the challenge of cataloging these files and to facilitate their off-line processing, we havemore » adopted the SAM system developed at Fermilab. SAM indexes files according to metadata, keeps track of each file's physical locations, provides dataset management facilities, and facilitates data transfer to off-site grids. To integrate SAM with Fermilab's art software framework and the NOvA production workflow, we have developed methods to embed metadata into our configuration files, art files, and standalone ROOT files. A module in the art framework propagates the embedded information from configuration files into art files, and from input art files to output art files, allowing us to maintain a complete processing history within our files. Embedding metadata in configuration files also allows configuration files indexed in SAM to be used as inputs to Monte Carlo production jobs. Further, SAM keeps track of the input files used to create each output file. Parentage information enables the construction of self-draining datasets which have become the primary production paradigm used at NOvA. In this study we will present an overview of SAM at NOvA and how it has transformed the file production framework used by the experiment.« less

  12. Handling and characterization of glow-discharge polymer samples for the

    Office of Scientific and Technical Information (OSTI)

    light gas gun (Technical Report) | SciTech Connect Technical Report: Handling and characterization of glow-discharge polymer samples for the light gas gun Citation Details In-Document Search Title: Handling and characterization of glow-discharge polymer samples for the light gas gun Authors: Akin, M C ; Chau, R ; Jenei, Z ; Lipp, M J ; Evans, W J Publication Date: 2013-09-06 OSTI Identifier: 1104519 Report Number(s): LLNL-TR-644650 DOE Contract Number: W-7405-ENG-48 Resource Type: Technical

  13. Idaho Cleanup Project ships first Recovery Act-funded remote-handled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transuranic waste out of Idaho THE IDAHO SITE NEWS MEDIA CONTACT: Danielle Miller (DOE-ID) 208-526-5709 Joseph Campbell (CWI) 208-360-0142 For Immediate Release March 18, 2010 Idaho Cleanup Project ships first Recovery Act- funded remote-handled transuranic waste out of Idaho DATELINE - The Idaho Cleanup Project made its first shipment of remote-handled transuranic waste funded by the American Recovery and Reinvestment Act on March 11, 2010. This is the first of approximately 150 shipments

  14. DOE, Westinghouse to Partner with NMJC To Train Radiological and Waste Handling Technicians

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Partner with NMJC To Train Radiological and Waste Handling Technicians Hobbs, NM, December 5, 2001 -- Representatives of the Waste Isolation Pilot Plant (WIPP) yesterday presented a check for $70,000 to New Mexico Junior College (NMJC) to initiate a new program to train and certify radiological and waste handling technicians. Dr. Steve McCleery, President of NMJC, accepted the check from Dr. Chuan-Fu Wu, Senior Technical Advisor for the U.S. Department of Energy's Carlsbad Field Office, and

  15. State of New Mexico Issues Permit For Remote-Handled Waste at WIPP |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy New Mexico Issues Permit For Remote-Handled Waste at WIPP State of New Mexico Issues Permit For Remote-Handled Waste at WIPP October 16, 2006 - 1:35pm Addthis Enables DOE to Permanently Move Waste to the WIPP Repository for Safe Disposal CARLSBAD, NM - U.S. Department of Energy (DOE) today announced that the New Mexico Environment Department (NMED) issued a revised hazardous waste facility permit for DOE's Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The

  16. Safety provisions for UF{sub 6} handling in the design of a new UF{sub 6} conversion plant

    SciTech Connect (OSTI)

    Bannister, S.P.

    1991-12-31

    British Nuclear Fuels plc (BNFL) Fuel Division is currently undertaking the final design and construction of a new UF{sub 6} conversion plant at its production site at Springfields near Preston in the north of England. The Company has gained much experience in the handling of UF{sub 6} during operation of plants on site since 1961. The major hazard occurs during the liquefication cycle and the basis of the maximum credible incident scenario adopted for safety assessment and design purposes is discussed. This paper considers the design features which have been incorporated in the new plant to counter the hazards presented by the presence of UF{sub 6} in gaseous and liquid form and explains current thinking on operational procedures in areas of potential risk such as cylinder filling. The plant emergency response philosophy and systems are described and specific design provisions which have been included to satisfy the UK regulatory bodies are outlined in some detail.

  17. Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

    2013-10-01

    This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

  18. Handbook for Handling, Storing, and Dispensing E85, July 2010, Energy Efficiency and Renewable Energy (EERE), Clean Cities (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

  19. 3.1.1.2 Feed Processing and Handling DL2 Final Report

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Magnuson, Jon K.; Wend, Christopher F.

    2006-09-30

    This milestone report is the deliverable for our Feed Processing and Handling project. It includes results of wet biomass feedstock analysis, slurry pumping information, fungal processing to produce a lignin-rich biorefinery residue and two subcontracted efforts to quantify the amount of wet biomass feedstocks currently available within the corn processing and paper processing industries.

  20. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air

    SciTech Connect (OSTI)

    2010-09-08

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  1. Viability of Existing INL Facilities for Dry Storage Cask Handling R1

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report evaluates existing capabilities at Idaho National Laboratory (INL) to determine if a practical and cost effective method could be developed for handling and opening full-sized dry storage casks in support of the U.S. Department of Energy's plan for confirmatory dry storage project for high burnup fuel.

  2. Current methods to handle wall conduction and room internal heat transfer

    SciTech Connect (OSTI)

    Davies, M.G.

    1999-07-01

    This paper reviews methods of handling wall conduction and room internal heat exchange adopted by ASHRAE (1993 Handbook of Fundamentals and later developments), CIBSE (1986 Guide and current proposals), and the CEN/TC89/WG6 proposals to calculate heating and cooling loads and related topics.

  3. Spoil handling and reclamation costs at a contour surface mine in steep slope Appalachian topography

    SciTech Connect (OSTI)

    Zipper, C.E.; Hall, A.T.; Daniels, W.L.

    1985-12-09

    Accurate overburden handling cost estimation methods are essential to effective pre-mining planning for post-mining landforms and land uses. With the aim of developing such methods, the authors have been monitoring costs at a contour surface mine in Wise County, Virginia since January 1, 1984. Early in the monitoring period, the land was being returned to its Approximate Original Contour (AOC) in a manner common to the Appalachian region since implementation of the Surface Mining Control and Reclamation Act of 1977 (SMCRA). More recently, mining has been conducted under an experimental variance from the AOC provisions of SMCRA which allowed a near-level bench to be constructed across the upper surface of two mined points and an intervening filled hollow. All mining operations are being recorded by location. The cost of spoil movement is calculated for each block of coal mined between January 1, 1984, and August 1, 1985. Per cubic yard spoil handling and reclamation costs are compared by mining block. The average cost of spoil handling was $1.90 per bank cubic yard; however, these costs varied widely between blocks. The reasons for those variations included the landscape positions of the mining blocks and spoil handling practices. The average reclamation cost was $0.08 per bank cubic yard of spoil placed in the near level bench on the mined point to $0.20 for spoil placed in the hollow fill. 2 references, 4 figures.

  4. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  5. WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M. – The U.S. Department of Energy’s (DOE) Waste Isolation Pilot Plant (WIPP) has received the first of eight planned defense-related remote-handled transuranic (RH-TRU) waste shipments from Sandia National Laboratories (SNL) in Albuquerque.

  6. Handling apparatus

    DOE Patents [OSTI]

    Cody, John P.; Kane, James J.

    1976-01-01

    1. A device of the character described comprising the combination of a guide tube having a normally open end, a support frame having a port therethrough, linkage means pivotally connected with the tube and with the frame and rotatably supporting the tube for movement between a position in longitudinal alignment with said port and with its open end in registry with the port and an additional position in which the tube lies adjacent the port with a side portion of the tube extending generally transversely across said port, an elongated track carried by said frame disposed generally parallel to and adjacent the tube in its said additional position, means connected with and projecting laterally from said tube adjacent its open end engaging and movable along said elongated track for cooperating with the track to direct the tube during movement between said positions, and means carried by the tube for moving an article therethrough toward and away from said port.

  7. Supporting Multiple Workloads, Batch Systems,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The batch system is TORQUE+Moab, and the nodes are managed with xCAT. * Genepool: A ... Carver batch environments (UGE and TORQUE+Moab, respectively) handle multi-slot and ...

  8. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 5, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    1996-08-21

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled Coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this reporting period, virtually all of the technical activities and progress was made in the areas of circuit installation and startup operations. Work in these activity areas are described.

  9. Improvement of storage, handling and transportability of fine coal. Quarterly technical progress report No. 3, July 1, 1994--September 30, 1994

    SciTech Connect (OSTI)

    1996-08-16

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this third quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the feedstock coal options at the Chetopa Plant was conducted and mulling characteristics determined to enable a decision to be made regarding the feedstock selection. It was decided that the froth concentrate will be the feedstock wet fine coal used for the project. On that basis, activities in the areas of design and procurement were initiated.

  10. "Mug Handles" Help Get a Grip on Lower-Cost, Controllable Fusion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab "Mug Handles" Help Get a Grip on Lower-Cost, Controllable Fusion Energy American Fusion News Category: U.S. Universities Link: "Mug Handles" Help Get a Grip on Lower-Cost, Controllable Fusion Energy

  11. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  12. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  13. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  14. A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Boyd, G.J.; Lewis, S.R.; Summitt, R.L.

    1991-12-31

    A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

  15. Conceptual design for remote handling methods using the HIP process in the Calcine Immobilization Program

    SciTech Connect (OSTI)

    Berry, S.M.; Cox, C.G.; Hoover, M.A.

    1994-03-01

    This report recommends the remote conceptual design philosophy for calcine immobilization using the hot isostatic press (HIP) process. Areas of remote handling operations discussed in this report include: (1) introducing the process can into the front end of the HIP process, (2) filling and compacting the calcine/frit mixture into the process can, (3) evacuating and sealing the process can, (4) non-destructive testing of the seal on the process can, (5) decontamination of the process can, (6) HIP furnace loading and unloading the process can for the HIPing operation, (7) loading an overpack canister with processed HIP cans, (8) sealing the canister, with associated non-destructive examination (NDE) and decontamination, and (9) handling canisters for interim storage at the Idaho Chemical Processing Plant (ICPP) located on the Idaho National Engineering Laboratory (INEL) site.

  16. CURRENT APPLICATIONS OF THREE MILE ISLAND-2 CORE AND DEBRIS HANDLING AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Carmack, William Jonathan; Braase, Lori Ann

    2015-09-01

    Fuel recovery from severe accidents requires careful planning and execution. The Idaho National Laboratory played a key role in the Three Mile Island (TMI) fuel and core recovery. This involved technology development to locate and handle the damaged fuel; characterization of fuel and debris; analysis of fuel interaction with structural components and materials; development of fuel drying technology for long-term storage. However, one of the critical activities from the TMI project was the extensive effort document all the activities and archive the reports and photos. A historical review of the TMI project at the INL leads to the identification of current applications and considerations for facility designs, fuel handling, robotic applications, material characterization, etc.

  17. Explosive containment and propagation evaluations for commonly used handling and storage containers

    SciTech Connect (OSTI)

    LeBlanc, R.

    1994-01-01

    A series of explosive tests were performed to establish containment integrity data for commonly used handling and storage containers of energetic materials at Sandia National Laboratories, Albuquerque, N.M. The tests consisted of two phases: (1) each container was tested for explosive integrity and propagation, and (2) the data were used to evaluate a nominal donor-receptor test matrix for verifying the confinement integrity of a typical explosives service locker.

  18. Hydrogen Gas Generation Model for Fuel Based Remote Handled TRU Waste Stored at INEEL

    SciTech Connect (OSTI)

    Soli T. Khericha; Rajiv N. Bhatt; Kevin Liekhus

    2003-02-01

    The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

  19. RECOMMENDATION FOR DISPOSITION OF REMOTE-HANDLED WASTE BURIED IN 33 SHAFTS AT TA-54

    Office of Environmental Management (EM)

    0-01 Approved by the NNMCAB on January 27, 2010 NORTHERN NEW MEXICO CITIZENS' ADVISORY BOARD (NNMCAB) Waste Management Committee Recommendation to the Department of Energy No. 2010-01 Recommendation for Disposition of Remote-handled Waste Buried in 33 Shafts at Technical Area 54 (TA-54) Background The Consent Order between the State of New Mexico, the Department of Energy/National Nuclear Safety Administration (DOE/NNSA) and Los Alamos National Security (LANS) requires that TA-54 Material

  20. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  1. METHODS FOR THE SAFE STORAGE, HANDLING, AND DISPOSAL OF PYROPHORIC LIQUIDS AND SOLIDS IN THE LABORATORY

    SciTech Connect (OSTI)

    Simmons, F.; Kuntamukkula, M.; Alnajjar, M.; Quigley, D.; Freshwater, D.; Bigger, S.

    2010-02-02

    Pyrophoric reagents represent an important class of reactants because they can participate in many different types of reactions. They are very useful in organic synthesis and in industrial applications. The Occupational Safety and Health Administration (OSHA) and the National Fire Protection Association (NFPA) define Pyrophorics as substances that will self-ignite in air at temperatures of 130 F (54.4 C) or less. However, the U.S. Department of Transportation (DOT) uses criteria different from the auto-ignition temperature criterion. The DOT defines a pyrophoric material as a liquid or solid that, even in small quantities and without an external ignition source, can ignite within five minutes after coming in contact with air when tested according to the United Nations Manual of Tests and Criteria. The Environmental Protection Agency has adopted the DOT definition. Regardless of which definition is used, oxidation of the pyrophoric reagents by oxygen or exothermic reactions with moisture in the air (resulting in the generation of a flammable gas such as hydrogen) is so rapid that ignition occurs spontaneously. Due to the inherent nature of pyrophoric substances to ignite spontaneously upon exposure to air, special precautions must be taken to ensure their safe handling and use. Pyrophoric gases (such as diborane, dichloroborane, phosphine, etc.) are typically the easiest class of pyrophoric substances to handle since the gas can be plumbed directly to the application and used remotely. Pyrophoric solids and liquids, however, require the user to physically manipulate them when transferring them from one container to another. Failure to follow proper safety precautions could result in serious injury or unintended consequences to laboratory personnel. Because of this danger, pyrophorics should be handled only by experienced personnel. Users with limited experience must be trained on how to handle pyrophoric reagents and consult with a knowledgeable staff member prior to performing the experimental task. The purpose of this article is three fold: (1) to provide guidelines and general safety precautions to avoid accidents, (2) describe proper techniques on how to successfully handle, store, and dispose of pyrophoric liquids and solids, and (3) illustrate best practices for working with this class of reactants in a laboratory environment.

  2. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    SciTech Connect (OSTI)

    Peterson, Per; Greenspan, Ehud

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. This report also includes results for additional studies relevant to the design and analysis of pebble bed reactor cores including the study of forces on shut down blades inserted directly into a packed bed and pebble flow in a cylindrical hopper that is representative of a small test reactor.

  3. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  4. Shipping Remote Handled Transuranic Waste to the Waste Isolation Pilot Plant - An Operational Experience

    SciTech Connect (OSTI)

    Anderson, S.; Bradford, J.; Clements, T.; Crisp, D.; Sherick, M.; D'Amico, E.; Lattin, W.; Watson, K.

    2008-07-01

    On January 18, 2007, the first ever shipment of Remote Handled Transuranic (RH TRU) waste left the gate at the Idaho National Laboratory (INL), headed toward the Waste Isolation Pilot Plant (WIPP) for disposal, thus concluding one of the most stressful, yet rewarding, periods the authors have ever experienced. The race began in earnest on October 16, 2006, with signature of the New Mexico Environment Department Secretary's Final Order, ruling that the '..draft permit as changed is hereby approved in its entirety.' This established the effective date of the approved permit as November 16, 2006. The permit modification was a consolidation of several Class 3 modification requests, one of which included incorporation of RH TRU requirements and another of which incorporated the requirements of Section 311 of Public Law 108-137. The obvious goal was to complete the first shipment by November 17. While many had anticipated its approval, the time had finally come to actually implement, and time seemed to be the main item lacking. At that point, even the most aggressive schedule that could be seriously documented showed a first ship date in March 2007. Even though planning for this eventuality had started in May 2005 with the arrival of the current Idaho Cleanup Project (ICP) contractor (and even before that), there were many facility and system modifications to complete, startup authorizations to fulfill, and many regulatory audits and approvals to obtain before the first drum could be loaded. Through the dedicated efforts of the ICP workers, the partnership with Department of Energy (DOE) - Idaho, the coordinated integration with the Central Characterization Project (CCP), the flexibility and understanding of the regulatory community, and the added encouragement of DOE - Carlsbad Field Office and at Headquarters, the first RH TRU canister was loaded on December 22, 2006. Following final regulatory approval on January 17, 2007, the historic event finally occurred the following day. While some of the success of this endeavor can be attributed to the sheer will and determination of the individuals involved, the fact that it was established and managed as a separate sub-project under the ICP, accounts for a majority of the success. Utilizing a structured project management approach, including development of, and management to, a performance baseline, allowed for timely decision making and the flexibility to adapt to changing conditions as the various aspects of the project matured. This paper provides some insight into how this was achieved, in a relatively short time, and provides an overview of the experience of start-up of a new retrieval, characterization, loading, and transportation operation in the midst of an aggressive cleanup project. Additionally, as one might expect, everything within the project did not go as planned, which provides a great opportunity to discuss some lessons learned. Finally, the first shipment was just the beginning. There are 224 additional shipments scheduled. In keeping with the theme of WM 2008, Phoenix Rising: Moving Forward in Waste Management, this paper will address the future opportunities and challenges of RH TRU waste management at the INL. (authors)

  5. Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals

    SciTech Connect (OSTI)

    Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

    2009-02-06

    The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri – Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project are due to: i) a reduced number of process shutdowns to change hardware or lining material, ii) reduced need to produce new hardware or lining material, iii) improved product quality leads to reduced need to remake product or manufacturing of new product, iv) reduction in contamination of melt from degradation of refractory and metallic components, v) elimination of worn hardware will increase efficiency of process, vi) reduced refractory lining deterioration or formation of a less insulating phase, would result in decreased heat loss through the walls. Projected 2015 benefits for the U.S. aluminum industry, assuming 21% market penetration of improved refractory materials, are energy savings of approximately 0.2 trillion BTU/year, cost savings of $2.3 billion/year and carbon reductions of approximately 1.4 billion tons/year. The carbon reduction benefit of the project for the hot-dip galvanize and aluminum industries combined is projected to be approximately 2.2 billion tons/year in 2015. Pathways from research to commercialization were based on structure of the project’s industrial partnerships. These partnerships included suppliers, industrial associations, and end users. All parties were involved in conducting the project including planning and critiquing the trials. Supplier companies such as Pyrotech Metaullics, Stoody, and Duraloy have commercialized products and processes developed on the project.

  6. ARRA Material Handling Equipment Composite Data Products: Data through Quarter 3 of 2014; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ainscough, Chris; Kurtz, Jennifer

    2015-05-01

    This document includes 23 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the third quarter of 2014.

