National Library of Energy BETA

Sample records for handled radiological surveys

  1. radiological. survey

    National Nuclear Security Administration (NNSA)

    7%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  2. Handling and Packaging a Potentially Radiologically Contaminated...

    Office of Environmental Management (EM)

    Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is...

  3. PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT

    Office of Environmental Management (EM)

    Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do

  4. ORNL-5680 Radiological Surveys

    Office of Legacy Management (LM)

    DOVEV-0005/l (Supplement) ORNL-5680 Radiological Surveys of Properties in the Middlesex, New Jersey, Area R. W. Leggett D. L. Anderson F. F. Haywood D. J. Christian W. D. Cottrell R. W. Doane D. J. Crawford W. H. Shinpaugh E. B. Wagner T. E. Myrick W. A. Goldsmith Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A07 Microfiche ,401 I I This

  5. Handling and Packaging a Potentially Radiologically Contaminated Patient

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients.

  6. I COMPREHENSIVE RADIOLOGICAL SURVEY I

    Office of Legacy Management (LM)

    im I COMPREHENSIVE RADIOLOGICAL SURVEY I Prepared by Oak Ridge Associated Universities Prprd* OFF-SITE PROPERTY H' | Prepared for Office of Operational FORMER LAKE ONTARIO ORDNANCE WORKS SITE Safety U.S. Department LEWISTON, NEW YORK I of Energy i J.D. BERGER i Radiological Site Assessment Program Manpower Education, Research, and Training Division I l*~~~~~~ ~~~~DRAFT REPORT January 1983 I I I ------- COMPREHENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY H' FORMER LAKE ONTARIO ORDNANCE WORKS SITE

  7. radiological. survey | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    survey NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas A U.S. Department of Energy National Nuclear Security...

  8. Radiological Scoping Survey of the Scotia Depot, Scotia, NY

    SciTech Connect (OSTI)

    Bailey, E. N.

    2008-02-25

    The objectives of the radiological scoping survey were to collect adequate field data for use in evaluating the radiological condition of Scotia Depot land areas, warehouses, and support buildings.

  9. DOE, Westinghouse to Partner with NMJC To Train Radiological and Waste Handling Technicians

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Partner with NMJC To Train Radiological and Waste Handling Technicians Hobbs, NM, December 5, 2001 -- Representatives of the Waste Isolation Pilot Plant (WIPP) yesterday presented a check for $70,000 to New Mexico Junior College (NMJC) to initiate a new program to train and certify radiological and waste handling technicians. Dr. Steve McCleery, President of NMJC, accepted the check from Dr. Chuan-Fu Wu, Senior Technical Advisor for the U.S. Department of Energy's Carlsbad Field Office, and

  10. Autonomous mobile robot for radiologic surveys

    DOE Patents [OSTI]

    Dudar, Aed M.; Wagner, David G.; Teese, Gregory D.

    1994-01-01

    An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

  11. Autonomous mobile robot for radiologic surveys

    DOE Patents [OSTI]

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1994-06-28

    An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.

  12. Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY

    Office of Legacy Management (LM)

    b+^"4-- F Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 464 DAVISON AVENUE, I4AYWOOD, NEW JERSEY September 1981 Work performed as part of the REMEDIAL ACTION SURVEY AND CERTI FICATION ACTIVITIES OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY f:. J . , LIST OF FIGURES LIST OF TAELES CONTENTS Page i v INTRODUCTION. 1 SURVEY I.IETHODS. 2 SURVEY RESULTS" 2 0utdoor Survey Results 2

  13. Health and Safety Research Divlsion RESULTS OF THE RADIOLOGICAL SURVEY

    Office of Legacy Management (LM)

    u+'.nop-s' ]._"' Contpact No. tl-7405-eng-25 Health and Safety Research Divlsion RESULTS OF THE RADIOLOGICAL SURVEY AT 467 LATHAI,I STREET, MAYWOOD, NEW JERSEY September 1981 Work perfonned as part of the REMEDIAL ACTION SURVEY AND CERTIFICATION ACTIVITIES OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTI'IENT OF ENERGY CONTENTS Page i v LIST OF FIGURES LIST OF TABLES INTRODUCTION SURVEY METHODS v 1 2 2 2 3 4 5 SURVEY RESUL

  14. NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica,

    National Nuclear Security Administration (NNSA)

    Berkeley, And Oakland, CA Areas | National Nuclear Security Administration Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our

  15. radiological survey | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    survey | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  16. I RADIOLOGICAL SCOPING SURVEY OF FO,RMER MONSANTO' FACILITIES

    Office of Legacy Management (LM)

    -I a.d *4dk *-f--l- --- I. ,e-- - .- --_ -- -. ;,. -* " . I . RADIOLOGICAL SCOPING SURVEY OF FO,RMER MONSANTO' FACILITIES (Unit XII and W a rehouse) DAYTON, OHIO Report Date: 4 September 1997 Survey Dak 27 Aitgust 1991 Prepared by: Mark L. Mays, Chief Radiation Safety Branch Sponsored by: M iamisburg Environmental Matigement Reject Office Ohio FTekl Ofice U.S.. Department of Energy Conducted by: %diation Safety Branch Of&e of Environmental Management ggtb Air Base W ing U.S. Departmtnt

  17. Northern Marshall Islands radiological survey: sampling and analysis summary

    SciTech Connect (OSTI)

    Robison, W.L.; Conrado, C.L.; Eagle, R.J.; Stuart, M.L.

    1981-07-23

    A radiological survey was conducted in the Northern Marshall Islands to document reamining external gamma exposures from nuclear tests conducted at Enewetak and Bikini Atolls. An additional program was later included to obtain terrestrial and marine samples for radiological dose assessment for current or potential atoll inhabitants. This report is the first of a series summarizing the results from the terrestrial and marine surveys. The sample collection and processing procedures and the general survey methodology are discussed; a summary of the collected samples and radionuclide analyses is presented. Over 5400 samples were collected from the 12 atolls and 2 islands and prepared for analysis including 3093 soil, 961 vegetation, 153 animal, 965 fish composite samples (average of 30 fish per sample), 101 clam, 50 lagoon water, 15 cistern water, 17 groundwater, and 85 lagoon sediment samples. A complete breakdown by sample type, atoll, and island is given here. The total number of analyses by radionuclide are 8840 for /sup 241/Am, 6569 for /sup 137/Cs, 4535 for /sup 239 +240/Pu, 4431 for /sup 90/Sr, 1146 for /sup 238/Pu, 269 for /sup 241/Pu, and 114 each for /sup 239/Pu and /sup 240/Pu. A complete breakdown by sample category, atoll or island, and radionuclide is also included.

  18. Radiological survey report for the Weldon Spring Raffinate Pits site, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1984-08-01

    The Weldon Spring Site (WSS) is a US Department of Energy (DOE) surplus facility comprising the Raffinate Pits facility, the Quarry, and potentially contaminated vicinity properties. Radiological characterization of the WSS will be conducted in three phases: the Raffinate Pits facility, Quarry, and the vicinity properties. Bechtel National, Inc. (BNI) and its radiological support subcontractor, Eberline Instrument Corporation (EIC), conducted a radiological characterization survey of the Raffinate Pits during 1982 and 1983 in support of on-site construction work and a technical evaluation of site geology. The survey consisted of direct beta-gamma surface readings, near-surface gamma readings, exposure level measurements, and gamma-logs of boreholes. Soil samples were also collected from the surface, shallow boreholes, and trenches on the site. This report describes the radiological characterization of the Raffinate Pits facility, the procedures used to conduct the survey, the survey results, and their significance. 5 references, 9 figures, 8 tables.

  19. Health and Safety Research Division RESULTS FROM A RADIOLOGICAL SURVEY ON YARDEORO AVENUE,

    Office of Legacy Management (LM)

    Health and Safety Research Division RESULTS FROM A RADIOLOGICAL SURVEY ON YARDEORO AVENUE, ALBANY, AND CENTRAL AVENUE,, COLONIE, NEW YORK PROPERTIES AL013 - AL028 July 1984 Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05840R21400 _- _^." .-. ..-.- _---.--_ -... .- Fk. 3 ,=. Y)*cx gs 1 XEC @ d +I? ,%r $ g

  20. PRELIMINqRY RADIOLOGICAL SURVEY REPORT OF THE FORMER STATEN ISLAND WAREHOUSE SITE

    Office of Legacy Management (LM)

    pJ y, 22/4 PRELIMINqRY RADIOLOGICAL SURVEY REPORT OF THE FORMER STATEN ISLAND WAREHOUSE SITE (ARCHER-DANIELS MIOLANO COMPANY) AT PORT RICHMOND, NEW YORK ./ Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 . . ' October 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Former1 y Uti 1 i ted Sites-- Remedial Action Program PRELIMINARY RADIOLOGICAL SURVEY REPORT OF

  1. Limitations Influencing Interventional Radiology in Canada: Results of a National Survey by the Canadian Interventional Radiology Association (CIRA)

    SciTech Connect (OSTI)

    O'Brien, Jeremy; Baerlocher, Mark Otto Asch, Murray R.; Hayeems, Eran; Kachura, John R.; Collingwood, Peter

    2007-09-15

    Purpose. To describe the current state and limitations to interventional radiology (IR) in Canada through a large, national survey of Canadian interventional radiologists. Methods. An anonymous online survey was offered to members of the Canadian Interventional Radiology Association (CIRA). Only staff radiologists were invited to participate. Results. Seventy-five (75) responses were received from a total of 247, giving a response rate of 30%. Respondents were split approximately equally between academic centers (47%) and community practice (53%), and the majority of interventional radiologists worked in hospitals with either 200-500 (49%) or 500-1,000 (39%) beds. Procedures listed by respondents as most commonly performed in their practice included PICC line insertion (83%), angiography and stenting (65%), and percutaneous biopsy (37%). Procedures listed as not currently performed but which interventional radiologists believed would benefit their patient population included radiofrequency ablation (36%), carotid stenting (34%), and aortic stenting (21%); the majority of respondents noted that a lack of support from referring services was the main reason for not performing these procedures (56%). Impediments to increasing scope and volume of practice in Canadian IR were most commonly related to room or equipment shortage (35%), radiologist shortage (33%), and a lack of funding or administrative support (28%). Conclusion. Interventional radiology in Canada is limited by a number of factors including funding, manpower, and referral support. A concerted effort should be undertaken by individual interventional radiologists and IR organizations to increase training capacity, funding, remuneration, and public exposure to IR in order to help advance the subspecialty.

  2. Literature Survey of Crude Oil Properties Relevant to Handling and Fire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety in Transport Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  3. Radiological survey results at 14 Cliff Street, Beverly, Massachusetts (VB011)

    SciTech Connect (OSTI)

    Foley, R.D.; Carrier, R.F.

    1992-08-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at 14 Cliff Street, Beverly, Massachusetts. The survey was performed in May 1991. The purpose of the survey was to determine if uranium dust from work performed under government contract at the former Ventron facility had migrated off-site to neighboring areas. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey demonstrated no radionuclide concentrations or radiation measurements in excess of the DOE Formerly Utilized Sites Remedial Action Program guidelines.

  4. Radiological Final Status Survey of the Hammond Depot, Hammond, Indiana

    SciTech Connect (OSTI)

    T.J. Vitkus

    2008-04-07

    ORISE conducted extensive scoping, characterization, and final status surveys of land areas and structures at the DNSC’s Hammond Depot located in Hammond, Indiana in multiple phases during 2005, 2006 and 2007.

  5. RADIOLOGICAL SURVEY OF THE GUN FORGING MACHINE BUILDING ITHACA GUN COMPANY

    Office of Legacy Management (LM)

    SURVEY OF THE GUN FORGING MACHINE BUILDING ITHACA GUN COMPANY ITHACA, NEW YORK T. J. VITKUS AND J. L. PAYNE Prepared for the Office of Erivironmental Restoration U.S.' Department of Energy ORISE 95/K-1 3 RADIOLOGICAL SURVEY OF THE GUN FORGING MACHINE BUILDING ITHACA GUN COMPANY ITHACA, NEW YORK Prepared by T. J. Vi&us and J. L. Payne Environme& Survey and Site Assessment Program Envirotiental and Health Sciences Group Oak Ridge Institute for Science and Education Oak Ridge, Tennessee

  6. ORNL/RASA-84/LJ2 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT

    Office of Legacy Management (LM)

    . oo> ORNL/RASA-84/LJ2 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 61 TRUDY DRIVE (LJ002), LODI, NEW JERSEY October 1984 Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400 ORNL/RASA-84/LJ2 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 61 TRUDY

  7. ORNL/RASA-84/LJ3 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT

    Office of Legacy Management (LM)

    LJ3 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 59 TRUDY DRIVE (LJ003), LODI. NEW JERSEY October 1984 Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400 ORNL/RASA-84/LJ3 Health and Safety Research Division RESULTS OF TEE RADIOLOGICAL SURVEY AT 59 TRUDY DRIVE (LJ003), LODI,

  8. ORNL/RASA-84/LJ4 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT

    Office of Legacy Management (LM)

    LJ4 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 58 TRUDY DRIVE (LJ004), LODI, NEW JERSEY October 1984 Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400 ORNL/RASA-84/LJ4 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 58 TRUDY DRIVE (LJ004), LODI.

  9. Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)

    SciTech Connect (OSTI)

    Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

    1997-08-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of {sup 238}U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site.

  10. Radiological Survey Data for 38 Grove Avenue, Rochelle Park, l'lew Jersey

    Office of Legacy Management (LM)

    sEP 4 1984 l,lE-24 Radiological Survey Data for 38 Grove Avenue, Rochelle Park, l'lew Jersey E . L . K e l l e r , D i r e c t o r T e c h n i c a l S e r v i c e s D i v i s i o n 0ak Ridge Operations 0ffice The radiological survey data for the subject vicinity property has been reviewed by-the Divislbn of Remedial Action Proiects personnel. . Based on these data and the reasons stated ln your memorandum to DeLaney/ldhitman dated 8l?7184, we concur in the proposed remedial action at the subiect

  11. RADIOLOGICAL SURVEY OF A PORTION OF PROPERTY OWNED BY MODERN LANDFILL, INC. -

    Office of Legacy Management (LM)

    A" 917 RADIOLOGICAL SURVEY OF A PORTION OF PROPERTY OWNED BY MODERN LANDFILL, INC. - FORMER LOOW SITE Summary Report Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1981 OAK RIDGE NATIONAL LABORATORY operated by UNION. CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program CONTENTS Page LIST OF FIGURES .. .. . .. . . . . . . . ......... iii LIST OF TABLES

  12. ORNL/TM-11118 RESULTS OF THE RADIOLOGICAL SURVEY AT METPATH INCORPORATED,

    Office of Legacy Management (LM)

    TM-11118 RESULTS OF THE RADIOLOGICAL SURVEY AT METPATH INCORPORATED, 1 MALCOLM AVENUE, TETERBORO, NEW JERSEY (TJOO3) FL D. Foley L. M. Floyd, Printed in the United States of America. Available from National Technical Information Serwce U.S. Department of Commerce I 5265 Port Royal Road. Springfield, Virginia 22161 NTIS price codes-Printed Copy:A03 Microfiche A01 This report was prepared as an account of work sponsored by an 8ge"cy of the

  13. RADIOLOGICAL SURVEY AT 5823/5849 NORTH RAVENSWOOD AVEXJE CHICAGO, ILLINOIS

    Office of Legacy Management (LM)

    RADIOLOGICAL SURVEY AT 5823/5849 NORTH RAVENSWOOD AVEXJE CHICAGO, ILLINOIS Prepared by M.R. LANDIS Environmental Survey and Site Assessment Program Energy/Environment Systems Division Oak Ridge Associated Universities Oak Ridge, TN 37831-0117 Project Staff J.D. Berger R.C. Gosslee E.A. Powell G.R. Foltz M.J. Laudeman A. Wallo* C.F. Weaver Prepared for U.S. Department of Energy as part of the Formerly Utilized Sites - Remedial Action Program FINAL REPORT OCTOBER 1989 This report is based on work

  14. Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

    Broader source: Energy.gov [DOE]

    The purpose of this Model Procedure is to identify precautions and provide guidance to Medical Examiners/Coroners on the handling of a body or human remains that are potentially contaminated with...

  15. radiological survey

    National Nuclear Security Administration (NNSA)

    application of nuclear science. NNSA maintains and enhances the safety, security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing;...

  16. A survey of films for use as dosimeters in interventional radiology

    SciTech Connect (OSTI)

    Fajardo, L.C.; Geise, R.A.; Ritenour, E.R.

    1995-04-01

    Analysis of radiation doses in interventional radiological procedures that can lead to deterministic radiation effects such as erythema and epilation would assist physicians in planning patient care after exposure and in reducing doses. Photographic films used to measure skin exposure in the past are too sensitive for the high doses involved in interventional procedures. Seventeen different types of films, many of which are generally available in hospitals, were surveyed to see if any would meet the demands of interventional radiology. Sensitometric curves obtained demonstrate that most films are inappropriate for high dose procedures. Using Kodak Fine Grain Positive and Deupont duplicating films and automatic processing, doses as high as 2.8 Gy could be measured with reasonable accuracy. Similar results can be obtained by manually processing Kodak XV-2 verification film at room temperature.

  17. COT"IPREITENS IVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY P NIAGARA FALIS STORAGE SITE

    Office of Legacy Management (LM)

    COT"IPREITENS IVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY P NIAGARA FALIS STORAGE SITE LEWISTON, NEW YORK Prepared for U.S. DePartment of EnergY as part of the Formerly Utilized Sites - Remedial ActLon Program J . D . B e r g e r P r o j e c t S t a f f J. Burden* w.L. Smlth* R.D. Condra T.J. Sowell J.S . Epler* G.M. S tePhens P.Iil. Frame L.B. Taus* W . 0 . H e l t o n C . F . W e a v e r R . C . G o s s l e e B . S . Z a c h a r e k d I I Prepared bY Radiological Slte Assessoent Progran

  18. Radiological survey results at the former Bridgeport Brass Company facility, Seymour, Connecticut

    SciTech Connect (OSTI)

    Foley, R.D.; Carrier, R.F.

    1993-06-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey of the former Bridgeport Brass Company facility, Seymour, Connecticut. The survey was performed in May 1992. The purpose of the survey was to determine if the facility had become contaminated with residuals containing radioactive materials during the work performed in the Ruffert building under government contract in the 1960s. The survey included a gamma scanning over a circumscribed area around the building, and gamma and beta-gamma scanning over all indoor surfaces as well as the collection of soil and other samples for radionuclide analyses. Results of the survey demonstrated radionuclide concentrations in indoor and outdoor samples, and radiation measurements over floor and wall surfaces, in excess of the DOE Formerly Utilized Sites Remedial Action Program guidelines. Elevated uranium concentrations outdoors were limited to several small, isolated spots. Radiation measurements exceeded guidelines indoors over numerous spots and areas inside the building, mainly in Rooms 1--6 that had been used in the early government work.

  19. An aerial radiological survey of the Fernald Environmental Management Project and surrounding area, Fernald, Ohio

    SciTech Connect (OSTI)

    Phoenix, K.A.

    1997-04-01

    An aerial radiological survey was conducted from May 17--22, 1994, over a 36 square mile (93 square kilometer) area centered on the Fernald Environmental Management Project located in Fernald, Ohio. The purpose of the survey was to detect anomalous gamma radiation in the environment surrounding the plant. The survey was conducted at a nominal altitude of 150 feet (46 meters) with a line spacing of 250 feet (76 meters). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter (3.3 feet) above ground was prepared and overlaid on an aerial photograph of the area. Analysis of the data for man made sources showed five sites within the boundaries of the Fernald Environmental Management Project having elevated readings. The exposure rates outside the plant boundary were typical of naturally occurring background radiation. Soil samples and pressurized ion chamber measurements were obtained at four locations within the survey boundaries to supplement the aerial data. It was concluded that although the radionuclides identified in the high-exposure-rate areas are naturally occurring, the levels encountered are greatly enhanced due to industrial activities at the plant.

  20. Results of the independent radiological verification survey at the former Bridgeport Brass Company Facility, Seymour, Connecticut (SSC001)

    SciTech Connect (OSTI)

    Foley, R.D.; Rice, D.E.; Allred, J.F.; Brown, K.S.

    1995-03-01

    At the request of the USDOE, a team from ORNL conducted an independent radiological verification survey at the former Bridgeport Brass Company Facility, Seymour, Connecticut, from September 1992 to March 1993. Purpose of the survey was to determine whether residual levels of radioactivity inside the Ruffert Building and selected adjacent areas were rmediated to levels below DOE guidelines for FUSRAP sites. The property was contaminated with radioactive residues of {sup 238}U from uranium processing experiments conducted by Reactive Metals, Inc., from 1962 to 1964 for the Atomic Energy Commission. A previous radiological survey did not characterize the entire floor space because equipment which could not be moved at the time made it inaccessible for radiological surveys. During the remediation process, additional areas of elevated radioactivity were discovered under stationary equipment, which required additional remediation and further verification. Results of the independent radiological verification survey confirm that, with the exception of the drain system inside the building, residual uranium contamination has been remediated to levels below DOE guidelines for unrestricted release of property at FUSRAP sites inside and outside the Ruffert Building. However, certain sections of the drain system retain uranium contamination above DOE surface guideline levels. These sections of pipe are addressed in separate, referenced documentation.

  1. Radiological survey of the inactive uranium-mill tailings at Maybell, Colorado

    SciTech Connect (OSTI)

    Haywood, F.F.; Perdue, P.T.; Ellis, B.S.

    1980-03-01

    Results of a radiological survey of the inactive uranium-mill tailings near Maybell, Colorado are presented. Measurements of external gamma exposure rate at 1 m above the tailings ranged 16 to 340 ..mu..R/hr with an average value of 65 ..mu..R/hr. Radionuclide analysis of offsite soil and sediment samples, as well as above-ground gamma exposure rate measurements defined the spread of contamination around the tailings pile. This spread is greatest toward the east, in the direction of surface water runoff. Calculated concentrations of /sup 226/Ra in all of the holes drilled in the tailngs, based on gamma monitoring data, showed maximum concentrations in the range 100 to 800 pCi/g.

  2. Radiological survey of the inactive uranium-mill tailings at Rifle, Colorado

    SciTech Connect (OSTI)

    Haywood, F.F.; Jacobs, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Shinpaugh, W.H.

    1980-06-01

    Results of radiological surveys of two inactive uranium-mill sites near Rifle, Colorado, in May 1976 are presented. These sites are referred to as Old Rifle and New Rifle. The calculated /sup 226/Ra inventory of the latter site is much higher than at the older mill location. Data on above-ground measurements of gamma exposure rates, surface and near-surface concentration of /sup 226/Ra in soil and sediment samples, concentration of /sup 226/Ra in water, calculated subsurface distribution of /sup 226/Ra, and particulate radionuclide concentrations in air samples are given. The data serve to define the extent of contamination in the vicinity of the mill sites and their immediate surrounding areas with tailings particles. Results of these measurements were utilized as technical input for an engineering assessment of these two sites.

  3. Radiological survey of the inactive uranium-mill tailings at Durango, Colorado

    SciTech Connect (OSTI)

    Haywood, F.F.; Perdue, P.T.; Shinpaugh, W.H.; Ellis, B.S.; Chou, K.D.

    1980-03-01

    Results of a radiological survey of the inactive uranium-mill site at Durango, Colorado, conducted in April 1976, in cooperation with a team from Ford, Bacon and Davis Utah Inc., are presented together with descriptions of the instruments and techniques used to obtain the data. Direct above-ground gamma measurements and analysis of surface soil and sediment samples indicate movement of tailings from the piles toward Lightner Creek on the north and the Animas River on the east side of the piles. The concentration of /sup 226/Ra in the former raffinate pond area is only slightly above the background level. Two structures in Durango were found to contain high concentrations of airborne radon daughters, where tailings are known to have been utilized in construction. Near-background concentrations of radon daughters were found in a well-ventilated building close to the tailings.

  4. RADIOLOGICAL SURVEY STATION DEVELOPMENT FOR THE PIT DISASSEMBLY AND CONVERSION PROJECT

    SciTech Connect (OSTI)

    Dalmaso, M.; Gibbs, K.; Gregory, D.