  7. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  8. LWR NUCLEAR FUEL BUNDLE DATA FOR USE IN FUEL BUNDLE HANDLING

    Office of Scientific and Technical Information (OSTI)

    LWR NUCLEAR FUEL BUNDLE DATA FOR USE IN FUEL BUNDLE HANDLING TOPICAL REPORT W. 8. Weihermilfer C. S. Allison Septem bet 1979 Work Performed, Under Contract EY-76-C- M - 1 8 3 0 Form 189 Number 210.1 BAlTELLE PACIFIC NORTHWEST LABORATORY RICHLAND, WA 99352 BASE TECHNOLOGY N O T I C E T h i s report was prepard n an account of work sponrored by the UAed States Govcmmenr. Neither tht Unltcd S t a t e nor !he k p n m c n t of Energy, not any of their ernploylecs, nw any of theb ccmtnctotr,

  9. Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    D. Craig Cooper

    2011-11-01

    Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

  10. Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel. [Fuel crud

    SciTech Connect (OSTI)

    Hazelton, R.F.

    1987-09-01

    Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs.

  11. Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029

    SciTech Connect (OSTI)

    B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

    2013-09-01

    This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

  12. Update on intrusive characterization of mixed contact-handled transuranic waste at Argonne-West

    SciTech Connect (OSTI)

    Dwight, C.C.; Jensen, B.A.; Bryngelson, C.D.; Duncan, D.S.

    1997-02-03

    Argonne National Laboratory and Lockheed Martin Idaho Technologies Company have jointly participated in the Department of Energy`s (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Program since 1990. Intrusive examinations have been conducted in the Waste Characterization Area, located at Argonne-West in Idaho Falls, Idaho, on over 200 drums of mixed contact-handled transuranic waste. This is double the number of drums characterized since the last update at the 1995 Waste Management Conference. These examinations have provided waste characterization information that supports performance assessment of WIPP and that supports Lockheed`s compliance with the Resource Conservation and Recovery Act. Operating philosophies and corresponding regulatory permits have been broadened to provide greater flexibility and capability for waste characterization, such as the provision for minor treatments like absorption, neutralization, stabilization, and amalgamation. This paper provides an update on Argonne`s intrusive characterization permits, procedures, results, and lessons learned. Other DOE sites that must deal with mixed contact-handled transuranic waste have initiated detailed planning for characterization of their own waste. The information presented herein could aid these other storage and generator sites in further development of their characterization efforts.

  13. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-04-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  14. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-08-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  15. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-05-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  16. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-10-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  17. Remote Handling and Maintenance in the Facility for Rare Isotope Beams

    SciTech Connect (OSTI)

    Burgess, Thomas W; Aaron, Adam M; Carroll, Adam J; DeVore, Joe R; Giuliano, Dominic R; Graves, Van B; Bennett, Richard P; Bollen, Georg; Cole, Daniel F.; Ronningen, Reginald M.; Schein, Mike E; Zeller, Albert F

    2011-01-01

    Michigan State University (MSU) in East Lansing, MI was selected by the U.S. Department of Energy (DOE) to design and establish a Facility for Rare Isotope Beams (FRIB), a cutting-edge research facility to advance the understanding of rare nuclear isotopes and the evolution of the cosmos. The research conducted at the FRIB will involve experimentation with intense beams of rare isotopes within a well-shielded target cell that will result in activation and contamination of components. The target cell is initially hands-on accessible after shutdown and a brief cool-down period. Personnel are expected to have hands-on access to the tops of shielded component modules with the activated in-beam sections suspended underneath. The modules are carefully designed to include steel shielding for protecting personnel during these hand-on operations. However, as the facility has greater levels of activation and contamination, a bridge mounted servomaniputor may be added to the cell, to perform the disconnecting of services to the component assemblies. Dexterous remote handling and exchange of the modularized activated components is completed at a shielded window workstation with a pair of master-slave manipulators. The primary components requiring exchange or maintenance are the production target, the beam wedge filter, the beam dump, and the beam focusing and bending magnets. This paper provides an overview of the FRIB Target Facility remote handling and maintenance design requirements, concepts, and techniques.

  18. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2015-03-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1C, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  19. A review of polymer-based water conditioners for reduction of handling-related injury

    SciTech Connect (OSTI)

    Harnish, Ryan A.; Colotelo, Alison HA; Brown, Richard S.

    2011-01-01

    Fish are coated with an external layer of protective mucus. This layer serves as the primary barrier against infection or injury, reduces friction, and plays a role in ionic and osmotic regulation. However, the mucus layer is easily disturbed when fish are netted, handled, transported, stressed, or subjected to adverse water conditions. Water additives containing polyvinylpyrrolidone (PVP) or proprietary polymers have been used to prevent the deleterious effects of mucus layer disturbances in the commercial tropical fish industry, aquaculture, and for other fisheries management purposes. This paper reviews research on the effectiveness of water conditioners, and examines the contents and uses of a wide variety of commercially available water conditioners. Water conditioners containing polymers may reduce external damage to fish held in containers during scientific experimentation, including surgical implantation of electronic tags. However, there is a need to empirically test the effectiveness of water conditioners at preventing damage to and promoting healing of the mucus layer. A research agenda is provided to advance the science related to the use of water conditions to improve the condition of fish during handling and tagging.

  20. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.

  1. Part 1: Participatory Ergonomics Approach to Waste Container Handling Utilizing a Multidisciplinary Team

    SciTech Connect (OSTI)

    Zalk, D.M.; Tittiranonda, P.; Burastero, S.; Biggs, T.W.; Perry, C.M.; Tageson, R.; Barsnick, L.

    2000-02-07

    This multidisciplinary team approach to waste container handling, developed within the Grassroots Ergonomics process, presents participatory ergonomic interpretations of quantitative and qualitative aspects of this process resulting in a peer developed training. The lower back, shoulders, and wrists were identified as frequently injured areas, so these working postures were a primary focus for the creation of the workers' training. Handling procedures were analyzed by the team to identify common cycles involving one 5 gallon (60 pounds), two 5 gallons (60 and 54 pounds), 30 gallon (216 pounds), and 55 gallon (482 pounds) containers: lowering from transporting to/from transport vehicles, loading/unloading on transport vehicles, and loading onto pallet. Eleven experienced waste container handlers participated in this field analysis. Ergonomic exposure assessment tools measuring these field activities included posture analysis, posture targeting, Lumbar Motion Monitor{trademark} (LMM), and surface electromyography (sEMG) for the erector spinae, infraspinatus, and upper trapezius muscles. Posture analysis indicates that waste container handlers maintained non-neutral lower back postures (flexion, lateral bending, and rotation) for a mean of 51.7% of the time across all activities. The right wrist was in non-neutral postures (radial, ulnar, extension, and flexion) a mean of 30.5% of the time and the left wrist 31.4%. Non-neutral shoulder postures (elevation) were the least common, occurring 17.6% and 14.0% of the time in the right and left shoulders respectively. For training applications, each cycle had its own synchronized posture analysis and posture target diagram. Visual interpretations relating to the peak force modifications of the posture target diagrams proved to be invaluable for the workers' understanding of LMM and sEMG results (refer to Part II). Results were reviewed by the team's field technicians and their interpretations were developed into ergonomic training that address the issues originally raised. This training includes intervention methods, ergonomic tools used, dam acquired, and effects of waste container handling techniques on lower back, shoulder, and wrists and methods to help proactively reduce injuries associated with this profession.

  2. Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors

    SciTech Connect (OSTI)

    David H. Meikrantz; Troy G. Garn; Jack D. Law; Lawrence L. Macaluso

    2009-09-01

    Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment for remote applications in the nuclear industry. Minor modifications and suggestions for improved manual remote servicing by the remote handling specialists were provided but successful removal and replacement was demonstrated in the first prototype.

  3. Wood energy system design

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This handbook, Wood Energy System Design, was prepared with the support of the Council of Great Lakes Governors and the US Department of Energy. It contains: wood fuel properties; procurement; receiving, handling, and storage; combustion; gasification; emission control; electric power generation and cogeneration; and case studies. (JF)

  4. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    SciTech Connect (OSTI)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  5. PFP Commercial Grade Food Pack Cans for Plutonium Handling and Storage Critical Characteristics

    SciTech Connect (OSTI)

    BONADIE, E.P.

    2000-08-22

    This screening addresses the critical characteristics for food industry type cans and containers used for handling and storage of special nuclear materials at the Plutonium Finishing Plant (PFP). HNF-5460, Revision 0 specified a minimum tin plate of 0.50 Ib./base box. Since the food pack cans currently used and that have been tested have a listed tin plate of 0.20 lbs. per base box, Revision 1 reduced the tin plate to {ge} 0.20 Ib./base box (i.e., No. 20 tinned commercial steel or heavier). This revision lists Critical Characteristics for two (2) large filtered containers, and associated shielding over-packs. These new containers are called ''Nuclear Material Containers'' (NMCs). They are supplied in various sizes, which can be nested, one inside another. The PFP will use NMCs with volumes up to 8-quarts as needed to over-pack largely bulged containers.

  6. Environmental Monitoring Data System

    Energy Science and Technology Software Center (OSTI)

    2004-04-21

    A set of database management tools, data processing tools, and auxiliary support functionality for processing and handling semi-structured environmental monitoring data. The system provides a flexible description language for describing the data, allowing the database to store disparate data from many different sources without changes to the configuration. The system employs XML to support unlimited named allribute/value pairs for each object defined in the system.

  7. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  8. Generalized Nuclear Data: A New Structure (with Supporting Infrastructure) for Handling Nuclear Data

    SciTech Connect (OSTI)

    Mattoon, C.M.; Beck, B.R.; Patel, N.R.; Summers, N.C.; Hedstrom, G.W.; Brown, D.A.

    2012-12-15

    The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate neutron reaction data to support nuclear engineering applications in power, national security and criticality safety. Over the years, the scope of the format has been extended to handle many other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron scattering. Although ENDF has wide acceptance and support for many data types, its limited support for correlated particle emission, limited numeric precision, and general lack of extensibility mean that the nuclear data community cannot take advantage of many emerging opportunities. More generally, the ENDF format provides an unfriendly environment that makes it difficult for new data evaluators and users to create and access nuclear data. The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Generalized Nuclear Data (or 'GND') structure, meant to replace older formats with a hierarchy that mirrors the underlying physics, and is aligned with modern coding and database practices. In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes) GND structured nuclear data. GND defines the structure needed for storing nuclear data evaluations and the type of data that needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML is a meta-language, meaning that it has a primitive set of definitions for representing hierarchical data/text in a file. Other meta-languages, like HDF5 which stores the data in binary form, can also be used to store GND in a file. In this paper, we will present an overview of the new GND data structures along with associated tools in Fudge.

  9. Automated fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA); Steffen, Jim M. (Richland, WA)

    1985-01-01

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

  10. Automated fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  11. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications

    Broader source: Energy.gov [DOE]

    This report provides cost estimates for the manufacture of 10 kW and 25 kW PEM fuel cells designed for material handling applications.

  12. National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility

    SciTech Connect (OSTI)

    Peggy Hinman

    2010-10-01

    The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

  13. Sandia National Laboratories Releases Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport

    Broader source: Energy.gov [DOE]

    The Department of Energy is helping to develop an understanding of scientific questions associated with the production, treatment, and transportation of crude oils, including Bakken crude oil. To support this effort, the Department’s Sandia National Laboratory recently completed a report in cooperation with the Department of Transportation -- Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport.

  14. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  15. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

  16. U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

    2013-11-01

    This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

  17. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  18. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect (OSTI)

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  19. Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2012-05-01

    The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

  20. Fluid handling device useful as a pump, compressor or rotary engine

    SciTech Connect (OSTI)

    Whitfield, R.R.

    1986-12-23

    This patent describes a fluid handling device having variable volume chambers for use as a pump, compressor or rotary engine which comprises: a. a first rotary shaft member supported by bearings and carrying variable volume chamber forming components having at least a pair of angularly disposed flat surfaces and a curvilinear shell portion, b. a second rotary shaft member supported by bearings and carrying variable volume chamber forming components having at least a pair of angularly disposed flat surfaces and a curvilinear shell portion, (1) the shaft members being disposed at an angle other than 180/sup 0/ to one another, c. a centrally disposed disk member forming a plurality of variable volume chambers with the flat surfaces of the variable volume chamber forming components, (1) the centrally disposed disk member carrying a curvilinear shell member engageable in sealing relationship with the curvilinear shell portions of each of the variable volume chamber forming components, (2) and the centrally disposed disk member being journalled within bearings carried by a pair of yoke members externally of the curvilinear shell member carried by the disk member and with one of the yoke members being displaced 90/sup 0/ with respect to the other yoke member, (3) one of the yoke members being attached to the first rotary shaft member and the other of the yoke members being attached to the second rotary shaft member.

  1. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

  2. Conceptual design report for handling Fort St. Vrain fuel element components

    SciTech Connect (OSTI)

    Gavalya, R.A.

    1993-09-01

    This report presents conceptual designs for containment of high-level wastes (HLW) and low-level wastes (LLW) that will result from disassembly of fuel elements from the High Temperature Gas-Cooled Reactor at the Fort St. Vrain nuclear power plant in Platteville, Colorado. Hexagonal fuel elements will enter the disassembly area as a HLW and exit as either as HLW or LLW. The HLW will consist of spent fuel compacts that have been removed from the hexagonal graphite block. Graphite dust and graphite particles produced during the disassembly process will also be routed to the container that will hold the HLW spent fuel compacts. The LLW will consist of the emptied graphite block. Three alternatives have been introduced for interim storage of the HLW containers after the spent fuel has been loaded. The three alternatives are: (a) store containers where fuel elements are currently being stored, (b) construct a new dry storage facility, and (c) employ Multi-Purpose Canisters (currently in conceptual design stage). Containment of the LLW graphite block will depend on several factors: (a) LLW classification, (b) radiation levels, and (c) volume-reducing technique (if used). Packaging may range from cardboard boxes for incinerable wastes to 55-ton cask inserts for remote-handled wastes. Before final designs for the containment of the HLW and LLW can be developed, several issues need to be addressed: (a) packing factor for fuel compacts in HLW container, (b) storage/disposal of loaded HLW containers, (c) characterization of the emptied graphite blocks, and (d) which technique for volume-reduction purposes (if any) will be used.

  3. Webinar: Automotive and MHE Fuel Cell System Cost Analysis |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... costs, they list 33,000 for a system in a class one or two material handling application. ... So if we change our assumptions to match closer to what DTI had in their analysis, ...

  4. Coal handling, five years after PLC conversion, Centerior Energy, Avon Lake Generating Plant

    SciTech Connect (OSTI)

    Olix, G.J.; Vollweiler, F.D.

    1997-09-01

    From 1969 until 1991, Coal conveyors, splitters, and trippers at Avon Lake had been controlled by a General Electric static logic system. During the 1991 scheduled shutdown of the plant`s largest unit (640 MWatt Unit 9), the controls were replaced with a programmable logic controller (PLC) system. The conversion went smoothly, and the system has performed flawlessly. This paper will describe the overall project as well as the control system itself.

  5. Hydrogen Gas Generation Model for Fuel-Based Remote-Handled Transuranic Waste Stored at the INEEL

    SciTech Connect (OSTI)

    Khericha, S.; Bhatt, R.; Liekhus, K.

    2003-01-14

    The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

  6. Equilibria in Chemical Systems

    Energy Science and Technology Software Center (OSTI)

    1992-01-01

    SOLGASMIX-PV calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressuremore » can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available.« less

  7. T-656: Microsoft Office Visio DXF File Handling Arbitrary Code Execution Vulnerability

    Broader source: Energy.gov [DOE]

    Microsoft Office Visio contains a vulnerability that could allow an unauthenticated, remote attacker to execute arbitrary code on a targeted system.

  8. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    SciTech Connect (OSTI)

    Giles, H.N.

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  9. LWR NUCLEAR FUEL BUNDLE DATA FOR USE IN FUEL BUNDLE HANDLING

    Office of Scientific and Technical Information (OSTI)

    ... ( i n . ) 156.1 156.1 156.1-163.5 Fueled Length ( i n . ) ... Programed and Remote Systems Corp. P .O. Box 5888 3400 Lexington Ave. North 700 South Ash St. Paul, MN 55112 Denver, CO ...

  10. Handling Cyber Security Alerts and Advisories and Reporting Cyber Security Incidents

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-03-18

    To establish Department of Energy (DOE) requirements and responsibilities for reporting cyber security incidents involving classified and unclassified systems and responding to cyber security alerts and advisories; and to implement requirements of DOE N 205.1, Unclassified Cyber Security Program, and DOE M 471.2-2, Classified Information Systems Security Manual. DOE N 205.13, dated 7-6-04, extends this notice until 7-6-05. Cancels DOE M 471.2-2, Chapter III, section 8.

  11. Multi-purpose canister system evaluation: A systems engineering approach

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report summarizes Department of Energy (DOE) efforts to investigate various container systems for handling, transporting, storing, and disposing of spent nuclear fuel (SNF) assemblies in the Civilian Radioactive Waste Management System (CRWMS). The primary goal of DOE`s investigations was to select a container technology that could handle the vast majority of commercial SNF at a reasonable cost, while ensuring the safety of the public and protecting the environment. Several alternative cask and canister concepts were evaluated for SNF assembly packaging to determine the most suitable concept. Of these alternatives, the multi-purpose canister (MPC) system was determined to be the most suitable. Based on the results of these evaluations, the decision was made to proceed with design and certification of the MPC system. A decision to fabricate and deploy MPCs will be made after further studies and preparation of an environmental impact statement.

  12. Evaluation of a biosolids minimization system

    SciTech Connect (OSTI)

    Bizier, P.A.

    1999-07-01

    The Micronair{trademark} residuals management system has been described by its manufacturer as a zero biosolids system. The system consists of three main parts--RAS screening, inerts removal, and an extremely fine bubble aeration system for the digester. The system's design assumes that trash and other non-biodegradable materials make up the bulk of residuals which would normally be digested. If these materials are removed, then the remaining biological material is assumed to biodegrade to either inerts or dissolved materials. This paper presents additional background on the design and operation of the residuals handling system. In addition, actual data from the facility detailing the operation of the residuals handling system. In addition, actual data from the facility detailing the operation of the Micronair{trademark} system since its initial start-up is provided. Finally, the benefits and drawbacks of the existing system are discussed and points for consideration in future installations identified.

  13. EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017.

  14. Compilation of Requirements for Safe Handling of Fluorine and Fluorine-Containing Products of Uranium Hexafluoride Conversion

    SciTech Connect (OSTI)

    Ferrada, J.J.

    2000-04-03

    Public Law (PL) 105-204 requires the U.S. Department of Energy to develop a plan for inclusion in the fiscal year 2000 budget for conversion of the Department's stockpile of depleted uranium hexafluoride (DUF{sub 6}) to a more stable form over an extended period. The conversion process into a more stable form will produce fluorine compounds (e.g., elemental fluorine or hydrofluoric acid) that need to be handled safely. This document compiles the requirements necessary to handle these materials within health and safety standards, which may apply in order to ensure protection of the environment and the safety and health of workers and the public. Fluorine is a pale-yellow gas with a pungent, irritating odor. It is the most reactive nonmetal and will react vigorously with most oxidizable substances at room temperature, frequently with ignition. Fluorine is a severe irritant of the eyes, mucous membranes, skin, and lungs. In humans, the inhalation of high concentrations causes laryngeal spasm and broncospasms, followed by the delayed onset of pulmonary edema. At sublethal levels, severe local irritation and laryngeal spasm will preclude voluntary exposure to high concentrations, unless the individual is trapped or incapacitated. A blast of fluorine gas on the shaved skin of a rabbit causes a second degree burn. Lower concentrations cause severe burns of insidious onset, resulting in ulceration, similar to the effects produced by hydrogen fluoride. Hydrofluoric acid is a colorless, fuming liquid or gas with a pungent odor. It is soluble in water with release of heat. Ingestion of an estimated 1.5 grams produced sudden death without gross pathological damage. Repeated ingestion of small amounts resulted in moderately advanced hardening of the bones. Contact of skin with anhydrous liquid produces severe burns. Inhalation of AHA or aqueous hydrofluoric acid mist or vapors can cause severe respiratory tract irritation that may be fatal. Based on the extreme chemical properties of these chemicals as noted above, fluorine or fluorine compounds must be handled appropriately within the boundaries of many safety requirements for the protection of the environment and the public. This report analyzes the safety requirements that regulatory agencies have issued to handle fluorine or fluorine compounds and lists them in Table 1. Table 1 lists the source of the requirements, the specific section of the source document, and a brief description of the requirements.

  15. High Level Trigger Configuration and Handling of Trigger Tables in the CMS Filter Farm

    SciTech Connect (OSTI)

    Bauer, G; Behrens, U; Boyer, V; Branson, J; Brett, A; Cano, E; Carboni, A; Ciganek, M; Cittolin, S; O'dell, V; Erhan, S; Gigi, D; Glege, F; Gomez-Reino, R; Gulmini, M; Gutleber, J; Hollar, J; Lange, D; Kim, J C; Klute, M; Lipeles, E; Perez, J L; Maron, G; Meijers, F; Meschi, E; Moser, R; Mlot, E G; Murray, S; Oh, A; Orsini, L; Paus, C; Petrucci, A; Pieri, M; Pollet, L; Racz, A; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Sumorok, K; Suzuki, I; Tsirigkas, D; Varela, J

    2009-11-22

    The CMS experiment at the CERN Large Hadron Collider is currently being commissioned and is scheduled to collect the first pp collision data in 2008. CMS features a two-level trigger system. The Level-1 trigger, based on custom hardware, is designed to reduce the collision rate of 40 MHz to approximately 100 kHz. Data for events accepted by the Level-1 trigger are read out and assembled by an Event Builder. The High Level Trigger (HLT) employs a set of sophisticated software algorithms, to analyze the complete event information, and further reduce the accepted event rate for permanent storage and analysis. This paper describes the design and implementation of the HLT Configuration Management system. First experiences with commissioning of the HLT system are also reported.

  16. PFP Commercial Grade Food Pack Cans for Plutonium Handling and Storage Critical Characteristics

    SciTech Connect (OSTI)

    BONADIE, E.P.

    2000-10-26

    This document specifies the critical characteristics for containers procured for Plutonium Finishing Plant's (PFP's) Vault Operations system as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to perform its safety function.

  17. INNOVATIVE TECHNIQUES AND TECHNOLOGY APPLICATION IN MANAGEMENT OF REMOTE HANDLED AND LARGE SIZED MIXED WASTE FORMS

    SciTech Connect (OSTI)

    BLACKFORD LT

    2008-02-04

    CH2M HILL Hanford Group, Inc. (CH2M HILL) plays a critical role in Hanford Site cleanup for the U. S. Department of Energy, Office of River Protection (ORP). CH2M HILL is responsible for the management of 177 tanks containing 53 million gallons of highly radioactive wastes generated from weapons production activities from 1943 through 1990. In that time, 149 single-shell tanks, ranging in capacity from 50,000 gallons to 500,000 gallons, and 28 double-shell tanks with a capacity of 1 million gallons each, were constructed and filled with toxic liquid wastes and sludges. The cleanup mission includes removing these radioactive waste solids from the single-shell tanks to double-shell tanks for staging as feed to the Waste Treatment Plant (WTP) on the Hanford Site for vitrification of the wastes and disposal on the Hanford Site and Yucca Mountain repository. Concentrated efforts in retrieving residual solid and sludges from the single-shell tanks began in 2003; the first tank retrieved was C-106 in the 200 East Area of the site. The process for retrieval requires installation of modified sluicing systems, vacuum systems, and pumping systems into existing tank risers. Inherent with this process is the removal of existing pumps, thermo-couples, and agitating and monitoring equipment from the tank to be retrieved. Historically, these types of equipment have been extremely difficult to manage from the aspect of radiological dose, size, and weight of the equipment, as well as their attendant operating and support systems such as electrical distribution and control panels, filter systems, and mobile retrieval systems. Significant effort and expense were required to manage this new waste stream and resulted in several events over time that were both determined to be unsafe for workers and potentially unsound for protection of the environment. Over the last four years, processes and systems have been developed that reduce worker exposures to these hazards, eliminate violations of RCRA storage regulations, reduce costs for waste management by nearly 50 percent, and create a viable method for final treatment and disposal of these waste forms that does not impact retrieval project schedules. This paper is intended to provide information to the nuclear and environmental clean-up industry with the experience of CH2M HILL and ORP in managing these highly difficult waste streams, as well as providing an opportunity for sharing lessons learned, including technical methods and processes that may be applied at other DOE sites.

  18. Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations

    SciTech Connect (OSTI)

    Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

    1980-03-01

    This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

  19. 2010-01 "Disposition of Remote-Handled Waste Buried in 33 Shafts at

    Office of Environmental Management (EM)

    Transmission Reliability Program Peer Review 2010 Transmission Reliability Program Peer Review The Transmission Reliability research area focuses on two key areas: 1) Real-Time Grid Reliability Management and 2) Reliability and Markets. The first area develops monitoring and analysis tools that process synchrophasor data to enable real-time assessment of grid status and stability margins, with the goal of improving power system reliability and visibility through wide-area measurement and

  20. Project Records Information System (PRIS)

    SciTech Connect (OSTI)

    Smith, P.S.; Schwarz, R.K.

    1990-11-01

    The Project Records Information System (PRIS) is an interactive system developed for the Information Services Division (ISD) of Martin Marietta Energy Systems, Inc., to perform indexing, maintenance, and retrieval of information about Engineering project record documents for which they are responsible. This PRIS User's Manual provides instruction on the use of this system. This manual presents an overview of PRIS, describing the system's purpose; the data that it handles; functions it performs; hardware, software, and access; and help and error functions. This manual describes the interactive menu-driven operation of PRIS. Appendixes A, B, C, and D contain the data dictionary, help screens, report descriptions, and a primary menu structure diagram, respectively.

  1. Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization

    SciTech Connect (OSTI)

    Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

    2011-04-01

    Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

  2. Investigation of expert system application to spacecraft power system control

    SciTech Connect (OSTI)

    Pistole, C.; Bein, J.

    1984-08-01

    This paper addresses the application of expert systems to spacecraft power system control through investigation of two salient technical issues. These are the maximum speed of an expert system, and interaction between the expert system and transient phenomena. The basis of this discussion will be test data obtained through development of the Fault Isolation Expert System (FIES) at Martin Marietta Aerospace Denver. The expert system was tested to determine the minimum time required to clear a power system fault. This response time will be compared to conventional fault handling techniques, and analyzed to determine the maximum bandwidth of the system to be controlled. The second issue to be investigated is the relationship between expert system speed and power system transients. Specifically, FIES is intended to deal with quasi steady state inputs only. Therefore, expert system inputs must be filtered to eliminate the interaction between the expert system and transient phenomena. This paper will discuss the considerations involved in the tailoring of inputs.

  3. Central Characterization Program (CCP) Contact-Handled (CH) TRU Waste Certification and Waste Information System/Waste Data System (WWIS/WDS) Data Entry

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  4. Developing Supersonic Impactor and Aerodynamic Lens for Separation and Handling of Nano-Sized Particles

    SciTech Connect (OSTI)

    Goodarz Ahmadi

    2008-06-30

    A computational model for supersonic flows of compressible gases in an aerodynamic lens with several lenses and in a supersonic/hypersonic impactor was developed. Airflow conditions in the aerodynamic lens were analyzed and contour plots for variation of Mach number, velocity magnitude and pressure field in the lens were evaluated. The nano and micro-particle trajectories in the lens and their focusing and transmission efficiencies were evaluated. The computational model was then applied to design of a aerodynamic lens that could generate focus particle beams while operating under atmospheric conditions. The computational model was also applied to airflow condition in the supersonic/hypersonic impactor. Variations of airflow condition and particle trajectories in the impactor were evaluated. The simulation results could provide understanding of the performance of the supersonic and hypersonic impactors that would be helpful for the design of such systems.

  5. EVMS Self-Surveillance of Remote Handled Low Level Waste (RHLLW) Project

    SciTech Connect (OSTI)

    Michael L. Nelson; Kimberly Case; Linda Hergesheimer; Maxine Johnson; Doug Parker; Rick Staten; Scott taylor

    2013-07-01

    DOE G 413.3-10A, Section 3.a states: “The Contractor has primary responsibility for implementing and maintaining a surveillance program to ensure continued compliance of the system with ANSI/EIA-748B. DOE O 413.3B requires the FPD to ensure the contractor conducts a Self-Surveillance annually. This annual Self-Surveillance,
should cover all 32 guidelines of the ANSI/EIA748B. Documentation of the Self-Surveillance is sent to the CO and the PMSO (copy to OECM) confirming the continued compliance of their EVMS ANSI/EIA748B...” This review, and the associated report, is deemed to satisfy this requirement.

  6. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  7. Cultural Resource Protection Plan for the Remote-Handled Low-Level Waste Disposal Facility at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Pace, Brenda Ringe; Gilbert, Hollie Kae

    2015-05-01

    This plan addresses cultural resource protection procedures to be implemented during construction of the Remote Handled Low Level Waste project at the Idaho National Laboratory. The plan proposes pre-construction review of proposed ground disturbing activities to confirm avoidance of cultural resources. Depending on the final project footprint, cultural resource protection strategies might also include additional survey, protective fencing, cultural resource mapping and relocation of surface artifacts, collection of surface artifacts for permanent curation, confirmation of undisturbed historic canal segments outside the area of potential effects for construction, and/or archaeological test excavations to assess potential subsurface cultural deposits at known cultural resource locations. Additionally, all initial ground disturbing activities will be monitored for subsurface cultural resource finds, cultural resource sensitivity training will be conducted for all construction field personnel, and a stop work procedure will be implemented to guide assessment and protection of any unanticipated discoveries after initial monitoring of ground disturbance.

  8. Criticality Safety Envelope for Receipt, Handling, and Storage of Transuranic Waste

    SciTech Connect (OSTI)

    Vincent, A.M.

    1998-12-04

    Current criticality safety limits for Solid Waste Management Facility (SWMF) Transuranic (TRU) Waste Storage Pads are based on analysis of systems where mass is the only independent parameter and all other parameters are assumed at their most reactive values (Ref. 1). These limits result in administrative controls (i.e., limit stacking of containers, coordination of drums for culvert storage based on individual drum fissile inventories, and mass limits for accumulation of polyethylene boxes in culverts) which can only be met by redundant SWMF administrative controls. These analyses did not credit the nature of the waste generator process that would provide bounding limits on the other parameters (i.e. less than optimal moderation and configurations within packages (containers)). They also did not indicate the margin of safety associated with operating to these mass limits. However, by crediting the waste generator processes (and maintaining such process assumptions via controls in the criteria for waste acceptance) sufficient margin of safety can be demonstrated to justify continued SWMF TRU pad operation with fewer administrative controls than specified in the Double Contingency analysis (DCA) (Ref. 1).

  9. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health related research. Volume 4: Production and materials handling

    SciTech Connect (OSTI)

    1995-08-01

    This is the fourth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume 4 is to describe record series pertaining to production and materials handling activities at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of production and materials handling practices at Rocky Flats, and identifies organizations contributing to production and materials handling policies and activities. Other topics include the scope and arrangement of the guide and the organization to contact for access to these records.

  10. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

  11. DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

  12. Biomass Engineering: Transportation & Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Updated results show materials have similar particles sizes and shapes. * Microscopy indicates that flowability at low compressive stresses depends primarily upon ...

  13. To hot to handle

    SciTech Connect (OSTI)

    Close, F.

    1991-01-01

    This book investigates the international controversy that erupted when two Utah scientists announced that they had achieved cold fusion in a test tube probing the motivations behind their startling assertion and its impact on the scientific community worldwide, and providing an overview of atomic fusion research.

  14. Handling difficult materials: Textiles

    SciTech Connect (OSTI)

    Polk, T.

    1994-07-01

    As recyclable materials, textiles are a potentially valuable addition to community collection programs. They make up a fairly substantial fraction--about 4%--of the residential solid waste stream, a higher figure than corrugated cardboard or magazines. Textiles have well-established processing and marketing infrastructures, with annual sales of over $1 billion in the US And buyers are out there, willing to pay $40 to $100 per ton. There doesn't seem to be any cumbersome government regulations standing in the way, either. So why are so few municipalities and waste haulers currently attempting to recover textiles The answers can be found in the properties of the material itself and a lack of knowledge about the existing textile recycling industry. There are three main end markets that come from waste textiles. In descending order of market share, they are: used clothing, fiber for paper and re-processing, and industrial wiping and polishing cloths.

  15. Storage and Handling

    Broader source: Energy.gov [DOE]

    Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management Business Center RETIREMENT OF RECORDS:

  16. SAMPLE CAN HANDLING MECHANISM

    DOE Patents [OSTI]

    Egnor, W.D.; Romine, G.L.

    1963-05-21

    A remotely operated turntable is described for moving containers in succession from station to station and holding the containers in position at each station while a desired operation is performed. The assembly is capable of both vertical and rotational movements and is equipped with means that limit the rotational movements to predetermined angular increments and means that prevent rotation of the turntable while the container is at a work station. (AEC)

  17. CAN HANDLING FIXTURES

    DOE Patents [OSTI]

    Kelman, Ler.R.; Yaggee, F.L.

    1958-08-01

    A sleeveless cauning apparatus is described for bonding and canning uranium fuel elements under the surface of a liquid bonding alloy. The can is supported on a pedestal by vertical pegs, and an adjustable collar is placed around the upper, open end of the can, which preferably is flared to assure accurate centering in the fixture and to guide the uranium slug into the can. The fixture with a can in place is then immersed in a liquid aluminum-silicon alloy and the can becomes filled with the liquid alloy. The slug is inserted by a slug guide located vertically above the can opening. The slug settles by gravity into the can, after which a cap is emplaced. A quenching tool lifts the capped can out of the bath by means of a slot provided for it in the pedestal. This apparatus provides a simple means of canning the slug without danger of injury to the uranium metal or the aluminum can.

  18. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  19. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  20. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Annette Schafer, Arthur S. Rood, A. Jeffrey Sondrup

    2011-12-23

    Groundwater impacts have been analyzed for the proposed remote-handled low-level waste disposal facility. The analysis was prepared to support the National Environmental Policy Act environmental assessment for the top two ranked sites for the proposed disposal facility. A four-phase screening and analysis approach was documented and applied. Phase I screening was site independent and applied a radionuclide half-life cut-off of 1 year. Phase II screening applied the National Council on Radiation Protection analysis approach and was site independent. Phase III screening used a simplified transport model and site-specific geologic and hydrologic parameters. Phase III neglected the infiltration-reducing engineered cover, the sorption influence of the vault system, dispersion in the vadose zone, vertical dispersion in the aquifer, and the release of radionuclides from specific waste forms. These conservatisms were relaxed in the Phase IV analysis which used a different model with more realistic parameters and assumptions. Phase I screening eliminated 143 of the 246 radionuclides in the inventory from further consideration because each had a half-life less than 1 year. An additional 13 were removed because there was no ingestion dose coefficient available. Of the 90 radionuclides carried forward from Phase I, 57 radionuclides had simulated Phase II screening doses exceeding 0.4 mrem/year. Phase III and IV screening compared the maximum predicted radionuclide concentration in the aquifer to maximum contaminant levels. Of the 57 radionuclides carried forward from Phase II, six radionuclides were identified in Phase III as having simulated future aquifer concentrations exceeding maximum contaminant limits. An additional seven radionuclides had simulated Phase III groundwater concentrations exceeding 1/100th of their respective maximum contaminant levels and were also retained for Phase IV analysis. The Phase IV analysis predicted that none of the thirteen remaining radionuclides would exceed the maximum contaminant levels for either site location. The predicted cumulative effective dose equivalent from all 13 radionuclides also was less than the dose criteria set forth in Department of Energy Order 435.1 for each site location. An evaluation of composite impacts showed one site is preferable over the other based on the potential for commingling of groundwater contamination with other facilities.

  1. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  2. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect (OSTI)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  3. Continuous fine ash depressurization system

    DOE Patents [OSTI]

    Liu, Guohai; Peng, Wan Wang; Vimalchand, Pannalal

    2011-11-29

    A system for depressurizing and cooling a high pressure, high temperature fine solid particles stream having entrained gas therein. In one aspect, the system has an apparatus for cooling the high pressure, high temperature fine solid particles stream having entrained gas therein and a pressure letdown device for depressurization by separating the cooled fine solid particles from a portion of the fine solid particles stream having entrained gas therein, resulting in a lower temperature, lower pressure outlet of solid particles for disposal or handling by downstream equipment.

  4. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    DOE/GO-102016-4854 February 2016 Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  5. Processing Plan for Potentially Reactive/Ignitable Remote Handled Transuranic Waste at the Idaho Cleanup Project - 12090

    SciTech Connect (OSTI)

    Troescher, Patrick D.; Hobbes, Tammy L.; Anderson, Scott A.