    2011-05-22

    The Savannah River National Laboratory (SRNL) has developed prototype equipment to demonstrate remote surveying of Inner and Outer DOE Standard 3013 containers for fixed and transferable contamination in accordance with DOE Standard 3013 and 10 CFR 835 Appendix B. When fully developed the equipment will be part of a larger suite of equipment used to package material in accordance with DOE Standard 3013 at the Pit Disassembly and Conversion Project slated for installation at the Savannah River Site. The prototype system consists of a small six-axis industrial robot with an end effector consisting of a force sensor, vacuum gripper and a three fingered pneumatic gripper. The work cell also contains two alpha survey instruments, swipes, swipe dispenser, and other ancillary equipment. An external controller interfaces with the robot controller, survey instruments and other ancillary equipment to control the overall process. SRNL is developing automated equipment for the Pit Disassembly and Conversion (PDC) Project that is slated for the Savannah River Site (SRS). The equipment being developed is automated packaging equipment for packaging plutonium bearing materials in accordance with DOE-STD-3013-2004. The subject of this paper is the development of a prototype Radiological Survey Station (RSS). Other automated equipment being developed for the PDC includes the Bagless transfer System, Outer Can Welder, Gantry Robot System (GRS) and Leak Test Station. The purpose of the RSS is to perform a frisk and swipe of the DOE Standard 3013 Container (either inner can or outer can) to check for fixed and transferable contamination. This is required to verify that the contamination levels are within the limits specified in DOE-STD-3013-2004 and 10 CFR 835, Appendix D. The surface contamination limit for the 3013 Outer Can (OC) is 500 dpm/100 cm2 (total) and 20 dpm/100 cm2 (transferable). This paper will concentrate on the RSS developments for the 3013 OC but the system for the 3013 Inner Can (IC) is nearly identical.

  5. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    SciTech Connect (OSTI)

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs.

  6. Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations

    SciTech Connect (OSTI)

    Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

    1980-03-01

    This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

  7. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    SciTech Connect (OSTI)

    Teese, G.D.; Randall, W.J.

    1992-01-01

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended.

  8. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    SciTech Connect (OSTI)

    Teese, G.D.; Randall, W.J.

    1992-12-31

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended.

  9. Radiological Survey Tool Set for ArcGIS 8.3 and ArcPad 6.0

    SciTech Connect (OSTI)

    ROGER, COTTRELL

    2004-11-30

    The Radiological Control Operations (RCO) group at the Savannah River Site (SRS) is tasked with conducting routine surveys for the detection of radiological contaminants in the environment. The Radiological Survey Tool Set (RSTS) was developed by the Environmental & Geographic Information Systems (EGIS) group of SRS to assist RCO personnel in this survey process. The tool set consists of two major components. The first component is a custom extension for ArcGIS 8.3 that allows the user to interactively create a sampling plan prior to entering the field. Additionally, the extension allows the user to upload field-collected data to the GIS with post-processing functionality. The second component is a custom ArcPad 6.0 applet. This applet provides the user with navigational capabilities to a selected origin point with the help of Global Positioning Systems (GPS) technology, and the recording of the sample data results into a hand-held field computer via ArcPad 6.0 software.

  10. Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport.

    SciTech Connect (OSTI)

    Lord, David; Luketa, Anay; Wocken, Chad; Schlasner, Steve; Aulich, Ted; Allen, Ray; Rudeen, David Keith

    2015-03-01

    Several fiery rail accidents in 2013-2015 in the U.S. and Canada carrying crude oil produced from the Bakken region of North Dakota have raised questions at many levels on the safety of transporting this, and other types of crude oil, by rail. Sandia National Laboratories was commissioned by the U.S. Department of Energy to investigate the material properties of crude oils, and in particular the so-called "tight oils" like Bakken that comprise the majority of crude oil rail shipments in the U.S. at the current time. The current report is a literature survey of public sources of information on crude oil properties that have some bearing on the likelihood or severity of combustion events that may occur around spills associated with rail transport. The report also contains background information including a review of the notional "tight oil" field operating environment, as well a basic description of crude oils and potential combustion events in rail transport. This page intentionally blank

  11. Nearest Neighbor Averaging and its Effect on the Critical Level and Minimum Detectable Concentration for Scanning Radiological Survey Instruments that Perform Facility Release Surveys.

    SciTech Connect (OSTI)

    Fournier, Sean Donovan; Beall, Patrick S; Miller, Mark L.

    2014-08-01

    Through the SNL New Mexico Small Business Assistance (NMSBA) program, several Sandia engineers worked with the Environmental Restoration Group (ERG) Inc. to verify and validate a novel algorithm used to determine the scanning Critical Level (L c ) and Minimum Detectable Concentration (MDC) (or Minimum Detectable Areal Activity) for the 102F scanning system. Through the use of Monte Carlo statistical simulations the algorithm mathematically demonstrates accuracy in determining the L c and MDC when a nearest-neighbor averaging (NNA) technique was used. To empirically validate this approach, SNL prepared several spiked sources and ran a test with the ERG 102F instrument on a bare concrete floor known to have no radiological contamination other than background naturally occurring radioactive material (NORM). The tests conclude that the NNA technique increases the sensitivity (decreases the L c and MDC) for high-density data maps that are obtained by scanning radiological survey instruments.

  12. Informed Consent for Interventional Radiology Procedures: A Survey Detailing Current European Practice

    SciTech Connect (OSTI)

    O'Dwyer, H.M.; Lyon, S.M.; Fotheringham, T.; Lee, M.J.

    2003-09-15

    Purpose: Official recommendations for obtaining informed consent for interventional radiology procedures are that the patient gives their consent to the operator more than 24 hr prior to the procedure. This has significant implications for interventional radiology practice. The purpose of this study was to identify the proportion of European interventional radiologists who conform to these guidelines. Methods: A questionnaire was designed consisting of 12 questions on current working practice and opinions regarding informed consent. These questions related to where, when and by whom consent was obtained from the patient. Questions also related to the use of formal consent forms and written patient information leaflets. Respondents were asked whether they felt patients received adequate explanation regarding indications for intervention,the procedure, alternative treatment options and complications. The questionnaire was distributed to 786 European interventional radiologists who were members of interventional societies. The anonymous replies were then entered into a database and analyzed. Results: Two hundred and fifty-four (32.3%) questionnaires were returned. Institutions were classified as academic (56.7%),non-academic (40.5%) or private (2.8%). Depending on the procedure,in a significant proportion of patients consent was obtained in the outpatient department (22%), on the ward (65%) and in the radiology day case ward (25%), but in over half (56%) of patients consent or re-consent was obtained in the interventional suite. Fifty percent of respondents indicated that they obtain consent more than 24 hr before some procedures, in 42.9% consent is obtained on the morning of the procedure and 48.8% indicated that in some patients consent is obtained immediately before the procedure. We found that junior medical staff obtained consent in 58% of cases. Eighty-two percent of respondents do not use specific consent forms and 61% have patient information leaflets. The majority of respondents were satisfied with their level of explanation regarding indications for treatment (69.3%) and the procedure (78.7%). Fifty-nine percent felt patients understood alternative treatment options. Only 37.8% of radiologists document possible complications in the patient's chart. Comments from respondents indicated that there is insufficient time for radiologists to obtain consent in all patients. Suggestions to improve current local policies included developing the role of radiology nursing staff and the use of radiology outpatient clinics. Conclusions: More than 50% of respondents are unhappy with their policies for obtaining informed consent. Interventional societies have a role to play in advocating formal consent guidelines.

  13. An Aerial Radiological survey of the Alvin W. Vogtle Nuclear Plant and surrounding area, Waynesboro, Georgia: Date of survey: August--September 1988

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    An Aerial Radiological Survey was conducted during the period of August 24 to September 14, 1988 over an area of approximately 310 square kilometers (120 square miles) surrounding the Alvin W. Vogtle Nuclear Plant. The Vogtle Nuclear Plant is located near Augusta, Georgia, along the Savannah River and adjacent to the Savannah River Site (SRS). Several anomalous areas were identified in the portion of the survey extending into the SRS perimeter. The dominant isotopes found in these areas were cesium-137 and cobalt-60. All of these man-made anomalies identified by the aerial measurements were attributed to SRS processing. For the remainder of the survey area, the inferred radiation exposure rates generally varied from 6 to 10 microroentgens per hour ({mu}R/h), which was found to be due to naturally occurring uranium, thorium, and radioactive potassium gamma emitters. The reported exposure rate values included an estimated cosmic ray contribution of 3.6 {mu}R/h. Soils samples and pressurized ion chamber measurements were obtained at three locations within the survey boundaries to support the aerial data. The exposure rate values obtained from these groundbased measurements were in agreement with the corresponding inferred aerial values. 6 refs., 13 figs., 4 tabs.

  14. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    SciTech Connect (OSTI)

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

  15. Radiological survey of Latty Avenue in the vicinity of the former Cotter site, Hazelwood/Berkeley, Missouri (LM001)

    SciTech Connect (OSTI)

    Cottrell, W.D.; Carrier, R.F.

    1987-05-01

    A radiological survey was conducted over a proposed construction corridor in the vicinity of the former Cotter site at 9200 Latty Avenue. The survey included gamma exposure rates at the ground surface and at 1 m above the surface throughout the site, sampling of surface soil, sampling of subsurface soil from auger holes, gamma logging of auger holes, and sampling of subsurface water. The results of the survey demonstrated some degree of radioactive contamination in all areas of the construction corridor, extending north and south in some regions onto adjacent private properties. Redistribution of the contamination by flooding, surface runoff, and road and utility line activities was evident. The pattern of contamination ranged from widespread to isolated spots and was found to occur from near the surface to depths of approx.1.8 m. The most highly contaminated region was noted on both sides of Latty Avenue adjacent to the former Cotter site. Concentrations of /sup 230/Th in soil from that region were as high as 16,000 pCi/g.

  16. DRAFT - Design of Radiological Survey and Sampling to Support Title Transfer or Lease of Property on the Department of Energy Oak Ridge Reservation

    SciTech Connect (OSTI)

    Cusick L.T.

    2002-09-25

    The U.S. Department of Energy (DOE) owns, operates, and manages the buildings and land areas on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. As land and buildings are declared excess or underutilized, it is the intent of DOE to either transfer the title of or lease suitable property to the Community Reuse Organization of East Tennessee (CROET) or other entities for public use. It is DOE's responsibility, in coordination with the U.S. Environmental Protection Agency (EPA), Region 4, and the Tennessee Department of Environment and Conservation (TDEC), to ensure that the land, facilities, and personal property that are to have the title transferred or are to be leased are suitable for public use. Release of personal property must also meet site requirements and be approved by the DOE contractor responsible for site radiological control. The terms title transfer and lease in this document have unique meanings. Title transfer will result in release of ownership without any restriction or further control by DOE. Under lease conditions, the government retains ownership of the property along with the responsibility to oversee property utilization. This includes involvement in the lessee's health, safety, and radiological control plans and conduct of site inspections. It may also entail lease restrictions, such as limiting access to certain areas or prohibiting digging, drilling, or disturbing material under surface coatings. Survey and sampling requirements are generally more rigorous for title transfer than for lease. Because of the accelerated clean up process, there is an increasing emphasis on title transfers of facilities and land. The purpose of this document is to describe the radiological survey and sampling protocols that are being used for assessing the radiological conditions and characteristics of building and land areas on the Oak Ridge Reservation that contain space potentially available for title transfer or lease. After necessary surveys and sampling and laboratory analyses are completed, the data are analyzed and included in an Environmental Baseline Summary (EBS) report for title transfer or in a Baseline Environmental Analysis Report (BEAR) for lease. The data from the BEAR is then used in a Screening-Level Human Health Risk Assessment (SHHRA) or a risk calculation (RC) to assess the potential risks to future owners/occupants. If title is to be transferred, release criteria in the form of specific activity concentrations called Derived Concentration Guideline Levels (DCGLs) will be developed for the each property. The DCGLs are based on the risk model and are used with the data in the EBS to determine, with statistical confidence, that the release criteria for the property have been met. The goal of the survey and sampling efforts is to (1) document the baseline conditions of the property (real or personal) prior to title transfer or lease, (2) obtain enough information that an evaluation of radiological risks can be made, and (3) collect sufftcient data so that areas that contain minimal residual levels of radioactivity can be identified and, following radiological control procedures, be released from radiological control. (It should be noted that release from radiological control does not necessarily mean free release because DOE may maintain institutional control of the site after it is released from radiological control). To meet the goals of this document, a Data Quality Objective (DQO) process will be used to enhance data collection efficiency and assist with decision-making. The steps of the DQO process involve stating the problem, identifying the decision, identifying inputs to the decision, developing study boundaries, developing the decision rule, and optimizing the design. This document describes the DQOs chosen for surveys and sampling efforts performed for the purposes listed above. The previous version to this document focused on the requirements for radiological survey and sampling protocols that are be used for leasing. Because the primary focus at this time is on title transfer, this revision applies to both situations.

  17. Radiological Assessment Survey of the Vance road Facility Source Vault Building Materials, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    J. R. Morton

    2000-09-01

    From the 1950s, the Vance Road laboratory was the site of extensive nuclear medical research and involved the used of numerous radionuclides. These nuclides were stored in a source vault stored on the first floor of the facility. Nuclear medical research is no longer conducted in this facility, and the source vault was remediated in preparation for converting the area to office space and general use. The Environmental Survey and Site Assessment Program (ESSAP) of ORISE performed a radiological assessment survey of the source vault and its associated miscellaneous building materials and laboratory equipment in preparation for the conversion to general use space.

  18. An aerial radiological survey of the Tonopah Test Range including Clean Slate 1,2,3, Roller Coaster, decontamination area, Cactus Springs Ranch target areas. Central Nevada

    SciTech Connect (OSTI)

    Proctor, A.E.; Hendricks, T.J.

    1995-08-01

    An aerial radiological survey was conducted of major sections of the Tonopah Test Range (TTR) in central Nevada from August through October 1993. The survey consisted of aerial measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. The initial purpose of the survey was to locate depleted uranium (detecting {sup 238}U) from projectiles which had impacted on the TTR. The examination of areas near Cactus Springs Ranch (located near the western boundary of the TTR) and an animal burial area near the Double Track site were secondary objectives. When more widespread than expected {sup 241}Am contamination was found around the Clean Slates sites, the survey was expanded to cover the area surrounding the Clean Slates and also the Double Track site. Results are reported as radiation isopleths superimposed on aerial photographs of the area.

  19. A Radiological Survey Approach to Use Prior to Decommissioning: Results from a Technology Scanning and Assessment Project Focused on the Chornobyl NPP

    SciTech Connect (OSTI)

    Milchikov, A.; Hund, G.; Davidko, M.

    1999-10-20

    The primary objectives of this project are to learn how to plan and execute the Technology Scanning and Assessment (TSA) approach by conducting a project and to be able to provide the approach as a capability to the Chernobyl Nuclear Power Plant (ChNPP) and potentially elsewhere. A secondary objective is to learn specifics about decommissioning and in particular about radiological surveying to be performed prior to decommissioning to help ChNPP decision makers. TSA is a multi-faceted capability that monitors and analyzes scientific, technical, regulatory, and business factors and trends for decision makers and company leaders. It is a management tool where information is systematically gathered, analyzed, and used in business planning and decision making. It helps managers by organizing the flow of critical information and provides managers with information they can act upon. The focus of this TSA project is on radiological surveying with the target being ChNPP's Unit 1. This reactor was stopped on November 30, 1996. At this time, Ukraine failed to have a regulatory basis to provide guidelines for nuclear site decommissioning. This situation has not changed as of today. A number of documents have been prepared to become a basis for a combined study of the ChNPP Unit 1 from the engineering and radiological perspectives. The results of such a study are expected to be used when a detailed decommissioning plan is created.

  20. Radiological Contamination Control Training for Laboratory Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of tools, equipment, or workers. 2. Not wearing gloves, or ... radiological work and informing the worker of the ... special survey techniques or by review of process knowledge. ...

  1. Medical Examiner/Coroner on the Handling of a Body/Human Remains...

    Office of Environmental Management (EM)

    Medical ExaminerCoroner on the Handling of a BodyHuman Remains that are Potentially Radiologically Contaminated Medical ExaminerCoroner on the Handling of a BodyHuman Remains...

  2. Radiological Control

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-06-16

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs.

  3. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    SciTech Connect (OSTI)

    Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike; Matthews, Brian

    2012-07-01

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

  4. Radiological Control

    Energy Savers [EERE]

    DOE-STD-1098-2008 October 2008 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ii DOE-STD-1098-2008 This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ DOE-STD-1098-2008 Radiological Control DOE Policy October 2008 iii Foreword The Department of Energy (DOE) has developed this Standard to assist

  5. Supplemental Radiological Survey Plan for the Lease of the Rooms Associated with C107 of Building K-1006 at the East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Blevins M.F.

    2010-09-01

    In 1998, a portion of Bldg. K-1006 was leased to the Community Reuse Organization of East Tennessee (CROET) as part of the reindustrialization efforts at the East Tennessee Technology Park (ETTP). The facility was subleased and is being used as an analytical laboratory. The 1998 lease did not include rooms C107, C107-A, C107-B, C107-C, and C107-D. The lease of these rooms is now desired. These rooms comprise the area to be surveyed. The building was constructed as a laboratory facility to support the gaseous diffusion uranium enrichment process. It also contains offices and administrative spaces for laboratory personnel. After the gaseous diffusion process was shut down in the mid-1980s, the building was used to provide research and development support to ETTP environmental, safety, and health programs; the Toxic Substances Control Act Incinerator; the Central Neutralization Facility; and other multi-site waste treatment activities. It also served as the chemistry laboratory for the Environmental Technology Technical Services Organization. The activities currently conducted in Bldg. K-1006 utilize a variety of analytical techniques. Some of the major techniques being employed are X-ray analysis, electron microanalysis, and spectrochemical analysis. In 1998, a portion of Bldg. K-1006 was leased to CROET as part of the reindustrialization efforts at ETTP. The facility was subleased and is being used as an analytical laboratory. The 1998 lease did not include Rooms C107, C107-A, C107-B, C107-C, and C107-D. Some demolition of furniture and decontamination activities has taken place for Rooms C 107 and C 107-B since the last radiological survey of those rooms. In March 2009, a final remedial action (RA) was performed for the Bldg. K-1006 north basement sump. The Bldg. K-1006 north basement sump is a nominal 30-in.-diameter, 36-in.-deep concrete structure in the north corner of room C107B. The building receives groundwater in-leakage that is periodically pumped to the sewer system via this float-controlled pump. Solids in the bottom of the sump consisted of an estimated 1-ft{sup 3} coarse-grained material that varied in thickness from 0 to 4 in. with no suspended fraction. The RA consisted of removing the water in the sump and then removing and sampling the solids. The solids were mixed with grout after removal and allowed to set. The solids were then disposed off-site at an approved disposal facility. The building sump will remain until the K-1006 building is demolished. The actions for the K- 1006 sump are described in the revised Phased Construction Completion Report for Exposure Unit (EU) Z2-33, which received regulatory approval in December 2009.

  6. ORISE: Characterization surveys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    objective characterization surveys to define the extent of radiological contamination at sites scheduled for decontamination and decommissioning (D&D). A fundamental...

  7. RADIOLOGICAL SURWY

    Office of Legacy Management (LM)

    111 j -,~ ' - et- -*\. _(a v - r\lfs+8 plY 45+ c iill I r\l&; p) :;!I..; .: .. :,, ,m -,< :' - ' ec-. :-*% ". _(.*- ~ . . : : : ' .. : : : .. ..:, . . . :. : : ,, :;I;:~~:; :.:.!,;;y ' 1;: .: 1. .., ; ' . :. : c :...: .;: .: RADIOLOGICAL SURWY - RADIoL~BI~L.::.~~~y:- : ::: 1 ,: . . : : :: :. :..." - OFi~:,~~~~:poRTI~~~ 0J-g ,m_ ,. :. y.;,:. ,.:I; .:. F~~~~~~as~~~ ~~~~~~~:~~~~ :co~~~:~~~~~; ;, .. ; I : : ::.. :.. :. - ,B~~Lo,.~-~~~. ..; .:I ,,,, :--:.;:I:: ;' #I Y' i ' 11".

  8. DOE handbook: Tritium handling and safe storage

    SciTech Connect (OSTI)

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

  9. Surveys

    Broader source: Energy.gov [DOE]

    Surveys can be a useful way to gauge the opinions of your readers and learn more about your website's audiences, but you'll often need approval from the Office of Management and Budget (OMB) to run...

  10. For S Radiological

    Office of Legacy Management (LM)

    ? . -. .- * -* (\/If.r.-5- .* , d- For S Radiological ' mer Bridgepo pecial Metals Adrian, Survey of the Irt Brass Company Extrusion Plant, Michigan / /f?t' . ( F. F. Haywood H. W. Dickson W. D. Cottrell W. H. Shinpaugh _ : I., _-. .I ( ._ rc/ DOE/EV-0005128 ORNL-57 13 / J. E. Burden 0. R. Stone R. W. Doane W. A. Goldsmith 4 , Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia

  11. Radiological Control

    National Nuclear Security Administration (NNSA)

    NOT MEASUREMENT SENSITIVE DOE-STD-1098-2008 October 2008 ------------------------------------- Change Notice 1 May 2009 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1098-2008 ii This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ iii DOE-STD-1098-2008 Change Notice 1: DOE-STD-1098-2008,

  12. Radiological Protection

    National Nuclear Security Administration (NNSA)

    This document is an extract from ICRP Publication 103 The 2007 Recommendations of the International Commission on Radiological Protection The full report is available for purchase and may be ordered online at: http://www.elsevier.com/wps/find/bookdescription.cws_home/713998/description#description A shorter "users edition" is available at a lower cost and may be ordered here at: http://www.elsevier.com/wps/find/bookdescription.cws_home/714371/description#description Annals of the ICRP

  13. DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads

    Office of Environmental Management (EM)

    6.1 DOE-HDBK-1141-2001 Overhead 6.1 Radiological Aspects of Uranium Objectives: * Identify the radiological properties of uranium. * Describe the toxicological properties and behavior of uranium. * Identify appropriate instrumentation, measurement techniques, and special radiological survey methods for uranium. OT 6.2 DOE-HDBK-1141-2001 Overhead 6.2 Radiological Aspects of Uranium (cont.) Objectives: * Describe personnel protection requirements, external dose control techniques, and internal

  14. Pre-Hospital Practices for Handling a Radiologically Contaminated Patient

    Broader source: Energy.gov [DOE]

    The purpose of this User’s Guide is to provide instructors with an overview of the key points covered in the video.  The Student Handout portion of this Guide is designed to assist the instructor...

  15. Radiological Control Manual

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  16. Puck Handling Glovebox

    SciTech Connect (OSTI)

    Fiscus, J.B.

    2001-01-29

    This paper discusses development and testing of the robots and specialized automation involved in handling green pucks from the cold press through placing sintered pucks on the transfer trays.

  17. Microsoft Word - Berger Radiological Conditions.doc

    Office of Legacy Management (LM)

    Dec. 2, 2009 1 Summary of Information Regarding Radiological Conditions of NFSS Vicinity Properties J. D. Berger, CHP DeNuke Contracting Services, Inc. Oak Ridge, TN The following is a summary of the information obtained from reviews of radiological survey reports, prepared by ORAU in support of the DOE Formerly Utilized Sites Remedial Action Program. These reports were obtained for review from the IVEA Program at ORAU/ORISE. A list of the reports, reviewed for this summary, is included at the

  18. Radiological Worker Training - Radiological Contamination Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... workers attending training programs unsuitable for their needs. Prerequisites A background and foundation of knowledge ... radiological work and informing the worker of the ...

  19. Radiological Survey of Contaminated Installations of Research Reactor before Dismantling in High Dose Conditions with Complex for Remote Measurements of Radioactivity - 12069

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Lemus, Alexey; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2012-07-01

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. These research reactors have a long history and many installations - nine loop facilities for experiments with different kinds of fuel. When decommissioning nuclear facilities it is necessary to measure the distribution of radioactive contamination in the rooms and at the equipment at high levels of background radiation. At 'Kurchatov Institute' some special remote control measuring systems were developed and they are applied during dismantling of the reactors MR and RFT. For a survey of high-level objects a radiometric system mounted on the robotic Brokk vehicle is used. This system has two (4? and collimated) dose meters and a high resolution video camera. Maximum measured dose rate for this system is ?8.5 Sv/h. To determine the composition of contaminants, a portable spectrometric system is used. It is a remotely controlled, collimated detector for scanning the distribution of radioactive contamination. To obtain a detailed distribution of contamination a remote-controlled gamma camera is applied. For work at highly contaminated premises with non-uniform background radiation, another camera is equipped with rotating coded mask (coded aperture imaging). As a result, a new system of instruments for remote radioactivity measurements with wide range of sensitivity and angular resolution was developed. The experience and results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. These activities are conducted under the Federal Program for Nuclear and Radiation Safety of Russia. Adaptation of complex remote measurements of radioactivity and survey of contaminated installations of research reactor before dismantling in high dose conditions has proven successful. The radioactivity measuring devices for operation at high, non-uniform dose background were tested in the field and a new data of measurement of contamination distribution in the premises and installations were obtained. (authors)

  20. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  1. Puck Handling Glovebox

    SciTech Connect (OSTI)

    Fiscus, J.B.