    2012-07-01

    Remote Handle Transuranic (RH-TRU) Waste generated at Argonne National Laboratory - East, from the examination of irradiated and un-irradiated fuel pins and other reactor materials requires a detailed processing plan to ensure reactive/ignitable material is absent to meet WIPP Waste Acceptance Criteria prior to shipping and disposal. The Idaho Cleanup Project (ICP) approach to repackaging Lot 2 waste and how we ensure prohibited materials are not present in waste intended for disposal at Waste Isolation Pilot Plant 'WIPP' uses an Argon Repackaging Station (ARS), which provides an inert gas blanket. Opening of the Lot 2 containers under an argon gas blanket is proposed to be completed in the ARS. The ARS is an interim transition repackaging station that provides a mitigation technique to reduce the chances of a reoccurrence of a thermal event prior to rendering the waste 'Safe'. The consequences, should another thermal event be encountered, (which is likely) is to package the waste, apply the reactive and or ignitable codes to the container, and store until the future treatment permit and process are available. This is the same disposition that the two earlier containers in the 'Thermal Events' were assigned. By performing the initial handling under an inert gas blanket, the waste can sorted and segregate the fines and add the Met-L-X to minimize risk before it is exposed to air. The 1-gal cans that are inside the ANL-E canister will be removed and each can is moved to the ARS for repackaging. In the ARS, the 1-gal can is opened in the inerted environment. The contained waste is sorted, weighed, and visually examined for non compliant items such as unvented aerosol cans and liquids. The contents of the paint cans are transferred into a sieve and manipulated to allow the fines, if any, to be separated into the tray below. The fines are weighed and then blended with a minimum 5:1 mix of Met-L-X. Other debris materials found are segregated from the cans into containers for later packaging. Recoverable fissile waste material (Fuel and fuel-like pieces) suspected of containing sodium bonded pieces) are segregated and will remain in the sieve or transferred to a similar immersion basket in the ARS. The fuel like pieces will be placed into a container with sufficient water to cover the recoverable fissile waste. If a 'reactive characteristic' is present the operator will be able to observe the formation of 'violent' hydrogen gas bubbles. When sodium bonded fuel-like pieces are placed in water the expected reaction is a non-violent reaction that does not meet the definition of reactivity. It is expected that there will be a visible small stream of bubbles present if there is any sodium-bonded fuel-like piece placed in the water. The test will be completed when there is no reaction or the expected reaction is observed..At that point, the fuel like pieces complete the processing cycle in preparation for characterization and shipment to WIPP. If a violent reaction occurs, the fuel-like pieces will be removed from the water, split into the required fissile material content, placed into a screened basket in a 1 gallon drum and drummed out of the hot cell with appropriate RCRA codes applied and placed into storage until sodium treatment is available. These 'violent' reactions will be evidenced by gas bubbles being evolved at the specimen surface where sodium metal is present. The operators will be trained to determine if the reaction is 'violent' or 'mild'. If a 'violent' reaction occurs, the sieve will be immediately removed from the water, placed in a 1 gallon paint can, canned in the argon cover gas and removed from the hot cell to await a future treatment. If the reaction is 'mild', the sieve will then be removed from the water; the material weighed for final packaging and allowed to dry by air exposure. Lot 2 waste cans can be opened, sorted, processed, and weighed while mitigating the potential of thermal events that could occur prior to exposing to air. Exposure to air is a WIPP compliance step demonstrating the absence of react

  6. Manufacturing Readiness Assessment for Fuel Cell Stacks and Systems for the Back-up Power and Material Handling Equipment Emerging Markets (Revised)

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2010-02-01

    This report details NREL's activity to address the need to understand the current status and associated risk levels of the polymer electrolyte membrane (PEM) fuel cell industry.

  7. Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter

    2010-09-01

    Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratory’s proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energy’s Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dam’s capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for their erosion potential, ability to overflow the proposed disposal facility, and for their ability to increase migration of contaminants from the facility. The assessment of available literature suggests that the likelihood of detrimental flood water impacting the proposed RH-LLW facility is extremely low. The annual exceedance probability associated with uncontrolled flows in the Big Lost River impacting either of the proposed sites is 1x10-5, with return interval (RI) of 10,000yrs. The most probable dam failure scenario has an annual exceedance probability of 6.3x10-6 (1.6x105 yr RI). In any of the scenarios generating possible on-site water, the duration is expected to be quite short, water depths are not expected to exceed 0.5 m, and the erosion potential can easily be mitigated by emplacement of a berm (operational period), and an engineered cover (post closure period). Subsurface mobilization of radionuclides was evaluated for a very conservative flooding scenario resulting in 50 cm deep, 30.5 day on-site water. The annual exceedance probability for which is much smaller than 3.6x10-7 (2.8x106 yr RI). For the purposes of illustration, the facility was assumed to flood every 500 years. The periodically recurring flood waters were predicted to marginally increase peak radionuclide fluxes into the aquifer by at most by a factor of three for non-sorbing radionuclides, and to have limited impact on peak radionuclide fluxes into the aquifer for contaminants that do sorb.

  8. A new ATLAS muon CSC readout system with system on chip technology on ATCA

    Office of Scientific and Technical Information (OSTI)

    platform (Journal Article) | DOE PAGES A new ATLAS muon CSC readout system with system on chip technology on ATCA platform Title: A new ATLAS muon CSC readout system with system on chip technology on ATCA platform The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable

  9. A new ATLAS muon CSC readout system with system on chip technology on ATCA

    Office of Scientific and Technical Information (OSTI)

    platform (Journal Article) | SciTech Connect A new ATLAS muon CSC readout system with system on chip technology on ATCA platform Citation Details In-Document Search Title: A new ATLAS muon CSC readout system with system on chip technology on ATCA platform The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout

  10. NSTX-U Control System Upgrades | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control System Upgrades This system can serve as a control system for any fusion device, including ITER. Currently, the PCS calculates many complicated and disjoint algorithms every 200 microseconds, delivering the result in a heterogeneous set of outputs. This is easily expanded to handle any input we can conceive, without output that can be delivered to many different kinds of target devices. The inputs can be any combination of signals, digital, analog, or even packets over Ethernet. The

  11. Compact chemical energy system for seismic applications

    DOE Patents [OSTI]

    Engelke, Raymond P. (Los Alamos, NM); Hedges, Robert O. (Los Alamos, NM); Kammerman, Alan B. (Los Alamos, NM); Albright, James N. (Los Alamos, NM)

    1998-01-01

    A chemical energy system is formed for producing detonations in a confined environment. An explosive mixture is formed from nitromethane (NM) and diethylenetriamine (DETA). A slapper detonator is arranged adjacent to the explosive mixture to initiate detonation of the mixture. NM and DETA are not classified as explosives when handled separately and can be safely transported and handled by workers in the field. In one aspect of the present invention, the chemicals are mixed at a location where an explosion is to occur. For application in a confined environment, the chemicals are mixed in an inflatable container to minimize storage space until it is desired to initiate an explosion. To enable an inflatable container to be used, at least 2.5 wt % DETA is used in the explosive mixture. A barrier is utilized that is formed of a carbon composite material to provide the appropriate barrel geometry and energy transmission to the explosive mixture from the slapper detonator system.

  12. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    SciTech Connect (OSTI)

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

  13. Distributed Object Oriented Geographic Information System

    Energy Science and Technology Software Center (OSTI)

    1997-02-01

    This interactive, object-oriented, distributed Geographic Information System (GIS) uses the World Wibe Web (WWW) as application medium and distribution mechanism. The software provides distributed access to multiple geo-spatial databases and presents them as if they came from a single coherent database. DOOGIS distributed access comes not only in the form of multiple geo-spatial servers but can break down a single logical server into the constituent physical servers actually storing the data. The program provides formore » dynamic protocol resolution and content handling allowing unknown objects from a particular server to download their handling code. Security and access privileges are negotiated dynamically with each server contacted and each access attempt.« less

  14. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    SciTech Connect (OSTI)

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner; Ripholz, Martina

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to the hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)

  15. Advanced System for Process Engineering

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  16. Saturn facility oil transfer automation system

    SciTech Connect (OSTI)

    Joseph, Nathan R.; Thomas, Rayburn Dean; Lewis, Barbara Ann; Malagon, Hector M.

    2014-02-01

    The Saturn accelerator, owned by Sandia National Laboratories, has been in operation since the early 1980s and still has many of the original systems. A critical legacy system is the oil transfer system which transfers 250,000 gallons of transformer oil from outside storage tanks to the Saturn facility. The oil transfer system was iden- ti ed for upgrade to current technology standards. Using the existing valves, pumps, and relay controls, the system was automated using the National Instruments cRIO FGPA platform. Engineered safety practices, including a failure mode e ects analysis, were used to develop error handling requirements. The uniqueness of the Saturn Oil Automated Transfer System (SOATS) is in the graphical user interface. The SOATS uses an HTML interface to communicate to the cRIO, creating a platform independent control system. The SOATS was commissioned in April 2013.

  17. Modeling Supermarket Refrigeration Systems with EnergyPlus

    SciTech Connect (OSTI)

    Stovall, Therese K; Baxter, Van D

    2010-01-01

    Supermarket refrigeration capabilities were first added to EnergyPlus in 2004. At that time, it was possible to model a direct expansion (DX) rack system with multiple refrigerated cases. The basic simulation software handles all the building energy uses, typically on a 5 to 10 minute time step throughout the period of interest. The original refrigeration module included the ability to model the sensible and latent interactions between the refrigerated cases and the building HVAC system, along with some basic heat recovery capabilities. Over the last few years, the refrigeration module has been expanded to handle more complex systems, such as secondary loops, shared condensers, cascade condensers, subcoolers, and walk-in coolers exchanging energy with multiple conditioned zones.

  18. Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. Part 1. Flammability and Toxicity

    SciTech Connect (OSTI)

    Oasmaa, Anja; Kalli, Anssi; Lindfors, Christian; Elliott, Douglas C.; Springer, David L.; Peacocke, Cordner; Chiaramonti, David

    2012-05-04

    An alternative sustainable fuel, biomass-derived fast pyrolysis oil or 'bio-oil', is coming into the market. Fast pyrolysis pilot and demonstration plants for fuel applications producing tonnes of bio-oil are in operation, and commercial plants are under design. There will be increasingly larger amounts of bio-oil transportation on water and by land, leading to a need for specifications and supporting documentation. Bio-oil is different from conventional liquid fuels, and therefore must overcome both technical and marketing hurdles for its acceptability in the fuels market. A comprehensive Material Safety Data Sheet (MSDS) is required, backed with independent testing and certification. In order to standardise bio-oil quality specifications are needed. The first bio-oil burner fuel standard in ASTM (D7544) was approved in 2009. CEN standardisation has been initiated in Europe. In the EU a new chemical regulation system, REACH (Registration, Evaluation and Authorisation of Chemicals) is being applied. Registration under REACH has to be made if bio-oil is produced or imported to the EU. In the USA and Canada, bio-oil has to be filed under TOSCA (US Toxic Substances Control Act). In this paper the state of the art on standardisation is discussed, and new data for the transportation guidelines is presented. The focus is on flammability and toxicity.

  19. Synthesis of the unmanned aerial vehicle remote control augmentation system

    SciTech Connect (OSTI)

    Tomczyk, Andrzej

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  20. CHARACTERIZATION THROUGH DATA QUALITY OBJECTIVES AND CERTIFICATION OF REMOTE-HANDLED TRANSURANIC WASTE GENERATOR/STORAGE SITES FOR SHIPMENT TO THE WIPP

    SciTech Connect (OSTI)

    Spangler, L.R.; Most, Wm.A.; Kehrman, R.F.; Gist, C.S.

    2003-02-27

    The Waste Isolation Pilot Plant (WIPP) is operating to receive and dispose of contact-handled (CH) transuranic (TRU) waste. The Department of Energy (DOE) Carlsbad Field Office (CBFO) is seeking approval from the Environmental Protection Agency (EPA) and the New Mexico Environment Department (NMED) of the remote-handled (RH) TRU characterization plan to allow disposal of RH TRU waste in the WIPP repository. In addition, the DOE-CBFO has received approval from the Nuclear Regulatory Commission (NRC) to use two shipping casks for transporting RH TRU waste. Each regulatory agency (i.e., EPA, NMED, and NRC) has different requirements that will have to be met through the use of information collected by characterizing the RH TRU waste. Therefore, the DOE-CBFO has developed a proposed characterization program for obtaining the RH TRU waste information necessary to demonstrate that the waste meets the applicable regulatory requirements. This process involved the development of a comprehensive set of Data Quality Objectives (DQOs) comprising the various regulatory requirements. The DOE-CBFO has identified seven DQOs for use in the RH TRU waste characterization program. These DQOs are defense waste determination, TRU waste determination, RH TRU determination, activity determination, RCRA physical and chemical properties, prohibited item determination, and EPA physical and chemical properties. The selection of the DQOs were based on technical, legal and regulatory drivers that assure the health and safety of the workers, the public, to protect the environment, and to comply with the requirements of the regulatory agencies. The DOE-CBFO also has the responsibility for the certification of generator/storage sites to ship RH TRU mixed waste to the WIPP for disposal. Currently, thirteen sites across the DOE complex are generators of RH TRU waste or store the waste at their location for other generators. Generator/storage site certification involves review and approval of site-specific programmatic documents that demonstrate compliance with the WIPP waste characterization and transportation requirements. Additionally, procedures must be developed to implement programmatic requirements and adequacy of those procedures determined. Finally, on-site audits evaluate the technical and administrative implementation and effectiveness of the operating procedures.

  1. Feasibility of a superhigh energy-density battery of the Li/BrF sub 3 electrochemical system. Technical report

    SciTech Connect (OSTI)

    Pyszczek, M.F.; Ebel, S.J.; Frysz, C.A.

    1989-01-01

    To date, design and construction of a material-handling and measurement system along with the apparatus required for waste material disposal has been completed. Preliminary corrosion screening of potential case materials is currently underway. A review of the literature, has led us to the use of Monel (trademark) 400 as the material of construction for the handling and measurement system. The inherent stability of this material with bromine trifluoride in its liquid state is crucial to ensure that contamination does not occur during storage and handling. For applications which require a flexible or transparent material, items fabricated from perfluoroalkyoxy polymers (Teflon) (trademark PFA) were utilized. One such application encountered was in the design of the graduated tank which allows visual inspection of the material prior to dispensing. Containers used for compatibility/corrosion testing were also constructed of PFA.

  2. SCREW COMPRESSOR CHARACTERISTICS FOR HELIUM REFRIGERATION SYSTEMS

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Knudsen, Peter; Creel, Jonathan; Arenius, Dana; Casagrande, Fabio; Howell, Matt

    2008-03-01

    The oil injected screw compressors have practically replaced all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, minimal vibration, reliability and capability of handling helium's high heat of compression.At the present state of compressor system designs for helium systems, typically two-thirds of the lost input power is due to the compression system. Therefore it is important to understand the isothermal and volumetric efficiencies of these machines to help properly design these compression systems to match the refrigeration process. This presentation summarizes separate tests that have been conducted on Sullair compressors at the Superconducting Super-Collider Laboratory (SSCL) in 1993, Howden compressors at Jefferson Lab (JLab) in 2006 and Howden compressors at the Spallation Neutron Source (SNS) in 2006. This work is part of an ongoing study at JLab to understand the theoretical basis for these efficiencies and their loss

  3. CMLOG: A common message logging system

    SciTech Connect (OSTI)

    Chen, J.; Akers, W.; Bickley, M.; Wu, D.; Watson, W. III

    1997-12-01

    The Common Message Logging (CMLOG) system is an object-oriented and distributed system that not only allows applications and systems to log data (messages) of any type into a centralized database but also lets applications view incoming messages in real-time or retrieve stored data from the database according to selection rules. It consists of a concurrent Unix server that handles incoming logging or searching messages, a Motif browser that can view incoming messages in real-time or display stored data in the database, a client daemon that buffers and sends logging messages to the server, and libraries that can be used by applications to send data to or retrieve data from the database via the server. This paper presents the design and implementation of the CMLOG system meanwhile it will also address the issue of integration of CMLOG into existing control systems.

  4. Damage detection in initially nonlinear systems

    SciTech Connect (OSTI)

    Bornn, Luke; Farrar, Charles; Park, Gyuhae

    2009-01-01

    The primary goal of Structural Health Monitoring (SHM) is to detect structural anomalies before they reach a critical level. Because of the potential life-safety and economic benefits, SHM has been widely studied over the past decade. In recent years there has been an effort to provide solid mathematical and physical underpinnings for these methods; however, most focus on systems that behave linearly in their undamaged state - a condition that often does not hold in complex 'real world' systems and systems for which monitoring begins mid-lifecycle. In this work, we highlight the inadequacy of linear-based methodology in handling initially nonlinear systems. We then show how the recently developed autoregressive support vector machine (AR-SVM) approach to time series modeling can be used for detecting damage in a system that exhibits initially nonlinear response. This process is applied to data acquired from a structure with induced nonlinearity tested in a laboratory environment.

  5. Project Records Information System (PRIS) user's manual

    SciTech Connect (OSTI)

    Smith, P.S.; Nations, J.A.; Short, R.D.

    1991-08-01

    The Projects Record Information System (PRIS) is an interactive system developed for the Information Services Division (ISD) of Martin Marietta Energy Systems, Inc., to perform indexing, maintenance, and retrieval of information about Engineering project record documents for which they are responsible. This PRIS User's Manual provides instruction on the use of this system. Section 2.0 of this manual presents an overview of PRIS, describing the system's purpose; the data that it handles, functions it performs; hardware, software, and access; and help and error functions. Section 3.0 describes the interactive menu-driven operation of PRIS. Appendixes A, B,C, and D contain the data dictionary, help screens, report descriptions, and a primary menu structure diagram, respectively.

  6. Public Invited to Comment on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy invites the public to read and comment on a draft environmental assessment it has prepared, for a proposal to provide a replacement capability for continued disposal of remote-handled low-level radioactive waste that is generated at the Idaho National Laboratory site.

  7. Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

    2011-04-01

    This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

  8. Beam handling and transport solutions

    SciTech Connect (OSTI)

    Maggiore, M.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.; Tramontana, A.

    2013-07-26

    The main purpose of the present study is to investigate the possibility to characterize the particle beams produced by the laser-target interaction in terms of collection, focusing and energy selection in order to evaluate the feasibility of a laser-driven facility in the field of medical application and, in particular, for hadrontherapy.

  9. Wafer handling and placement tool

    DOE Patents [OSTI]

    Witherspoon, Linda L.

    1988-01-05

    A spring arm tool is provided for clamp engaging and supporting wafers while the tool is hand held. The tool includes a pair of relatively swingable jaw element supporting support arms and the jaw elements are notched to enjoy multiple point contact with a wafer peripheral portion. Also, one disclosed form of the tool includes remotely operable workpiece ejecting structure carried by the jaw elements thereof.

  10. Hydrogen Fuel for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CLASS 3 Forklift Value to the MHE Market z Trend has been toward electric - Indoor air quality issues z Early adopter of fuel cell technology technology - Fleet market - ...

  11. Feed Processing, Handling, and Gasification

    SciTech Connect (OSTI)

    2006-04-01

    Both current and future sugar biorefineries will generate a wide variety of residue streams that can be used as feedstocks for thermochemical processes, including corn stover, corn fiber, lignin-rich materials, and distillers’ dried grain and solubles.

  12. Diverless flowline connection system

    SciTech Connect (OSTI)

    Cox, D.S.

    1996-12-31

    The tie-in of flowlines and umbilicals to subsea trees and manifolds in deep water has traditionally been an expensive exercise. It generally requires the simultaneous presence of lay vessel and drill ship, or divers using a combination of rigging and gantries on the subsea structure. In recent years the development of a viable remote pull-in technique has become an important requirement for oil companies who are continuing to develop deeper and more marginal fields. The use of Remote Operated Vehicles (ROV`s) can not only provide the required costs savings, but eliminates the risks to man. Sonsub set out to design and build a system that was modular, could use the ROV for all subsea operations, and would only require minimal permanent subsea hardware support. These objectives were met with the completed system known as the Diverless Flowline Connection System (DFCS). The DFCS is capable of performing the tie-in of flowlines and umbilicals up to 18 in. O.D. The system is a light modular package that is easily handled and operated with any Work Class ROV in deepwater environments. The system has been extensively tested under a wide variety of conditions and is ready to perform the tie-in of two 13.5 in. and 6 in. flowline in the South China Sea in early 1996. In addition Sonsub have recently been contracted to perform the tie-in of 6 single bore flowlines ranging in size between 2.5 in. and 10 in., 14 multibore flowlines (2.5 in. and 8 in.) and 4 umbilicals in the North Sea off the coast of Norway.

  13. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  14. Extensions to Dynamic System Simulation of Fissile Solution Systems

    SciTech Connect (OSTI)

    Klein, Steven Karl; Bernardin, John David; Kimpland, Robert Herbert; Spernjak, Dusan

    2015-08-24

    Previous reports have documented the results of applying dynamic system simulation (DSS) techniques to model a variety of fissile solution systems. The SUPO (Super Power) aqueous homogeneous reactor (AHR) was chosen as the benchmark for comparison of model results to experimental data for steadystate operation.1 Subsequently, DSS was applied to additional AHR to verify results obtained for SUPO and extend modeling to prompt critical excursions, ramp reactivity insertions of various magnitudes and rate, and boiling operations in SILENE and KEWB (Kinetic Experiment Water Boiler).2 Additional models for pressurized cores (HRE: Homogeneous Reactor Experiment), annular core geometries, and accelerator-driven subcritical systems (ADAHR) were developed and results reported.3 The focus of each of these models is core dynamics; neutron kinetics, thermal hydraulics, radiolytic gas generation and transport are coupled to examine the time-based evolution of these systems from start-up through transition to steady-state. A common characteristic of these models is the assumption that (a) core cooling system inlet temperature and flow and (b) plenum gas inlet pressure and flow are held constant; no external (to core) component operations that may result in dynamic change to these parameters are considered. This report discusses extension of models to include explicit reference to cooling structures and radiolytic gas handling. The accelerator-driven subcritical generic system model described in References 3 and 4 is used as a basis for this extension.

  15. Waste Emplacement/Retrieval System Description Document

    SciTech Connect (OSTI)

    Eric Loros

    2001-07-25

    The Waste Emplacement/Retrieval System transports Waste Packages (WPs) from the Waste Handling Building (WHB) to the subsurface area of emplacement, and emplaces the WPs once there. The Waste Emplacement/Retrieval System also, if necessary, removes some or all of the WPs from the underground and transports them to the surface. Lastly, the system is designed to remediate abnormal events involving the portions of the system supporting emplacement or retrieval. During emplacement operations, the system operates on the surface between the WHB and North Portal, and in the subsurface in the North Ramp, access mains, and emplacement drifts. During retrieval or abnormal conditions, the operations areas may also extend to a surface retrieval storage site and South Portal on the surface, and the South Ramp in the subsurface. A typical transport and emplacement operation involves the following sequence of events. A WP is loaded into a WP transporter at the WHB, and coupled to a pair of transport locomotives. The locomotives transport the WP from the WHB, down the North Ramp, and to the entrance of an emplacement drift. Once docked at the entrance of the emplacement drift, the WP is moved outside of the WP transporter, and engaged by a WP emplacement gantry. The WP emplacement gantry lifts the WP, and transports it to its emplacement location, where the WP is then lowered to its final resting position. The WP emplacement gantry remains in the drift while the WP transporter is returned to the WHB by the locomotives. When the transporter reaches the WHB, the sequence of operations is repeated. Retrieval of all the WPs, or a large group of WPs, under normal conditions is achieved by reversing the emplacement operations. Retrieval of a small set of WPs, under normal or abnormal conditions, is known as recovery. Recovery performed under abnormal conditions will involve a suite of specialized equipment designed to perform a variety of tasks to enable the recovery process. Recovery after abnormal events may require clearing of equipment, rock, and ground support to facilitate recovery operations. Stabilization of existing ground support and installation of new ground support may also be needed. Recovery of WP(s) after an event that has contaminated drifts and/or WPs will require limiting the spread of contamination. Specialized equipment will also be necessary for system restoration (e.g., after a derailment, component failure). The Waste Emplacement/Retrieval System interfaces with the Subsurface Facility System and Ground Control System for the size and layout of the underground openings. The system interfaces with the Subsurface Ventilation System for the emplacement drift operating environment and the size of the drift isolation doors. The system interfaces with all WP types for the size, weight, and other important parameters affecting emplacement, recovery, and retrieval. The system interfaces with the Subsurface Emplacement Transportation System for the rail system upon which it operates and the distribution of power through the rail system. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for the transmission of data to and from the system equipment, and for remote control of system equipment. The system interfaces with the Ground Control System for any repairs that are made. The system interfaces with the Emplacement Drift System for the WP emplacement mode and hardware. The system interfaces with the Disposal Container Handling System and the Waste Handling Building System for the receipt (during emplacement) and delivery (during retrieval/recovery) of WPs.

  16. Waste Emplacement/Retrieval System Description Document

    SciTech Connect (OSTI)

    2000-10-12

    The Waste Emplacement/Retrieval System transports Waste Packages (WPs) from the Waste Handling Building (WHB) to the subsurface area of emplacement, and emplaces the WPs once there. The system also, if necessary, removes some or all of the WPs from the underground and transports them to the surface. Lastly, the system is designed to remediate abnormal events involving the portions of the system supporting emplacement or retrieval. During emplacement operations, the system operates on the surface between the WHB and North Portal, and in the subsurface in the North Ramp, access mains, and emplacement drifts. During retrieval or abnormal conditions, the operations areas may also extend to a surface retrieval storage site and South Portal on the surface, and the South Ramp in the subsurface. A typical transport and emplacement operation involves the following sequence of events. A WP is loaded into a WP transporter at the WHB, and coupled to a pair of transport locomotives. The locomotives transport the WP from the WHB, down the North Ramp, and to the entrance of an emplacement drift. Once docked at the entrance of the emplacment drift, the WP is moved outside of the WP transporter, and engaged by a WP emplacement gantry. The gantry lifts the WP, and transports it to its emplacement location, where the WP is then lowered to its final resting position. The gantry remains in the drift while the WP transporter is returned to the WHB by the locomotives. When the transporter reaches the WHB, the sequence of operations is repeated. Retrieval of all the WPs, or a large group of WPs, under normal conditions is achieved by reversing the emplacement operations. Retrieval of a small set of WPs, under normal or abnormal conditions, is known as recovery. Recovery performed under abnormal conditions will involve a suite of specialized equipment designed to perform a variety of tasks to enable the recovery process. Recovery after abnormal events may require clearing of equipment, rock, and ground support to facilitate recovery operations. Stabilization of existing ground support and installation of new ground support may also be needed. Recovery of WPs after an event that has contaminated drifts and/or WPs will require limiting the spread of contamination. Specialized equipment will also be necessary for system restoration. The system interfaces with the Subsurface Facility System and Ground Control System for the size and layout of the underground openings. The system interfaces with the Subsurface Ventilation System for the emplacement drift operating environment and the size of the drift isolation doors. The system interfaces with all WP types for the size, weight, and other important parameters affecting emplacement, recovery, and retrieval. The system interfaces with the Subsurface Emplacement Transportation System for the rail system upon which it operates and the distribution of power throuch the rail system. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for the transmission of data to and from the system equipment, and for remote control of system equipment. The system interfaces with the Ground Control System for any repairs that are made. The system interfaces with the Emplacement Drift System for the WP emplacement mode and hardware. The system interfaces with the Disposal Container Handling System and the Waste Handling Building System for the receipt (during emplacement) and delivery (during retrieval/recovery) of WPs.

  17. U.S. DOE Motor System Market Assessment

    Broader source: Energy.gov [DOE]

    AMO is leading a new Motor System Market Assessment (MSMA) to better understand opportunities for energy efficiency improvement in motors and motor-driven systems, which are essential to a wide array of industrial applications. Machine driven processes such as pumps, fans, compressed air, and materials handling and processing accounted for 68% of electricity use (2,840 TBtu direct use) by U.S. manufacturing in 2010. The new assessment will document the efficiency opportunities for motors and motor driven systems and propel market uptake of best practices and technologies designed to address these opportunities.

  18. THYME: Toolkit for Hybrid Modeling of Electric Power Systems

    Energy Science and Technology Software Center (OSTI)

    2011-01-01

    THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flowmore » data, and sample models of discrete sensors and controllers.« less

  19. Power control system for a hot gas engine

    DOE Patents [OSTI]

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  20. Radiation portal monitor system and method

    DOE Patents [OSTI]

    Morris, Christopher; Borozdin, Konstantin N.; Green, J. Andrew; Hogan, Gary E.; Makela, Mark F.; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Sossong, Michael J.

    2009-12-15

    A portal monitoring system has a cosmic ray charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  1. Methods and systems for detection of radionuclides

    DOE Patents [OSTI]

    Coates, Jr., John T.; DeVol, Timothy A.

    2010-05-25

    Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location.

  2. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources are then addressed. Differences in required analyses and data are captured as outstanding data needs.

  3. 324 Building Compliance Project: Selection and evaluation of alternatives for the removal of solid remote-handled mixed wastes from the 324 Building

    SciTech Connect (OSTI)

    Ross, W.A.; Bierschbach, M.C.; Dukelow, J.S. Jr.

    1995-06-01

    Six alternatives for the interim storage of remote-handled mixed wastes from the 324 Building on the Hanford Site have been identified and evaluated. The alternatives focus on the interim storage facility and include use of existing facilities in the 200 Area, the construction of new facilities, and the vitrification of the wastes within the 324 Building to remove the majority of the wastes from under RCRA regulations. The six alternatives are summarized in Table S.1, which identifies the primary facilities to be utilized, the anticipated schedule for removal of the wastes, the costs of the transfer from 324 Building to the interim storage facility (including any capital costs), and an initial risk comparison of the alternatives. A recently negotiated Tri-Party Agreement (TPA) change requires the last of the mixed wastes to be removed by May 1999. The ability to use an existing facility reduces the costs since it eliminates the need for new capital construction. The basic regulatory approvals for the storage of mixed wastes are in place for the PUREX facility, but the Form HI permit will need some minor modifications since the 324 Building wastes have some additional characteristic waste codes and the current permit limits storage of wastes to those from the facility itself. Regulatory reviews have indicated that it will be best to use the tunnels to store the wastes. The PUREX alternatives will only provide storage for about 65% of the wastes. This results from the current schedule of the B-Cell Clean Out Project, which projects that dispersible debris will continue to be collected in small quantities until the year 2000. The remaining fraction of the wastes will then be stored in another facility. Central Waste Complex (CWC) is currently proposed for that residual waste storage; however, other options may also be available.

  4. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    SciTech Connect (OSTI)

    Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

    2009-09-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  5. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    SciTech Connect (OSTI)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  6. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELIMINARY DESIGN HAZARD ANALYSIS SUPPLEMENT 1

    SciTech Connect (OSTI)

    FRANZ GR; MEICHLE RH

    2011-07-18

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  7. Results of Inspections of Operation of the ORNL Mock Feed/Withdrawal System

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SciTech Connect Search Results Conference: Results of Inspections of Operation of the ORNL Mock Feed/Withdrawal System Citation Details In-Document Search Title: Results of Inspections of Operation of the ORNL Mock Feed/Withdrawal System Remote monitoring of process activities is one tool under consideration by the International Atomic Energy Agency (IAEA) to handle increasing demands for conducting verification inspections at safeguarded facilities. The

  8. Integrated system checkout report

    SciTech Connect (OSTI)

    Not Available

    1991-08-14

    The planning and preparation phase of the Integrated Systems Checkout Program (ISCP) was conducted from October 1989 to July 1991. A copy of the ISCP, DOE-WIPP 90--002, is included in this report as an appendix. The final phase of the Checkout was conducted from July 10, 1991, to July 23, 1991. This phase exercised all the procedures and equipment required to receive, emplace, and retrieve contact handled transuranium (CH TRU) waste filled dry bins. In addition, abnormal events were introduced to simulate various equipment failures, loose surface radioactive contamination events, and personnel injury. This report provides a detailed summary of each days activities during this period. Qualification of personnel to safely conduct the tasks identified in the procedures and the abnormal events were verified by observers familiar with the Bin-Scale CH TRU Waste Test requirements. These observers were members of the staffs of Westinghouse WID Engineering, QA, Training, Health Physics, Safety, and SNL. Observers representing a number of DOE departments, the state of new Mexico, and the Defense Nuclear Facilities Safety Board observed those Checkout activities conducted during the period from July 17, 1991, to July 23, 1991. Observer comments described in this report are those obtained from the staff member observers. 1 figs., 1 tab.

  9. Engineering the DEEPSEP subsea boosting system

    SciTech Connect (OSTI)

    Eyre, G.P.; Day, A.; Galletti, R.; Ray, J.

    1995-12-01

    DEEPSEP is a subsea processing system that utilizes separation and conventional pumps to achieve production boosting. Following completion of a feasibility study, that showed that the system could be successfully deployed and operated in 1,000 m water depth, work has begun on the engineering of a commercial prototype for deployment at a specific subsea test site. The test site conditions are described along with some of the engineering solutions developed for some of the key aspects of the system including: Sand Handling; Production Separation; Well Testing; Instrumentation and Control; Installation and Intervention; Reliability. A pragmatic engineered approach is being adopted during the development of DEEPSEP which minimizes the use of novel solutions and equipment configurations. The ``commercial prototype`` will be engineered such that following proving tests it may be redeployed into full commercial operation.

  10. DOE Media Advisory- DOE extends public comment period on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    In response to requests from people interested in National Environmental Policy Act activities occurring at the U.S. Department of Energy’s Idaho Operations Office, the department has extended the public comment period that began September 1 on the Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site.

  11. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    1 Market Share of Major HVAC Equipment Manufacturers ($2009 Million) Air-Handling Units 1032 Cooling Towers 533 Pumps 333 Central System Terminal Boxes 192 Classroom Unit Ventilator 160 Fan Coil Units 123 Source(s): Total Market Size BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

  12. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  13. Integrated nonthermal treatment system study

    SciTech Connect (OSTI)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

  14. Advanced System for Process Engineering

    Energy Science and Technology Software Center (OSTI)

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  15. Performance and economics of a spray-dryer FGD system used with high-sulfur coal

    SciTech Connect (OSTI)

    Livengood, C.D.; Farber, P.S.

    1986-04-01

    Flue-gas desulfurization (FGD) systems based on spray drying to offer advantages over wet lime/limestone systems in a number of areas: low energy consumption, low capital cost, high reliability, and production of a dry waste that is easily handled and disposed of. Uncertainties regarding the performance and economics of such systems for control of high-sulfur-coal emissions have slowed adoption of the technology in the Midwest and East. This paper summarizes 4 years, operating and research experience with that system and describes the current research program, which includes an indepth characterization of an industrial scale dry scrubber with 3.5% sulfur coal.

  16. Review of P-scan computer-based ultrasonic inservice inspection system. Supplement 1

    SciTech Connect (OSTI)

    Harris, R.V. Jr.; Angel, L.J.

    1995-12-01

    This Supplement reviews the P-scan system, a computer-based ultrasonic system used for inservice inspection of piping and other components in nuclear power plants. The Supplement was prepared using the methodology described in detail in Appendix A of NUREG/CR-5985, and is based on one month of using the system in a laboratory. This Supplement describes and characterizes: computer system, ultrasonic components, and mechanical components; scanning, detection, digitizing, imaging, data interpretation, operator interaction, data handling, and record-keeping. It includes a general description, a review checklist, and detailed results of all tests performed.

  17. Kit systems for granulated decontamination formulations

    SciTech Connect (OSTI)

    Tucker, Mark D.

    2010-07-06

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field. The formulation can be pre-mixed and pre-packaged as a multi-part kit system, where one or more of the parts are packaged in a powdered, granulated form for ease of handling and mixing in the field.

  18. {open_quotes}Radon{close_quotes} - the system of Soviet designed regional waste management facilities

    SciTech Connect (OSTI)

    Horak, W.C.; Reisman, A.; Purvis, E.E. III

    1997-07-01

    The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30 years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities.

  19. Mobile Munitions Assessment System Field Capabilities

    SciTech Connect (OSTI)

    A. M. Snyder; D. A. Verrill; K. D. Watts

    1999-05-27

    The US has developed, stored, tested, and conducted disposal operations on various forms of chemical munitions for several decades. The remnants of these activities have resulted in the presence of suspect CWM at more than 200 sites in the US, the District of Columbia, and the US Virgin Islands. An advanced Mobile Munitions Assessment System (Phase II MMAS) has been designed, fabricated, assembled, and tested by the Idaho National Engineering and Environmental Laboratory under contract to the US Army's Project Manager for Non-Stockpile Chemical Materiel for use in the assessment and characterization of ''non-stockpile'' chemical warfare materiel (CWM). The Phase II MMAS meets the immediate need to augment response equipment currently used by the US Army with a system that includes state-of-the-art assessment equipment and advanced sensors. The Phase II MMAS will be used for response to known storage and remediation sites. This system is designed to identify the munition type; evaluate the condition of the CWM; evaluate the environmental conditions in the vicinity of the CWM; determine if fuzes, bursters, or safety and arming devices are in place; identify the chemical fill; provide other data (e.g., meteorological data) necessary for assessing the risk associated with handling, transporting, and disposing of CWM; and record the data on a dedicated computer system. The Phase II MMAS is capable of over-the-road travel and air transport to any site for conducting rigorous assessments of suspect CWM. The Phase II MMAS utilizes a specially-designed commercial motor home to provide a means to transport an interactive network of non-intrusive characterization and assessment equipment. The assessment equipment includes radiography systems, a gamma densitometer system, a Portable Isotopic Neutron Spectroscopy (PINS) system, a Secondary Ion Mass Spectroscopy (SIMS) system, air monitoring equipment (i.e., M-90s and a field ion spectroscopy system), and a phase determination equipment Command and control equipment includes a data acquisition and handling system, two meteorological stations, video equipment, and multiple communication systems. The Phase II MMAS motor home also serves an as environmentally controlled on-site command post for the MMAS operators when deployed. The data developed by the MMAS will be used to help determine the appropriate methods and safeguards necessary to transport, store, and dispose of agent-filled munitions in a safe and environmentally acceptable manner.