    2001-01-03

    The Plutonium Immobilization Project (PIP) is a joint venture between the Savannah River Site (SRS) and Lawrence Livermore National Laboratory (LLNL). This project will disposition excess weapons grade plutonium in a solid ceramic form. The plutonium, in oxide powder form, will be mixed with uranium oxide powder, ceramic precursors and binders. The combined powder mixture will be milled and possibly granulated; this processed powder will then be dispensed to a (dual action) cold press where it will be formed into green (unsintered) compacts. The compact will have the shape of a puck measuring approximately 3 1/2'' in diameter and 1 3/8'' thick. The green puck, once ejected from the press die, will be picked up by a robot and transferred into the Puck Handling Glovebox. Here the green puck will be inspected and then palletized onto furnace trays. The loaded furnace trays will be stacked/assembled and transported to the furnace where sintering operations will be performed. Finally the sintered pucks will be off loaded, inspected and transferred onto Transfer Trays which will carry the pucks from the Puck Handling Glovebox downstream to subsequent Bagless Transfer Can (BTC) operations. Due to contamination potential and high radiation rates, all Puck Handling Glovebox operations will be performed remotely using robots and specialized automation.

  2. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  3. Confirmatory Survey Report for the Quehanna Decommissioning Project, Karthaus, PA

    SciTech Connect (OSTI)

    W. C. Adams

    2007-10-30

    The survey activities consisted of visual inspections and radiological surveys including beta and gamma surface scans and surface beta activity measurements.

  4. Sectional device handling tool

    DOE Patents [OSTI]

    Candee, Clark B. (Monroeville, PA)

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  5. Radiological Assistance Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-04-10

    To establish Department of Energy (DOE) policy, procedures, authorities, and responsibilities for its Radiological Assistance Program. Canceled by DOE O 153.1.

  6. Office of Radiological Security

    National Nuclear Security Administration (NNSA)

    of physical security of radiological materials;

  7. Provision of mobile and man-portable radiation detection equipment;
  8. Regional cooperation on safeguards...

  9. Radiological Worker Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... workers attending training programs unsuitable for their needs. Prerequisites A background and foundation of knowledge ... radiological work and informing the worker of the ...

  10. Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... using these values combined with a knowledge of the drinking water sources and the ... the technician (or line supervisor) informing workers of radiological conditions such as: ...

  11. Radiological Worker Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... be maintained by the organization 17 DOE-HDBK-1130-2008 ... Radiological Worker Training Program Management References ... facilitysite- specific Skin & other organs 50 NA facility...

  12. Radiological Assessor Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Uranium transported from the lungs is deposited in the bone (22%), kidney (12%), or other tissues (12%), or excreted (54%), according to International Commission on Radiological ...

  13. Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement

    SciTech Connect (OSTI)

    Seguin, Nicole R.

    2012-07-18

    Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

  14. ORISE: Characterization surveys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization surveys An ORISE technicians performs a characterization survey The Oak Ridge Institute for Science and Education (ORISE) performs independent, objective characterization surveys to define the extent of radiological contamination at sites scheduled for decontamination and decommissioning (D&D). A fundamental aspect of all D&D projects, characterization surveys provide guidance to determine the best remediation procedures and are a cost-effective method of ensuring a site

  15. Unvented Drum Handling Plan

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    2000-08-01

    This drum-handling plan proposes a method to deal with unvented transuranic drums encountered during retrieval of drums. Finding unvented drums during retrieval activities was expected, as identified in the Transuranic (TRU) Phase I Retrieval Plan (HNF-4781). However, significant numbers of unvented drums were not expected until excavation of buried drums began. This plan represents accelerated planning for management of unvented drums. A plan is proposed that manages unvented drums differently based on three categories. The first category of drums is any that visually appear to be pressurized. These will be vented immediately, using either the Hanford Fire Department Hazardous Materials (Haz. Mat.) team, if such are encountered before the facilities' capabilities are established, or using internal capabilities, once established. To date, no drums have been retrieved that showed signs of pressurization. The second category consists of drums that contain a minimal amount of Pu isotopes. This minimal amount is typically less than 1 gram of Pu, but may be waste-stream dependent. Drums in this category are assayed to determine if they are low-level waste (LLW). LLW drums are typically disposed of without venting. Any unvented drums that assay as TRU will be staged for a future venting campaign, using appropriate safety precautions in their handling. The third category of drums is those for which records show larger amounts of Pu isotopes (typically greater than or equal to 1 gram of Pu). These are assumed to be TRU and are not assayed at this point, but are staged for a future venting campaign. Any of these drums that do not have a visible venting device will be staged awaiting venting, and will be managed under appropriate controls, including covering the drums to protect from direct solar exposure, minimizing of container movement, and placement of a barrier to restrict vehicle access. There are a number of equipment options available to perform the venting. The preferred option is to use equipment provided by a commercial vendor during the first few years of retrieval and venting. This is based on a number of reasons. First, retrieval funding is uncertain. Using a commercial vendor will allow DOE-RL to avoid the investment and maintenance costs if retrieval is not funded. Second, when funding can be identified, retrieval will likely be performed with minimal initial throughput and intermittent operations. Again, costs can be saved by using contracted vendor services only as needed, rather than supporting Hanford equipment full time. When full-scale retrieval begins and the number of drums requiring venting increases significantly, then use of the Hanford container venting system (CVS) should be considered.

  16. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    6 Radiation Survey Instrumentation Instructor's Guide 2.16-1 Course Title: Radiological Control Technician Module Title: Radiation Survey Instrumentation Module Number: 2.16 Objectives: 2.16.01 List the factors which affect an RCT's selection of a portable radiation survey instrument, and identify appropriate instruments for external radiation surveys. L 2.16.02 Identify the following features and specifications for ion chamber instruments used at your facility: a. Detector type b. Instrument

  17. Sandia National Laboratories Releases Literature Survey of Crude...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport Sandia National Laboratories Releases Literature Survey of Crude Oil Properties Relevant to ...

  18. Contact-Handled and Remote-Handled Transuranic Waste Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-09

    Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel/supersede other directives.

  19. Ergonomic material-handling device

    DOE Patents [OSTI]

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  20. Tritium handling in vacuum systems

    SciTech Connect (OSTI)

    Gill, J.T. [Monsanto Research Corp., Miamisburg, OH (United States). Mound Facility; Coffin, D.O. [Los Alamos National Lab., NM (United States)

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  21. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Instrumentation Study Guide 2.16-1 Course Title: Radiological Control Technician Module Title: Radiation Survey Instrumentation Module Number: 2.16 Objectives: 2.16.01 List the factors which affect an RCT's selection of a portable radiation survey instrument, and identify appropriate instruments for external radiation surveys. i 2.16.02 Identify the following features and specifications for ion chamber instruments used at your facility: a. Detector type b. Instrument operating range c. Detector

  22. Radiological worker training

    SciTech Connect (OSTI)

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

  1. Radiological Worker Training - Radiological Control Training for Supervisors

    Energy Savers [EERE]

    A December 2008 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at

  2. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System. This includes the primary hot cell bounded by the receiving area and WP transport exit air locks; and isolation doors at ATS, CTS, and Waste Package Remediation. The hot cell includes areas for welding, various staging, tilting, and WP transporter loading. There are associated operating galleries and equipment maintenance areas outside the hot cell. These areas operate concurrently to accommodate the DC/WP throughput rates and support system maintenance. The new DC preparation area is located in an unshielded structure. The handling equipment includes DC/WP bridge cranes, tilting stations, and horizontal transfer carts. The welding area includes DC/WP welders and staging stations. Welding operations are supported by remotely operated equipment including a bridge crane and hoists, welder jib cranes, welding turntables, and manipulators. WP transfer includes a transfer/decontamination and transporter load area. The transfer operations are supported by a remotely operated horizontal lifting system, decontamination system, decontamination and inspection manipulator, and a WP horizontal transfer cart. All handling operations are supported by a suite of fixtures including collars, yokes, lift beams, and lid attachments. Remote equipment is designed to facilitate decontamination and maintenance. Interchangeable components are provided where appropriate. Set-aside areas are included, as required, for fixtures and tooling to support off-normal and recovery operations. Semi-automatic, manual, and backup control methods support normal, maintenance, and recovery operations. The system interfaces with the ATS and CTS to provide empty and receive loaded DCs. The Waste Emplacement/Retrieval System interfaces are for loading/unloading WPs on/from the transporter. The system also interfaces with the Waste Package Remediation System for DC/WP repair. The system is housed, shielded, supported, and has ventilation boundaries by the Waste Handling Building (WHB). The system is ventilated by the WHB Ventilation System, which in conjunction with ventilation boundaries ensure that ai

  3. 324 Building Baseline Radiological Characterization

    SciTech Connect (OSTI)

    R.J. Reeder, J.C. Cooper

    2010-06-24

    This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

  4. Nevada National Security Site Radiological Control Manual

    SciTech Connect (OSTI)

    Radiological Control Managers’ Council

    2012-03-26

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

  5. Property:TwitterHandle | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Property Name TwitterHandle Property Type Text Description A Twitter handle in @Whatever format (not the full url) Pages using the property...

  6. Radiological Control Technician Training

    Energy Savers [EERE]

    7of 9 Radiological Control Technician Training Practical Training Phase II Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii Table of Contents Page Introduction.............................................................................. ......1 Development of Job Performance Measures (JPMs)............................ .....1 Conduct Job Performance Evaluation...................................................3 Qualification

  7. Radiological Control Technician Training

    Energy Savers [EERE]

    Radiological Control Technician Training Facility Practical Training Attachment Phase IV Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank DOE-HDBK-1122-2009 iii Table of Contents Page Introduction................................................................................................................................1 Facility Job Performance Measures

  8. Radiological Technician Training

    Energy Savers [EERE]

    Part 2 of 9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank. DOE-HDBK-1122-2009 iii Table of Contents Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Purpose of Qualification Standard . . . . . . . . . . . . . . . . . . . . . . . .

  9. DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide

    Office of Environmental Management (EM)

    8-1 DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Radiological Aspects of Plutonium Objectives: Upon completion of this lesson, the participant will be able to: 1. Identify the radiological properties of plutonium. 2. Identify the biological effects of plutonium. 3. Identify special controls and considerations required for plutonium operations. 4. Describe appropriate instruments, measurement techniques, and special radiological survey methods for plutonium. 5. Describe personnel

  10. Non-contact handling device

    DOE Patents [OSTI]

    Reece, Mark (Albuquerque, NM); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM)

    2007-05-15

    A pressurized fluid handling nozzle has a body with a first end and a second end, a fluid conduit and a recess at the second end. The first end is configured for connection to a pressurized fluid source. The fluid conduit has an inlet at the first end and an outlet at the recess. The nozzle uses the Bernoulli effect for lifting a part.

  11. Portable vacuum object handling device

    DOE Patents [OSTI]

    Anderson, Gordon H. (Los Alamos, NM)

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  12. Tritium Handling and Safe Storage

    Energy Savers [EERE]

    NOT MEASUREMENT SENSITIVE DOE-STD-1129-2015 September 2015 DOE STANDARD TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS DOE-STD-1129-2015 ii TABLE OF CONTENTS FOREWORD ............................................................................................................................................. 1 ACRONYMS

  13. Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-HDBK-1122-2009 (Revised 2013) Module 2.03 Counting Errors and Statistics Instructor's Material Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: (This document, Instructor's Material, is referred to as Instructor's Guide in the Program Management Guide) 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample

  14. Radiological Assessor Training

    Energy Savers [EERE]

    1-2008 August 2008 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document is available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techs\ Foreword This Handbook describes an implementation process for training as recommended in Implementation Guide G441.1-1B, Radiation Protection

  15. General Employee Radiological Training

    Office of Environmental Management (EM)

    _______ Change Notice 1 June 2009 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a

  16. General Employee Radiological Training

    Office of Environmental Management (EM)

    Not Measurement Sensitive DOE-HDBK-1131-2007 December 2007_______ Change Notice 1 Reaffirmed 2013 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The

  17. General Employee Radiological Training

    Office of Environmental Management (EM)

    DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1131-2007 iii Foreword This Handbook describes an implementation process for core training as recommended in chapter 14,

  18. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect (OSTI)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  19. Portable vacuum object handling device

    DOE Patents [OSTI]

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  20. Biomass Engineering: Transportation & Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office eere.energy.gov 1 | Bioenergy Technologies Office Content 1 | Bioenergy Technologies Office eere.energy.gov 2015 DOE Bioenergy Technologies Office (BETO) Project Peer Review March 23-27, 2015 1.2.1.3 Biomass Engineering: Transportation & Handling Mar. 27, 2015 Tyler Westover, Ph.D. Idaho National Laboratory "Why 'flowability' doesn't work and how to fix it" This presentation does not contain any proprietary, confidential, or otherwise restricted

  1. Tritium Handling and Safe Storage

    Energy Savers [EERE]

    DOE-HDBK-1129-2008 December 2008 DOE HANDBOOK TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS DOE-HDBK-1129-2008 ii This page is intentionally blank. DOE-HDBK-1129-2008 iii TABLE OF CONTENTS SECTION PAGE FOREWORD................................................................................................................................ ix ACRONYMS

  2. Tritium Handling and Safe Storage

    Energy Savers [EERE]

    SENSITIVE DOE-HDBK-1129-2007 March 2007 ____________________ DOE HANDBOOK TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1129-2007 ii This page is intentionally blank. DOE-HDBK-1129-2007 iii TABLE OF CONTENTS SECTION PAGE FOREWORD............................................................................................................................... vii

  3. ORISE: Radiological program assessment services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological program assessment services Minimizing the risk of human exposure to hazardous levels of radioactive materials requires designing a comprehensive safety program that...

  4. Overview of Radiological Dose

    Office of Environmental Management (EM)

    Upgrading RESRAD-RDD and Planning for Improvised Nuclear Device Incidents - The RESRAD-RDD&IND Charley Yu 1 , Carlos Corredor 2 , Jing-Jy Cheng 1 , Sunita Kamboj 1 , David LePoire 1 , and Paul Flood 1 1 Argonne National Laboratory, 2 U.S. Department of Energy July 16, 2014 HPS 59 th Annual Meeting, Baltimore, MD RESRAD-RDD Background  Computer model that runs on the .NET framework (4.0)  First released in 2004  Calculates operational guidelines for a radiological dispersal device

  5. Radiological Control Technician Training

    Energy Savers [EERE]

    _______ Change Notice 1 June 2009 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93

  6. Radiological Control Technician Training

    Energy Savers [EERE]

    DOE-HDBK-1122-2009 (Revised 2013) Module 2.03 Counting Errors and Statistics Student's Material Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: (This document, Study Material, is referred to as Study Guide in the Program Management Guide) 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample measurements. 2.03.02. State

  7. Radiological Control Technician Training

    Energy Savers [EERE]

    Change Notice No. 1 2009 Change Notice No. 2 2011 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP

  8. Smart Radiological Dosimeter

    DOE Patents [OSTI]

    Kosslow, William J.; Bandzuch, Gregory S.

    2004-07-20

    A radiation dosimeter providing an indication of the dose of radiation to which the radiation sensor has been exposed. The dosimeter contains features enabling the monitoring and evaluating of radiological risks so that a user can concentrate on the task at hand. The dosimeter provides an audible alarm indication that a predetermined time period has elapsed, an audible alarm indication reminding the user to check the dosimeter indication periodically, an audible alarm indicating that a predetermined accumulated dose has been prematurely reached, and an audible alarm indication prior or to reaching the 3/4 scale point.

  9. Method and apparatus for in-cell vacuuming of radiologically contaminated materials

    DOE Patents [OSTI]

    Spadaro, Peter R.; Smith, Jay E.; Speer, Elmer L.; Cecconi, Arnold L.

    1987-01-01

    A vacuum air flow operated cyclone separator arrangement for collecting, handling and packaging loose contaminated material in accordance with acceptable radiological and criticality control requirements. The vacuum air flow system includes a specially designed fail-safe prefilter installed upstream of the vacuum air flow power supply. The fail-safe prefilter provides in-cell vacuum system flow visualization and automatically reduces or shuts off the vacuum air flow in the event of an upstream prefilter failure. The system is effective for collecting and handling highly contaminated radiological waste in the form of dust, dirt, fuel element fines, metal chips and similar loose material in accordance with radiological and criticality control requirements for disposal by means of shipment and burial.

  10. Literature Survey of Crude Oil Properties Relevant to Handling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The reports do agree that the Bakken is properly classified ... it from the well site to a distribution point (or refinery). ... will more than triple by 2016 (Cattaneo, 2014). * Texas ...

  11. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Environmental Monitoring Study Guide 2.09-1 Course Title: Radiological Control Technician Module Title: Environmental Monitoring Module Number: 2.09 Objectives: 2.09.01 State the goals of an environmental monitoring program. 2.09.02 State the exposure limits to the general public as they apply to environmental monitoring. 2.09.03 Define the term "critical nuclide." 2.09.04 Define the term "critical pathway." i 2.09.05 State locations frequently surveyed for radiological

  12. Radiological Worker Computer Based Training

    Energy Science and Technology Software Center (OSTI)

    2003-02-06

    Argonne National Laboratory has developed an interactive computer based training (CBT) version of the standardized DOE Radiological Worker training program. This CD-ROM based program utilizes graphics, animation, photographs, sound and video to train users in ten topical areas: radiological fundamentals, biological effects, dose limits, ALARA, personnel monitoring, controls and postings, emergency response, contamination controls, high radiation areas, and lessons learned.

  13. Cardiovascular and Interventional Radiological Society of Europe...

    Office of Scientific and Technical Information (OSTI)

    Sant'Andrea University Hospital, Interventional Radiology Unit (Italy) "Sacro Cuore" Catholic University, Radiology Department (Italy) Publication Date: 2013-11-06 OSTI Identifier: ...

  14. ORISE Resources: Radiological and Nuclear Terrorism: Medical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to mass casualties that may involve radiological injuries. The interactive, two-hour training, titled Radiological and Nuclear Terrorism: Medical Response to Mass Casualties...

  15. Standardized radiological dose evaluations

    SciTech Connect (OSTI)

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  16. Principles on Radiological Characterization of the Unit 1 at Ignalina NPP for Decommissioning Purposes

    SciTech Connect (OSTI)

    Poskas, P.; Zujus, R.; Drumstas, G.; Poskas, R.; Simonis, V.

    2008-07-01

    There is only one nuclear power plant in Lithuania - Ignalina NPP (INPP). The INPP operated two similar units with installed capacity of 1500 MW(each). They were commissioned in 12/1983 and 08/1987, and the original design lifetime was projected out to 2010 and 2015 respectively. But the first Unit of Ignalina NPP was shutdown December 31, 2004, and second Unit will be closed down before 2010 taking into consideration substantial long-term financial assistance from the EU, G7 and other states as well as international institutions. Implementation of dismantling activities requires detailed knowledge of the radiological situation at the Unit 1. General Programme of Radiological Survey for Ignalina NPP Unit 1 based on NUREG-1575 was prepared in 2005- 2006 by Consortium led by Lithuanian Energy Institute and approved by Regulatory Bodies. It includes such main steps as historical site assessment, scoping, characterization, remedial actions/decontamination support surveys and final status surveys. General Programme of Radiological Survey defines content and principles of the surveys, and preliminary survey considerations, including identification of the contaminants, establishment of the free release levels, principles on areas classification depending on contamination potential, identification of the final survey units, criteria for selection survey instrumentation, techniques and methods etc. So, in the paper information on these principles and the content of the different stages in General Programme of Radiological Survey is presented. (authors)

  17. Experiences with decontaminating tritium-handling apparatus

    SciTech Connect (OSTI)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish{trademark}. The surface contamination, as shown by swipe surveys, was reduced from 4{times}10{sup 4}--10{sup 6} disintegrations per minute (dpm)/cm{sup 2} to 2{times}10{sup 2}--4{times}10{sup 4} dpm/cm{sup 2}. Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.

  18. Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM

    Energy Savers [EERE]

    Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites | Department of Energy Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites Pre-MARSSIM Surveys in a

  19. Early Markets: Fuel Cells for Material Handling Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment This fact sheet describes the use of hydrogen fuel cells to power material handling equipment ...

  20. Operating Experience Level 3, Losing Control: Material Handling...

    Energy Savers [EERE]

    Losing Control: Material Handling Dangers Operating Experience Level 3, Losing Control: Material Handling Dangers October 23, 2014 OE-3 2014-05: Losing Control: Material Handling...

  1. PIA - Radiological Work Permit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Work Permit PIA - Radiological Work Permit PIA - Radiological Work Permit PDF icon PIA - Radiological Work Permit More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory PIA - HSPD-12 Physical and Logical Access System

  2. 327 Building liquid waste handling options modification project plan

    SciTech Connect (OSTI)

    Ham, J.E.

    1998-03-28

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation.

  3. Estimate Radiological Dose for Animals

    Energy Science and Technology Software Center (OSTI)

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  4. Radiological cleanup of Enewetak Atoll

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    For 8 years, from 1972 until 1980, the United States planned and carried out the radiological cleanup, rehabilitation, and resettlement of Enewetak Atoll in the Marshall Islands. This documentary records, from the perspective of DOD, the background, decisions, actions, and results of this major national and international effort. The documentary is designed: First, to provide a historical document which records with accuracy this major event in the history of Enewetak Atoll, the Marshall Islands, the Trust Territory of the Pacific Islands, Micronesia, the Pacific Basin, and the United States. Second, to provide a definitive record of the radiological contamination of the Atoll. Third, to provide a detailed record of the radiological exposure of the cleanup forces themselves. Fourth, to provide a useful guide for subsequent radiological cleanup efforts elsewhere.

  5. Radiological Control Manual. Revision 0, January 1993

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  6. Radiological Protection for DOE Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-29

    Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

  7. Radiological training for tritium facilities

    SciTech Connect (OSTI)

    1996-12-01

    This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

  8. ORISE: Radiological program assessment services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological program assessment services Minimizing the risk of human exposure to hazardous levels of radioactive materials requires designing a comprehensive safety program that ensures appropriate measures are taken to protect workers and the public. As a U.S. Department of Energy (DOE) institute, the Oak Ridge Institute for Science and Education (ORISE) understands the importance of having an effective safety program in place to assure stakeholders and regulators that your radiological

  9. LANL responds to radiological incident

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL responds to radiological incident LANL responds to radiological incident Multiple tests indicate no health risks to public or employees. August 27, 2012 Aerial view of the Los Alamos Neutron Science Center(LANSCE). Aerial view of the Los Alamos Neutron Science Center (LANSCE). The contamination poses no danger to the public. The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The

  10. Radiological Monitoring Continues at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological Monitoring Continues at WIPP CARLSBAD, N.M., February 19, 2014 - Radiological control personnel continue to collect surface and underground monitoring samples at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) after an underground air monitor detected airborne radiation around 11:30 p.m. (MT) on February 14. Recent laboratory analyses by Carlsbad Environmental Monitoring and Research Center (CEMRC) found some trace amounts of americium and plutonium from a

  11. REM Handling Procedures | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REM Handling Procedures Below are recommended handling procedures for the Rare Earth Metals. Keep in mind that these procedures are intended for very high purity metals, and alternative procedures may exist or be better suited to your facilities' capabilities. Please consult with your safety officer(s) before employing any of these procedures. The procedures are grouped by element: La, Ce, Pr & Nd Sc, Y, Gd, Tb, Dy, Ho, Er, Tm and Lu Sm & Yb Eu RECOMMENDED HANDLING PROCEDURES FOR: La,

  12. Apparatus for remotely handling components

    DOE Patents [OSTI]

    Szkrybalo, Gregory A.; Griffin, Donald L.

    1994-01-01

    The inventive apparatus for remotely handling bar-like components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of the first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components.

  13. DOE standard: Radiological control

    SciTech Connect (OSTI)

    Not Available

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  14. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Instructor's Guide 2.17-1 Course Title: Radiological Control Technician Module Title: Contamination Monitoring Instrumentation Module Number: 2.17 Objectives: 2.17.01 List the factors which affects an RCT's selection of a portable contamination monitoring instrument. L 2.17.02 Describe the following features and specifications for commonly used count rate meter probes used at your site for beta/gamma and/or alpha surveys: a. Detector type b. Detector shielding and window c. Types of radiation

  15. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Study Guide 2.17-1 Course Title: Radiological Control Technician Module Title: Contamination Monitoring Instrumentation Module Number: 2.17 Objectives: 2.17.01 List the factors which affects an RCT's selection of a portable contamination monitoring instrument. i 2.17.02 Describe the following features and specifications for commonly used count rate meter probes used at your site for beta/gamma and/or alpha surveys: a. Detector type b. Detector shielding and window c. Types of radiation

  16. EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York

    Broader source: Energy.gov [DOE]

    The Naval Nuclear Propulsion Program (NNPP) intent to prepare an Environmental Assessment for a radiological work and storage building at the Knolls Atomic Power Laboratory (Kesselring Site in West Milton, New York. A new facility is needed to streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors.