  20. A Case for Optimistic Coordination in HPC Storage Systems

    SciTech Connect (OSTI)

    Carns, Philip; Harms, Kevin; Kimpe, Dries; Wozniak, Justin; Ross, Robert; Ward, Lee; Curry, Matthew; Klundt, Ruth; Danielson, Geoff; Karakoyunlu, Cengiz; Chandy, John; Gropp, William D; Settlemyer, Bradley W

    2012-01-01

    High-performance computing (HPC) storage systems rely on access coordination to ensure that concurrent updates do not produce incoherent results. HPC storage systems typically employ pessimistic distributed locking to provide this functionality in cases where applications cannot perform their own coordination. This approach, however, introduces significant performance overhead and complicates fault handling. In this work we evaluate the viability of optimistic conditional storage operations as an alternative to distributed locking in HPC storage systems. We investigate design strategies and compare the two approaches in a prototype object storage system using a parallel read/modify/write benchmark. Our prototype illustrates that conditional operations can be easily integrated into distributed object storage systems and can outperform standard coordination primitives for simple update workloads. Our experiments show that conditional updates can achieve over two orders of magnitude higher performance than pessimistic locking for some parallel read/modify/write workloads.

  1. Fenestration systems as luminaries of varying candlepower distribution

    SciTech Connect (OSTI)

    Papamichael, K.

    1990-10-01

    Simulation of the performance of electric lighting systems has been successfully handled using computers, since electric lighting systems have a constant luminous output with respect to intensity and spatial distribution, usually referred to as candlepower distribution, which can be measured and used conveniently. This paper describes an approach of treating fenestration systems as luminaries of varying candlepower distribution, so that the determination of their luminous performance becomes consistent with that of electric lighting systems. The transmitted distribution through fenestration systems due to radiation from the sun, sky and ground is determined from their bidirectional transmittance and the luminance distribution of the sources of radiation. The approach is demonstrated using the experimentally determined bidirectional transmittance of a diffusive sample under the uniform, overcast and clear sky luminance distributions. 6 refs., 14 figs.

  2. Systems for detecting charged particles in object inspection

    DOE Patents [OSTI]

    Morris, Christopher L.; Makela, Mark F.

    2013-08-20

    Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, while also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  3. Potential enhancements to addressing programmatic risk in the tank waste remediation system (TWRS) program

    SciTech Connect (OSTI)

    Brothers, A.; Fassbender, L.; Bilyard, G.; Levine, L.

    1996-04-01

    Pacific Northwest National Laboratory (PNNL) conducted a Tank Waste Remediation System (TWRS) Risk Management methodology development task. The objective of this task was to develop risk management methodology focused on (1) the use of programmatic risk information in making TWRS architecture selection decisions and (2) the identification/evaluation/selection of TWRS risk-handling actions. Methods for incorporating programmatic risk/uncertainty estimates into trade studies are provided for engineers/analysts. Methods for identifying, evaluating, and selecting risk-handling actions are provided for managers. The guidance provided in this report is designed to help decision-makers make difficult judgments. Current approaches to architecture selection decisions and identification/evaluation/selection of risk-handling actions are summarized. Three categories of sources of programmatic risk (parametric, external, and organizational) are examined. Multiple analytical approaches are presented to enhance the current alternative generation and analysis (AGA) and risk-handling procedures. Appendix A describes some commercially available risk management software tools and Appendix B provides a brief introduction to quantification of risk attitudes. The report provides three levels of analysis for enhancing the AGA Procedure: (1) qualitative discussion coupled with estimated uncertainty ranges for scores in the alternatives-by-criteria matrix; (2) formal elicitation of probability distributions for the alternative scores; and (3) a formal, more structured, comprehensive risk analysis. A framework is also presented for using the AGA programmatic risk analysis results in making better decisions. The report also presents two levels of analysis for evaluation and selection of risk-handling actions: (1) qualitative analysis and judgmental rankings of alternative actions, and (2) Simple Multi-Attribute Rating Technique (SMART).

  4. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    2000-10-12

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

  5. AGING SYSTEM DESIGN DEVELOPMENT STRATEGY

    SciTech Connect (OSTI)

    J. Beesley

    2005-02-07

    This plan provides an overview, work to date, and the path forward for the design development strategy of the Aging cask for aging commercial spent nuclear fuel (CSNF) at the Yucca Mountain Project (YMP) repository site. Waste for subsurface emplacement at the repository includes US Department of Energy (DOE) high-level radioactive waste (HLW), DOE SNF, commercial fuel in dual-purpose canisters (DPCs), uncanistered bare fuel, naval fuel, and other waste types. Table 1-1 lists the types of radioactive materials that may be aged at YMP, and those materials that will not be placed in an aging cask or module. This plan presents the strategy for design development of the Aging system. The Aging system will not handle naval fuel, DOE HLW, MCOs, or DOE SNF since those materials will be delivered to the repository in a state and sequence that allows them to be placed into waste packages for emplacement. Some CSNF from nuclear reactors, especially CSNF that is thermally too hot for emplacement underground, will need to be aged at the repository.

  6. System Diagram

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Diagram System Diagram Diagram of IO architecture on Hopper Diagram of external IO services on the Hopper system Last edited: 2011-04-14 15:11:1...

  7. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on PDSF please see Eliza File Systems and Other File Systems. Below is a summary of how ATLAS uses the various systems: common In the past ATLAS used common primarily for their...

  8. System Diagram

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Diagram System Diagram Diagram of I/O architecture on Hopper Diagram of external I/O services on the Hopper system Last edited: 2016-04-29 11:35:23

  9. Computer System,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduate summer institute http:isti.lanl.gov (Educational Prog) 2016 Computer System, Cluster, and Networking Summer Institute Purpose The Computer System,...

  10. Defense High Level Waste Disposal Container System Description

    SciTech Connect (OSTI)

    2000-10-12

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials will be selected for the disposal container inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lids will be a barrier made of high-nickel alloy. The defense HLW disposal container interfaces with the emplacement drift environment and the internal waste by transferring heat from the canisters to the external environment and by protecting the canisters and their contents from damage/degradation by the external environment. The disposal container also interfaces with the canisters by limiting access of moderator and oxidizing agents to the waste. A loaded and sealed disposal container (waste package) interfaces with the Emplacement Drift System's emplacement drift waste package supports upon which the waste packages are placed. The disposal container interfaces with the Canister Transfer System, Waste Emplacement /Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement, and retrieval for the disposal container/waste package.

  11. Studies of light neutron-excess systems from bounds to continuum

    SciTech Connect (OSTI)

    Ito, Makoto; Otsu, Hideaki

    2012-10-20

    The generalized two-center cluster model (GTCM), which can handle various single particle configurations in general two center systems, is applied to the light neutron-rich system, {sup 12}Be = {alpha}+{alpha}+4N. We discuss the change of the neutrons' configuration around two {alpha}-cores as a variation of an excitation energy. We show that the excess neutrons form various chemical-bondinglike configurations around two {alpha} cores in the unbound region above the {alpha} decay threshold. The possibility of the {alpha} cluster formation in the heavier neutron-excess system, {sup 28}Ne, is also discussed.

  12. Managing steam: An engineering guide to industrial, commercial, and utility systems

    SciTech Connect (OSTI)

    Makansi, J.

    1985-01-01

    This book is a guide to steam production, utilization, handling, transport, system optimization, and condensation and recovery. This book incudes a description of how steam, condensate, and hot water are used in various industrial, commercial, institutional, and utility sectors and explains how steam is generated and distributed. Waste-heat recovery, fluidized-bed boilers, and cogeneration systems and boiler control theory are discussed. The book also describes different types of valves, valve components, regulators, steam traps, and metering devices available for managing steam and condensate and discusses maintaining steam systems for optimum service and longer life.

  13. One call systems can limit third party damage exposure

    SciTech Connect (OSTI)

    Meadows, R.C.; Sage, J.W.

    1985-10-01

    This paper describes how the Olympic Pipeline Co., in Washington, uses computers to handle more than 13,000 One Call messages annually. One call systems give contractors and the general public the ability to make one phone call and have all the utilities contacted in the general area of planned work. All the 1984 One Call messages were hand-researched and checked against system maps to determine if conflicts existed. Out of the 13,262 messages received, 12,763 were determined by a map search to be outside of the pipe line right of way. This represents, on the average, 4.4 man hours per day of clerical time spent checking the messages on the maps. Participating in a One Call system will definitely increase the work load of existing company personnel, and the system does not guarantee a company will never notified of all encroachment activity or never incur line damage as a result of encroachment.

  14. Groundwork for Universal Canister System Development

    SciTech Connect (OSTI)

    Price, Laura L.; Gross, Mike; Prouty, Jeralyn L.; Rigali, Mark J.; Craig, Brian; Han, Zenghu; Lee, John Hok; Liu, Yung; Pope, Ron; Connolly, Kevin; Feldman, Matt; Jarrell, Josh; Radulescu, Georgeta; Scaglione, John; Wells, Alan

    2015-09-01

    The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used for handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.

  15. All metal valve structure for gas systems

    DOE Patents [OSTI]

    Baker, Ray W.; Pawlak, Donald A.; Ramey, Alford J.

    1984-11-13

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  16. Computational Human Performance Modeling For Alarm System Design

    SciTech Connect (OSTI)

    Jacques Hugo

    2012-07-01

    The introduction of new technologies like adaptive automation systems and advanced alarms processing and presentation techniques in nuclear power plants is already having an impact on the safety and effectiveness of plant operations and also the role of the control room operator. This impact is expected to escalate dramatically as more and more nuclear power utilities embark on upgrade projects in order to extend the lifetime of their plants. One of the most visible impacts in control rooms will be the need to replace aging alarm systems. Because most of these alarm systems use obsolete technologies, the methods, techniques and tools that were used to design the previous generation of alarm system designs are no longer effective and need to be updated. The same applies to the need to analyze and redefine operators’ alarm handling tasks. In the past, methods for analyzing human tasks and workload have relied on crude, paper-based methods that often lacked traceability. New approaches are needed to allow analysts to model and represent the new concepts of alarm operation and human-system interaction. State-of-the-art task simulation tools are now available that offer a cost-effective and efficient method for examining the effect of operator performance in different conditions and operational scenarios. A discrete event simulation system was used by human factors researchers at the Idaho National Laboratory to develop a generic alarm handling model to examine the effect of operator performance with simulated modern alarm system. It allowed analysts to evaluate alarm generation patterns as well as critical task times and human workload predicted by the system.

  17. Thermal Systems Process and Components Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

  18. Heatpipe space power and propulsion systems

    SciTech Connect (OSTI)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1995-12-01

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: The Heatpipe Power System (HPS), which provides power only; and the Heatpipe Bimodal System (HBS), which provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, which greatly facilitates system fabrication and handling. Third, full electrically heated system testing of all modes is possible, with minimal operations required to replace the heaters with fuel and to ready the system for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single-point failures during power mode operation. Eighth, the fuel burnup rate is quite low to help ensure >10-yr system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, full ground nuclear test is not needed, and development costs will be low. One design for a low-power HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of {approximately}500 kg. The unicouple thermoelectric converters have a hot-shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program and has demonstrated an operational lifetime of decades. A core with a larger number of smaller modules (same overall size) can be used to provide up to 500 kWt to a power conversion subsystem, and a slightly larger core using a higher heatpipe to fuel ratio can provide >1 MWt.

  19. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    SciTech Connect (OSTI)

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-06-01

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building using a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. The energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.

  20. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; Bhandari, Mahabir

    2015-06-01

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. The energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  1. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Systems File Systems For a general description of the different file systems available on PDSF please see Eliza File Systems and Other File Systems. Below is a summary of how ALICE uses the various systems: /common ALICE uses /common to build the software that supports its grid-based automated production work. This software includes AliRoot, Geant, AliEn, and XRootD. /eliza6, /eliza8, /eliza17 ALICE has space on 3 elizas: 16TB on /eliza6, 6TB on /eliza8 and 11TB on /eliza17. The space on

  2. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Systems File Systems For a general description of the different file systems available on PDSF please see Eliza File Systems and Other File Systems. Below is a summary of how STAR uses the various systems: /common The STAR software is installed on /common. For 32sl44 it is under /common/star/star44 and for sl53 it is under /common/star/star53. In both cases the software consists primarily of a STAR-specific ROOT installation on which releases of the STAR libraries are built as shown on the

  3. Files systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Files systems Files systems NERSC's global home and project file systems are available on Franklin. Additionally, Franklin has over 400 TB of locally attached high-performance /scratch disk space For information on the NERSC file systems, see the link at right. Scratch File Systems Size Aggregate Peak Performance # IO Servers Interconnect File System Software Disk Array Vendor $SCRATCH 209 TB 17 GB/sec 24 Lustre DDN $SCRATCH2 209 TB 17 GB/sec 24 Lustre DDN SCRATCH and SCRATCH2 There are two

  4. Amtech Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: US-based manufacturer of capital equipment such as wafer handling automation, thermal semiconductor processing equipment, and related consumables for...

  5. Toward a Performance/Resilience Tool for Hardware/Software Co-Design of High-Performance Computing Systems

    SciTech Connect (OSTI)

    Engelmann, Christian; Naughton, III, Thomas J

    2013-01-01

    xSim is a simulation-based performance investigation toolkit that permits running high-performance computing (HPC) applications in a controlled environment with millions of concurrent execution threads, while observing application performance in a simulated extreme-scale system for hardware/software co-design. The presented work details newly developed features for xSim that permit the injection of MPI process failures, the propagation/detection/notification of such failures within the simulation, and their handling using application-level checkpoint/restart. These new capabilities enable the observation of application behavior and performance under failure within a simulated future-generation HPC system using the most common fault handling technique.

  6. Freight Shuttle System: Cross-Border Movement of Goods

    SciTech Connect (OSTI)

    2011-05-31

    The Freight Shuttle System (FSS) is designed to provide freight transportation services between those short and intermediate distance locations (within 600 miles) that are currently handling large volumes of freight traffic. Much like trucks, the FSS's transporters are autonomous: each transporter has its own propulsion and travels independently of other transporters. Inspired by railroads, each FSS transporter has steel wheels operating on a steel running surface and can carry either a standardsize freight container or an over-the-road truck trailer. However, unlike either rail or trucks, the FSS runs on an elevated, dedicated guideway to avoid the interference of other transportation systems. The objective of this report is to examine the potential viability for an alternative transportation system for trailers and containers in a multi-national, cross-border setting. The El Paso-Ciudad Juarez region serves as the environment of this analysis.

  7. System Effectiveness

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    An effective risk assessment system is needed to address the threat posed by an active or passive insider who, acting alone or in collusion, could attempt diversion or theft of nuclear material. It is critical that a nuclear facility conduct a thorough self-assessment of the material protection, control, and accountability (MPC&A) system to evaluate system effectiveness. Self-assessment involves vulnerability analysis and performance testing of the MPC&A system. The process should lead to confirmation that mitigating features of the system effectively minimize the threat, or it could lead to the conclusion that system improvements or upgrades are necessary to achieve acceptable protection against the threat. Analysis of the MPC&A system is necessary to understand the limits and vulnerabilities of the system to internal threats. Self-assessment helps the facility be prepared to respond to internal threats and reduce the risk of theft or diversion of nuclear material. MSET is a self-assessment or inspection tool utilizing probabilistic risk assessment (PRA) methodology to calculate the system effectiveness of a nuclear facility's MPC&A system. MSET analyzes the effectiveness of an MPC&A system based on defined performance metrics for MPC&A functions based on U.S. and international best practices and regulations. A facility's MC&A system can be evaluated at a point in time and reevaluated after upgrades are implemented or after other system changes occur. The total system or specific subareas within the system can be evaluated. Areas of potential performance improvement or system upgrade can be assessed to determine where the most beneficial and cost-effective improvements should be made. Analyses of risk importance factors show that sustainability is essential for optimal performance. The analyses reveal where performance degradation has the greatest detrimental impact on total system risk and where performance improvements have the greatest reduction in system risk. The risk importance factors show the amount of risk reduction achievable with potential upgrades and the amount of risk reduction actually achieved after upgrades are completed. Applying the risk assessment tool gives support to budget prioritization by showing where budget support levels must be sustained for MC&A functions most important to risk. Results of the risk assessment are also useful in supporting funding justifications for system improvements that significantly reduce system risk.

  8. Theoretical crystallography with the Advanced Visualization System

    SciTech Connect (OSTI)

    Younkin, C.R.; Thornton, E.N.; Nicholas, J.B.; Jones, D.R.; Hess, A.C.

    1993-05-01

    Space is an Application Visualization System (AVS) graphics module designed for crystallographic and molecular research. The program can handle molecules, two-dimensional periodic systems, and three-dimensional periodic systems, all referred to in the paper as models. Using several methods, the user can select atoms, groups of atoms, or entire molecules. Selections can be moved, copied, deleted, and merged. An important feature of Space is the crystallography component. The program allows the user to generate the unit cell from the asymmetric unit, manipulate the unit cell, and replicate it in three dimensions. Space includes the Buerger reduction algorithm which determines the asymmetric unit and the space group of highest symmetry of an input unit cell. Space also allows the user to display planes in the lattice based on Miller indices, and to cleave the crystal to expose the surface. The user can display important precalculated volumetric data in Space, such as electron densities and electrostatic surfaces. With a variety of methods, Space can compute the electrostatic potential of any chemical system based on input point charges.

  9. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect (OSTI)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  10. NBS/LANL racetrack microtron control system

    SciTech Connect (OSTI)

    Ayres, R.L.; Yoder, N.R.; Martin, E.R.; Trout, R.E.; Wilson, B.L.

    1985-01-01

    The distributed intelligence control system for the NBS/LANL racetrack microtron (RTM) is now nearing completion with all major subsystems implemented and tested, thus providing some operating experience with most of the control system innovations. These include a triple hierarchy of microprocessor-based control elements, consisting of a primary control station and multiple secondary and tertiary control stations; light-link coupling to a tertiary station which operates at a 100 kV potential; a common database shared by separate microprocessors for handling hardware control and operator interactions; and joy stick control of the entire system. A unique secondary station interpreter program was used to great advantage for testing and checkout of various control and monitoring subsystems. The hardware design of the control system is based on Multibus I crates containing commercial Multibus I boards and a few custom designed boards. The primary-secondary data link is a high speed, bidirectional, full-duplex, 8-bit, ''byte'' parallel link designed for this application. This link permits very fast updating of the monitored data (>5 per second) and timely response to operator control inputs at the primary station.

  11. THE ODTX SYSTEM FOR THERMAL IGNITION AND THERMAL SAFETY STUDY OF ENERGETIC MATERIALS

    SciTech Connect (OSTI)

    Hsu, P C; Hust, G; Howard, M; Maienschein, J L

    2010-03-03

    Understanding the response of energetic material to thermal event is very important for the storage and handling of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) can precisely measure times to explosion and minimum ignition temperatures of energetic materials at elevated temperatures. These measurements provide insight into the relative ease of thermal ignition and allow for the determination of kinetic parameters. The ODTX system can potentialy be a good tool to measure violence of the thermal ignition by monitoring the size of anvil cavity. Recent ODTX experimental data on various energetic materials (solid and liquids) are reported in this paper.

  12. SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS

    SciTech Connect (OSTI)

    King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

    2003-11-21

    Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

  13. Comparison of energy consumption between displacement and mixing ventilation systems for different U.S. buildings and climates

    SciTech Connect (OSTI)

    Hu, S.; Chen, Q.; Glicksman, L.R.

    1999-07-01

    A detailed computer simulation method was used to compare the energy consumption of a displacement ventilation system with that of a mixing ventilation system for three types of US buildings: a small office, a classroom, and an industrial workshop. The study examined five typical climatic regions as well as different building zones. It was found that a displacement ventilation system may use more fan energy and less chiller and boiler energy than a mixing ventilation system. The total energy consumption is slightly less using a displacement ventilation system. Both systems can use a similarly sized boiler. However, a displacement ventilation system requires a larger air-handling unit and a smaller chiller than the mixing ventilation system. The overall first costs are lower for the displacement ventilation if the system is applied for the core region of a building.

  14. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System ïŁ§ SWATS In the realm of global climate modeling, numerous variables affect the state of the atmosphere and climate. One important area is soil moisture and temperature. The ARM Program uses several types of instruments to gather soil moisture information. An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located at each of 21 extended facility sites within the CART site boundary. Each system is configured to measure soil

  15. CALUTRON SYSTEM

    DOE Patents [OSTI]

    Lawrence, E.O.

    1958-08-12

    A calutron system capable of functioning with only a portion of the separation tanks in the system operating is described. The invention is a calutron system comprssing a closed series of alternated tanks and electromagnets having a mid-yoke connecting intermediate positions of the series. dividing the series into twv-o portions, and thereby providing a closed magnetic path through either of the portions.

  16. * Systems update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    update * Edison update * NUG annual meeting * Queues and System Usage * User Survey results * Data ... - 21016 2015, Energy Sciences Network The Central ...

  17. Lessons learned on the Ground Test Accelerator control system

    SciTech Connect (OSTI)

    Kozubal, A.J.; Weiss, R.E.

    1994-09-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers` toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks to deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ``Experimental Physics and Industrial Control System`` (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects.

  18. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect (OSTI)

    Klein, Steven Karl; Day, Christy M.; Determan, John C.

    2015-09-14

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  19. Power Systems Development Facility Gasification Test Campaign TC25

    SciTech Connect (OSTI)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  20. Project Records Information System (PRIS) user`s manual. Revision 2

    SciTech Connect (OSTI)

    Schwarz, R.K.; Cline, B.E.; Smith, P.S.

    1993-10-01

    The Project Records Information System (PRIS) is an interactive system developed for the Information Services Division (ISD) of Martin Marietta Energy Systems, Inc., to perform indexing, maintenance, and retrieval of information about Engineering project record documents for which they are responsible. This PRIS User`s Manual provides instruction on the use of this system. Section 2.0 of this manual presents an overview of PRIS, describing the system`s purpose; the data that it handles; functions it performs; hardware, software, and access; and help and error functions. Section 3.0 describes the interactive menu-driven operation of PRIS. Appendixes A, B, and C contain help screens, report descriptions, and the data dictionary, respectively.

  1. A Performance Comparison of Tree and Ring Topologies in Distributed System

    SciTech Connect (OSTI)

    Min Huang

    2005-12-19

    A distributed system is a collection of computers that are connected via a communication network. Distributed systems have become commonplace due to the wide availability of low-cost, high performance computers and network devices. However, the management infrastructure often does not scale well when distributed systems get very large. Some of the considerations in building a distributed system are the choice of the network topology and the method used to construct the distributed system so as to optimize the scalability and reliability of the system, lower the cost of linking nodes together and minimize the message delay in transmission, and simplify system resource management. We have developed a new distributed management system that is able to handle the dynamic increase of system size, detect and recover the unexpected failure of system services, and manage system resources. The topologies used in the system are the tree-structured network and the ring-structured network. This thesis presents the research background, system components, design, implementation, experiment results and the conclusions of our work. The thesis is organized as follows: the research background is presented in chapter 1. Chapter 2 describes the system components, including the different node types and different connection types used in the system. In chapter 3, we describe the message types and message formats in the system. We discuss the system design and implementation in chapter 4. In chapter 5, we present the test environment and results, Finally, we conclude with a summary and describe our future work in chapter 6.

  2. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  3. A computing system for LBB considerations

    SciTech Connect (OSTI)

    Ikonen, K.; Miettinen, J.; Raiko, H.; Keskinen, R.

    1997-04-01

    A computing system has been developed at VTT Energy for making efficient leak-before-break (LBB) evaluations of piping components. The system consists of fracture mechanics and leak rate analysis modules which are linked via an interactive user interface LBBCAL. The system enables quick tentative analysis of standard geometric and loading situations by means of fracture mechanics estimation schemes such as the R6, FAD, EPRI J, Battelle, plastic limit load and moments methods. Complex situations are handled with a separate in-house made finite-element code EPFM3D which uses 20-noded isoparametric solid elements, automatic mesh generators and advanced color graphics. Analytical formulas and numerical procedures are available for leak area evaluation. A novel contribution for leak rate analysis is the CRAFLO code which is based on a nonequilibrium two-phase flow model with phase slip. Its predictions are essentially comparable with those of the well known SQUIRT2 code; additionally it provides outputs for temperature, pressure and velocity distributions in the crack depth direction. An illustrative application to a circumferentially cracked elbow indicates expectedly that a small margin relative to the saturation temperature of the coolant reduces the leak rate and is likely to influence the LBB implementation to intermediate diameter (300 mm) primary circuit piping of BWR plants.

  4. Remote System Technologies for Deactivating Hanford Hot Cells

    SciTech Connect (OSTI)

    Berlin, G.; Walton, T.

    2003-02-25

    Remote system technologies are being deployed by Fluor Hanford to help accelerate the deactivation of highly-radioactive hot cell facilities. These technologies offer improved methods for accessing difficult-to-reach spaces and performing tasks such as visual inspection, radiological characterization, decontamination, waste handling, and size reduction. This paper is focused on the application of remote systems in support of deactivation work being performed in several legacy facilities at Hanford (i.e., the 324 and 327 Buildings). These facilities were previously used for fuel fabrication, materials examination, and the development of waste treatment processes. The technologies described in this paper represent significant improvements to Hanford's baseline methods, and may offer benefits to other U.S. Department of Energy (DOE) sites and commercial operations.

  5. Electronic system

    DOE Patents [OSTI]

    Robison, G H; Dickson, J F

    1960-11-15

    An electronic system is designed for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. The system comprises separate input means electrically associated with the events under observation an electronic channel associated with each input means, including control means and indicating means; timing means adapted to apply a signal from the input means after a predetermined time to the control means to deactivate each of the channels; and means for resetting the system to its initial condition after the observation of each group of events. (D.L.C.)

  6. Integrated thermal treatment system sudy: Phase 2, Results

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  7. PR-PR: Cross-Platform Laboratory Automation System

    SciTech Connect (OSTI)

    Linshiz, G; Stawski, N; Goyal, G; Bi, CH; Poust, S; Sharma, M; Mutalik, V; Keasling, JD; Hillson, NJ

    2014-08-01

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  8. Soil Management Plan For The Potable Water System Upgrades Project

    SciTech Connect (OSTI)

    Field, S. M.

    2007-04-01

    This plan describes and applies to the handling and management of soils excavated in support of the Y-12 Potable Water Systems Upgrades (PWSU) Project. The plan is specific to the PWSU Project and is intended as a working document that provides guidance consistent with the 'Soil Management Plan for the Oak Ridge Y-12 National Security Complex' (Y/SUB/92-28B99923C-Y05) and the 'Record of Decision for Phase II Interim Remedial Actions for Contaminated Soils and Scrapyard in Upper East Fork Popular Creek, Oak Ridge, Tennessee' (DOE/OR/01-2229&D2). The purpose of this plan is to prevent and/or limit the spread of contamination when moving soil within the Y-12 complex. The major feature of the soil management plan is the decision tree. The intent of the decision tree is to provide step-by-step guidance for the handling and management of soil from excavation of soil through final disposition. The decision tree provides a framework of decisions and actions to facilitate Y-12 or subcontractor decisions on the reuse of excavated soil on site and whether excavated soil can be reused on site or managed as waste. Soil characterization results from soil sampling in support of the project are also presented.

  9. SAMPLING SYSTEM

    DOE Patents [OSTI]

    Hannaford, B.A.; Rosenberg, R.; Segaser, C.L.; Terry, C.L.

    1961-01-17

    An apparatus is given for the batch sampling of radioactive liquids such as slurries from a system by remote control, while providing shielding for protection of operating personnel from the harmful effects of radiation.

  10. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  11. The Safe Handling of Unbound Engineered Nanoparticles

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-31

    The order establishes requirements and assigns responsibilities for activities involving unbound engineered nanoparticles (UNP). Admin Chg 1, dated 2-14-13, supersedes DOE O 456.1.

  12. ETEC - Radioactive Handling Materials Facility (RMHF) Leachfield...

    Office of Environmental Management (EM)

    Environmental Indicators (EIs) Groundwater Migration Under Control? Yes Current Human Exposure Acceptable? Yes Confirmed by Lead Regulator? Yes Confirmed by Lead Regulator? Yes...

  13. Cassette for handling banknotes or the like

    DOE Patents [OSTI]

    Lundblad, Leif

    1981-08-11

    A cassette for banknotes and like valuable articles is provided with a displaceable lid (6) and locking means (10) for latching the lid of the cassette when the cassette is located outside a housing (25) in which it is intended to be placed. An operating means (8) is arranged to co-act with the locking means and with a latching element (15). The latching element is arranged to be released in dependence upon a pre-set program. A signal circuit is arranged to send a code signal to a detector circuit (23) when electrical contact elements on the cassette and the housing co-act with one another, which detector circuit, when the signal coincides with the signal program in the detector circuit, causes a signal to be sent for moving the latching means to a non-latching position.

  14. Virtual Reality for Nuclear Material Handling

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – EM’s Savannah River National Laboratory (SRNL) is applying a high-tech solution to complex and dangerous workforce training: virtual reality.

  15. REM Handling Procedures | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROPOSING A NEW STRATEGICALLY LOCATED AMERIFLUX TOWER SITE IN MISSOURI (Technical Report) | SciTech Connect REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW STRATEGICALLY LOCATED AMERIFLUX TOWER SITE IN MISSOURI Citation Details In-Document Search Title: REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW STRATEGICALLY LOCATED AMERIFLUX TOWER SITE IN MISSOURI by June 14, 2004, the MOFLUX site was fully instrumented and data

  16. The Safe Handling of Unbound Engineered Nanoparticles

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-06

    To establish requirements and assign responsibilities for the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), activities involving unbound engineered nanoparticles (UNP). Cancels DOE N 456.1. Superseded by DOE O 456.1 Admin Chg 1.

  17. The Safe Handling of Unbound Engineered Nanoparticles

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-01-05

    This Notice establishes requirements and assigns responsibilities for the Department of Energy, including the National Nuclear Security Administration, activities involving unbound engineered nanoparticles activities. DOE N 251.79 extends this Notice until 4-19-2011. Canceled by DOE O 456.1.

  18. Large-Scale Liquid Hydrogen Handling Equipment

    Broader source: Energy.gov [DOE]

    Presentation by Jerry Gillette of Argonne National Laboratory at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  19. Let the private sector handle energy conservation

    SciTech Connect (OSTI)

    Bajer, E.R.

    1982-08-23

    Mr. Bajer feels that elimination of many federal conservation programs will have no effect on the US goal of reducing oil imports because the private sector can do a better job of providing these efforts. He notes that many government programs were the result of overreaction to the 1973 oil embargo, when Congress misread the public's willingness to respond. The American people have taken the initiative, however, and have reduced their energy consumption and import rates. Mr. Bajer further notes that, according to the DOE Office of Policy, Planning and Analysis, DOE's conservation programs accounted for less than 5% of reduction of energy use per unit of GNP. He thinks that new policies will allow market forces to continue providing conservation incentives and will remove government intervention and competition with the private sector. (DCK)

  20. Method of handling radioactive alkali metal waste

    DOE Patents [OSTI]

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  1. Method of handling radioactive alkali metal waste

    DOE Patents [OSTI]

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  2. Specialty Vehicles and Material Handling Equipment

    Broader source: Energy.gov [DOE]

    This presentation by William Mitchell of Nuvera Fuel Cells was given at the Fuel Cell Meeting in April 2007.

  3. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Systems Accelerator Systems MaRIE will provide a capability to address the control of performance and production of weapons materials at the mesoscale. MaRIE fills a critical gap in length scale between the integral scale addressed by studies conducted at DARHT, U1a, NIF, and Z. CONTACT Richard Sheffield (505) 667-1237 Email Revolutionizing Microstructural Physics to Empower Nuclear Energy Realizing MaRIE's full suite of capabilities requires developing and integrating a suite of

  4. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    SciTech Connect (OSTI)

    Harto, Andang Widi

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  5. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-06-01

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  6. Systems and methods for harvesting and storing materials produced in a nuclear reactor

    DOE Patents [OSTI]

    Heinold, Mark R.; Dayal, Yogeshwar; Brittingham, Martin W.

    2016-04-05

    Systems produce desired isotopes through irradiation in nuclear reactor instrumentation tubes and deposit the same in a robust facility for immediate shipping, handling, and/or consumption. Irradiation targets are inserted and removed through inaccessible areas without plant shutdown and placed in the harvesting facility, such as a plurality of sealable and shipping-safe casks and/or canisters. Systems may connect various structures in a sealed manner to avoid release of dangerous or unwanted matter throughout the nuclear plant, and/or systems may also automatically decontaminate materials to be released. Useable casks or canisters can include plural barriers for containment that are temporarily and selectively removable with specially-configured paths inserted therein. Penetrations in the facilities may limit waste or pneumatic gas escape and allow the same to be removed from the systems without over-pressurization or leakage. Methods include processing irradiation targets through such systems and securely delivering them in such harvesting facilities.

  7. Systems Studies

    SciTech Connect (OSTI)

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.

  8. Enhancing Complex System Performance Using Discrete-Event Simulation

    SciTech Connect (OSTI)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E

    2010-01-01

    In this paper, we utilize discrete-event simulation (DES) merged with human factors analysis to provide the venue within which the separation and deconfliction of the system/human operating principles can occur. A concrete example is presented to illustrate the performance enhancement gains for an aviation cargo flow and security inspection system achieved through the development and use of a process DES. The overall performance of the system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, and total number of pallets waiting for inspection in the queue. These metrics are performance indicators of the system's ability to service current needs and respond to additional requests. We studied and analyzed different scenarios by changing various model parameters such as the number of pieces per pallet ratio, number of inspectors and cargo handling personnel, number of forklifts, number and types of detection systems, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures identified effective ways to meet inspection requirements while maintaining or reducing overall operational cost and eliminating any shipping delays associated with any proposed changes in inspection requirements. With this understanding effective operational strategies can be developed to optimally use personnel while still maintaining plant efficiency, reducing process interruptions, and holding or reducing costs.

  9. ELECTRONIC SYSTEM

    DOE Patents [OSTI]

    Robison, G.H. et al.

    1960-11-15

    An electronic system is described for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. It is comprised of separate input means electrically associated with the events under observation: an electronic channel associated with each input means including control means and indicating means; timing means associated with each of the input means and the control means and adapted to derive a signal from the input means and apply it after a predetermined time to the control means to effect deactivation of each of the channels; and means for resetting the system to its initial condition after observation of each group of events.

  10. Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You are here Home » Systems Integration Systems Integration Hawaii DREAMS of New Solar Technologies Hawaii DREAMS of New Solar Technologies Read more Plug and Play Solar PV for American Homes Plug and Play Solar PV for American Homes Read more Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Read more High PV Penetration with Energy Storage in Flagstaff, AZ High PV Penetration

  11. Miniature Videoprobe Hockey Stick Delivery System

    SciTech Connect (OSTI)

    Hale, Lester R.; McMurry, Kyle M.

    1998-06-18

    The present invention is a miniature videoprobe system having a probe termination box, a strong back, and a videoprobe housing. The videoprobe system is able to obtain images from a restricted space at least as small as 0.125 inches while producing a high quality image. The strong back has a hockey stick shape with the probe termination box connecting to the top of the handle-like portion of the hockey stick and the videoprobe housing attaching to the opposite end or nose of the hockey stick shape. The videoprobe housing has a roughly arrowhead shape with two thin steel plates sandwiching the internal components there between. The internal components are connected in series to allow for a minor dimension of the videoprobe housing of 0.110 inches. The internal components include an optics train, a CCD chip, and an electronics package. An electrical signal is transmitted from the electronics package through wiring within an internal channel of the strong back to the probe termination box. The strong back has milled into it multiple internal channels for facilitating the transfer of information, items, or devices between the probe termination box and the videoprobe housing.

  12. System for utilizing oil shale fines

    DOE Patents [OSTI]

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  13. Innovative secondary support systems for gate roads

    SciTech Connect (OSTI)

    Barczak, T.; Molinda, G.M.; Zelanko, J.C.

    1996-12-31

    With the development of the shield support, the primary requirement for successful ground control in longwall mining is to provide stable gate road and bleeder entries. Wood cribbing has been the dominant form of secondary and supplemental support. However, the cost and limited availability of timber, along with the poor performance of softwood crib supports, has forced western U.S. mines to explore the utilization of support systems other than conventional wood cribbing. The recent success of cable bolts has engendered much interest from western operators. Eastern U.S. coal operators are also now experimenting with various intrinsic and freestanding alternative support systems that provide effective ground control while reducing material handling costs and injuries. These innovative freestanding support systems include (1) {open_quotes}The Can{close_quotes} support by Burrell Mining Products International, Inc., (2) Hercules and Link-N-Lock wood cribs and Propsetter supports by Strata Products (USA) Inc., (3) Variable Yielding Crib and Power Crib supports by Mountainland Support Systems, (4) the Confined Core Crib developed by Southern Utah Fuels Corporation; and (5) the MEGA prop by MBK Hydraulik. This paper assesses design considerations and compares the performance and application of these alternative secondary support systems. Support performance in the form of load-displacement behavior is compared to conventional wood cribbing. Much of the data was developed through full-scale tests conducted by the U.S. Bureau of Mines (USBM) at the Strategic Structures Testing Laboratory in the unique Mine Roof Simulator load frame at the Pittsburgh Research Center. A summary of current mine experience with these innovative supports is also documented.

  14. Systems Engineering

    Broader source: Energy.gov [DOE]

    Project objectives: to create an interactive, physics based, systems analysis tool for geothermal energy development that will: Identify points of attack to maximize efforts and investment dollars; Identify the parameter space where geothermal energy production is physically and economically viable; Provide a platform for public education and interaction.

  15. The ACP (Advanced Computer Program) Branch bus and real-time applications of the ACP multiprocessor system

    SciTech Connect (OSTI)

    Hance, R.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Fischler, M.; Gaines, I.; Husby, D.; Nash, T.; Zmuda, T.