  17. Radiological control manual. Revision 1

    SciTech Connect (OSTI)

    Kloepping, R.

    1996-05-01

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

  18. Sandia National Laboratories Releases Literature Survey of Crude Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Properties Relevant to Handling and Fire Safety in Transport | Department of Energy Sandia National Laboratories Releases Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport Sandia National Laboratories Releases Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport March 24, 2015 - 3:30pm Addthis Paula Gant Paula Gant Deputy Assistant Secretary, Office of Oil and Natural Gas The United States is in the midst of an

  19. Final Report - Independent Confirmatory Survey Summary and Results for the Hematite Decommissioning Project

    SciTech Connect (OSTI)

    E.N. Bailey

    2009-03-18

    The objectives of the confirmatory surveys were to provide independent contractor field data reviews and to generate independent radiological data for use by the NRC in evaluating the adequacy and accuracy of the licensee’s procedures and survey results.

  20. 2004 Biodiesel Handling and Use Guidelines (Revised)

    SciTech Connect (OSTI)

    Not Available

    2004-11-01

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It is intended to fleets and individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel.

  1. Memorandum, Reporting of Radiological Sealed Sources Transactions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Memorandum, Reporting of Radiological Sealed Sources Transactions Memorandum, Reporting of Radiological Sealed Sources Transactions December 16, 2010 The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed Sources. The data reported in accordance with DOE N 234.1 are maintained in the DOE Radiological Source Registry and Tracking (RSRT) database by the

  2. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  3. International Data on Radiological Sources

    SciTech Connect (OSTI)

    Martha Finck; Margaret Goldberg

    2010-07-01

    ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

  4. Departmental Radiological Emergency Response Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-06-27

    The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. Supersedes DOE O 5530.1A, DOE O 5530.2, DOE O 5530.3, DOE O 5530.4, and DOE O 5530.5.

  5. Mobile autonomous robotic apparatus for radiologic characterization

    DOE Patents [OSTI]

    Dudar, Aed M. (Dearborn, MI); Ward, Clyde R. (Aiken, SC); Jones, Joel D. (Aiken, SC); Mallet, William R. (Cowichan Bay, CA); Harpring, Larry J. (North Augusta, SC); Collins, Montenius X. (Blackville, SC); Anderson, Erin K. (Pleasanton, CA)

    1999-01-01

    A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

  6. Mobile autonomous robotic apparatus for radiologic characterization

    DOE Patents [OSTI]

    Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

    1999-08-10

    A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

  7. Storage/Handling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage/Handling Storage/Handling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management Business Center RETIREMENT OF RECORDS: 1. The Program Office originates the Records Transmittal and Receipt Form SF-135 (PDF, 107KB), and sends it to IM-23 at doerha@hq.doe.gov for approval. 2. IM-23 reviews the SF-135 for completeness/correctness and coordinates with the originating office by email if more

  8. TEPP Training - Modular Emergency Response Radiological Transportation

    Energy Savers [EERE]

    Training (MERRTT) | Department of Energy Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge

  9. Model Recovery Procedure for Response to a Radiological Transportation...

    Office of Environmental Management (EM)

    for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation Emergency...

  10. Radiological characterization of a vitrification facility for decommissioning

    SciTech Connect (OSTI)

    Asou, M. [CEA/DEN/VALRHO/UMODD, 30207 Bagnols-sur-Ceze Cedex (France); Le Goaller, C. [CEA/DEN/VALRHO/DDCO, 30207 Bagnols-sur-Ceze Cedex (France); Martin, F. [AREVA NC DAP/MOP (France)

    2007-07-01

    Cleanup operations in the Marcoule Vitrification Facility (AVM) will start in 2007. This plant includes 20 highly irradiating storage tanks for high-level liquid waste before vitrification. The objective of the cleanup phase is to significantly decrease the amount of highly radioactive waste resulting from dismantling. A comprehensive radiological survey of the plant was initiated in 2000. Most of the tanks were characterized using advanced technologies: gamma imaging, CdZnTe gamma spectroscopy, dose rate measurements and 3D calculations codes. At the same time, inspections were conducted to develop 3D geometrical models of the tanks. The techniques used and the main results obtained are described as well as lessons learned from these operations. The rinsing program was defined in 2006. Decontamination operations are expected to begin in 2007, and radiological surveys will be followed up to monitor the efficiency of the decontamination process. Specific rinsing of all tanks and equipment will be carried out from 2007 to 2009. Concentrated liquid solutions will be vitrified between 2008 and 2010; the decommissioning of AVM will be delayed until the end of 2010. This strategy aims at producing less than 5% 'B' type (long-lived intermediate-level) waste from the decommissioning operations, as well as reducing the dose rate and risks by simplified remote dismantling. The paper reviews the main options selected for decontamination, as well as the radiological characterization strategy. Some cost-related aspects will also be analyzed. (authors)

  11. Biodiesel Handling and Use Guide | Open Energy Information

    Open Energy Info (EERE)

    Handling and Use Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biodiesel Handling and Use Guide AgencyCompany Organization: National Renewable Energy...

  12. V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability August...

  13. Contact-Handled Transuranic Waste Authorized Methods for Payload...

    Office of Environmental Management (EM)

    Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH TRAMPAC) Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH TRAMPAC) This...

  14. Central Characterization Program (CCP) Contact-Handled (CH) TRU...

    Office of Environmental Management (EM)

    Contact-Handled (CH) TRU Waste Certification and Waste Information SystemWaste Data System (WWISWDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU...

  15. Hydrogen Fuel for Material Handling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel for Material Handling Hydrogen Fuel for Material Handling Presented by Tom Joseph at the National Hydrogen Assocation Conference and Hydrogen Expo PDF icon...

  16. NNSA to Conduct Aerial Radiological Surveys Over Washington,...

    National Nuclear Security Administration (NNSA)

    Washington, D.C. and Baltimore, MD Areas | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  17. Letter: Katy Trail Radiological Survey at Southeast Drainage.

    Office of Legacy Management (LM)

  18. Radiological Control Training for Supervisors

    Energy Savers [EERE]

    3-2001 August 2001 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax

  19. Understanding Mechanisms of Radiological Contamination

    SciTech Connect (OSTI)

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible loose contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  20. Automated system for handling tritiated mixed waste

    SciTech Connect (OSTI)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL`s robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans.

  1. EOSO ENERGY MEASUREMENTS GROUP THE REMOT SENSIN EG&G SURVEY REPORT LABORATO

    Office of Legacy Management (LM)

    Oe. 1-G l/ZL=q n EOSO ENERGY MEASUREMENTS GROUP THE REMOT SENSIN EG&G SURVEY REPORT LABORATO EP-F-002 Of THE UNITED STATES DECEMBER 1981 DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL SURVEY OF THE AREA SURROUNDING THE BUREAU OF MINES SITE ALBANY, OREGON DATE OF SURVEY: FEBRUARY 1980 AN AERIAL RADIOLOGICAL SURVEY OF THE BUREAU OF MINES SITE ALBANY, OREGON I I I . t I 1 I I I I I I I t PROJECT SCIENTIST: E. FEIMSTER EG&G, INC. LAS VEGAS, NEVADA 1.0 SUMMARY OF RESULTS An aerial radiological

  2. OAK RIDGE NATIONAL LABORATORY LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL

    Office of Legacy Management (LM)

    L15 ) pouiuh, _Ols~~~t~~ ^ORNL/RASA-86/70 (LN006V) OAK RIDGE NATIONAL LABORATORY LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL 'i * rf-if nVERIFICATION SURVEY AT 121 AVENUE F, LODI, NEW JERSEY (LN006V) M. G. Yalcintas C. A. Johnson Access to the information in this report is limited to those indicated on the distribution list and to Department of Energy OPfRATED BY and Department of Energy Contractors MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY This

  3. OAK RIDGE NATIONAL LABORATORY LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL

    Office of Legacy Management (LM)

    4q /L~£e _ *^^.^^^Al~ fl1b /ORNL/RASA-86/69 (LN005V) OAK RIDGE NATIONAL LABORATORY LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL L'ririir g ~VERIFICATION SURVEY AT 3 HANCOCK STREET, LODI, NEW JERSEY (LN005V) M. G. Yalcintas C. A. Johnson Access to the information in this report is limited to those indicated on the distribution list and to Department of Energy OPERATED BY and Department of Energy Contractors MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

  4. OAK RIDGE NATIONAL LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL

    Office of Legacy Management (LM)

    ornl<^~~ ~~ORNL/RASA-86/64 (MJ18V) orni OAK RIDGE NATIONAL LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL EZ-BBBB - *VERIFICATION SURVEY AT THE BALLOD ASSOCIATES PROPERTY, ROCHELLE PARK, NEW JERSEY (MJ18V) M. G. Yalcintas C. A. Johnson Access to the information in this report is limited to those indicated on the distribution list and to Department of Energy and Department of Energy Contractors OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

  5. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Environmental Monitoring Instructor's Guide 2.09-1 Course Title: Radiological Control Technician Module Title: Environmental Monitoring Module Number: 2.09 Objectives: 2.09.01 State the goals of an environmental monitoring program. 2.09.02 State the exposure limits to the general public as they apply to environmental monitoring. 2.09.03 Define the term "critical nuclide." 2.09.04 Define the term "critical pathway." L 2.09.05 State locations frequently surveyed for

  6. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Instructor's Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on

  7. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Study Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on packages

  8. NV/YMP radiological control manual, Revision 2

    SciTech Connect (OSTI)

    Gile, A.L.

    1996-11-01

    The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste and the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.

  9. ORISE: Radiological Assessment and Monitoring System (RAMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological Assessment and Monitoring System (RAMS) ORISE develops paperless tool to assist with data entry for radiological monitoring During the Empire 09 exercise, the Oak Ridge Institute for Science and Education tested for the first time a paperless system of data management to support the operations of the Federal Radiological Monitoring and Assessment Center. How ORISE is Making a Difference The paperless FRMAC provides tools that enables the FRMAC to collect and process field

  10. Radiological Contamination Control Training for Laboratory Research

    Energy Savers [EERE]

    researchers. Course Description: This course illustrates and reinforces the skills and knowledge needed to assist personnel with radiological controls for laboratory research...

  11. Operating Experience Level 3: Radiologically Contaminated Respirators...

    Energy Savers [EERE]

    Experience Level 3 provides information on a safety concern related to radiological contamination of launderedreconditioned respirators and parts that have been certified as...

  12. Progress Continues on Mitigation of Radiological Contamination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 13, 2015 Progress Continues on Mitigation of Radiological Contamination This week, WIPP personnel will complete the installation of the brattice cloth and salt barrier on a...

  13. Radiological Control - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    98-2008, Change Notice 1, Radiological Control by Diane Johnson The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities...

  14. Radiological Assistance Program Flight Planning Tool

    Energy Science and Technology Software Center (OSTI)

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this responsemore » time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.« less

  15. Radiological Assistance Program Flight Planning Tool

    SciTech Connect (OSTI)

    2011-12-19

    The Radiological Assitance Program (RAP) is the National Nuclear Security Administration's (NNSA) first responder to radiological emergencies. RAP's mission is to identify and minimize radiological hazards, as well as provide radiological emergency response and technical advice to decision makers. One tool commonly used is aerial radiation detection equipment. During a response getting this equipment in the right place quickly is critical. The RAP Flight Planning Tool (a ArcGIS 10 Desktop addin) helps minimize this response time and provides specific customizable flight path information to the flight staff including maps, coordinates, and azimuths.

  16. Radiological Contamination Control Training for Laboratory Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... workers attending training programs unsuitable for their needs. Prerequisites A background and foundation of knowledge ... radiological work and informing the worker of the ...

  17. Radiological Contamination Control Training for Laboratory Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the skills and knowledge needed to assist ... of tools, equipment, or workers. 2. Not wearing gloves, or ... radiological work and informing the worker of the ...

  18. Environmental/Radiological Assistance Directory (ERAD) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    practices, emerging trends, compliance issues, etc. in support of radiological ... of Real and Personal Property RESRAD Family of Codes Knowledge Information Management ...

  19. NEVADA TEST SITE RADIOLOGICAL CONTROL MANUAL

    Office of Scientific and Technical Information (OSTI)

    ... are based on dose coefficients from International Commission on Radiological Protec- ... dose is: BS Bone surface, ET Extrathoracic, K Kidney, L Liver, and T Thyroid. ...

  20. Radiological Training for Accelerator Facilities

    Energy Savers [EERE]

    8-2002 May 2002 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to

  1. Waste handling activities in glovebox dismantling facility

    SciTech Connect (OSTI)

    Kitamura, Akihiro; Okada, Takashi; Kashiro, Kashio; Yoshino, Masanori; Hirano, Hiroshi

    2007-07-01

    The Glovebox Dismantling Facility is a facility to decontaminate and size-reduce after-service gloveboxes in the Plutonium Fuel Production Facility, Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency. The wastes generated from these dismantling activities are simultaneously handled and packaged into drums in a bag-out manner. For future waste treatment and disposal, these wastes are separated into material categories. In this paper, we present the basic steps and analyzed data for the waste handling activities. The data were collected from dismantling activities for three gloveboxes (Grinding Pellet Glovebox, Visual Inspection Glovebox, Outer-diameter Screening Glovebox) conducted from 2001-2004. We also describe both current and near-future improvements. (authors)

  2. Improving Memory Error Handling Using Linux

    SciTech Connect (OSTI)

    Carlton, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Blanchard, Sean P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Debardeleben, Nathan A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-25

    As supercomputers continue to get faster and more powerful in the future, they will also have more nodes. If nothing is done, then the amount of memory in supercomputer clusters will soon grow large enough that memory failures will be unmanageable to deal with by manually replacing memory DIMMs. "Improving Memory Error Handling Using Linux" is a process oriented method to solve this problem by using the Linux kernel to disable (offline) faulty memory pages containing bad addresses, preventing them from being used again by a process. The process of offlining memory pages simplifies error handling and results in reducing both hardware and manpower costs required to run Los Alamos National Laboratory (LANL) clusters. This process will be necessary for the future of supercomputing to allow the development of exascale computers. It will not be feasible without memory error handling to manually replace the number of DIMMs that will fail daily on a machine consisting of 32-128 petabytes of memory. Testing reveals the process of offlining memory pages works and is relatively simple to use. As more and more testing is conducted, the entire process will be automated within the high-performance computing (HPC) monitoring software, Zenoss, at LANL.

  3. Federal Radiological Monitoring and Assessment Center

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-12-02

    To establish Department of Energy (DOE) policy, procedures, authorities, and requirements for the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC), as set forth in the Federal Radiological Emergency Response Plan (FRERP). This directive does not cancel another directive. Canceled by DOE O 153.1.

  4. INL@Work Radiological Search & Response Training

    ScienceCinema (OSTI)

    Turnage, Jennifer

    2013-05-28

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  5. Nevada Test Site Radiological Control Manual

    SciTech Connect (OSTI)

    Radiological Control Managers' Council - Nevada Test Site

    2009-10-01

    This document supersedes DOE/NV/11718--079, NV/YMP Radiological Control Manual, Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

  6. INL@Work Radiological Search & Response Training

    SciTech Connect (OSTI)

    Turnage, Jennifer

    2010-01-01

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  7. Nevada Test Site Radiological Control Manual

    SciTech Connect (OSTI)

    Radiological Control Managers' Council Nevada Test Site

    2010-02-09

    This document supersedes DOE/NV/25946--801, Nevada Test Site Radiological Control Manual, Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

  8. Memorandum, Reporting of Radiological Sealed Sources Transactions

    Broader source: Energy.gov [DOE]

    The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed Sources. The data reported in accordance with DOE N 234.1 are maintained in the DOE Radiological Source Registry and Tracking (RSRT) database by the Office of Information Management, within the Office of Environment, Health, Safety and Security.

  9. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

  10. Hawaii Department of Health Indoor and Radiological Health Branch...

    Open Energy Info (EERE)

    Indoor and Radiological Health Branch Jump to: navigation, search Name: Hawaii Department of Health Indoor and Radiological Health Branch From Open Energy Information Address: 591...

  11. Fifth Anniversary of Radiological Alarm Response Training for...

    National Nuclear Security Administration (NNSA)

    nuclear or radiological materials. Fifth Anniversary of Radiological Alarm Response Training The three-day course is held at NNSA's Y-12 National Security Complex in Oak...

  12. Los Alamos National Security Corrective Action Plan - Radiological...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos ...

  13. Radiological Source Term Estimates for the February 14, 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Source Term Estimates for the February 14, 2014 WIPP Release Event Radiological Source Term Estimates for the February 14, 2014 WIPP Release Event This document was...

  14. Office of Radiological Security | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Radiological ... Office of Radiological Security Read more about Y-12's contributions of the Global Threat Reduction Initiative to secure the world's most vulnerable...

  15. MODARIA: Modelling and Data for Radiological Impact Assessment...

    Office of Environmental Management (EM)

    MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview Presentation...

  16. Model Annex for Preparedness and Response to Radiological Transportati...

    Office of Environmental Management (EM)

    Annex for Preparedness and Response to Radiological Transportation Incidents Model Annex for Preparedness and Response to Radiological Transportation Incidents This part should...

  17. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  18. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  19. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    SciTech Connect (OSTI)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  20. 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 Environmental/Radiological Assistance Directory (ERAD) Presentations » 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations PDF icon November 2012; Environmental Measurements in an Emergency: This is not a Drill!; Stephen V. Musolino; Brookhaven National Laboratory PDF icon November 2012; Brookhaven

  1. DOE Issues WIPP Radiological Release Investigation Report

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy’s Office of Environmental Management (EM) released the initial accident investigation report related to the Feb. 14 radiological release at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

  2. Radiological safety training for uranium facilities

    SciTech Connect (OSTI)

    1998-02-01

    This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

  3. Apparatus for safeguarding a radiological source

    DOE Patents [OSTI]

    Bzorgi, Fariborz M

    2014-10-07

    A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

  4. Independent Verification Survey Report for the Operable Unit-1 Miamisburg Closure Project, Miamisburg, OH

    SciTech Connect (OSTI)

    Weaver, P.

    2008-03-17

    The objectives of the independent verification survey were to confirm that remedial actions have been effective in meeting established release criteria and that documentation accurately and adequately describes the current radiological and chemical conditions of the MCP site.

  5. Confirmatory Survey for the Partial Site Release at the ABB Inc. CE Winsor Site, Windsor, CT

    SciTech Connect (OSTI)

    W.C. Adams

    2008-06-27

    The objectives of the confirmatory surveys were to confirm that remedial actions had been effective in meeting established release criteria and that documentation accurately and adequately describes the final radiological conditions of the PSR Impacted Areas.

  6. Contained radiological analytical chemistry module

    DOE Patents [OSTI]

    Barney, David M. (Scotia, NY)

    1990-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  7. Contained radiological analytical chemistry module

    DOE Patents [OSTI]

    Barney, David M. (Scotia, NY)

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  8. Radiological Primer Common Understanding of Terms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological Primer Understanding Radiological Terms Richard Bloom and Dr. Antone Brooks Health Safety Environmental Protection Committee Hanford Advisory Board Tom Rogers and Crystal Mathey Washington State Department of Health Radioactivity vs. Radiation  What is radioactivity?  Property exhibited by certain types of matter of emitting radiation spontaneously.  What is radiation?  Process by which energy is emitted from a source  Forms of ionizing radiation  Gamma (photons)

  9. Flashback: Rapid scanning for radiological threats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flashback: Rapid scanning for radiological threats Flashback: Rapid scanning for radiological threats The ability to identify distinct material density enables the Multi-Mode Passive Detection System (MMPDS)to quickly detect unshielded to heavily shielded nuclear threats, as well as gamma rays, with near-zero false alarms. November 1, 2015 Decision Science Decision Science Decision Sciences' Multi-Mode Passive Detection System: Rapid scanning forradiological threats Click on headline to go to

  10. Radiological Safety Training for Accelerator Facilities

    Energy Savers [EERE]

    TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1108-2002 May 2002 Reaffirmation with Change Notice 2 July 2013 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change Notice No.2 Radiological Training

  11. RADIOLOGICAL ASSESSMENT OF BALLOD AND ASSOCIATES PROPERTY

    Office of Legacy Management (LM)

    ,..~ ,!-~ <-\ NJ' to RADIOLOGICAL ASSESSMENT OF BALLOD AND ASSOCIATES PROPERTY (STEPAN CHEMICAL COMPANY) MAYWOOD, NEW JERSEY Leslie W. Cole, Jim Berger, Phyllis Cotton, Robert Gosslee, Jonathan Sowell, Clayton Weaver FINAL REPORT July 30, 1981 Work performed by Radiological Site Assessment Program Manpower Education, Research, and Training Division Oak Ridge Associated Universities Oak Ridge, Tennessee 37830 Under Interagency Agreement DOE No. 40-770-80 NRC Fin. No. A-9093-0, Between the U.S.

  12. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  13. Primer on tritium safe handling practices

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This Primer is designed for use by operations and maintenance personnel to improve their knowledge of tritium safe handling practices. It is applicable to many job classifications and can be used as a reference for classroom work or for self-study. It is presented in general terms for use throughout the DOE Complex. After reading it, one should be able to: describe methods of measuring airborne tritium concentration; list types of protective clothing effective against tritium uptake from surface and airborne contamination; name two methods of reducing the body dose after a tritium uptake; describe the most common method for determining amount of tritium uptake in the body; describe steps to take following an accidental release of airborne tritium; describe the damage to metals that results from absorption of tritium; explain how washing hands or showering in cold water helps reduce tritium uptake; and describe how tritium exchanges with normal hydrogen in water and hydrocarbons.

  14. Experiences with decontaminating tritium-handling apparatus

    SciTech Connect (OSTI)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T. )

    1992-03-01

    Tritium-handling apparatus has been decontaminated as part of the downsizing of the LLNL Tritium Facility. Two stainless-steel glove boxes that had been used to process lithium deuteride-tritide (LiDT) slat were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. In this paper the details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium, in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.

  15. Fuel handling system for a nuclear reactor

    DOE Patents [OSTI]

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  16. Method and system rapid piece handling

    DOE Patents [OSTI]

    Spletzer, Barry L. (9504 Arvilla, NE, Albuquerque, NM 87111)

    1996-01-01

    The advent of high-speed fabric cutters has made necessary the development of automated techniques for the collection and sorting of garment pieces into collated piles of pieces ready for assembly. The present invention enables a new method for such handling and sorting of garment parts, and to apparatus capable of carrying out this new method. The common thread is the application of computer-controlled shuttling bins, capable of picking up a desired piece of fabric and dropping it in collated order for assembly. Such apparatus with appropriate computer control relieves the bottleneck now presented by the sorting and collation procedure, thus greatly increasing the overall rate at which garments can be assembled.

  17. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radiological Protection Standards Instructor's Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of the 10 CFR Part 835. References: 1. ANL-88-26

  18. Overview on Hydrate Coring, Handling and Analysis

    SciTech Connect (OSTI)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  19. Monument Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photographs from the WIPP Permanent Marker Monument Survey [John Hart & Associates, 2000] Photograph of the Gnome Marker located about 10 miles SW of the WIPP site For more photographs and information about the survey, read the report

  20. Radiological Assessment for the Vance Road Facility Source Vault, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    J. R. Morton

    2000-09-01

    From the 1950s, the Vance Road laboratories had been used for a broad range of nuclear medicine research involving numerous radionuclides. These radionuclides were stored in the a source vault located on the first floor of the facility. The Environmental Survey and Site Assessment Program (ESSAP) of ORISE performed a radiological assessment survey of the source vault after it had been remediated and in preparation for converting the area to office space.

  1. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2015-03-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1C, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  2. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-04-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  3. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-08-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  4. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-05-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  5. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-10-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  6. Digital Surveying Directional Surveying Specialists | Open Energy...

    Open Energy Info (EERE)

    Surveying Specialists Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Digital Surveying Directional Surveying Specialists Author Directional Surveying...

  7. Remote-Handled Transuranic Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2006-12-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

  8. DOE Hydrogen Storage Technical Performance Targets for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment | Department of Energy Material Handling Equipment DOE Hydrogen Storage Technical Performance Targets for Material Handling Equipment This table summarizes hydrogen storage technical performance targets for material handling equipment. These targets were developed with input to DOE through extensive communications with various stakeholders, industry developers, and end users, including through a 2012 request for information and workshops, as well as additional national lab

  9. LM Records Handling System (LMRHS01) - Electronic Records Keeping System,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Legacy Management, | Department of Energy System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, PDF icon LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, More Documents & Publications LM

  10. LM Records Handling System (LMRHS01) - Energy Employees Occupational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illness Compensation Program Act, Office of Legacy Management | Department of Energy Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation Program Act, Office of Legacy Management PDF icon LM Records Handling System (LMRHS01) - Energy

  11. LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Database, Office of Legacy Management | Department of Energy Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management PDF icon LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management More Documents &

  12. DOE Technical Targets for Hydrogen Storage Systems for Material Handling

    Office of Environmental Management (EM)

    Equipment | Department of Energy Material Handling Equipment DOE Technical Targets for Hydrogen Storage Systems for Material Handling Equipment This table summarizes hydrogen storage technical performance targets for material handling equipment. These targets were developed with input to DOE through extensive communications with various stakeholders, industry developers, and end users, including through a 2012 request for information and workshops, as well as additional national lab

  13. LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy...

  14. Biodiesel Handling and Use Guide: Fourth Edition (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    Intended for those who blend, distribute, and use biodiesel and its blends, this guide contains procedures for handling and using these fuels.

  15. Handbook for Handling, Storing, and Dispensing E85

    SciTech Connect (OSTI)

    Not Available

    2008-04-01

    Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

  16. Widget:TwitterHandleValidate | Open Energy Information

    Open Energy Info (EERE)

    common copy + paste errors, and alerting the user if the format is not a valid Twitter handle. Parameters include: fieldname - the field to validate (optional, default:...

  17. Bag-out material handling system

    DOE Patents [OSTI]

    Brak, Stephen B. (Tinley Park, IL); Milek, Henry F. (Chicago, IL)

    1984-01-01

    A bagging device for transferring material from a first chamber through an pening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  18. Bag-out material handling system

    DOE Patents [OSTI]

    Brak, Stephen B. (Tinley Park, IL)

    1985-01-01

    A bagging device for transferring material from a first chamber through an opening in a wall to a second chamber includes an outer housing communicating with the opening and having proximal and distal ends relative to the wall. An inner housing having proximal and distal ends corresponding to those of the outer housing is mounted in a concentrically spaced, sealed manner with respect to the distal end of the outer housing. The inner and outer housings and mounting means therebetween define an annular chamber, closed at its distal end and open at its proximal end, in which a pliable tube is slidably positioned in sealed engagement with the housings. The pliable tube includes a sealed end positioned adjacent the proximal end of the inner housing so as to maintain isolation between the first and second chambers. Displacement of the material to be bagged from the first chamber along the inner housing so as to contact the sealed portion of the pliable bag allows the material to be positioned within the pliable bag in the second chamber. The bag is then sealed and severed between where the material is positioned therein and the wall in providing a sealed container for handling the material. The pliable tube when substantially depleted slides onto a narrow portion of the inner housing to allow a new pliable tube to be positioned over the old pliable tube. Remnants of the old pliable tube are then discharged into the new pliable tube with the bagging and removal of additional material.

  19. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    SciTech Connect (OSTI)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-10-14

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides.

  20. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    5 Radiological Considerations for First Aid Instructor's Guide 2.15-1 Course Number: Radiological Control Technicians Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological

  1. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radiological Considerations for First Aid Study Guide 2.15-1 Course Title: Radiological Control Technician Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after

  2. Interventional Radiology of Male Varicocele: Current Status

    SciTech Connect (OSTI)

    Iaccarino, Vittorio Venetucci, Pietro

    2012-12-15

    Varicocele is a fairly common condition in male individuals. Although a minor disease, it may cause infertility and testicular pain. Consequently, it has high health and social impact. Here we review the current status of interventional radiology of male varicocele. We describe the radiological anatomy of gonadal veins and the clinical aspects of male varicocele, particularly the physical examination, which includes a new clinical and ultrasound Doppler maneuver. The surgical and radiological treatment options are also described with the focus on retrograde and antegrade sclerotherapy, together with our long experience with these procedures. Last, we compare the outcomes, recurrence and persistence rates, complications, procedure time and cost-effectiveness of each method. It clearly emerges from this analysis that there is a need for randomized multicentre trials designed to compare the various surgical and percutaneous techniques, all of which are aimed at occlusion of the anterior pampiniform plexus.

  3. Routine Radiological Environmental Monitoring Plan. Volume 1

    SciTech Connect (OSTI)

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  4. Emergency Response Planning for Radiological Releases

    SciTech Connect (OSTI)

    Biwer, B.M.; LePoire, D.J.; Lazaro, M.A.; Allison, T.; Kamboj, S.; Chen, S.Y.

    2006-07-01

    The emergency management planning tool RISK-RDD was developed to aid emergency response planners and decision makers at all levels of government to better understand and prepare for potential problems related to a radiological release, especially those in urban areas. Radioactive release scenarios were studied by using the RISK-RDD radiological emergency management program. The scenarios were selected to investigate the key aspects of radiological risk management not always considered in emergency planning as a whole. These aspects include the evaluation of both aerosolized and non-aerosolized components of an atmospheric release, methods of release, acute and chronic human health risks, and the concomitant economic impacts as a function of the risk-based cleanup level. (authors)

  5. Survey Statisticians

    Gasoline and Diesel Fuel Update (EIA)

    Survey Statisticians The U.S.Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Survey Statistician, who measures the amounts of energy produced and consumed in the United States. Responsibilities: Survey Statisticians perform or participate in one or more of the following important

  6. Survey Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  7. FINAL REPORT FOR INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE HEMATITE DECOMMISSIONING PROJECT, FESTUS, MISSOURI

    SciTech Connect (OSTI)

    Bailey, Erika N.; Lee, Jason D.

    2012-09-21

    ORAU conducted confirmatory surveys of the Hematite site during the period of June 12 through June 13, 2012. The survey activities included in-process inspections, document review, walkover surveys, sampling activities, and laboratory analysis of split samples. WEC was forthcoming with information relating to practices, procedures, and surface scan results. Scans performed by the WEC technician were extremely thorough and methodical. The WEC and ORAU technicians identified the same areas of elevated activity with comparable detector responses. WEC sampling of re-use soils, waste soils, sediments, and groundwater were conducted under ORAU observation. The sampling efforts observed by ORAU were performed in accordance with site-specific procedures and in a manner sufficient to provide quality supporting data. Three observations were made during groundwater sampling activities. First, the water level indicator was re-used without submitting rinse blank. Second, bubbles created during tubing extraction could indicate the presence of volatilized organic compounds. Third, samplers did not use a photo ionization detector prior to sample collection to indicate the presence of volatile organic vapors. Results of split samples indicated a high level of comparability between the WEC and ORAU/ORISE radiological laboratories. Analytical practices and procedures appear to be sufficient in providing quality radiochemical data. All concentrations from the Soil Re-Use Area and sediment samples are below Uniform radionuclide-specific derived concentration guideline level (DCGL{sub W}) limits; thus, comparisons to the less conservative stratified geometry were not required. Results were compared to individual DCGLs and using the sum of fractions approach. Both composite soil samples collected from the Waste Handling Area (Bins 1 and 4) were well below the prescribed USEI waste acceptance criteria.

  8. OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL

    Office of Legacy Management (LM)

    2 7% d &y / 7 ORNL/TM- 10076 OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL ~-T-m -~=- -~ w-~- -"" * ,<.~- ~w&$UREMENTs: TAKEN IN THE NIAGARA FALLS, NEW YORK, AREA (NF002) J. K. Williams B. A. Berven ~.~~;:;-~~~ ~. -,' - ~~ 7, OPERATED BY MARTIN MARIDTA ENERGY SYSTEMS, INC, FOR THE UNITED STATES DEPARTMENT OF ENERGY --... ORNL/TM-10076 HEALTH AND SAFETY RESEARCH DIVISION Nuclear and Chemical Waste Programs (Activity No. AH 10 05 00 0; ONLWCOI) RESULTS OF RADIOLOGICAL

  9. Operating Experience Level 3, Losing Control: Material Handling Dangers

    Broader source: Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document provides information about the dangers inherent in material handling and the role hazard analysis, work planning, and walkdowns can play in preventing injuries during heavy equipment moves. More than 200 material handling events reported to the Occurrence Reporting and Processing System (ORPS) from January 1, 2010, through August 31, 2014.

  10. Apparatus and method for handling magnetic particles in a fluid

    DOE Patents [OSTI]

    Holman, David A. (Richland, WA); Grate, Jay W. (West Richland, WA); Bruckner-Lea, Cynthia J. (Richland, WA)

    2000-01-01

    The present invention is an apparatus and method for handling magnetic particles suspended in a fluid, relying upon the known features of a magnetic flux conductor that is permeable thereby permitting the magnetic particles and fluid to flow therethrough; and a controllable magnetic field for the handling. The present invention is an improvement wherein the magnetic flux conductor is a monolithic porous foam.

  11. Spectrum Sciences Decision and Data Handling Issues | Department of Energy

    Energy Savers [EERE]

    Spectrum Sciences Decision and Data Handling Issues Spectrum Sciences Decision and Data Handling Issues PDF icon spectrum sciences software_breaches.pdf PDF icon Park _IP_meeting.pdf More Documents & Publications DOE M 483.1-1 EXHIBIT A: CRADA, WFO, PUA and NPUA Comparison Table, with suggested changes Subcontractor Rights Under CRADAs and WFO Agreements

  12. Specialty Vehicles and Material Handling Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment This presentation by William Mitchell of Nuvera Fuel Cells was given at the Fuel Cell Meeting in April 2007. PDF icon fuel_cell_mtng_mitchell.pdf More Documents & Publications 2014 Fuel Cell Technologies Market Report 2012 Fuel Cell Technologies Market Report 2013 Fuel Cell Technologies Market

  13. CONFIRMATORY SURVEY REPORT FOR THE SECTION 4 AREA AT THE RIO ALGOM AMBROSIA LAKE FACILITY NEW MEXICO

    SciTech Connect (OSTI)

    W.C. Adams

    2010-02-12

    The objectives of the confirmatory survey were to verify that remedial actions were effective in meeting established release criteria and that documentation accurately and adequately described the final radiological conditions of the RAM Ambrosia Lake, Section 4 Areas.

  14. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  15. 2013 Environmental/Radiological Assistance Directory (ERAD) Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 Environmental/Radiological Assistance Directory (ERAD) Presentations » 2013 Environmental/Radiological Assistance Directory (ERAD) Presentations 2013 Environmental/Radiological Assistance Directory (ERAD) Presentations Below are the presentations presented during the 2013 Environmental/Radiological Assistance Directory (ERAD) meetings PDF icon Nov 2013 Derived Intervention and Response Levels for Tritium Oxide at the Savannah River Site; Tim Janik, Savannah River Site

  16. Los Alamos National Security Corrective Action Plan - Radiological Release

    Energy Savers [EERE]

    Phase II | Department of Energy Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II PDF icon Los Alamos National Security Corrective Action Plan - Radiological Release Phase II More Documents & Publications Environmental Management Los Alamos Field Office Corrective Action Plan -

  17. ORISE: Radiological Terrorism Toolkit | How ORISE is Making a Difference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological Terrorism Toolkit ORISE partners with CDC to develop Radiological Terrorism: A Toolkit for Public Health Officials Radiological Terrorism: A Toolkit for Public Health Officials How ORISE is Making a Difference Working closely with the Centers for Disease Control and Prevention (CDC), the Oak Ridge Institute for Science and Education (ORISE) distributed more than 400 radiological terrorism toolkits filled with key resources, such as training guidelines, clinical directives, details

  18. Accident Investigation Report - Radiological Release | Department of Energy

    Energy Savers [EERE]

    Radiological Release Accident Investigation Report - Radiological Release On February 14, 2014, an airborne radiological release occurred at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Because access to the underground was restricted following the event, the investigation was broken into two phases. The Phase 1 report focused on how the radiological material was released into the atmosphere and Phase 2, performed once limited access to the underground

  19. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radiation Protection Standards Study Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of 10 CFR Part 835. References: 1. ANL-88-26 (1988)

  20. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

  1. Radiological/biological/aerosol removal system

    DOE Patents [OSTI]

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  2. Nuclear / Radiological Advisory Team | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration / Radiological Advisory Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our

  3. Environmental Radiological Effluent Monitoring and Environmental Surveillance

    Office of Environmental Management (EM)

    Environmental Radiological Effluent Monitoring and Environmental Surveillance U.S. Department of Energy AREA ENVR Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1216-2015 NOT MEASUREMENT SENSITIVE INTENTIONALLY BLANK DOE-HDBK-1216-2015 iii TABLE OF CONTENTS PARAGRAPH PAGE 1 INTRODUCTION ............................................................................................................... 1 1.1 Objectives

  4. Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH TRAMPAC)

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  5. Content-Handled Transuranic (CH-TRU) Waste Content Codes (CH-TRUCON)

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  6. Paint for detection of radiological or chemical agents

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA); Brunk, James L. (Martinez, CA); Day, Sumner Daniel (Danville, CA)

    2010-08-24

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  7. Independent Confirmatory Survey Summary and Results for the Plum Brook Reactor Facility Sandusky OH

    SciTech Connect (OSTI)

    E.N. Bailey

    2008-05-06

    The objectives of the confirmatory survey activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the Nuclear Regulatory Commission (NRC) in evaluating the adequacy and accuracy of the licensee’s procedures and final status survey (FSS) results.

  8. CONFIRMATORY SURVEY OF THE FUEL OIL TANK AREA HUMBOLDT BAY POWER PLANT EUREKA, CALIFORNIA

    SciTech Connect (OSTI)

    WADE C. ADAMS

    2012-04-09

    During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

  9. Handling and characterization of glow-discharge polymer samples...

    Office of Scientific and Technical Information (OSTI)

    for the light gas gun Citation Details In-Document Search Title: Handling and characterization of glow-discharge polymer samples for the light gas gun Authors: Akin, M C ; ...

  10. T-625: Opera Frameset Handling Memory Corruption Vulnerability

    Broader source: Energy.gov [DOE]

    The vulnerability is caused due to an error when handling certain frameset constructs during page unloading and can be exploited to corrupt memory via a specially crafted web page.

  11. WIPP Receives First Remote-Handled Waste Shipment From Sandia...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For immediate release WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs CARLSBAD, N.M., December 21, 2011 - The U.S. Department of Energy's (DOE) Waste Isolation...

  12. NV/YMP RADIOLOGICAL CONTROL MANUAL

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

    2004-11-01

    This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

  13. DOE Seeks Independent Evaluation of Remote-Handled Waste Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks Independent Evaluation Of Remote-Handled Waste Program CARLSBAD, N.M., July 24, 2001 - An independent panel of scientific and engineering experts will convene July 30 in Carlsbad to evaluate U.S. Department of Energy (DOE) plans for managing remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP). DOE's Carlsbad Field Office has asked the American Society of Mechanical Engineers and the Institute for Regulatory Science to review its proposed RH-TRU waste

  14. Draft Environmental Assessment on the Remote-handled Waste Disposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project available for public review and comment Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review and comment on a draft environmental assessment that the Department issued today, for a proposal to process approximately 327 cubic meters of remote-handled waste currently stored at the Idaho National Laboratory. An additional five cubic meters of waste stored at the

  15. Microsoft Word - remote handled waste comment extension.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extends public comment period on the Remote-handled Waste Disposition Project Environmental Assessment Jan. 26, 2009 Media contact: Brad Bugger, (208) 526-0833 In response to a request from the public, the U.S. Department of Energy has extended the deadline to comment on the draft environmental assessment for a proposal to process approximately 327 cubic meters of remote-handled radioactive waste currently stored at Idaho National Laboratory. The public comment period, which originally expired

  16. Department of Energy Launches New Public Affairs Twitter Handle |

    Office of Environmental Management (EM)

    Department of Energy Launches New Public Affairs Twitter Handle Department of Energy Launches New Public Affairs Twitter Handle November 16, 2011 - 11:20am Addthis Washington, DC - The Department of Energy today announced the launch of a new Twitter account to help the agency better distribute news and announcements. The @EnergyPressSec feed will offer reporters and other interested stakeholders another way to get important Department information as it is released. The account builds on the

  17. Radiological Contamination Control Training for Laboratory Research

    Energy Savers [EERE]

    Reaffirmation August 2002 Change Notice 1 December 2004 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy,

  18. Radiological Contamination Control Training for Laboratory Research

    Energy Savers [EERE]

    Change Notice 2 with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800)

  19. Radiological Safety Training for Plutonium Facilities

    Energy Savers [EERE]

    145-2008 April 2008 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public

  20. Fixation of Radiological Contamination; International Collaborative Development

    SciTech Connect (OSTI)

    Rick Demmer

    2013-03-01

    A cooperative international project was conducted by the Idaho National Laboratory (INL) and the United Kingdoms National Nuclear Laboratory (NNL) to integrate a capture coating with a high performance atomizing process. The initial results were promising, and lead to further trials. The somewhat longer testing and optimization process has resulted in a product that could be demonstrated in the field to reduce airborne radiological dust and contamination.

  1. Results of radiological measurements taken in the Niagara Falls, New York, area (NF002)

    SciTech Connect (OSTI)

    Williams, J.K.; Berven, B.A.

    1986-11-01

    The results of a radiological survey of 100 elevated gamma radiation anomalies in the Niagara Falls, New York, area are presented. These radiation anomalies were identified by a mobile gamma scanning survey during the period October 3-16, 1984, and were recommended for an onsite survey to determine if the elevated levels of radiation may be related to the transportation of radioactive waste material to the Lake Ontario Ordnance Works for storage. In this survey, radiological measurements included outdoor gamma exposure rates at 1 m above the surface; outdoor gamma exposure rates at the surface, range of gamma exposure rates during scan; and uranium, radium, and thorium concentrations in biased surface soil samples. The results show 38 anomalies (35 located along Pletcher Road and 3 associated with other unreleated locations) were found to exceed Formerly Utilized Sites Remedial Action Program (FUSRAP) remedial action guidelines and were recommended for formal characterization surveys. (Since the time of this survey, remedial actions have been conducted on the 38 anomalies identified as exceeding FUSRAP guidelines, and the radioactive material above guidelines has been removed.) The remaining 62 anomalies are associated with asphalt driveways and parking lots, which used a phosphate slag material (previously identified as cyclowollastonite, synthetic CaSiO/sub 3/). This rocky-slag waste material was used for bedding under asphalt surfaces and in general gravel applications. Most of the contaminated soil and rock samples collected at the latter anomalies had approximately equal concentrations of /sup 226/Ra and /sup 238/U and, therefore, are not related to materials connected with the Niagara Falls Storage Site (NFSS), including material that was transported to the NFSS. 13 refs., 7 figs., 14 tabs.

  2. Enewetak radiological support project. Final report

    SciTech Connect (OSTI)

    Friesen, B.

    1982-09-01

    From 1972 through 1980, the Department of Energy acted in an advisory role to the Defense Nuclear Agency during planning for and execution of the cleanup of Enewetak Atoll. The Nevada Operations Office of the Department of Energy was responsible for the radiological characterization of the atoll and for certification of radiological condition of each island upon completion of the project. In-situ measurements of gamma rays emitted by americium-241 were utilized along with wet chemistry separation of plutonium from soil samples to identify and delineate surface areas requiring removal of soil. Military forces removed over 100,000 cubic yards of soil from the surface of five islands and deposited this material in a crater remaining from the nuclear testing period. Subsurface soil was excavated and removed from several locations where measurements indicated the presence of radionuclides above predetermined criteria. The methodologies of data acquisition, analysis and interpretation are described and detailed results are provided in text, figures and microfiche. The final radiological condition of each of 43 islets is reported.

  3. w. T. Thorntot-l, OR RADIOLOGICAL STATUS OF FORMER VIRGINIA-CAROLINA CHEMICAL CORPORATION

    Office of Legacy Management (LM)

    ()r' 2J ;3:7 . - w. T. Thorntot-l, OR RADIOLOGICAL STATUS OF FORMER VIRGINIA-CAROLINA CHEMICAL CORPORATION SITE AT.818 PERRY STREET, RICHFIOND, VIRGINIA Your memorandum report of November 11, 1977, detailing the degree, type, and extent of former AEC R&D work done at the Virginia-Camlfna Richmond, YfrgInla, sfte adequately defines the sftuatjon and no further site revJew fs warranted. Your recomendat~on to termfnate further survey efforts at thfs sfte 1s accepted. Yilliam E. Mott, DIrector

  4. OAK RIDGE NATIONAL LABORATORY LABO RATO RY RESULTS OF THE INDEPENDENT RADIOLOGICAL

    Office of Legacy Management (LM)

    5 IL 0JJ OII (LN004V) OAK RIDGE NATIONAL LABORATORY LABO RATO RY RESULTS OF THE INDEPENDENT RADIOLOGICAL '~i ( - ~~~~VERIFICATION SURVEY AT 64 TRUDY DRIVE, LODI, NEW JERSEY (LN004V) M. G. Yalcintas C. A. Johnson Access to the information in this report is limited to those indicated on the distribution list and to Department of Energy OPERATED BY and Department of Energy Contractors MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY This report was prepared as an

  5. LM Records Handling System-Freedom of Information/Privacy Act...

    Office of Environmental Management (EM)

    Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling System-Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling...

  6. ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003

    Office of Legacy Management (LM)

    * * * * * * * * * ~n~EGc.G ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003 FEBRUARY 1983 THE REMOTE SENSING LABORATORY OF THE UNITED STATES DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL SURVEY OF AN AREA SURROUNDING THE FORMER MIDDLESEX SAMPLING PLANT IN MIDDLESEX, NEW JERSEY DATE OF SURVEY: MAY 1978 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of

  7. HEALTH AND SAFETY RESEARCH DIVISION REPORT OF INCLUSION SURVEY AT LOCATION CA00401

    Office of Legacy Management (LM)

    Location mbe: (- Location Number: (CA00401) HEALTH AND SAFETY RESEARCH DIVISION REPORT OF INCLUSION SURVEY AT LOCATION CA00401 MAYER STREET BRIDGEVILLE, PENNSYLVANIA 15017 Investigation Team B. A. Berven - RASA Program Manager C. A. Little - RASA/UMTRA Project Director C. Clark, Jr. - Survey Team Leader John K. Williams December 1985 WORK PERFORMED AS PART OF THE RADIOLOGICAL SURVEY ACTIVITIES PROGRAM Prepared by the OAK RIDGE NATIONAL LABORATORY Grand Junction Office Grand Junction, Colorado

  8. SURVEY OF ROLLING MILL USED BY BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK

    Office of Legacy Management (LM)

    SURVEY OF ROLLING MILL USED BY BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK Work performed by the Health and Safety Research Division Gak Ridge fiational Laboratory Oak Ridge, Tennessee 37830 September 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites!- Remedial Action Program SURVEY OF ROLLING MILL USED BY BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK A radiological survey was conducted at the

  9. MODARIA: Modelling and Data for Radiological Impact Assessment Context and

    Office of Environmental Management (EM)

    Overview | Department of Energy MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview Presentation from the 2015 Annual Performance and Risk Assessment (P&RA) Community of Practice (CoP) Technical Exchange Meeting held in Richland, Washington on December 15-16, 2015. PDF icon MODARIA: Modelling and Data for Radiological Impact Assessment Context and Overview More Documents

  10. Anniversary of Fire, Radiological Events Marks Major Progress at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 12, 2016 Anniversary of Fire, Radiological Events Marks Major Progress at WIPP February 2016 marks two years since the underground fire and radiological release events forced the temporary closure of the Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Since that time much progress has been made in the recovery of the underground including mine stability and habitability, initial panel closure, radiological risk remediation and the addition of

  11. Nuclear and Radiological Field Training Center | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex ... Nuclear and Radiological Field Training Center A site used for nuclear research in Oak Ridge, Tennessee during the Manhattan Project is now the Y-12 National Security Complex's Nuclear and Radiological Field Training Center - the only facility of its kind in the world. The Center provides world-class nuclear and radiological training in a safe, secure, realistic environment using expert instruction and personnel to serve as observers/evaluators for customer training. For military

  12. 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Environmental/Radiological Assistance Directory (ERAD) Presentations 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations 2012 Environmental/Radiological Assistance Directory (ERAD) Presentations PDF icon November 2012; Environmental Measurements in an Emergency: This is not a Drill!; Stephen V. Musolino; Brookhaven National Laboratory PDF icon November 2012; Brookhaven Graphite Research Reactor (BGRR) D&D Presentation for the DOE ERAD Working

  13. Environmental/Radiological Assistance Directory (ERAD) | Department of

    Energy Savers [EERE]

    Energy Environmental/Radiological Assistance Directory (ERAD) Environmental/Radiological Assistance Directory (ERAD) The Environmental Radiological Assistance Directory or ERAD, developed by AU-22, serves as an assistance tool to the DOE complex for protection of the public and environment from radiation. The ERAD is a combination webinar/conference call, designed to provide DOE and its contractors a forum to share information, lessons-learned, best practices, emerging trends, compliance

  14. Operational Guidelines/Radiological Emergency Response | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Operational Guidelines/Radiological Emergency Response Operational Guidelines/Radiological Emergency Response This page provides information and resources concerning the development of operational guidelines as part of planning guidance for protection and recovery following Radiological Dispersal Device (RDD) and/or Improvised Nuclear Device (IND) incidents. Operational Guidelines Technical (OGT) Manual, 2009 RESRAD-RDD Complementing Software to OGT Manual EPA Protective Action

  15. EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in

  16. Surface Contamination Guidelines/Radiological Clearance of Property |

    Energy Savers [EERE]

    Department of Energy Surface Contamination Guidelines/Radiological Clearance of Property Surface Contamination Guidelines/Radiological Clearance of Property Authorized limits govern the control and clearance of personal and real property. They are radionuclide concentrations or activity levels approved by DOE to permit the clearance of property from DOE radiological control for either restricted or unrestricted use, consistent with DOE's radiation protection framework and standards for the

  17. Recent Developments in Field Response for Mitigation of Radiological

    Energy Savers [EERE]

    Incidents | Department of Energy Developments in Field Response for Mitigation of Radiological Incidents Recent Developments in Field Response for Mitigation of Radiological Incidents Carlos Corredor*, Department of Energy; Charley Yu, Argonne National Labs Abstract: Since September 11, 2001, there has been a large effort by the government to develop new methods to reduce the consequence of potential radiological incidents. This is evident in the enhancement of technologies and methods to

  18. Accident Investigations of the February 14, 2014, Radiological Release at

    Energy Savers [EERE]

    the Waste Isolation Pilot Plant, Carlsbad, NM | Department of Energy Accident Investigations of the February 14, 2014, Radiological Release at the Waste Isolation Pilot Plant, Carlsbad, NM Accident Investigations of the February 14, 2014, Radiological Release at the Waste Isolation Pilot Plant, Carlsbad, NM February 14, 2014 Accident Investigations of the February 14, 2014, Radiological Release at the Waste Isolation Pilot Plant, Carlsbad, NM On February 14, 2014, at approximately 2314

  19. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    9 Radiological Control Technician Training Fundamental Academic Training Instructor's Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los

  20. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radiological Incidents and Emergencies Instructor's Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. L 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. L 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM)

  1. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    9 Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Study Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Study Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National

  2. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    6 of 9 Radiological Control Technician Training Site Academic Training Study Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Study Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Study Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National

  3. DOE-HDBK-1122-99; Radiological Technician Training

    Office of Environmental Management (EM)

    Radiological Incidents and Emergencies Study Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. i 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. i 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM) alarm.