    1987-05-08

    The ACP Branchbus, a high speed differential bus for data movement in multiprocessing and data acquisition environments, is described. This bus was designed as the central bus in the ACP multiprocessing system. In its full implementation with 16 branches and a bus switch, it will handle data rates of 160 MByte/sec and allow reliable data transmission over inter rack distances. We also summarize applications of the ACP system in experimental data acquisition, triggering and monitoring, with special attention paid to FASTBUS environments.

  16. Engineering systems analysis of pressurized fluidized-bed-combustion power systems

    SciTech Connect (OSTI)

    Graves, R.L.; Griffin, F.P.; Lackey, M.E.

    1982-04-01

    This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

  17. NUCLEAR REACTOR FUEL SYSTEMS

    DOE Patents [OSTI]

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  18. Testing of a low-cost item monitoring system

    SciTech Connect (OSTI)

    Frank, D.J.; Cunningham, K.R.; Hoover, C.E.; Trujillo, A.A.

    1988-01-01

    Material control is an important element of any security system which seeks to address the insider threat. Sandia has developed Wireless Alarm Transmission of Container Handling (WATCH) which is a remote sensor system that provides a low-cost, convenient way of monitoring item movement. Rockwell International/Rocky Flats Plant (RFP) and Sandia have conducted a long-term evaluation of the WATCH system in an operating production facility. Testing was conducted in a large scale, remote access storage vault for Special Nuclear Materials (SNM). A total of fourteen WATCH units were placed on storage containers in the vault. A schedule was established which provided prearranged movement of monitored containers on a regular basis. The test objectives were to determine (1) the feasibility of using the WATCH system technology to implement material control concepts, (2) the system performance in an active production area, and high radiation environment, (3) the sensitivity settings required for optimum system performance, and (4) the spatial resolution of the transmitter/receiver utilized.

  19. Testing of a low-cost item monitoring system

    SciTech Connect (OSTI)

    Frank, D.J.; Cunningham, K.R.; Hoover, C.E.; Trujillo, A.A.

    1988-01-01

    Material control is an important element of any security system which seeks to address the insider threat. Sandia has developed Wireless Alarm Transmission of Container Handling (WATCH) which is a remote sensory system that provides a low-cost, convenient way of monitoring item movement. Rockwell International/Rocky Flats Plant (RFP) and Sandia have conducted a long-term evaluation of the WATCH system in an operating production facility. Testing was conducted in a large scale, remote access storage vault for Special Nuclear Materials (SNM). A total of fourteen WATCH units were placed on storage containers in the vault. A schedule was established which provided prearranged movement of monitored containers on a regular basis. The test objectives were to determine 1) the feasibility of using the WATCH system technology to implement material control concepts, 2) the system performance in an active production area, and high radiation environment, 3) the sensitivity settings required for optimum system performance, and 4) the spatial resolution of the transmitter/receiver utilized.

  20. Monitoring and Commissioning Verification Algorithms for CHP Systems

    SciTech Connect (OSTI)

    Brambley, Michael R.; Katipamula, Srinivas; Jiang, Wei

    2008-03-31

    This document provides the algorithms for CHP system performance monitoring and commissioning verification (CxV). It starts by presenting system-level and component-level performance metrics, followed by descriptions of algorithms for performance monitoring and commissioning verification, using the metric presented earlier. Verification of commissioning is accomplished essentially by comparing actual measured performance to benchmarks for performance provided by the system integrator and/or component manufacturers. The results of these comparisons are then automatically interpreted to provide conclusions regarding whether the CHP system and its components have been properly commissioned and where problems are found, guidance is provided for corrections. A discussion of uncertainty handling is then provided, which is followed by a description of how simulations models can be used to generate data for testing the algorithms. A model is described for simulating a CHP system consisting of a micro-turbine, an exhaust-gas heat recovery unit that produces hot water, a absorption chiller and a cooling tower. The process for using this model for generating data for testing the algorithms for a selected set of faults is described. The next section applies the algorithms developed to CHP laboratory and field data to illustrate their use. The report then concludes with a discussion of the need for laboratory testing of the algorithms on a physical CHP systems and identification of the recommended next steps.

  1. Integrated thermal treatment system study: Phase 1 results. Volume 1

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

    1994-07-01

    An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked.

  2. Burner systems

    DOE Patents [OSTI]

    Doherty, Brian J.

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  3. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  4. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  5. Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30

    The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

  6. Monitoring Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  7. WEC system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  8. Security system

    DOE Patents [OSTI]

    Baumann, Mark J.; Kuca, Michal; Aragon, Mona L.

    2016-02-02

    A security system includes a structure having a structural surface. The structure is sized to contain an asset therein and configured to provide a forceful breaching delay. The structure has an opening formed therein to permit predetermined access to the asset contained within the structure. The structure includes intrusion detection features within or associated with the structure that are activated in response to at least a partial breach of the structure.

  9. Gasification system

    DOE Patents [OSTI]

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  10. Gasification system

    DOE Patents [OSTI]

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  11. CONTROL SYSTEM

    DOE Patents [OSTI]

    Shannon, R.H.; Williamson, H.E.

    1962-10-30

    A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)

  12. Computer System,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System, Cluster, and Networking Summer Institute New Mexico Consortium and Los Alamos National Laboratory HOW TO APPLY Applications will be accepted JANUARY 5 - FEBRUARY 13, 2016 Computing and Information Technology undegraduate students are encouraged to apply. Must be a U.S. citizen. * Submit a current resume; * Offcial University Transcript (with spring courses posted and/or a copy of spring 2016 schedule) 3.0 GPA minimum; * One Letter of Recommendation from a Faculty Member; and * Letter of

  13. Feature test report for the Small Debris Collection and Packaging System

    SciTech Connect (OSTI)

    Brisbin, S.A.

    1995-03-17

    The Spent Nuclear Fuel Equipment Engineering group performed feature testing of the Small Debris Collection and Packaging System (SDCPS) in the 305 Cold Test Facility from January 30, 1995, to February 1, 1995. Feature testing of the Small Debris Collection and Packaging System (SDCPS) was performed for the following reasons: To assess the feasibility of using ``drop-out`` vessels to collect small debris (<2.5 cm) in MK-II fuel canisters while transferring sludge to the Weasel Pit. To evaluate system performance under conditions similar to those in the K-Basins (e.g. submerged under 4.9 meters of water and operated with long handled tools) while using a surrogate sludge mixed with debris. To determine if canister weight could be used to predict the volume of sludge and/or debris contained within the canisters during system operation.

  14. Braking system

    DOE Patents [OSTI]

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  15. NREL: Energy Systems Integration - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-level system integration New distribution scenarios such as household DC systems and residential-scale generation and storage integrated with home energy management systems. ...

  16. All-metal valve structure for gas systems

    DOE Patents [OSTI]

    Baker, R.W.; Pawlak, D.A.; Ramey, A.J.

    1982-06-10

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  17. Testing of a portable ultrahigh pressure water decontamination system (UHPWDS)

    SciTech Connect (OSTI)

    Lovell, A.; Dahlby, J.

    1996-02-01

    This report describes the tests done with a portable ultrahigh pressure water decontamination system (UHPWDS) on highly radioactively contaminated surfaces. A small unit was purchased, modified, and used for in-situ decontamination to change the waste level of the contaminated box from transuranic (TRU) waste to low- level waste (LLW). Low-level waste is less costly by as much as a factor of five or more if compared with TRU waste when handling, storage, and disposal are considered. The portable unit we tested is commercially available and requires minimal utilities for operation. We describe the UHPWDS unit itself, a procedure for its use, the results of the testing we did, and conclusions including positive and negative aspects of the UHPWDS.

  18. Refrigeration system

    SciTech Connect (OSTI)

    Pagani, R.F.; Clarke, K.J.; Avon, E.J.

    1986-11-11

    This patent describes a chamber including an expandable refrigerant system associated therewith. The system comprises reservoir containing an expandable refrigerant coolant and lead piping connecting the reservoir to conduits carrying the coolant therein. The chamber comprises top, bottom and side walls, accordingly defining an interior and an exterior to the chamber, one of the walls comprises a door affording access into the chamber, each of the walls being insulated with insulating material. At least one of the walls comprises a first layer of the insulating material extending thereover adjacent the exterior and a second layer of the insulating material extending thereover adjacent the interior. The reservoir, lead piping and conduits are disposed intermediate the first and second layers of insulating material thereby isolating them from both the interior and exterior. Heat transferring through the at least one wall is substantially absorbed by the coolant and the insulating material cooled by the coolant, before it is able to penetrate through the at least one wall, permitting a product placed in the chamber to effectively maintain or substantially maintain a selected even temperature.

  19. Teleoperated control system for underground room and pillar mining

    DOE Patents [OSTI]

    Mayercheck, William D. (New Stanton, PA); Kwitowski, August J. (Clairton, PA); Brautigam, Albert L. (Pittsburgh, PA); Mueller, Brian K. (Pittsburgh, PA)

    1992-01-01

    A teleoperated mining system is provided for remotely controlling the various machines involved with thin seam mining. A thin seam continuous miner located at a mining face includes a camera mounted thereon and a slave computer for controlling the miner and the camera. A plurality of sensors for relaying information about the miner and the face to the slave computer. A slave computer controlled ventilation sub-system which removes combustible material from the mining face. A haulage sub-system removes material mined by the continuous miner from the mining face to a collection site and is also controlled by the slave computer. A base station, which controls the supply of power and water to the continuous miner, haulage system, and ventilation systems, includes cable/hose handling module for winding or unwinding cables/hoses connected to the miner, an operator control module, and a hydraulic power and air compressor module for supplying air to the miner. An operator controlled host computer housed in the operator control module is connected to the slave computer via a two wire communications line.

  20. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  1. Power Systems Development Facility Gasification Test Campaign TC22

    SciTech Connect (OSTI)

    Southern Company Services

    2008-11-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  2. NREL: Energy Systems Integration Facility - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration Systems integration considers the relationships among electricity, thermal, and fuel systems and data and information networks to ensure optimal interoperability across the energy spectrum. The Energy Systems Integration Facility's suite of systems integration laboratories provides advanced capabilities for research, development, and demonstration of key components of future energy systems. Photo of a man and a power quality meter system in a laboratory. The Energy Systems

  3. Intelligent Transportation Systems Deployment Analysis System...

    Open Energy Info (EERE)

    Transportation Systems Deployment Analysis System AgencyCompany Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software...

  4. Power Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems; steam, water, fuel, and environmental monitoring systems; alternative energy systems; reliability, availability, and maintainability assessments; and associated...

  5. Automotive and MHE Fuel Cell System Cost Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vince Contini, Kathya Mahadevan, Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle April 16, 2013 Manufacturing Cost Analysis of Fuel Cells for Material Handling ...

  6. Chapter 8: Advancing Clean Transportation and Vehicle Systems...

    Energy Savers [EERE]

    ... practical experience with, new low temperature catalyst materials and processes for ... after-treatment devices, air-handling devices, and engine thermal management. ...

  7. Transfer system

    DOE Patents [OSTI]

    Kurosawa, Kanji; Koga, Bunichiro; Ito, Hideki; Kiriyama, Shigeru; Higuchi, Shizuo

    2003-05-20

    A transport system includes a traveling rail (1) which constitutes a transport route and a transport body (3) which is capable of traveling on the traveling rail in the longitudinal direction of the traveling rail. Flexible drive tubes (5) are arranged on the traveling rail in the longitudinal direction of the traveling rail. The transport body includes a traveling wheel (4) which is capable of rolling on the traveling rail and drive wheels (2) which are capable of rolling on the drive tubes upon receiving the rotational drive power generated by pressure of a pressure medium supplied to the drive tubes while depressing the drive tubes. The traveling rail includes a plurality of transport sections and the transport body is capable of receiving a rotational drive force from the drive tubes at every transport sections. If necessary, a transport route changeover switch which changes over the transport route can be provided between the transport sections.

  8. Remote-controlled NDA (nondestructive assay) systems for feed and product storage at an automated MOX (mixed oxide) facility

    SciTech Connect (OSTI)

    Menlove, H.O.; Augustson, R.H.; Ohtani, T.; Seya, M.; Takahashi, S.; Abedin-Zadeh, R.; Hassan, B.; Napoli, S.

    1989-01-01

    Nondestructive assay (NDA) systems have been developed for use in an automated mixed oxide (MOX) fabrication facility. Unique features have been developed for the NDA systems to accommodate robotic sample handling and remote operation. In addition, the systems have been designed to obtain International Atomic Energy Agency inspection data without the need for an inspector at the facility at the time of the measurements. The equipment is being designed to operate continuously in an unattended mode with data storage for periods of up to one month. The two systems described in this paper include a canister counter for the assay of MOX powder at the input to the facility and a capsule counter for the assay of complete liquid-metal fast breeder reactor fuel assemblies at the output of the plant. The design, performance characteristics, and authentication of the two systems will be described. The data related to reliability, precision, and stability will be presented. 5 refs., 10 figs., 4 tabs.

  9. Central vacuum system with programmable controller reduces energy costs 40%

    SciTech Connect (OSTI)

    De Silva, R.; Varnes, W.; Gaines, A.

    1985-11-01

    The B.F. Goodrich Company needed a more efficient vacuum source for the pilot plant facilities in Avon Lake, OH where new products and manufacturing procedures are developed and evaluated. Fourteen multi-stage steam jet ejector vacuum systems were installed in one building, since a number of vacuum users could be operating concurrently at different levels in the range of 15 to 150 Torr. Ejectors were normally turned on or off to provide the desired vacuum and to conserve steam. Steam is wasted, however, if all stages are on and the amount of vacuum is regulated by bleeding inert gas into the system. Water can also enter the system by kick back, if steam to the ejectors is abruptly shut off. The jet ejector vacuum systems required a steady supply of high pressure steam day and night, but fluctuating demands could create problems in the quality of vacuum obtained. Steam and maintenance costs were also significant. Goodrich decided to replace most of the steam-operated vacuum units because of the high energy requirements, and concurrently reduce hydrocarbon emissions. A major manufacturer or mechanical vacuum equipment was asked to design a vacuum system that could provide steady vacuum in the range of 10 to 250 Torr. The system had to have sufficient capacity for a number of concurrently operating processes, and handle a wide variety of hydrocarbons. The system, designed to meet these requirements and installed in June 1984, consists of a Roots-type vacuum booster with bypass valves, discharging into an intercondenser. The progammable-controlled vacuum system has reduced energy requirements by approximately 40%, and has helped in minimizing emissions. The projected pay-back for the entire system is 1 1/2 years.

  10. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  11. Scalable Distributed Automation System: Scalable Real-time Decentralized Volt/VAR Control

    SciTech Connect (OSTI)

    2012-03-01

    GENI Project: Caltech is developing a distributed automation system that allows distributed generators—solar panels, wind farms, thermal co-generation systems—to effectively manage their own power. To date, the main stumbling block for distributed automation systems has been the inability to develop software that can handle more than 100,000 distributed generators and be implemented in real time. Caltech’s software could allow millions of generators to self-manage through local sensing, computation, and communication. Taken together, localized algorithms can support certain global objectives, such as maintaining the balance of energy supply and demand, regulating voltage and frequency, and minimizing cost. An automated, grid-wide power control system would ease the integration of renewable energy sources like solar power into the grid by quickly transmitting power when it is created, eliminating the energy loss associated with the lack of renewable energy storage capacity of the grid.

  12. Systems and methods for interactive virtual reality process control and simulation

    DOE Patents [OSTI]

    Daniel, Jr., William E.; Whitney, Michael A.

    2001-01-01

    A system for visualizing, controlling and managing information includes a data analysis unit for interpreting and classifying raw data using analytical techniques. A data flow coordination unit routes data from its source to other components within the system. A data preparation unit handles the graphical preparation of the data and a data rendering unit presents the data in a three-dimensional interactive environment where the user can observe, interact with, and interpret the data. A user can view the information on various levels, from a high overall process level view, to a view illustrating linkage between variables, to view the hard data itself, or to view results of an analysis of the data. The system allows a user to monitor a physical process in real-time and further allows the user to manage and control the information in a manner not previously possible.

  13. DOE N 435.1 Contact-Handled and Remote-Handled Transuranic Waste Packaging

    Broader source: Energy.gov [DOE]

    On August 9, 2011, the Department issued a Contractor Requirements Document (CRD) for the subject Notice.

  14. Separation system

    DOE Patents [OSTI]

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  15. DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA

    SciTech Connect (OSTI)

    Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

    2009-07-12

    The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

  16. White Pine Co. Public School System Biomass Conversion Heating Project

    SciTech Connect (OSTI)

    Paul Johnson

    2005-11-01

    The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

  17. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    SciTech Connect (OSTI)

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during the first season of growth of each system. Sediment samples after the first and third years of operation indicated that copper was being bound in the sediments very rapidly after entering the treatment system. The design of the system encourages low redox and sulfide production in the sediments. The objective is to stabilize metals, including mercury, as sulfide compounds in the sediments. Costs for maintenance and operation of the systems are minimal, consisting primarily of ensuring that the pipes are not clogged and that water is flowing through the system. The treatment cost per thousand gallons is many times less than conventional wastewater treatment facilities. Life expectancy and function of the biological system is based on the life of the engineering aspects and not the wetland ecology.

  18. A survey of commercially available manipulators, end-effectors, and delivery systems for reactor decommissioning activities

    SciTech Connect (OSTI)

    Henley, D.R.; Litka, T.J.

    1996-05-01

    Numerous nuclear facilities owned by the U.S. Department of Energy (DOE) are under consideration for decommissioning. Currently, there are no standardized, automated, remote systems designed to dismantle and thereby reduce the size of activated reactor components and vessels so that they can be packaged and shipped to disposal sites. Existing dismantling systems usually consist of customized, facility-specific tooling that has been developed to dismantle a specific reactor system. Such systems have a number of drawbacks. Generally, current systems cannot be disassembled, moved, and reused. Developing and deploying the tooling for current systems is expensive and time-consuming. In addition, the amount of manual work is significant because long-handled tools must be used; as a result, personnel are exposed to excessive radiation. A standardized, automated, remote system is therefore needed to deliver the tooling necessary to dismantle nuclear facilities at different locations. Because this system would be reusable, it would produce less waste. The system would also save money because of its universal design, and it would be more reliable than current systems.

  19. Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area

    SciTech Connect (OSTI)

    Krementz, Dan; Rose, David; Dunsmuir, Mike

    2014-02-06

    The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24” diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. After reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18” in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24” in diameter and ~11 feet long from a dry transfer cask to the basin. The 18” and 24” applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with different diameters and lengths would likely be on the same order of magnitude as the Basin Modifications project. The cost of a DTS capability is affected by the number of design variations of different vendor transport and dry transfer casks to be considered for design input. Some costs would be incurred for each vendor DTS to be handled. For example, separate analyses would be needed for each dry transfer cask type such as criticality, shielding, dropping a dry transfer cask and basket, handling and auxiliary equipment, procedures, operator training, readiness assessments, and operational readiness reviews. A DTS handling capability in L-Area could serve as a backup to the Shielded Transfer System (STS) for unloading long casks and could support potential future missions such as the Idaho National Laboratory (INL) Exchange or transferring UNF from wet to dry storage.

  20. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.