  4. ENERGY MEASUREMENTS GROUP EG&G Survey Report

    Office of Legacy Management (LM)

    kL2' . ",- - &j EGG0 ENERGY MEASUREMENTS GROUP EG&G Survey Report NRC-81 09 April 1981 . AN AERIAL RADIOLOGIC SURVEY OF THE STEPAN CHEMCIAL COMPANY AND SURROUNDING AREA MAYWOOD, N E W JERSEY DATE OF SURVEY: 26 JANUARY 1981 J.R. Mueller Project Director S.A. Gunn Project Scientist APPROVED FOR DISTRIBUTION W . John Tipton, Head Radiation Sciences Section This Document is UNCLASSIFIED G. P. Stobie Classification Officer This work was performed by EG&G for the United States Nuclear

  5. ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT

    Office of Legacy Management (LM)

    &- ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NRC-81 13 , NOVEMBER 1981 llti * Knb THE REMOTE SENSING lA6ORA~ORV OF THE UNITED STATES DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL SURVEY OF THE W. R. GRACE PROPERTY WAYNE TOWNSHIP, NEW JERSEY DATE OF SURVEY: MAY 1981 DISCLAIMER This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty,

  6. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 1, Operations

    SciTech Connect (OSTI)

    NSTec Aerial Measurement Systems

    2012-07-31

    The Monitoring division is primarily responsible for the coordination and direction of: Aerial measurements to delineate the footprint of radioactive contaminants that have been released into the environment. Monitoring of radiation levels in the environment; Sampling to determine the extent of contaminant deposition in soil, water, air and on vegetation; Preliminary field analyses to quantify soil concentrations or depositions; and Environmental and personal dosimetry for FRMAC field personnel, during a Consequence Management Response Team (CMRT) and Federal Radiological Monitoring and Assessment Center (FRMAC) response. Monitoring and sampling techniques used during CM/FRMAC operations are specifically selected for use during radiological emergencies where large numbers of measurements and samples must be acquired, analyzed, and interpreted in the shortest amount of time possible. In addition, techniques and procedures are flexible so that they can be used during a variety of different scenarios; e.g., accidents involving releases from nuclear reactors, contamination by nuclear waste, nuclear weapon accidents, space vehicle reentries, or contamination from a radiological dispersal device. The Monitoring division also provides technicians to support specific Health and Safety Division activities including: The operation of the Hotline; FRMAC facility surveys; Assistance with Health and Safety at Check Points; and Assistance at population assembly areas which require support from the FRMAC. This volume covers deployment activities, initial FRMAC activities, development and implementation of the monitoring and assessment plan, the briefing of field teams, and the transfer of FRMAC to the EPA.

  7. DOE Issues WIPP Radiological Release Phase II Investigation Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    radiological event at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. ... second from left, receives the New Mexico Patriotic Employer Award from the N.M. ...

  8. Nuclear and Radiological Field Training Center | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Nuclear and Radiological Field Training Center A site used for nuclear research in Oak Ridge, Tennessee during the Manhattan Project is now the Y-12 National Security Complex's...

  9. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jan 1, 2009 The National Nuclear Security Administration (NNSA) has more than 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and...

  10. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Dec 1, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and incidents....

  11. An Assessment Of The External Radiological Impact In Areas Of...

    Open Energy Info (EERE)

    Assessment Of The External Radiological Impact In Areas Of Greece With Elevated Natural Radioactivity Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  12. ORISE: Radiological Terrorism Toolkit | How ORISE is Making a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education (ORISE) distributed more than 400 radiological terrorism toolkits filled with key resources, such as training guidelines, clinical directives, details about radioactive...

  13. Radiological Release Event at the Waste Isolation Pilot Plant...

    Broader source: Energy.gov (indexed) [DOE]

    radiological release occurred at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Because access to the underground was restricted following...

  14. Evaluation of Final Radiological Conditions at Areas of the Niagara...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage ...

  15. The New Radiological and Environmental Sciences Laboratory (RESL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    None File Format: Microsoft Windows WMV File Size: 19 Kb Video of Radiological and Environmental Sciences Laboratory (RESL) Editorial Date December 7, 2011 By Danielle Miller...

  16. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  17. Radiological Dose Calculations for Fusion Facilities

    SciTech Connect (OSTI)

    Michael L. Abbott; Lee C. Cadwallader; David A. Petti

    2003-04-01

    This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.

  18. Radiological Control Programs for Special Tritium Compounds

    Energy Savers [EERE]

    84-2004 SEPTEMBER 2004 CHANGE NOTICE NO. 1 Date June 2006 DOE HANDBOOK RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS U.S. Department of Energy AREA OCSH Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Table of Changes Page Change 67 (near bottom) In row 1, column 2 of the table titled "dosimetric properties" 6 mrem was changed to 6 x 10 -2 mrem Available on the Department of Energy

  19. Radiological Control Programs for Special Tritium Compounds

    Energy Savers [EERE]

    DOE.F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: May 11, 2006 REPLY TO EH-52:JRabovsky:3-2 135 ATTN OF: APPROVAL OF CHANGE NOTICE 1 TO DEPARTMENT OF ENERGY (DOE) SUBJECT. HANDBOOK 1184-2004, RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS TO: Dennis Kubicki, EH-24 Technical Standards Manager This memorandum forwards the subject Change Notice 1 to DOE Handbook, DOE- HDBK- 1184-2004, which has approved for publication and distribution. The change to

  20. Radiological Safety Training for Plutonium Facilities

    Energy Savers [EERE]

    NOT MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the

  1. Certification document for newly generated contact-handled transuranic waste

    SciTech Connect (OSTI)

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP.

  2. SU-E-E-06: Teaching Medical Physics in a Radiology Museum

    SciTech Connect (OSTI)

    Bednarek, D; Rudin, S

    2014-06-01

    Purpose: To enhance the learning process in the teaching of medical physics by providing a venue to experience the historical equipment and devices of radiology. Methods: We have created a museum by assembling a large collection of equipment and artifacts related to radiology and medical physics. As part of a learning-in-context educational approach, classes for a survey course in medical physics are held in the museum so that students are able to visually and tangibly experience the implements of radiology, while related topics are discussed. The students learn how x-ray equipment and techniques evolved throughout the years and they learn to appreciate the differences and similarities between current x-ray technology and that of the early days. The collection contains items dating from the era of the discovery of x-rays up to recent times and includes gas x-ray tubes, hand-held fluoroscopes, generators, spark-gap kV meters, stereoscopes, glass-plate radiographs, a photofluorographic unit, wood-interspaced grid, flat-panel detector, linear-accelerator klystron, and brachytherapy radium applicators, as well as an extensive library containing some of the seminal literature of the field so that students can delve deeper into the technology. In addition to the classes, guided tours are provided for radiologic-technology, bioengineering, physics and medical students, as well as group and individual tours for the general public. Results: Student course assessments have consistently included positive expressions of their experience in the museum. Numerous students have volunteered to assist with display preparation and have learned by researching the content. Many individuals have been attracted on a walk-in basis and have expressed a deep curiosity in the technology, with positive feedback. Conclusion: The museum and its artifacts have been invaluable in stimulating interest in the history and technology of medical physics. Students and visitors alike obtain a deeper appreciation of the contribution physics has made to medicine.

  3. Nuclear and Radiological Forensics and Attribution Overview

    SciTech Connect (OSTI)

    Smith, D K; Niemeyer, S

    2005-11-04

    The goal of the U.S. Department of Homeland Security (DHS) Nuclear and Radiological Forensics and Attribution Program is to develop the technical capability for the nation to rapidly, accurately, and credibly attribute the origins and pathways of interdicted or collected materials, intact nuclear devices, and radiological dispersal devices. A robust attribution capability contributes to threat assessment, prevention, and deterrence of nuclear terrorism; it also supports the Federal Bureau of Investigation (FBI) in its investigative mission to prevent and respond to nuclear terrorism. Development of the capability involves two major elements: (1) the ability to collect evidence and make forensic measurements, and (2) the ability to interpret the forensic data. The Program leverages the existing capability throughout the U.S. Department of Energy (DOE) national laboratory complex in a way that meets the requirements of the FBI and other government users. At the same time the capability is being developed, the Program also conducts investigations for a variety of sponsors using the current capability. The combination of operations and R&D in one program helps to ensure a strong linkage between the needs of the user community and the scientific development.

  4. Plutonium Immobilization Process: Puck Handling Module Supervisory Control System

    SciTech Connect (OSTI)

    Smail, T.R.

    2001-01-29

    This paper discusses the Supervisory Control and Data Acquisition for green puck handling. Also discussed is the overall control scheme implemented by the supervisory computer, the individual inspections completed on the puck, and the checks and balances between the computer, tray loading system and robot.

  5. Sampling device with a capped body and detachable handle

    DOE Patents [OSTI]

    Jezek, Gerd-Rainer (Orchard Park, NY)

    2000-01-01

    The apparatus is a sampling device having a pad for sample collection, a body which supports the pad, a detachable handle connected to the body and a cap which encloses and retains the pad and body to protect the integrity of the sample.

  6. Tritium handling experience at Atomic Energy of Canada Limited

    SciTech Connect (OSTI)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I.

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  7. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    SciTech Connect (OSTI)

    Mertz, G.

    1999-12-16

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  8. Method of preparing and handling chopped plant materials

    DOE Patents [OSTI]

    Bransby, David I. (2668 Wire Rd., Auburn, AL 36832)

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  9. ETA-HITP07 - Road Course Handling Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Revision 0 Effective November 1, 2004 Road Course Handling Test Prepared by Electric Transportation Applications Prepared by: ______________________________ Date: __________ Garrett Beauregard Approved by: ________________________________________________ Date: _______________ Donald Karner Procedure ETA-HITP07 Revision 0 i 2004 Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1. Objectives 1 2. Purpose 1 3. Documentation Support 1 4. Initial Conditions and

  10. ETA-HTP07 - Road Course Handling Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Revision 0 Effective May 1, 2004 Road Course Handling Test Prepared by Electric Transportation Applications Prepared by: ______________________________ Date: __________ Roberta Brayer Approved by: ________________________________________________ Date: _______________ Donald Karner Procedure ETA-HTP07 Revision 0 i 2004 Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1. Objectives 1 2. Purpose 1 3. Documentation Support 1 4. Initial Conditions and Prerequisites 1 5.

  11. FRMAC Interactions During a Radiological or Nuclear Event

    SciTech Connect (OSTI)

    Wong, C T

    2011-01-27

    During a radiological or nuclear event of national significance the Federal Radiological Emergency Monitoring and Assessment Center (FRMAC) assists federal, state, tribal, and local authorities by providing timely, high-quality predictions, measurements, analyses and assessments to promote efficient and effective emergency response for protection of the public and the environment from the consequences of such an event.

  12. Current Trends in Gamma Ray Detection for Radiological Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-08-18

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies.

  13. Radiological Security Partnership | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological Security ... Radiological Security Partnership The mp4 video format is not supported by this browser. Download video Captions: On Time: 4:36 min. This voluntary program provides government-funded security enhancements at sites with radioactive materials of concern

  14. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    SciTech Connect (OSTI)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  15. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect (OSTI)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  16. Australian liquids-handling system cuts surges to LPG plant

    SciTech Connect (OSTI)

    McKee, G.; Stenner, T.D. )

    1990-08-06

    This paper reports how a pipeline liquids-handling facility recently commissioned allows gas production to be quickly ramped up to meet customer demand. Its design eliminates trouble-some liquid surges which had hampered plant operations. The pipeline-loop system, located at the Wallumbilla LPG processing plant, Queensland, was built for 60 of the cost of an equivalently sized conventional slug catcher. Its control system enables automatic, unattended handling of liquid surges and pigging slugs from the 102-km Silver Springs to Wallumbilla two-phase pipeline. Because of this system's simple hydraulics, normal slug-catcher piping design problems are eliminated. Safety is improved because the potentially hazardous condensate liquid is contained in a buried pipeline.

  17. 2012 NERSC User Survey Text

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 User Survey Text 2010/2011 User Survey Results 2009/2010 User Survey Results 2008/2009 User Survey Results 2007/2008 User Survey Results 2006 User Survey Results 2005 User Survey Results 2004 User Survey Results 2003 User Survey Results 2002 User Survey Results 2001 User Survey Results 2000 User Survey Results 1999 User Survey Results 1998 User Survey Results HPC Requirements for Science HPC Workshop Reports NERSC Staff Publications & Presentations Journal Cover Stories Galleries

  18. Health physics considerations in UF{sub 6} handling

    SciTech Connect (OSTI)

    Bailey, J.C.

    1991-12-31

    Uranium is a radioactive substance that emits alpha particles and very small amounts of gamma radiation. Its daughter products emit beta and gamma radiation. In uranium handling operations these are the radiations one must consider. This presentation will review the characteristics of the radiations, the isotopes from which they originate, the growth and decay of the uranium daughter products, and some specific health physics practices dictated by these factors.

  19. Handling encapsulated spent fuel in a geologic repository environment

    SciTech Connect (OSTI)

    Ballou, L.B.

    1983-02-01

    In support of the Spent Fuel Test-Climate at the U.S. Department of Energy`s Nevada Test Site, a spent-fuel canister handling system has been designed, deployed, and operated successfully during the past five years. This system transports encapsulated commercial spent-fuel assemblies between the packaging facility and the test site ({similar_to}100 km), transfers the canisters 420 m vertically to and from a geologic storage drift, and emplaces or retrieves the canisters from the storage holes in the floor of the drift. The spent-fuel canisters are maintained in a fully shielded configuration at all times during the handling cycle, permitting manned access at any time for response to any abnormal conditions. All normal operations are conducted by remote control, thus assuring as low as reasonably achievable exposures to operators; specifically, we have had no measurable exposure during 30 canister transfer operations. While not intended to be prototypical of repository handling operations, the system embodies a number of concepts, now demonstrated to be safe, reliable, and economical, which may be very useful in evaluating full-scale repository handling alternatives in the future. Among the potentially significant concepts are: Use of an integral shielding plug to minimize radiation streaming at all transfer interfaces. Hydraulically actuated transfer cask jacking and rotation features to reduce excavation headroom requirements. Use of a dedicated small diameter (0.5 m) drilled shaft for transfer between the surface and repository workings. A wire-line hoisting system with positive emergency braking device which travels with the load. Remotely activated grapples - three used in the system - which are insensitive to load orientation. Rail-mounted underground transfer vehicle operated with no personnel underground.

  20. Material Handling Fuel Cells for Building Electric Peak Shaving Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Handling Fuel Cells for Building Electric Peak Shaving Applications U.S. Department of Energy Fuel Cell Technologies Office August 11, 2015 Presenter: Michael Penev of NREL DOE Host: Pete Devlin 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 Acknowledgments Fuel Cell Technologies Office, DOE EERE For providing funding for this project and for supporting sustainable hydrogen technology development through analysis, demonstration,

  1. COLLOQUIUM: Handling Plasma Wall Interactions on ITER | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab June 8, 2015, 4:15pm to 6:30pm Colloquia MBG Auditorium COLLOQUIUM: Handling Plasma Wall Interactions on ITER Dr. Richard Pitts ITER Although the ITER machine design is essentially complete, with almost all major systems into the procurement phase, there are many physics issues which remain open and require continued investigation during the machine construction years in preparation for both early operation and the high performance burning plasma phases. Boundary physics and the

  2. ETA-UTP007 - Road Course Handling Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Revision 0 Effective March 23, 2001 Road Course Handling Test Prepared by Electric Transportation Applications Prepared by: ______________________________ Date:__________ Jude M. Clark Approved by: ________________________________________________ Date: _______________ Steven R. Ryan Procedure ETA-UTP007 Revision 0 2 ©2001 Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Objectives 3 2.0 Purpose 3 3.0 Documentation Support 3 4.0 Initial Conditions and

  3. Early Markets: Fuel Cells for Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Handling Equipment Overview Fuel cells can be used to produce power for many end-uses in stationary, transportation, and portable power applications. By directly converting the chemical energy in fuels such as hydrogen, natural gas, or biogas to electricity, fuel cells can effciently provide power while at the same time producing almost no harmful air pollutants. Fuel cell systems are commercially available today for several applications. One of these emerging markets is in material

  4. Liquid class predictor for liquid handling of complex mixtures

    DOE Patents [OSTI]

    Seglke, Brent W. (San Ramon, CA); Lekin, Timothy P. (Livermore, CA)

    2008-12-09

    A method of establishing liquid classes of complex mixtures for liquid handling equipment. The mixtures are composed of components and the equipment has equipment parameters. The first step comprises preparing a response curve for the components. The next step comprises using the response curve to prepare a response indicator for the mixtures. The next step comprises deriving a model that relates the components and the mixtures to establish the liquid classes.

  5. Webinar: Analysis Using Fuel Cell Material Handling Equipment for Shaving

    Broader source: Energy.gov (indexed) [DOE]

    Peak Building Energy | Department of Energy Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Analysis Using Fuel Cell Material Handling Equipment (MHE) for Shaving Peak Building Energy" held on August 11, 2015. PDF icon Analysis Using Fuel Cell MHE for Shaving Peak Building Energy Webinar Slides More Documents & Publications DOE Analysis Related to H2USA Early-Stage Market Change and Effects of the Recovery Act Fuel Cell

  6. DOE-HDBK-1122-99; Radiological Control Technican Training

    Office of Environmental Management (EM)

    Radiological Work Coverage Study Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information that

  7. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radiological Work Coverage Instructor's Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information

  8. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    SciTech Connect (OSTI)

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has benefited greatly from review principally by Steve Pye, and also by Paul Eslinger, Dave Sevougian and Jiann Su.

  9. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

  10. Adaptively Reevaluated Bayesian Localization (ARBL): A Novel Technique for Radiological Source Localization

    SciTech Connect (OSTI)

    Miller, Erin A.; Robinson, Sean M.; Anderson, Kevin K.; McCall, Jonathon D.; Prinke, Amanda M.; Webster, Jennifer B.; Seifert, Carolyn E.

    2015-06-01

    Adaptively Reevaluated Bayesian Localization (ARBL): A Novel Technique for Radiological Source Localization

  11. INTERNATIONAL COOPERATION ON RADIOLOGICAL THREAT REDUCTION PROGRAMS IN RUSSIA

    SciTech Connect (OSTI)

    Landers, Christopher C.; Tatyrek, Aaron P.

    2009-10-07

    Since its inception in 2004, the United States Department of Energy’s Global Threat Reduction Initiative (GTRI) has provided the Russian Federation with significant financial and technical assistance to secure its highly vulnerable and dangerous radiological material. The three program areas of this assistance are the removal of radioisotope thermoelectric generators (RTG), the physical protection of vulnerable in-use radiological material of concern, and the recovery of disused or abandoned radiological material of concern. Despite the many successes of the GTRI program in Russia, however, there is still a need for increased international cooperation in these efforts. Furthermore, concerns exist over how the Russian government will ensure that the security of its radiological materials provided through GTRI will be sustained. This paper addresses these issues and highlights the successes of GTRI efforts and ongoing activities.

  12. Radiological Source Registry and Tracking (RSRT) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Source Registry and Tracking (RSRT) Radiological Source Registry and Tracking (RSRT) Department of Energy (DOE) Notice N 234.1 Reporting of Radioactive Sealed Sources has been superseded by DOE Order O 231.1B Environment, Safety and Health Reporting. O 231.1B identifies the requirements for centralized inventory and transaction reporting for radioactive sealed sources. Each DOE site/facility operator that owns, possesses, uses or maintains in custody those accountable radioactive

  13. Portsmouth Training Exercise Helps Radiological Trainees Spot Mistakes

    Energy Savers [EERE]

    Safely | Department of Energy Portsmouth Training Exercise Helps Radiological Trainees Spot Mistakes Safely Portsmouth Training Exercise Helps Radiological Trainees Spot Mistakes Safely February 11, 2016 - 12:10pm Addthis Connie Martin performs work inside the Error Lab while trainees observe her actions for mistakes. Connie Martin performs work inside the Error Lab while trainees observe her actions for mistakes. Lorrie Graham (left) talks with trainees in a classroom setting before

  14. Cardiovascular and Interventional Radiological Society of Europe Guidelines

    Office of Scientific and Technical Information (OSTI)

    on Endovascular Treatment in Aortoiliac Arterial Disease (Journal Article) | SciTech Connect Cardiovascular and Interventional Radiological Society of Europe Guidelines on Endovascular Treatment in Aortoiliac Arterial Disease Citation Details In-Document Search Title: Cardiovascular and Interventional Radiological Society of Europe Guidelines on Endovascular Treatment in Aortoiliac Arterial Disease PurposeThese guidelines are intended for use in assessing the standard for technical success

  15. Hospital Triage in First Hours After Nuclear or Radiological Disaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance Center/Training Site (REAC/TS) at the Oak Ridge Institute for Science and Education (ORISE) authored an article that addresses the problems emergency physicians would likely face in the event of a nuclear or radiological catastrophe. The article specifically covers actions that would need to occur so that reasonable decisions are made during the critical

  16. DOE Subpart H Report. Annual NESHAPS Meeting on Radiological Emissions |

    Office of Environmental Management (EM)

    Department of Energy Subpart H Report. Annual NESHAPS Meeting on Radiological Emissions DOE Subpart H Report. Annual NESHAPS Meeting on Radiological Emissions Gustavo Vazquez*, DOE; Sandra Snyder, PNNL Abstract: The National Emissions Standards for Hazardous Air Pollutants, Subpart H, (NESHAPs - Radioactive Air) meeting provides an opportunity for federal and state regulators, Department of Energy employees and contractors, standards developers, and industry representatives to work together

  17. DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads

    Office of Environmental Management (EM)

    13.1 Overhead 13.1 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators Objectives: * Identify the general characteristics of accelerators. * Identify the types of particles accelerated. * Identify the two basic types of accelerators. * Identify uses for accelerators. * Define prompt radiation. * Identify prompt radiation sources. OT 13.2 Overhead 13.2 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators (cont.) Objectives: * Define radioactivation. * Explain how contaminated material

  18. Feasibiltiy of Power and Particle Handling in an ST-FNSF and...

    Office of Scientific and Technical Information (OSTI)

    Feasibiltiy of Power and Particle Handling in an ST-FNSF and the Effects of Divertor Geometry Citation Details In-Document Search Title: Feasibiltiy of Power and Particle Handling...

  19. U-226: Linux Kernel SFC Driver TCP MSS Option Handling Denial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Linux Kernel SFC Driver TCP MSS Option Handling Denial of Service Vulnerability U-226: Linux Kernel SFC Driver TCP MSS Option Handling Denial of Service Vulnerability August 2,...

  20. "Mug Handles" Help Get a Grip on Lower-Cost, Controllable Fusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Mug Handles" Help Get a Grip on Lower-Cost, Controllable Fusion Energy American Fusion News Category: U.S. Universities Link: "Mug Handles" Help Get a Grip on Lower-Cost,...

  1. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect (OSTI)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil; Marschman, Steve

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INLs Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  2. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect (OSTI)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INLs Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  3. LM Records Handling System-Fernald Historical Records System, Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legacy Management | Department of Energy Fernald Historical Records System, Office of Legacy Management LM Records Handling System-Fernald Historical Records System, Office of Legacy Management LM Records Handling System-Fernald Historical Records System, Office of Legacy Management PDF icon LM Records Handling System-Fernald Historical Records System, Office of Legacy Management More Documents & Publications LM Records Handling System (LMRHS01) - Electronic Records Keeping System,

  4. LM Records Handling System-Freedom of Information/Privacy Act, Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legacy management | Department of Energy Freedom of Information/Privacy Act, Office of Legacy management LM Records Handling System-Freedom of Information/Privacy Act, Office of Legacy management LM Records Handling System-Freedom of Information/Privacy Act, Office of Legacy management PDF icon LM Records Handling System-Freedom of Information/Privacy Act, Office of Legacy management More Documents & Publications LM Records Handling System-Fernald Historical Records System, Office of

  5. Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings

    SciTech Connect (OSTI)

    Strunk, W.D.; Thornton, S.G.

    1988-01-01

    This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA. (LTN)

  6. Duct Remediation Program: Material characterization and removal/handling

    SciTech Connect (OSTI)

    Beckman, T.d.; Davis, M.M.; Karas, T.M.

    1992-11-01

    Remediation efforts were successfully performed at Rocky Flats to locate, characterize, and remove plutonium holdup from process exhaust ducts. Non-Destructive Assay (NDA) techniques were used to determine holdup locations and quantities. Visual characterization using video probes helped determine the physical properties of the material, which were used for remediation planning. Assorted equipment types, such as vacuum systems, scoops, brushes, and a rotating removal system, were developed to remove specific material types. Personnel safety and material handling requirements were addressed throughout the project.

  7. Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

    2011-04-01

    This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

  8. Remote handling facility and equipment used for space truss assembly

    SciTech Connect (OSTI)

    Burgess, T.W.

    1987-01-01

    The ACCESS truss remote handling experiments were performed at Oak Ridge National Laboratory's (ORNL's) Remote Operation and Maintenance Demonstration (ROMD) facility. The ROMD facility has been developed by the US Department of Energy's (DOE's) Consolidated Fuel Reprocessing Program to develop and demonstrate remote maintenance techniques for advanced nuclear fuel reprocessing equipment and other programs of national interest. The facility is a large-volume, high-bay area that encloses a complete, technologically advanced remote maintenance system that first began operation in FY 1982. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the DOE, the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, and the US Navy in addition to the National Aeronautics and Space Administration. ACCESS truss remote assembly was performed in the ROMD facility using the Central Research Laboratory's (CRL) model M-2 servomanipulator. The model M-2 is a dual-arm, bilateral force-reflecting, master/slave servomanipulator which was jointly developed by CRL and ORNL and represents the state of the art in teleoperated manipulators commercially available in the United States today. The model M-2 servomanipulator incorporates a distributed, microprocessor-based digital control system and was the first successful implementation of an entirely digitally controlled servomanipulator. The system has been in operation since FY 1983. 3 refs., 2 figs.

  9. Operation Cornerstone onsite radiological safety report for announced nuclear tests, October 1988--September 1989

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    Cornerstone was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site (NTS) from October 1, 1988, through September 30, 1989. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Radiation Protection Technicians (RPT) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage were provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

  10. Investigation of an MLE Algorithm for Quantification of Aerial Radiological Measurements

    SciTech Connect (OSTI)

    Reed, Michael; Essex, James

    2012-05-10

    Aerial radiation detection is routinely used by many organizations (DHS, DOE, EPA, etc.) for the purposes of identifying the presence of and quantifying the existence of radiation along the ground. This work involves the search for lost or missing sources, as well as the characterization of large-scale releases such as might occur in a nuclear power plant accident. The standard in aerial radiological surveys involves flying large arrays of sodium-iodide detectors at altitude (15 to 700 meters) to acquire geo-referenced, 1 Hz, 1024-channel spectra. The historical shortfalls of this technology include: Very low spatial resolution (typical field of view is circle of two-times altitude) Relatively low detectability associated with large stand-off distances Fundamental challenges in performing ground-level quantification This work uses modern computational power in conjunction with multi-dimensional deconvolution algorithms in an effort to improve spatial resolution, enhance detectability, and provide a robust framework for quantification.

  11. ORNL/TM-11118 RESULTS OF THE RADIOLOGICAL SURVEY AT METPATH INCORPORAT...

    Office of Legacy Management (LM)

    to various government agencies. In the 1940s and 195Os, MCW produced thorium and lithium, under contract, for the Atomic Energy Commission (AEC). These activities ceased in...

  12. Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029

    SciTech Connect (OSTI)

    B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

    2013-09-01

    This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

  13. Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel. [Fuel crud

    SciTech Connect (OSTI)

    Hazelton, R.F.

    1987-09-01

    Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs.

  14. Session 70 - Panel: Consequence Management of a Radiological Dispersion Device

    SciTech Connect (OSTI)

    Demmer, Rick; Lenox, Dave; Wilson, Pete; Schumann, Jean; Honerlah, Hans; Chen, S.Y.; Gwiazdowski, Gene

    2006-07-01

    This was an unusual panel session in that the panelists did not give presentations but responded to a tabletop exercise where they postulated decisions necessary after radiological dispersal device detonation event (dirty bomb). Articles in the daily WM'06 newsletter sought to prepare the participants for a simulated exercise involving the sighting of a known terrorist and the theft of radiological materials. During the slide presentation (in the form of a developing television news broadcast) the audience played decision makers and their 'votes' were tallied for multiple choice decisions and questions. After that was completed, the expert panel was asked to give their best responses for those decisions. The audience was allowed to ask questions and to give opinions as the panel responded. During the exercise the session co-chairs alternated announcing the events as they unfolded in the exercise and polled the audience using multiple-choice options for decisions to be made during the event. The answers to those questions were recorded and compared to the panelists' answers. The event chronology and decisions (audience questions) are shown in this report. - An explosion was reported at the Tucson International Airport (9:35 am). 1. Who is in charge? - Witnesses report 10-20 fatalities, 50 injured and massive damage to the airport, no cause determined yet (9:55 am). 2. IC's Next Action Should Be? - KRAD (local television station) Investigative News Reporters interviewed witnesses that observed a 25 foot U-Haul truck pull up onto the departure ramp just moments before the explosion (10:02 am). Terrorism has not been ruled out. 3. When is the incident declared a potential crime scene? - City of Tucson IC has ordered an evacuation of the airport to a holding area at a nearby long term parking area (10:10 am). No information has been given as to why the evacuation took place. The explosion is suspected to contain chemical, biological or radiological agents. County and State emergency operations centers have been activated. 4. Terrorism is suspected; next action is? - KRAD News has just learned that elevated levels of radiation have been detected at the airport and by the University of Arizona remote detectors (10:17 am). A 'dirty bomb' is now suspected. 5. What should the IC do next? - KRAD reporters have learned that dose rates are approximately 7.5 mR/hr gamma radiation in the short-term parking area (10:28 am). Experts attending a conference at the Tucson Convention Center state that these levels are not life threatening, but well above acceptable levels. 6. What does the IC do next? 7. Who is the coordinating agency? - Forensics indicate that the radioactive material used in the explosion at the Tucson Airport is apparently a mixture of high jacked low level waste from a nuclear facility and stolen radiation sources for medical or industrial purposes (11:21 am). The origin of the waste material is from an audience member's plant (assume it is your own material). 8. Who is responsible for surveys and characterization? 9. Who is responsible for the decontamination? 10. Where are the injured and contaminated victims treated? KRAD learned from the University of Arizona that the plume from the 'dirty bomb' elevated radiation levels above approved levels over a 3 square mile area downwind of the Tucson Airport (1:13 pm). People in the affected area are checking in at emergency rooms at the hospital to learn if they're in danger of radiation health affects. Gridlock has set in as panicked people are either leaving the area or headed for emergency rooms. 11. What should be done to help mitigate fears? DHS raises the National Terrorism Alert to Code Red (late afternoon). 12. What should your nuclear facility do next? 13. KRAD reporter contacts you at your nuclear facility and asks, 'Since title to the waste remains with your company, will your company cover the cost of the terrorist event including all decontamination and medical expenses? The results of the question were very interesting and stimulated quite a bit of discussion am

  15. STEP Participant Survey Report

    Broader source: Energy.gov [DOE]

    STEP Participant Survey Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  16. ASPECT Emergency Response Chemical and Radiological Mapping

    ScienceCinema (OSTI)

    LANL

    2009-09-01

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.

  17. ASPECT Emergency Response Chemical and Radiological Mapping

    SciTech Connect (OSTI)

    LANL

    2008-05-12

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.

  18. Radiological assessment. A textbook on environmental dose analysis

    SciTech Connect (OSTI)

    Till, J.E.; Meyer, H.R.

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

  19. PHASE II CHARACTERIZATION SURVEY OF THE USNS BRIDGE (T AOE 10), MILITARY SEALIFT FLEET SUPPORT COMMAND, NAVAL STATION, NORFOLK, VIRGINIA DCN 5180-SR-01-0

    SciTech Connect (OSTI)

    NICK A. ALTIC

    2012-08-30

    In March 2011, the USNS Bridge was deployed off northeastern Honshu, Japan with the carrier USS Ronald Reagan to assist with relief efforts after the 2011 T?hoku earthquake and tsunami. During that time, the Bridge was exposed to air-borne radioactive materials leaking from the damaged Fukushima I Nuclear Power Plant. The proximity of the Bridge to the air-borne impacted area resulted in the contamination of the ships air-handling systems and the associated components, as well as potential contamination of other ship surfaces due to either direct intake/deposition or inadvertent spread from crew/operational activities. Preliminary surveys in the weeks after the event confirmed low-level contamination within the heating, ventilation, and air conditioning (HVAC) ductwork and systems, and engine and other auxiliary air intake systems. Some partial decontamination was performed at that time. In response to the airborne contamination event, Military Sealift Fleet Support Command (MSFSC) contracted Oak Ridge Associated Universities (ORAU), under provisions of the Oak Ridge Institute for Science and Education (ORISE) contract, to assess the radiological condition of the Bridge. Phase I identified contamination within the CPS filters, ventilation systems, miscellaneous equipment, and other suspect locations that could not accessed at that time (ORAU 2011b). Because the Bridge was underway during the characterization, all the potentially impacted systems/spaces could not be investigated. As a result, MSFSC contracted with ORAU to perform Phase II of the characterization, specifically to survey systems/spaces previously inaccessible. During Phase II of the characterization, the ship was in port to perform routine maintenance operations, allowing access to the previously inaccessible systems/spaces.

  20. Automated cassette-to-cassette substrate handling system

    DOE Patents [OSTI]

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph; DeChellis, Michael; Koo, Michael

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and a processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.

  1. Test reports for K Basins vertical fuel handling tools

    SciTech Connect (OSTI)

    Meling, T.A.

    1995-02-01

    The vertical fuel handling tools, for moving N Reactor fuel elements, were tested in the 305 Building Cold Test Facility (CTF) in the 300 Area. After fabrication was complete, the tools were functionally tested in the CTF using simulated N Reactor fuel rods (inner and outer elements). The tools were successful in picking up the simulated N Reactor fuel rods. These tools were also load tested using a 62 pound dummy to test the structural integrity of each assembly. The tools passed each of these tests, based on the performance objectives. Finally, the tools were subjected to an operations acceptance test where K Basins Operations personnel operated the tool to determine its durability and usefulness. Operations personnel were satisfied with the tools. Identified open items included the absence of a float during testing, and documentation required prior to actual use of the tools in the 100 K fuel storage basin.

  2. 340 waste handling complex: Deactivation project management plan

    SciTech Connect (OSTI)

    Stordeur, R.T.

    1998-06-25

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

  3. Decision Support Tool for the Management of Debris from Radiological Dispersal Devices and Other Incidents of National Significance

    SciTech Connect (OSTI)

    Lemieux, P.; Thorneloe, S.; Hayes, C.; Rodgers, M.; Christman, R.

    2008-07-01

    Unique challenges exist for the handling, transport, and disposal of debris resulting from homeland security incidents, disasters or other national emergencies. Access to guidance to facilitate decision making to ensure the safe and timely disposal of debris is critical to helping restore a community or region and prevent further contamination or spread of disease. For a radiological dispersal device (RDD), proper characterization of the quantity, properties, and level of contamination of debris can have a significant impact on cleanup costs and timelines. A suite of decision support tools (DSTs) is being developed by the U.S. EPA's Office of Research and Development to assist individuals responsible for making decisions associated with handling, transport, and disposal of such debris. The DSTs are location-specific to help identify specific facilities and contacts for making final disposal decisions. The DSTs provide quick reference to technical information, regulations, and other information to provide decision makers with assistance in guiding disposal decisions that are important for the protection of public health, first responders, and the environment. These tools are being developed in partnership with other U.S. government agencies, EPA program offices, industry, and state and local emergency response programs. (authors)

  4. Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Jeremy Gwin and Douglas Frenette

    2010-09-30

    This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or clean, building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, Final Status Survey Plan for Corrective Action Unit 117 Pluto Disassembly Facility, Building 2201) was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one of three categories: Class 1, Class 2 or Class 3 (a fourth category is a Non-Impacted Class which in the case of Building 2201 only pertained to exterior surfaces of the building.) The majority of the rooms were determined to fall in the less restrictive Class 3 category, however, Rooms 102, 104, 106, and 107 were identified as containing Class 1 and 2 areas. Building 2201 was divided into survey units and surveyed following the requirements of the Final Status Survey Plan for each particular class. As each survey unit was completed and documented, the survey results were evaluated. Each sample (static measurement) with units of counts per minute (cpm) was corrected for the appropriate background and converted to a value with units of dpm/100 cm2. With a surface contamination value in the appropriate units, it was compared to the surface contamination limits, or in this case the derived concentration guideline level (DCGLw). The appropriate statistical test (sign test) was then performed. If the survey unit was statistically determined to be below the DCGLw, then the survey unit passed and the null hypothesis (that the survey unit is above limits) was rejected. If the survey unit was equal to or below the critical value in the sign test, the null hypothesis was not rejected. This process was performed for all survey units within Building 2201. A total of thirty-three Class 1, four Class 2, and one Class 3 survey units were developed, surveyed, and evaluated. All survey units successfully passed the statistical test. Building 2201 meets the release criteria commensurate with the Waste Acceptance Criteria (for radiological purposes) of the U10C landfill permit residing within NNSS boundaries. Based on the thorough statistical sampling and scanning of the buildings interior, Building 2201 may be considered radiologically clean, or free of contamination.

  5. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    SciTech Connect (OSTI)

    Pierce, G.D. . Joint Integration Office); Beaulieu, D.H. ); Wolaver, R.W.; Carson, P.H. Corp., Boulder, CO )

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.

  6. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

  7. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    SciTech Connect (OSTI)

    Bardal, M.A. [PaR Systems, Inc., Shoreview, MN (United States); Darwen, N.J. [Bechtel National, Inc., Richland, WA (United States)

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)

  8. Analytical methods for removing radiological constituents prior to organic analysis

    SciTech Connect (OSTI)

    Hakonson, K.; Monagle, M.; Cournoyer, M.

    1997-12-31

    Within the Department of Energy (DOE), there is a need to analyze mixed waste materials (i.e. materials that are contaminated with both radiological and hazardous components). As part of the technical support the Organic Analysis Group provides for programs within Los Alamos National Laboratory, methods are under development for radiologically contaminated oil samples being tested for polychlorinated biphenyls and other semivolatile constituents. Radionuclides are removed from oil samples by filtering the samples through a commercials available solid phase extraction cartridge. An aliquot of the eluent is then analyzed to quantitate the residual radioactivity.

  9. RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    327-33 a a RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE 0 NEVADA TEST SITE (JANUARY 1986 THROUGH DECEMBER 1986) BANEL A. GONZALEZ HEALTH PHY%ICIST SePTEMl3ER 1987 WORK PERFORMED UNDER CONTRACT NO. DE-ACXM-84-84NV10327 REYNOLDS ELECTRICAL & ENGINEERING CO., INC. POST OFFICE BOX 14400 LAS VEGAS, NV 89114 DOE/NV/10327-33 RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE NEVADA TEST SITE (JANUARY 1986 THROUGH DECEMBER 1986) Daniel A. Gonzalez Health Physicist

  10. Radiological Worker Training Power Point Slides for App. A

    Energy Savers [EERE]

    30-2008 DOE HANDBOOK Radiological Worker Training DOE-HDBK-1130-2008 Overheads December 2008 Reaffirmed 2013 OT 1.1 DOE-HDBK-1130-2008 Overhead 1.1 Regulatory Documents Objectives: * Identify the hierarchy of regulatory documents. * Define the purposes of 10 CFR Parts 820, 830 and 835. * Define the purpose of the DOE Radiological Control Standard. OT 1.2 DOE-HDBK-1130-2008 Overhead 1.2 Regulatory Documents (cont.) Objectives: * Define the terms "shall" and "should" as used in

  11. DOE - Office of Legacy Management -- U S Naval Radiological Defense

    Office of Legacy Management (LM)

    Laboratory - CA 0-06 Naval Radiological Defense Laboratory - CA 0-06 FUSRAP Considered Sites Site: U. S. NAVAL RADIOLOGICAL DEFENSE LABORATORY (CA.0-06) Eliminated from consideration under FUSRAP - Referred to the DoD Designated Name: Not Designated Alternate Name: None Location: San Francisco , California CA.0-06-1 Evaluation Year: 1987 CA.0-06-1 Site Operations: NRC licensed DoD facility which used small quantities of nuclear materials for R&D purposes and decontaminated ships.

  12. RADIOLOGICAL EVALUATION OF DECONTAMINATION DEBRIS LOCATED AT THE

    Office of Legacy Management (LM)

    h ' . * ' 1. MI). q-8 RADIOLOGICAL EVALUATION OF DECONTAMINATION DEBRIS LOCATED AT THE FUTURA CHEMICAL COMPANY FACILITY 9200 LATTY AVENUE HAZELWOOD, MISSOURI L.W. Cole J.D. Berger W.O. Helton B.M. Putnam T.J. Sowell C.F. Weaver R.D. Condra September 9, 1981 Work performed by Radiological Site Assessment Program Manpower Education, Research, and Training Division Oak Ridge Associated Universities Oak Ridge, Tennessee 37830 Under Interagency Agreement DOE No. 40-770-80 NRC Fin. No. A-9093-0

  13. DOE-HDBK-1122-99; Radiological Control Technical Training

    Office of Environmental Management (EM)

    10 Access Control and Work Area Setup Study Guide 2.10-1 Course Title: Radiological Control Technician Module Title: Access Control and Work Area Setup Module Number: 2.10 Objectives: i 2.10.01 State the purpose of and information found on a Radiological Work Permit (RWP) including the different classifications at your site. i 2.10.02 State responsibilities in using or initiating a RWP. i 2.10.03 State the document that governs the ALARA program at your site. i 2.10.04 Describe how

  14. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    ALARA Instructor's Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities

  15. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Contamination Control Instructor's Guide 2.05-1 Course Title: Radiological Control Technician Module Title: Contamination Control Module Number: 2.05 Objectives: 2.05.01 Define the terms "removable and fixed surface contamination," state the difference between them and list common methods used to measure each. 2.05.02 State the components of a radiological monitoring program for contamination control and common methods used to accomplish them. 2.05.03 State the basic goal of a

  16. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Access Control and Work Area Setup Instructor's Guide 2.10-1 Course Title: Radiological Control Technician Module Title: Access Control and Work Area Setup Module Number: 2.10 Objectives: L 2.10.01 State the purpose of and information found on a Radiological Work Permit (RWP) including the different classifications at your site. L 2.10.02 State responsibilities in using or initiating a RWP. L 2.10.03 State the document that governs the ALARA program at your site. L 2.10.04 Describe how

  17. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    ALARA Study Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities for

  18. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Contamination Control Study Guide 2.05-1 Course Title: Radiological Control Technician Module Title: Contamination Control Module Number: 2.05 Objectives: 2.05.01 Define the terms "removable and fixed surface contamination," state the difference between them and list common methods used to measure each. 2.05.02 State the components of a radiological monitoring program for contamination control and common methods used to accomplish them. 2.05.03 State the basic goal of a contamination

  19. Radiological risk assessment of environmental radon

    SciTech Connect (OSTI)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2013-11-27

    Measurements of radon gas ({sup 222}Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the {sup 226}Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 76.8 Bq m{sup ?3} to 571.1 251.4 Bq m{sup ?3}, 101.0 41.0 Bq m{sup ?3} to 245.3 100.2 Bq m{sup ?3}, 53.1 7.5 Bq m{sup ?3} to 181.8 9.7 Bq m{sup ?3}, 256.1 59.3 Bq m{sup ?3} to 652.2 222.2 Bq m{sup ?3} and 164.5 75.9 Bq m{sup ?3} to 653.3 240.0 Bq m{sup ?3}, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 194.3 Bq m{sup ?3}, 192.1 75.4 Bq m{sup ?3}, 176.1 85.9 Bq m{sup ?3} and 28.4 5.7 Bq m{sup ?3}, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the action level for radon gas of 148 Bq m{sup ?3} proposed by EPA except monazite 0.15 kg, struverite 0.15 kg and 0.25 kg. Whereas, all building material samples have exceeded the radon concentration in concrete and building materials of 3 to 7 Bq m{sup ?3} estimated by ICRP. The annual effective dose, effective dose equivalent, and radon exhalation rates in tin tailings were calculated to be in the range of 2.47 to 11.46 mSv, 5.94 to 1090.56 mSv y{sup ?1}, and 0.23 to 1.18 mBq kg{sup ?1} h{sup ?1}. For building materials, the calculated risk assessment of the annual effective dose, effective dose equivalent, radon exhalation rates and fatal cancer risk were 0.72 to 10.00 mSv, 1.73 to 24.00 mSv y{sup ?1}, 0.010 to 0.06 mBq kg{sup ?1} h{sup ?1} and 40 to 550 chances of persons will suffer the cancer per million (1 10{sup 6}), respectively.

  20. Paint for detection of corrosion and warning of chemical and radiological attack

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA)

    2010-08-24

    A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

  1. Method for warning of radiological and chemical substances using detection paints on a vehicle surface

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA)

    2012-03-13

    A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

  2. Surface with two paint strips for detection and warning of chemical warfare and radiological agents

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2013-04-02

    A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

  3. Cultural Resource Protection Plan for the Remote-Handled Low-Level Waste Disposal Facility at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Pace, Brenda Ringe; Gilbert, Hollie Kae

    2015-05-01

    This plan addresses cultural resource protection procedures to be implemented during construction of the Remote Handled Low Level Waste project at the Idaho National Laboratory. The plan proposes pre-construction review of proposed ground disturbing activities to confirm avoidance of cultural resources. Depending on the final project footprint, cultural resource protection strategies might also include additional survey, protective fencing, cultural resource mapping and relocation of surface artifacts, collection of surface artifacts for permanent curation, confirmation of undisturbed historic canal segments outside the area of potential effects for construction, and/or archaeological test excavations to assess potential subsurface cultural deposits at known cultural resource locations. Additionally, all initial ground disturbing activities will be monitored for subsurface cultural resource finds, cultural resource sensitivity training will be conducted for all construction field personnel, and a stop work procedure will be implemented to guide assessment and protection of any unanticipated discoveries after initial monitoring of ground disturbance.

  4. Order Module--DOE STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL |

    Energy Savers [EERE]

    Department of Energy STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL Order Module--DOE STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL "The radiological control program discussed in DOE-STD-1098-2008 goes beyond the scope of, and includes more details than, the documented radiation protection program (RPP) required by 10 CFR 835, -Occupational Radiation Protection.‖ To ensure implementation of a comprehensive and coherent radiological control program that exceeds basic

  5. DOE-HDBK-1141-2001; Radiological Assessor Training, Student's Guide

    Office of Environmental Management (EM)

    Student's Guide Notes Module 4-1 I. Introduction II. Radiological Control Program A. Overall program The Radiological Control Program consists of the commitments, policies, and procedures that are administered by a site or facility to meet the EH Health and Safety Policy. The Radiation Protection Program required by 10 CFR Part 835 is an element of the overall Radiological Control Program. The Radiological Control Program should address the following: * Requirements * Responsibilities *

  6. DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Course Introduction

    Office of Environmental Management (EM)

    143-2001 Instructor's Guide DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Administrative Policies and Procedures Objectives: Upon completion of this training, the student will be able to: 1. Identify the radiological controlled areas a person should be allowed to enter after successfully completing General Employee Radiological Training, Radiological Worker I training, and Radiological Worker II training. 2. List five actions used to increase the awareness level of workers relating to

  7. NEPA Litigation Surveys

    Broader source: Energy.gov [DOE]

    CEQ publishes surveys on NEPA litigation on an annual basis. These surveys identify the number of cases involving a NEPA based cause of action, Federal agencies that were identified as a lead...

  8. Radiology utilizing a gas multiwire detector with resolution enhancement

    DOE Patents [OSTI]

    Majewski, Stanislaw (Grafton, VA); Majewski, Lucasz A. (Grafton, VA)

    1999-09-28

    This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

  9. EA-1919: Recycle of Scrap Metals Originating from Radiological Areas

    Broader source: Energy.gov [DOE]

    This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

  10. Radiological safety training for accelerator facilities: DOE handbook

    SciTech Connect (OSTI)

    1997-03-01

    This program management guide describes the proper implementation standard for core training as outline in the DOE Radiological Control (RadCon) Manual. Its purpose is to assist DOE employees and Managing and Operating (M&O) contractors having responsibility for implementing the core training recommended by the RadCon Manual.

  11. EM-Led Radiological Incident Response Program Receives Honors

    Broader source: Energy.gov [DOE]

    A program led by EM’s Carlsbad Field Office (CBFO) that coordinates analytical capabilities throughout DOE for response to potential national radiological incidents recently received recognition for the best-in-track poster at a waste management conference earlier this year.

  12. Federal Radiological Monitoring and Assessment Center | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Radiological Monitoring and Assessment Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  13. GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  14. Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  15. NNSA Provides Tajikistan Specialized Vehicles to Transport Radiological

    National Nuclear Security Administration (NNSA)

    Materials | National Nuclear Security Administration Provides Tajikistan Specialized Vehicles to Transport Radiological Materials | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  16. Nuclear Radiological Threat Task Force Established | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Radiological Threat Task Force Established | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  17. NNSA Nuclear/Radiological Incident Response | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nuclear/Radiological Incident Response | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  18. NNSA Recovers Radiological Material from Mexico | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Recovers Radiological Material from Mexico | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  19. 2002 Manufacturing Energy Consumption Survey - User Needs Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    2002 Manufacturing Energy Consumption Survey: User-Needs Survey View current results. We need your help in designing the next Energy Consumption Survey (MECS) As our valued...

  20. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Broader source: Energy.gov [DOE]

    This report by NREL discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment.

  1. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  2. RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric Peak Shaving Applications

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar entitled "Material Handling Fuel Cells for Building Electric Peak Shaving Applications".

  3. Urenco`s experience of UF{sub 6} handling

    SciTech Connect (OSTI)

    Saelmans, F.; Scane, C.; Christofzik, J.

    1991-12-31

    Urenco operates enrichment plants at three sites, Almelo (Netherlands), Capenhurst (United Kingdom) and Gronau (Germany). Current installed separative work capacity is 2,500 tSWpa. Since 1971, when the first pilot plants were built, enrichment production has totalled 18,000 tSW. During this last 20 years over 3,500 48 containers of UF{sub 6} have been fed to the plants, over 3,700 30 containers have been filled with product and delivered successfully to Urenco`s customers worldwide and over 3,000 48 containers of depleted tails have been filled and have either been returned to customers or retained for long term storage on site. The paper gives a brief outline of Urenco`s experience in handling UF{sub 6}: the equipment and methods used in receiving, feeding, filling, blending, liquid sampling, storing, moving on site and despatching of UF{sub 6} containers. Some of the difficulties experienced with UF{sub 6} containers are appended.

  4. Automated Proactive Techniques for Commissioning Air-Handling Units

    SciTech Connect (OSTI)

    Katipamula, Srinivas ); Brambley, Michael R. ); Luskay, Larry

    2003-08-30

    Many buildings today use sophisticated building automation systems (BASs) to manage a wide and varied range of building systems. Although the capabilities of the BASs seem to have increased over time, many buildings still are not properly commissioned, operated or maintained. Lack of or improper commissioning, the inability of the building operators to grasp the complex controls, and lack of proper maintenance leads to inefficient operations and reduced lifetimes of the equipment. If regularly scheduled manual maintenance or re-commissioning practices are adopted, they can be expensive and time consuming. Automated proactive commissioning and diagnostic technologies address two of the main barriers to commissioning: cost and schedules. Automated proactive continuous commissioning tools can reduce both the cost and time associated with commissioning, as well as enhance the persistence of commissioning fixes. In the long run, automation even offers the potential for automatically correcting problems by reconfiguring controls or changing control algorithms dynamically. This paper will discuss procedures and processes that can be used to automate and continuously commission the economizer operation and outdoor-air ventilation systems of an air-handling unit.

  5. Self-actuating mechanical grapple for lifting and handling objects

    DOE Patents [OSTI]

    Hovis, Gregory L. (North Augusta, SC); Etheredge, Jr., Carl T. (Tuscaloosa, AL)

    2001-01-01

    A self-actuating mechanical grapple for lifting and handling an object includes a support housing with upper and lower portions and defining an internal recess. The lower portion of the housing includes a bottom opening which communicates with the recess. Preferably, two or three grapple jaws are provided, the first end portions of which are connected to the housing and the second end portions thereof remain free for engaging an object. The grapple jaws are pivotable between open and closed positions. An actuator member is slidably positioned in the recess for opening and closing the jaws, and includes a cam portion in operative engagement with the first end portions of the jaws in a manner to pivot the jaws when the actuator member moves axially relative to the housing. The actuator member includes a rotatable member with at least one contact member. A locking member or logic ring includes grooves defining open and closed positions of the jaws and is fixedly mounted to the internal surface of the housing and cooperates with the rotatable member. A plunger member is axially movable in the housing for contacting an object and includes at least one stud member for immovably engaging the contact member.

  6. "CONFIRMATORY SURVEY RESULTS FOR THE ABB COMBUSTION ENGINEERING SITE WINDSOR, CONNECTICUT DCN 5158-SR-02-2

    SciTech Connect (OSTI)

    ADAMS, WADE C

    2013-03-25

    The objectives of the confirmatory activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the NRC in evaluating the adequacy and accuracy of the contractor�s procedures and FSS results. ORAU reviewed ABB CE�s decommissioning plan, final status survey plan, and the applicable soil DCGLs, which were developed based on an NRC-approved radiation dose assessment. The surveys include gamma surface scans, gamma direct measurements, and soil sampling.

  7. 2014 NERSC User Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Survey 2014 NERSC User Survey December 17, 2014 by Francesca Verdier Please take a few minutes to fill out NERSC's annual user survey. Your feedback is important because it allows us to judge the quality of our services, give DOE information on how we are doing, and point us to areas in which we can improve. The survey is on the web at the URL: https://www.nersc.gov/news-publications/publications-reports/user-surveys/2014/ and covers the allocation year 2014. Subscribe via RSS Subscribe

  8. Environmental Survey preliminary report

    SciTech Connect (OSTI)

    Not Available

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Sandia National Laboratories conducted August 17 through September 4, 1987. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Sandia National Laboratories-Albuquerque (SNLA). The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at SNLA, and interviews with site personnel. 85 refs., 49 figs., 48 tabs.

  9. Aerial Measuring System (AMS) Baseline Surveys for Emergency Planning

    SciTech Connect (OSTI)

    Lyons, C

    2012-06-04

    Originally established in the 1960s to support the Nuclear Test Program, the AMS mission is to provide a rapid and comprehensive worldwide aerial measurement, analysis, and interpretation capability in response to a nuclear/radiological emergency. AMS provides a responsive team of individuals whose processes allow for a mission to be conducted and completed with results available within hours. This presentation slide-show reviews some of the history of the AMS, summarizes present capabilities and methods, and addresses the value of the surveys.

  10. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

  11. Method for warning of radiological and chemical agents using detection paints on a vehicle surface

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA); Brunk, James L. (Martinez, CA); Day, S. Daniel (Danville, CA)

    2012-03-27

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  12. Aerial vehicle with paint for detection of radiological and chemical warfare agents

    DOE Patents [OSTI]

    Farmer, Joseph C.; Brunk, James L.; Day, S. Daniel

    2013-04-02

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  13. INDEPENDENT CONFIRMATORY SURVEY OF THE NUCLEAR RESEARCH LABORATORY AT THE UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN, ILLINOIS

    SciTech Connect (OSTI)

    EVAN M. HARPENAU

    2012-06-28

    ORAU conducted confirmatory survey activities within the NRL at the University during the week of May 7, 2012. The survey activities included visual inspections/ assessments, surface activity measurements, and volumetric concrete sampling activities. During the course of the confirmatory activities, ORAU noted several issues with the survey-for-release activities performed at the University. Issues included inconsistencies with: survey unit classifications were not designated according to Multi-Agency Radiation Survey and Site Investigation Manual guidance; survey instrument calibrations were not representative of the radionuclides of concern; calculations for instrumentation detection capabilities did not align with the release criteria discussed in the licensees survey guidance documents; total surface activity measurements were in excess of the release criteria; and Co-60 and Eu-152 concentrations in the confirmatory concrete samples were above their respective guidelines. Based on the significant programmatic issues identified, ORAU cannot independently conclude that the NRL satisfied the requirements and limits for release of materials without radiological restrictions.

  14. Resources for Handling Transcripts | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Graduate Transcripts for Current Graduate Institution » Resources for Handling Transcripts DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program Letters of Support Graduate Transcripts for Current Graduate Institution Resources for Handling Transcripts Application Evaluation

  15. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  16. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-05-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  17. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  18. Neutron Energy Measurements in Radiological Emergency Response Applications

    SciTech Connect (OSTI)

    Sanjoy Mukhopadhyay, Paul Guss, Michael Hornish, Scott Wilde, Tom Stampahar, Michael Reed

    2009-04-30

    We present significant results in recent advances in the determination of neutron energy. Neutron energy measurements are a small but very significant part of radiological emergency response applications. Mission critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the case of searching for special nuclear materials, neutron energy information from an unknown source can be of paramount importance.

  19. E. Cardis, International V.K. Ivanov, Medical Radiological Rese

    Office of Scientific and Technical Information (OSTI)

    25026 E. Cardis, International V.K. Ivanov, Medical Radiological Rese K. Mabuchi, Radia A.E. Okeanov, Belarussian Centre for Medic EDITORLAL NOTE This unedited Background Paper is not to be referenced or quoted. The views expressed remain the responsibility of the named authors. The views are not necessarily those of the governments of the member states of the Sponsoring Organizations. Although great care has been taken to maintain the accuracy of information contained in t h i s Background

  20. ORISE Resources: Radiological and Nuclear Terrorism: Medical Response to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Casualties Training Clinicians for Response to a Radiological or Nuclear Terrorism Attack The Centers for Disease Control and Prevention and its Radiation Studies Branch in the National Center for Environmental Health asked the Oak Ridge Institute for Science and Education (ORISE) to develop a Web-based and CD-ROM training program to prepare clinicians-medical doctors and registered nurses in hospital emergency service settings-on how to locally respond to mass casualties that may

  1. Introduction The Radiological/Nuclear Countermeasures Test and Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological/Nuclear Countermeasures Test and Evaluation Complex (RNCTEC) is a multi-use test and evaluation platform that will serve the U.S. homeland security mission. Background The Department of Homeland Security's Domestic Nuclear Detection Office (DNDO), with assistance from the U.S. Department of Energy National Nuclear Security Administration, has established the RNCTEC at the Nevada National Security Site, formerly known as the Nevada Test Site, to support all federal agencies to

  2. Office of Radiological Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Radiological Security | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  3. Good Practices for Ocupational Radiological Protection in Plutonium Facilities

    Office of Environmental Management (EM)

    Not Measurement Sensitive DOE- STD-1128-2013 April 2013 DOE STANDARD GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1128-2013 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii DOE-STD-1128-2013 Foreword This Technical

  4. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 ii This page intentionally left blank. DOE-HDBK-1122-99 iii Course Developers Dave Lent Coleman Research Joe DeMers EG&G Mound Applied Technologies (formerly) Andy Hobbs FERMCO Dennis Maloney RUST - GJPO Richard Cooke Argonne National Laboratory Bobby Oliver Lockheed Martin Energy Systems Michael

  5. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Sources of Radiation Instructor's Guide 1.05-1 Course Title: Radiological Control Technician Module Title: Sources of Radiation Module Number: 1.05 Objectives: 1.05.01 Identify the following four sources of natural background radiation including the origin, radionuclides, variables, and contribution to exposure. a. Terrestrial b. Cosmic c. Internal Emitters d. Radon 1.05.02 Identify the following four sources of artificially produced radiation and the magnitude of dose received from each. a.

  6. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radioactivity & Radioactive Decay Instructor's Guide 1.06-1 Course Title: Radiological Control Technician Module Title: Radioactivity & Radioactive Decay Module Number: 1.06 Objectives: 1.06.01 Identify how the neutron to proton ratio is related to nuclear stability. 1.06.02 Identify the definition for the following terms: a. radioactivity b. radioactive decay 1.06.03 Identify the characteristics of alpha, beta, and gamma radiations. 1.06.04 Given simple equations identify the following

  7. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    External Exposure Control Instructor's Guide 1.11-1 Course Title: Radiological Control Technician Module Title: External Exposure Control Module Number: 1.11 Objectives: 1.11.01 Identify the four basic methods for minimizing personnel external exposure. 1.11.02 Using the Exposure Rate = 6CEN equation, calculate the gamma exposure rate for specific radionuclides. 1.11.03 Identify "source reduction" techniques for minimizing personnel external exposures. 1.11.04 Identify

  8. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    3 Radiation Detector Theory Instructor's Guide 1.13-1 Course Title: Radiological Control Technician Module Title: Radiation Detector Theory Module Number: 1.13 Objectives: 1.13.01 Identify the three fundamental laws associated with electrical charges. 1.13.02 Identify the definition of current, voltage and resistance and their respective units. 1.13.03 Select the function of the detector and readout circuitry components in a radiation measurement system. 1.13.04 Identify the parameters that

  9. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Respiratory Protection Instructor's Guide 2.07-1 Course Title: Radiological Control Technician Module Title: Respiratory Protection Module Number: 2.07 Objectives: 2.07.01 Explain the purpose of respiratory protection standards and regulations. 2.07.02 Identify the OSHA, ANSI, and DOE respiratory protection program requirements. 2.07.03 Identify the standards which regulate respiratory protection. 2.07.04 Describe the advantages and disadvantages (limitations) of each of the following

  10. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Instructor's Guide 2.19-1 Course Title: Radiological Control Technician Module Title: Counting Room Equipment Module Number: 2.19 Objectives: L 2.19.01 Describe the following features and specifications for commonly used laboratory counter or scalers: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting L 2.19.02 Describe the following features and specifications for

  11. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    - Sources of Radiation Study Guide 1.05-1 Course Title: Radiological Control Technician Module Title: Sources of Radiation Module Number: 1.05 Objectives: 1.05.01 Identify the following four sources of natural background radiation including the origin, radionuclides, variables, and contribution to exposure. a. Terrestrial b. Cosmic c. Internal Emitters d. Radon 1.05.02 Identify the following four sources of artificially produced radiation and the magnitude of dose received from each. a. Nuclear

  12. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    - Radioactivity and Radioactive Decay Study Guide 1.06-1 Course Title: Radiological Control Technician Module Title: Radioactivity & Radioactive Decay Module Number: 1.06 Objectives: 1.06.01 Identify how the neutron to proton ratio is related to nuclear stability. 1.06.02 Identify the definition for the following terms: a. radioactivity b. radioactive decay 1.06.03 Identify the characteristics of alpha, beta, and gamma radiations. 1.06.04 Given simple equations identify the following

  13. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    External Exposure Control Study Guide 1.11-1 Course Title: Radiological Control Technician Module Title: External Exposure Control Module Number: 1.11 Objectives: 1.11.01 Identify the four basic methods for minimizing personnel external exposure. 1.11.02 Using the Exposure Rate = 6CEN equation, calculate the gamma exposure rate for specific radionuclides. 1.11.03 Identify "source reduction" techniques for minimizing personnel external exposures. 1.11.04 Identify

  14. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Respiratory Protection Study Guide 2.07-1 Course Title: Radiological Control Technician Module Title: Respiratory Protection Module Number: 2.07 Objectives: 2.07.01 Explain the purpose of respiratory protection standards and regulations. 2.07.02 Identify the OSHA, ANSI, and DOE respiratory protection program requirements. 2.07.03 Identify the standards which regulate respiratory protection. 2.07.04 Describe the advantages and disadvantages (limitations) of each of the following respirators: a.

  15. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Study Guide 2.19-1 Course Title: Radiological Control Technician Module Title: Counting Room Equipment Module Number: 2.19 Objectives: 2.19.01 Describe the features and specifications for commonly used laboratory counters or scalers: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting 2.19.02 Describe the features and specifications for low-background automatic

  16. DOE-HDBK-1131-98; General Employee Radiological Training

    Office of Environmental Management (EM)

    DOE-HDBK-1131-98 December 1998 Change Notice No. 1 November 2003 Reaffirmation with Errata April 2004 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of

  17. tracc-evacuation-survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survey Announcement SURVEY: The Transportation Research and Analysis computing center is conducting a survey to help with improvement of emergency evacuation planning in Chicago TRACC researchers under a contract with the City of Chicago are developing a model which predicts a response of a transportation network to an evacuation event. Emergency responders from OEMC and other local emergency management personal are to use the model results for "intuition training" purposes and

  18. behavioral-survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evacuation Behavior Survey for No-Notice Emergency Scenarios" Presentation at the 93rd TRB Annual Meeting at the Traveler Behavior and Values Committee (ADB10) - Behavioral Process subcommittee; January 13, 2014 Joshua Auld, Vadim Sokolov, Rene Bautista, Angela Fontes Transportation Research and Analysis Computing Center Argonne National Laboratory Biography The presentation details a survey on evacuation response behavior that was conducted as a part of the RTSTEP project. The survey was

  19. Community Leaders Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Leaders Survey Community Leaders Survey This survey is a tracking study commissioned by the Lab that helps measure perceived progress in maintaining community relationships and listening and responding to the needs of Northern New Mexico communities. Results help shape and direct the Lab's contributions to the region's future. Latest results show nine-in-ten of the community leaders express satisfaction with LANL's economic impact on the region. Study measures changes in leaders'

  20. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken placetechniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportationthe so-called second line of defense.

  1. Homeowner and Contractor Surveys

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Homeowner and Contractor Surveys, Call Slides and Discussion Summary, January 19, 2012.

  2. 2004 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 | Next 2004 User Survey Results Table of Contents Response Summary Respondent Demographics Overall Satisfaction and Importance All Satisfaction, Importance and Usefulness...

  3. 2006 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to provide overall comments about NERSC: Here are the survey results: Respondent Demographics Overall Satisfaction and Importance All Satisfaction, Importance and Usefulness...

  4. 2005 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 | Next 2005 User Survey Results Table of Contents Response Summary Respondent Demographics All Satisfaction, Importance and Usefulness Ratings Hardware Resources Software...

  5. 2003 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 | Next 2003 User Survey Results Table of Contents Response Summary Respondent Demographics Overall Satisfaction and Importance All Satisfaction Topics and Changes from...

  6. Central Characterization Program (CCP) Contact-Handled (CH) TRU Waste Certification and Waste Information System/Waste Data System (WWIS/WDS) Data Entry

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  7. 2011 NERSC User Survey (Read Only)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010/2011 User Survey Results Survey Text 2009/2010 User Survey Results 2008/2009 User Survey Results 2007/2008 User Survey Results 2006 User Survey Results 2005 User Survey Results 2004 User Survey Results 2003 User Survey Results 2002 User Survey Results 2001 User Survey Results 2000 User Survey Results 1999 User Survey Results 1998 User Survey Results HPC Requirements for Science HPC Workshop Reports NERSC Staff Publications & Presentations Journal Cover Stories Galleries facebook icon

  8. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  9. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  10. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  11. Reducing the Risks. In the aftermath of a terrorist attack, wastewater utilities may have to contend with decontamination water containing chemical, biological, or radiological substances

    SciTech Connect (OSTI)

    Warren, Linda P.; Hornback, Chris; Strom, Daniel J.

    2006-08-01

    In the aftermath of a chemical, biological, or radiological (CBR) attack, decontamination of people and infrastructure will be needed. Decontamination inevitably produces wastewater, and wastewater treatment plants (WTPs) need to know how to handle decontamination wastewater. This article describes CBR substances; planning, coordinating, and communicating responses across agencies; planning within a utility; coordination with local emergency managers and first responders; mitigating effects of decontamination wastewater; and mitigating effects on utility personnel. Planning for Decontamination Wastewater: A Guide for Utilities, the document on which this article is based, was developed under a cooperative agreement from the U.S. Environmental Protection Agency by the National Association of Clean Water Agencies (NACWA) and its contractor, CH2MHILL, Inc.

  12. The Impacts of Dry-Storage Canister Designs on Spent Nuclear Fuel Handling,

    Office of Environmental Management (EM)

    Storage, Transportation, and Disposal in the U.S. | Department of Energy The Impacts of Dry-Storage Canister Designs on Spent Nuclear Fuel Handling, Storage, Transportation, and Disposal in the U.S. The Impacts of Dry-Storage Canister Designs on Spent Nuclear Fuel Handling, Storage, Transportation, and Disposal in the U.S. PDF icon The Impacts of Dry-Storage Canister Designs on Spent Nuclear Fuel Handling, Storage, Transportation, and Disposal in the U.S. More Documents & Publications

  13. First Oak Ridge Remote-Handled Transuranic Waste Shipment Arrives Safely at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIPP | Department of Energy First Oak Ridge Remote-Handled Transuranic Waste Shipment Arrives Safely at WIPP First Oak Ridge Remote-Handled Transuranic Waste Shipment Arrives Safely at WIPP March 2, 2009 - 12:00pm Addthis OAK RIDGE, Tenn. - The U.S. Department of Energy (DOE) achieved a major environmental cleanup milestone this week with the first shipment of Remote-Handled Transuranic (TRU) Waste leaving DOE's Oak Ridge Reservation and arriving safely at the Waste Isolation Pilot Plant

  14. Radiological assessment report for the University of Rochester Annex, 400 Elmwood Avenue, Rochester, New York, April-May 1984

    SciTech Connect (OSTI)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.

    1984-12-01

    In light of the results of the comprehensive radiological assessment of the annex and auxiliary facilities, the following conclusions can be made: There is no immediate hazard from the elevated levels of radioactivity detected; however, some of these levels are above criteria. The radon, thoron, actinon, long-lived particulates, and tritium in the air are all below criteria for unrestricted use. Some ductwork has been identified as being contaminated. All ductwork must, therefore, be considered potentially contaminated. Since several floor drains were found to exhibit elevated readings, and the samples had elevated concentrations of radionuclides, it must be concluded that the drain and sewer systems of the Annex are contaminated with radioactive material. Since the samples collected from the storm and sewer systems outside the building also had elevated concentrations of radionuclides, these systems are also considered contaminated with radioactive material. The grounds around the Annex have exhibited background concentrations of radionuclides. Two rooms, B-330 and B-332, were inaccessible for survey due to the presence of stored furniture and equipment. Therefore, no comment about their radiological status can be made. At the common baseboard for Room C-12 and C-16 and on the floor below the tile in Room C-40, contamination appeared to be masked by construction modifications. Other areas of the Annex must also be considered potentially contaminated where modifications may have masked the contamination.

  15. Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois

    SciTech Connect (OSTI)

    W. C. Adams

    2007-05-25

    Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory’s Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007).

  16. Development of an Outdoor Concentrating Photovoltaic Module Testbed, Module Handling and Testing Procedures, and Initial Energy Production Results

    SciTech Connect (OSTI)

    Muller, M.

    2009-09-01

    This report addresses the various aspects of setting up a CPV testbed and procedures for handling and testing CPV modules.

  17. ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2012

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.; Ramsden, T.

    2013-05-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the fourth quarter of 2012.

  18. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  19. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    Austad, S. L.; Guillen, L. E.; McKnight, C. W.; Ferguson, D. S.

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  20. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.